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4.1 INTRODUCTION 

In the literature of reliability extensive studies have been made on different types of 

two-unit standby systems owing to their frequent use in modern business and industrial 

systems. Nakagawa and Osaki (1974) have studied the behaviour of a two-unit (priority 

and ordinary) standby system with two modes for each unit. They have taken exponential 

failure and repair time distributions for the ordinary unit, while the distributions for the 

priority unit are arbitrary. Much work related to the switching device in standby systems 

has been done by various authors including Goel and Gupta (1984a, b). The cost analysis 

of such systems has also been discussed by Murari and Goel (1984) and Goel et al. (1985).   

Goel et al (1985) have discussed a man-machine system considering the physical 

conditions of the repair facility, namely poor and good. The physical conditions of the 

repair facility also affect the operation of the system. However, no previous work has 

considered the physical conditions of the repair facility. It is reasonable to expect the repair 

facility to work with a higher repair rate if it is in a poor physical condition. Consequently 

the repair time distribution will be different in these two situations. The purpose of the 

present chapter is to analyze such a system. The system under consideration is a two 

dissimilar unit cold standby system with an imperfect switch. Initially, one unit is operative 

and is called a priority unit (p) and the other is a cold standby or ordinary unit (o). The p-

unit gets priority for both operation and repair (Shi and Liu (1996)). When the p-unit fails 

the standby unit is switched to operate with the help of a switching device. The switch may 

be available at the time of need with known probability p (1 – q). 

The distribution of random variables denoting time to failure and time to repair are 

taken to be arbitrary. Depending on the physical conditions (good or poor) of the repair 
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facility, there are two different repair time distributions to be considered. The probability 

that at any time the repairman’s condition will be good is p q1 1( 1)− . We analyze the system 

by using the regenerative point technique and obtain various operating characteristics. The 

confidence limits for the standby state availability and the busy period in steady-state are 

obtained. 

The organisation of this chapter is as follows: Section 4.1 is introductory in nature, and 

the notation of this chapter is discussed in section 4.2. Various auxiliary functions 

(transition probabilities and sojourn times) are derived in section 4.3. The reliability 

analysis is discussed in section 4.4. In section 4.5, availability analysis is discussed. The 

busy period analysis and the cost benefit analysis have been studied in sections 4.6 and 4.7 

respectively. The confidence limits, for the steady state availability, are studied in section 

4.8, under the assumption that all the underlying distributions are exponential, with 

different parameters. In section 4.9, the system is illustrated numerically. 

 

4.2 NOTATION 

 E0  State of the system at t=0 

 E  Set of regenerative states 

E   Set of non-regenerative states 

p1  P[ the switch is good at the time of need];    p q1 11= −  

f1(t), F1(t) The p.d.f. and c.d.f. of the life time of the p-unit  

f2(t), F2(t) The p.d.f. and c.d.f. of the life time of the o-unit  

gi(t), Gi(t) The p.d.f. and c.d.f. of the repair of the p-unit (i = 1, 2) 
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ki(t), Ki(t) The p.d.f. and c.d.f. of the repair of the o-unit (i = 1, 2) 

hi(t), Hi(t) The p.d.f. and c.d.f. of the time to repair of the switching device; i = 1, 2 

i  = 
1
2

if the repair facility is in good condition 
if the repair facility is in bad condition 

RST
UVW 

 p2  P[ the repair facility’s condition is good];    p q2 21= −  

qij(t), Qij(t) The p.d.f. and c.d.f. of direct transition time from one regenerative state Si to  

another regenerative state Sj   

pij P[the system transits from regenerative state Si to regenerative state Sj ] 

 = ∞Qij ( )

q (t),  Q (t)ij
(k)

ij
(k)  The p.d.f. and c.d.f. of transition time from regenerative state Si to Sj via 

non-regenerative state Sk  

pij
( )k   Steady-state probability that the system transits from state Si to Sj via non- 

regenerative states Sk;  Q  ij
k( ) ( )∞

π i ( )⋅   The c.d.f. of the time to system failure when the starting state E S Ei0 = ∈  

Ai ( )t   P[System is up at time t  E S Ei0 = ∈ ] 

Bi ( )t   P[System is under repair at time t  E S Ei0 = ∈ ] 

µ i   Mean sojourn time in states S Ei ∈  

~ ( )Q sij    e dQ tst
ij

−
∞z ( )
0

q sij
* ( )    e q t dtst

ij
−

∞z ( )
0
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µ i     = = − = −∑z∑ ∑
∞

tdQ t Q qij ij
jj

ij
j

( ) ~ ( ) ( )*'

0 0
0

©  Symbol for ordinary convolution 

ⓢ  Symbol for Stieltjes convolution 

 

4.3 AUXILIARY FUNCTIONS  

     For the reliability and unavailability analyses, and the busy period analysis, we need to 

derive various auxiliary functions (transition probabilities and sojourn times). We need to 

define first the following states (see EL-Said & EL-Sherbeny (2005)): 

 

Up states: S0  (N0 , Ns) ;      S2  (Fr, N0);      S4   (N0, Fr), 

Down states: S1  (Fw, Ns, Sr) ;  S3  (Fr, Fw), 

where 

N0 : unit in normal mode and operative 

Ns : unit in normal mode and standby 

Fr : unit in failure mode and repair from the epoch of entry into the state 

Fw : unit in failure mode and waiting for repair 

Sr : switching device under repair 

Fr : unit in failure mode and under repair with the repair continued from the earlier 

state. 

 

The order of the position of units in the states specifies the type of unit. Possible 

transitions between states, with the failure and repair time c.d.f’s, are shown in Figure 4.1 . 
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It is observed that the epoch of entry into the states S1, S2 and S4 are degenerative 

points and therefore these states are regenerative states. E denotes the set of these states. 

Furthermore, the epochs of entry into the states S3 from S4 and S0 from S2 are regenerative 

and the epoch of entry into S3 from S2 and S0 from S4 are non-regenerative. Therefore these 

states will behave as regenerative states only with respect to S4 and S2 respectively. 

Let 0 = T0, T1, ... denote the epochs of entry into the states S Ei ∈  and  denote the 

state visited at epoch T , i.e. just after the transition at T . Then { , } is a Markov 

renewal process with state space E. 

Xn

n
+

n Xn Tn

Further 

Q t P X j T T t X iij n n n n( ) [ , ]= = − ≤+ +1 1 =   

where 

Q t q f u du q F t
t

01 1 1 1 1
0

( ) ( ) ( )= =z  

Q t p f u du p F t
t

02 1 1 1 1
0

( ) ( ) ( )= =z  

Q t p dH t q dH t
tt

12 2 1 2 2
00

( ) ( ) ( )= + zz  

             = +p H t q H t2 1 2 2( ) ( )  

  Q t p F t dG u q F u dG u
tt

20 2 2 1 2 2 2
00

( ) ( ) ( ) ( ) ( )= + zz  

   

    Q t p f u dG u q f u dG u
tt

24
3

2 2 1 2 2 2
00

( ) ( ) ( ) ( ) ( ) ( )= + zz
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     = Q t23( )

   Q t p G t q G t34 2 1 2 2( ) ( ) ( )= +  

    Q t q p k u dF u q k u dF u
tt

41
0

1 2 1 1 2 2 1
00

( ) ( ) [ ( ) ( ) ( ) ( )= + zz ]

]Q t p p k u dF u q k u dF u
tt

42
0

1 2 1 1 2 2 1
00

( ) ( ) [ ( ) ( ) ( ) ( )= + zz  

 and  Q t p K u dF u q K u dF u
tt

43 2 1 1 2 2 1
00

( ) ( ) ( ) ( ) ( )= + zz . 

    Letting and usingt →∞ p Qij ij= ∞( ) , we get the transition probability matrix 

P pij= with the following non-zero elements 

p q01 1= ; p p02 1=  ; p p12 34 1= =            (4.1) 

p p F t dG t q F t dG t20 2 2 1 2 2 2
00

= +
∞∞ zz( ) ( ) ( ) ( )  

    p p F t dG t q F t dG t24
3

2 2 1 2 2 2
00

( ) ( ) ( ) ( ) ( )= +
∞∞ zz

    p q p k t dF t q k t dF t41
0

1 2 1 1 2 2 1
00

( ) [ ( ) ( ) ( ) ( )= +
∞∞ zz ]

]p p p k t dF t q k t dF t42
0

1 2 1 1 2 2 1
00

( ) [ ( ) ( ) ( ) ( )= +
∞∞ zz  

and   p p K t dF t q K t dF t43 2 1 1 2 2 1
00

= +
∞∞ zz ( ) ( ) ( ) ( ) . 

We can easily verify that 

   p p01 02 1+ =                 (4.2)  
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                (4.3)    

 and 

p p p20 24
3

23 1+ + =( )

   .             (4.4) p p p41
0

42
0

43 1( ) ( )+ + =

To calculate the mean sojourn time µ 0 in state , we observe that so long as the system 

is in , there is no transition on to  or  . Hence if T denotes the sojourn time in 

state , then 

S0

S0 S1 S2

S0

µ 0
0

= >
∞zP T t dt[ ]   

     = +
∞ ∞z zp F t dt q F t dt1 1
0

1 1
0

( ) ( )  

=
∞zF t dt1
0

( )              (4.5) 

µ1 2 1 2
0

2
0

= +
∞ ∞z zp H t dt q H t dt( ) ( )            (4.6) 

µ 2 2 1 2 2
0

2 2
0

= +
∞ ∞z zp G t F dt q G t F dt( ) ( )            (4.7) 

µ 3 2 1 2
0

2
0

= +
∞ ∞z zp G t dt q G t dt( ) ( )            (4.8) 

and µ 4 2 1 1 2
0

2 1
0

= +
∞ ∞z zp K t F dt q K t F dt( ) ( ) .           (4.9) 
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4.4 RELIABILITY ANALYSIS 

 

The time to system failure (TSF) can be regarded as the first passage time to either of 

the failed states S1 or S3. To obtain it we regard these states as absorbing. Employing the 

arguments used for regenerative processes we obtain the following 

 

π 0 01 02( ) ( ) ( )t Q t Q t= + ⓢπ 1( )t             (4.10) 

π 2 23 20( ) ( ) ( )t Q t Q t= + ⓢπ 0 ( )t           (4.11) 

and  ⓢπ 4 41
0

42
0( ) ( ) ( )( ) ( )t Q t Q t= + π 2 ( )t + Q .         (4.12) t43( )

 

Taking the Laplace-Stieljes transform of the equations (4.10) to (4.12), the solution of 

π i s( ) ,  ( can be written in the following form , , )i = 0 2 4

~
~
~

~
~

~

~
~

~ ~

π
π
π

0

2

4

02

20

42

1

01

23

41 43

1 0
1 0

0 1

F
H
GG

I
K
JJ=

−
−

−

F
H
GGG

I
K
JJJ +

F
H
GGG

I
K
JJJ

−
Q

Q
Q

Q
Q

Q Q
.        (4.13) 

 

We have omitted the argument ‘s’ for simplicity from ~ ( )Q sij and ~ ( )π ij s . Simplifying 

(4.13), we get  

~ ( ) ( )
( )

π 0
1

1

s N s
D s

=            (4.14) 

where  

  N s Q Q Q1 01 02( ) 23
~ ~ ~= +            
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  D s Q Q1 01( ) 2 20
~ ~= − . 

 

Making use of relations (4.1) – (4.4), it can be shown that ~ ( )π 0 0 = 1, which implies that 

π 0 ( )t  is a proper distribution. Now, the mean time to system failure, given that the system 

started from S0, 

    E t d
ds

s s( ) ~ ( )= − =π 0 0  

    =
+
−

µ µ0 2

201
p

p p
.

.
.           (4.15)  

 

4.5 AVAILABILITY ANALYSIS 

 

Let  be the probability that the system, having started from SM ti ( ) i, is up at time t, 

without making any transition to any other regenerative state belonging to E. 

By simple probabilistic arguments we have 

M t p F t q F t F t0 1 1 1 1 1( ) ( ) ( ) ( )= + =             (4.16) 

M t F t p G t q G t2 2 2 1 2 2( ) ( )[ ( ) ( )]= +          (4.17) 

and  M t F t p K t q K t4 1 2 1 2 2( ) ( )[ ( ) ( )]= + .         (4.18) 

From the arguments used in the theory of regenerative process, the pointwise 

availabilities are seen to satisfy the following relations: A ti ( )

A t q t0 01( ) ( )= © A t q t1 02( ) ( )+ © A t M t2 0( ) ( )+         (4.19) 

A t q t1 12( ) ( )= ©             (4.20) A t2 ( )
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A t q t2 20( ) ( )= © ©A t q t0 24
0( ) ( )( )+ A t M t4 2( ) ( )+         (4.21) 

A t q t3 34( ) ( )= ©             (4.22) A t4 ( )

0 1 0 0
0 1 0

0 0 0 1
0 1

*

*

*

*

*

* *

*

* *

*

* * *

( )
( )
( )
( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )

and © © © .      (4.23) A t q t4 43( ) ( )= A t q t3 41
0( ) ( )( )+ A t q t1 42

0( ) ( )( )+ A t M t2 4( ) ( )+

Taking Laplace transforms of (4.19) – (4.23), the solution for can be written in 

the matrix form 

A si
*( )

 

A s
A s
A s
A s
A s

q s q s
q s

q s q s
q s

q s q s q s

0

1

2

3

4

01 02

12

20 24

34

41 42 43

1 0 0L

N

MMMMMM

O

Q

PPPPPP
=

− −
−

− −
−

− − −

L

N

MMMMMM

O

Q

PPPPPP

M s

M s

M s

0

2

4

0

0

*

*

*
.

( )

( )

( )

L

N

MMMMMM

O

Q

PPPPPP
       (4.24) 

 

Simplifying (4.24) for , the Laplace transform of pointwise availability when the 

system started operation from state , we get 

A s0
*( )

S0

   A s N s
D s0

2

2

*( ) ( )
( )

=  

where  N s q q M M q q q2 34 43 0 2 01 121( ) ( )[ ( )]* * * * * * *= − + + 02

+ ]

1 1* * * * * *( ) ( )[ ( )= − − +

    − + +q M q q q M q q q24 0 41 12 42 4 01 12 02
* * * * * * * * *[ ( ) ( )

and 

 . D s q q q q q q2 34 43 20 01 12 02
* ] − +q q q q24

3
42

0
41

0
12

( )* ( )* ( )* *( )

Here   q s qij ij
* *( ) =

The steady state availability , is given by A∞
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  A sA s N
Ds∞ →∞

= =lim ( )*
0

2

2

 

where 

    N p p p2 43 20 0 2 24
3

01= − + +( )[ )] ( )µ µ µ

  D p p q p2 43 20 0 1 20 11= − m+ +( )[ ]µ µ  

    + +p p p n24
3

41
0

1 43 3
( ) ( )[ ]µ µ +

u

   m p tdG t q tdG t= +
∞ ∞z z2 1 2
0

2
0

( ) ( )

and  . n tdF t=
∞z 1
0

( )

Now the expected up-time of the system in (0, t] is 

   µ u

t

t A u d( ) ( )=z0
0

so that 

  µ u s A s
s

*
*

( ) ( )
= 0  

and the expected down-time of the system in (0, t] is 

   µ µd ut t t( ) ( )= −

so that  

µ µd us
s

s* *( ) ( )= −
1
2 . 

Since is known explicitly, the above quantities can be computed easily. A s0
*( )
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4.6 BUSY PERIOD ANALYSIS  

 

Let be the probability that the repair facility is busy given that the system entered 

state  at t = 0. 

B ti ( )

Si

By probabilistic arguments, we have  

B t q t0 01( ) ( )= © B t q t1 02( ) ( )+ ©          (4.29) B t2 ( )

B t q t1 12( ) ( )= © B t v t2 1( ) ( )+            (4.30) 

B t q t2 20( ) ( )= © ©B t q t0 24
3( ) ( )( )+ B t v t4 2( ) ( )+         (4.31) 

B t q t4 41( ) ( )= © © ©       (4.32) B t q t1 42
0( ) ( )( )+ B t q t2 43( ) ( )+ B t v t3 4( ) ( )+

where 

  v t p H t q H t1 2 1 2 2( ) ( ) ( )= +  

  v t p G t q G t2 2 1 2 2( ) ( ) ( )= +  

v t p G t q G t3 2 1 2 2( ) ( ) ( )= +  

and  v t F t p K t q K t4 1 2 1 2 2( ) ( )[ ( ) ( )]= + .          (4.33) 

Taking Laplace transforms of equations (4.29) – (4.33) and solving for , B s0
*( )

  B s N s
D s0

3

2

*( ) ( )
( )

=  

   N s v q q q q q q q3 1 01 43 34 24
3

41
0

01 431 1( ) [ ( ) ( )]* * * * ( )* ( )* * *= − + − −

    + + − + +( )[( )* * * * * * * ( )* * ( )* *q q q q q v q q v q v01 12 02 43 34 2 42 24
3

3 24
3

41 .]

 

In the long run, the fraction of time for which the system is under repair is given by 
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  B B t sB s N
Dt s∞ →∞ →

= = =lim ( ) lim ( )*
0 0 0

3

2

 

   N p q p p p p m p3 1 43 1 20 24
3

4
0

24
3

4 431 1= − + + + −µ µ( ) [ ] (( ) ( ) ( ) p20 )]

u

The expected busy period of the repair facility in (0, t] is 

   µb

t

t B u d( ) ( )=z0
0

so that 

  µb s B s
s

*
*

( ) ( )
= 0 . 

 

4.7 COST ANALYSIS 

 

We now obtain the cost function of the system considering the mean up-time of the 

system and the expected busy period of the repair facility. 

Let us define C1 as the revenue per unit-time and C2 as the cost of repairs per unit time. 

Then the expected total profit earned in (0, t] is 

G(t) = expected total revenue in (0, t] – expected repair cost in (0, t] 

          = C t C tu1 2 0µ µ( ) ( )− . 

The expected profit per unit time is 

  g t G t
t

( ) ( )
=  
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4.8 CONFIDENCE LIMITS 

 

When failure and repair time distributions are exponentially distributed and the switch 

is perfect, i.e. ;  p p1 2 1= = q q1 2 0= =  

   ;     f t e t
1 1

1( ) = −α α f t e t
2 2

2( ) = −α α

   ;   g t e t( ) = −β β
1

1 k t e t( ) = −β β
2

2

then 

  MTSF =
+ +β α α
α α

1 1

1 2

2            (4.34) 

 A∞ =
+ + +

+ + + + +
β β β α α α α

β β β α α α α β β α
1 2 1 1 2 1 2

1 2 1 1 2 1 2 1 2 1

[ ( ) ]
( ) ( )

         (4.35) 

and 

 B∞ =
+ + + +

+ + + + +
α β β α β β α α α

β β β α α α α β β α
1 1 2 2 1 2 1 1 2

1 2 1 1 2 1 2 1 2 1

[ ( )
( ) (

]
)

n

.         (4.36) 

 

4.8.1 CONFIDENCE LIMITS FOR  A∞

 

Let ;  (i = 1, 2) be random samples of size n, each drawn from 

exponential populations with failure rates, 

X X Xi i i1 2, ,...,

( , )α α1 2 respectively. 

Similarly ;  (i = 1, 2) be random samples of size n, each drawn from 

exponential populations with repair rates (both p-unit and o-unit) (

Y Y Yi i i1 2, ,..., n

, )β β1 2 respectively. 
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If α 1 is the parameter of the exponential distribution, then an estimate can be found for 

either α 1 , or for the parameter θ
α1

1

1
= , which is equal to the mean value of the time of 

failure-free operation of the p-unit. 

For the sake of analysis, let 

  θ
α1

1

1
= , θ

α2
2

1
= , θ

β3
1

1
= ,θ

β4
2

1
= . 

The maximum likelihood estimator (MLE) of θ 1 is given by X
n

X i
i

n

1
1

1
=

=
∑ 1 . Similarly 

X 2 , X 3 and X 4  are the MLE’s of θ 2 ,θ 3  and θ 4 respectively. 

 

  $ [( ) ]
( ) (

A X X X Y X X Y YY
X X X X Y Y X Y X Y X Y YY∞ =

+ + +
+ + + + +
1 1 2 1 2 2 2 1 2

1 1 2 1 1 1 2 1 1 2 1 1 1 2 )
  

$A∞ is a real-valued function in X X X X1 2 3, , , 4 , which is also differentiable. 

By an application of the central limit theorem [Rao (1973)], it follows that 

n ( X -   )  N  ( ,  )Dθ ⎯ →⎯ 4 0 Σ as n → ∞. 

where 

X X X Y Y= ( , ,,1 2 1 2 )  

θ θ θ θ θ= ( , , , )1 2 3 4 . 

The dispersion matrix Σ = ( )σ ij 4 4x  is given by 

Σ = diag( , , , )θ θ θ θ1
2

2
2

3
2

4
2 . 

From (Rao (1973)), as n → ∞ 
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 n ( A  -  A  )  N ( , D
∞ ∞ ⎯ →⎯$ ( ))0 2σ θ  where 

σ θ
θ

σ2

11

4 2

( ) = ∂
∂

F
HG

I
KJ∞

=
∑ A
i

ii  

=
∂
∂

F
HG

I
KJ∞

=
∑ A

ii
iθ

θ
1

4 2
2 . 

Replacing  θ  by its consistent estimator $ ( , , ,θ = X X Y Y1 2 1 2 ) , it follows that 

$ ( $ )σ σ θ2 2= is a consistent estimator of (see Wackerly et al (2002). σ θ2 ( )

Then by Slutzky’s theorem, (Slutsky (1928)), 

  n ( A  -  A  )   N ( , D )D∞ ∞ ⎯ →⎯
$

$σ
0  as n → ∞. 

This implies 

  P [ -  k   n ( A  -  A  )   k  ] =  1 -  
2 2
α α

σ
α≤ ≤∞ ∞$

$
  

where  is obtained from normal tables, i.e. the 100(1 – α)% confidence interval is given  

by 

kα /2

   $ $
/A k

n∞ ± α
σ

2 . 

 

4.8.2 CONFIDENCE LIMITS FOR B∞

 

The procedure is identical to section 4.8.1 except 

$ [( ) ]
( ) (

B Y X X Y X X Y YY
X X X X Y Y X Y X Y X Y YY∞ =

+ + +
+ + + + +

1 1 2 1 2 1 1 1 2

1 1 2 1 1 1 2 1 1 2 1 1 1 2 )
. 
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When we follow the procedure as in section 4.8.1, we get the confidence limits for . 

The confidence limits for are  

$β∞

$β∞

  $ $
/B k

n∞ ± α
σ

2 . 

 

4.9 NUMERICAL ILLUSTRATION 

 

Assuming that the units are identical, the switch is perfect and failure and repair rates 

are constant, that is 

  f t f t e t
1 2( ) ( )= = −α α

  g t g t e t
1 2( ) ( )= = −β β

 . k t k t e t
1 2( ) ( )= = −γ γ

The expressions for MTSF and  reduce to the following forms: A∞

MTSF p q
p q

=
+ + + + + +
+ + − + − +

( )( ) [ ( ) ( )
[( )( ) ( ) ( )]

]α β α γ α α γ α β
α α β α γ β α γ γ α β

2 2

2 2

 

and A A
B C∞ = +

 

where   A = + +βγ α β α γ( ) (2 2)

B p q p q= + − + + + +[ {( ) ( )} ][ { ( ) }α β γ γ β βγ βγ α γ β βγ2 2 2 2  

    + + + + +α α β γ αβγ γ β3 2
2 2( ) ( p q )]

and  

C p q p q p q= + + + + + + + +[ ( )][{ ( )}( ) ( )( )]α α γ β α α γ β γ β βγ α β α γ2
2 2

3 2
2 2 2 2 . 
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Taking β = 4, γ = 1 and β = 15, γ = 5, the values for MTSF and steady state availability 

corresponding to p2 = 1, 0.5 and 0 and for different values of α can be calculated. 

Figures 4.2 and 4.3 represent the values for and MTSF respectively. A∞

These graphs clearly indicate that the better the physical condition of the repair facility 

the better the performance of the system. 

 

Figure 4.2 

As α  increases the steady-state availabity, , is a decreasing function of A∞ α  (for different 

values of β , γ and ). p2
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Figure 4.3 

As α  increases the Mean Time to System Failure (MTSF) is a decreasing function of  α  

(for different values of β , γ and ). p2
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4.10 CONCLUSION 

     A single server two-unit priority cold standby system is studied with varying physical 

conditions for the repairman, since the repair time’s distribution is affected by such 

conditions. It is assumed that the switching device (the device which transfers the unit from 

cold standby state to operating online state) is not perfect, i.e. the switch can also fail. 

Identifying the regeneration points, various operating characteristics are obtained, both 

analytically and numerically. Explicit expressions for the steady state availability and the 

busy period in the steady state are obtained, when all underlying distributions are 

exponential. For these two measures, the asymptotic confidence limits are also obtained. 

These results were shown in Figure 4.2 (For an increasing α  the steady-state availability  

( ) decreases for different values of A∞ β , γ and ) and Figure 4.3 (For an increasing p2 α  

the Mean Time to System Failure (MTSF) decreases for different values of β , γ and ). p2
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