APPENDIX A

Appendix A. The ingroup species (Eriophyoidea) and outgroup species (Tydeidae and Tetranychidae) included in the data sets in the present study of the phylogeny of the Eriophyoidea. All species are included in the 318 taxon data matrix. The number of species described in each genus mostly according to Amrine et al. (2003), or more recent, is listed in the column "Nu. spp."; Tydeidae - monotypic genus; Tetranychidae - according to Bolland et al. (1998).

Mite species	Classification	Nu. spp.	Articles from which characters were scored in the present study
Orfareptydeus stepheni Ueckermann \& Grout, 2007	Tydeidae		Ueckermann \& Grout, 2007
Mononychellus yemensis Meyer, 1996	Tetranychidae	29	Meyer, 1996
Abacarus acalyptus (Keifer, 1939)	Eriophyidae: Phyllocoptinae: Anthocoptini	50	Keifer, 1939d
Abacarus hystrix (Nalepa, 1896)	Eriophyidae: Phyllocoptinae: Anthocoptini	50	Nalepa, 1896; Keifer, 1952b
Aberoptus samoae Keifer, 1951	Eriophyidae: Aberoptinae	3	Keifer, 1951
Acadicrus bifurcatus Keifer, 1965	Eriophyidae: Phyllocoptinae: Phyllocoptini	3	Keifer, 1965b
Acalitus ledi Keifer, 1965	Eriophyidae: Eriophyinae: Acerini	87	Keifer, 1965b
Acamina nolinae (Keifer, 1939)	Eriophyidae: Phyllocoptinae: Phyllocoptini	2	Keifer, 1939a
Acaphyllisa parindiae Keifer, 1978	Eriophyidae: Phyllocoptinae: Acaricalini	10	Keifer, 1978
Acarelliptus cocciformis Keifer, 1940	Eriophyidae: Phyllocoptinae: Phyllocoptini		Keifer, 1940b
Acarhis diospyrosis Chandrapatya, 1991	Diptilomiopidae: Diptilomiopinae	3	Chandrapatya \& Boczek, 1991c
Acarhis lepisanthis Keifer, 1975	Diptilomiopidae: Diptilomiopinae	3	Keifer, 1975d
Acarhis siamensis Boczek \& Chandrapatya, 2000	Diptilomiopidae: Diptilomiopinae		Boczek \& Chandrapatya, 2000
Acarhynchus filamentus Keifer, 1959	Diptilomiopidae: Diptilomiopinae	5	Keifer, 1959b
Acaricalus segundus Keifer, 1940	Eriophyidae: Phyllocoptinae: Acaricalini	15	Keifer, 1940b
Acathrix trymatus Keifer, 1962	Phytoptidae: Phytoptinae	2	Keifer, 1962c
Aceria tulipae (Keifer, 1938)	Eriophyidae: Eriophyinae: Acerini	900	Keifer, 1938a
Acerimina cedrelae Keifer, 1957	Eriophyidae: Eriophyinae: Aceriini	7	Keifer, 1957
Achaetocoptes ajoensis (Keifer, 1961)	Eriophyidae: Cecidophyinae: Cecidophyini	2	Keifer, 1961a
Acritonotus denmarki Keifer,1962	Eriophyidae: Phyllocoptinae: Phyllocoptini	2	Keifer, 1962d
Aculodes mckenziei (Keifer, 1944)	Eriophyidae: Phyllocoptinae: Anthocoptini	16	Keifer, 1944
Aculops populivagrans (Keifer, 1953)	Eriophyidae: Phyllocoptinae: Anthocoptini	158	Keifer, 1953
Aculus ligustri (Keifer, 1938)	Eriophyidae: Phyllocoptinae: Anthocoptini	248	Keifer, 1938a
Acunda plectilis Keifer, 1965	Eriophyidae: Eriophyinae: Acerini		Keifer, 1965c
Adenocolus psydraxi Meyer \& Ueckermann, 1997	Eriophyidae: Nothopodinae: Colopodacini		Meyer \& Ueckermann, 1997
Aequsomatus lanceolatae Meyer \& Ueckermann, 1995	Eriophyidae: Phyllocoptinae: Phyllocoptini	3	Meyer \& Ueckermann, 1995
Africus psydraxae Meyer \& Ueckermann, 1995	Diptilomiopidae: Diptilomiopinae		Meyer \& Ueckermann, 1995
Afromerus florinoxus Meyer, 1990	Eriophyidae: Cecidophyinae: Colomerini	5	Meyer, 1990b
Anchiphytoptus lineatus Keifer, 1952	Phytoptidae: Phytoptinae		Keifer, 1952a
Anothopoda johnstoni Keifer, 1959	Eriophyidae: Nothopodinae: Nothopodini	5	Keifer, 1959d
Anthocoptes gutierreziae Keifer, 1962	Eriophyidae: Phyllocoptinae: Anthocoptini	50	Keifer, 1962c
Apodiptacus cordiformis Keifer, 1960	Diptilomiopidae: Diptilomiopinae	5	Keifer, 1960
Apontella bravaisiae Boczek \& Nuzzaci, 1988	Eriophyidae: Nothopodinae: Colopodacini		Boczek \& Nuzzaci, 1988
Arectus bidwillius Manson, 1984	Eriophyidae: Phyllocoptinae: Phyllocoptini		Manson, 1984a
Areekulus eugeniae Chandrapatya, 1998	Diptilomiopidae: Rhyncaphytoptinae		Boczek \& Chandrapatya, 1998
Asetacus madronae Keifer, 1952	Diptilomiopidae: Rhyncaphytoptinae		Keifer, 1952a
Asetadiptacus emiliae Carmona, 1970	Diptilomiopidae: Diptilomiopinae	2	Carmona, 1970
Asetilobus hodgkinsi (Manson, 1965)	Eriophyidae: Eriophyinae: Eriophyini		Manson, 1965
Ashieldophyes pennadamensis Mohanasundaram, 1984	Eriophyidae: Ashieldophyinae		Mohanasundaram, 1984
Austracus havrylenkonis Keifer, 1944	Phytoptidae: Sierraphytoptinae: Sierraphytoptini		Keifer, 1944
Baileyna marianae Keifer, 1954	Eriophyidae: Eriophyinae: Acerini		Keifer, 1954
Bakeriella ocimis Chakrabarti \& Mondal, 1982	Eriophyidae: Phyllocoptinae: Anthocoptini		Chakrabarti \& Mondal, 1982
Bariella farnei De Lillo, 1988	Eriophyidae: Cecidophyinae: Cecidophyini		De Lillo, 1988a
Boczekella laricis Farkas, 1965	Phytoptidae: Nalepellinae: Trisetacini		Farkas, 1965a
Brachendus pumilae Keifer, 1964	Eriophyidae: Eriophyinae: Eriophyini		Keifer, 1964a
Brevulacus reticulatus Manson, 1984	Diptilomiopidae: Rhyncaphytoptinae		Manson, 1984a
Bucculacus kaweckii Boczek, 1961	Diptilomiopidae: Diptilomiopinae		Boczek, 1961
Calacarus pulviferus Keifer, 1940	Eriophyidae: Phyllocoptinae: Calacarini	41	Keifer, 1940b
Calepitrimerus cariniferus Keifer, 1938	Eriophyidae: Phyllocoptinae: Phyllocoptini	62	Keifer, 1938b
Caliphytoptus quercilobatae Keifer, 1938	Eriophyidae: Phyllocoptinae: Phyllocoptini		Keifer, 1938b
Caroloptes fagivagrans Keifer, 1940	Eriophyidae: Phyllocoptinae: Phyllocoptini		Keifer, 1940b
Catachella machaerii Keifer, 1969	Eriophyidae: Phyllocoptinae: Anthocoptini		Keifer, 1969b
Catarhinus tricholaenae Keifer, 1959	Diptilomiopidae: Rhyncaphytoptinae	11	Keifer, 1959b
Cecidodectes euzonus Nalepa, 1917	Eriophyidae: Phyllocoptinae: Phyllocoptini		Meyer \& Ueckermann, 1989b
Cecidophyes rouhollahi Craemer, 1999	Eriophyidae: Cecidophyinae: Cecidophyini	143	Craemer et al., 1999
Cenaca syzygioidis Keifer, 1972	Eriophyidae: Eriophyinae: Acerini		Keifer, 1972
Cenalox nyssae Keifer, 1961	Eriophyidae: Phyllocoptinae: Phyllocoptini		Keifer, 1961b
Cercodes simondsi Keifer, 1960	Eriophyidae: Eriophyinae: Eriophyini		Keifer, 1960
Chakrabartiella ficusis (Chakrabarti, Ghosh \& Das, 1992)	Diptilomiopidae: Rhyncaphytoptinae		Chakrabarti, Ghosh \& Das, 1992
Cheiracus sulcatus Keifer, 1977	Diptilomiopidae: Rhyncaphytoptinae		Keifer, 1977a
Chiangmaia longifolii (Chandrapatya \& Boczek, 2000)	Diptilomiopidae: Diptilomiopinae		Chandrapatya \& Boczek, 2000c
Chrecidus quercipodus Manson, 1984	Eriophyidae: Cecidophyinae: Cecidophyini		Manson, 1984a
Circaces chakrabartii Keifer, 1978	Eriophyidae: Cecidophyinae: Colomerini		Keifer, 1978
Cisaberoptus kenyae Keifer, 1966 (now jr. syn. of Aceria)	Eriophyidae: Aberoptinae		Keifer, 1966c (deutogyne)
Cisaberoptus pretoriensis Meyer, 1989 (now jr. syn. of Aceria)	Eriophyidae: Aberoptinae		Meyer, 1989a (deutogyne)
Colomerus gardeniella (Keifer, 1964)	Eriophyidae: Cecidophyinae: Colomerini	25	Keifer, 1964b

Colopodacus africanus Keifer, 1960	Eriophyidae: Nothopodinae: Colopodacini	14	Keifer, 1960
Coptophylla lamimani (Keifer, 1939)	Eriophyidae: Cecidophyinae: Cecidophyini		Keifer, 1939d
Cosella deleoni (Keifer, 1956)	Eriophyidae: Nothopodinae: Nothopodini	22	Keifer, 1956
Cosetacus camelliae (Keifer, 1945)	Eriophyidae: Cecidophyinae: Colomerini		Keifer, 1945
Costarectus zeyheri Meyer \& Ueckermann, 1995	Eriophyidae: Phyllocoptinae: Anthocoptini		Meyer \& Ueckermann, 1995
Criotacus brachystegiae Keifer, 1963	Eriophyidae: Phyllocoptinae: Phyllocoptini		Keifer, 1963b
Cupacarus cuprifestor Keifer, 1943	Eriophyidae: Phyllocoptinae: Phyllocoptini		Keifer, 1943
Cymeda zealandica Manson \& Gerson, 1986	Eriophyidae: Phyllocoptinae: Acaricalini		Manson \& Gerson, 1986
Cymoptus spiniventris Keifer, 1946	Eriophyidae: Eriophyinae: Aceriini		Keifer, 1946
Dacundiopus stylosus Manson, 1984	Diptilomiopidae: Diptilomiopinae		Manson, 1984a
Davisella breitlowi (Davis, 1964)	Diptilomiopidae: Diptilomiopinae		Davis, 1964a
Dechela epelis Keifer, 1965	Eriophyidae: Cecidophyinae: Cecidophyini		Keifer, 1965a
Dialox stellatus Keifer, 1962	Diptilomiopidae: Diptilomiopinae		Keifer, 1962d
Dichopelmus notus, Keifer 1959	Eriophyidae: Phyllocoptinae: Acaricalini		Keifer, 1959c
Dicrothrix anacardii Keifer, 1966	Eriophyidae: Phyllocoptinae: Tegonotini		Keifer, 1966c
Diphytoptus nephroideus Huang, 1991	Eriophyidae: Eriophyinae: Diphytoptini		Huang, 1991
Diptacus pandanus (Boczek \& Oleczek, 1988)	Diptilomiopidae: Diptilomiopinae	43	Boczek \& Oleczek, 1988
Diptacus sacramentae (Keifer, 1939)	Diptilomiopidae: Diptilomiopinae	43	Keifer, 1939b
Diptilomiopus acronychia Chen, Wei \& Qin, 2004	Diptilomiopidae: Diptilomiopinae	82	Chen, Wei \& Qin, 2004
Diptilomiopus aglaiae (Chandrapatya \& Boczek, 2002)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 2002a
Diptilomiopus alagarmalaiensis Mohanasundaram, 1986	Diptilomiopidae: Diptilomiopinae	82	Mohanasundaram, 1986a
Diptilomiopus alangii Mohanasundaram, 1982	Diptilomiopidae: Diptilomiopinae	82	Mohanasundaram, 1982b
Diptilomiopus anthocephaliae (Chandrapatya \& Boczek, 2002)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 2002a
Diptilomiopus apobrevis sp. nov.	Diptilomiopidae: Diptilomiopinae	82	present study
Diptilomiopus apolongus sp. nov.	Diptilomiopidae: Diptilomiopinae	82	present study
Diptilomiopus aralioidus Huang, 2006	Diptilomiopidae: Diptilomiopinae	82	Huang, 2006
Diptilomiopus artabotrysi (Boczek, 1991)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 1991b
Diptilomiopus artocarpae Mohanasundaram, 1981	Diptilomiopidae: Diptilomiopinae	82	Mohanasundaram, 1981b
Diptilomiopus asperis Ghosh \& Chakrabarti, 1989	Diptilomiopidae: Diptilomiopinae	82	Ghosh \& Chakrabarti, 1989a
Diptilomiopus assamica Keifer, 1959	Diptilomiopidae: Diptilomiopinae	82	Keifer, 1959c
Diptilomiopus averrhoae Wei \& Feng, 1999	Diptilomiopidae: Diptilomiopinae	82	Wei \& Feng, 1999
Diptilomiopus azadirachtae (Boczek, 1992)	Diptilomiopidae: Diptilomiopinae	82	Boczek \& Chandrapatya, 1992b
Diptilomiopus barringtoniae (Chandrapatya, 1992)	Diptilomiopidae: Diptilomiopinae	82	Boczek \& Chandrapatya, 1992b
Diptilomiopus bengalensis Chakrabarti \& Mondal, 1979	Diptilomiopidae: Diptilomiopinae	82	Chakrabarti \& Mondal, 1979
Diptilomiopus benjaminae (Boczek \& Chandrapatya, 2002)	Diptilomiopidae: Diptilomiopinae	82	Boczek \& Chandrapatya, 2002
Diptilomiopus boueae (Chandrapatya \& Boczek, 2002)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 2002a
Diptilomiopus camarae Mohanasundaram, 1981	Diptilomiopidae: Diptilomiopinae	82	Mohanasundaram, 1981b
Diptilomiopus cerberae (Chandrapatya, 1998)	Diptilomiopidae: Diptilomiopinae	82	Boczek \& Chandrapatya, 1998
Diptilomiopus championi (Huang, 1992)	Diptilomiopidae: Diptilomiopinae	82	Huang, 1992
Diptilomiopus cocculae Mohanasundaram, 1981	Diptilomiopidae: Diptilomiopinae	82	Mohanasundaram, 1981b
Diptilomiopus combretae (Chandrapatya \& Boczek, 2002)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 2002a
Diptilomiopus combreti Wei \& Lu, 2001	Diptilomiopidae: Diptilomiopinae	82	Wei \& Lu, 2001
Diptilomiopus commuiae Huang, 2001	Diptilomiopidae: Diptilomiopinae	82	Huang, 2001b
Diptilomiopus coreiae (Chandrapatya \& Boczek, 2002)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 2002b
Diptilomiopus cumingis Huang, 2001	Diptilomiopidae: Diptilomiopinae	82	Huang, 2001a
Diptilomiopus cuminis Chakrabarti, Ghosh \& Das, 1992	Diptilomiopidae: Diptilomiopinae	82	Chakrabarti, Ghosh \& Das, 1992
Diptilomiopus cuminis redescription by Huang (2001c)	Diptilomiopidae: Diptilomiopinae	82	Huang, 2001c
Diptilomiopus cythereae (Chandrapatya, 1991)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 1991a
Diptilomiopus davisi Keifer, 1969	Diptilomiopidae: Diptilomiopinae	82	Keifer, 1969a
Diptilomiopus dendropanacis Chen, Wei \& Qin, 2003	Diptilomiopidae: Diptilomiopinae	82	Chen, Wei \& Qin, 2003
Diptilomiopus elaeocarpi (Boczek, 1991)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 1991a
Diptilomiopus elliptus Huang, 2001	Diptilomiopidae: Diptilomiopinae	82	Huang, 2001d
Diptilomiopus emarginatus Huang, 2001	Diptilomiopidae: Diptilomiopinae	82	Huang, 2001c
Diptilomiopus ervatamiae (Chandrapatya, 1991)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 1991a
Diptilomiopus eucalypti (Boczek, 1991)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 1991b
Diptilomiopus euryae Chen, Wei \& Qin, 2003	Diptilomiopidae: Diptilomiopinae	82	Chen, Wei \& Qin, 2003
Diptilomiopus faurius sp. nov.	Diptilomiopidae: Diptilomiopinae	82	present study
Diptilomiopus ficifolius (Boczek \& Oleczek, 1988)	Diptilomiopidae: Diptilomiopinae	82	Boczek \& Oleczek, 1988
Diptilomiopus ficus Attiah, 1967	Diptilomiopidae: Diptilomiopinae	82	Attiah, 1967
Diptilomiopus ficusis Chakrabarti \& Mondal, 1983	Diptilomiopidae: Diptilomiopinae	82	Chakrabarti \& Mondal, 1983
Diptilomiopus formosanus Huang, 2005	Diptilomiopidae: Diptilomiopinae	82	Huang, 2005
Diptilomiopus gilibertiae Kadono, 1984	Diptilomiopidae: Diptilomiopinae	82	Kadono, 1984
Diptilomiopus guajavae Mohanasundaram, 1985	Diptilomiopidae: Diptilomiopinae	82	Mohanasundaram, 1985
Diptilomiopus hexogonus Huang, 2001	Diptilomiopidae: Diptilomiopinae	82	Huang, 2001c
Diptilomiopus holmesi (Keifer, 1962)	Diptilomiopidae: Diptilomiopinae	82	Keifer, 1962c
Diptilomiopus holopteleae Abou-Awad \& El-Banhawy, 1992	Diptilomiopidae: Diptilomiopinae	82	Abou-Awad \& El-Banhawy, 1992
Diptilomiopus holoptelus Chakrabarti \& Mondal, 1983	Diptilomiopidae: Diptilomiopinae	82	Chakrabarti \& Mondal, 1983
Diptilomiopus illicii Wei \& Lu, 2001	Diptilomiopidae: Diptilomiopinae	82	Wei \& Lu, 2001
Diptilomiopus indicus Chakrabarti \& Pandit, 1996	Diptilomiopidae: Diptilomiopinae	82	Chakrabarti \& Pandit, 1996

Diptilomiopus integrifoliae Mohanasundaram, 1981	Diptilomiopidae: Diptilomiopinae	82	Mohanasundaram, 1981b
Diptilomiopus jasminiae (Chandrapatya \& Boczek, 2001)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 2001a
Diptilomiopus javanicus Nalepa, 1916	Diptilomiopidae: Diptilomiopinae	82	Nalepa, 1916; Nalepa, 1918
Diptilomiopus jevremovici Keifer, 1960	Diptilomiopidae: Diptilomiopinae	82	Keifer, 1960
Diptilomiopus knorri Keifer, 1974	Diptilomiopidae: Diptilomiopinae	82	Keifer, 1974
Diptilomiopus languasi (Boczek, 1991)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 1991b
Diptilomiopus leeasis Chakrabarti, Ghosh \& Das, 1992	Diptilomiopidae: Diptilomiopinae	82	Chakrabarti, Ghosh \& Das, 1992
Diptilomiopus leptophyllus Huang, 2001	Diptilomiopidae: Diptilomiopinae	82	Huang, 2001c
Diptilomiopus lobbianus Huang \& Cheng, 2005	Diptilomiopidae: Diptilomiopinae	82	Huang \& Cheng, 2005
Diptilomiopus loropetali Kuang, 1986	Diptilomiopidae: Diptilomiopinae	82	Kuang, 1986a; Hong \& Zhang, 1996c
Diptilomiopus maduraiensis Mohanasundaram, 1986	Diptilomiopidae: Diptilomiopinae	82	Mohanasundaram, 1986a
Diptilomiopus malloti Wei \& Feng, 1999	Diptilomiopidae: Diptilomiopinae	82	Wei \& Feng, 1999
Diptilomiopus melastomae (Boczek \& Chandrapatya, 2002)	Diptilomiopidae: Diptilomiopinae	82	Boczek \& Chandrapatya, 2002
Diptilomiopus meliae (Boczek, 1998)	Diptilomiopidae: Diptilomiopinae	82	Boczek \& Chandrapatya, 1998
Diptilomiopus morii Huang, 2001	Diptilomiopidae: Diptilomiopinae	82	Huang, 2001c
Diptilomiopus morindae (Boczek, 1998)	Diptilomiopidae: Diptilomiopinae	82	Boczek \& Chandrapatya, 1998
Diptilomiopus musae (Chandrapatya, 1998)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 1998
Diptilomiopus octogonus Huang, 2001	Diptilomiopidae: Diptilomiopinae	82	Huang, 2001c
Diptilomiopus pamithus (Boczek \& Chandrapatya, 1989)	Diptilomiopidae: Diptilomiopinae	82	Boczek \& Chandrapatya, 1989
Diptilomiopus perfectus Huang, 2001	Diptilomiopidae: Diptilomiopinae	82	Huang, 2001c
Diptilomiopus phylanthi (Chandrapatya, 1992)	Diptilomiopidae: Diptilomiopinae	82	Boczek \& Chandrapatya, 1992b
Diptilomiopus pocsi Farkas, 1967	Diptilomiopidae: Diptilomiopinae	82	Farkas, 1967
Diptilomiopus racemosae (Chandrapatya \& Boczek, 2001)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 2001a
Diptilomiopus riciniae (Boczek \& Chandrapatya, 2002)	Diptilomiopidae: Diptilomiopinae	82	Boczek \& Chandrapatya, 2002
Diptilomiopus sandorici (Chandrapatya, 1991)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 1991a
Diptilomiopus securinegus Boczek, 1992	Diptilomiopidae: Diptilomiopinae	82	Boczek \& Chandrapatya, 1992a
Diptilomiopus septimus Huang, 2001 (now jr. syn. of D. championi)	Diptilomiopidae: Diptilomiopinae	82	Huang, 2001c
Diptilomiopus stephanus Huang, 2005	Diptilomiopidae: Diptilomiopinae	82	Huang, 2005
Diptilomiopus strebli (Boczek, 1992)	Diptilomiopidae: Diptilomiopinae	82	Boczek \& Chandrapatya, 1992b
Diptilomiopus swieteniae (Chandrapatya, 1998)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 1998
Diptilomiopus thaianae (Boczek, 1991)	Diptilomiopidae: Diptilomiopinae	82	Chandrapatya \& Boczek, 1991a
Diptilomiopus thangaveli Mohanasundaram, 1983	Diptilomiopidae: Diptilomiopinae	82	Mohanasundaram, 1983c
Diptilomiopus thunbergiae (Boczek \& Chandrapatya, 2002)	Diptilomiopidae: Diptilomiopinae	82	Boczek \& Chandrapatya, 2002
Diptilomiopus trewier Chakrabarti \& Mondal, 1983	Diptilomiopidae: Diptilomiopinae	82	Chakrabarti \& Mondal, 1983
Diptilomiopus ulmivagrans Mohanasundaram, 1984	Diptilomiopidae: Diptilomiopinae	82	Mohanasundaram, 1984
Diptiloplatus megagrastis Keifer, 1975	Diptilomiopidae: Diptilomiopinae	2	Keifer, 1975c
Diptilorhynacus dioscoreae Boczek \& Nuzzaci, 1985	Diptilomiopidae: Diptilomiopinae	2	Boczek \& Nuzzaci, 1985
Diptilorhynacus sinusetus Mondal, Ghosh \& Chakrabarti, 1981	Diptilomiopidae: Diptilomiopinae		Mondal, Ghosh \& Chakrabarti, 1981
Diptilostatus nudipalpus Flechtmann, 2003	Diptilomiopidae: Diptilomiopinae		Flechtmann \& De Moraes, 2003
Disella ilicis (Keifer, 1965)	Eriophyidae: Nothopodinae: Nothopodini	12	Keifer, 1965a
Ditrymacus athiasella Keifer, 1960	Eriophyidae: Phyllocoptinae: Anthocoptini		Keifer, 1960
Duabangus chiangmai Chandrapatya \& Boczek, 2000	Diptilomiopidae: Diptilomiopinae		Chandrapatya \& Boczek, 2000b
Ectomerus anysis (Keifer, 1970)	Eriophyidae: Cecidophyinae: Colomerini		Keifer, 1970
Epicecidophyes clerodendris Mondal \& Chakrabarti, 1981	Eriophyidae: Cecidophyinae: Colomerini		Mondal \& Chakrabarti, 1981
Epiphytimerus palampurensis Mohanasundaram, 1984 (now jr. syn. of Abacarus)	Eriophyidae: Phyllocoptinae: Anthocoptini	1 ?	Mohanasundaram, 1984
Epitrimerus pyri (Nalepa, 1891)	Eriophyidae: Phyllocoptinae: Phyllocoptini	151	Manson, 1984a
Eriophyes pyri (Pagenstecher, 1857)	Eriophyidae: Eriophyinae: Eriophyini	299	Manson, 1984b
Eriophyes quadrifidus Meyer \& Ueckermann, 1989	Eriophyidae: Eriophyinae: Eriophyini	299	Meyer \& Ueckermann, 1989a
Euterpia fissa Navia \& Flechtmann, 2005	Eriophyidae: Phyllocoptinae: Phyllocoptini		Navia \& Flechtmann, 2005
Floracarus calonyctionis Keifer, 1953	Eriophyidae: Nothopodinae: Nothopodini	18	Keifer, 1953
Fragariocoptes setiger (Nalepa, 1894)	Phytoptidae: Sierraphytoptinae: Sierraphytoptini		Roivainen, 1951; Boczek, 1964
Gammaphytoptus camphorae Keifer, 1939	Eriophyidae: Cecidophyinae: Colomerini		Keifer, 1939a
Glyptacus lithocarpi Keifer, 1953	Eriophyidae: Cecidophyinae: Cecidophyini		Keifer, 1953
Heterotergum gossypii Keifer, 1955	Eriophyidae: Phyllocoptinae: Anthocoptini	13	Keifer, 1955
Hoderus roseus (Keifer, 1975)	Diptilomiopidae: Rhyncaphytoptinae		Keifer, 1975d
Hyborhinus kallarensis Muhanasundaram, 1986	Diptilomiopidae: Rhyncaphytoptinae		Mohanasundaram, 1986a
Indonotolox sudarsani Ghosh \& Chakrabarti, 1982	Eriophyidae: Phyllocoptinae: Phyllocoptini		Ghosh \& Chakrabarti, 1982
Indosetacus rhinacanthi Ghosh \& Chakrabarti, 1987	Eriophyidae: Cecidophyinae: Colomerini		Ghosh \& Chakrabarti, 1987
Indotegolophus darjeelingensis Chakrabarti \& Mondal, 1980	Eriophyidae: Phyllocoptinae: Anthocoptini		Chakrabarti, Mondal \& Roy, 1980
Johnella virginiana Keifer, 1959	Eriophyidae: Cecidophyinae: Cecidophyini		Keifer, 1959d
Jutarus benjaminae Boczek \& Chandrapatya, 1989	Eriophyidae: Phyllocoptinae: Calacarini		Boczek \& Chandrapatya, 1989
Kaella flacourtiae (Chandrapatya \& Boczek, 2002)	Diptilomiopidae: Diptilomiopinae		Chandrapatya \& Boczek, 2002b
Keiferana neolitseae Channabasavanna, 1967	Eriophyidae: Phyllocoptinae: Anthocoptini		Channabasavanna, 1967
Keiferella juniperici Boczek, 1964	Eriophyidae: Phyllocoptinae: Phyllocoptini		Boczek, 1964
Keiferophyes avicenniae Mohanasundaram, 1983	Eriophyidae: Eriophyinae: Aceriini		Mohanasundaram, 1983a
Knorella gigantochloae Keifer, 1975	Eriophyidae: Phyllocoptinae: Acaricalini		Keifer, 1975c
Konola hibernalis Keifer, 1979	Diptilomiopidae: Rhyncaphytoptinae		Keifer, 1979b
Lambella cerina (Lamb, 1953)	Diptilomiopidae: Diptilomiopinae		Manson, 1984a

Latinotus wegoreki Boczek, 1960	Eriophyidae: Phyllocoptinae: Phyllocoptini		Boczek, 1960
Leipothrix solidaginis Keifer, 1966	Eriophyidae: Phyllocoptinae: Phyllocoptini	12	Keifer, 1966c
Levonga caseariasis (Chakrabarti \& Pandit, 1996)	Diptilomiopidae: Diptilomiopinae		Chakrabarti \& Pandit, 1996
Levonga litseae (Chakrabarti, Ghosh \& Das, 1992)	Diptilomiopidae: Diptilomiopinae		Chakrabarti, Ghosh \& Das, 1992
Levonga papaitongensis Manson, 1984	Diptilomiopidae: Diptilomiopinae		Manson, 1984a
Litaculus khandus Manson, 1984	Eriophyidae: Phyllocoptinae: Acaricalini		Manson, 1984a
Lithocarus thomsoni Chandrapatya \& Boczek, 2000	Diptilomiopidae: Diptilomiopinae		Chandrapatya \& Boczek, 2000c
Mackiella phoenicis Keifer, 1939	Phytoptidae: Sierraphytoptinae: Mackiellini		Keifer, 1939a
Mediugum sanasaii Huang, 2001	Diptilomiopidae: Diptilomiopinae		Huang, 2001d
Mesalox tuttlei Keifer, 1962	Eriophyidae: Phyllocoptinae: Anthocoptini		Keifer, 1962a
Metaculus syzygii Keifer, 1962	Eriophyidae: Phyllocoptinae: Anthocoptini	10	Keifer, 1962b
Metaplatyphytoptus amoni Hong \& Kuang, 1989	Eriophyidae: Phyllocoptinae: Phyllocoptini		Hong \& Kuang, 1989
Meyerella bicristatus (Meyer, 1989)	Eriophyidae: Phyllocoptinae: Anthocoptini		Meyer, 1989b
Monotrymacus quadrangulari Mohanasundaram, 1982	Eriophyidae: Phyllocoptinae: Phyllocoptini		Mohanasundaram, 1982a
Nacerimina gutierrezi Keifer, 1979	Eriophyidae: Eriophyinae: Eriophyini		Keifer, 1979a
Nalepella tsugifoliae Keifer, 1953	Phytoptidae: Nalepellinae: Nalepellini	15	Keifer, 1953
Neoacaphyllisa lithocarpi Kuang \& Hong, 1989	Eriophyidae: Phyllocoptinae: Acaricalini		Kuang \& Hong, 1989
Neoacarhis aglaiae Kuang, 1998	Diptilomiopidae: Diptilomiopinae		Kuang, 1998
Neocatarhinus bambusae Kuang \& Hong, 1990	Diptilomiopidae: Rhyncaphytoptinae		Kuang \& Hong, 1990
Neocecidophyes mallotivagrans Muhanasundaram, 1980	Eriophyidae: Cecidophyinae: Colomerini		Mohanasundaram, 1980
Neocolopodacus mitragynae Mohanasundaram, 1980	Eriophyidae: Phyllocoptinae: Anthocoptini		Mohanasundaram, 1980
Neocosella ichnocarpae Mohanasundaram, 1981	Eriophyidae: Nothopodinae: Nothopodini		Mohanasundaram, 1981d
Neocupacarus flabelliferis Das \& Chakrabarti, 1985	Eriophyidae: Phyllocoptinae: Phyllocoptini		Das \& Chakrabarti, 1985
Neodialox palmyrae Mohanasundaram, 1983	Diptilomiopidae: Diptilomiopinae		Mohanasundaram, 1983b
Neodichopelmus samoanus Manson, 1973	Eriophyidae: Phyllocoptinae: Acaricalini		Manson, 1973
Neodicrothrix tiliacorae Mohanasundaram, 1984	Eriophyidae: Phyllocoptinae: Phyllocoptini		Mohansundaram, 1984
Neodiptilomiopus vishakantai Mohanasundaram, 1982	Diptilomiopidae: Diptilomiopinae		Mohanasundaram, 1982b
Neolambella ligustri Lin \& Kuang, 1997	Diptilomiopidae: Diptilomiopinae		Lin \& Kuang, 1997
Neomesalox kallarensis Mohanasundaram, 1983	Eriophyidae: Phyllocoptinae: Anthocoptini		Mohanasundaram, 1983a
Neometaculus bauhiniae Mohanasundaram, 1983	Eriophyidae: Phyllocoptinae: Phyllocoptini		Mohanasundaram, 1983a
Neophantacrus mallotus Mohanasundaram, 1981	Eriophyidae: Phyllocoptinae: Anthocoptini		Mohanasundaram, 1981c
Neophytoptus ocimae Mohanasundaram, 1981	Eriophyidae: Phyllocoptinae: Phyllocoptini		Mohanasundaram, 1981a
Neopropilus jatrophus Huang, 1992	Phytoptidae: Sierraphytoptinae: Sierraphytoptini		Huang, 1992
Neorhynacus rajendrani Mohanasundaram, 1981	Diptilomiopidae: Diptilomiopinae		Mohanasundaram, 1981b
Neotegonotus fastigatus (Nalepa, 1892)	Eriophyidae: Phyllocoptinae: Tegonotini		Keifer, 1961a
Neserella decora Meyer \& Ueckermann, 1989	Eriophyidae: Cecidophyinae: Cecidophyini		Meyer \& Ueckermann, 1989b
Norma lanyuensis Huang, 2001	Diptilomiopidae: Diptilomiopinae		Huang, 2001a
Notacaphylla chinensiae Mohanasundaram \& Singh, 1988	Eriophyidae: Phyllocoptinae: Acaricalini		Mohanasundaram \& Singh, 1988
Notaceria tetrandiae Mohanasundaram \& Muniappan, 1990 [emendation by Amrine et al. (2003) to tetrandrae]	Eriophyidae: Eriophyinae: Acerini		Mohanasundaram \& Muniappan, 1990
Notallus nerii Keifer, 1975	Eriophyidae: Phyllocoptinae: Anthocoptini		Keifer, 1975c
Nothacus tuberculatus Manson, 1984	Eriophyidae: Phyllocoptinae: Anthocoptini		Manson, 1984a
Nothopoda rapaneae Keifer, 1951	Eriophyidae: Nothopodinae: Nothopodini	10	Keifer, 1951
Notostrix attenuata Keifer, 1963	Eriophyidae: Phyllocoptinae: Anthocoptini		Keifer, 1963a
Novophytoptus rostratae Roivainen, 1947	Phytoptidae: Novophytoptinae		Roivainen, 1947
Novophytoptus stipae Keifer, 1962	Phytoptidae: Novophytoptinae		Keifer, 1962d
Oziella yuccae (Keifer, 1954)	Phytoptidae: Phytoptinae		Keifer, 1954; Amrine et al., 2003
Palmiphytoptus oculatus Navia \& Flechtmann, 2002	Phytoptidae: Sierraphytoptinae: Mackiellini		Navia \& Flechtmann, 2002
Pangacarus grisalis Manson, 1984	Eriophyidae: Nothopodinae: Nothopodini		Manson, 1984a
Paracalacarus podocarpi Keifer, 1962	Eriophyidae: Phyllocoptinae: Calacarini		Keifer, 1962d
Paracaphylla streblae Mohanasundaram, 1983	Eriophyidae: Phyllocoptinae: Acaricalini		Mohanasundaram, 1983b
Paraciota tetracanthae Mohanasundaram, 1984	Eriophyidae: Phyllocoptinae: Anthocoptini		Mohanasundaram, 1984
Paracolomerus casimiroae Keifer, 1975	Eriophyidae: Cecidophyinae: Colomerini		Keifer, 1975c
Paraphytoptella arnaudi Keifer, 1959	Eriophyidae: Eriophyinae: Acerini		Keifer, 1959b
Pararhynacus photiniae Kuang, 1986	Diptilomiopidae: Diptilomiopinae		Kuang, 1986a; Hong \& Zhang, 1996c
Pareria fremontiae Keifer, 1952	Eriophyidae: Eriophyinae: Eriophyini		Keifer, 1952a
Pentamerus rhamnicroceae (Keifer, 1966)	Eriophyidae: Phyllocoptinae: Anthocoptini		Keifer, 1966a
Pentaporca taiwanensis Huang, 1996	Phytoptidae: Nalepellinae: Nalepellini		Huang \& Boczek, 1996
Pentasetacus araucaria Schliesske, 1985	Phytoptidae: Nalepellinae: Pentasetacini		Schliesske, 1985
Peralox insolita Keifer, 1962	Diptilomiopidae: Rhyncaphytoptinae		Keifer, 1962b
Phantacrus lobatus Keifer, 1965	Phytoptidae: Nalepellinae: Nalepellini		Keifer, 1965c
Phyllocoptes calisorbi Keifer, 1965	Eriophyidae: Phyllocoptinae: Phyllocoptini	165	Keifer, 1965a
Phyllocoptruta arga Styer \& Keifer, 1977	Eriophyidae: Phyllocoptinae: Phyllocoptini	23	Keifer, 1977b
Phyllocoptruta oleivora (Ashmead, 1879)	Eriophyidae: Phyllocoptinae: Phyllocoptini	23	Keifer, 1938a
Phytoptus avellanae Nalepa, 1889	Phytoptidae: Phytoptinae	38	Keifer, 1952b
Platyphytoptus sabinianae Keifer, 1938	Eriophyidae: Phyllocoptinae: Phyllocoptini	13	Keifer, 1938a
Porcupinotus humpae Mohanasundaram, 1984	Eriophyidae: Phyllocoptinae: Anthocoptini		Mohanasundaram, 1984
Porosus monosporae Meyer \& Ueckermann, 1995	Eriophyidae: Phyllocoptinae: Anthocoptini		Meyer \& Ueckermann, 1995
Proartacris pinivagrans Mohanasundaram, 1984	Eriophyidae: Eriophyinae: Eriophyini		Mohanasundaram, 1984

Prodiptilomiopus auriculatae Umapathy \& Mohanasundaram, 1999	Diptilomiopidae: Diptilomiopinae		Umapathy \& Mohanasundaram, 1999
Proneotegonotus antiquorae Mohanasundaram, 1983	Eriophyidae: Phyllocoptinae: Phyllocoptini		Mohanasundaram, 1983a
Prophyllocoptes riveae Mohanasundaram, 1984	Eriophyidae: Phyllocoptinae: Phyllocoptini		Mohanasundaram, 1984
Propilus gentyi Keifer, 1975	Phytoptidae: Sierraphytoptinae: Mackiellini		Keifer, 1975d
Prothrix aboula Keifer, 1965	Phytoptidae: Prothricinae		Keifer, 1965a
Pyelotus africanae Meyer, 1992	Eriophyidae: Phyllocoptinae: Anthocoptini		Meyer, 1992c
Quadracus urticarius (Canestrini \& Massalongo, 1893)	Diptilomiopidae: Rhyncaphytoptinae		Liro, 1941; Boczek \& Kropczynska, 1965; Keifer, 1952b
Quadriporca samphramae (Boczek, 1997) (= Q. indicae, = Kropczynella mangiferae)	Diptilomiopidae: Rhyncaphytoptinae		Chandrapatya \& Boczek, 1997a; Amrine \& De Lillo, 2003
Quadriporca mangiferae Kuang \& Cheng, 1991	Diptilomiopidae: Rhyncaphytoptinae		Hong \& Zhang, 1996c
Quintalitus squamosus Meyer, 1989	Eriophyidae: Phyllocoptinae: Anthocoptini		Meyer, 1989c
Ramaculus mahoe Manson, 1984	Eriophyidae: Eriophyinae: Aceriini		Manson, 1984b
Rectalox falita Manson, 1984	Eriophyidae: Phyllocoptinae: Anthocoptini		Manson, 1984a
Retracrus johnstoni Keifer, 1965	Phytoptidae: Sierraphytoptinae: Mackiellini		Keifer, 1965c
Rhinophytoptus concinnus Liro, 1943	Diptilomiopidae: Rhyncaphytoptinae		Liro, 1943
Rhinotergum schestovici Petanovic, 1988	Diptilomiopidae: Rhyncaphytoptinae		Petanovic, 1988
Rhombacus morrisi Keifer, 1965	Eriophyidae: Phyllocoptinae: Phyllocoptini		Keifer, 1965b
Rhynacus arctostaphyli (Keifer, 1938)	Diptilomiopidae: Diptilomiopinae		Keifer, 1938b
Rhyncaphytoptus ficifoliae Keifer, 1939	Diptilomiopidae: Rhyncaphytoptinae	80	Keifer, 1939a
Sakthirhynchus canariae Umapathy \& Mohanasundarm, 1999	Diptilomiopidae: Rhyncaphytoptinae		Umapathy \& Mohanasundaram, 1999
Schizacea gynerii Keifer, 1977	Eriophyidae: Phyllocoptinae: Acaricalini		Keifer, 1977a
Schizoempodium mesophyllincola Oldfield, Hunt \& Gispert, 1998	Eriophyidae: Eriophyinae: Diphytoptini		Oldfield, Hunt \& Gispert, 1998
Scoletoptus duvernoiae Meyer, 1992	Eriophyidae: Eriophyinae: Aceriini		Meyer, 1992a
Setoptus jonesi (Keifer, 1938)	Phytoptidae: Nalepellinae: Nalepellini	14	Keifer, 1938a; Keifer, 1944
Shevtchenkella juglandis (Keifer, 1951)	Eriophyidae: Phyllocoptinae: Tegonotini	58	Keifer, 1951
Sierraphytoptus alnivagrans Keifer, 1939	Phytoptidae: Sierraphytoptinae: Sierraphytoptini		Keifer, 1939a
Sinacus erythrophlei Hong \& Kuang, 1989	Eriophyidae: Phyllocoptinae: Anthocoptini		Hong \& Kuang, 1989
Stenacis palomaris Keifer, 1970	Eriophyidae: Eriophyinae: Eriophyini		Keifer, 1970
Stenarhynchus aristidus Mohanasundaram, 1983	Diptilomiopidae: Rhyncaphytoptinae		Mohanasundaram, 1983c
Steopa bauhiniae (Chandrapatya \& Boczek, 2001)	Diptilomiopidae: Diptilomiopinae		Chandrapatya \& Boczek, 2001b
Suthamus chiangmi Chandrapatya \& Boczek, 2000	Diptilomiopidae: Diptilomiopinae		Chandrapatya \& Boczek, 2000a
Tegolophus califraxini (Keifer, 1938)	Eriophyidae: Phyllocoptinae: Anthocoptini	52	Keifer, 1938b
Tegonotus mangiferae (Keifer, 1946)	Eriophyidae: Phyllocoptinae: Tegonotini	46	Keifer, 1946
Tegoprionus dentatus (Nalepa, 1894)	Eriophyidae: Phyllocoptinae: Anthocoptini		Keifer, 1961a
Tergilatus sparsus Meyer \& Ueckermann, 1995	Eriophyidae: Phyllocoptinae: Phyllocoptini		Meyer \& Ueckermann, 1995
Tetra concava (Keifer, 1939)	Eriophyidae: Phyllocoptinae: Anthocoptini	87	Keifer, 1939e
Tetraspinus lentus Boczek, 1961	Eriophyidae: Phyllocoptinae: Anthocoptini		Boczek, 1961
Thailandus diospyrosae Chandrapatya, 1997	Diptilomiopidae: Diptilomiopinae		Chandrapatya \& Boczek, 1997b
Thamnacus rhamnicolus (Keifer, 1938)	Eriophyidae: Phyllocoptinae: Anthocoptini		Keifer, 1938b
Trimeracarus heptapleuri Farkas, 1963	Eriophyidae: Eriophyinae: Eriophyini		Farkas, 1963
Trimeroptes aleyrodiformis (Keifer, 1940)	Diptilomiopidae: Diptilomiopinae		Keifer, 1940b
Trisetacus ehmanni Keifer, 1963	Phytoptidae: Nalepellinae: Trisetacini	56	Keifer, 1963b
Trisetacus pini (Nalepa, 1887)	Phytoptidae: Nalepellinae: Trisetacini	56	Keifer, 1963b
Tumescoptes trachycarpi Keifer, 1939	Eriophyidae: Phyllocoptinae: Acaricalini		Keifer, 1939c
Ursynovia ulmi Boczek \& Szymkowiak, 1997 (now jr. syn. of Tetra)	Eriophyidae: Phyllocoptinae: Anthocoptini	1 ?	Boczek \& Szymkowiak, 1997
Vasates quadripedes Shimer, 1869	Eriophyidae: Phyllocoptinae: Phyllocoptini	27	Keifer, 1959b
Vimola syzygii Boczek, 1992	Diptilomiopidae: Diptilomiopinae		Boczek \& Chandrapatya, 1992a
Vittacus mansoni Keifer, 1969	Eriophyidae: Phyllocoptinae: Anthocoptini		Keifer, 1969b

ApPENDIX B

CHARACTERS CODED FOR PHYLOGENETIC ANALYSES: DEFINITION, DESCRIPTION AND DISCUSSION.

Appendix B

CHARACTERS CODED FOR PHYLOGENETIC ANALYSES: DEFINITION, DESCRIPTION AND DISCUSSION.

Only one complete character discussion was prepared. To facilitate the retrieval of the complete character discussion of each character, regardless of its different character numbers in the different data sets, an abbreviated character list and the character numbers of the three character data sets (for 318, 66 and 18 taxa) are listed in the same table, accompanied by two additional tables with the character numbers of the 66- and 18-taxon data sets in order (Appendix C).

The character marked ${ }^{* * *}$ is the same for all taxa in data set (ingroup and outgroup species), characters marked with * are autapomorphic to the Eriophyoidea, and characters marked with ** are autapomorphic for a terminal Eriophyoidea species. These characters did not provide information for determining relationships among the Eriophyoidea (ingroup) taxa in the analyses. Some character states and their terminology are illustrated in Figs 3.2-3.6, 3.22. Only one side of the organism is described, apart from the description of the prodorsal shield pattern (see Chapter 3 and 4: Material and Methods). Character states were scored from published descriptions, either from the text description and/or descriptive drawing accompanying it. Discrepancies and ambiguousness are noted.

GENERAL

*0. Life cycle:

$0=$ four active immature instars
$1=$ three active immature instars
$2=$ two active immature instars

The life cycle of the Tydeidae, including Orfareptydeus stepheni, has four (larva, proto-, deutoand tritonymph), and that of the Tetranychidae, including Mononychellus yemensis, three active immature instars (larva, deuto- and tritonymph) (Evans, 1992). The Eriophyoidea have two active immature instars [larva and nymph or proto- and deutonymph depending on the interpretation of the author (Lindquist, 1996a)].

Characters 1-5. The absence of a respiratory system with associated stigmata, an excretory system, cross-striated muscles, tonofibrillary muscle attachments, and absence of basal membranes around some organs (Lindquist, 1996b) are all autapomorphic character states for the Eriophyoidea in the present study. A priori phylogenetic analyses Lindquist (1996b) argued they may be ancestral (plesiomorphic) or derived (apomorphic) in the Eriophyoidea. If these states are primitive conditions rather than reversals, the Eriophyoidea may possibly be outside the Prostigmata or even outside the Acariformes, and the group may be an extremely ancient, independent group of very early chelicerate arthropodans (Lindquist, 1996b).

*1. Respiratory system with stigmata - presence:

$0=$ present
$1=$ absent
A respiratory system, including tracheae and stigmata, with the stigmata located on the gnathosoma or on the dorsal and anterolateral surface of the prodorsum, is present in the Prostigmata (Evans, 1992). A Prostigmata type respiratory system is present in O. stepheni and M. yemensis.

A typical respiratory system is absent in the Eriophyoidea. Shevchenko \& Silvere (1968) speculated that the motivator between the bases of the chelicerae is a modified relict of a tracheal system, and Krantz (1973) speculated that the pair of structures arising just posterior to the motivator may be tracheal trunks. Respiration in the eriophyoids is cuticular (Nuzzaci \& Alberti, 1996), however, and no confirmed evidence exists of the contrary (Lindquist, 1996b).

*2. Excretory system - presence:

$0=$ present
$1=$ absent, only with pervasive parenchymatous tissue
An excretory system, including an anus, is present in O. stepheni (Fig. 4.1) and in M. yemensis (Fig. 4.2), but is absent in the Eriophyoidea where the excretory system exists only of pervasive parenchymatous tissue (Lindquist, 1996b).

*3. Muscle striation:

$0=$ cross-striated
$1=$ non-striated

The muscles of the Prostigmata, including O. stepheni and M. yemensis, are cross-striated (Lindquist, 1996b). The muscle cells of the Eriophyoidea are unique, not found in other arthropods (Nuzzaci \& Alberti, 1996), and appear to be smooth (Lindquist, 1996b; Nuzzaci \& Alberti, 1996). Some authors regard it to be a sign of primitiveness, but Nuzzaci \& Alberti (1996) proposed that the non-striated muscle cells most likely derived secondarily from cross-striated cells, possibly because of miniaturization.

*4. Tonofibrillary muscle attachments - presence:

$0=$ present
1 = absent

Tonofibrillary muscle attachments are present in the Prostigmata, including O. stepheni and M. yemensis, but are absent in the Eriophyoidea (Lindquist, 1996b).

*5. Basal membranes around organs, including salivary glands and central ganglion -

 presence:$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { absent }
\end{aligned}
$$

Basal membranes are present around organs, such as the salivary glands and central ganglion of the Prostigmata, including O. stepheni and M. yemensis, but are absent around the organs of the Eriophyoidea (Lindquist, 1996b).

CHAETOTAXY

*6. Compliment of setae in immatures:

$0=$ without all setae that are present in the adult
$1=$ with all setae that are present in the adult (except eugenital setae of male)

***7. Chemical composition of setae:

$0=$ setae without actinopilin
$1=$ setae with actinopilin, causing birefringence
F. Grandjean found that the majority of sensilli of the body and appendages in the Actinotrichida (to which the Prostigmata belong) are birefringent, an optical property, and this is due to a core or layer of anisotropic material termed actinopilin (Evans, 1992). Lindquist (1996b) argued that the presence of actinopilin in the setae of the Eriophyoidea, together with other character states, are evidence that the Eriophyoidea indeed belongs within the Acari, and particularly in the Actinotrichida. Actinopilin is present in all the species in the out- and ingroup of the present study. The character has been included in this character discussion, because it is regarded as important in the relationship of the Eriophyoidea with other arthropods and mites. Although it is not of use in studying the phylogeny of the taxa in this specific analysis, I regarded it as an important part of information to be added to the data matrix. The character states with similar evidence, including those listed by Lindquist (1996b), will be added to future data matrices expanding the matrix used in the present study.

Gnathosomal setae

8. Gnathosomal palp seta \boldsymbol{d} - presence and shape:

$0=$ present, simple (e.g., Fig. 3.35)
$1=$ present, simple and prominent
$2=$ present, forked (Fig. 3.68)
$3=$ present, minute
4 = absent

A simple gnathosomal palpgenual seta (d) (named $d g$ in the Tydeidae by André, 1981a), is present on the palpfemorogenu of O. stepheni (Fig. 4.1). In M. yemensis a seta is present on the palpgenu (personal observation), but according to Lindquist (1985) only a posterolateral seta (l'’ PGe), and not a dorsal seta, occurs on the palpgenu of all Tetranychidae, and the state "palp d absent" was assigned to M. yemensis. Within the Eriophyoidea, palp d [previously known as the subapical (Keifer, 1959a), antapical (Keifer, 1975a), or rostral seta (Ramsay, 1958)] is the only seta present on the segment that Lindquist (1996a) regards as the consolidated palptrochanter-femur-genu (Fig. 3.23). Based on its dorsodistal position, Lindquist (1996a) postulated it to be the palpgenual seta d.

Palp d is simple and tapering in most Eriophyoidea species, and additionally very prominent in Neophytoptus ocimae and minute in Neocupacarus flabelliferis. In five species in the present study (Dicrothrix anacardii, Euterpia fissa, Leipothrix solidaginis, Neodicrothrix tiliacorae and Porosus monosporae) (Eriophyidae: Phyllocoptinae), palp d is forked (e.g., Fig. 3.68). In Vimola syzygii, (Diptilomiopidae: Diptilomiopinae) palp d is strongly turned upwards distally (descriptive drawing
in Boczek \& Chandrapatya, 1992a), but seemingly not with such a sharp corner that it can be regarded as a minute fork, as advised by Amrine (1996).

Particularly the shape of palp d is used in the classification and identification of the Eriophyoidea. Unfortunately, this seta is not routinely recorded, depicted and described in species descriptions, and this absence of published data renders it an ambiguous character for phylogenetic analyses if scored from published descriptions.

When palp d was recorded as present, but it was not depicted in the descriptive drawing (e.g., for Paraciota tetracanthae) (Mohanasundaram, 1984) the character state "present" was assigned and vice versa. When its presence was not described in the text and it was absent in the drawing [e.g., Acarhis diospyrosis (Chandrapatya \& Boczek, 1991c) among many others], particularly found in earlier descriptions, the code "?" (unknown) was assigned. It was not regarded as absent, because the gnathosomal setae are generally not depicted, even when present.

The shape of palp d was determined from the text description and/or drawing, otherwise it is presumed the seta is simple if not otherwise recorded or depicted by the species author(s), because typically this seta is simple in the Eriophyoidea, and one can reasonably expect any other shape should have been recorded by the descriptor. The absence of palp d was not recorded for Quintalitus squamosus (Meyer, 1989c) and was determined on a SEM image of this species.

The character states scored for the following species, in particular, are ambiguous:

- Cosella deleoni, Mackiella phoenicis and Diptilomiopus ficus (Keifer, 1956; Keifer, 1939a; Attiah, 1967, respectively): presence of palp d was not recorded in the descriptive text, but a line or very short, vague line in the position where palp d is usually inserted, is an indication that it may be present, and character state "present" was assigned to these species;
- Trisetacus pini: although the presence of palp d was not recorded or depicted by Keifer (1963b) or Boczek (1969) it is presumed it is present and simple, similar to other known Trisetacus spp.;
- Diptilomiopus camarae and Proneotegonotus antiquorae (Mohanasundaram, 1981b; 1983a, respectively): palp d was described as thick; however, it was not depicted as such in the descriptive drawings. Character state "simple", without the inclusion of "thickness" as a state, was assigned to these species.
- Acarhis diospyrosis (Chandrapatya \& Boczek, 1991c): palp d is absent in the drawing and not mentioned in the text. In this case v was depicted, and it is presumed the author would have depicted palp d if it was present. Character state "absent" was scored for this species.

It will be a better option to divide this character in future studies into at least two characters: palp d present or absent, and a second character to score the shape of the seta (including simple, simple and prominent, forked, and minute). The latter character can be further divided into length (e.g., long and minute) and shape (e.g., simple and forked). These options will increase "not applicable" scores, though.

*9. Solenidion on palptarsus - presence:

$0=$ with solenidion ω
$1=$ without solenidion ω

Solenidion ω is almost consistently present on the palptarsus of Actinotrichida (Evans, 1992), and is also present on the palptarsus of O. stepheni (Fig. 4.1) and M. yemensis (Fig. 4.2), but it is absent in all Eriophyoidea species (Lindquist, 1996b).

Prodorsal setae

A compliment of four setae (on one side of the body) (or in other words: present as four pairs one on each side of the body for each seta) (Fig. 3.3d) are present on the prodorsum in many families of Prostigmata mites (Lindquist, 1996a). The maximum number of prodorsal setae in the Eriophyoidea is five setae ($v e$ and $s c$, and single $v i$) in the monotypic Pentasetacus (Schliesske, 1985). The characteristics of the prodorsal setae (Fig. 3.3) form an integral part of the Eriophyoidea classification. In particular the presence of the setae anteriorly on the prodorsum (single or paired $v i$, and $v e$) distinguishes the family Phytoptidae (Fig. 3.3e-i), in which some or all these setae are present, from the Eriophyidae and Diptilomiopidae where these setae are absent in all species (Fig. 3.3j, k).

Characters 10 and 11. Lindquist (1996a) hypothesized that the loss of both $v i$ and ve may have occurred once, in the common ancestors of the Eriophyidae and Diptilomiopidae, and the loss of $v i$ and $v e$ individually may have occurred once each in the family Phytoptidae.

10. Seta $v i$ - presence, single or paired and position:

$0=$ one pair present
$1=$ one seta $v i$ absent, position of remaining seta shifted to anteromedian position
$2=$ absent

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 108, Character 1: $0=$ present; $1=$ absent).

In the present analysis, paired $v i$ is present in O. stepheni (Fig. 4.1) (similar to the generalized Tydeidae of Hong \& Zhang, 1996a). Within the Tetranychidae paired $v i$ is always absent in Tetranychinae species (Lindquist, 1985), including M. yemensis (Fig. 4.2). It is present or absent in the Bryobinae, or is rarely represented by single $v i$ anteromedially (Lindquist, 1985), similar to Eriophyoidea species in the Nalepellinae.

In the Eriophyoidea classification this character is of importance at the family level. It is present as one seta anteromedially (single vi) (Fig. 3.3a, e-g) in species of the Nalepellinae (of which eight species are included in the present 318-taxon data set). Amrine (1996) proposed that the pair of setae anteromedially on the prodorsum of Prothrix aboula, is paired vi (Fig. 3.3h), and created a new subfamily, Prothricinae, for this species. In the original description of this species Keifer (1965a) regarded this pair as $s c$ that moved far forward. Prothrix aboula is included in the present analysis, and the interpretation of Amrine (1996) that paired $v i$ is present, is followed for scoring the character in the data matrix.

11. Seta ve - presence:

$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { absent }
\end{aligned}
$$

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 109, Character 2: $0=$ present; $1=$ absent).

In the present analysis ve is present as a pair in O. stepheni (Fig. 4.1) and in M. yemensis (Fig. 4.2). When it is present, ve is always present as a pair (one seta on each side of the body) (Fig. 3.3d, e, h, i) in the Eriophyoidea. In the Eriophyoidea classification, most species of the Phytoptidae have $v e$, except Nalepellinae species, excluding Pentasetacus. In the present 318-taxon data set, 16 species with $v e$ present are included. Seta ve is never present in the Eriophyidae or Diptilomiopidae.

*12. Prodorsal seta sce (sc2) - presence:

$0=$ present
$1=$ absent

Seta sce is present as a pair in O. stepheni (Fig. 4.1) and in M. yemensis (Fig. 4.2), but is absent in all Eriophyoidea species.

Characters 13-18 (sc): according to the hypothesis of Lindquist (1996a) the paired posterolateral setae on the prodorsal shield of the Eriophyoidea (previously known as prodorsal or dorsal setae) are one of the two pairs of scapular setae ($s c$) found in other Prostigmata mites. He postulated that they are probably the internal scapular setae (sci or $s c l)$. For scoring character states in the present study, it is presumed $s c$ in Eriophyoidea is homologous to sci in other Prostigmata mites. The presence, position of and direction in which $s c$ is projected (Fig. 3.3b, c), are used to typify Eriophyoidea genera (e.g., Eriophyes and Aceria) and tribes (e.g., Eriophyini and Aceriini).

13. Seta sc in Eriophyoidea (seta sci in other Prostigmata species) - presence:

$0=$ present
$1=$ absent
This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 109, Character 4: $0=$ present; $1=$ absent).

Seta sci is present as a pair in O. stepheni (Fig. 4.1) and in M. yemensis (Fig. 4.2). In the Eriophyoidea $s c$ may be present (always in a pair) or absent. Lindquist (1996a) proposed that $s c$ was lost repeatedly and independently within the Eriophyoidea, at least twice in both the Phytoptidae and Diptilomiopidae, and at least four times in the Eriophyidae. Indeed, within the taxa of the Eriophyoidea classification, and among the species included in the present study, species with and without $s c$ co-occur in all three families and in some subfamilies: in the Phytoptidae: Nalepellinae, Phytoptinae and Sierraphytoptinae; Eriophyidae: Cecidophyinae, Nothopodinae and Phyllocoptinae and Diptilomiopidae: Diptilomiopinae and Rhyncaphytoptinae, as well as in some tribes, e.g., Phytoptinae: Acaricalini; Nalepellinae: Trisetacini; Sierraphytoptinae: Mackiellini and Nothopodinae: Nothopodini. Seta sc is absent in all Diptilomiopus spp.

The character states scored for the following species, in particular, are ambiguous:

- Acarhis diospyrosis (Diptilomiopidae): sc is recorded in the text as being absent, but sc is clearly depicted (Chandrapatya \& Boczek, 1991c), and the authors placed the species in Acarhis in which, by definition, sc is present, and character state "present" was scored for this species.
- In some species (e.g., in the new Diptilomiopus spp., Appendix M) sc may seem absent, but on closer inspection, a remnant of $s c$ might be present.

14. Seta sc length:

```
\(0=\) exceptionally long (> \(100 \mu \mathrm{~m}\) )
\(1=\) very long \((66-100 \mu \mathrm{~m})\)
\(2=\operatorname{long}(31-65 \mu \mathrm{~m})\)
3 = average \((4-30 \mu \mathrm{~m})\)
\(4=\operatorname{short}(1-3 \mu \mathrm{~m})\)
\(5=\) minute (not measurable, less than \(1 \mu \mathrm{~m}\) long)
```

Seta $s c$ is $30 \mu \mathrm{~m}(n=1)$ long in O. stepheni (character state "average" assigned) and $103 \mu \mathrm{~m}(n=$ 1) in M. yemensis (character state "exceptionally long" assigned) (C. Craemer, personal observations). In the Eriophyoidea the lengths vary from exceptionally long to minute, but most lengths are in the average category (length data approximate normal distribution).

The length of sc of Fragariocoptes setiger was not reported in the original description by Nalepa (1894) and neither later in the redescription by Roivainen (1951), but was reported in the redescription by Boczek (1964) from which the character state was scored.

The character states scored for the following species, in particular, are ambiguous:

- Acarhis diospyrosis (Diptilomiopidae): sc is recorded to be absent, but character state "present" is assigned (see explanation with previous character) and in the descriptive drawing (Chandrapatya \& Boczek, 1991c) sc is depicted extremely short, barely noticeable, and I deduced that it is probably less than $3 \mu \mathrm{~m}$ long and character state "short" was scored for this species.
- The length of sc of Konola hibernalis (Keifer, 1979b), Bucculacus kaweckii (shield length 26 $\mu \mathrm{m})($ Boczek, 1961) and Catachela machaerii (shield length $40 \mu \mathrm{~m}$) (Keifer, 1969b) were not recorded, but the species were all assigned character state "average" based on the relative length of $s c$ to the prodorsal shield in their drawings.

15. Seta sc length relative to prodorsal shield length:

$0=$ exceptionally long ($>$ three times shield length)
$1=$ very long ($<$ three, but $>$ or equal to 1.5 shield length $)$
$2=\operatorname{long}(<1.5$, but $>$ or equal to one shield length)
$3=$ average length ($<$ one, but >0.2 shield length)
$4=\operatorname{short}$ ($<$ or equal to 0.2 , but >0.07 shield length)
$5=$ very short ($<$ or equal to 0.07 shield length)
A character similarly defined, but the ratio between different characteristics than in the present study, was used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 115, Character 33: $0=$ very long (longer than the distance between two tubercles); $1=$ long (longer than half the distance between two tubercles); $2=$ short (shorter than half the distance between two tubercles); $3=$ absent).

In the present study $s c$ length in relation to prodorsal shield length is experimentally included, to standardize length of $s c$ with body size (for future studies it might be better to rather score $s c$ length in relation to body length, if relationships are included in the data set). It was also included to have a character similar to that of the one in the previous analyses for comparative reasons, and to increase the number of characters for the present analyses. However, it is inadvisable to use relational data in phylogenetic analyses, and this character should probably be omitted in future analyses and data matrices for the Eriophyoidea.

Seta $s c$ is $30 \mu \mathrm{~m}(n=1)$ long and the prodorsal shield $75 \mu \mathrm{~m}(n=1)$ long in O. stepheni (character state "average" assigned) and $103 \mu \mathrm{~m}(n=1)$ and the prodorsal shield $145 \mu \mathrm{~m}(n=1)$ long in M. yemensis (character state "average" assigned).

Fragariocoptes setiger: the length of neither the prodorsal shield nor $s c$ was reported in the original description by Nalepa (1894) and neither later in the redescription by Roivainen (1951), but they were reported in the redescription by Boczek (1964) from which the character state was scored.

The character states scored for the following species, in particular, are ambiguous:

- Acarhis diospyrosis (Diptilomiopidae): sc is described to be absent, but it was scored as "present" (see explanation for Character 13). The relationship of $s c$ with the prodorsal shield could be determined from the descriptive drawing (Chandrapatya \& Boczek, 1991c), and I deduced that $s c$ is very short in comparison with the prodorsal shield length.
- Heterotergum gossypii (Keifer, 1955), Monotrymacus quadrangulari (Mohanasundaram, 1982a), Notacaphylla chinensiae (Mohanasundaram \& Singh, 1988), Tegonotus mangiferae
(Keifer, 1946), Neoacarhis aglaiae (Kuang, 1998) and Levonga caseariasis (Chakrabarti \& Pandit, 1996): prodorsal shield length of these species was not recorded, however, for the present study, it was measured and determined from the original descriptive drawings and $s c$ was "short" in relation to the shield length for the latter two species.
- Acaphyllisa parindiae (Keifer, 1978), Acarhis diospyrosis (Chandrapatya \& Boczek, 1991c) and Catachela machaerii (Keifer, 1969b): sc length was not recorded for these species, and relative length to prodorsal shield length was determined by measuring these on the descriptive drawing, because the measurement ratios are well within the categories short, very short and long, respectively.

16. Scapular setal tubercle (Fig. 3.3b, c) - presence:

$0=$ primarily absent
$1=$ present
$2=$ secondarily absent
$3=$ prominent
This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 109, Character 3: $0=$ absent; $1=$ present .

Setae of the Tenuipalpidae and the Tetranychidae are not usually, and particularly the setae of O. stepheni and M. yemensis, are not inserted on tubercles, with subsequent loss of the tubercles within the group. The absence of setal tubercles is regarded in these species as being "primarily absent" in the present study. In the Eriophyoidea most setae are usually inserted on tubercles and in some species a seta may be naturally absent (not broken off in specimens), while the setal tubercle is still present. For the present analysis it has been presumed $s c$, when it is present in the Eriophyoidea, is inserted on a setal tubercle. This may be ambiguous in some cases, but descriptive drawings and information generally are not detailed enough to determine the absence or presence of the setal tubercle when the seta is present.

The character states scored for the following species, in particular, are ambiguous:

- Neolambella ligustri: according to the original descriptive drawing (Lin \& Kuang, 1997), it seems that the scapular setal tubercle is absent, and the species was assigned character state "absent" for the present study, but it may be present (there is a short diagonal line in the lateral area below the prodorsal shield pattern cells).
- Prodiptilomiopus auriculatae: the presence of scapular a setal tubercle is uncertain; character state "absent" is assigned to this species for the present study; structures depicted on the rear
shield margin (Umapathy \& Mohanasundaram, 1999) may be tubercles, but they are not typical in the drawing.
- Diptilomiopus spp.: sc is always absent (the genus is currently defined as such), and according to Amrine et al. (2003) the scapular setal tubercle may be present or absent, within the genus. The presence of this tubercle is unknown for D. javanicus, the type species of Diptilomiopus, and the presence or absence of it in this species may have an influence on the definition and delimitation of Diptilomiopus and possibly whether Vilaia (it was wrongly differentiated from Diptilomiopus because it has the scapular setal tubercle present) may be regarded as a valid genus (Craemer et al., 2005). When the scapular setal tubercle is present in Diptilomiopus spp. it may be very small and can also be obscured by the ridges on the shield, and the presence in species for which it has been recorded as absent, is ambiguous and should be checked in future on type specimens if possible. Particularly the recorded absence for the following Diptilomiopus spp. may be ambiguous:
- championi - structures, vaguely and obscurely visible in the scanning electron microscope image accompanying the original species description (Huang, 1992), may be the scapular setal tubercles;
- holopteleae - depicted prodorsal shield (Abou-Awad \& El-Banhawy, 1992) probably distorted and broken in this area, and determining the presence or absence of the scapular setal tubercle from the drawing is impossible;
- indicus - Chakrabarti \& Pandit (1996) recorded the absence of the scapular setal tubercle, but their drawing is too small to confirm;
- pocsi - description and drawing (Farkas, 1967) generally in doubt;
- and ficus - the presence or absence of the scapular setal tubercle was not described in the text, but structures which are probably these tubercles, are present in the drawing by Attiah (1967).

Characters 17 and 18. Position and direction of seta $s c$: In those Eriophyoidea species studied, with sc located on or near the rear shield margin in adults, directed posteriorly, this seta is located well ahead of the rear shield margin, and the seta is directed dorsoanteriorly in the larva. In the nymph of such species, $s c$ generally is in a position and orientated intermediate between that of the larva and adult (Lindquist, 1996a). The larval state of $s c$, which may be retained in the adults of some species, was proposed to be ancestral or plesiomorphic by Lindquist (1996a) a priori phylogenetic analyses.

17. Seta sc and/or scapular setal tubercle position (Fig. 3.3b, c):

$0=$ ahead of rear shield margin (less than half of shield ahead)
$1=$ well ahead of rear shield margin (on half of shield or further anteriad)
$2=$ on rear shield margin, or slightly ahead of rear shield margin
$3=$ immediately caudad of rear shield margin
This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \&
Zhang, 1996a, p. 109, Character 7: $0=$ ahead of rear margin; $1=$ at the rear margin).

The character states scored for the following species, in particular, are ambiguous:

- Lithocarus thomsoni: in the descriptive drawing of the dorsal view (Chandrapatya \& Boczek, 2000c) it seems that $s c$ is on or close to half of the dorsal shield length, and in the lateral view drawing further than half the shield length ahead (thus possibly "well ahead"), however, according to the reported measurements of the distance of $s c$ from the rear shield margin in relation to the prodorsal shield length, $s c$ is only about a third of the prodorsal shield length ahead of the rear shield margin (assigned character state "ahead").
- Pararhynacus photiniae: the scapular setal tubercle is just ahead of the rear shield margin in the descriptive drawing (Kuang, 1986a), but its position could not be confirmed in the Chinese text. The depicted position could have been caused by the prodorsal shield pressed down and to the back by the slide-mounting process (assigned character state "on rear shield margin, or slightly ahead of rear shield margin").
- Steopa bauhiniae: Chandrapatya \& Boczek (2001b) described $s c$ to be close to the rear shield margin, and it is just ahead of the rear shield margin in the dorsal view drawing. In the lateral view drawing, however, it seems to be ahead of the rear shield margin, thus dorsally it may have been pushed closer to the rear shield margin by the weight of the cover slip (assigned character state "on rear shield margin, or slightly ahead of rear shield margin").

18. Seta sc - direction of projection (Fig. 3.3b, c):

$0=$ anteriad, diverging
$1=$ anteriad: parallel, converging or up (Fig. 3.3c)
$2=$ medially
$3=u p$ and to the outside
$4=$ posteriad, usually diverging (Fig. 3.3b)
$5=$ posteriad, converging
$6=$ no particular direction (i.e., in any direction)
This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 110, Character 8: $0=$ forward; $1=$ backward; $2=$ upward or inward). They scored sc in Tydeidae as being directed forward. Seta sci of O. stepheni and of M. yemensis is not particularly directed in any direction (C. Craemer, personal observations). The direction in which
sc of the Eriophyoidea is projected corresponds with the position and/or the shape of its setal tubercle, and these characteristics in combination are used to differentiate between suprageneric Eriophyoidea taxa, for example, between Eriophyini and Aceriini.

The character states scored for the following species, in particular, are ambiguous:

- Although sc of Acathrix trymatus is too short to determine exactly in which direction it might be extended, it seems plausible that it will rather extend slightly divergently anteriad, than converging or parallel anteriad, when extrapolating the direction from the scapular tubercle as it is depicted by Keifer (1962c).
- It sometimes seems that a longer $s c$ might have been directed medially if it was shorter, but because it is longer, it is directed about medially and then "turn" more anteriad and eventually, towards the tip of the seta, it diverges (e.g., Eriophyes quadrifidus Meyer \& Ueckermann, 1989a); these cases were assigned character state "anteriad, diverging".
- The direction into which sc is directed in Fragariocoptes setiger is described and depicted in the original description by Nalepa (1894) and in the redescription by Boczek (1964) as being directed up and centrad, however, in the redescription by Roivainen (1951), it is described as being directed up, and in the drawing it is depicted as being directed divergently posteriorly, Amrine et al. (2003) interprets the situation in the couplet leading to the genus as "prodorsal shield with sc directed divergently forward or posteriorly". For the present study it has been decided to assign polymorphic character states: directed up and possibly pushing down in any of three directions, either anteriad diverging, anteriad converging or posteriad. This is ambiguous, and the descriptions may be of different species.
- It is not possible to determine solely on the only descriptive drawing of the lateral view (Liro, 1943) of Rhinophytoptus concinnus exactly in which direction $s c$ is directed. It is clearly projecting anteriad, but it could either be converging or diverging. The descriptive drawing of R. dudichi is used in Amrine et al. (2003) to depict Rhinophytoptus and in this species, sc is directed diverging anteriad. Extrapolating from this, for the present study, the character state "diverging anteriad" was scored for R. concinnus.

Opisthosomal setae (Figs 3.2, 3.3a, 3.4)

Lindquist (1996a) homologized the setae found in the Eriophyoidea with that of other acariform mites. In the process, he also renamed them to the standard setal notation developed by F . Grandjean (references listed in Lindquist, 1996a). It is difficult to homologize the Eriophyoidea setae, especially the opisthosomal setae, with that of other acariform mites (Lindquist, 1996a). The
absence of cupules (lyrifissures) - a series of segmental remnants reflecting the ancestral segmentation - in the Eriophyoidea, contributes to this problem. Lindquist (1996a) based the setal homologies on the sequential arrangement of muscle sets in the Eriophyoidea opisthosoma, and on the suppression of anamorphosis also found in other Prostigmata groups. He regarded all opisthosomal setae in the Eriophyoidea as fundamental setae according to the concepts of F . Grandjean (references listed in Lindquist, 1996a), because all setae are already present in the larval instar. The larva is the first active life stage in most Prostigmata and plesiomorphically its hysterosoma (opisthosoma in Eriophyoidea mites) may have six transverse segments, according to F. Grandjean's (references listed in Kethley, 1990; Lindquist, 1996a) system anterior to posterior: $\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ and H , and a segment consisting of the valves encompassing the anus designated as PS (pseudoanal) (Kethley, 1990; Lindquist, 1996a). Segment PS is typically reduced in size and occupies a ventrocaudal position (Lindquist, 1996a). Although the setal homologies and names for setae in the Eriophyoidea proposed by Lindquist (1996a) are based on his extensive and well recognized knowledge and experience with the morphology of acariform mites, the homologies stay ambiguous until they are empirically tested. Opisthosomal d, e and f were not specified as specific pairs of these setae present in other acariform mites (Lindquist, 1996a), but only that they occur on these segments. Lindquist (1996a) proposed that they are probably lateral elements of the dorsal setae on these segments. The maximum number of opisthosomal setae (seven pairs) occurs only in some Phytoptidae, and only f and $h 2$ are present in all Eriophyoidea species.

Table B.1. Opisthosomal setae (Figs 3.2, 3.3a, 3.4) (except cl and hl) absent in Eriophyoidea species included in the present study. Setae f and $h 2$ are never absent in the Eriophyoidea. Only species, with at least one of the opisthosomal setae absent, are included in the table. Absence of a setal pair is ticked x.

			c2	d	e
Phytoptidae:					
Prothricinae		Prothrix aboula		x	
Sierraphytoptinae:	Mackiellini:	Retracrus johnstoni		x	
	Sierraphytoptini:	Neopropilus jatrophus		X	x
Eriophyidae:					
Nothopodinae:	Nothopodini:	Anothopoda johnstoni			X
Eriophyinae:	Aceriini:	Paraphytoptella arnaudi			x
		Ramaculus mahoe			x
	Eriophyini:	Asetilobus hodgkinsi			x
Cecidophyinae	Cecidophyini:	Neserella decora			x
Phyllocoptinae:	Acaricalini:	Knorella gigantochloae		x	x
		Schizacea gynerii		x	x
		Tumescoptes trachycarpi		x	x
	Anthocoptini:	Neomesalox kallarensis		x	
	Calacarini:				
	Phyllocoptini:	Acamina nolinae		x	x
		Cecidodectes euzonus		x	x
		Euterpia fissa		x	x
		Neocupacarus flabelliferis		x	x
		Neodicrothrix tiliacorae		x	x
		Proneotegonotus antiquorae		X	X

		c2	d	e
	Prophyllocoptes riveae			x
	Tergilatus sparsus			x
Tegonotini:	Dicrothrix anacardii		x	
Ashieldophyinae	Ashieldophyes pennadamensis		X	x
Diptilomiopidae:				
Diptilomiopinae:	Acarhis spp. in the present study (3 spp.)	X		
	Africus psydraxae	x		
	Dacundiopus stylosus	X		
	Davisella breitlowi	X		
	Diptilomiopus spp. in the present study (86 spp.)	x		
	Diptilorhynacus dioscoreae	x		
	Diptilorhynacus sinusetus	X	X	
	Kaella flacourtiae	x		x
	Lambella cerina	X		
	Levonga spp. in the present study (3 spp.)	x		
	Lithocarus thomsoni	X		
	Mediugum sanasaii	x		x
	Neoacarhis aglaiae	X		
	Neodiptilomiopus vishakantai	X		
	Neorhynacus rajendrani	X		
	Norma lanyuensis	X		
	Prodiptilomiopus auriculatae	X		
	Rhynacus arctostaphyli	X		
	Steopa bauhiniae	X	X	
	Suthamus chiangmi	x		
	Thailandus diospyrosae	x		x
	Vimola syzygii	X		

Characters 19 and 20. Only $c l$ and $c 2$ are present in the Tenuipalpidae (including in O. stepheni), named $d l$ and $l l$ by André (1981a) (Fig. 4.1). Setae $c 1, c 2$ and $c 3$ are present in the Tetranychidae (Lindquist, 1985), and are also present in M. yemensis (Fig. 4.2). Setae $c 3$ are regarded as neotrichous (Lindquist, 1985).

19. Seta cl (Fig. 3.3a) - presence:

$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { absent }
\end{aligned}
$$

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 112, Character 12: $0=$ present; $1=$ absent).

The setae on the opisthosomal dorsum of the Tydeidae are very stable, and $c l$ (named $d l$ by André, 1981a) is present in all Tydeidae (André, 1981a) including O. stepheni (Fig. 4.1). Seta $c l$ is present in all the instars of the Tetranychidae (Lindquist, 1985) including M. yemensis (Fig. 4.2). In the Eriophyoidea $c l$ is only present in some members of the Phytoptidae, and absent in most Eriophyoidea species. It is significant in the Eriophyoidea classification at the subfamily and tribal
level. Thirteen Eriophyoidea species with $c l$ [resorting in the Nalepellinae (Trisetacini, Pentasetacini), Phytoptinae, Prothricinae and Sierraphytoptinae (Sierraphytoptini)] are included in the present study.

20. Seta $\mathbf{c} 2$ (Figs 3.2, 3.4) - presence:

$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { absent }
\end{aligned}
$$

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 113, Character 25: $0=$ present; $1=$ absent $)$.

The setae on the opisthosomal dorsum of the Tydeidae are very stable, and $c 2$ (named $l l$ by André, 1981a) is present in all Tydeidae (André, 1981a) including O. stepheni (Fig. 4.1). Seta $c 2$ is present in all the instars of the Tetranychidae (Lindquist, 1985) including M. yemensis (Fig. 4.2).

Within the species included in the present analyses, $c 2$ is only absent in species of the Diptilomiopinae (12 genera with and 22 genera, including Diptilomiopus, without $c 2$) (Table B.1). Outside the Diptilomiopinae, $c 2$ is absent in Thacra piperasia Keifer, 1978 (Eriophyidae: Phyllocoptinae: Tegonotini) (Keifer, 1978; Amrine et al., 2003). This species is not included in the present study. Lindquist (1996a) also reported it to be absent in Cecidodectes and Acamina, but it is present in the type species of these two genera (Meyer \& Ueckermann, 1989b; Keifer, 1939a, respectively).

21. Setal tubercle of seta $\boldsymbol{c 2}$ - presence:

$0=$ primary absent
$1=$ present
$2=$ secondary absent
Seta $c 2$ is not inserted on a tubercle in O. stepheni (Fig. 4.1) nor in M. yemensis (Fig. 4.2). To indicate that this tubercle is not usually present, with subsequent loss within the group, absent in these species is termed "primary absent". When $c 2$ is present in the Eriophyoidea, it is presumed, for the present study, it is inserted on a setal tubercle. This is generally the case for Eriophyoidea species, but hasn't been studied or described per se in most species. Seta $c 2$ is absent in all Diptilomiopus spp., but in an unusual occurrence, D. leeasis was described with $c 2$ absent, but the setal tubercle of $c 2$ present (Chakrabarti et al., 1992).

Characters $22-24(\operatorname{seta} d)$. A maximum of two pairs of setae ($d 1$ and $d 2$) occur on the dorsal opisthosomal transverse region D in the Prostigmata (Kethley, 1990). Seta $d 2$ is lost in most families of Anystina, Eupodoidea, Tydeoidea, Bdelloidea, Caligonellidae, Raphignathidae, and all Heterostigmata (Kethley, 1990). Only dl (d2 in André, 1981a) is present in the Tydeoidea in this region (André, 1981a; André \& Fain, 2000), except Australotydeus in which $d 2$ (12 in André, 1981a) is also present (André, 1981a; André \& Fain, 2000). According to Ueckermann \& Grout (2007) $d 1$ and $d 2$ are present in O. stepheni (Fig. 4.1). According to their naming of the setae they effectively proposed that one or more setae $p s$ are absent, and both $d 2$ and $e 2$ is present, which would be an unusual case for a member of the Tydeidae. With alternative interpretation of the dorsal opisthosomal setae (C. Craemer, present study), $d 2$ may be absent in O. stepheni, and the seta currently named $d 2$ might rather be $e l$, André (1981a) mentioned that $e l(d 3)$ is the only seta that may migrate, and tend to move to fill the gap following the disappearance of $d 2(l 2)$ and $e 2$ ($l 3$). He adds, though, that it never goes beyond lyrifissure im and thus $e 1$ $(d 3)$ is always positioned behind this lyrifissure. The apparent position of this seta O. stepheni is, however, in the transverse area D (above lyrifissure im and more in the lateral region), and is problematic. Another hypothesis that might explain the dorsal setae in O. stepheni is that all setae of e, f or h may be entirely absent, but this does not seem likely. Further study, especially of the type specimens, is necessary to resolve the comparative homology of these setae, but falls beyond the scope of the present study.

Setae $d 1, d 2$ and $d 3$ can be present in the Tetranychidae, $d 3$ is regarded as being neotrichous (Lindquist, 1985) or in other words, is considered secondary (Kethley, 1990). Only $d 1$ and $d 2$ are present in M. yemensis (Fig. 4.2).

This discussion on setal homologies, names and positions in the Tydeidae is so detailed, because for the outcome of the analysis, it is important to know which pair of the d-setae is homologous with d found in the Eriophyoidea. For the present study it is presumed the seta d homologous to d in the Eriophyoidea is present in O. stepheni and M. yemensis (i.e., $d 1$ or $d 2$). A similar argument should be true for other outgroups and other setae (opisthosomal e and f) with less than the usual full complement of paired setae present per segment, if the specific pair can not be denoted as homologous to the pair present in the Eriophyoidea. This reasoning almost is kin to creating a hypothetical outgroup, where it is presumed the specific dorsal pair of setae were present plesiomorphologically, and that loss thereof is derived, regardless whether the specific homologous pair of setae is indeed
present in the outgroup species (be it a species from the Tydeidae, Tetranychidae or another Prostigmata group).

22. Seta d - presence:

$0=$ present
$1=$ absent

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 112, Character 13: $0=$ present; $1=$ absent $)$.

Among Eriophyoidea species included in the present study d is absent in species belonging to all three families (Table B.1): in the Phytoptidae the three species with d absent are all fusiform with similar body shapes. Within the Eriophyidae, d is absent in members of the Phyllocoptinae, and they are also fusiform mites usually with an exposed life style, and in Ashieldophyes pennadamensis, also with an exposed life style (it is a leaf vagrant), albeit with a more vermiform body shape. Within the Diptilomiopidae d is absent in two species of the Diptilomiopinae, neither of them vermiform. One of the species not included in the present study, but reportedly with d absent (Mohanasundaram, 1986b) is the phyllocoptine species, Hemiscolocenus rares. However, in the drawing of this species it seems that e might be absent, with d present. Amrine et al. (2003) erroneously stated in their key that all opisthosomal setae are present in the latter genus. At first glance, it seems that d is lost particularly in species with a more fusiform body shape and exposed life style, and may have been lost at least three times homoplastically to account for its absence in all three families, if the classification sensu Amrine et al. (2003) are natural.

Of the 17 species in the present study without d, only d of the opisthosomal setae (except $c l$ and $h 1$ which may also be absent) is absent in four species, the remainder also have either $c 2$ (in diptilomiopine species) or e (Phytoptidae and Eriophyidae species) absent (Table B.1).

The character states scored for the following species, in particular, are ambiguous:

- Pararhynacus photiniae: the presence of d could not be determined [ventral view not depicted and it could not be scored from the Chinese description by Kuang (1986a)]. It is presumed d is present, because the author stated that the new genus and species are similar to Rhynacus, and Rhynacus possesses d.
- Steopa bauhiniae: d was recorded as absent, and it seems that d is indeed absent according to the descriptive drawing (Chandrapatya \& Boczek, 2001b), however, according to the position
of the seta, there is also a possibility that rather e is absent, and the seta present, now denoted e, may be d.

*23. Seta d - number of pairs:

$0=$ more than one pair present
$1=$ only one pair present
Regardless of the precise homology of opisthosomal d between the Tetranychidae and Eriophyoidea, two pairs of opisthosomal d is present in M. yemensis (Fig. 4.2), and only one pair of d is present in the Eriophyoidea. The state of "more than one pair present" for O. stepheni is ambiguous, though. As interpreted by Ueckermann \& Grout (2007) two pairs of opisthosomal d are present in O. stepheni (Fig. 4.1), but if alternative setal homologies are considered (C. Craemer, present study), only one pair of d may be present, similar to most other Tydeidae, including the genera from which it was differentiated (see discussion of alternative setal homologies above). The code "?" (unknown) is assigned to O. stepheni.

*24. Seta d - position:

$0=$ dorsally
$1=$ displaced ventrolaterally
All setae d occur dorsally on the opisthosoma of the Tydeidae including O. stepheni (Fig. 4.1), and Tetranychidae including M. yemensis (Fig. 4.2). In the Eriophyoidea d occurs ventrolaterally. Lindquist (1996a) proposed that the ventral opisthosomal setae in the Eriophyoidea are setae of dorsolateral origin in other Prostigmata that moved to a ventral position.

Characters 25-27 (seta $e)$. A maximum of two pairs of setae ($e 1$ and $e 2$) occur on the dorsal opisthosomal transverse region E in the Prostigmata (Kethley, 1990). Seta $e 2$ is lost in most families of Anystina, Eupodoidea, Tydeoidea, Bdelloidea, Caligonellidae, Raphignathidae, and all Heterostigmata (Kethley, 1990). Only el (d3 in André, 1981a) is present in the Tydeoidea on this region (André, 1981a), and André (1981a) additionally regarded the presence of only $e 1(d 3)$ [without $e 2(l 3)$] as the situation in the "dorsal idiosomal paleotaxy" (plesiomorphic or primitive state) of the Tydeidae. According to Ueckermann \& Grout (2007) e1 and e2 (lengths of these setae were given in the text) are present in O. stepheni (Fig. 4.1). They did not comment on the significance of this in the Tydeidae. See the discussion of the presence of $d 2$ and possible alternative setal homologies for O. stepheni above. Setae $e 1, e 2$ and $e 3$ can be present in the Tetranychidae,
$e 3$ is regarded as being neotrichous (Lindquist, 1985) or in other words, is considered secondary (Kethley, 1990). Only el and e2 are present in M. yemensis (Fig. 4.2).

25. Seta e - presence:

$0=$ present
1 = absent

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 112, Character 14: $0=$ present; $1=$ absent $)$.

Among Eriophyoidea species included in the present study, e is absent in species belonging to all three families (Table B.1). In the Phytoptidae, e is absent only in one species, Neopropilus jatrophus, and in this species, d is also absent (Huang, 1992). Within the Eriophyidae, e is absent in members of the Phyllocoptinae which are fusiform mites usually with an exposed life style, and in Ashieldophyes pennadamensis, also with an exposed life style (it is a leaf vagrant) (Mohanasundaram, 1984). In these species, d is usually also absent, except in two species of the Phyllocoptini, Prophyllocoptes riveae (Mohanasundaram, 1984) and Tergilatus sparsus (Meyer \& Ueckermann, 1995) in which only e is absent. Different from Eriophyoidea species in which d is absent, e is also absent in members with a more vermiform body shape and mostly living a sequestered lifestyle in the Nothopodinae, Eriophyinae and Cecidophyinae (Table B.1). Only e (and not $c 2$ and d) is absent in these species. Within the Diptilomiopidae e is absent in three species of the Diptilomiopinae. In these three species $c 2$ is also absent (Table B.1).

The character states scored for the following species, in particular, are ambiguous:

- Pararhynacus photiniae: the presence of e could not be determined [ventral view not depicted and description by Kuang (1986a) in Chinese]. It is presumed e is present, because the authors stated that the new genus and species are similar to Rhynacus, and Rhynacus has e present.

*26. Seta e - number of pairs:

$0=$ more than one pair present
$1=$ only one pair present
Regardless of the precise homology of opisthosomal e between the Tetranychidae and Eriophyoidea, two pairs of opisthosomal e are present in M. yemensis (Fig. 4.2), and only one pair of e is present in the Eriophyoidea.

The state of "more than one pair present" in the Tydeidae is ambiguous, though. As interpreted by Ueckermann \& Grout (2007) two pairs of opisthosomal e are present in O. stepheni (Fig. 4.1), but if alternative setal homologies are considered, only one pair of e may be present in O. stepheni, similar to most other Tydeidae, including the genera from which it was differentiated or e may not even be present in O. stepheni (see discussion of alternative setal homologies above). The code "?" (unknown) is assigned to O. stepheni.

*27. Seta e - position:

$0=$ dorsally
$1=$ displaced ventrolaterally
All setae e occur dorsally on the opisthosoma of the Tydeidae including O. stepheni (Fig. 4.1) and the Tetranychidae, including M. yemensis (Fig. 4.2). In the Eriophyoidea, they occur ventrolaterally. Lindquist (1996a) proposed that the ventral opisthosomal setae in the Eriophyoidea are setae of dorsolateral origin that have moved to a ventral position (similar to the situation for d).

*28. Seta f - number of pairs:

$0=$ more than one pair present
$1=$ only one pair present

Setae $f 1$ and $f 2$ occur in the Prostigmata, but $f 3$ have been lost in all Prostigmata groups except in some Endeostigmata (Kethley, 1990). Regardless of the precise homology of opisthosomal f between the Tydeidae, Tetranychidae and Eriophyoidea, within the Tydeidae including O. stepheni (Fig. 4.1), and Tetranychidae including M. yemensis (Fig. 4.2), $f 1$ and $f 2$ (two setal pairs) are present. Seta f is never absent in the Eriophyoidea species known to date, but only one pair is present.

*29. Seta f-position:

$0=$ dorsally
1 = displaced ventrolaterally
All setae f occur dorsally on the opisthosoma of the Tydeidae including O. stepheni (Fig. 4.1), and Tetranychidae including M. yemensis (Fig. 4.2). In the Eriophyoidea they occur ventrolaterally. Lindquist (1996a) proposed that the ventral opisthosomal setae in the Eriophyoidea are setae of dorsolateral origin that have moved to a ventral position.

30. Seta h1-presence and length:

$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { minute or dot-like }(2 \mu \mathrm{~m} \text { or less }) \\
& 2=\text { absent }
\end{aligned}
$$

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 115, Character 31: $0=$ present; $1=$ absent $)$.

Setae $h 1, h 2$ and $h 3$ may occur in the Prostigmata and of these, $h 1$ and $h 2$ occur in the Tydeidae (Kethley, 1990). With the plausible scenarios of setae homologies and names in O. stepheni, including the interpretation by Ueckermann \& Grout (2007) (Fig. 4.1), both $h 1$ and $h 2$ are present in O. stepheni and neither is minute nor dot-like. In the Tetranychidae $h 1$ (that may possibly alternatively be $f 3$) and $h 2$ and $h 3$ may occur (Lindquist, 1985). Seta $h 1$ is inserted dorsally, but $h 2$ and $h 3$ are smaller and inserted ventrocaudally, and $h 3$ may be a neotrichous seta (Lindquist, 1985). Setae $h 1$, h2 and $h 3$ occur in M. yemensis (Fig. 4.2) and are not either minute or dot-like.

Within the Eriophyoidea, conventionally, the presence or absence of $h l$ is sometimes used to differentiate between species, but has not been used at a supraspecific level. Sometimes the length of $h 1$ is described as minute or dot-like. Unfortunately, in several cases, such as in Diptilomiopus, $h l$ was described as being present, without any indication of length. In about all the taxa (families, subfamilies and tribes) all three states of $h 1$ are present, without a particular obvious pattern, except in the Diptilomiopinae, including all Diptilomiopus spp., where most species either have a very short or minute $h 1$, or $h 1$ is absent. In contrast, most species in the Phytoptidae have $h 1$ present and it is longer than $2 \mu \mathrm{~m}$, except in Prothrix aboula Keifer, 1965 (Keifer, 1965a) and some species in the Sierraphytoptinae.

The character states scored for the following species, in particular, are ambiguous:

- Asetadiptacus emiliae: Carmona (1970) recorded hl to be absent, with only small tubercles present. For the present analyses it is presumed $h 1$ is present, but minute in this species.
- As mentioned, the length of $h l$ of many species was not recorded, e.g., for Mediugum sanasaii (Huang, 2001d) and Schizoempodium mesophyllincola (Oldfield, Hunt \& Gispert, 1998), or the length of $h l$ was recorded, but not available for the present study e.g., Neolambella ligustri (Lin \& Kuang, 1997). Seta hl in these cases was assigned character state "present", but it may be "minute" for some of these species.
- Prodiptilomiopus auriculatae and Sakthirhynchus canariae: the presence or absence of hl was not recorded in the text (Umapathy \& Mohanasundaram, 1999), however, these authors depicted and enlarged the lateral view of the caudum, and it is presumed they would have
depicted $h 1$ in these drawings if this seta was present, thus character state "absent" was scored for these two species for the present study.

*31. Opisthosomal setae $p s$ - presence:

$0=$ present
$1=$ absent

Setae psl, ps2 and ps3 occur on the PS segment in the Prostigmata (Kethley, 1990). The ps series of setae are larval in origin. Some Prostigmata groups (Raphignathoidea, Cheyletoidea, Tetranychoidea, Eriophyoidea, Heterostigmata and Parasitengona) do not exhibit additions to the body chaetome beyond the larval ps series (Kethley, 1990).

André (1981a) proposed that only one pair of $p s$ setae is present in the Tydeidae and these may be lost in some species. According to Kethley (1990) psl and ps2 occur in the Tydeidae. These are probably named $h 1$ and $h 2$ by André (1981a) in his interpretation of the setae. In O. stepheni, one pair of $p s$ is regarded to be present, ventrally close to the anus (Ueckermann \& Grout, 2007) (Fig. 4.1). Setae $p s 1, p s 2$ and $p s 3$ occur in the Tetranychidae (Lindquist, 1985). Only $p s 1$ and $p s 2$ are present in M. yemensis (Fig. 4.2). Regardless of the precise homology of opisthosomal ps between the Tydeidae, and Tetranychidae, Lindquist (1996a) proposed that no $p s$ setae are present in the Eriophyoidea.

Setae on coxisternal plates (Figs 3.4, 3.5)

The plesiomorphic number of coxisternal setae (presented in formulae) in all Tydeidae, on each of legs I-II is $3-1$, respectively: $1 a, 1 b$ and $1 c$ on coxisternum I and $2 a$ on coxisternum II (André, 1981a), and this is also the case in O. stepheni (Fig. 4.1). In the Tetranychidae, the podosomal venter bears three pairs of prominent simple setae, known as ventral or intercoxal setae, of which only the anterior pair, $1 a$, inserted between the bases of legs I and II and the second or middle pair, $3 a$, between the bases of legs III, (Lindquist, 1985) are of concern in determining primary homologies between the Tetranychidae and the Eriophyoidea. These two pairs are already present in the larvae of tetranychid species (Lindquist, 1985). Seta $2 a$ is absent. On the coxisternal plates themselves, the primitive and maximum number of coxisternal setae (presented in formulae) on each of legs I-II is 2-2, respectively (Lindquist, 1985): $1 b$ and $I c$ on coxisternum I and $2 b$ and $2 c$ on coxisternum II. In M. yemensis, this full compliment of intercoxal and coxisternal setae is present (Fig. 4.2).

In the Eriophyoidea the coxisternal plates characteristically have two pairs of setae ($1 a$ and $1 b$) inserted on plates I and 1 pair $(2 b)$ on plates II, thus written in formula (not conventionally done for the Eriophyoidea) coxisternal I - coxisternal II is (2-1), and this is also the maximum number of these setae in this superfamily. The homologies of these setae with those in other acariform mites and their names were proposed by Lindquist (1996a). The relative position of the setae on the coxisternal plates in comparison with each other, in the Eriophyoidea, is stable intraspecifically (Hong \& Zhang, 1996a), and has been described by some Eriophyoidea taxonomists such as Meyer (1990a).

32. Seta $1 b$ - presence:

$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { absent }
\end{aligned}
$$

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 112, Character 15: $0=$ present; $1=$ absent).

Seta $l b$ is present in O. stepheni and in M. yemensis (Figs 4.1, 4.2, and also see discussion above). Seta $1 b$ is generally shorter and weaker than $1 a$ and $2 a$ in the Eriophyoidea, and has been lost in some species in each of most subfamilies of the Eriophyidae and Diptilomiopidae, but not in any of the members of the Phytoptidae. The absence of $1 b$ is important at the generic level in the Eriophyoidea. It is especially of importance in keying to the tribes of the Nothopodinae (present in the Colopodacini, but absent in the Nothopodini), and is prominent in keying to and differentiating genera and generic groupings in the Diptilomiopinae and Aceriini (Amrine et al., 2003).
According to the key by Amrine et al. (2003) and recent diagnoses of the genus, $1 b$ is absent in all species assigned to Diptilomiopus. The presence or absence of $1 b$ in the type species $(D$. javanicus) is, however, not known. Nalepa (1918) described the position of the second pair of coxal setae (1a) in this species as "die Hüftborsten des zweiten Paares vor den inneren
Hüftwinkeln sitzend", but did not mention the presence or absence of $1 b$.

The character states scored for the following species, in particular, are ambiguous:

- Neolambella ligustri: in the descriptive drawing (reproduced in Amrine et al., 2003), $1 b$ seems to be present, but according to T. Stasny (pers. comm.) the lines are folds in the coxal surface, and that this was confirmed with the species authors. For the present study this character is scored "absent" for this species.
- Diptilomiopus ervatamiae: $1 b$ is present (Chandrapatya \& Boczek, 1991a) in only this one species of Diptilomiopus. When compared with the position of $1 b$ in this species, the presumably $1 a$ in some of the other Diptilomiopus spp. (e.g., D. alagarmalaiensis, D. knorri and D. pocsi) is situated so far ahead of the rear coxisternal margin in comparison with the length of coxisternal plates I, and the anterior approximation between them, that the seta may possibly be rather $1 b$ than $1 a$, and $1 a$ may be absent. This is particularly the case in Suthamus chiangmi. Chandrapatya \& Boczek (2000a) interpreted it as being $1 a$ with $l b$ absent in this species, however, and it has been assigned as such for the present study. If D. ervatamiae (with $1 b$ present and only the tubercles of $1 a$ remaining) and the situation in single other diptilomiopine species were not known, this alternative hypothesis would have been regarded as unlikely, since $1 a$ seems to be much more stable and more rarely absent than $1 b$, and usually when $1 b$ is absent, $1 a$ is also absent (also see Lindquist, 1996a).

33. Setal tubercle of $\mathbf{1 b}$ - presence:

$0=$ primary absent
$1=$ present
$2=$ secondary absent
Seta $1 b$ is not primarily inserted on tubercles in the Tydeidae, including O. stepheni (Fig. 4.1), and the Tetranychidae, including M. yemensis (Fig. 4.2), and therefore has been assigned the state "primary absent" in these two species in the present study. The presence, size and shape of the setal tubercle on which $l b$ is inserted is usually not described for Eriophyoidea species, and with most descriptive drawings being semi-schematic or the morphology not depicted so precisely, these details could, in most instances, not be determined from the drawings. It has thus been presumed, whenever $l b$ is present, it is inserted on a setal tubercle, and presence of $1 b$ denotes presence of setal tubercle $1 b$.

34. Distance between setae $1 b$ in comparison with distance between setae 1a:

$0=1 b$ clearly further apart than $1 a$
$1=1 b$ slightly further apart than $1 a$
$2=1 b$ longitudinally in line with $1 a$
$3=1 b$ slightly closer together than $1 a$
$4=1 b$ clearly closer together than $1 a$
Setae $1 b$ are clearly further apart than $1 a$ in O. stepheni (Fig. 4.1) and M. yemensis (Fig. 4.2). The relation of the distance between setae $1 b$ to the distance between setae $l a$ in the Eriophyoidea is frequently not measured or described in the text, but can be easily determined from a descriptive drawing of this area. The distance between $1 b$ in comparison with the distance between $1 a$ ranges from further apart to closer in both the Eriophyidae and Phytoptidae, but in the Diptilomiopidae it
generally seems to be further apart with only some species with states "slightly further" or "in line" or "slightly closer". In none of the diptilomiopid species included in the present study are $1 b$ clearly closer together than $1 a$. Within the Eriophyidae generally $l b$ also rather seems to be further away or in line and sometimes closer, however, in the cecidophyine species included in the present study, $l b$ mostly seems to be almost in line, in line or closer together than $l a$ and never clearly further apart. Setae $l b$ and $l a$ usually seem in line or almost in line with each other in the Nalepellinae.

The assignment of character states for this character is subjective, and possible distortion of the coxisternal plates in slide-mounted specimens may cause the setae to be slightly pressed from their true position. Possible phylogenetic information in the character might additionally be obscured in the way the states were defined. The states where $1 b$ are slightly further or slightly closer together than $1 a$, may be similar or the same as the setae being the same distance apart, or alternatively as being clearly further apart or closer together. Although the states are finely differentiated, they could be scored, and it was decided to experimentally keep the character states as they are for the present study. These relative positions of coxal setae to each other probably also inherently defines the shape of the coxae, and the latter may be a more realistic representation of these coxisternal plate characteristics.

35. Seta $1 a$ - presence:

$0=$ present
$1=$ absent

Seta $1 a$ is present in O. stepheni and in M. yemensis (Figs 4.1, 4.2), also see discussion above. Seta $1 a$, in contrast to $l b$, is rarely absent in Eriophyoidea species. It is only absent in three species of the Diptilomiopinae: Africus psydraxae, Diptilomiopus ervatamiae and Neodiptilomiopus vishakantai (Meyer \& Ueckermann, 1995; Chandrapatya \& Boczek, 1991a; Mohanasundaram, 1982b, respectively). In D. ervatamiae the setal tubercle of $l a$ is present, but $l a$ is absent ($l b$ is present in this species). This is quite an unusual state in the Eriophyoidea, since $1 a$ is rarely absent, and if absent, $l b$ is absent as well (e.g., A. psydraxae and N. vishakantai). The absence of $l a$ is autapomorphic for D. ervatamiae among Diptilomiopus spp. (also see discussion of Character 32).

The position of $1 a$ on the coxisternal plate may be of taxonomic and phylogenetic significance, but has not been scored in published descriptions. The variation of the position of $1 a$ from the rear proximal margin of coxisternal plate I was first noted in Diptilomiopus spp. in the present study. Seta $1 a$ of most Diptilomiopus spp. is situated quite close to the rear proximal margin of coxisternal plate I, and close to the approximation with coxisternal plate II. In some species,
however, this seta is inserted quite clearly further away from this position (e.g., in D. bengalensis, D. dendropanacis, D. euryae, D. holoptelus, D. indicus, D. malloti, D. phylanthi, D. septimus). The difference in position can be compared between D. holmesi (close to rear margin) and D. jevremovici (further away from rear margin), both described by H.H. Keifer (Keifer, 1962c; Keifer, 1960, respectively). The position of $1 a$ on the coxisternal plate was scored for Diptilomiopus spp. in the present study, and subsequently for some of the species in other genera, where distinguishing between "close to" or "ahead of" became less obvious. It turned out that the position of la may vary continuously, without discrete gaps, and defining the states and subsequent scoring and coding is highly subjective at this stage, and it was decided not to include this character in the present study. Based on the absence of $1 a$ and presence of $1 b$ in D. ervatamiae (albeit the tubercle of $1 a$ is still present in this species), some of the setae, named $1 a$, more ahead of the basal margin of coxisternal plate I may rather be $1 b$ (also see discussion of Character 32).

36. Setal tubercle of $1 a$ - presence and shape:

$0=$ primary absent
$1=$ present and shaped as usual (about rounded or cylindrical)
$2=$ present and elongated
3 = secondary absent
Seta $l a$ is plesiomorphically not inserted on a tubercle in the Tydeidae including O. stepheni (Fig. 4.1) and Tetranychidae, including M. yemensis (Fig. 4.2), and therefore has been assigned the state "primary absent" in these two species in the present study.

For scoring the character states of this character for the Eriophyoidea, it is presumed the shape of the tubercle is normal, except when specifically mentioned or depicted otherwise in the species description. The setal tubercle of $1 a$ is different from the usual more rounded or cylindrical shape in only two species. Both species are in the Diptilomiopinae and the tubercle is elongated in both: in Diptilomiopus coreiae it is described as being long, and it is depicted markedly longer than usually found in the Eriophyoidea, in the accompanied drawings (Chandrapatya \& Boczek, 2002b). Among Diptilomiopus spp. long tubercle $1 a$ is autapomorphic for D. coreiae. It is also elongated in Kaella flacourtiae (Chandrapatya \& Boczek, 2002b). Unfortunately, the shape of these tubercles in Eriophyoidea species has generally not been described, and differences in shape, if present, may be subtle, and the descriptive drawings are probably mostly not reliable or specific in this regard.

The character states scored for the following species, in particular, are ambiguous:

- Farkas (1967) described the tubercle of Diptilomiopus pocsi as being "well developed" and Boczek \& Chandrapatya (2002) described the tubercles of all coxal setae in D. thunbergiae as being large. However, the tubercles of these species, as well as those of some other species for which the tubercle was depicted as large in their drawings (e.g., D. knorri, D. pamithus, D. securinegus, and D. thaianae), although possibly larger or more pronounced than "normal" do not constitute a distinctly different state when compared between descriptive drawings, and were scored as "shaped as usual".

It will be a better option to divide this character in future studies into two characters: setal tubercle of $1 a$ present or absent, and a second character to score the shape of this tubercle, and for the latter character for those species with the setal tubercle absent, the score will be "not applicable".

37. Seta 1a - position:

$0=$ ahead of $2 a$
$1=$ slightly ahead of $2 a$
$2=$ in line with $2 a$
$3=$ slightly behind $2 a$
$4=$ behind $2 a$

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 115, Character 35: $0=1 a$ ahead of $2 a ; 1=1 a$ same line as $2 a ; 2=1 a$ behind $2 a$).

Seta $1 a$ is clearly ahead of $2 a$ in O. stepheni (Fig. 4.1) and $2 a$ is absent in M. yemensis (Fig. 4.2), and "not applicable" was scored for the latter. Seta $1 a$ is ahead or slightly ahead of $2 a$ in the majority of the Eriophyoidea species included in the present study. In some of the species $1 a$ seems to be in line with $2 a$, but this may be a consequence of schematic drawing, or the specimens may be slightly distorted due to slide-mounting, and these may also have $1 a$ slightly ahead of the $2 a$ or vice versa. Seta la is slightly behind in three species [Mackiella phoenicis, Propilus gentyi (Sierraphytoptinae) and Oziella yuccae (Phytoptinae)] (Keifer, 1939a; 1975d; 1954, respectively) and clearly behind in two species [(Novophytoptus rostratae and N. stipae (Novophytoptinae)] (Roivainen, 19471 Keifer, 1962d, respectively), and all five species are in the Phytoptidae.

Similar to the distance between setae $1 a$ relative to the distance between setae $2 a$, the character states are assigned subjectively, and the definition of states for this character may obscure phylogenetic information in the character, because it might have been defined into too many states with gaps between the states too small (e.g., slightly ahead, in line and slightly behind may essentially be the same character state). When studied carefully, the character states will probably
vary into each other without clear gaps, and may be more accurately portrayed by using actual measurements (which can be analysed in TNT). The character is probably also very prone to body distortion in slide-mounted specimens, albeit it is usually quite stable, and can be assigned to one state within a sample of specimens, but this will probably vary according to the quality of mounting. It may be better to take the measurements on SEM images of specimens that are orientated the same and at the same angles, depending on the robustness of variation tolerated. The character does have potential as a phylogenetically informative character. It is currently regarded as rather a species level character.

**38. Seta $2 a$ - presence:

$0=$ present
$1=$ absent
Seta $2 a$ is present in O. stepheni (Fig. 4.1) and is absent in M. yemensis (Fig. 4.2). The homologies of these setae when the Tenuipalpidae and Tetranychidae are compared, may be suspect, and there is a possibility that $2 a$ may also be absent in the Tydeidae. Seta $2 a$ is present in all Eriophyoidea species included in the present study, except in Neocupacarus flabelliferis (Das \& Chakrabarti, 1985) (Eriophyidae: Phyllocoptinae: Phyllocoptini), and its absence is thus autapomorphic for this species within the Eriophyoidea in the present study. Setae $l a$ and $l b$ are present in this species.

The character state scored for the following species, in particular, is ambiguous:

- Diptilomiopus javanicus: although the presence of $2 a$ has not been explicitly recorded by Nalepa (1916, 1918), most Eriophyoidea species, and all diptilomiopid species have these setae present, thus state "present" was scored for this species.

Setae associated with genitalia

Characters 39-42 are autapomorphic for the Eriophyoidea in the present analysis.

*39. Genital setae in adult - presence:

$0=$ present
$1=$ absent
The maximum number of genital setae in the Tydeidae is six pairs but they are reduced or lost in some species (André, 1981a). Genital setae are not present in the larva of the Tydeidae, and is completely absent in tydeids of the Pronematinae (André, 1981a). Four pairs of genital setae are
present in the females and males of O. stepheni (Ueckermann \& Grout, 2007). There are two pairs of genital setae in the females of the Tetranychidae (Lindquist, 1985) including M. yemensis (Fig. 4.2). No genital seta is present in the adults of the Eriophyoidea. The pair of setae flanking the posterior area of the external genitalia of females, males and all immatures, and termed the genital setae (sensu H.H. Keifer), rather represents the pair of coxisternal, or intercoxal setae, $3 a$ (Lindquist, 1996a) (Figs 3.4, 3.5).

*40. Aggenital setae in adult - presence:

$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { absent }
\end{aligned}
$$

The maximum number of aggenital setae in the Tydeidae is five pairs but is reduced in some species (André, 1981a). Some aggenital setae are already present in the larva of the Tydeidae (André, 1981a). Four pairs of aggenital setae are present in the males and females of O. stepheni (Ueckermann \& Grout, 2007). Adult males and females of the Tetranychidae usually have one pair of aggenital setae, and one pair of aggenital setae is present in M. yemensis (Fig. 4.2). Aggenital setae are always absent in the Eriophyoidea.

Characters 41 and 42 (eugenital setae). Within the Actinotrichida eugenital setae are usually present in the adults of the Endeostigmata, a group considered most primitive of this superorder (Evans, 1992). Within the Eupodina, a suborder of the Prostigmata, eugenital setae may be present or absent (Evans, 1992).

The eugenital setae may be present and are eupathidia, and the maximum number is six pairs in the Eupodina (André, 1981a). The number is greatly reduced in most Tydeidae and they are always smaller in females than in males (André, 1981a). The female of O. stepheni do not have eugenital setae, and four pairs are present in the male (Ueckermann \& Grout, 2007). Eugenital setae are absent in the Raphignatina, a suborder of the Prostigmata, which include the Tetranychidae (Evans, 1992) and also when extrapolated, in M. yemensis. In all Eriophyoidea species eugenital setae are absent in the females, and one pair of minute eugenital setae is present in the males (Lindquist, 1996a).

****41. Eugenital setae in female - presence:

$0=$ present
$1=$ absent

Eugenital setae are absent in the females of all species (including O. stepheni and M. yemensis) included in the present study (see discussion above).

*42. Eugenital setae in male - presence and number of pairs:

$0=$ more than one pair present
1 = one pair of minute setae present
$2=$ absent

Four pairs of eugenital setae are present in the male of O. stepheni (Ueckermann \& Grout, 2007), also see discussion above. No eugenital setae are present in the male of M. yemensis (see discussion above). One pair of minute eugenital setae is present in the males of possibly all Eriophyoidea species, but this need to be confirmed by further study (see discussion above).

Leg setae (Fig. 3.6a, b)

The leg cheatotaxy and ontogeny thereof are not generally described or recorded in detail in the description of tetranychid species, and have also not been described for M. yemensis, apart from the setal formula presented recording the number of setae, solenidia and duplicate setae on each segment of each leg (Meyer, 1996), and neither were the legs depicted. It falls beyond the scope of the present study and knowledge of the author to determine homology and to name each of the leg setae in M. yemensis from available specimens, and because Lindquist (1996a) homologized the leg setae in the Eriophyoidea with the basic setae (already present in the larva) of the Tetranychidae, and these should rarely be lost in the adults, the leg setae as depicted and named for a general adult female tetranychine spider mite in Lindquist (1985) have been used as if it is the leg setae present in M. yemensis.

Table B.2. Leg setae (except coxisternal setae) which are absent in Eriophyoidea species included in the data set. Where there are more than one species in a genus, only one species was included in the table, or if variation occur between species from the same genus, all such species with different absent setae were included. Only species with some leg setae absent are listed. Absence of a setal pair is ticked with x . Setae $b v 1$ is the seta on the femur of leg I , and $b v 2$ is the seta on the femur of leg II, likewise $l^{\prime \prime} 1$ is the seta on genu of leg I, and l'' 2 is the seta on genu of leg II. Seta l ' is the seta on the tibia of leg I, and ft' 2 is seta $f t^{\prime}$ on the tarsus of leg II.

		$\begin{aligned} & \hline b v \\ & 1 \end{aligned}$	$\begin{aligned} & \hline b v \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline l^{\prime} \\ & 1 \end{aligned}$	$\begin{aligned} & \hline l^{\prime} \\ & 2 \\ & \hline \end{aligned}$	$l '$	ft 2
	Sinacus erythrophlei					X	
Calacarini:	Calacarus pulviferus				x		
	Jutarus benjaminae				X		
	Paracalacarus podocarpi	x	x		x		
Phyllocoptini:	Acamina nolinae	x	X				
	Arectus bidwillius	x					
	Euterpia fissa	x	x				
	Indonotolox sudarsani					x	
	Leipothrix solidaginis	X	X				
	Neocupacarus flabelliferis	x	X				
	Neodicrothrix tiliacorae				x	x	
	Neophytoptus ocimae	X	X				
	Proneotegonotus antiquorae				x	X	
	Prophyllocoptes riveae						
	Tergilatus sparsus						
Tegonotini:	Dicrothrix anacardii						
Ashieldophyinae	Ashieldophyes pennadamensis						
Diptilomiopidae:							
Diptilomiopinae:	Acarhis spp. in the present study (2)	x	x	x	x		
	Acarhis diospyrosis	x	x	x	x	x	
	Acarhynchus filamentus	x					
	Africus psydraxae	x	x	x	x	x	x
	Apodiptacus cordiformis	X	X				
	Asetadiptacus emiliae	X	X				
	Chiangmaia longifolii	X	x			x	
	Dacundiopus stylosus	x	X		x	x	
	Davisella breitlowi	X	x		x		
	Dialox stellatus	X					
	Diptacus pandanus	X					
	Diptacus sacramentae	x	x				
	24 of Diptilomiopus spp. in the present study*	X	x	X	x	X	
	54** of Diptilomiopus spp. in the present study*	x	x	X	x	X	X
	Diptilomiopus artocarpae	x	x		x		
	Diptilomiopus azadirachtae	X	X		X		X
	Diptilomiopus bengalensis	?			X		
	Diptilomiopus cuminis Huang	x	x	x	X		
	Diptilomiopus guajavae	x	X		X		X
	Diptilomiopus thangaveli	X	X		X		X
	Diptilomiopus ulmivagrans	X	X		x		
	Diptiloplatus megagrastis	X			X		
	Diptilorhynacus sinusetus	x	x	X	X	X	
	Diptilorhynacus dioscoreae	X	X	X	X	X	X
	Diptilostatus nudipalpus	x	X		X	x	
	Duabangus chiangmai	X	X			x	
	Kaella flacourtiae	X	X		x	X	
	Lambella cerina	X	X	X	X	X	
	Levonga spp. in the present study (2)	X	X		X	X	
	Levonga litseae	X	x		X	X	X
	Lithocarus thomsoni	x	X	x	x	X	
	Mediugum sanasaii	X	x	x	X	X	

		$\begin{aligned} & b v \\ & 1 \end{aligned}$	$\begin{aligned} & \hline b v \\ & 2 \end{aligned}$	$\begin{aligned} & \hline l^{\prime} \\ & 1 \end{aligned}$	$\begin{aligned} & \hline l^{\prime \prime} \\ & 2 \end{aligned}$	$l '$	$\begin{aligned} & \hline f t \\ & 2 \end{aligned}$
	Neoacarhis aglaiae	x	x		x	x	
	Neodialox palmyrae	x					
	Neodiptilomiopus vishakantai	X	x		x	x	
	Neolambella ligustri	x	x	X	x	X	
	Neorhynacus rajendrani	x	X		x		
	Norma lanyuensis		X		x	x	
	Pararhynacus photiniae	X	X				
	Prodiptilomiopus auriculatae	x	X	x	x	x	
	Rhynacus arctostaphyli	x	x		x		
	Steopa bauhiniae	X	X		x	x	
	Suthamus chiangmi	x	x	x	x		
	Thailandus diospyrosae	x		x	x	x	
	Trimeroptes eleyrodiformis	x	x				
	Vimola syzygii	x	x		x	x	
Rhyncaphytoptinae	Areekulus eugeniae	x	x		x		X
	Asetacus madronae	X	X				
	Catarhinus tricholaenae	x					
	Chakrabartiella ficusis	X	x				
	Hoderus roseus	X	X		X		
	Konola hibernalis	X	X				
	Neocatarhinus bambusae	x			X		
	Quadriporca mangiferae	X	X				
	Sakthirhynchus canariae	X	X	x	X	X	

* D. championi excluded - presence of $b v$ on femur I and II, l^{\prime} ' on genu I and II, l ' on tibia, and $f t^{\prime}$ on tarsus II unknown.
** D. pocsi and D. sandorici - presence of l ' unknown.

43. Leg I: $\operatorname{seta} b v$ (Fig. 3.6a, b) - presence:

$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { absent }
\end{aligned}
$$

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \&
Zhang, 1996a, p. 112, Character 16: $0=$ present; $1=$ absent $)$.

Seta $b v$ originally belonged to the more basal of the two femoral segments of the legs in more plesiomorphic acariform mites, and it is the only ventral fundamental seta found on the femora of legs I and II in acariform mites (Lindquist, 1996a). Lindquist (1996a) proposed that the ventral femoral seta in the Eriophyoidea is homologous with seta $b v$ in acariform mites.

In the Tydeidae the maximum number of setae occurring on femur I and II respectively is six and four, and the minimum on these two segments is two on each (André, 1981b). The proximoventral seta, $p v$, in the Tydeidae is amongst the strongest setae on the leg femur of legs I and II (André, 1981b). The position of this seta on the femur is similar to that of $b v^{\prime \prime}$ in the Tetranychidae and represents the fundamental seta $b v$ in acariform mites. This seta is present in O. stepheni $(\mathrm{C}$.

Craemer, own observation). The femur in legs I and II in the larval and protonymphal instars of the Tetranychidae have three setae of which one is seta $b v^{\prime \prime}$, a seta in a proximoventral position, homologous to the fundamental seta $b v$ in acariform mites. Seta $b v^{\prime \prime}$ is present in legs I and II of adult females of the Tetranychidae (Lindquist, 1985), and is also regarded to be present in M. yemensis.

Seta $b v$ on femur I is present or absent in Eriophyoidea species (Table B.2). Among species in the present study it is absent in some species in all three families. In the Phytoptidae it is absent in the two Novophytoptus spp. (Novophytoptinae). In the Eriophyidae it is absent in relatively few (five) species: of the Nothopodinae (three species) and Eriophyinae (two species in the Aceriini), and $b v$ on femur II is not absent in any of these. In the Phyllocoptinae, with more exposed living forms, $b v$ on femur I is absent in several species of most tribes of this subfamily, and frequently this seta on femur II is also absent in these species. Within the Diptilomiopidae, $b v$ on femur I is absent in all species of the Diptilomiopinae, except in two species not belonging to Diptilomiopus, and two Diptilomiopus spp. for which the presence is unknown. Within the Rhyncaphytoptinae about half of the species are with and the other half without $b v$ on femur I. In the majority of Diptilomiopidae species, $b v$ on femur II is also absent when $b v$ on femur I is absent.

The character state scored for the following species, in particular, is ambiguous:

- Pararhynacus photiniae: the presence of $b v$ on femur I could not be determined [ventral view not depicted and text description by Kuang (1986a) in Chinese]. It is presumed $b v$ is absent, because the authors stated that the new genus and species is similar to Rhynacus, and this seta is absent in Rhynacus.

44. Leg I: seta $l^{\prime \prime}$ (Fig. 3.6a, b) - presence:

$0=$ present
$1=$ absent

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 112, Character 17: $0=$ present; $1=$ absent $)$.

The maximum number of setae on the genua of the Tydeidae is four. There is no other reference point on this segment to evaluate the setae, and there is no variation during ontogeny, and determining the homology of these setae with setae on this segment in the acariform mites is difficult and ambiguous (André, 1981b). The number of setae on genu I in the Tydeidae ranges from four to one (André, 1981b). Three setae are present on genu I of O. stepheni (Ueckermann \&

Grout, 2007), and based on the setal positions in comparison with the labeled setae on leg I of Meyerella marshalli (André, 1980), l'’ are present, as well as v ' and l' (Fig. 4.1).

In the larva and protonymph of the Tetranychidae, four setae is the standard number of setae on genua I and II, namely $l^{\prime}, l^{\prime \prime}, v^{\prime}$, and $v^{\prime \prime}$, and in the Tetranychinae d is added on genua I and II in the deutonymphs (Lindquist, 1985) and in the tetranychine adults these five setae are present (Lindquist, 1985). Seta l '' is part of the basic larval-protonymphal complement, and it is not conceivable that it will be lost in M. yemensis, and it is extrapolated for the present study that l '' is present on genu I of M. yemensis.

In the Eriophyoidea l '' on the genu may be present or absent (Table B.2). Among the species included in the present study, it is present in all Phytoptidae [apart from Retracrus johnstoni (Sierraphytoptinae) where seta l ', is absent from genu I and II (Keifer, 1965c)] and Eriophyidae, and is only absent in members of the Diptilomiopidae, and particularly of the Diptilomiopinae [among the Rhyncaphytoptinae it is only absent in Sakthirhynchus canariae (Umapathy \& Mohanasundaram, 1999)]. Within the Diptilomiopinae it is absent in all Diptilomiopus spp. and in species of about 11 other Diptilomiopinae genera. Seta l '’ of genu I is present in some species currently in Diptilomiopus (D. artocarpae, D. azadirachtae, D. guajavae, D. thangaveli and D. ulmivagrans) (Mohanasundaram, 1981b; Boczek \& Chandrapatya, 1992b; Mohanasundaram, 1985; 1983c; 1984, respectively), but these species should probably not be in Diptilomiopus. Seta $l \prime$ ' on genu I is much more stable, and is lost in less species than l ', on genu II. In species in the present study, l '' is also absent from genu II when it is absent from genu I (Table B.2).

The character states scored for the following species, in particular, are ambiguous:

- Diptilomiopus azadirachtae: the presence of l ', in leg I is ambiguous. Its presence is not mentioned in the text by Boczek \& Chandrapatya (1992b), and the drawing seems to be wrong: the legs are depicted with 4 segments (excluding coxae), but the way the setae are positioned, it seems that the tibia may be absent, and not the genu. The segment proximally of the tarsal segment is relatively long, with a very strong seta (similar to a genual seta in other Eriophyoidea species). This can not be the tibia, firstly because in the text it is explicitly mentioned that the tibial seta l ' is absent, and the seta is much longer and stronger than what seta l ' usually is. The depiction of the second pair of legs has the same mistakes as the first leg, and the tibia of leg II never has a seta in the Eriophyoidea, and a similar strong seta is depicted dorsally on the segment just proximal of the tarsus. The most plausible explanation is that the genua (and l '') are present in this species, and that the distal margin of the tibiae was
not depicted, creating a "tibiotarsus". There is an unusually long space basally of $f t$ ' and $f t$ '". Seta l'" was scored as present, however, this score is ambiguous.
- The presence or absence of l '’ in Diptilomiopus spp. is not described in the text or reliably depicted in the drawings in many cases, however, if the absence of genu I is clearly described or depicted, it is presumed l '' is also absent, if not mentioned or depicted otherwise. This decision is supported by the definition of Diptilomiopus with l '' absent and leg I and II, and presumably authors should not have assigned species to Diptilomiopus if it was otherwise.

45. Leg I: seta l^{\prime} (Lindquist, 1996a) or l (proposed in the present study, for future investigation) (Fig. 3.6a, b) - presence:
 $0=$ present
 $1=$ absent

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 113, Character 18: $0=$ present; $1=$ absent $)$.

The hypothesized plesiomorphic setal compliment on the tibia of the Tydeidae includes five setiferous setae ($d, l^{\prime}, l^{\prime \prime}, v^{\prime}$ and $v^{\prime \prime}$) of which one may be eupathidial, a famulus $k^{\prime \prime}$ and solenidion φ (André, 1981b). In Tydeus, a genus relatively closely related to Orfareptydeus, only three setiferous setae are present on tibia I, and these are l^{\prime}, l^{\prime}, and v^{\prime}; seta $l^{\prime \prime}$ moved into the position of d (André, 1981b). Similar only these three setae are present on tibia I in O. stepheni (Fig. 4.1). Within the Pronematinae of the Tydeidae most species also have only three setae, $l^{\prime}, l^{\prime \prime}$, and v^{\prime}, in the case of these species though, l ' moved into the position of the absent d (André, 1981b). The latter setal arrangement is not proposed for O. stepheni in the present study.

In the Eriophyoidea a single tibial setiferous seta may be present dorsally on tibia I, and tibia II is always without any setae. Lindquist (1996a) compared this seta with the tibial setae in the Tydeidae, and came to a conclusion that it may either be d or l^{\prime}, but because l^{\prime} is more stable than d in the Tydeidae, (d is replaced by l ' in tibia II of the Tydeidae [sic]), he proposed that the tibial seta in the Eriophyoidea is seta l^{\prime}. He commented, though, that the homology of this seta is problematic. One should, however, rather compare tibiae I with each other, than tibia I with tibia II. As discussed above, d may be lost and replaced by either seta l ' or seta l '' in tibia I of the Tydeidae (André, 1981b). In some Eriophyoidea species the tibial seta is displaced to the inner (paraxial) aspect of the tibia, and this may possibly indicate that the tibial seta is rather l ', however, in some other species it is displaced to the outer (antaxial) aspect of the tibia, and an
argument can be made that this may indicate that the tibial seta is rather l ''. In the present study the name l ' sensu Lindquist (1996a) is still used, but I propose that the tibial seta in the Eriophyoidea may be homologous to a lateral seta (l), but that it can not be denoted as being the antaxial (l ', $)$ or paraxial (l ') lateral seta. This may have implications for determining primary homologies between the Eriophyoidea and other mite groups.

In the larva and protonymph of the Tetranychidae the basic setation of tibia I is five setae $\left(d, l^{\prime}, l^{\prime \prime}\right.$, $\left.v^{\prime}, v^{\prime \prime}\right)$ and one solenidion (Lindquist, 1985). The setae on tibia I of adults of the Tetranychinae are not very variable and are 9 setae, and one solenidion φ, with addition of setae to the basic setation (Lindquist, 1985). It is extrapolated for the present study that l ' and l '' is present on the tibia of M. yemensis.

Seta l ' can be present or absent in the Eriophyoidea (Table B.2). It is absent in a wide variety of taxa from all three Eriophyoidea families. In the Phytoptidae it is absent in members of the Nalepellinae, Prothricinae and Sierraphytoptinae. In the Eriophyoidea it is absent in all members of the Aberoptinae and Nothopodinae, partly defining these two subfamilies, but it is also widely absent in the Eriophyinae, Cecidophyinae and Phyllocoptinae. In the Diptilomiopidae it is absent in most members, including most Diptilomiopus spp., but within the Rhyncaphytoptinae it is absent in only Sakthirhynchus canariae (Umapathy \& Mohanasundaram, 1999).

The character states scored for the following species, in particular, are ambiguous:

- Boczekella laricis: the presence of l ' is not recorded, however, this seta is absent in the descriptive drawing of the species (Farkas, 1965a) and because the l ' is normally depicted when present, it is presumed l^{\prime} is absent, for the present study.
- Scoletoptus duvernoiae: l ' is recorded as being absent in the original description (Meyer, 1992a), however, on close inspection this seta seems to be present. It is extremely fine and not clearly visible. The specimens available for study were in bad condition and additional newly collected specimens will have to be studied to confirm the presence of these setae. The character state "present" is scored for this species in the present study.

46. Leg I: seta l ' - position:

$0=$ dorsal on tibia
$1=$ displaced to the inner (paraxial) side of tibia
$2=$ displaced to the outer (antaxial) side of tibia
If it is assumed that the tibial seta in the Eriophyoidea is either seta d, or one of the lateral setae that shifted to the dorsal position originally occupied by the absent seta d. The position of these
setae is dorsally on the tibia of both O. stepheni (Fig. 4.1) and M. yemensis (see discussion of Character 45 above). For determining the position of the seta homologous to the tibial seta in the Eriophyoidea in other mite groups, it becomes very important to determine the real homology of the seta, and in having trouble doing so, it renders the character ambiguous. Several scenarios are possible in which the state for the character in the outgroup taxa, may either be dorsal or lateral (paraxial or antaxial), depending whether the tibial seta l ' (as denoted by Lindquist, 1996a) represents d, l^{\prime}, or $l l^{\prime \prime}$ in the outgroup taxa.

In the Eriophyoidea, when l ' is present, it is usually inserted dorsally on the tibia. Among species included in the present study, l ' is positioned on the paraxial aspect of the tibia in the Diptilomiopidae (Diptilomiopinae: Dialox stellatus, Diptiloplatus megagrastis and Neodialox palmyrae, and Rhyncaphytoptinae: Areekulus eugeniae and Cheiracus sulcatus) (Keifer, 1962d; 1975c; Mohanasundaram, 1983b; Boczek \& Chandrapatya, 1998; Keifer, 1977a, respectively). In the Phyllocoptinae it is positioned on the paraxial aspect in the Anthocoptini (Ditrymacus athiasella), and in the Tegonotini (Dicrothrix anacardii) (Keifer, 1960; 1966c, respectively), and on the antaxial or outer aspect of three species: Hyborhinus kalarensis (Rhyncaphytoptinae) (Mohanasundaram, 1986) and Acaphyllisa parindiae and Neoacaphyllisa lithocarpi (Phyllocoptinae: Acaricalini) (Keifer, 1978; Kuang \& Hong, 1989, respectively).

The character states scored for the following species, in particular, are ambiguous:

- Areekulus eugeniae: it clearly seems as if l^{\prime} ' is on the paraxial side of the tibia in the descriptive drawing (Boczek \& Chandrapatya, 1998), however, this displacement is not mentioned in the descriptive text. For the present study the character state "displaced to the inner side of tibia" is assigned to this species, but it may be based on a drawing error.
- Acarhynchus filamentus: particularly in the enlarged drawing of the legs, it seems that l ' might either be on the paraxial or antaxial aspects of the tibia (Keifer, 1959b), however, this is not mentioned in the text, and the character state "dorsal on tibia" was assigned to this species for the present study.
- Hyborhinus kallarensis: it clearly seems as if l ' is on the antaxial side of the tibia in the drawing (depending on the aspect of the drawing facing towards the reader), however, this is not mentioned in the descriptive text of Mohanasundaram (1986). For the present study the character state "displaced to the outer side of tibia" is assigned to this species, but it may be based on a drawing error.
- Neoacaphyllisa lithocarpi: Kuang \& Hong (1989) described l' as being on the mesal surface of the tibia. This might indicate that the seta is on the inner or "middle" surface of the tibia, but in
the drawing it seems that it might be on the antaxial or outer aspect of the tibia, and because this species is reportedly close to Acaphyllisa, in which this seta is inserted on the antaxial aspect, the state "displaced to the outer side of the tibia" is assigned to this species for the present study.

47. Leg I: seta l ' - vertical position:

$0=$ near apical (distal) margin (less than quarter tibial length from distal margin)
$1=$ at about distal quarter
2 = at distal third
$3=$ on about middle (half) of tibia
$4=$ at basal third
$5=$ at basal quarter
$6=$ near proximal (basal) margin (less than a quarter from basal margin)
In O. stepheni (Fig. 4.1) and M. yemensis the tibial seta in the position of seta l ' and d respectively is on the distal half of the tibia. In this case it is very important to determine the real homology of the setae, and in having trouble doing so, it renders the character ambiguous. In the Eriophyoidea the position of l ' along the length of the tibial segment varies from near the apical (distal) margin to near the proximal (basal) margin of the segment. The states are probably too finely divided, but it was not clear where the division between different states should be. In future, real distances from one of the margins should be used. Apart from determining this position from the descriptive drawings, it is also frequently described in the text. The text description of this character got priority in the present study. In the few Diptilomiopinae species where l ' is present, it is mostly inserted on the distal half of the tibia with single species with the seta on the basal third. Within the Rhyncaphytoptinae it is present in varying positions along the tibial length, but mostly at the basal third, and even near the basal margin. In the majority of Eriophyidae in the present study l ' is on about the middle of the tibia (half) and on the basal half. It is in the distal half only in a few single species, except in the Phyllocoptini where it is in the distal half for slightly more species (eight species). Within the Phytoptidae, the position is more in the middle and in the distal half within the Nalepellinae, and in the remainder of the Phytoptidae it tends to be more in the middle and in the basal half of the tibia.

48. Leg I: tibial solenidion φ - presence and position:

$0=$ present, about mid-tibial antaxial position
$1=$ present, in ventrodistal position
$2=$ absent

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 113, Character 22: $0=$ present; $1=$ absent). Hong \& Zhang (1996a) erroneously
scored this solenidion to be present in their general Tydeidae, however, it is absent in some species, such as O. stepheni (Ueckermann \& Grout, 2007).

The hypothetical plesiomorphic condition or archetype of the Tydeidae includes only one solenidion on tibia I, namely solenidion φ (André, 1981b). No solenidion is present on tibia I of O. stepheni (Ueckermann \& Grout, 2007) (Fig. 4.1). In larval and protonymphal Tetranychidae and eventually in adults of the Tetranychinae, similarly, only one solenidion, solenidion φ, is present on tibia I of females, however, more solenidia may be added on tibia I of males after the protonymphal stage (Lindquist, 1985). The solenidion in these species is inserted on the antaxial side of the tibia, about in the middle of the tibia.

Lindquist (1996a) proposed that the solenidion sometimes present on the tibia of Eriophyoidea mites represents solenidion φ, but commented that a fundamental solenidion in this almost ventral position is not present in any other Acariformes. The tibial solenidion φ in the Eriophyoidea is inserted ventrally and apically (distally) on the tibia. This solenidion is present only in the Phytoptidae, and in most members of all the subfamilies, except the Novophytoptinae, where it is absent in all members.

49. Leg I: tarsal solenidion ω - position:

$0=$ antaxial, about distal third of tarsus
$1=$ dorsal, about mid-tarsus
2 = dorsal, close to and above empodium
3 = lateral, close to empodium, on outer side of tarsus
4 = lateral, close to empodium, on inner side of tarsus
$5=$ ventrad of empodium

The hypothetical plesiomorphic condition or archetype of the Tydeidae includes only one solenidion on tarsus I, namely solenidion ω (André, 1981b). Solenidion ω is present about middorsally on tarsus I of O. stepheni (Ueckermann \& Grout, 2007) (Fig. 4.1). In larval and protonymphal Tetranychidae generally only one solenidion, solenidion ω^{\prime}, is present on tarsus I, and is autapomorphic for the Tetranychidae within the Tetranychoidea in its position closely beside seta $f t$ ", to form a set of "duplex setae" (Lindquist, 1985). In the Tetranychinae three tarsal solenidia is present on tarsus I of females (Lindquist, 1985). Solenidion $\omega^{\prime \prime}$ ' is already present in the larva, and is thus the basic seta, and ω in the Eriophyoidea probably represents $\omega^{\prime \prime}$ in the Tetranychidae. Solenidion $\omega^{\prime \prime}$ is in a more antaxial position on the tarsus slightly distally of the middle of the tarsus (Lindquist, 1985).

Immature instars and adults of all Eriophyoidea species have a prominent solenidion, ω, on the tarsus of legs I and II, which is usually slightly curved, but may also be straight, and frequently is slightly enlarged apically to form a knob-like apical end. Within the Eriophyoidea the tarsal solenidion ω is usually inserted apically and dorsally, very close to and dorsal of the empodium. Within the following species included in the present study, it is inserted in another position: in one species, Notaceria tetrandriae (Eriophyinae: Aceriini) it is inserted dorsally, but proximally of the middle of the tarsus, and away from the empodium (Mohanasundaram \& Muniappan, 1990), more similar to the position of solenidion ω in O. stepheni, than the other positions here recorded. In three species, Aberoptus samoae (Eriophyidae: Aberoptinae) and Brevulacus reticulatus and Catarhinus tricholaenae (Diptilomiopidae: Rhyncaphytoptinae), tarsal solenidion ω is inserted close to, but laterad (antaxial) of the empodium (Keifer, 1951; Manson, 1984a; Keifer, 1959b, respectively). In five species, Cosella deleoni, Disella ilicis, Floracarus calonyctionis and Neocosella ichnocarpae all from the Nothopodinae, and Neocolopodacus mitragynae in the Phyllocoptinae, tarsal solenidion ω is inserted close to, but laterad (paraxial) of the empodium (Keifer, 1956; 1965a; 1953; Mohanasundaram, 1981d; 1980, respectively). In two species, Catachela machaerii (Phyllocoptinae) and Dechela epelis (Cecidophyinae), tarsal solenidion ω is inserted close to, but ventrad of the empodium (Keifer, 1969b; 1965a, respectively).

50. Leg II: seta $b v$ (Fig. 3.6a, b) - presence:

$0=$ present
$1=$ absent

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 113, Character 19: $0=$ present; $1=$ absent $)$.

The homology of $b v$ on femur II and presence thereof in the Tydeidae including O. stepheni and in the Tetranychidae including M. yemensis, is similar to the homology for $b v$ on femur I presented above, and it is present in O. stepheni and M. yemensis. Seta $b v$ on femur II is present or absent in the Eriophyoidea (Table B.2). Among the Eriophyoidea species in the present study the loss of $b v$ on femur II follows about the same pattern as the loss of $b v$ on femur I, and they are absent in some species in all three families. Mostly when $b v$ on femur I is lost, $b v$ on femur II is also absent, and this is the case in species of the Novophytoptinae (Phytoptidae), Phyllocoptinae (Eriophyidae) and Diptilomiopidae. In the Nothopodinae and Eriophyinae $b v$ is absent on femur I in only a few species, and in these $b v$ on femur II is still present.

The character state scored for the following species, in particular, is ambiguous:

- Pararhynacus photiniae: the presence of $b v$ on femur II could not be determined [ventral view not depicted and description by Kuang (1986a) in Chinese]. It is presumed this seta is absent, because the authors stated that the new genus and species are similar to Rhynacus, and seta $b v$ is absent on femur II of Rhynacus.

51. Leg II: setal', (Fig. 3.6a, b) - presence:

$0=$ present
$1=$ absent

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 113, Character 20: $0=$ present; $1=$ absent $)$.

Determining the homology of genual setae in the Tydeidae with setae on this segment in the Acariformes mites is difficult and ambiguous (André, 1981b, and see treatise of l '' on genu I above). The number of setae on genu II in the Tydeidae ranges from four to none (André, 1981b). Two setae are present on genu II of O. stepheni (Ueckermann \& Grout, 2007), and based on the setal positions in comparison with the labeled setae on leg I of Meyerella marshalli (André, 1980), v^{\prime} and l^{\prime} are present, with $l^{\prime \prime}$ absent (Fig. 4.1). In Tetranychinae adults five setae are present on genu II (similar to genu I - also see discussion of $l^{\prime \prime}$ on genu I above): $l^{\prime}, l^{\prime}, v^{\prime}, v^{\prime \prime}$ and d (Lindquist, 1985). By extrapolation these (and especially seta l ', being one of the basic larvalprotonymphal setae) are also present on genu II of M. yemensis.

In the Eriophyoidea l '’ on genu II may be present or absent (Table B.2). Among the species included in the present study l '' on genu II is less stable, and is lost in more species in a wider range of taxa than l '’ on genu I. Seta l '' is sometimes absent from genu I when it is absent from genu II, but in many species only l '' on genu II is absent (Table B.2). Similar to l '' on genu I, this seta on genu II is absent in a relatively large group of the Diptilomiopidae: in the Diptilomiopinae it is absent in all Diptilomiopus spp. and in species of about half of the remaining genera, and in the Rhyncaphytoptinae it is absent in four genera. It further is absent in one species of the Phytoptidae, Retracrus johnstoni (Sierraphytoptinae), where l '' is absent from genu I and II (Keifer, 1965c). Seta l '' on genu I is not absent in any of the Eriophyidae included in the present study, but l', on genu II is absent in some species in the Eriophyinae (Diphytoptus nephroideus and Nacerimina gutierrezi), in the Cecidophyinae (Dechela epelis) (Huang, 1991; Keifer 1979a; 1965a, respectively) and several species and genera in the Phyllocoptinae.

The character state scored for the following species, in particular, is ambiguous:

- Areekulus eugeniae: l '' on genu II is absent in the descriptive drawing, but its absence was not mentioned in the descriptive text by Boczek \& Chandrapatya (1998). It was scored "present" in the present study.

52. Leg II: seta $f t^{\prime}$ (Fig. 3.6a, b) - presence:

$0=$ present
$1=$ absent

The homologies of setae on the tarsi of adult Tydeidae are easy to establish, because each setiform structure retains a fixed position (André, 1981b). Seta ft' and ft'’ are present in the setal compliment of tarsus I and II of the Tydeidae (André, 1981b), and both setae are present in O. stepheni (Ueckermann \& Grout, 2007) (Fig. 4.1). Setae ft' and ft'’ are also present in the basic tarsal setation of tarsus I and II of the Tetranychidae, and in their adults $f t^{\prime}$ and $f t^{\prime}$ ' may be closely associated with ω^{\prime} and $\omega^{\prime \prime}$ respectively to form duplex setae (Lindquist, 1985). It is extrapolated that $f t$ ' and $f t$ '' are present on tarsus I and II of M. yemensis.

In the Eriophyoidea the presence of $f t^{\prime}$ on tarsus II is rarely recorded in the descriptive text, however, whenever it was missing in the descriptive drawing, and if the drawing could be trusted to be reasonably accurate, it was scored as "absent", in order to increase the information of this character in the present study by reducing unknowns (Table B.2). I suspect that this seta may be absent in many Diptilomiopus spp. and it may be of use in recovering clades within Diptilomiopus, or should at least be part of the diagnosis of the genus.

The character states scored for the following species, in particular, are ambiguous:

- Neolambella ligustri and Areekulus eugeniae: ft^{\prime} is absent in the descriptive drawings (Lin \&

Kuang, 1997; Boczek \& Chandrapatya, 1998, respectively) and the state "absent" was scored for these species, but the accuracy of the drawings is not certain and absence was not recorded in the descriptive text. This is the situation in most of the Diptilomiopus spp.

GNATHOSOMA

Presence of unique gnathosomal autapomorphies for the Eriophyoidea in comparison with all Acari and as evidence for the hypothesized monophyly of the Eriophyoidea are listed by Lindquist (1996b) and these are included as Characters 53-56.

*53. Gnathosomal stylets - presence of infracapitular (auxiliary) stylets:

$0=$ without a pair of styletlike structures (infracapitular stylets) additional to and flanking styletlike chelicerae
$1=$ with a pair of styletlike structures (infracapitular stylets) additional to and flanking styletlike chelicerae

The infracapitular (auxiliary) stylets are flanking the cheliceral stylets ventrolaterally in all Eriophyoidea and they appear to channel secretions from salivary glands (Keifer, 1975a; Lindquist, 1996a; Nuzzaci \& Alberti, 1996). Determining the homology of the infracapitular stylets with gnathosomal structures in other non-Eriophyoidea mites are problematic (Lindquist, 1996a). Similar stylets do not appear in any non-Eriophyoidea species, including O. stepheni and M. yemensis, and their presence was listed by Lindquist (1996b) as a unique autapomorphy for the Eriophyoidea in comparison with all Acari and he proposed it as evidence for the monophyly of the Eriophyoidea.

*54. Motivator between cheliceral bases - presence:

$0=$ not with a motivator between the cheliceral bases activating movement of cheliceral digits
$1=$ with a motivator between the cheliceral bases activating movement of cheliceral digits

A small knob or motivator lies between the cheliceral bases of the Eriophyoidea and activates alternate back-and-forth boring motions of the cheliceral stylets during feeding (Keifer, 1975a; Lindquist, 1996a; Nuzzaci \& Alberti, 1996). The motivator is a structure unique (autapomorphic) to this superfamily (Lindquist, 1996b), and a homologous structure is absent in non-Eriophyoidea species, including O. stepheni and M. yemensis.

*55. Apical ends of palpi - structure:

$0=$ palp-claw complex
$1=$ simple and linear
2 = blunt and truncated
The palpi, including the apical ends, are simple and linear in the Tydeidae (André, 1981a; Evans, 1992) and likewise in O. stepheni (Fig. 4.1). In the Tetranychidae (including M. yemensis) the two distal palp segments are modified into a palp-claw complex, with an enlarged tibial seta which forms a terminal claw-like structure and a tarsus displaced to a ventral position relative to the tibia (Evans, 1992). Distally the palpi of the Eriophyoidea are blunt and truncated with a disc-like lip facilitating an adhesive function (Fig. 3.19).

*56. Palpi - shape:

$0=$ free limb-like appendages somewhat below and flanking the chelicerae
$1=$ enfolding and supporting the cheliceral and other gnathosomal stylets
The palpi of most Acari are free limb-like appendages (Evans, 1992). In the Eriophyoidea they are enfolding and supporting the gnathosomal stylets (Nuzzaci, 1979), which is an autapomorphic character state for the Eriophyoidea (Lindquist, 1996b).

57. Modification of palp apical ends - presence:

$0=$ not spatulate and without triangular projections
$1=$ strengthened, spatulate or with triangular projections
The apical segments of the palpi of the proposed deutogyne females of Cisaberoptus kenyae are fused, strengthened and spatulate (Keifer, 1966c). Likewise the distal ends of the palpi of the proposed deutogyne females of C. pretoriensis are strengthened with triangular projections (Meyer, 1989a). Amrine et al. (2003) strongly proposed that the deutogyne form of the female should not influence the generic concepts of the Eriophyoidea, and they synonymized Cisaberoptus with Aceria. Including and scoring the morphology of deutogyne females in the data sets of the present study is not strictly correct. Only protogyne females of the other Eriophyoidea species were included, and thus the same form of the females are not compared. However, these projections and strengthening of the palpi are unique for these two species, and didn't influence the retrieval of relationships for other species in the analyses, apart from potentially retrieving these two species as being closely related, as well as their relationships with other Eriophyoidea species in the analyses.

58. Gnathosoma, oral stylet form:

$0=$ short form (Fig. 3.22a)
$1=$ long form (Fig. 3.22b)
All Diptilomiopidae species have the long form oral stylet, and this may be a synapomorphy for this family (Lindquist \& Amrine, 1996). The character is very clearly demarcated and easily distinguishable in specimens, and published descriptive data of this character are probably in general not ambiguous.

59. Gnathosoma, cheliceral shape:

$0=$ greatly elongated, strongly recurved basally within a stylophore, deeply retractable
$1=$ relatively straight and short in comparison with palpi (Figs 3.2a, 3.22a)
2 = abruptly bent down near base and relatively long in comparison with palpi (Figs 3.2b, 3.22b)

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 110, Character 10: $0=$ evenly curved; $1=$ abruptly curved). They scored the Tydeidae as having evenly curved chelicerae.

This character has the same character state distribution in the Eriophyoidea than the oral stylet form, but it is an entirely separate part of a complex of gnathosomal structures. If the gnathosoma is studied in more detail, both morphologically and anatomically, a suite of characters, which may not necessarily be linked, may be found and may have phylogenetic signal (also see the comparative morphological study of the gnathosoma in Chapter 3). The movable digits of the Tydeidae chelicerae are stylet-like (Nuzzaci \& Di Palma, 2002) and mostly straight and shorter than the palpi, and although their detail morphological structures were not homologized with the same structures in the Eriophyoidea for the present study, they are broadly morphologically more similar than to those of the Tetranychidae. The chelicerae of the Tetranychidae are very different from those of the Eriophyoidea and the Tydeidae, consisting of relatively greatly elongated chelicerae with the bases fused to form a stylophore within which the cheliceral stylets can retract (Lindquist, 1985).

PRODORSUM

Prodorsal shield

60. Prodorsal shield shape:

$0=$ prodorsal shield almost absent
1 = broadly oval (shorter than wide)
$2=$ triangular or subtriangular, sometimes with rounded sides or more semicircular
$3=$ subtriangular with bulging sides
$4=$ subtriangular and broad
5 = inverted subtriangular
$6=$ circular or subcircular
7 = diamond-shaped
8 = subquadrate
9 = sub-rectangular
$\mathrm{a}=$ elongate oval
$\mathrm{b}=$ elongate triangular
$\mathrm{c}=$ with a prominent transverse division
d = roughly pentagonal
e = broadly T-shaped
f = about mushroom-shaped (e.g., Cisaberoptus kenyae)
The prodorsum of the Eriophyoidea is always covered or partly covered by a prodorsal shield. The shield shape can be broadly divided into being subcircular or subtriangular. The prodorsal shield
shape varies more than these two states, and a more variable character state definition could be constructed. The species could be scored fairly accurately, but it was difficult to define primary homologies between the shapes. The prodorsal shield shape is usually described or depicted in species descriptions, and sometimes used in the classification and differentiation of species. It is not a very reliable and accurate character, however, because the states are delineated and determined subjectively, and it may additionally be influenced by distortion caused by slidemounting. In particular it is not always clear whether the shape of the frontal lobe also influences the evaluation of the shield shape (see descriptions of Diptilomiopus spp.). The character is included in the present study, because it is usually described, and sometimes used to differentiate genera.

The number of character states was restricted to 16 in the present study (the default setting in TNT). Sometimes additional character states may improve the delimitation of character states, for example for this character, the state "no shield present on the prodorsum" would have been more accurate for coding the outgroup species than the state "prodorsal shield almost absent" scored for the outgroup species as well as for Ashieldophyes in the present study. The character states for this character should be improved in future studies, either by increasing or decreasing states, or redefining the character and the character states entirely.

The character states scored for the following species, in particular, are ambiguous:

- Davisella breitlowi: the shield shape was scored code "?" (unknown), because the measurements of the shield is given as $35 \mu \mathrm{~m}$ long and $70 \mu \mathrm{~m}$ wide (twice as wide as long), but in the drawing the shield seems to be as long as, or slightly longer than wide (Davis, 1964a).
- Neoacaphyllisa lithocarpi and Dicrothrix anacardii: although there is a unique extension at the rear margin of the prodorsal shield of N. lithocarpi (Kuang \& Hong, 1989), the shape of the anterior or "main" part of the prodorsal shield is subtriangular, and the character state "subtriangular" was assigned. The rear extension can be regarded as a separate character, but it was not scored for the present analysis because it is autapomorphic for N. lithocarpi, and would not be informative for retrieving relationships between Eriophyoidea taxa in the analyses. Similarly the shape of the prodorsal shield of D. anacardii was assigned character state "semi-circular" despite an extensive extension at the rear shield margin (Keifer, 1966c).
- Keiferella juniperici: the character state "subtriangular" was assigned, despite a deeply convex (towards the posterior end) rounded rear shield margin (Boczek, 1964). A similar shape is also
present in other species and was assigned as such. These states should be re-evaluated and probably re-scored.

61. Ocelli or ocellar-like areas on the prodorsal shield - presence, number and shape:

$0=$ present, two well delineated ocelli on each side
$1=$ absent, or not visible on surface cuticle
2 = present, one or two ocellar-like areas laterally on prodorsal shield
The primitive number of ocelli on the prosoma of the Actinotrichida is three pairs (Evans, 1992). Two pairs of lateral ocelli are frequently present in the Prostigmata (Evans, 1992), and in the Tetranychidae (including M. yemensis) two pairs of ocelli are consistently present laterally on the prodorsum (Lindquist, 1985). In the Tydeidae (including O. stepheni) no ocellus-like differentiated surface cuticle is visible, but so-called ocelli in the form of aggregates of pigment granules in the integument are present (Evans, 1992).

Eriophyoidea mites are characterized as being without eyes (Lindquist, 1996a). There are, however, sometimes one or two ocellus-like structures present on each posterolateral area of the prodorsal shield that may be light-receptive organs (Keifer, 1975a; Lindquist, 1996a). For the present study it is presumed the ocellus-like structures in the Eriophyoidea and the ocelli in the Tetranychidae are homologous. In the Eriophyoidea classification (Amrine et al., 2003) a systematic pattern in the species with these ocellus-like structures is not apparent and they occur in several species of different genera in the Phytoptidae and the Eriophyidae (Flechtmann et al., 1995; Lindquist, 1996a). Among the Eriophyoidea species included in the present study, three species have ocellus-like structures: Ectomerus anysis (Eriophyidae: Cecidophyinae) (Keifer, 1970), Novophytoptus stipae (Phytoptidae: Novophytoptinae) (Keifer, 1962d) and Palmiphytoptus oculatus (Phytoptidae: Sierraphytoptinae) (Navia \& Flechtmann, 2002). It will be an improvement to divide this character in future studies into two or more characters: ocelli or ocellar-like areas present or absent, and a second character to score the shape of these, and another character to score the number of ocelli present. For the latter two characters for those species with these structures absent, the score will be "not applicable".

Characters 62-66. The prodorsal shield may have an anteromedian extension "frontal lobe", "anterior lobe" or "prodorsal shield lobe" (the term "frontal lobe" was preferred by Amrine (1996) and is used in the present study). The presence or absence of the frontal lobe, together with other frontal lobe and opisthosomal characteristics, is significant at the subfamily, tribe and genus level of the present Eriophyoidea classification (Lindquist \& Amrine, 1996; Amrine et al., 2003). A well-developed frontal lobe may provide rigid
support for the gnathosoma of free-living eriophyoids which feed on more exposed and thick-walled cells than species living in protected areas like galls (Shevchenko, 1970). Some characteristics of the frontal lobe, e.g., the presence of spines or other processes, defining genera, are regarded as being trivial by some authors (Lindquist \& Amrine, 1996). The definition and scoring of all characters regarding the frontal lobe should be improved in future studies.

62. Frontal lobe (Figs 3.2, 3.4) - presence and shape:

$0=$ absent
$1=$ short or indistinct (not reaching across cheliceral bases)
$2=$ present
$3=$ absent, shield with deep invagination
This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 109, Character 5: $0=$ absent; $1=$ present). They scored the frontal lobe as being absent in the Tydeidae.

Interpretation, delimitation of character states, scoring and subsequent coding is highly subjective and ambiguous for this character. In practical taxonomy (description, classification and identification) of Eriophyoidea the frontal shield lobe is considered present when it is extending across the motivator or bases of the chelicerae (Amrine et al., 2003; Amrine, pers. comm.). For determining homologies this is an artificial delimitation, because some Aceria and Diptilomiopus spp., and species of many other genera described and even depicted without a frontal lobe, clearly possesses a structure that is homologous with other conventionally recognized frontal lobes, particularly when studied with SEM (see Chapter 3).

The frontal lobes of species scored as character state "short or indistinct" actually groups two types of frontal lobes which are not homologous: a thin, apparently flexible lobe e.g., in Diptilomiopus, Aceria and Eriophyes spp. and a short but more thick and rigid lobe, e.g., in Cecidophyes spp. They have the characteristic in common that their frontal lobes are not extending across the cheliceral bases and motivator. Additionally the differentiation of this state from the state where the frontal lobe is present is subjective. This character must be carefully redefined, using e.g. SEM studies to determine true primary homologies between the frontal lobe characteristics.

The character states scored for the following species, in particular, are ambiguous:

- Davisella breitlowi: in the text, the frontal lobe is described as being absent ("dorsal shield not projecting over rostral base"), and a frontal lobe does not seem to be present in the
drawing of the lateral aspect, however, in the dorsal view drawing (Davis, 1964a), it seems that the prodorsal shield may overhang the gnathosoma anteriorly. The frontal lobe is scored "absent" for this species in the present study.
- Although Hyborhinus kallarensis is described as having a short projection of the shield over the gnathosomal base (Mohanasundaram, 1986) similar to Catarhinus, in the dorsal view drawing the anterior edge of the shield and its possible frontal lobe does not resemble that of Catarhinus, and seems more similar to Hoderus roseus, in which the frontal lobe was described as being absent. The frontal shield is scored as "absent" for this species in the present study.
- The recorded presence of the frontal lobe in Rhinophytoptus concinnus and Rhyncaphytoptus ficifoliae (Liro, 1943; Keifer, 1939a, respectively) is ambiguous and particularly based on subjective interpretation. Laterally it seems that no appreciable lobe is present, however, dorsally, and in line with the robustness of the body, it seems that the prodorsal shield is extending across the cheliceral bases. It was scored as being "present" for these two species in the present study.

63. Frontal lobe - flexibility:

$1=$ thin and flexible
$2=$ rigid
$3=$ absent, shield with deep invagination
This character of the frontal lobe is taxonomically important, but as defined here it overlaps somewhat with the previous character. The character definition should be improved. The frontal lobe is usually more thin and flexible in non-vagrant species, and it is this type of frontal lobe that is frequently recorded as absent, when it is present. For example, when a frontal lobe was recorded or depicted as being present in a Diptilomiopus sp. it is presumed to be thin and flexible, similar to the three new species from South Africa, where the lobes are barely visible studying slide-mounted specimens, but clearly present in SEM images (Appendix M). There is a possibility that all Diptilomiopus spp. may have a frontal lobe similar to the three new species, but that it was not detected by the authors. A more rigid and extensive frontal lobe is usually present in vagrant species, e.g., in the Phyllocoptinae. The scoring is highly ambiguous for this character.

64. Frontal lobe - shape of apical edge:

$1=$ blunt and rounded
$2=$ blunt and rounded, but narrow in shape (e.g., when lobe is more triangular)
$3=$ blunt and rounded with irregular edge
$4=$ sharply pointed
$5=$ spine-like
$6=$ square with rounded corners
$7=$ rectangular anterior lobe with indentation
$8=$ acuminate, but not sharply pointed
$9=$ small indentation
$\mathrm{a}=$ broad, clear indentation with broad lobes
$\mathrm{b}=$ fine, slender lateral extensions
$\mathrm{c}=$ short, bilobed with small central triangle

Similar to previous characters of the frontal lobe, this character is also subjectively and ambiguously described and scored. In the present study the state was usually determined on the descriptive drawings. It is used in the Eriophyoidea classification usually at genus level, for example, the frontal lobe is sharply pointed in Aculops spp., and more rounded in Aculus spp. (both of the Phyllocoptinae), and this is essentially the only characteristic differentiating these two genera (Amrine et al., 2003). The character has potential to be phylogenetically informative, but its definition should be improved, primarily by studying frontal lobes more carefully, and in their true and natural state as far as possible.

65. Frontal lobe or shield - presence and number of spines on anterior edge:

0 = absent
$1=$ one spine present
$2=$ two spines present
$3=$ three spines present
$4=$ four spines present
$5=$ with several tooth-like projections on apex
This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 109, Character 6: $0=$ absent; $1=$ present $)$.

It is uncertain whether each spine present in one species is homologous with a spine present in another species at the level of preciseness of morphological study generally undertaken for taxonomy. A more reliable determination of primary homology might be possible incorporating careful comparative morphological, anatomical and ontological study. This character is thus ambiguous, but it is used as such in Eriophyoidea taxonomy.

**66. Frontal lobe - presence of one slender projecting filament:

$0=$ absent
$1=$ present

The anterior edge of the frontal lobe of Acarhynchus filamentus (Diptilomiopinae) has a filament curving down in front of the gnathosoma (Keifer, 1959b), and this character state is autapomorphic
for this species in the present analyses. It is used in the key to Eriophyoidea genera (Amrine et al., 2003) to key to this genus and species.

Prodorsal shield ornamentation

The prodorsum is the dorsal surface of the anterior region or prosoma of mite bodies. The prodorsum in the Eriophyoidea is easily distinguishable from the opisthosoma (Figs 3.2, 3.3) because it lacks the transverse annuli or other transverse partitions of the opisthosoma and is always covered by a shield, named the "shield", "dorsal shield", "cephalothoracic shield", "propodosomal shield" and "anterior shield" in the Eriophyoidea literature (Lindquist, 1996a).

67. Prodorsal shield ornamentation - presence:

$0=$ prodorsal shield similar to that of the Eriophyoidea absent
$1=$ ornamentation absent (prodorsal shield essentially smooth)
$2=$ absent centrally, ornamented along edges
3 = faint, obscure or virtually unornamented
4 = ornamentation present
A prodorsal shield similar to that in the Eriophyoidea is not present in O. stepheni (Fig. 4.1) and M. yemensis (Fig. 4.2). Their prodorsums are covered with striae similar to striae on the remainder of the body.

The prodorsal shield in the Eriophyoidea may be smooth or nearly smooth, or it may be ornamented (Figs 3.3a-c) with various markings and ridges forming an essentially species distinctive pattern, although it may have more or less intraspecific variation, depending on the species. It may lend itself to be regarded as the "finger print" of a species (J.W. Amrine Jr., pers. comm.). These markings may in part reflect the pattern or position of muscle insertions (Lindquist, 1996a), and may also provide a framework of strength to the shield (Shevchenko, 1970). The scoring of this character was subjective, particularly when the prodorsal shield is smooth or nearly smooth, in comparison with faintly or sparsely ornamented.

IDIOSOMA

*68. Opisthosomal lyrifissures (cupules or slit organs) - presence:

$0=$ present
1 = absent

Opisthosomal lyrifissures are widely distributed in the Arachnida, and are mechanoreceptors measuring strains or loads induced by muscular activity, substrate vibrations and haemolymph pressure (Evans, 1992). The distribution of cuticular organules like lyrifissures and setae are often used as indicators of segmentation (Evans, 1992). Lyrifissures are present in the Tydeidae, including O. stepheni, and in the Tetranychidae, including M. yemensis, but are absent in the Eriophyoidea.

*69. Opisthosoma of female caudal rear end - shape:

$0=$ rounded and without adhesive anal structure
$1=$ acuminate with adhesive anal structures

The opisthosoma of the Eriophyoidea is more or less acuminate caudally and the rear ends in two adhesive lobe-like structures (Fig. 3.2).

Opisthosomal shape and microtuberculation

70. Body shape:

$0=$ varying from rounded to oval (e.g., Tetranychidae)
$1=$ vermiform (worm-like) (e.g., Phytoptus and Aceria spp.)
$2=$ cylindrical (e.g., Austracus havrylenkonis and Novophytoptus rostratae)
$3=$ vermiform, elongated (e.g., Cecidodectes euzonus and Pentasetacus araucaria)
$4=$ vermiform, extremely elongated (e.g., Novophytoptus stipae and Scoletoptus duvernoiae)
$5=$ fusiform, medium thick to "fat", with or without narrower rear end
(e.g., Africus psydraxae, Arectus bidwillius and most Diptilomiopus spp.)
$6=$ fusiform, elongated, medium thick (e.g., Aculus and Abacarus spp.)
7 = fusiform, flattened (e.g., Anthocoptes gutierreziae and Calepitrimerus cariniferus)
$8=$ fusiform, extremely flattened (e.g., Setoptus jonesi and Tergilatus sparsus)
$9=$ fusiform, very long (e.g., Notostrix attenuata and Ashieldophyes pennadamensis)
$\mathrm{a}=$ fusiform, broad anteriorly, very narrow tail (e.g., Nothacus tuberculatus)
$\mathrm{b}=$ fusiform, flattened, narrow tail (e.g., Aberoptus samoae)
This character was previously used in analyzing the phylogeny of the Eriophyoidea [Hong \& Zhang, 1996a, p. 110, Character 9: $0=$ worm-like; $1=$ fusiform (spindle-shaped)]. They scored the character in the Tydeidae as being worm-like, which is incorrect.

Similar to most mite species, the body shape of the Tenuipalpidae (including O. stepheni) and the Tetranychidae (including M. yemensis) is about rounded to oval (Figs 4.1, 4.2). Eriophyoidea mites by and large have a worm-like shape due to their elongated opisthosoma (Fig. 3.2). The
more specific body shape of species, genera or higher groupings is generally described as vermiform (worm-like) (Fig. 3.2a) or fusiform (spindle-shaped) (Fig. 3.2b). Vermiform species have a more elongated, flexible body and is more characteristic of non-vagrant species living in sheltered spaces (e.g., in buds, galls, erinea and under leaf sheaths). Fusiform species have a less elongated body, can be arched dorsally, and often with fewer, thicker and less flexible annuli and other structures dorsally, and is more associated with vagrant species occupying exposed habitats. In some aspects body shape is thus probably heavily influenced by the habitat a species occupies.

When the body shapes are more closely scrutinized and compared, however, many more subgroups of shapes can be distinguished than the two main shapes mentioned above. In the present study body shape has been divided in ten states for the Eriophyoidea, but this is a very preliminary definition of the character, and it should be studied more closely to properly define and demarcate states. For example, states vermiform, elongated vermiform and extremely elongated vermiform may be homologous in shape to each other and rather differentiated in body length (another character), however, there is a difference in shape due to difference in length, thus they were coded separately.

Although quite accurate in the extreme shapes, determining body shape is subjective. The problem of objectivity and standardization is further exacerbated by distortion of body shape in slidemounted specimens. When determining states from published descriptions, schematic or semischematic drawings may not truly portray body shape, and interpretation of shape by the descriptor is also subjective. e.g., Phyllocoptruta oleivora: in the descriptive drawing by Keifer (1938a) one may describe the shape from dorsal and lateral views as "fusiform fat", and later in additional drawings of the lateral view of this species (Keifer, 1952b) the shape could be scored as "fusiform flat".

Body shape, together with other body characteristics, however, is presently an important character in the higher classification of the Eriophyoidea and it is included in the present study, despite the subjectivity and ambiguity, also to evaluate the phylogenetic signal in the character.

The character states scored for the following species, in particular, are ambiguous:

- Bakeriella ocimis: body shape is somewhat similar to that of Diptilomiopus spp. ("fusiform, medium thick to fat") with a more rounded body in transverse section with a broad anterior part narrowing quite steeply to the rear in lateral view (Chakrabarti \& Mondal, 1982), however, the dorsal aspect is fairly rigid and flatter than in e.g., Diptilomiopus spp. and
character state "fusiform, flattened", has been assigned to this species. The ventral aspect of the body depicted, could be expanded more, away from the dorsum, than natural, due to slidemounting. A new state could possibly be considered in future for this shape.
- Pentaporca taiwanensis: body shape is described as spindle-form (Huang \& Boczek, 1996), but it is impossible to determine the exact fusiform shape from the descriptive drawings. For the present study it has been decided to score it as "fusiform, medium thick to fat", because in the parts depicted, the mite seems to be more rounded.
- Pararhynacus photinae: this species was scored the state "fusiform, broad anteriorly, very narrow tail", but it could possibly be the style of the drawing by Kuang (1986a), and the shape may be "fusiform fat", similar to many species in the Diptilomiopinae, including most of the Diptilomiopus spp.
- Euterpia fissa: body shape is described as "fusiform" (Navia \& Flechtmann, 2005), but based on the body composition (as depicted in the drawing of the ventral aspect) being similar to that of Tergilatus sparsus, particularly in the extension of the lateral areas alongside the ventral annuli, this species may be extremely flattened, and the state "fusiform, extremely flattened" was assigned to it.
- Neolambella ligustri: body shape in lateral view was not depicted by Lin \& Kuang (1997), but it is presumed to be more "fat" than flattened, because this group of mites in possibly closely related genera all seem to have in general about the same body shape than most Diptilomiopus spp.
- Fragariocoptes setiger: body shape was depicted in the original description by Nalepa (1894) as being elongated fusiform, but in the redescription by Boczek (1964) and Roivainen (1951), it was depicted as closer to short fusiform and slightly flattened dorsoventrally. To allow for both shapes until the exact shape and variation therein has been sorted out, the states "fusiform, elongated, medium thick" and "fusiform, flattened" were assigned to it.
- Diptilomiopus camarae: body shape was described as "worm-like" (Mohanasundaram, 1981b), however, based on the descriptive drawings, the shape rather seems to be fusiform, but additionally elongated, and the state "fusiform, elongated, medium thick" was assigned to it.

*71. Opisthosoma - presence of annuli:

$0=$ without annuli
$1=$ with annuli

The body surface of the Tenuipalpidae (including O. stepheni) and the Tetranychidae (including M. yemensis) is striated (Figs 4.1, 4.2), but does not have annuli homologous with the series of transverse superficial rings or annuli present in all active instars of Eriophyoidea mites. These
annuli in the Eriophyoidea encircle the body entirely (Fig. 3.2). In the present study this is an autapomorphic character state for the Eriophyoidea, but similar annuli are found in two other mite groups living in minute spaces, namely the Demodicidae (living in hair follicles and similar habitats on mammalian hosts) and the Nematalycoidea (living in tightly confined spaces in the soil) (Krantz, 1978). Lindquist (1996b) attributed the presence of similar annuli, as well as some other characteristics that are similar between these three groups as convergent or parallel development of characters in response to miniaturization and living in extremely small, confined spaces.

72. Opisthosoma dorsoventral differentiation; annuli presence, number and appearance

(Fig. 3.2):

$0=$ annuli absent
$1=$ subequal and similar in appearance, dorsally and ventrally (Fig. 3.2a)
$2=$ subequal, differentiated in appearance dorsally and ventrally
$3=$ subequal, numerous, and visibly narrower than usually found in the Eriophyoidea
$4=$ subequal or equal in count, but broader than usually found in the Eriophyoidea
$5=$ differentiated into slightly broader dorsal annuli and narrower ventral annuli
6 = clearly differentiated into broader dorsal annuli and narrower ventral annuli
(Fig. 3.2b)
7 = dorsal annuli extremely broader than ventral annuli
$8=$ variably different (e.g., Paraphytoptus)
This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 114, Character 28: $0=$ absent; $1=$ differentiates into broader dorsal annuli [tergites] and narrower ventral annuli [sternites]).

The body surface of the Tenuipalpidae (including O. stepheni) and the Tetranychidae (including M. yemensis) does not have annuli homologous with the annuli present in all active instars of all Eriophyoidea mites (see Character 71), and were scored "annuli absent". Annuli in the immature stages (larva and nymph) of the Eriophyoidea are usually numerous, similar in form from anterior to posterior body regions, and is very little, if at all, differentiated in shape and number dorsally and ventrally (Lindquist, 1996a). In adults the annuli shapes can be divided in about two major forms that are mostly strongly correlated with the habitat and living conditions of the mites (Lindquist, 1996a). The species living in more sheltered and enclosed spaces e.g., in galls, usually retain a more vermiform body, with relatively numerous annuli differentiated very little or not at all from the anterior to the posterior end of the body, and annuli are subequal in number and not differentiated in shape dorsally and ventrally (Fig. 3.2a). The group of species living exposed on e.g., leaf surfaces, or more fusiform mites, usually has a relatively shorter body, with annuli differentiated dorsoventrally to varying degrees with broader, fewer, more robust, thicker and less
flexible dorsal annuli (previously named tergites), with the ventral annuli (previously named sternites) remaining narrower and more flexible (Fig. 3.2b). A conspicuous example of these two different forms can be seen in Paraphytoptus spp. which lives with the front end sheltered in erineum, and the rear end usually exposed outside the erineum. In this genus the front end is similar to a vermiform mite, and the rear end similar to the exposed or fusiform mites (Keifer, 1975a).

On closer inspection the differentiation of annuli can be divided in more states than merely the two major groups. In the present study the character has seven states for the Eriophyoidea, but this is only a preliminary division, and the states should be scrutinized and their definition and demarcation should be improved. Especially the state "variably different" is not defining a specific morphological change in morphology, but rather is a category where all shapes that can not be defined by the other states, are "dumped".

The character states scored for the following species, in particular, are ambiguous:

- Neolambella ligustri: the dorsoventral differentiation of the annuli was not described, neither specifically depicted in the description of this species by Lin \& Kuang (1997), but based on the group of mites to which this species is similar (Diptilomiopus-like species in the Diptilomiopinae) and the relative width of the annuli in the partial dorsal and ventral view drawings, it was scored "differentiated into slightly broader dorsal annuli and narrower ventral annuli".
- Neodiptilomiopus vishakantai: dorsal and ventral annuli may be subequal, rather than differentiated. There are only 5 more ventral than dorsal annuli (Mohanasundaram, 1982b). The species was scored "differentiated into slightly broader dorsal annuli and narrower ventral annuli".
- Pararhynacus photiniae: the differentiation between the dorsal and ventral annuli could not be determined from the description, Kuang (1986a), however, stated that Pararhynacus is similar to Rhynacus, and the annuli are slightly differentiated in Rhynacus and was scored as such for Pararhynacus.
- Indonotolox sudarsani: the annuli of Indonotolox were described to have the dorsal annuli broader than ventral annuli; however, in the type species of the genus, Indonotolox sudarsani, described in the same article, the annuli were described as being equal in number dorsally and ventrally. In the lateral view drawing the annuli seem broader than generally found in the Eriophyoidea with subequal annuli dorsoventrally, and in the ventral view drawing the annuli
seem to be narrower (Ghosh \& Chakrabarti, 1982). The annuli for this species were scored as "subequal or equal in count, but broader than usually found in the Eriophyoidea".

73. Lateral extensions on opisthosomal dorsal annuli - presence and shape:

$0=$ without lateral extensions or lobes
1 = very slight lateral projection (no demarcation line laterally)
2 = with slight lateral projection (in lateral view, dorsal annuli separated from
ventral annuli by some sort of demarcation); the extend of lateral projection
not always clear, some of these species are not in Tegonotini
$3=$ with clear lateral extensions or lobes (currently defining state for Tegonotini)
$4=$ small spine-like lobes on margin between dorsal and ventral annuli
$5=$ extensive lateral lobes, also present dorsally
$6=$ ventro-lateral ridges forming grooves
$7=$ = lateral lobes uneven, extending more from some annuli

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 114, Character 29: $0=$ not extended laterally; $1=$ extended laterally or with indentations).

Particularly in species living exposed and with the body more fusiform and dorsal annuli broader and more rigid than ventral annuli, the dorsal annuli may be differentiated into various structures. Some of these modifications are the extension of some or all dorsal annuli laterally into lobes of various shapes, thickenings and the consolidation of some dorsal annuli into plates (Lindquist and Amrine, 1996), and these types of modifications presently largely define the tribe Tegonotini (Eriophyidae: Phyllocoptinae) (Lindquist and Amrine, 1996). I found the distinction between the presences or absences of lateral lobes unclear and subjective, e.g., compare Acarelliptus cocciformis (Phyllocoptini) (Keifer, 1940b) with Tegonotus mangiferae (Tegonotini) (Keifer, 1946). The lateral lobes of some Tegonotus and Shevtchenkella spp. are even less pronounced than in the latter two species. The scoring of this character is subjective, and influenced by the interpretation of various descriptors, and additionally the character should be redefined

The character state scored for the following species, in particular, is ambiguous:

- Neopropilus jatrophus: presence of lateral lobes in the species was not mentioned in the description by Huang (1992), and the presence thereof in the SEM images provided with the description, and descriptive drawings by Amrine et al. (2003) are not conclusive, however, the dorsal annuli seem to extend somewhat laterally, and the state "with slight projection" was scored for this species in the present study.

74. Opisthosoma: ridge(s) and/or furrow(s) - presence and some shapes:
$1=$ present
$2=$ absent, except for some rear dorsal annuli which are higher than the others
$3=$ some anterior dorsal annuli fused into elaborate dorsal structures
4 = with large lobes dorsally
5 = dorsal annuli undulate, forming about regular rows of lobes, or "ridges"
$6=$ deep cleft behind prodorsal shield, first two dorsal anterior annuli raised
This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 113, Character 23: $0=$ absent; $1=$ present $)$.

The dorsal annuli of the Eriophyoidea may have various forms of ridges, lobes and troughs, and similar to Character 73 (lateral extensions or lobes) it largely occurs in species living exposed and with the body more fusiform and with dorsal annuli broader and more rigid than ventral annuli. The presence and shape of dorsal ridges and troughs or furrows are used very predominantly in the classification of the Eriophyoidea to define particularly genera. Evaluation and very detailed, precise demarcation of these modifications in separate discrete states and homologous structures may not be so important in classical classification and identification, but is crucial for studying phylogenetic relationships. Particularly in this character as defined here, a large amount of variation is grouped and masked within a relatively few states of one character. The detailed variation of these body modifications is thus largely ignored in the present study. It was decided not to score the different types of ridges and furrows and other body modifications in detail, because the definition of homologies and states is complex, subjective and ambiguous, and I didn't want to complicate the data set with ambiguous data any more than it already is.

Ridges and troughs are very susceptible to distortion in slide-mounted species, however, and particularly when the ridges or troughs are less pronounced (weak), they may be overlooked or interpreted wrongly. For example in some Diptilomiopus spp. (like Diptilomiopus aralioidus, D. alagarmalaiensis, and D. malloti) (Huang, 2006; Mohanasundaram, 1986; Wei \& Feng, 1999, respectively) the presence of ridges or troughs are neither described nor depicted, however, for the present study it is presumed ridges are present in Diptilomiopus, since they are so weak and subtle, that they could easily have been overlooked. However, in a parallel study in progress (C. Craemer, unpubl. data) including phylogenetic analyses of Diptilomiopus spp., the ridges and furrows are described and coded in more detail, and some of the problems with interpretation, and state definition and scoring are discussed there.

The character states scored for the following species, in particular, are ambiguous:

- Asetadiptacus emiliae: ridges and furrows were scored as "absent", and this decision is substantiated by the couplet decision which key out to this species, "dorsal opisthosoma evenly rounded" (Amrine et al., 2003). The species was specifically described as having the opisthosoma without any ridges or furrows; and this state was used by Carmona (1970) to differentiate Asetadiptacus from Diptacus. In the descriptive drawings (Carmona, 1970), however, it seems that a slight middorsal ridge, subdorsal furrows and sublateral ridges may be present, similar to those in most Diptilomiopus spp.
- Duabangus chiangmai: only two weak lateral ridges are present low down on the body in the descriptive drawing by Chandrapatya \& Boczek (2000b), but the dorsum is rather evenly rounded. The species was scored to have ridges, but it is ambiguous.
- The body shape, regarding presence of ridges and/or troughs, is not described for Diptilomiopus maduraiensis and D. thangaveli and in the descriptive drawing the body seems to be evenly rounded without any ridges or troughs (Mohanasundaram, 1986a; 1983c, respectively). However, the species may have a slight middorsal ridge possibly flanked by troughs forming lateral ridges, similar to most other Diptilomiopus spp.; these may have been obscured by the mounting process. Ridges and troughs in these two species were scored to be absent. Similarly, the body shape regarding presence of ridges and/or troughs was not described in the text description of Diptilomiopus ulmivagrans but in the drawing the body seems to have a slight middorsal ridge (Mohanasundaram, 1984); this is similar to what is found in most other Diptilomiopus spp. The latter species was scored as if it has a ridge.

In their phylogenetic analysis of the Diptilomiopinae Hong \& Zhang (1997) coded ridges or furrows (troughs) on the opisthosoma present for the genus Diptilomiopus. It may not be that all species currently assigned to Diptilomiopus have ridges and/or furrows. Furthermore, the shape and presence of ridges and furrows of Diptilomiopus spp. vary, and if sufficiently studied and described in more detail, differences may define different groupings within the genus that may even be similar to genus level groupings in other Eriophyoidea taxa. These differences are usually very subtle, though, and one might only be able to score the character states from SEM images.

75. Fusion of rear dorsal annuli - presence:

$0=$ without annuli
$1=$ not fused
$2=$ fused

The annuli and microtubercles in the rear portion of the opisthosoma, from the opisthosomal f to the anal lobes, in most species are different from the remainder of the opisthosoma, but in some species they are the same. The microtubercles ventrally on the annuli in this area are distinct,
elongated and rib-like in most species (Keifer, 1966d). Keifer (1966d) named this part of the opisthosoma the telosome for descriptive purposes, but the use of the term is discouraged (Amrine et al., 2003). Although the telosome is an artificial region (Lindquist, 1996a), the term is useful in descriptions. For the present study it is presumed there is not a region homologous with the telosome in the Tenuipalpidae (including O. stepheni) and the Tetranychidae (including M. yemensis).

The dorsal annuli beyond f up to the anal lobes are characteristically fused in a few species in the Phytoptidae, and four of these are included in the present study: Neopropilus jatrophus, Propilus gentyi and Retracrus johnstoni in the Sierraphytoptinae and Prothrix aboula in the Prothricinae (Huang, 1992; Keifer, 1975d; 1965c; 1965a, alternatively). When this opisthosomal region is not described neither depicted for a species, it is presumed the annuli are not fused, because they are not usually fused within the Eriophyoidea. If they were fused, it is presumed the author(s) would have recorded it, because it is a conspicuous character state.

76. Microtubercles on dorsal annuli - presence:

$0=$ without microtubercles (mostly smooth)
$1=$ entirely microtuberculated
$2=$ entire but mostly obscure or faint
$3=$ smooth with few scattered microtubercles in sparse clumps (laterally and/or middorsally) (see Chiangmaia longifolii) or with clumps or spots with microtubercles (see Duabangus chiangmai)
$4=$ smooth with microtubercles on ridges: lateral (see D. stephanus); relatively large spines on ridges (see Pentamerus rhamnicroceae)
$5=$ faint but clear on lateral ridges (see Notallus nerii)
$6=$ with central area smooth, and microtuberculated laterally
7 = mostly smooth with few microtubercles laterally and caudally (see D. knorri)
$8=$ with faint or no microtubercles anteriorly, clearly microtuberculated towards rear (see D. davisi)
$9=$ microtuberculated anteriorly, rear annuli smooth (see Indosetacus rhinacanthi, Arectus bidwillius) or smooth with microtubercles mediodorsally on anterior annuli
$\mathrm{a}=$ smooth with microtubercles on the first few anterior and posterior annuli (see Scoletoptus duvernoiae)
$\mathrm{b}=$ elongated or near elongated microtubercles aligned in longitudinal rows
$\mathrm{c}=$ punctuate becoming smoother towards rear (see Porosus monosporae)
$\mathrm{d}=$ punctuate dorsally, elongated ridges laterally, intercepted by smooth annuli (see Cymeda zealandica)
e = crossed by fine broken lines (see Peralox insolita)
$\mathrm{f}=$ elongated fissures (see Rhinotergum schestovici)
This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \&
Zhang, 1996a, p. 115, Character 34: $0=$ absent; $1=$ present). Hong \& Zhang (1996a) simply coded the dorsal annuli as smooth or with microtubercles present. The presence or absence of
microtubercles are more complex, though, ranging from dorsal annuli entirely without microtubercles ("smooth") to the dorsal annuli entirely with microtubercles.

Microtubercles are rounded, ridge-, spine-like or other shaped protuberances usually in single rows on or along the annuli margins when present in Eriophyoidea species. They usually occur on the ventral annuli about uniformly, but may be sparser, of a different shape or absent on the dorsal annuli. The presence and other characteristics, including shape and position, of the microtubercles are usually used at species level. Similar to many other characteristics of the body, the presence and density of microtubercles on mainly the dorsal annuli correspond with the lifestyle of the species. More vermiform, non-vagrant species, generally have numerous and well-developed microtubercles, also dorsally, and more fusiform vagrant species, tends to have less or no microtubercles, especially dorsally. Microtubercles are probably correlated with water loss and mobility (Lindquist, 1996a).

The homology between the microtubercles found in the Eriophyoidea and the lobes occurring on the striae of the Tenuipalpidae (including O. stepheni) and the Tetranychidae (including M. yemensis) could not be researched in depth for the present study, but superficially it seemed that they may possibly be homologous, and character states were assigned as such. Thus microtubercles were designated as being present on the entire dorsal surface of O. stepheni and M. yemensis.

Similar to most of the more complex characters of the Eriophyoidea, the definition of this character, particularly for use in phylogenetic analyses, needs to be improved. It was initially defined with more than 16 states, but 16 were eventually chosen to be the maximum number of states, and some states had to be combined with others. The states are thus not optimally differentiated. The definition of these characteristics might be improved by first dividing the dorsum into homologous regions, and treating each region as a separate character with defined character states.

The character states scored for the following species, in particular, are ambiguous:

- Proneotegonotus antiquorae: the character was initially scored as "smooth, faint longitudinal lines on first enlarged dorsal annulus", but for the analyses the number of states for this character had to be reduced, and the state for this species was changed to "without microtubercles; mostly smooth". Although longitudinal lines occur on the first enlarged dorsal annulus (Mohanasundaram, 1983a), these longitudinal lines are probably not microtubercles.
- Diptilomiopus azadirachtae, D. guajavae, D. riciniae and D. swieteniae: dorsal annuli were described as smooth, respectively by Boczek \& Chandrapatya (1992b), Mohanasundaram (1985), Boczek \& Chandrapatya (2002), and Chandrapatya \& Boczek (1998). In all or at least one of the descriptive drawings of each of these species, however, microtubercles are clearly depicted on the dorsal annuli, and species were scored to have microtuberculated dorsal annuli.
- D. coreiae and D. melastomae: dorsal annuli were described as being smooth (Chandrapatya \& Boczek, 2002b; Boczek \& Chandrapatya, 2002, respectively), but a few scattered microtubercles were clearly depicted laterally on the dorsal annuli, and the species were scored as "smooth with few scattered microtubercles in sparse clumps (laterally and/or middorsally)".
- The dorsal annuli were recorded in the descriptive text as smooth (Mohanasundaram, 1981b) in D. camarae, however, fine tubercles are depicted dorsally on caudal annuli, and plausibly also for the lower lateral parts of the dorsal annuli, and it was scored "mostly smooth with few microtubercles laterally and caudally" similarly to D. knorri.
- The character was not described for Diptilomiopus aralioidus, D. commuiae, D. cumingis, D. elliptus, D. maduraiensis, D. perfectus, and D. championi (description of D. septimus) (Huang, 2006; 2001b; 2001a; 2001d; Mohanasundaram, 1986; Huang, 2001c, respectively), but the dorsal annuli were depicted without microtubercles in the accompanying descriptive drawings, and the microtubercles were scored as absent. Drawings are not always accurate regarding the presence of microtubercles, since some detail, including microtubercles, are not always included in semi-schematic drawings, particularly when presented at a small scaled size.
- The dorsal annuli were described as smooth for D. securinegus; however, in the descriptive drawings and accompanying SEM images (Boczek \& Chandrapatya, 1992a), microtubercles are clearly present on the lateral areas of the dorsal annuli, and the species was scored "with central area smooth, and microtuberculated laterally".
- Lithocarus thomsoni: dorsal annuli were described as smooth (Chandrapatya \& Boczek, 2000c), however, in the accompanying descriptive drawing some microtubercles were depicted on some of the dorsal ridge lobes. The species was scored "smooth with microtubercles on ridges".
- Dorsal annuli of Chiangmaia longifolii were described in the text as smooth; however, in the descriptive drawings a few scattered microtubercles are present (Chandrapatya \& Boczek, 2000c). The species was scored for the present study as "smooth with few scattered microtubercles in sparse clumps (laterally and/or middorsally)".

Secretions

77. Wax secretion - presence:

0 = absent
$1=$ present in adults
$2=$ present only in immatures
Wax, secreted by them, occurs on the bodies of some Eriophyoidea species. The wax probably adds protection against desiccation and may possibly be a deterrent against predators. The presence of other secretions e.g., a liquid globule covering the body of Hoderus globulus (Mohanasundaram, 1981) (Mohanasundaram, 1981e) and Rhyncaphytoptus constrictus (Hodgkiss, 1913) (Hodgkiss, 1930; Baker et al., 1996) probably with the same function as wax, was not included in the present study, but should be included in future studies. Twenty-seven of the Eriophyoidea species in the present study secrete wax, and it occurs on the adults, except in one species, Rhyncaphytoptus ficifoliae, where the wax is only present on the immatures (Keifer, 1939a). The wax secreting species occur in all three families, but especially in species that have a more exposed, vagrant lifestyle. The species with wax are listed in Table B.3, including the structures from which the wax is probably secreted. Extrapolated from the Eriophyoidea classification it seems that the ability to secrete wax possibly developed homoplasiously (parallel evolution) in at least three lineages.

Table B.3. List of Eriophyoidea species with wax, including their classification and structures from which the wax is probably secreted, or on which it occurs. The data were obtained from the original descriptions of the mites.

		Duabangus chiangmai	tubercles
		Lambella cerina	ridges
		Levonga papaitongensis	covered
		Neodialox palmyrae	ridges
		Trimeroptes eleyrodiformis	ridges
	Rhyncaphytoptinae	Asetacus madronae	covered
		Konola hibernalis	powdery
		Rhyncaphytoptus ficifoliae	immatures

In the present study, when no wax secretion or presence of wax were reported or depicted for a species, it is presumed no wax secretions are present. The data for this character are probably riddled with errors, especially in cases where wax may be present, but has been washed off by the slide-mounting process (see Chapter 3).

The character state scored for the following species, in particular, is ambiguous:

- Suthamus chiangmi is described as lacking wax (Chandrapatya \& Boczek, 2000a), in contrast with the wax secretion found (Manson, 1984a) in the genus Lambella, from which it has been differentiated. The ridges of S. chiangmi are depicted with thickened edges (Chandrapatya \& Boczek, 2000a), and there is a possibility that the ridges may secrete wax similar to Lambella.

78. Wax type and secreting structures:

$1=$ present, thickened wax bearing ridges
$2=$ present, wax from tubercles
3 = broad wax rim around shield, large wax plates along body margin
4 = body covered with wax
$5=$ sparse wax patches
$6=$ wax secreting pores on dorsal body surface
7 = covered with white powdery wax
The origin and nature of wax secretions are usually not studied and described in detail to facilitate reliable hypotheses on homologies. Two features of wax secretions can be broadly defined: the origin, or organs or structures secreting wax; and the nature of the wax itself. In order to commence with some sort of analysis, it was decided to take the available information and code it into states including both or either of origin and structure, and separating e.g., a broad definition like "body covered with wax" to more detailed "wax produced from tubercles". This is not a scientifically sound character definition, because two aspects, which may constitute two separate characters, were grouped into one character, but it is hoped that it serves as a starting point for data to be refined and added in future, with improvement of the character definition.

The character state scored for the following species, in particular, is ambiguous:

- Although the detail of wax body coverage or wax secretion was not described for Duabangus chiangmai by Chandrapatya \& Boczek (2000b), the microtubercles in separate groups suggest that the wax may be secreted from these, and the state "wax from tubercles" was scored for this species, however, "sparse wax patches" may also be applicable.

LEGS, INCLUDING COXISTERNAL PLATES AND STERNAL AREA

Many characteristics of the legs are autapomorphic for the Eriophyoidea. It is, for example, the only mite group with only two pairs of legs in all the life stages. Some of these characters are here included.

*79. Larva with:

$0=$ legs III present
$1=$ legs III absent

*80. Larva with:

$0=$ legs IV present
$1=$ legs IV absent

*81. Nymphal instar(s) with:

$0=$ legs III present
1 = legs III absent

*82. Nymphal instar(s) with:

$0=$ legs IV present
1 = legs IV absent

*83. Adults with:

$0=$ legs III present
1 = legs III absent

*84. Adults with:

$0=$ legs IV present
1 = legs IV absent

*85. Legs I:

$0=$ with true (paired) claws
1 = without true (paired) claws

*86. Legs II:

$0=$ with true (paired) claws
1 = without true (paired) claws

*87. Legs I:

$0=$ with empodia not well-developed "feather-claws"
1 = with empodium a well-developed "feather-claw"

*88. Legs II:

$0=$ with empodia not well-developed "feather-claws"
1 = with empodium a well-developed "feather-claw"

*89. Coxisternal plates I:

$0=$ clearly separate and not contiguous or fused medially
1 = slightly separate or contiguous or fused medially

*90. Coxisternal plates I:

$0=$ not basally contiguous with coxisternal plates II
$1=$ contiguous basally with coxisternal plates II

*91. Larval instar:

$0=$ with urstigmata between coxisternal plates I and II
$1=$ without urstigmata between coxisternal plates I and II

Ornamentation on coxisternal plates (Figs 3.4, 3.5)

The coxae in the Prostigmata are immovably fused to the ventral aspect of the body (Kethley, 1990). The coxal remnants are represented by coxal fields (or coxisternal plates sensu Lindquist, 1996a, followed in the present study) delineated by internal apodemes from which intrinsic coxal musculature originates. Usually in Eriophyoidea literature, the coxisternal plates are merely referred to as coxae, or coxal plates (Amrine et al., 2003).

The presence and morphology of ornamentation on coxisternal plates I and II are extensively used within the Eriophyoidea to distinguish between species. The ornamentation is frequently described in combination, without distinguishing the differences between coxisternal plates I and II, e.g., merely describing the coxisternal ornamentation as "coxae granulated". The ornamentation on coxisternal plates I and II is frequently the same type of ornamentation, but often the ornamentation is sparser on the latter, and/or a smaller area of them are covered. This causes problems and errors when the ornamentation of the two pairs of coxisternal plates is homologized
and scored as separate characters. Ornamentation on the coxisternal plates is usually described very vaguely and with disregard of true structures and detail. A line depicted on particularly coxisternal plates II can for example be either an internal apodeme, a ridge on the surface, or a folding line caused by slide-mounting. It is usually impossible to distinguish between these types of characters, both from the text description and the descriptive drawing. It is also frequently difficult to distinguish between small, rounded tubercles, and slightly elongated microtubercles, which may rather be defined as dashes. The type of detail found in ornamental structures necessary for accurate determination of homologies, e.g. on the coxisternal plates, are most accurately observable in SEM studies (Chapter 3), in combination with information from slide-mounted specimens.

92. Coxisternal plates I ornamentation - presence:

$0=$ unornamented (mostly smooth) (also scored when described as
"virtually unornamented")
$1=$ faintly or slightly ornamented
2 = ornamented
3 = body striations extended on legs, including coxisternal plates

The character states scored for the following species, in particular, are ambiguous:

- The coxisternal plates of Kaella flacourtiae were described to have some broken lines, however, coxisternal plates I were depicted to be smooth, and the broken lines were only depicted on coxisternal plates II (Chandrapatya \& Boczek, 2002b). Usually in the Eriophyoidea, coxisternal plates I are ornamented more strongly or more densely than coxisternal plates II, and it is presumed the drawing might be wrong, and coxisternal plates I and II for this species were scored "ornamented".
- The coxisternal plates of Lithocarus thomsoni were described to be smooth, however, in the descriptive drawing some tubercles were depicted basally on particularly coxisternal plates I (Chandrapatya \& Boczek, 2000c). Coxisternal plates I was scored "slightly ornamented".
- The coxisternal plates of Steopa bauhiniae were described to be smooth, however, in the descriptive drawing some slight tubercles and possibly dashes are depicted on particularly coxisternal plates I (Chandrapatya \& Boczek, 2001b). Coxisternal plates I was scored "slightly ornamented", and coxisternal plates II, "smooth". The description and scoring of Suthamus chiangmi (Chandrapatya \& Boczek, 2000a) are similar.
- A score of unornamented (smooth) for coxisternal plates I and/or II of the following species is ambiguous: Acarhis diospyrosis (coxisternal plates described to be smooth, but single lines were depicted on them in the descriptive drawing) (Chandrapatya \& Boczek, 1991c); and coxisternal plates I of A. siamensis were described as smooth, however, in the descriptive
drawing, one solid line was depicted about diagonally across the upper right corner of coxisternal plates I and II (Boczek \& Chandrapatya, 2000).

93. Coxisternal plates II ornamentation - presence:

$0=$ unornamented (smooth), including virtually unornamented
1 = faintly ornamented
$2=$ sparsely ornamented
3 = ornamented
4 = body striations extended on legs, including coxisternal plates
The ornamentation on coxisternal plates II is frequently fainter, sparser and less defined than on coxisternal plates I, and it has generally been described less carefully and correctly than for coxisternal plates I. As previously mentioned, there are also frequently folds or underlying apodemes that may be drawn on coxisternal plates II, but which are not necessarily ornamentation on the surface. Diptilomiopus spp. were more extensively scored for coxisternal plate ornamentation in a phylogenetic analyses of this genus parallel to the present study, and the plates were subdivided into smaller potentially homologous parts (C. Craemer, unpubl. data).

The character states scored for the following species, in particular, are ambiguous:

- Acarhis diospyrosis: coxisternal plates were described as smooth, but single lines and dashes are unclearly depicted on the plates in the descriptive drawing (Chandrapatya \& Boczek, 1991c). The character was nevertheless scored as "smooth" in the present study.
- Diptilorhynacus dioscoreae: the ornamentation of the coxisternal plates was described as "coxae with ornamentation of granules", however, in the descriptive drawing coxisternal plates II are unornamented, and thus without granules (Boczek \& Nuzzaci, 1985), and was scored as unornamented in the present study.
- Lithocarus thomsoni: the coxisternal plates are described as smooth, however, in the descriptive drawing some tubercles are depicted basally on particularly coxisternal plates I (Chandrapatya \& Boczek, 2000c), and the description is thus erroneous, but the ornamentation of coxisternal plates II was nevertheless scored as unornamented.
- Ornamentation on coxisternal plates II was scored as present for the following Diptilomiopus and other Diptilomiopinae species, because there were some marks depicted on these plates in the descriptive drawings, but the coxisternal plates may be unornamented in reality:

> D. artabotrysi
> D. assamica
> D. boueae
> D. jasminiae
> D. racemosae
> D. elaeocarpi

D. jevremovici
D. knorri
D. strebli
D. thunbergiae
Acarhis siamensis
Africus psydraxae

94. Prosternal apodeme between coxae I (Figs 3.4, 3.5) - presence:

$0=$ coxisternal plates I more widely separated than in the Eriophyoidea, prosternal apodeme not present, "normal' ventral area extended between coxae
1 = widely separated (see Davisella breitlowi, Neocecidophyes mallotivagrans, Palmiphytoptus oculatus and Trisetacus ehmanni)
2 = separated
3 = coxae I touching, usually with sternal apodeme clearly present
4 = sternal apodeme visibly broader than usually found in the Eriophyoidea (see Rhynacus arctostaphyli)
$5=$ totally fused centrally (or prosternal apodeme may be present but effaced - not visible as sternal line in slide-mounted specimens)

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 114, Character 30: $0=$ absent; $1=$ present $)$.

The prosternal apodeme (called "sternal line" in most Eriophyoidea descriptions) is an internal structure (Lindquist, 1996a). The character state definitions and scoring of this character are subjective and ambiguous. For example, the states "widely separated", "separated" and "sternal apodeme broad" may be confused in different descriptions, and may in reality be broadly the same homologous structure and state, interpreted or observed differently by different authors. For example, the approximation between coxae I of Acarhis lepisanthis was described by Keifer (1975d) as a "strong ridge between forecoxae", and it is probably an elevation or ridge on the surface between the coxal plates. Another example is Asetacus madronae: Keifer (1952a) described and depicted the approximation between coxae I as "anterior coxae with a sharp ridge between". Whether there is an internal apodeme associated with this ridge is not known, but for the present study the presence of a ridge is regarded as the presence of the prosternal apodeme. These descriptions together with the depiction thereof were interpreted, and the states were scored in the present study as "sternal apodeme visibly broader than usually in the Eriophyoidea". In Acarhis siamensis, however, coxae I are described as being "separated, not forming a sternum" (Boczek \& Chandrapatya, 2000). One can not deduce from the descriptions and drawings whether the latter and the previous two species have strong, broad sternal apodemes or whether the coxae are separated and without an internal sternal apodeme, and whether the structures are homologous.

Trisetacus ehmanni is another example of uncertainty; Keifer (1963b) described "anterior coxae well separated by a low indistinct ridge". In the drawing the coxae seem to be separated and this
character of the species was scored in the present study as "widely separated", but the state might rather be "sternal apodeme visibly broader than usually found in the Eriophyoidea". These two states describe two different structures which are not primarily homologous. The "broad sternal apodeme" describe the presence of a certain type of sternal apodeme, while "separated coxae not touching each other" describes the absence of a sternal apodeme, with the inner margins of the coxae separated for an appreciable distance from each other. Sometimes the latter state ("separated") was interpreted in the present study as if the inner coxal margins are touching, even if for a small distance, but the presence of an internal sternal apodeme is not clear or certain e.g., in Acathrix trymatus (Keifer, 1962c).

Another example of possible ambiguity: when coxae I are connate medially, but no sternal apodeme is present, or apparently present, e.g., as described for Leipothrix solidaginis (Keifer, 1966c), no distinction was made between this state where coxae I may be merely touching without a sternal apodeme, and those species with a sternal apodeme present. These descriptions of this area were scored as "coxae I touching, usually with sternal apodeme clearly present". This mingling of possibly different structures in one state was unavoidable because the presence of an internal apodeme or not, is not well described and distinguished in a bulk of the descriptions, and can not be deduced from the descriptive drawings either. This state should be separated into more states, if the real structures are not homologous.

***95. Coxae I: sternal region - presence of lobes:

$0=$ no region homologous to anterior edge of coxisternal plates in the sternal region of the Eriophyoidea
$1=$ anterior edge of coxisternal plates in sternal region without four lobes
$2=$ anterior edge of coxisternal plates in sternal region with four lobes
Four finger-like lobes are present on the anterior edge of the coxisternal region (Manson, 1984a) of Dacundiopus stylosus, and this character states is autapomorphic for this species. The state is used in the genus key (Amrine et al., 2003) to differentiate Dacundiopus.

LEGS (excluding coxae) (Fig. 3.6)

**96. Tarsi of legs - presence of shovel-shaped projections:

$0=$ without shovel-shaped projections on legs
$1=$ with shovel-shaped projections on legs

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 114, Character 27 (shovel-shaped projections on legs or triangular projections on palp apical ends): $0=$ absent; $1=$ present $)$.

The shovel-shaped projections occur on the tarsi of Aberoptus spp., of which only A. samoae was included, and the character state is autapomorphic for this species in the present study. The legs of this genus are generally modified. They are stout, with shortened segments, and the empodia on legs II are large with numerous rays (Keifer, 1951).

97. Leg I - femur and genu articulation - whether fused:

$0=$ normally articulated
1 = division weak, almost fused
$2=$ not articulated, totally fused
3 = genu present, but "fused" to femur
The character states scored for the following species, in particular, are ambiguous:

- Diptilorhynacus dioscoreae: the fusion of the genu with the femur was not recorded in the text description, and furthermore the genu of legs I and II is present in Diptilorhynacus, although $l '$ ' is absent on both legs. The genu is fused with the femur in legs I and II in the descriptive drawing (Boczek \& Nuzzaci, 1985), however, and was scored as such in the present study.
- The legs of Lithocarus were described as six segmented, however, in the descriptive drawing of Lithocarus thomsoni, the type species of the genus, the femur and genu were depicted as fused (genu absent) (Chandrapatya \& Boczek, 2000c). Amrine et al. (2003) corrected the error and the monospecific genus keys out in there key to genera by their five segmented legs, with the genu absent. The genu was scored in the present study as being fused with the femur in both legs I and II.
- Manson (1984a) described the genu and femur to be "almost fused" in Dacundiopus, however, in the type species (D. stylosus) these segments were described to be "fused" (Manson, 1984a), and in the descriptive drawing it seems that the fusion is complete. The character for this species was scored "totally fused".

**98. Leg I - division of femur:

$0=$ undivided
1 = inconspicuously divided
2 = clearly divided
A divided femur is regarded to be plesiomorphic in the Acariformes (Lindquist, 1996a). The femur of Cymeda zealandica is clearly divided into two segments (Manson \& Gerson, 1986). The femur
of Quintalitus squamosus was described to be inconspicuously divided (Meyer, 1989c). In the present study, states one and two are autapomorphic for each particular species. In future one could compare the homology of the divisions of the femur, and possibly amalgamate them in one state.

99. Leg I - division of tarsus - presence:

$0=$ undivided
1 = divided

Only three species of the Diptilomiopinae were described with tarsus I divided: Dacundiopus stylosus, Lambella cerina and Levonga papaitongensis and the character state may be a synapomorphy for these species. They were described or redescribed by Manson (1984a). Tarsus I of Levonga caseariasis and L. litseae (Chakrabarti \& Pandit, 1996; Chakrabarti et al., 1992, respectively, both from India, is apparently not divided, however, neither of the latter two species are particularly accurately described or depicted, and the real morphology is uncertain.

100. Leg I - tibia presence, or whether fused with tarsus:

```
\(0=\) present
1 = partly fused to tarsus
\(2=\) completely fused to tarsus (absent)
```

This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 113, Character 21: $0=$ normal; $1=$ reduced or fused $)$.

The character state scored for the following species, in particular, is ambiguous:

- Lithocarus thomsoni: legs of the genus Lithocarus are described in the text to be six segmented (no leg segments fused), further on in the same description (Chandrapatya \& Boczek, 2000c), the measurement of a tibiotarsus in leg I was recorded for L. thomsoni, implicating that the tibia is fused with the tarsus in this species. In the descriptive drawing of L. thomsoni, however, the femur and genu are depicted as fused (genu absent). For the present study the tibia of this species is regarded to be present, separate from the tarsus.

101. Leg I - tibia length:

$1=\operatorname{short}$ (2-3 micron)
$2=$ average (4-11 micron)
$3=$ medium long (12-13 micron)
$4=$ average long (14-15 micron)
$5=$ long (16-17 micron)
$6=$ very long (19-20 micron)
7 = very, very long (22 micron)
$8=$ exceptionally long (30 micron or more)

The tibial lengths were plotted on a graph. They essentially had a normal distribution (C. Craemer, unpubl. data). There were no particular large gaps between the lengths for allowing more objective determination of categories. The categories of lengths were determined by categorizing all the species with length within the standard deviation to be "average", and species with a tibial length lower or higher than "average" were divided into $2 \mu \mathrm{~m}$ increasing or decreasing categories as coded above. The length of the tibia of some species for which the length was not recorded, were usually deduced and scored from the descriptive drawing. The categories, and some lengths included, of this character are consequently subjective and probably ambiguous.

The character states scored for the following species, in particular, are ambiguous:

- The tibial length of leg I was not recorded, but was recorded for the tibia of leg II in Lithocarus thomsoni and Diptilomiopus integrifoliae (Chandrapatya \& Boczek, 2000c; Mohanasundaram, 1981b, respectively). The tibial lengths of legs I and II seemed to be similar in the accompanying descriptive drawings, and it was extrapolated that the tibia of leg I is about the same length as that recorded for the tibia of leg II.
- Tibial length was not recorded for the following species, but in their descriptive drawings the tibiae seemed to be neither exceptionally long nor short, and their lengths were scored "average":

Norma lanyuensis
Diptilomiopus alagarmalaiensis
D. aralioidus

Diptilomiopus camarae
D. commuiae
D. cumingis
D. cuminis (redescription by Huang, 2001c)
D. dendropanacis
D. elliptus
D. emarginatus
D. euryae
D. formosanus
D. hexogonus
D. leptophyllus
D. lobbianus
D. loropetali (Kuang, 1986a; description in Chinese)
D. maduraiensis (length was recorded for "tibiotarsus")
D. morii
D. octogonus
D. perfectus
D. stephanus

Prodiptilomiopus auriculatae
Sakthirhynchus canariae
Vasates quadripedes (redescription by Keifer, 1959b)

Levonga caseariasis
Norma lanyuensis
Aberoptus samoae
Cisaberoptus pretoriensis
Shevtchenkella juglandis
Fragariocoptes setiger

102. Leg I - tibial length in relation to tarsal length:

$0=$ tibia shorter than half of tarsus length
$1=$ tibia shorter than tarsus, half or more of tarsus length
$2=$ tibia length equal to tarsus length
$3=$ tibia longer than tarsus, but less than half the length of tarsus longer
$4=$ tibia longer than tarsus, half or more, but less than twice the tarsus length
$5=$ tibia about twice as long as tarsus
$6=$ tibia exceptionally longer than tarsus (three or four times the tarsus length)
Relational data should ideally not be used for phylogenetic analyses (Thiele, 1993). It was decided to include this relational character, though, in an attempt to increase the number of characters, because it is used as such in many descriptions, and due to the explorative nature of the present study.

The character states scored for the following species, in particular, are ambiguous:

- Characteristics of leg I (including tibial and tarsal lengths) were not recorded for Diptilomiopus integrifoliae, and the measurements of leg II (Mohanasundaram, 1981b) were used for this character.
- The tarsal lengths were not recorded for Aceria tulipae, Aculus ligustri and Catarhinus tricholaenae in their original descriptions (Keifer, 1938a; 1959b), and the relation between the length of the tibia and tarsus was determined by measuring these segments on the descriptive drawings, and although these drawings by Keifer are reliable, they are semi-schematic and may be inaccurate for such detail.
- The tibial and tarsal lengths were not recorded for the following species, but were scored from the descriptive drawings, and the scoring is highly ambiguous, because it is not certain whether the drawings are accurate:

```
Aberoptus samoae
Aceria tulipae
Catarhinus tricholaenae
Diphytoptus nephroideus
Diptilomiopus alagarmalaiensis
D. aralioidus
D. camarae
D. commuiae
D. cumingis
D. cuminis (redescription by Huang, 2001c)
D. dendropanacis
```

```
D. elliptus
D. emarginatus
D. euryae
D. formosanus
D. hexogonus
D. leptophyllus
D. lobbianus
D. loropetali Kuang, 1986a (description in Chinese)
D. maduraiensis [length was recorded for "tibiotarsus" by Mohanasundaram
(1986a)]
D. morii
D. octogonus
D. perfectus
D. septimus
D. stephanus
Fragariocoptes setiger
Levonga caseariasis
Mediugum sanasaii
Neopropilus jatrophus
Norma lanyuensis
Pararhynacus photiniae
Phyllocoptruta oleivora (redescription by Keifer, 1938a)
Prodiptilomiopus auriculatae
Platyphytoptus sabinianae
Sakthirhynchus canariae
Setoptus jonesi
Shevtchenkella juglandis
Vasates quadripedes (redescription by Keifer, 1959b)
```


103. Leg I - empodial shape (Fig. 3.6):

$0=$ pad-like with numerous rays (tenent rays or non-tenent rays or hair) (Fig. 4.1)
$1=$ simple (Fig. 3.6c, d)
$2=$ simple, distally elongated (Fig. 3.6e)
$3=$ simple, rays asymmetrical (more rays on one side than the other)
e.g., Dechela epelis (Fig. 3.6f)

4 = partly divided (Fig. 3.6g)
$5=$ divided (Fig. 3.6g)
$6=$ divided, stems unequal (Fig. 3.6i)
7 = divided, stems pad-like with numerous rays (Fig. 3.6j)
$8=$ divided, with central stem (Fig. 3.6k)
$9=$ palmate (Fig. 3.61)
$\mathrm{a}=$ basal rays finely branched, hair-like (e.g., Brevulacus reticulatus) (Fig. 3.6m)
$\mathrm{b}=$ reduced to a bristle (Fig. 3.6n)
$\mathrm{c}=$ distal part splitting into six hairs, hairs not tenent shaped (Fig. 4.2)
This character was previously used in analyzing the phylogeny of the Eriophyoidea [Hong \&
Zhang, 1996a, p. 113, Character 24: $0=$ simple (normal); $1=$ not normal (divided, palm-shaped etc.)]. The shape of the empodium is used to differentiate Eriophyoidea taxa at the genus level, and sometimes at the subfamily level (e.g., Diptilomiopinae and Rhyncaphytoptinae). Taxa with
divided empodia are present in all three Eriophyoidea families, and the character seems to be homoplasious.

The character state scored for the following species, in particular, is ambiguous:

- The empodium of Diptilomiopus stephanus was described as "divided" (Huang, 2005); however, in the accompanying drawing it seems that the two stems of the empodium may be pad-like (Huang, 2005). It was scored as being pad-like for the present study.

104. Leg I - number of empodial rays:

$0=$ numerous rays (can not count with ease)
$1=16$-rayed or more
$2=11-12$ rayed
$3=10$-rayed
$4=9$-rayed
$5=8$-rayed
$6=7$-rayed
7 = 6-rayed
$8=5$-rayed
$9=4$-rayed
a $=3$-rayed
b $=2$-rayed
$\mathrm{c}=$ reduced to a bristle (no rays)
$\mathrm{d}=$ six hairs splitting from one point
The number of empodial rays is extensively used to differentiate between Eriophyoidea species. It may vary within a species, and the character should be scored cautiously. Despite its own problems, it is relatively one of the clearer, easily observable and concise Eriophyoidea characters, though, and Meyer (unpubl. data) commenced with a key to the Aceria spp. of South Africa using the number of rays as the initial character to divide the genus into groups.

The character states scored for the following species, in particular, are ambiguous:

- The empodium of Dechela epelis is asymmetrical with the inside 5-rayed and the outside 7rayed (Keifer, 1965a; Fig. 3.6f). To accommodate this difference in rays, ideally the number of empodial rays should be divided into two characters: the number of rays on the inner side of the empodium and the number of rays on the outer side of the empodium. This is usually not recorded in Eriophyoidea descriptions, though. The two states were coded as a polytomy in the present study. This is erroneous, but in my opinion a better option than scoring the code "?" (unknown).
- The number of rays on the empodium of Acarhis lepisanthis was described as "with 6-7 rays on outer fork and fewer on inner", in the accompanying drawing there seems to be about 2-3
rays on the inner branch and 7 rays on the outer branch (Keifer, 1975d; Fig. 3.6i). In the lateral view drawings this distinction between the inner and outer branch is not clearly depicted. The state was scored as polymorphic, namely 6 or 7 rays, because there is a slight chance that Keifer may have viewed the one branch dorsally and the other laterally. This is probably an erroneous interpretation by me and should be investigated.
- The empodium of Diptilomiopus holmesi was described by Keifer (1962c) as having about 6 rays, indicating that there is a variation in number of rays, or that he was not sure about the number. It was scored as 6 -rayed.
- The empodium of Diptilomiopus racemosae was recorded as 6 -rayed, however, in the descriptive drawing, the empodium is depicted with 7 rays (Chandrapatya \& Boczek, 2001a). It was scored as 6 -rayed.
- The number of empodial rays of the following species was not recorded in the text, and was counted on their descriptive drawings. Counting number of empodial rays on descriptive drawings may be very ambiguous, e.g., in Chiangmaia longifolii the number of empodial rays was recorded as 9 , however, in the descriptive drawing of this species only 5 rays is depicted in the enlarged view of the empodium (Chandrapatya \& Boczek, 2000c).

> Acarhis diospyrosis
> Diptilomiopus aglaiae
> D. anthocephaliae
> D. artabotrysi (one stem 5-rayed the other 6-rayed, coded as if it is a
> polymorphism - either 5- or 6-rayed)
> D. azadirachtae
> D. barringtoniae
> D. benjaminae
> D. boueae
> D. cerberae
> D. cythereae
> D. elaeocarpi
> D. ervatamiae
> D. eucalypti
> D. languasi
> D. melastomae
> D. meliae
> D. morindae
> D. musae
> D. pamithus
> D. pocsi
> D. riciniae
> D. sandorici
> D. strebli
> D. swieteniae
> D. thaianae
> D. thunbergiae
> Lambella cerina
> Lithocarus thomsoni

Neolambella ligustri
Prodiptilomiopus auriculatae
Sakthirhynchus canariae

105. Leg II: femur and genu articulation - whether fused:

$0=$ normally articulated
1 = division weak, almost fused
$2=$ not articulated, totally fused

The character state scored for the following species, in particular, is ambiguous:

- The legs of Lithocarus are described as being six segmented, however, in the descriptive drawing of Lithocarus thomsoni, the type species of the genus, the femur and genu are depicted as being fused (genu absent). For the present study, the genu and femur were scored as being totally fused.

106. Leg II: tibia presence, or whether fused with tarsus:

$0=$ present
1 = partly fused to tarsus
2 = completely fused to tarsus (absent)

The character state scored for the following species, in particular, is ambiguous:

- Similar problems found with Lithocarus thomsoni for Character 100 (presence of tibia in leg I) are also experienced with the presence of tibia in leg II, and the species was also scored here with the tibia present, separate from the tarsus.

GENITALIA (Figs 3.4, 3.5)

Several of the characteristics of the Eriophyoidea genitalia are either hypothetically
synapomorphic or are autapomorphic for the superfamily (Lindquist, 1996b) and some of these are included here. In general characters of the genitalia, particularly internal genitalia, are regarded to be informative regarding the phylogeny of groups. Internal genitalia are less exposed to the environment and therefore probably less influenced by environmental and niche changes. For example, characters of the genitalia are extensively used in the systematics of spiders (A.S. Dippenaar-Schoeman, pers. comm.). The internal genitalia of the Eriophyoidea vary significantly, but unfortunately, they are frequently difficult to study, because they are easily destroyed during slide-mounting of specimens, and can not be studied with the SEM. Even though the morphology of the internal genitalia of females are frequently briefly described (usually only the shape of the anterior apodeme), and depicted, the description of fine detail is not included. It is probably partly
due to the extremely tiny size of these structures, which are obscured by other body structures. De Lillo et al. (2010) suggested that the genitalia should be dissected out of the body to be studied, but this is technically difficult and precise work. There are also many species for which character states of the internal genitalia are unknown, because they were, or could not be described. The external morphology and position of the genitalia of females, but not the males, are generally described and used in Eriophyoidea taxonomy.

* 107. Post-larval instars - presence of genital acetabula:

$0=$ with genital acetabula
$1=$ without genital acetabula

* 108. Nymphal instar - presence of progenital opening and chamber:
$0=$ with progenital opening and chamber
$1=$ without progenital opening and chamber

* 109. Genital opening of female - presence of flap:

$0=$ not covered by an anteriorly hinged flap
1 = covered by an anteriorly hinged flap

*110. Sperm transfer type:

$0=$ with spermatophores deposited on substrate
$1=$ directly with aedeagus
*111. Aedeagus - presence:
$0=$ present
$1=$ absent

112. External genitalia - position:

$0=$ caudally (Figs 4.1, 4.2)
$1=$ about 9-15 annuli removed from coxae, located posterior to $c 2$ (Fig. 3.5g)
$2=$ close to, but not appressed to coxae (Fig. 3.5d)
$3=$ appressed to coxae (Fig. 3.5a, b)
This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 110, Character 11: $0=$ not appressed to coxae II; $1=$ appressed to coxae II).

This character is particularly of importance in defining the genus Novophytoptus (with the genitalia removed relatively far from the coxae) (Fig. 3.5 g), and the subfamily Cecidophyinae (with the genitalia appressed against the coxae) (Fig. 3.5a, b). The position of the genitalia may be distorted by the slide-mounting process, for example the genitalia of Cisaberoptus kenyae are
drawn against the coxae, and those of C. pretoriensis, slightly away. In this regard also compare Fig. 3.5a with 3.5b.

The character state scored for the following species, in particular, is ambiguous:

- Cosella deleoni: the genitalia were not described as being appressed against the coxae (a characteristic partly defining the Cecidophyinae) (Keifer, 1956). It is coded as appressed to the coxae, because the genitalia seems to be pressed up against the coxae in the descriptive drawing of the species, with no space or annuli between the genitalia and coxae II, with the genitalia partly situated between coxae II.

113. Female, internal genital apodeme - shape:

$0=$ internal genital apodeme similar to that of the Eriophyoidea absent
$1=$ moderately extended to front ("normal") (Fig. 3.5e, i)
2 = folded up, appearing like a thick transverse line (Fig. 3.5c)
3 = folded up, but appearing slightly broader than a transverse line
$4=$ folded up, with special structure, consisting of about three transverse areas

The main diagnostic character of the subfamily Cecidophyinae is the shape of the internal female anterior genital apodeme which is folded up, appearing like a transverse line (Fig. 3.5c). However, if studied and compared in more detail, other characteristics of this apodeme also vary (e.g., although it is not a good example, compare Fig. 3.5c with $3.5 f$). In the present study the shape of this apodeme was scored "normal", except when otherwise noted or depicted, and even when the internal genitalia were not described or depicted, and especially when the external genitalia were not appressed to the coxae.

The character state scored for the following species, in particular, is ambiguous:

- Aberoptus samoae: the internal genitalia were not described nor depicted (Keifer, 1951), however, externally it looks very similar to those of Cisaberoptus kenyae (Keifer, 1966c) and it is presumed the internal genitalia of these two species may also be very similar, and in the present study they were scored to be the same.

114. Spermathecae - shape:

$0=$ spermathecae similar to Eriophyoidea and Tetranychidae absent
$1=$ round or ovalish (Fig. 3.5c, e)
$2=$ elongated (Fig. 3.5f)
I find it notoriously difficult to see the spermathecae in the slide-mounted specimens of most species, and dissecting the genitalia from the body will probably help in studying them (as proposed by De Lillo et al., 2010, see above). The spermathecae of the Eriophyoidea are usually
round (Fig. 3.5c, e) or slightly more oval. Among the species included in the present study, they are elongated in largely Phytoptidae species, [Novophytoptus rostratae, N. stipae
(Novophytoptinae), Acathrix trymatus, Anchiphytoptus lineatus, Oziella yuccae, Phytoptus avellanae (Phytoptinae), Austracus havrylenkonis, Sierraphytoptus alnivagrans (Sierraphytoptinae)] (Roivainen, 1947; Keifer, 1962d; 1962c; 1952a; 1954; 1952b; 1944; 1939a, respectively) excluding the Nalepellinae. They are also elongated in Africus psydraxae (ambiguous) and Apodiptacus cordiformis (Diptilomiopinae) and Ashieldophyes pennadamensis (Ashieldophyinae) (Meyer \& Ueckermann, 1995; Keifer, 1960; Mohanasundaram, 1984, respectively). The shape of the spermathecae of the latter three species is not exactly the same as the long spermathecae in the Phytoptidae, and they may not be homologous character states. It is detail like this that needs to be sorted out.

115. Spermathecal tube length:

$0=$ spermathecal tubes similar to that in the Eriophyoidea and Tetranychidae absent
$1=$ relatively short to very short (normal) (Fig. 3.5c, e, f)
$2=$ long (Fig. 3.5i)
This character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 115, Character 32: $0=$ long; $1=$ short).

Long spermathecal tubes are present only in Nalepellinae species, and may be a synapomorphy for this subfamily (Lindquist \& Amrine, 1996). They have also been depicted as elongated in Pentasetacus araucaria of this subfamily, but the tubes of the latter species is not the same shape as in the other Nalepellinae. It has been scored as "long" in the present study, though.

116. Female genital coverflap ornamentation:

$0=$ absent
$1=$ entirely unornamented (Fig. 3.5h, g)
$2=$ entirely unornamented, but divided into a basal and distal area (e.g., Hoderus roseus)

3 = basally ornamented, distally unornamented (smooth)
4 = basally unornamented (smooth), distally ornamented
$5=$ entirely ornamented, divided in basal and distal area (possibly coverflap of Cecidophyes - Fig. 3.5a, b)
$6=$ entirely ornamented, not divided in basal and distal area (Fig. 3.5d)
A similar character was previously used in analyzing the phylogeny of the Eriophyoidea (Hong \& Zhang, 1996a, p. 114, Character 26 (ridges of the female genital coverflap): $0=$ absent; $1=$ one longitudinal row; 2 = two longitudinal rows or transverse lines).

Characteristics of the external female genitalia are usually described and used in Eriophyoidea taxonomy. In particular the ornamentation on the female genital coverflap is extensively used in differentiating species. Detail of the type of ornamentation was not included in the data set of the present study. Defining characters and character states was attempted, but it turned out to be too ambiguous and uncertain, both in determining homologous areas of the coverflap (e.g., precisely determining the basal and distal area of the coverflap for comparison), and in the accuracy with which it was described. More detail of the ornamentation was, however, included in a parallel study of Diptilomiopus and closely related species (C. Craemer, unpubl. data).

For example, the distinction between an entirely ornamented genital flap, without distinction between a basal and distal area, and an entirely ornamented flap of which the ornamentation is divided between a basal and distal area, is not clear in published descriptions. For example, the coverflap ornamentation for Costarectus zeyheri is described as being "coverflap of gonopore with 11 longitudinal markings" (Meyer \& Ueckermann, 1995), however, in the drawing it seems that there may be one or two transverse lines, of which the basal is centrally interrupted, basally to the longitudinal lines. This can be regarded as constituting a basal area, but although it has been depicted in this species, it has not been recorded in the text description. In the published descriptions of many other species with similar ornamentation, this basal area may not even be depicted. In the present study, Costarectus zeyheri was scored as entirely ornamented without a basal and distal area.

I will go as far as to suggest that many Eriophyoidea species descriptions where the genital coverflap was depicted, described and coded as entirely ornamented, but with the ornamentation not divided in a basal and distal area, may be inaccurate. In these species the ornamentation may be similar to e.g., Costarectus zeyheri (discussed above) and Pentamerus rhamnicroceae where there actually may be a basal area, but may be very thin and inconspicuous (descriptive drawing in Keifer, 1966a).

Many discrepancies and incorrect descriptive data regarding the shape and ornamentation of the female genital coverflap are present in the descriptions of Eriophyoidea species. The character states scored for the following species, in particular, are ambiguous:

- Acarhis diospyrosis: Chandrapatya \& Boczek (1991c) described the ornamentation of the female genital coverflap as "genital coverflap with granules", however, the exact area on which these granules occur, was not described. The area could not be determined from the descriptive drawing, because the granules can be on the basal area, or the flap could be pushed
up and open, with granules on the entire area of the flap, however, according to the scanning electron images of the species it seems that the granules are only on the basal area. Unfortunately, the SEM images on the photocopied reprint are of very bad quality, and the original copies could not be obtained, and the state remains ambiguous.
- Diphytoptus nephroideus: the coverflap ornamentation was described as "about 7 short longitudinal lines" (Huang, 1991). The state was scored in the present study as "distally ornamented and basally smooth or unornamented", because the lines are described as short, and it could be similar to that of Davisella breitlowi (Davis, 1964a), however, this could not be confirmed on the descriptive drawing, because the coverflap is distorted.
- Quadriporca mangiferae: the genital coverflap ornamentation could not be determined from the original Chinese description (Kuang et al., 1991). In the descriptive drawing a row of short longitudinal ridges is present, however, it can not be determined whether these ridges only occurs basally on the flap, or distally on the flap, since the flap is distorted and unclear. The ornamentation was scored to occur distally, similar to some of the other morphologically similar Rhyncaphytoptinae.
- Diptilomiopus illicii: the female genital flap ornamentation was described as "coverflap with basal faint lines and granules on either side" and was depicted as such in the descriptive drawing (Wei \& Lu, 2001). Granules on the lateral areas of the coverflap is unusual, and do not occur in any other Eriophyoidea species. For the present study the state was scored as if ornamentation only occurs on the basal area.
- Diptilomiopus loropetali: the coverflap was described as "coverflap with a W-shaped design" (Kuang, 1986a). According to the shape and position of this ornamentation it seems that the author might have confused the interior apodemes and structures of the internal genitalia with ornamentation that may occur on the surface of the coverflap. The coverflap may be smooth, but for the present study, it was decided to stand with the author's interpretation, and the coverflap ornamentation was scored as "present on the entire coverflap".
- Diptilomiopus phylanthi: the coverflap was described as "coverflap with few longitudinal striae", however, in the drawing some tubercles are depicted on the base of the coverflap (Boczek \& Chandrapatya, 1992b).
- Diptilomiopus swieteniae: the coverflap was described as "smooth" (Chandrapatya \& Boczek, 1998), however, in the descriptive drawing of the ventral aspect, the flap was clearly depicted ornamented with tubercles or granules, and in the lateral view drawing it seems to be smooth. For the present study it is scored as "entirely ornamented".
- Lambella cerina: the coverflap was described as "smooth" (Lamb, 1953) in the original description. In the redescription by Manson (1984a) the coverflap was described as
ornamented "with fine granules", without reference to the state in the original description. The coverflap was scored "entirely ornamented" in the present study.
- Vimola syzygii: the coverflap ornamentation was described to be on the distal part of the flap (Boczek \& Chandrapatya, 1992a); however, in the drawing it seems to be similar to the usual ornamentation which occurs basally on the coverflap. It was scored "basally ornamented, distally unornamented (smooth)" in the present study.
- Keiferana neolitseae: the coverflap ornamentation was described as "coverflap with no particular design" (Channabasavanna, 1967); however, in the drawing the ornamentation is strangely shaped and may include parts of the underlying internal genitalia. The shape and ornamentation of the flap is not clear. For the present study, the flap ornamentation is scored "entirely unornamented".

ApPENDIX C

List of characters included in analyses, with different character numbers as used in data matrices.

APPENDIX C.

	Character numbers		
	318tax set	66tax set	18 tax set
Characters			
GENERAL			
*Immature stages: number of	0		
*Respiratory: presence stigmata	1		
*Excretory system: presence	2		
**Muscles, cross-striated or smooth	3		
**Tonofibrillary muscle attachments: presence	4		
**Organs, basal membranes: presence	5		
CHAETOTAXY: General			
*Immatures: what seta present	6		
***Setal morphology: presence actinopilin	7		
CHAETOTAXY: Gnathosomal setae			
Palp seta d : presence and shape	8	0	
*Palp tarsus: presence of solenidion	9		
CHAETOTAXY: Prodorsal setae			
seta vi: presence	10	1	0
seta ve: presence	11	2	1
*Seta $s c 2$: presence	12		
Seta scl (sc in Eriophyoidea): presence	13	3	3
Seta $s c$: length	14	4	32
Seta $s c$, length relative to shield length	15	5	
Seta $s c$, length relative to distance between them			
Scapular setal tubercle, presence and shape	16	6	2
Seta $s c$ and/or its tubercle, position	17	7	6
Seta $s c$, direction of projection	18	8	7
CHAETOTAXY: Opisthosomal setae			
Seta cl, presence	19	9	11
Seta $c 2$, presence	20	10	24
Setal tubercles $c 2$, presence	21	11	
Seta d, presence	22	12	12
*seta d, number of pairs present	23		
*seta d, position	24		
seta e, presence	25	13	13
*seta e, number of pairs present	26		
*seta e, position	27		
*seta f, number of pairs present	28		
*seta f, position	29		
seta h1, presence	30	14	30
*seta ps, presence	31		
CHAETOTAXY: Coxisternal plate setae			
seta 1b, presence	32	15	14
Setal tubercles $1 b$, presence	33	16	
$1 b-1 b: 1 a-1 a$, relationship of distance between setae	34	17	
seta $1 a$, presence	35		
Setal tubercle $1 a$, presence and shape	36		
seta $1 a$, position in relation to seta 2 a	37	18	34
seta $2 a$, presence	38		
CHAETOTAXY: seta associated with genitalia			
*Genital setae, presence in adult	39		
*Aggenital setae, presence	40		
*Eugenital setae in female, presence	41		

APPENDIX C.			
*Eugenital setae in male, presence and shape	42		
CHAETOTAXY: Leg setae			
Leg I femur, seta bv, presence	43	19	15
Leg I genu, seta l", presence	44	20	16
Leg I tibia, seta l', presence	45	21	17
Leg I tibia, seta l', position	46	22	
Leg I tibia, seta l', vertical position	47	23	
Leg I tibia, solenidion φ, presence and position	48	24	21
Leg I tarsus, solenidion ω, position	49	25	
Leg II femur, seta bv, presence	50	26	18
Leg II genu, seta 1", presence	51	27	19
Leg II tarsus, seta ft', presence	52	28	
GNATHOSOMA			
**Stylets additional to chelicerae, presence	53		
**Cheliceral bases, presence of motivator	54		
**Apical ends of palpi, shape	55		
**Palpi, shape and position	56		
Oral stylet: form	57	29	
Chelicerae: shape and position	59	30	9
PRODORSUM: Prodorsal shield			
Prodorsal shield: shape	60	31	
Ocelli or ocellar-like areas: presence, position, shape	61		
Frontal lobe: presence and general shape	62	32	4
Frontal lobe: shape	63	33	
Frontal lobe apical edge: shape	64	34	
Frontal lobe, shield anterior edge: presence of spines	65		5
Frontal lobe: presence of one slender filament	66		
PRODORSAL SHIELD ORNAMENTATION			
Prodorsal shield ornamentation: presence	67	35	
IDIOSOMA: General			
*Lyrifissures: presence	68		
*Opisthosoma rear end: shape in female	69		
IDIOSOMA: Opisthosoma shape, microtuberculation			
Body: shape	70	36	8
*Opisthosomal annuli: presence	71		
Opisthosomal annuli: dorsoventral differentiation	72	37	27
Dorsal annuli lateral extensions or lobes: presence, shape	73	38	28
Opisthosomal shape: presence ridges and furrows	74	39	22
"Telosomal" dorsal annuli: whether fused	75	40	
Dorsal annuli microtubercles: presence and position	76	41	33
SECRETIONS			
Wax secretion: presence	77	42	
Wax: type and secreting structures	78	43	
LEGS, COXAE AND STERNAL AREA: General			
*Larva legs III: presence	79		
*Larva legs IV: presence	80		
*Nymphal instar(s) legs III: presence	81		
*Nymphal instar(s) legs IV: presence	82		
*Adults legs III, presence	83		
*Adults legs IV, presence	84		
*Legs I true (paired) claws, presence	85		
*Legs II true (paired) claws, presence	86		
**Legs I empodia shape like "feather-claws", presence	87		
**Legs II empodia shape like "feather-claws", presence	88		

Appendix C.

APPENDIX C.
*Coxisternal plates I medial separation, degree 89 *Coxisternal plates I seperation from coxisternal plates II 90 *Larva urstigmata, presence and position 91 COXAE: Ornamentation and sternal area Coxal plates I ornamentation, presence and degree 92 44 Coxal plates II ornamentation, presence and degree 93 45 Prosternal apodeme (sternal line), presence and shape 94 46 29 Coxal plates anterior edge, presence of four lobes 95 LEGS (excluding coxae) Leg tarsi, presence of shovel-shaped projections 96 26 Leg I, femur and genu articulation 97 47 Leg I, femur division 98 Leg I, tarsus division 99 Leg I tibia: presence as separate segment or degree of fusion 100 48 20 Leg I tibia, length 101 49 Leg I tibia, length in relation to tarsus length 102 50 Leg I empodium, shape 103 51 Leg I empodium, number of rays 104 52 Leg II, femur and genu articulation 105 53 Leg II, tibia, presence or degree of fusion 106 54 GENITALIA *Acetabula in postlarval instars, presence 107 *Progenital opening and chamber in nymph, presence 108 *Genital opening of female, whether covered by flap 109 *Sperm transfer, whether with spermatophore or aedeagus 110 *Aedeagus, presence 111 Female genitalia: position 112 55 10 Female internal genital apodeme: shape 113 56 Spermatheca: shape 114 57 Spermathecal tube: length 115 58 31 Female genital coverflap: presence, division, ornamentation 116 59 25

APPENDIX D.

Data matrix for 318-taxon analyses. Data matrix of morphological characters for 316 eriophyoid species and two outgroup species (Orphareptydeus and Mononychelus) for the 318 tax analyses. ? = uncertain or unknown character states, $-=$ inapplicable states. Codes in light grey are of autapomorphic characters, codes in black and bold are homologous characters.

318-taxon data matrix											1	1
	0	1	2	3	4	5	6	7	8	9	0	1
	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456
Orfareptydeus stepheni	0000000100	0000330060	000?00?000	0000000000	0100000221	01000100-1	-10--00000	00000010-0	1000000000	0034000000	0810000000	1100000
Monony chelus yemensis	1000000140	2000030060	0000000000	0000000-10	0120000100	00000000-0	-00--00000	00000010-0	1000000000	0034000000	081cd00000	0000120
Abacarus acalyptus	21111111 ?	2110331241	0101101111	0101101001	1110000522	0001121001	2122200411	6120110111	1111111111	1123310000	0231700111	1121116
Abacarus hystrix	211111101	2110331241	0101101111	0101101001	1110000322	0001121001	b122810411	6150110111	1111111111	1123310000	0231500111	1121116
Aberoptus samoae	21111111?1	2110331231	0101101111	2101201201	111001--23	0001121001	110--00411	b1100110-1	1111111111	1100311300	0109c00111	1133116
Acadicrus bifurcatus	2111111101	2110331211	0101101111	2101101001	1110000522	0001121001	2121b00411	61500110-1	1111111111	1123310000	0341700111	1121113
Acalitus ledi	2111111141	2110331041	0101101111	2101301001	111101--22	0001121001	a10--00411	31100110-1	1111111111	1123310000	0211800111	1121115
Acamina nolinae	211111101	2110331011	011111111	2101001101	1111000322	1001121001	2122600411	7150110111	1111111111	1100410000	0331800111	1121115
Acaphyllisa parindiae	2111111101	2110?41021	0101101111	2101101101	1110002022	0001121001	2122300411	71631100-1	1111111111	1113310000	$0224 a 00111$	1121115
Acarelliptus cocciformis	21111111 ? 1	2110331011	0101101111	0101101001	1110000422	0001121001	2112200411	71621100-1	1111111111	1100310000	0211800111	1121116
Acarhis diospyrosis	21111111?1	2110551041	1201101111	2101001001	111111--22	1101121012	710--00411	51601100-1	1111111111	1100310100	0215810111	1121??3
Acarhis lepisanthis	2111111101	2110441011	1201101111	2101001001	1111100322	1101121012	1112600411	512011[12] 0-1	1111111111	1111410000	$0216[67] 00111$	1121113
Acarhis siamensis	2111111101	2110441011	1201101111	2101001101	1111100222	1101121012	110--00411	51601110-1	1111111111	1103210200	0205[45] 20111	1121??5
Acarhynchus filamentus	2111111101	2110341011	0101101111	2101201201	1111000022	0001121012	2122101411	51601110-1	111111111	1123310000	0237000111	1121113
Acaricalus segundus	2111111101	2110341011	0101101111	2101001001	1110000422	0001121001	7122100411	71201100-1	1111111111	1100210000	0225900111	1121115
Acathrix trymatus	211111101	2010551200	0101101111	0101101101	1110000312	0001121001	210--00411	11100110-1	1111111111	1111310000	0221200111	1121211
Aceria tulipae	2111111101	2110211241	0101101111	0101001101	1110000422	0001121001	210--00411	11100110-1	1111111111	1123310000	0211600111	1121116
Acerimina cedrelae	211111101	2110331241	0101101111	0112-01101	1110000422	0001121001	210--00411	11100110-1	1111111111	1100310000	0231900111	1121116
Achaetocoptes ajoensis	2111111101	2111--2--1	0101101111	2101101001	1110000322	0001121001	d122200311	71731120-1	111111111	1123310000	0221[56]00111	1132116
Acritonotus denmarki	2111111101	2110341211	0101101111	2101001001	1110000222	0001121001	2122100111	71821100-1	1111111111	1100310000	0549a00111	1121115
Aculodes mckenziei	2111111101	2110231241	0101101111	0101101101	1110000322	0001121001	2122400411	1110011171	1111111111	1123310000	0211600111	1121116
Aculops populivagrans	2111111101	2110331241	0101101111	2101201101	1110000522	0001121001	2122400311	61600120-1	1111111111	1123310000	0231900111	1121116
Aculus ligustri	2111111101	2110331241	0101101111	0101101001	1110000522	0001121001	2122220311	616001[02] 0-1	1111111111	1120310000	0241900111	1121116
Acunda plectilis	2111111101	2110331241	0101101111	0101001101	1110000222	0001121001	210--00411	11401110-1	1111111111	1110310000	0211500111	1123116
Adenocolus psydraxi	2111111141	2110331241	0101101111	1101401001	111101--22	0001121001	2122100411	61600110-1	1111111111	1123510000	2-1[78] 02111	1121111
Aequsomatus lanceolatae	2111111101	2110331011	0101101111	1112-01001	1110000622	0001121001	2122100411	61400120-1	1111111111	1113310000	0231200111	1121??1
Africus psydraxae	2111111141	2110451021	1201101111	0112-13-01	111111--22	1111121012	110--00411	51201160-1	1111111111	1123210100	0215810111	1121213
Afromerus florinoxus	2111111101	2110331201	0101101111	2101201001	111001--22	0001121001	2122400411	11100110-1	1111111111	1100310000	0211700111	1132??6
Anchiphytoptus lineatus	21111111?1	2010331010	0101101111	0101101101	1110000312	0001121001	210--00411	111001b0-1	1111111111	1113310000	0231800111	1121213
Anothopoda johnstoni	21111111?1	2111--2--1	010111111	2112-01001	111001--22	0001121001	210--00411	11100110-1	1111111111	1123510000	0101902111	1121113
Anthocoptes gutierreziae	2111111101	2110341241	0101101111	0101201101	1110000422	0001121001	3122200311	71730100-1	1111111111	1123310000	0221900111	1121115
Apodiptacus cordiformis	2111111101	2110331211	0101101111	2101001001	1111000422	1001121012	2122900411	7161110111	1111111111	1123410000	0335900111	1121215
Apontella bravaisiae	2111111101	2110341041	0101101111	2101001101	111101--22	0001121001	2112200311	71501120-1	1111111111	1123310000	1--1801111	1121??5
Arectus bidwillius	2111111101	2110331011	0101101111	0101001001	1111000522	0001121001	9122600411	51500190-1	1111111111	1123510000	0231700111	1121115
Areekulus eugeniae	2111111101	2110451021	0101101111	2101?01?01	1111001022	1111121012	1112100411	a1501110-1	1111111111	11??210000	0341800111	112???1
Asetacus madronae	21111111?1	2111-10-1	0101101111	2101001101	1111000322	1001121012	9122700411	5120010141	1111111111	1120410000	0431700111	1121115
Asetadiptacus emiliae	21111111?1	2111-10-1	0101101111	1101101101	1111000322	1001121012	2112100411	51600110-1	1111111111	1123310000	0345800111	1121113
Asetilobus hodgkinsi	2111111101	2110331021	010111111	2101301001	1110000322	0001121001	2122200411	51100110-1	1111111111	1123310000	0211[89]00111	1121 ?16
Ashieldophyes pennademensis	2111111101	2110552131	0111111111	0101201001	1110000322	0001121001	110--00111	91400100-1	1111111111	1100510000	0241900111	1131211
Austracus havrylenkonis	2111111101	2010331000	0101101111	0101101101	1110000412	0001121001	210--00111	21610100-1	1111111111	1100310000	0221900111	1121212
Baileyna marianae	2111111101	2110331241	0101101111	0101301001	1110000422	0001121001	210--00111	11501120-1	1111111111	1100310000	0211900111	1121115

318-taxon data matrix											1	1
	0	1	2	3	4	5	6	7	8	9	0	1
	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456
Bakeriella ocimis	2111111101	2110341251	0101101111	0101101101	1110000422	0001121001	2122800311	71601100-1	1111111111	1101310000	0221900111	1121116
Bariella farnei	2111111101	2111--2--1	0101101111	2101401001	1110000322	0001121001	2122600411	71601100-1	1111111111	1100310000	0221800111	1134115
Boczekella laricis	21111111?1	1111--2--0	0101101111	0101?01?01	111001--22	0001121001	210-200411	51501100-1	1111111111	1111310000	0221 [56] 00111	1121??1
Brachendus pumilae	2111111101	2110321201	0101101111	0101101001	1110000322	0001121001	d111100411	11100110-1	1111111111	1123310000	0211800111	1123116
Brevulacus reticulatus	2111111101	2110333011	0101101111	0101101001	1110000623	0001121012	2122a00411	51601110-1	1111111111	1100310000	034a 000111	1121111
Bucculacus haweckii	2111111101	2110331011	0101101111	0101301001	1110000422	0001121012	2122200411	71601100-1	1111111111	1100310000	0235700111	1121??1
Calacarus pulviferus	2111111101	2111--2--1	0101101111	2101101101	1110000422	0101121001	2122100411	5120110121	1111111111	1123310000	0231900111	1121115
Calepitrimerus cariniferus	21111111?1	2110331221	0101101111	0101101001	1110000422	0001121001	2122200311	71511110-1	1111111111	1100310000	0221900111	1121116
Caliphytoptus quercilobatae	2111111101	2110331221	0101101111	0101101001	1110000422	0001121001	2122100411	71611100-1	1111111111	1100310000	0211800111	1121116
Caroloptes fagivagrans	21111111?1	2110331201	0101101111	0101101001	1110000522	0001121001	2112200311	71611100-1	1111111111	1123310000	0211900111	1121114
Catachella machaerii	2111111141	2110221241	0101101111	2101101001	111101--25	0001121001	2112200411	11200110-1	1111111111	1123510000	0211 [345]00111	1121115
Catarhinus tricholaenae	21111111?1	2110341011	0101101111	2101101201	1111000023	0001121012	2122800311	71611110-1	1111111111	1123310000	0211700111	1121113
Cecidodectes euzonus	2111111101	2110331001	0111111111	2101201001	1110000422	0001121001	2122200111	31400100-1	1111111111	1100310000	0211800111	1122111
Cecidophyes rouhollahi	2111111101	2111--2--1	0101101111	2101301001	1110000322	0001121001	2112100411	51200110-1	1111111111	1110310000	0221800111	1132115
Cenaca syzygioidis	2111111141	2110321241	0101101111	2112-01001	111101--22	0001121001	210--00311	11100110-1	1111111111	1100310000	0111900111	1121116
Cenalox nyssae	2111111101	2110331251	0101101111	2101301001	1110000222	0001121001	2122400311	71501110-1	1111111111	1100210000	0211900111	1131111
Cercodes simondsi	2111111101	2110331201	0101101111	0101201001	1110000522	0001121001	210--00411	11802190-1	1111111111	1123310000	0211900111	1121116
Chakrabartiella ficusis	2111111101	2110331201	0101101111	0112-01001	1111000622	1001121012	110--00111	51501110-1	1111111111	1100310000	0231800111	1121114
Cheiracus sulcatus	2111111101	2110341251	0101101111	2101001001	1110001422	0001121012	b122100411	71611100-1	1111111111	1123310000	0230000111	1121113
Chiangmaia longifolii	2111111101	2110451221	0101101111	1101101001	111101--22	1001121012	510--00411	51601130-1	1111111111	1120210000	0215400111	1123116
Chrecidus quercipodus	2111111101	2111--2--1	0101101111	2101201001	1110000322	0001121001	2122800411	51500100-1	1111111111	1120310000	0221700111	1132115
Circaces chakrabarti	2111111101	2110331241	0101101111	0101201001	1110000422	0001121001	210--00311	11810110-1	1111111111	1111310000	0211900111	1132116
Cisaberoptus kenyae	2111111101	2110331241	0101101111	2101301101	111001--22	0001121101	f111c00111	71101110-1	1111111111	1100210200	1--1121111	1133116
Cisaberoptus pretoriensis	2111111101	2110331241	0101101111	1101101101	1110000422	0001121101	2121200111	71200190-1	1111111111	1100310000	0211600111	1121??1
Colomerus gardeniella	2111111101	2110331211	0101101111	2101301001	1110000422	0001121001	210--00411	11100110-1	1111111111	1100310000	0211800111	1132115
Colopodacus africanus	2111111101	2110341021	0101101111	2101301001	111001--22	0001121001	3122100411	61101110-1	1111111111	1100310000	2--1802111	1121113
Coptophylla lamimani	21111111?1	2111--2--1	0101101111	2101201001	1110000322	0001121001	2122200111	61610100-1	1111111111	1120310000	0221800111	1132116
Cosella deleoni	2111111101	2110341041	0101101111	2112-01001	111001--24	0001121001	2112900411	61400180-1	1111111111	1120510000	2--1802111	1131116
Cosetacus camelliae	2111111101	2110221241	0101101111	2101401001	111001--22	0001121001	210--00411	31100110-1	1111111111	1100310000	0211700111	1133115
Costarectus zeyheri	2111111101	2110331241	0101101111	0101101101	1110000522	0001121001	2122200411	6160110121	1111111111	1120310000	0241900111	1121116
Criotacus brachystegiae	2111111101	2110331201	0101101111	2101001101	1110000522	0001121001	2122800311	31400110-1	1111111111	1100310000	0221800111	1121111
Cupacarus cuprifestor	2111111101	2110331021	0101101111	0101001001	1110000222	0001121001	d122800311	61601100-1	1111111111	1113210000	0221700111	1121113
Cymeda zealandica	2111111141	2110341021	0101101111	2101001001	111001--22	0001121001	2122100411	716001d131	1111111111	1100310020	0115800111	1121111
Cymoptus spiniventris	2111111101	2110331241	0101101111	2101301001	111001--22	0001121001	210--00411	11205100-1	1111111111	1100310000	0201b00111	1121 ? 11
Dacundiopus stylosus	2111111141	2110451011	1201101111	2112-01001	111101--22	1101121012	910--00411	51601100-1	1111111111	1123520201	0215b20111	1121??1
Davisella breitlowi	21111111?1	2111-10-1	1201101111	2101101001	1111000322	1101121012	110--00411	51501110-1	1111111111	1100110000	0215800111	1121??4
Dechela epelis	2111111101	2111--2--1	0101101111	2112-01001	111001--25	0101121001	3112600411	31100110-1	1111111111	1123310000	0113 [68] 00111	1132116
Dialox stellatus	2111111101	2110551001	0101101111	1101001101	1111001422	0001121012	c122a00411	5130011121	1111111111	1100310000	0865500111	1121116
Dichopelmus notus	2111111101	2110341241	0101101111	2101201001	1110000422	0001121001	2122250311	71610100-1	1111111111	1100310000	0234900111	1121??5
Dicrothrix anacardii	2111111121	2110341011	0111101111	2101001001	1110001622	0001121001	6122100411	71403100-1	1111111111	1100310000	0232900111	1121111
Diphytoptus nephroideus	2111111101	2110331241	0101101111	2101001101	1110000322	0101121001	210--00311	11100110-1	1111111111	1100310000	0235900111	1121114

318-taxon data matrix											1	1
	0	1	2	3	4	5	6	7	8	9	0	1
	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456
Diptacus pandanus	2111111101	2110451021	0101101111	0101101101	1111000322	0001121012	2122130111	71501100-1	1111111111	1123210000	0455500111	1121111
Diptacus sacramentae	2111111101	2110331211	0101101111	2101001101	1111000022	1001121012	2122100411	6160012121	1111111111	1111310000	0435700111	1121111
Diptilomiopus acronychia	21111111?1	2111-10-1	1201101111	2112-01001	111111--22	1101121012	110--00411	51501100-1	1111111111	1103310200	0215720111	1121111
D. aglaiae	2111111141	2111-10-1	1201101111	1112-01101	111111--22	1111121012	110--00411	51501100-1	1111111111	1123510200	0215720111	1121116
D. alagarmalaiensis	2111111101	2111-10-1	1201101111	1112-01001	111111--22	1111121012	110--00411	51500110-1	1111111111	1103210200	0105920111	1121113
D. alangii	2111111101	2111--2--1	1201101111	1112-01001	111111--22	1111121012	110--00411	51501100-1	1111111111	1100310200	0215720111	1121111
D. anthocephaliae	2111111101	2111-10-1	1201101111	1112-01001	111111--22	1111121012	110--00411	51501100-1	1111111111	1123310200	0215820111	1121113
D. aralioidus	2111111101	2111-10-1	1201101111	1112-01001	111111--22	1101121012	210--00411	51500100-1	1111111111	1100510200	0205820111	1121111
D. artabotrysi	2111111101	2111-10-1	1201101111	2112-01001	111111--22	1111121012	110--00411	51501100-1	1111111111	1123210200	0215[78]20111	1121113
D. artocarpae	2111111101	2111-10-1	1201101111	1112-01001	111101--22	1101121012	110--00411	7150110151	1111111111	1123310000	0255800111	1121115
D. asperis	2111111101	2111-10-1	1201101111	2112-01101	111111--22	1111121012	110--00411	51501100-1	1111111111	1100310200	0215720111	1121111
D. assamica	21111111?1	2111-10-1	1201101111	2112-01101	111111--22	1111121012	2111100411	51501100-1	1111111111	1123310200	0215820111	1121111
D. averrhoae	21111111?1	2111-10-1	1201101111	2112-01001	111111--22	1101121012	110--00411	51501100-1	1111111111	1120310200	0215520111	1121111
D. azadirachtae	2111111141	2111-10-1	1201101111	2112-01101	111101--22	1111121012	110--00411	515011?0-1	1111111111	1123310200	0225920111	1121111
D. barringtoniae	2111111101	2111-10-1	1201101111	2112-01001	111111--22	1111121012	210--00411	51501100-1	1111111111	1123310200	0225720111	1121113
D. bengalensis	2111111141	2111--2--1	1201101111	2112-01001	111?11--22	0101121012	210--00411	51501100-1	1111111111	1100210000	0215700111	1121111
D. benjaminae	2111111141	2111-10-1	1201101111	1112-01101	111111--22	1111121012	110--00411	51501100-1	1111111111	1123310200	0215620111	1121111
D. boueae	2111111101	2111-10-1	1201101111	1112-01001	111111--22	1111121012	110--00411	51501100-1	1111111111	1123510200	0215820111	1121111
D. camarae	2111111101	2111-10-1	1201101111	[12] 112-01001	111111--22	1111121012	110--00411	61501170-1	1111111111	1123510200	0215720111	1121113
D. cerberae	2111111141	2111-10-1	1201101111	2112-01001	111111--22	1111121012	110--00411	51501100-1	1111111111	1123310200	0225720111	1121111
D. championi	21111111?1	2111--2--1	1201101111	2112-01?01	111?????22	???1121012	710--00411	51501100-1	1111111111	11???10???	0??55?0111	1121111
D. cocculae	21111111?1	2111-10-1	1201101111	2112-01101	111111--22	1101121012	210--00411	51501110-1	1111111111	1120310200	0215620111	1121113
D. combretae	2111111141	2111-10-1	1201101111	1112-01001	111111--22	1101121012	110--00411	51501100-1	1111111111	1100210200	0205720111	1121113
D. combreti	21111111?1	2111--2--1	1201101111	1112-01001	111111--22	1111121012	4111-00411	51501100-1	1111111111	1123310200	0105720111	1121113
D. commuiae	21111111?1	2111-10-1	1201101111	1112-01001	111111--22	1111121012	410-200411	51501100-1	1111111111	1120310200	0225620111	1121116
D. coreiae	2111111101	2111-10-1	1201101111	1112-02101	111111--22	1111121012	110--00411	51501130-1	1111111111	1120310200	0215720111	1121116
D. cumingis	21111111?1	2111-10-1	1201101111	1112-01001	111111--22	1111121012	2111600411	51501100-1	1111111111	1100310200	0215620111	1121116
D. cuminis	2111111101	2111-10-1	1201101111	2112-01101	111111--22	1111121012	110--00411	51501100-1	1111111111	1123310200	0215720111	1121111
D. cuminis Huang	21111111?1	2111--2--1	1201101111	2112-01001	1111100022	1101121012	1111100411	51501100-1	1111111111	1100310200	0215720111	1121111
D. cythereae	21111111?1	2111-10-1	1201101111	2112-01001	111111--22	1111121012	210--00411	51501110-1	1111111111	1122310200	0215720111	1121113
D. davisi	2111111141	2111-10-1	1201101111	2112-01001	111111--22	1111121012	410--00411	51501180-1	1111111111	1111210200	0205720111	1121113
D. dendropanacis	21111111?1	2111--2--1	1201101111	1112-01001	111111--22	1111121012	210--00411	51501100-1	1111111111	1123310200	0215720111	1121113
D. elaeocarpi	2111111101	2111-10-1	1201101111	2112-01001	111111--22	1111121012	110--00411	51501100-1	1111111111	1123310200	0215720111	1121113
D. elliptus	21111111?1	2111-10-1	1201101111	1112-01001	111111--22	1111121012	110--00411	51501100-1	1111111111	1120310200	0215720111	1121111
D. emarginatus	21111111?1	2111--2--1	1201101111	2112-01001	111111--22	1101121012	4111100411	51501100-1	1111111111	1100310200	0215420111	1121111
D. ervatamiae	2111111101	2111-10-1	1201101111	2101111101	111111--22	1111121012	110--00411	51501100-1	1111111111	1100310200	0215720111	1121113
D. eucalypti	2111111101	2111-10-1	1201101111	2112-01101	111111--22	1111121012	110--00411	51501110-1	1111111111	1123310200	0215720111	1121113
D. euryae	21111111?1	2111-10-1	1201101111	1112-01001	111111--22	1101121012	110--00411	5150?100-1	1111111111	1103310200	0215420111	1121111
D. ficifolius	21111111?1	2111--2--1	1201101111	?112-01101	111111--22	1101121012	110--00411	51501100-1	1111111111	1100310200	0225520111	1121111
D. ficus	2111111101	2111-10-1	1201101111	2112-01001	111111--22	1111121012	110--00411	51501110-1	1111111111	1123310200	0215520111	1121113
D. ficusis	2111111101	2111--2--1	1201101111	2112-01001	111111--22	1101121012	110--00411	51501100-1	1111111111	1112310200	0215620111	1121115

318-taxon data matrix											1	1
	0	1	2	3	4	5	6	7	8	9	0	1
	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456
D. formosanus	21111111?1	2111--2--1	1201101111	1112-01001	111111--22	1101121012	110--00411	51501100-1	1111111111	1100310200	0215820111	1121111
D. gilibertiae	2111111141	2111-10-1	1201101111	1112-01101	111111--22	1111121012	210--00411	51501110-1	1111111111	1123310200	0215720111	1121113
D. guajavae	2111111101	2111-10-1	1201101111	2112-01001	111101--22	1111121012	110--00411	515001?0-1	1111111111	1103210000	2--5702111	1121111
D. hexogonus	21111111?1	2111--2--1	1201101111	1112-01001	111111--22	1101121012	1111100411	51501100-1	1111111111	1100310200	0245520111	1121111
D. holmesi	21111111?1	2111-10-1	1201101111	1112-01001	111111--22	1111121012	410--00411	51501110-1	1111111111	1123310200	0215720111	1121113
D. holopteleae	2111111101	2111--2--1	1201101111	2112-01001	111111--22	1111121012	110--00411	51501100-1	1111111111	1100310200	0235820111	112111 [16]
D. holoptelus	2111111101	2111-10-1	1201101111	2112-01101	111111--22	1101121012	410--00411	51501100-1	1111111111	1123310200	0215620111	112111 [16]
D. illicii	21111111?1	2111-10-1	1201101111	1112-01001	111111--22	1101121012	110--00411	51501100-1	1111111111	1123310200	0215520111	1121113
D. indicus	21111111?1	2111--2--1	1201101111	2112-01001	111111--22	1101121012	110--00411	51501100-1	1111111111	1100310200	0115620111	1121114
D. integrifoliae	21111111?1	2111-10-1	1201101111	2112-01001	111111--22	1111121012	110--00411	51511100-1	1111111111	1122510200	0235820111	1121113
D. jasminiae	2111111101	2111-10-1	1201101111	1112-01001	111111--22	1111121012	110--00411	51501100-1	1111111111	1123310200	0215720111	1121116
D. javanicus	21111111?1	2111--??-1	1201101111	21???01?01	111111--2?	1111121012	?1???00411	51501100-1	1111111111	11???10200	0?15720111	1121111
D. jevremovici	21111111?1	2111-10-1	1201101111	1112-01001	111111--22	1111121012	210--00411	51501160-1	1111111111	1123310200	0215720111	1121115
D. knorri	2111111141	2111-10-1	1201101111	2112-01001	111111--22	1111121012	1111600411	51501170-1	1111111111	1103210100	0215810111	1121113
D. languasi	2111111101	2111-10-1	1201101111	1112-01001	111111--22	1111121012	110--00411	51501100-1	1111111111	1123310200	0235720111	1121113
D. Leeasis	2111111101	2111-10-1	1101101111	2112-01101	111111--22	1111121012	110--00411	51500100-1	1111111111	1123310200	0215820111	1121111
D. leptophyllus	21111111?1	2111--2--1	1201101111	2112-01001	111111--22	1101121012	2111100411	51501100-1	1111111111	1100310200	0225720111	1121111
D. lobbianus	21111111?1	2111--2--1	1201101111	2112-01001	111111--22	1101121012	1111100411	51200100-1	1111111111	1100310200	0235920111	1121116
D. loropetali	21111111?1	2111-10-1	1201101111	1112-01101	111111--22	1111121012	110--00411	51501110-1	1111111111	1123310200	0215420111	1121113
D. maduraiensis	2111111101	2111-10-1	1201101111	2112-01001	111111--22	1111121012	110--00411	51500100-1	1111111111	1100210200	0205820111	1121113
D. malloti	21111111?1	2111-10-1	1201101111	1112-01001	111111--22	1101121012	210--00411	51500110-1	1111111111	1123310200	0215720111	1121116
D. melastomae	2111111101	2111-10-1	1201101111	1112-01001	111111--22	1111121012	1111900411	5150113141	1111111111	1123510200	0205620111	1121111
D. meliae	2111111141	2111-10-1	1201101111	2112-01101	111111--22	1111121012	110--00411	51501110-1	1111111111	1123310200	0215820111	1121111
D. morii	21111111?1	2111--2--1	1201101111	2112-01001	111111--22	1101121012	1111800411	51500110-1	1111111111	1100310200	0215720111	1121111
D. morindae	21111111?1	2111-10-1	1201101111	2112-01001	111111--22	1111121012	110--00411	51501100-1	1111111111	1123310200	0215820111	1121113
D. musae	2111111141	2111-10-1	1201101111	2112-01001	111111--22	1101121012	110--00411	51501100-1	1111111111	1122310200	0215920111	1121113
D. octogonus	21111111?1	2111-10-1	1201101111	1112-01001	111111--22	1101121012	1111100411	51501100-1	1111111111	1123310200	0215620111	1121113
D. pamithus	21111111?1	2111-10-1	1201101111	2112-01101	111111--22	1101121012	110--00411	51501100-1	1111111111	1120310200	0105720111	1121111
D. perfectus	21111111?1	2111--2--1	1201101111	1112-01001	111111--22	1101121012	1111200411	51501100-1	1111111111	1100310200	0215820111	1121113
D. phylanthi	21111111?1	2111-10-1	1201101111	2112-01001	111111--22	1111121012	110--00411	51501100-1	1111111111	1123310200	0215?20111	1121111
D. pocsi	21111111?1	2111--2--1	1201101111	2112-01001	11111???22	1111121012	210--00411	51501110-1	1111111111	1123310200	0215720111	1121116
D. racemosae	2111111141	2111-10-1	1201101111	1112-01001	111111--22	1111121012	110--00411	51501100-1	1111111111	1123210200	0215720111	1121116
D. riciniae	2111111101	2111-10-1	1201101111	1112-01001	111111--22	1111121012	110--00411	51501110-1	1111111111	1123210200	0205620111	1121113
D. sandorici	2111111101	2111-10-1	1201101111	2112-01001	11111???22	1111121012	110--00411	51501100-1	1111111111	1122310200	0205820111	1121113
D. securinegus	21111111?1	2111-10-1	1201101111	2112-01001	111111--22	1111121012	110--00411	51501160-1	1111111111	1123210200	0215?20111	1121116
D. septimus	21111111?1	2111--2--1	1201101111	1112-01001	111111--22	1101121012	110--00411	51501100-1	1111111111	1100310200	0215420111	1121113
D. apolongus sp. nov.	2111111141	2111-10-1	1201101111	1112-01001	111111--22	1111121012	1121600411	51501160-1	1111111111	1123310200	0215[56]20111	1121113
D. apobrevus sp. nov.	2111111141	2111-10-1	1201101111	1112-01001	111111--22	1111121012	1121600411	51501160-1	1111111111	1123510200	0215[56]20111	1121113
D. faurius sp. nov.	2111111141	2111-10-1	1201101111	1112-01001	111111--22	1111121012	1121600411	51501160-1	1111111111	1123310200	0215[56]20111	1121116
D. stephanus	21111111?1	2111--2--1	1201101111	2112-01001	111111--22	1111121012	1111200411	51501140-1	1111111111	1100310200	0217220111	1121111
D. strebli	21111111?1	2111-10-1	1201101111	2112-01001	111111--22	1111121012	410--00411	51501100-1	1111111111	1123310200	0215720111	1121116

318-taxon data matrix											1	1
	0	1	2	3	4	5	6	7	8	9	0	1
	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456
D. swieteniae	2111111141	2111-10-1	1201101111	2112-01101	111111--22	1111121012	110--00411	51501110-1	1111111111	1123310200	0215920111	1121113
D. thaianae	2111111101	2111-10-1	1201101111	1112-01001	111111--22	1111121012	110--00411	51501110-1	1111111111	1123210200	0215820111	1121115
D. thangaveli	21111111?1	2111-10-1	1201101111	1112-01001	111101--22	1111121012	210--00411	51500110-1	1111111111	1100210000	0215800111	1121113
D. thunbergiae	211111101	2111-10-1	1201101111	1112-01001	111111--22	1111121012	110--00411	51501100-1	1111111111	1123310200	0205620111	1121111
D. trewier	2111111101	2111--2--1	1201101111	2112-01001	111111--22	1101121012	4111100411	51501100-1	1111111111	1123310200	0215820111	1121115
D. ulmivagrans	2111111101	2111-10-1	1201101111	1112-01001	111101--22	1101121012	110--00411	51501100-1	1111111111	1100210000	0205 [56] 00111	1121111
Diptiloplatus megagrastis	2111111101	2110451021	0101101111	2101201101	1111001022	0101121012	2122200311	71601120-1	1111111111	1123210000	0238700111	1121113
Diptilorhynacus dioscoreae	2111111101	2111-10-1	1201101111	2112-01001	111111--22	1111121012	610--00411	51501100-1	1111111111	1120210200	0215620111	1121113
Diptilorhynacus sinusetus	2111111101	2111--2--1	1211101111	0112-01001	111111--22	1101121012	910--00411	51501100-1	1111111111	1103210000	0215600111	1121116
Diptilostatus nudipalpus	211111141	2111-10-1	0101101111	1101101001	111101--22	1101121012	110--00411	51501120-1	1111111111	1123510000	0205800111	1121115
Disella ilicis	2111111101	2110331051	0101101111	1112-01001	111001--24	0001121001	2122100411	51511100-1	1111111111	1100310000	1--1801111	1121115
Ditrymacus athiasella	2111111101	2110341241	0101101111	0101201101	1110001622	0001121001	2122100311	71631100-1	1111111111	1100310000	0231900111	1121115
Duabangus chiangmai	2111111101	2110331111	0101101111	2101001101	111101--22	1001121012	410--00411	5150113121	1111111111	1100310000	0235[456]00111	1121??3
Ectomerus anysis	2111111101	2110331201	0101101111	2101301001	1110000422	0001121001	2222800411	11100110-1	1111111111	1120310000	0211800111	1132115
Epicecidophyes clerodendris	2111111101	2110341021	0101101111	2101001001	1110000322	0101121001	2122100311	51621100-1	1111111111	1100310000	0231800111	1133116
Epiphytimerus palampurensis	2111111101	2110341241	0101101111	0101101001	1110000422	0001121001	2122900411	71621110-1	1111111111	1100310000	0241900111	1121116
Epitrimerus pyri	2111111101	2110331021	0101101111	0101001001	1110000422	0001121001	2122200411	71601110-1	1111111111	1123310000	0221900111	1121116
Eriophyes pyri	2111111101	2110221201	0101101111	0101101001	1110000322	0001121001	610--00411	31100110-1	1111111111	1121510000	0211900111	1121 ?16
Eriophyes quadrifidus	211111101	2110331021	0101101111	0101201001	1110000422	0001121001	2122100411	11100110-1	1111111111	1123310000	0231900111	1121115
Euterpia fissa	2111111121	2110341031	0111111111	2101001001	1111000222	1001121001	6122100411	81201100-1	1111111111	1100310000	0111200111	112????
Floracarus calonyctionis	2111111101	2110331241	0101101111	2112-01001	111001--24	0001121001	2122100411	61100110-1	1111111111	1123510000	2--1902111	1121115
Fragariocoptes setiger	2111111101	20103410 [014]	0010110111	1010110100	1111000042	2000112100	1212220041	1[67]1500120-	1111111111	1110031000	0022190011	11121??6
Gammaphytoptus camphorae	211111101	2110231241	0101101111	2101301001	1110000422	0001121001	2122100411	51615110-1	1111111111	1110510000	0221700111	1132115
Glyptacus lithocarpi	21111111?1	2111--2--1	0101101111	2101201001	1110000322	0001121001	2122100411	61511110-1	1111111111	1110310000	0211600111	1132116
Heterotergum gossypii	2111111101	2110221241	0101101111	0101201001	1110000422	0001121001	2122400311	61620110-1	1111111111	1120310000	0221800111	1121115
Hyboderus roseus	2111111101	2110341101	0101101111	0101001101	1111000422	1101121012	610--00311	51600100-1	1111111111	1112310000	0231[67]00111	1121112
Hyborhinus kallarensis	2111111101	2110331101	0101101111	0112-01001	1110002422	0001121012	610--00411	51610160-1	1111111111	1100310000	0441600111	1121111
Indonotolox sudarsani	2111111101	2110331001	0101101111	0112-01001	111001--22	0001121001	2122100411	a1401100-1	1111111111	1100310000	0231700111	1121111
Indosetacus rhinacanthi	211111101	2110331241	0101101111	0101401001	1110000422	0001121001	210--00411	11800190-1	1111111111	1123310000	0111900111	1132111
Indotegolophus darjeelingensis	2111111101	2110331241	0101101111	2101401001	1110000522	0001121001	210--00411	51801110-1	1111111111	1123310000	0221700111	1121116
Johnella virginiana	21111111?1	2111--2--1	0101101111	2101201001	1110000422	0001121001	2122200311	71730100-1	1111111111	1110310000	0211600111	1132115
Jutarus benjaminae	2111111101	2111--2--1	0101101111	2112-01001	1110000222	0101121001	1122700411	51500110-1	1111111111	1110310000	0211900111	1121??3
Kaella flacourtiae	2111111141	2111-10-1	1201111111	1112-02101	111101--22	1101121012	110--00411	51501100-1	1111111111	1122210000	0205600111	1121??6
Keiferana neolitseae	2111111101	2110341241	0101101111	2101201001	1110000122	0001121001	2122300411	6140010141	1111111111	1103310000	0351800111	1121??1
Keiferella juniperici	21111111?1	2110341011	0101101111	0101001101	1110000322	0001121001	2133-00411	51301100-1	1111111111	1100310000	0431600111	1121??5
Keiferophyes avicenniae	2111111101	2110331241	0101101111	0101201001	1110000422	0001121001	210--00411	11100110-1	1111111111	1123310000	0231800111	1123116
Knorella gigantochloae	2111111141	2111--2-1	0111111111	2101001001	1111000322	1101121001	8122800411	81671100-1	1111111111	1123310000	0215800111	1121113
Konola hibernalis	2111111101	2110331211	0101101111	2101201001	1111000422	1001121012	a122a00411	6120116171	1111111111	1100210000	0231600111	1123115
Lambella cerina	211111141	2110341111	1201101111	2112-01001	111111--22	1101121012	910--00411	5160110111	1111111111	1120510001	0215700111	1121116
Latinotus wegoreki	2111111101	2110341201	0101101111	0101101001	1110000222	0001121001	2122100411	71601100-1	1111111111	1100310000	0241800111	1121116
Leipothrix solidaginis	2111111121	2110341021	0101101111	0101001201	1111000522	1001121001	2122200411	61601110-1	1111111111	1123310000	0231900111	1121115

318-taxon data matrix											1	1
	0	1	2	3	4	5	6	7	8	9	0	1
	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456
Levonga caseariasis	2111111101	2110441011	1201101111	2112-01101	111101--22	1101121012	110--00411	51601100-1	1111111111	1100210000	0215400111	1121 ?11
Levonga litseae	2111111101	2110441011	1201101111	2112-01001	111101--22	1111121012	110--00411	51100110-1	1111111111	1123210000	0215600111	1121113
Levonga papaitongensis	2111111101	2110451021	1201101111	0112-01001	111101--22	1101121012	210--00411	5160010141	1111111111	1120510001	0215800111	1121??1
Litaculus khandus	2111111101	2110331011	0101101111	2101101001	1110000422	0101121001	2122300411	61620100-1	1111111111	1100310000	0215700111	1121 ?15
Lithocarus thomsoni	2111111101	2110441011	1201101111	1101001001	111111--22	1101121012	410--00411	51601140-1	1111111111	1110210200	0105620111	1121116
Mackiella phoenicis	2111111101	2010331001	0101101111	0101301301	1110000412	0001121001	2122600411	116001b0-1	1111111111	1100310000	0231600111	1121 ?11
Mediugum sanasaii	21111111?1	2110441041	1201111111	0101101001	111111--22	1101121012	112--00411	51500140-1	1111111111	1100210200	0?05620111	1121??3
Mesalox tuttlei	2111111101	2110331241	0101101111	2101001101	1110000422	0001121001	2122800411	61611100-1	1111111111	1123310000	0221900111	1121115
Metaculus syzzgii	2111111101	2110341241	0101101111	1112-01001	1110000522	0001121001	2122300311	71610110-1	1111111111	1123310000	0231900111	1121115
Metaplatyphytoptus amoni	21111111?1	2110341011	0101101111	0112-01001	1110000422	0001121001	3122200411	71661100-1	1111111111	1100510000	$0231 a 00111$	1121??5
Tegoprionus bicristatus	2111111101	2110331241	0101101111	0101001001	1110000522	0001121001	2122100411	61604140-1	1111111111	1123310000	0231900111	1123115
Monotrymacus quadrangulari	2111111101	2110331051	0101101111	2101101101	1110000422	0001121001	3122100311	71821140-1	1111111111	1100310000	0241900111	1121115
Nacerimina gutierrezi	211111101	2110341201	0101101111	2112-01201	1110000322	0101121001	810--00411	11100110-1	1111111111	1123310000	0111600111	1121115
Nalepella tsugifoliae	21111111?1	1110011011	0101101111	0101201101	1110000212	0001121001	9112200411	51300110-1	1111111111	1120310000	0651400111	1121121
Neoacaphyllisa lithocarpi	21111111?1	2110341021	0101101111	2101101001	1110002422	0001121001	2122200411	71601100-1	1111111111	1100510000	0215800111	1121??6
Neoacarhis aglaiae	21111111?1	2110441011	1201101111	2101001001	111101--22	1101121012	610--00411	71601100-1	1111111111	1100310000	0215700111	1121??1
Neocatarhinus bambusae	21111111?1	2110451021	0101101111	2101001001	1111000222	0101121012	6122200411	61601100-1	1111111111	1123310000	0241[56]00111	1121??3
Neocecidophyes mallotivagrans	211111101	2110341231	0101101111	2101301001	1110000322	0001121001	2122100111	11431100-1	1111111111	1100110000	0221800111	1132111
Neocolopodacus mitragynae	2111111101	2110331051	0101101111	0101101001	111001--24	0001121001	2122100411	51620100-1	111111111	1123510000	0211900111	1121115
Neocosella ichnocarpae	2111111101	2110341031	0101101111	2112-01001	111001--24	0001121001	2122200411	61500100-1	1111111111	1123510000	2--1902111	113???6
Neocupacarus flabelliferis	2111111131	2110341221	0111111111	2101001-11	1111000422	1001121001	2122100411	71501100-1	1111111111	1123310000	0211800111	1121114
Neodialox palmyrae	2111111101	2111--2--1	0101101111	0101001001	1111001422	0001121012	210--00411	5161110111	1111111111	1123310000	0765300111	1121111
Neodichopelmus samoanus	2111111101	2110341241	0101101111	2101201001	111001--22	0001121001	2122300411	71620110-1	1111111111	1110310000	0235a00111	1121??5
Neodicrothrix tiliacorae	2111111121	2110341131	0111111111	2101101001	111001--22	0101121001	8122300411	a1420100-1	1111111111	1100310000	0222900111	1121115
Neodiptilomiopus vishakantai	2111111101	2111-11-1	1201101111	1112-13-01	111101--22	1101121012	110--00411	51501110-1	1111111111	1123310000	0215820111	1121113
Neolambella ligustri	21111111?1	2111--2--1	??011???11	0112-01001	111111--22	1101121012	111--00411	51501100-1	1111111111	1100310000	0??5800111	1121??1
Neomesalox kallarensis	2111111101	2110331241	0111101111	2112-01001	1110000422	0001121001	2122800411	6140116111	1111111111	1100310000	0231900111	1121??1
Neometaculus bauhiniae	2111111101	2110341001	0101101111	2112-01001	1110000422	0001121001	2122100411	71621100-1	1111111111	1100510000	0231700111	1121115
Neophantacrus mallotus	2111111101	2110331241	0101101111	2101301001	1110000422	0001121001	210--00311	61604110-1	1111111111	1100510000	0231800111	1121 ?16
Neophytoptus ocimae	211111111	2110331221	0101101111	0101001101	1111000422	1001121001	2122100411	11500110-1	1111111111	1123310000	0221900111	1121115
Neopropilus jatrophus	21111111?1	2011--2--0	0111111111	2101101101	111001--12	0001121001	8122100411	b1620200-1	1111111111	11??310000	0221900111	1121??1
Neorhynacus rajendrani	2111111101	21104410 [12]1	1201101111	1101101001	1111000022	1101121012	110--00411	61501110-1	1111111111	1122210000	0245800111	1121113
Neotegonotus fastigatus	2111111101	2110331251	0101101111	0101101001	1110000522	0001121001	2122400311	61621160-1	1111111111	1100310000	0231900111	1121115
Neserella decora	2111111101	2111--2--1	0101111111	0112-01001	111001--22	0001121001	210--00411	51100110-1	1111111111	1123510000	0211900111	1133213
Norma lanyuensis	21111111?1	2111--2--1	1201101111	2112-01001	111001--22	1101121012	110--00411	51500100-1	1111111111	1100510000	0215700111	1121??5
Notacaphylla chinensiae	2111111101	2110331041	0101101111	2112-01001	111001--22	0001121001	2122800411	7162110121	1111111111	1100310000	0105800111	1121116
Notaceria tetrandiae	2111111101	2110331241	0101101111	0101401001	111001--21	0011121001	210--00111	11100110-1	1111111111	1100310000	0221800111	1121116
Notallus nerii	2111111101	2110331241	0101101111	0101101101	1110000422	0001121001	6122800311	71811150-1	1111111111	1100310000	0221900111	1121115
Nothacus tuberculatus	2111111141	2110331041	0101101111	2101401001	111101--22	0001121001	2122100411	a1100110-1	1111111111	1121210000	0211800111	1121115
Nothopoda rapaneae	2111111101	2110331241	0101101111	2112-01001	111001--22	0001121001	610--00411	11100110-1	1111111111	1123210000	2--1902111	1121115
Notostrix attenuata	2111111101	2110331041	0101101111	2101201001	1110000322	0101121001	b122400311	91611100-1	1111111111	1123310000	0211600111	1121115

318-taxon data matrix											1	1
	0	1	2	3	4	5	6	7	8	9	0	1
	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456
Novophytoptus rostratae	2111111101	2010111241	0101101111	0101101401	1111000422	1001121001	b10--00411	21300110-1	1111111111	1123310000	0241 [ab] 00111	1112211
Novophytoptus stipae	2111111141	2010001241	0101101111	0101001401	1111000522	1001121001	220--00411	41100110-1	1111111111	1123310000	0242900111	1112211
Oziella yuccae	2111111101	2010341050	0101101111	0101001301	1110000412	0001121001	610--00411	11100110-1	1111111111	1120310100	0221 [56]10111	1121211
Palmiphytoptus oculatus	2111111101	2011--2--1	0101101111	1101101101	111001--22	0001121001	d221200211	11101110-1	1111111111	1100110000	0211500111	1123111
Pangacarus grisalis	2111111101	2110331031	0101101111	2112-01001	111101--22	0001121001	2122200411	51600100-1	1111111111	1120510000	2--1802111	1121116
Paracalacarus podocarpi	2111111101	2111--2--1	0101101111	1101101101	1111000122	1101121001	6112100411	51511110-1	1111111111	1123310000	0231900111	1121115
Paracaphylla streblae	2111111101	2110451011	0101101111	1101301001	1111000422	1001121001	210--00411	7162111141	1111111111	1100210000	0235[56] 00111	1121113
Paraciota tetracanthae	2111111101	2110341241	0101101111	2101001001	111101--22	1101121001	2122100111	71620100-1	1111111111	1100310000	0231800111	1121116
Paracolomerus casimiroae	2111111101	2110321241	0101101111	0101401001	1110000422	0001121001	210--00411	11100110-1	1111111111	1120310000	0211800111	1122111
Paraphytoptella arnaudi	21111111 ?	2110221241	010111111	0101301001	1110000422	0001121001	210--00411	11800110-1	1111111111	1123310000	0211800111	1121113
Pararhynacus photiniae	21111111?1	2111-12-1	0101101111	2101001101	1111000122	1001121012	610--00411	a1501100-1	1111111111	1120310000	0?45900111	1121??5
Pareria fremontiae	21111111?1	2110331201	0101101111	0101101001	1110000422	0001121001	210--00411	11800110-1	1111111111	1123310000	0221800111	1121115
Pentamerus rhamnicroceae	2111111101	2110331241	0101101111	0101001101	1110000422	0001121001	2122400411	6160114121	1111111111	1123310000	0231800111	1121116
Pentaporca taiwanensis	21111111?1	1110131001	0101101111	0101301101	1110000022	0001121001	7122100411	51611100-1	1111111111	1100210000	0651600111	1121??1
Pentasetacus araucaria	2111111101	1010331000	0101101111	0101201201	1110000412	0001121001	9122200311	31100110-1	1111111111	1100310000	$0225 a 00111$	1121?21
Peralox insolita	2111111101	2110231201	0101101111	0101201001	1110000422	0001121012	2122900411	616461e0-1	1111111111	1100310000	0331600111	1121111
Phantacrus lobatus	2111111101	1110011201	0101101111	0101101101	1110000212	0001121001	2122800411	61654100-1	1111111111	1123310000	0551600111	1121121
Phyllocoptes calisorbi	2111111101	2110331021	0101101111	1101001101	1110000222	0001121001	2122800411	61100110-1	1111111111	1121310000	0211900111	1121115
Phyllocoptruta arga	211111141	2110331251	0101101111	2101401001	1110000222	0001121001	3122800411	71601160-1	1111111111	1111210000	0211a00111	1121115
Phyllocoptruta oleivora	2111111101	2110331021	0101101111	1101101101	1110000422	0001121001	6122100411	71611100-1	1111111111	1123310000	0211800111	1121115
Phytoptus avellanae	2111111101	2010331010	0101101111	0101001101	1110000522	0001121001	210--00411	11100110-1	1111111111	1113310000	0211 [89] 00111	1123213
Platyphytoptus sabinianae	2111111101	2110331021	0101101111	0101201001	1110000422	0001121001	e121600311	81161110-1	1111111111	1123210000	0211800111	1121113
Porcupinotus humpae	211111101	2110331241	0101101111	0101001001	1110000422	0001121001	2122200111	6160116111	1111111111	1111310000	0231500111	1121116
Porosus monosporae	2111111121	2110331241	0101101111	2101101001	1110000022	0001121001	2122100411	614001c0-1	1111111111	1100310000	0231900111	1121111
Proartacris pinivagrans	2111111101	2110341221	0101101111	0101001001	1110000222	0001121001	2122200411	61600110-1	1111111111	1123310000	0231900111	1121114
Prodiptilomiopus auriculatae	2111111141	2111--2--1	1101101111	2101201001	111111--22	1101121012	410--00411	51601100-1	1111111111	1100310000	0235600111	1121116
Proneotegonotus antiquorae	2111111101	2110451051	0111111111	2101101001	111001--22	0101121001	2122100411	a1620100-1	1111111111	1100310000	0231800111	1121115
Prophyllocoptes riveae	2111111101	2110451051	010111111	2101101001	1110000322	0001121001	2122200411	71620160-1	1111111111	1100310000	0221600111	1121111
Propilus gentyi	211111101	2011--2--1	0101101111	2101101301	111001--22	0001121001	6122100411	71630200-1	1111111111	1120310000	0201a00111	1121121
Prothrix aboula	2111111101	0011--2--0	0111101111	2101301101	111001--12	0001121001	8122100111	71601200-1	1111111111	1100210000	0241800111	113??11
Pyelotus africanae	2111111101	2110331241	0101101111	1101201101	1110000622	0001121001	2122200411	71801150-1	1111111111	1123310000	0231900111	1121??5
Quadracus urticarius	2111111101	2110331201	0101101111	2101001001	1110000422	0001121012	2112600411	91631100-1	1111111111	1123310000	0211800111	1123116
(Kropczynella) mangiferae	211111101	2110341021	0101101111	0101101101	1110000322	0001121012	210--00411	51601110-1	1111111111	1123310000	0231800111	1121??3
Quadriporca mangiferae	21111111?1	2110341011	0101101111	2101001001	1111000222	1001121012	2122200411	a1601100-1	1111111111	1100310000	0231800111	1121??4
Quintalitus squamosus	2111111141	2110331241	0101101111	1101401001	111101--22	0001121001	2122800411	71601100-1	1111111111	1123510010	0211800111	1121??6
Ramaculus mahoe	2111111101	2110321241	0101111111	0112-01001	111001--22	0001121001	210--00411	61100190-1	1111111111	1123510000	0111[89]00111	1121114
Rectalox falita	2111111101	2110331241	0101101111	2101101001	1110000322	0001121001	2122600111	61601100-1	1111111111	1123310000	0221800111	1121115
Retracrus johnstoni	211111101	2010341041	0111101111	2101001201	1110100212	0101121001	8122100111	a163120121	1111111111	1100210000	0241700111	1121111
Rhinophytoptus concinnus	21111111?1	2110331201	0101101111	2101?01?01	1110000422	0001121012	? 112100411	61100110-1	1111111111	11??310000	0331700111	112???1
Rhinotergum schestovici	2111111101	2110331011	0101101111	0101301001	1110000422	0001121012	2122200411	615201f0-1	1111111111	1100310000	0531900111	1121111
Rhombacus morrisi	2111111101	2110341011	0101101111	2101001101	1110000022	0001121001	3122300411	a1620110-1	1111111111	1123510000	0341800111	1121115

318-taxon data matrix											1	1
	0	1	2	3	4	5	6	7	8	9	0	1
	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789	0123456
Rhynacus arctostaphyli	21111111?1	2111-12-1	1201101111	1112-01001	1111000422	1101121012	110--00411	61501110-1	1111111111	1100410000	0215600111	1121115
Rhyncaphytoptus ficicifoliae	21111111?1	2110331201	0101101111	0101201101	1110000422	0001121012	2122600411	61710112-1	1111111111	1100310000	0221700111	1121111
Sakthirhynchus canariae	21111111?1	2111--2--1	1201101111	0112-01001	111111--22	1101121012	110--00411	51601100-1	111111111	1100310000	0211700111	1121??1
Schizacea gynerii	2111111101	2111--2--1	011111111	2101001101	1111000322	1101121001	2122200411	71621100-1	111111111	1123310000	0205800111	1121113
Schizoempodium mesophyllincola	2111111101	2110341211	0101101111	0101001001	1110000522	0001121001	b121800411	31100110-1	1111111111	1123310000	0235900111	1122115
Scoletoptus duvernoia	2111111101	2110331-41	0101101111	0112-01001	1110000122	0001121001	a10--00 [14]11	414001[1a] 0-1	1111111111	1100310000	0111900111	1121116
Setoptus jonesi	2111111101	1110221101	0101101111	0101101101	1110000312	0001121001	510--00311	81101110-1	1111111111	1123310000	0231300111	1121121
Shevtchenkella juglandis	21111111?1	2110341241	0101101111	0101101001	1110000422	0001121001	3122220311	71631100-1	111111111	1123310000	0211900111	1121115
Sierraphytoptus alnivagrans	2111111101	2010331010	0101101111	0101201101	1110000422	0001121001	2122110311	71610100-1	1111111111	1100310000	0231b00111	1121211
Sinacus erythrophlei	21111111?1	2110331241	0101101111	0101101001	111001--22	0001121001	2122100411	71601100-1	1111111111	1100310000	0221800111	1121??6
Stenacis palomaris	2111111101	2110331201	0101101111	1101301001	1110000522	0001121001	$2121[689] 00411$	31100110-1	1111111111	1123310000	0222a00111	1121116
Stenarhynchus aristidus	2111111101	2110331231	0101101111	1101101101	1110000322	0001121012	2122800411	31100110-1	1111111111	1123310000	0221300111	1111116
Steopa bauhiniae	2111111101	2111-12-1	1011101111	1112-01001	111101--22	1101121012	110--00411	51501100-1	1111111111	1110310000	0217000111	1121??5
Suthamus chiangmi	2111111141	2110451111	1001101111	1112-01001	1111100222	1101121012	110--00411	51601100-1	1111111111	1110210000	0215520111	1121??6
Tegolophus califraxini	2111111101	2110331041	0101101111	2101101001	1110000622	0001121001	2122200411	516111[01] 0-1	1111111111	1100310000	0231700111	1121116
Tegonotus mangiferae	2111111101	2110451221	0101101111	0101101101	1110000122	0001121001	3122300411	71631100-1	1111111111	1123310000	0231700111	1121115
Tegoprionus dentatus	2111111101	2110331041	0101101111	2101101001	1110000422	0001121001	3122200311	71611100-1	1111111111	1120310000	0231900111	1121??6
Tergilatus sparsus	2111111101	2110341221	0101111111	0101001101	1110000422	0001121001	2122100411	81621110-1	1111111111	1123510000	0251b00111	1121115
Tetra concava	2111111101	2110111241	0101101111	0101101001	1110000422	0001121001	2122800411	71611120-1	1111111111	1110310000	0211900111	1121116
Tetraspinus lentus	21111111?1	2110341241	0101101111	0101101101	1110000422	0001121001	1122120411	71601100-1	1111111111	1100310000	0231900111	1121115
Thailandus diospyrosae	2111111141	2110451241	1201111111	1101101001	111111--22	0101121012	110--00411	51811100-1	1111111111	1100510000	0211700111	1121??6
Thamnacus rhamnicola	21111111?1	2110331041	0101101111	2101101101	1110000522	0001121001	2122100311	71611100-1	1111111111	1100310000	0231900111	1121??6
Trimeracarus heptapleuri	21111111?1	2110331001	0101101111	1101?01?01	1110000522	0001121001	210--00311	71501110-1	1111111111	11??310000	0231800111	112???6
Trimeroptes eleyrodiformis	2111111101	2110331011	0101101111	1101101001	1111000222	1001121012	2122700111	7150110111	111111111	1123310000	0335800111	1121113
Trisetacus ehmanni	2111111101	1110221100	0101101111	0101101201	1110000312	0001121001	610--00411	11100110-1	1111111111	1111110000	0211600111	1121121
Trisetacus pini	2111111101	1110221100	0101101111	0101101101	1110000312	0001121001	610--00411	11100110-1	1111111111	1111210000	0211600111	1121121
Tumescoptes trachycarpi	2111111101	2110341221	0111111111	0101001101	1111000322	1101121001	2122200411	81211100-1	1111111111	1111210000	0211b00111	1121115
Ursynovia ulmi	211111101	2110001241	0101101111	0101101001	1110000422	0001121001	210--00411	71601100-1	111111111	1100310000	0231800111	1121??3
Vasates quadripedes	21111111?1	2110--1051	0101101111	2101001001	1110000422	0001121001	2122800411	61610110-1	111111111	1123310000	0115700111	1121115
Vimola syzygii	2111111101	2111-10-1	1201101111	2112-01101	111101--22	1101121012	110--00411	51601110-1	1111111111	1123210000	0215800111	1121??3
Vittacus mansoni	2111111101	2110331241	0101101111	2101201001	1110000622	0001121001	2122800311	61611140-1	1111111111	1123310000	0231900111	1121115

APPENDIX E.

List of morphological characters and character states in 66 taxon data set used in analyses. All characters were analyzed unordered, except characters 4, 5, 49, and 52 which were ordered. Except for the ordered characters, no transformation series are implied by the character state numbers. The characters and character states are sub-samples of the characters used in the analyses of the 318 taxon data set, and see Chapter 4 for a complete discussion, and source, of the characters. Some of the character states not applicable for the taxon sample for the 66 taxon data set were omitted, but the characters could not be renumbered in time, and those in between state applicable, were left in. These didn't have an influence on the analyses, and the states will be renumbered, and those inapplicable will be excluded in the data sets for publication in peer reviewed journals.

CHAETOTAXY

Gnathosomal setae

0. Gnathosomal palpal setae d

$$
\begin{aligned}
& 0=\text { present, simple } \\
& 1=\text { present, forked } \\
& 2=\text { absent }
\end{aligned}
$$

Prodorsal setae

1. Setae $v i$

$0=$ pair present
$1=$ one seta absent, position of remaining seta shifted to mid-anterior
$2=$ absent
2. Setae ve
$0=$ present
$1=$ absent
3. Setae $s c$ (presume setae $s c$ in the Eriophyoidea are setae $s c i(s c 1)$)
$0=$ present
$1=$ absent
4. Setae sc relative length
$0=$ exceptionally long (>100)
$1=$ very long $(66-100)$
$2=\operatorname{long}(31-65)$
$3=$ average $(4-30)$
$4=\operatorname{short}(1-3)$
$5=$ minute (not measurable, less than 1 long)
5. Setae sc length relative to prodorsal shield
$0=$ exceptionally long ($>$ three shield length)
$1=$ very long (<three, but >or equal to 1.5 shield length)
$2=$ long (<1.5, but $>$ or equal to one shield length)
$3=$ average length ($<$ one, but >0.2 shield length)
$4=$ short ($<$ or equal to 0.2 , but >0.07 shield length)
$5=$ very short ($<$ or equal to 0.07 shield length)
6. Scapular setal tubercles (dorsal tubercles)
$0=$ primary absent
$1=$ present
2 = secondary absent
7. Setae $s c$, and/or $s c$ setal tubercles position
$0=$ ahead of rear shield margin (ahead, but less than half of shield ahead)
1 = well ahead of rear shield margin (on half of shield or further anteriad)
$2=$ on rear shield margin, or slightly ahead of rear shield margin
8. Direction of projection of setae $s c$

$$
\begin{aligned}
& 0=\text { anteriad, diverging } \\
& 1=\text { anteriad: parallel, converging or up } \\
& 2=\text { medially } \\
& 3=\text { up and to the outside } \\
& 4=\text { posteriad, usually diverging } \\
& 5=\text { posteriad, converging } \\
& 6=\text { any direction }
\end{aligned}
$$

Opisthosomal setae

9. Setae $c l$ (subdorsal setae)

$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { absent }
\end{aligned}
$$

10. Setae $c 2$ (lateral setae)

$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { absent }
\end{aligned}
$$

11. Setal tubercles of setae $c 2$ (lateral setae)

$$
\begin{aligned}
& 0=\text { primary absent } \\
& 1=\text { present } \\
& 2=\text { secondary absent }
\end{aligned}
$$

12. Setae $d\left(1^{\text {st }}\right.$ ventral setae $)$

$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { absent }
\end{aligned}
$$

13. Setae $e\left(2^{\text {nd }}\right.$ ventral setae $)$

$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { absent }
\end{aligned}
$$

14. Setae $h 1$ (accessory setae)

$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { minute or dot-like }(2 \mu \text { or less }) \\
& 2=\text { absent }
\end{aligned}
$$

Coxal plates setae

15. Setae $1 b$

$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { absent }
\end{aligned}
$$

16. Setal tubercles of setae $1 b$

$$
\begin{aligned}
& 0=\text { primary absent } \\
& 1=\text { present } \\
& 2=\text { secondary absent }
\end{aligned}
$$

17. Distance between setal tubercles of setae $l b$ in comparison with distance between setal tubercles of setae $1 a$
$0=1 b$ clearly further apart than $1 a$
$1=1 b$ slightly further apart than $1 a$
$2=1 b$ longitudinally in line with $1 a$
$3=1 b$ slightly closer together than $1 a$
$4=1 b$ clearly closer together than $1 a$
18. Setae $1 a$
$0=$ ahead of setae $2 a$
$1=$ slightly ahead of setae $2 a$
$2=$ in line with setae $2 a$
$3=$ slightly behind setae $2 a$
4 = behind setae $2 a$

Leg setae

19. Leg I: basiventral femoral setae ($b v$)

$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { absent }
\end{aligned}
$$

20. Leg I: setae l ''(antaxial genual setae)
$0=$ present
$1=$ absent
21. Leg I: setae l ' (paraxial tibial setae)
$0=$ present
$1=$ absent
22. Leg I: setae l ' (paraxial tibial setae) position
$0=$ dorsal on tibia
$1=$ displaced to inner side of tibia
$2=$ absent
23. Leg I: setae l ' (paraxial tibial setae) vertical position
$0=$ close to apical (distal) margin (less than quarter tibial length from distal margin)
$1=$ at about distal quarter
$2=$ at distal third
$3=$ on about half of tibia
$4=$ at basal third
$5=$ at basal quarter
$6=$ near basal margin (less than a quarter from basal margin)
24. Leg I: tibial solenidion φ
$0=$ present, in "normal" position
$1=$ present, in ventrodistal position
$2=$ absent
25. Leg I: tarsal solenidion ω position
$0=$ antaxial, on distal third of tarsus
$1=$ dorsal, about mid-tarsus
2 = dorsal, close to and above empodium
3 = lateral, close to empodium, on outer side of tarsus
4 = lateral, close to empodium, on inner side of tarsus
$5=$ ventrad of empodium
26. Leg II: setae $b v$ (basiventral femoral setae)

$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { absent }
\end{aligned}
$$

27. Leg II: setae l '" (antaxial genual setae)

$$
\begin{aligned}
& 0=\text { present } \\
& 1=\text { absent }
\end{aligned}
$$

28. Leg II: paraxial, fastigial, tarsal setae (ft')

$$
0=\text { present }
$$

$1=$ absent

GNATHOSOMA

29. Gnathosoma: oral stylet
$0=$ of short form (Fig. 3.22a)
$1=$ of long form (Fig. 3.22b)
30. Gnathosoma: chelicerae
$0=$ very long and recurved in stylophore
$1=$ relatively straight and relatively short in comparison with palpi (Fig. 3.22a)
$2=$ abruptly bent down near base and relatively long in comparison with palpi (Fig. 3.22b)

PRODORSUM

Prodorsal shield

31. Prodorsal shield shape
$0=$ almost absent
$1=$ broadly oval (shorter than wide)
$2=$ triangular or subtriangular, sometimes with rounded sides or more semicircular
$3=$ subtriangular with bulging sides
32. $=$ subtriangular and broad
$5=$ inverted subtriangular
$6=$ circular or subcircular
7 = diamond-shaped
8 = subquadrate
9 = sub-rectangular
A = elongate oval
B = elongate triangular
33. Prodorsal shield frontal lobe
$0=$ absent
$1=$ short or indistinct (not reaching across cheliceral bases)
$2=$ present
34. Prodorsal shield frontal lobe
$0=$ absent
$1=$ present, thin and flexible
$2=$ present, rigid
35. Apical edge of frontal lobe
$0=$ lobe absent
$1=$ blunt and rounded
2 = blunt and rounded, but narrow in shape (e.g. when lobe is more triangular)
$3=$ blunt and rounded with irregular edge
$4=$ sharply pointed
$5=$ spine-like
$6=$ square with rounded corners
$7=$ rectangular anterior lobe with indentation
$8=$ acuminate, but not sharply pointed
$9=$ small indentation
A = broad, clear indentation with broad lobes
$B=$ fine, slender lateral extensions
Prodorsal shield ornamentation
36. Prodorsal shield ornamentation (Eriophyoidea)
$0=$ shield absent
1 = ornamentation absent
$2=$ absent centrally, ornamented along edges
3 = faint, obscure or virtually unornamented
$4=$ ornamentation present

IDIOSOMA

Opisthosoma shape and microtuberculation

36. Body shape
$0=$ varying from rounded to oval
$1=$ vermiform (similar to Phytoptus and Aceria spp.)
$2=$ cylindrical
$3=$ vermiform, elongated
$4=$ vermiform, extremely elongated

5 = fusiform, medium thick to more "fat" (similar to Diptilomiopus spp.), with or without narrow rear end
6 = fusiform, elongated, medium thick (similar to Aculus or Abacarus spp.)
7 = fusiform, flattened
8 = fusiform, extremely flattened
$9=$ fusiform, very long
A = fusiform, broad anteriorly, very narrow tail
B = fusiform, flattened, narrow tail (e.g. Aberoptus samoae)
37. Opisthosoma dorsoventral differentation: annuli
$0=$ annuli absent
$1=$ subequal and similar in appearance, dorsally and ventrally
$2=$ subequeal, differentiated in appearance dorsally and ventrally
3 = subequal, numerous, and visibly narrower than "normal"
$4=$ subequal or equal in count, but broader than "normal"
$5=$ differentiated into slightly broader dorsal annuli and narrower ventral annuli
6 = clearly differentiated into broader dorsal annuli and narrower ventral annuli
7 = dorsal annuli extremely broader than ventral annuli
$8=$ variably different
38. Opisthosomal dorsal annuli
$0=$ without lateral extensions or lobes
$1=$ very slight lateral projection (no demarcation line laterally)
$2=$ with slight lateral projection (in lateral view, dorsal annuli separated from ventral annuli by some sort of demarcation); the extend of lateral projection not always clear, some of these species not assigned to Tegonotini
$3=$ with clear lateral extensions or lobes (currently defining state for Tegonotini)
$4=$ small spine-like lobes on margin between dorsal and ventral annuli
$5=$ extensive lateral lobes, also present dorsally
$6=$ ventro-lateral ridges forming grooves
7 = lateral lobes uneven, extending more from some annuli
39. Opisthosoma: ridge(s) and/or furrow(s)
$0=$ absent
$1=$ present
$2=$ absent, except for some rear dorsal annuli which are higher than the others
$3=$ some anterior dorsal annuli fused into ellaborate dorsal structures
$4=$ with large lobes dorsally
40. Dorsal annuli of telosome
$0=$ annuli absent
$1=$ not fused
2 = fused
41. Dorsal annuli
$0=$ without microtubercles (mostly smooth)
$1=$ entirely microtuberculated
$2=$ entire but mostly obscure or faint
$3=$ smooth with few scattered microtubercles in sparse clumps (laterally and/or middorsally)
(e.g. Chiangmaia longifolii) or with clumps or spots with microtubercles (see Duabangus
chiangmai)
$4=$ smooth with microtubercles on ridges: lateral (see D. stephanus); relatively large spines on ridges (see Pentamerus rhamnicroceae)
$5=$ faint but clear on lateral ridges (see Notallus nerii)
$6=$ with central area smooth, and microtuberculated laterally

Secretions

42. Wax secretion
$0=$ absent
$1=$ present in adults
$2=$ only present in immatures
43. Wax type and secreting structures
$0=$ absent
$1=$ present, thickened wax bearing ridges
$2=$ present, wax from tubercles
$3=$ broad wax rim around shield, large wax plates along body margin
4 = body covered with wax

LEGS, COXAL PLATES AND STERNAL AREA

Ornamentation on coxal plates andmorphology of sternal area

44. Coxal plates I
$0=$ unornamented (mostly smooth) (also including described as "virtually unornamented")
$1=$ faintly or slightly ornamented
$2=$ ornamented
$3=$ continuation of body striae

45. Coxal plates II

$0=$ unornamented (smooth), including virtually unornamented
1 = faintly ornamented
2 = sparsely ornamented
3 = ornamented
$4=$ continuation of body striae
46. Prosternal apodeme: coxae I
$0=$ more widely separated than found in the Eriophyoidea, prosternal apodeme not present, "normal' ventral area extended between coxae
1 = widely separated (see Davisella breitlowi, Neocecidophyes mallotivagrans,
Palmiphytoptus oculatus and Trisetacus ehmanni)
$2=$ separated
$3=$ coxae I touching, usually with sternal apodeme present
$4=$ sternal apodeme visibly broader than usually in the Eriophyoidea (see Rhynacus arctostaphyli)
$5=$ totally fused centrally (or prosternal apodeme may be present but effaced - not "visible" as sternal line)

LEGS (excluding coxae)

47. Leg I: femur and genu articulation
$0=$ normally articulated
$1=$ division weak, almost fused
$2=$ not articulated, totally fused
3 = genu present, but "fused" to femur
48. Leg I: tibia presence
$0=$ present
$1=$ partly fused to tarsus
$2=$ completely fused to tarsus (absent)
49. Leg I: tibia length
*1 = short (2-3 micron)
$2=$ average ($4-11$ micron)
$3=$ medium long (12-13 micron)
$4=$ average long (14-15 micron)
$5=$ long (16-17 micron)
$6=$ very long (19-20 micron)
7 = very, very long (22 micron)
$8=$ exceptionally long (30 micron)

* character state numbers start at 1 , and not at 0 , because 0 (absent) was replaced with "-" (not applicable) in the final matrix that was analysed (Appendix E)

50. Leg I: length of tibia in relation to length of tarsus
$0=$ tibia shorter than half of tarsus length
$1=$ tibia shorter than tarsus, half or more of tarsus length
$2=$ tibia length equal to tarsus length
$3=$ tibia longer than tarsus, but less than half the length of tarsus longer
$4=$ tibia longer than tarsus, half or more, but less than twice the tarsus length
$5=$ tibia about twice as long as tarsus
51. Leg I: empodium
$0=$ pad-like with numerous rays
$1=$ simple
2 = simple, distally elongated
$3=$ simple, rays unsymmetrical (more rays on one side than the other) e.g. Dechela epelis
4 = partly divided
5 = divided
6 = divided, stems unequal
7 = divided, stems pad-like with numerous rays
$8=$ divided, with central stem
9 = palmate
A = basal rays finely branched, hair-like (e.g. Brevulacus reticulatus)
$\mathrm{B}=$ reduced to a bristle
$\mathrm{C}=$ six tenent hairs basally and centrally attached
52. Leg I: number of empodial rays.
$0=$ numerous rays (can not count)
$1=16$-rayed or more
$2=11-12$ rayed
$3=10$-rayed
$4=9$-rayed
$5=8$-rayed
$6=7$-rayed
7 = 6-rayed
$8=5$-rayed
$9=4$-rayed
A = 3-rayed
B $=2$-rayed
C = reduced to a bristle (no rays)
$\mathrm{D}=$ six tenent hairs
53. Leg II: femur and genu articulation
$0=$ normally articulated
1 = division weak, almost fused
$2=$ not articulated, totally fused
54. Leg II: tibia presence
$0=$ present
$1=$ partly fused to tarsus
$2=$ completely fused to tarsus (absent)

GENITALIA

55. Location of genital area
$0=$ caudally
$1=$ about $9-15$ annuli removed from coxae, located posterior to setae $c 2$
$2=$ close to, but not appressed to coxae
3 = appressed to coxae
56. Form of female internal genital apodeme
$0=$ homologous structure to eriophyoid female genital apodeme absent
$1=$ moderately extended to front ("normal")
$2=$ folded up, appearing like a thick transverse line
$3=$ folded up, but appearing slightly broader than a transverse line
57. Shape of spermathecae
$0=$ spermathecae homologous to the eriophyoid spermathecae absent
1 = round or ovalish
2 = elongated
58. Spermathecal tubes
$0=$ spermathecal tubes similar to those in the Eriophyoidea absent
$1=$ relatively short to very short (normal)
2 = long
59. Female genital coverflap
$0=$ absent
$1=$ entirely unornamented
$2=$ entirely unornamented, but divided into a basal and distal area (e.g. Hoderus roseus)
$3=$ basally ornamented, distally unornamented (smooth)
$4=$ basally unornamented (smooth), distally ornamented
$5=$ entirely ornamented, divided in basal and distal area
$6=$ entirely ornamented, not divided in basal and distal area

APPENDIX F.

Data matrix of morphological characters for 64 eriophyoid species and two outgroup species (Orphareptydeus and Mononychelus) for the 66tax analyses. ? = uncertain or unknown character states, - = inapplicable states.

| APPENDIX F. | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0 | 2 | |

	0	1	2	3	4	5
	0123456789	0123456789	0123456789	0123456789	0123456789	0123456789
Diptilomiopus averrhoae	?211? ? 10?1	1200212?01	11? ?221101	210??45501	100?203202	1552021111
Diptilomiopus jevremovici	?211? ? 10?	$1200112 ? 01$	11? 221111	220??45501	$160 ? 233202$	1572021115
Epicecidophyes clerodendris	0210341021	0100201000	0003220100	1222135621	$100 ? 003002$	3180033116
Eriophyes pyri	0210221201	0100001100	0003220000	160??43100	$110 ? 215002$	$1190021 ? 16$
Eriophyes quadrifidus	0210331021	0100001200	0004220000	1222141100	$110 ? 233002$	3190021115
Hyboderus roseus	0210341101	0100001011	0004221101	260??35600	$100 ? 123002$	$31[67] 0021112$
Knorella gigantochloae	2211? ? 2? ?	0111201001	0003221100	1822848671	$100 ? 233002$	1580021113
Litaculus khandus	0210331011	0100201100	0004220100	1222346620	$100 ? 003002$	$1570021 ? 15$
Nalepella tsugifoliae	? 110011011	0100001210	0002120000	1912245300	110?203006	5140021121
Neopropilus jatrophus	?201? ? 2? ? 0	0111201110	$01 ? ? 120000$	$182214 \mathrm{B620}$	200?? ? 3002	$2190021 ? ? 1$
Neorhynacus rajendrani	02104410 [12]1	1200101101	0000221101	210??46501	110?222002	4580021113
Nothopoda rapaneae	0210331241	$0100212 ? 00$	01? ? 220000	160??41100	110?23202?	? 190221115
Novophytoptus stipae	2200001241	0100001041	0005221000	120??44100	110?233002	4290012211
Paracalacarus podocarpi	0211? ? 2? ? 1	0100101111	0001221100	1612145511	$110 ? 233002$	3190021115
Paracolomerus casimiroae	0210321241	0100001400	0004220000	120??41100	$110 ? 203002$	1180022111
Pareria fremontiae	? 210331201	0100001100	0004220000	120??41800	$110 ? 233002$	2180021115
Pentamerus rhamnicroceae	0210331241	0100001010	0004220000	1222446601	1412233002	3180021116
Pentasetacus araucaria	0100331000	0100001220	0004120000	1922233100	$110 ? 003002$	25A0021?21
Phantacrus lobatus	0110011201	0100001110	0002120000	1222846654	$100 ? 233005$	5160021121
Phyllocoptruta arga	2210331251	0100201400	0002220000	1322847601	$160 ? 112002$	$11 A 0021115$
Phyllocoptruta oleivora	0210331021	0100101110	0004220000	1622147611	$100 ? 233002$	1180021115
Phytoptus avellanae	0200331010	0100001010	0005220000	120??41100	$110 ? 133002$	11[89]0023213
Prothrix aboula	$0001 ? ? 2 ? ? 0$	0110201310	$01 ?$? 120000	1822117601	$200 ? 002002$	$418003 ? ? 11$
Retracrus johnstoni	0200341041	0110201020	1002120100	182211 A631	2012002002	4170021111
Rhynacus arctostaphyli	?211? ? 12?1	1200112?01	0004221101	210??46501	110?004002	1560021115
Rhyncaphytoptus ficifoliae	? 210331201	0100001210	0004220001	2222646710	$112 ? 003002$	2170021111
Schizoempodium mesophyllincola	0210341211	0100001000	0005220000	1B21843100	$110 ? 233002$	3590022115
Sierraphytoptus alnivagrans	0200331010	0100001210	0004220000	1222137610	100?003002	$31 \mathrm{B0} 021211$
Tegolophus califraxini	0210331041	0100201100	0006220000	1222245611	1[01]0?003002	3170021116
Tegonotus mangiferae	0210451221	0100001110	0001220000	1322347631	$100 ? 233002$	3170021115
Thamnacus rhamnicola	? 210331041	0100201110	0005220000	1222137611	$100 ? 003002$	$3190021 ? ? 6$
Trisetacus ehmanni	0110221100	0100001120	0003120000	160??41100	$110 ? 111002$	1160021121
Vasates quadripedes	?210? ? 1051	0100201000	0004220000	1222846610	$110 ? 233001$	1570021115

