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2.1.1 Introduction 

Once one is armed with a queueing model of a system, one which is described 

by equations which emulate the relevant birth-death process, parametric 

estimation is one of the essential tools to understand the random phenomena 

using stochastic models.  Whenever systems are fully observable in terms of 

their basic random components such as inter arrival times and service times, 

standard parametric estimation techniques of statistical theory are quite 

appropriate.  Most of the studies of several queueing models are confined to only 

obtaining expressions for transient or stationary (steady state) solutions and do 

not consider the associated inference problems.  Recently, Bhat [41] has 

provided an overview of methods available for estimation, when the information 

is restricted to the number of entities in the system at certain discrete points in 

time.  Narayan Bhat has also described how maximum likelihood estimation 

(MLE) is applied directly to the underlying Markov chain in the queue length 

process in 1GM  and 1MGI .  An attempt is made in this chapter to obtain MLE, 

a consistent asymptotically normal estimator (CAN) and asymptotic confidence 

limits for the expected waiting time per entity in ∞1MM  and NMM 1  queues.   

These two models and the expected waiting time per entity for each model are 

explained briefly. 
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2.1.2 Description of Systems 
 

Model I   The ( 1MM ):( ∞∞FCFS ) queue 

 

It can be readily seen that (Taha [3]) the difference-differential equations 

governing 1MM  are given by  

 

,...3,2,1),()()()()( 11 =++−=′ +− ntptptptp nnnn µµλλ      

(2.1.1) 

0),()()( 100 =+−=′ ntptptp µλ        (2.1.2) 

 

As ∞→t , the steady state solution can be proved to exist, when µλ < .  

Assuming that 0)( →′ tpn and nn ptp →)(  as ∞→t , for ,...2,1,0=n  , it is clear that 

 

0,010 ==+− npp µλ          

(2.1.3) 

,...3,2,1,0)( 11 ==++− +− nppp nnn µµλλ        

(2.1.4) 

 

Solving these difference-differential equations,  

 

,...2,1,0,)1( =−= np n
n ρρ          

(2.1.5) 

where 1<=
µ
λρ .   

Clearly (2.1.5) corresponds to the probability mass function of the Geometric 

distribution. The expected waiting time per entity in the queue is given by 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  EErraassmmuuss,,  GG  BB    ((22000066))  



 27 

)(1 λµµ
λ
−

=QW .           

(2.1.6) 

 

Model II   The ( 1MM ):( ∞NGD ) queue 

 

The model is essentially the same as Model I, except that the maximum number 

of entities in the system is limited to N (maximum queue length is N-1) (Taha [3]).  

The steady state equations for the model are given by 

 

,010 =+− ppρ    0=n       (2.1.7) 

1,...,3,2,1,0)1( 11 −==++− +− Nnppp nnn ρρ       

(2.1.8) 

,01 =−− NN ppρ    Nn =        

(2.1.9) 

 

The solution of the above difference-differential equations is given by  

 

Nnp n
Nn ,...,2,1,0,

)1(
)1(
1 =

−
−= + ρ
ρ

ρ
        

(2.1.10) 

 

The expected number of entities in the system is given by 

 

{ }
1,

)1)(1(
)1(1

1

1

≠
−−

++−= +

+

ρ
ρρ

ρρρ
N

NN

s

NN
L        

(2.1.11) 

 

Since the queue length is limited and some entities are lost, it is necessary to 

compute the effective arrival rate effλ , which is given by 
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)1( Neff p−= λλ . 

 

The expected number of entities in the queue QL is 

 

µ
λeff

sQ LL −=  

       
[ ]

)1)(1(
)1(1

1

12

+

−

−−
−+−=

N

NN NN
ρρ

ρρρ
 .       

(2.1.12) 

 

Hence the expected waiting time per entity in the queue is given by 

 

eff

Q
Q

L
W

λ
=2  

        
[ ]

))((
)()( 1

NN

NNN N
λµλµµ

λµλλµλ
−−

−−−=
−

  .      

(2.1.13) 
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2.1.3 The ML and CAN estimators for expected waiting time 

2.1.3.1 The ML Estimator 

Considering inii XXX ...,,, 21  (with 2,1=i  representing Models I and II) to be 

random samples of size n , each randomly drawn from different exponential inter 

arrival time populations with the parameter λ . and letting inii YYY ...,,, 21 (with 

2,1=i representing Models I and II) be random samples of size n , each drawn 

from different exponential service time populations with the parameter µ , it 

follows that 
λ
1

)( =Ε iX  and 
µ
1

)( =Ε iY , where iX  and iY , 2,1=i , are the sample 

means of inter arrival times and service times respectively corresponding to 

Models I and II.  Further iX  and iY  (with 2,1=i  representing Models I and II) are 

the MLEs of 
λ
1

 and 
µ
1

 respectively.  Let 
λ

θ 1
1 =  and 

µ
θ 1

2 =  respectively. 

 

Model I 

 

The average waiting time per entity in the queue given in (2.1.6) reduces to 

 

)( 21

2
2

1 θθ
θ
−

=QW            

(2.1.14) 

 

and hence the MLE of QW  is given by 

 

)(
ˆ

11

2
1

1 YX
Y

WQ −
=            

(2.1.15) 
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Model II 

 

The average waiting time per entity in the queue given in (2.1.13) reduces to 

 

))((
)]()[(

1212

12
1

221
2
2

2 NN

NNN

Q

N
W

θθθθ
θθθθθθ

−−
−+−

=
−

        

(2.1.16) 

 

and hence the MLE of QW  is given by 

 

))((
)](.)[(ˆ

2222

22
1

222
2

2
2 NN

NNN

Q XYXY
XYYNYXY

W
−−

−+−
=

−

       

(2.1.17) 

 

It may be noted that QiŴ  given in (2.1.15) and (2.1.17) are real valued functions 

in iX  and iY , 2,1=i , which are also differentiable.  The following application of 

the multivariate central limit theorem may be considered (Rao [42]). 

 

2.1.3.2 An application of the multivariate central limit theorem 

 
Suppose ,...,, 321 TTT ′′′  are independent and identically distributed k -dimensional 

random variables such that 

 

...3,2,1),,...,,,( 321 ==′ nTTTTT knnnnn  

 

having the first and second order moments µ=Ε )( nT  and Σ=)( nTVar .  The 

sequence of random variables may be defined as 

 

...3,2,1),,...,,,( 321 ==′ nTTTTT knnnnn  
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where ki
n

T
T

n

j
ij

in ,...,2,1,1 ==
�

= and nj ,...,2,1=  

 

Then, ),0()( Σ→− NTn d
n µ as ∞→n  

 

2.1.3.3 The CAN Estimator 

 
Model I 

 

By applying the multivariate central limit theorem given to (2.1.15), it readily 

follows that  

 

),0()],(),[( 2111 Σ→− NYXn dθθ   

 

as ∞→n , where the dispersion matrix ))(( ijσ=Σ is given by 

 

),( 2
2

2
1 θθdiag=Σ  

 

From (Rao [42]), it follows that 

 

)),(,0()ˆ( 2
111 θσNWWn d

QQ →−  as ∞→n , where ),( 21 θθθ =  and  

 

�
=

��
�

�
��
�

�

∂
∂

=
2

1

2
12

1 .)(
i

ii
i

QW
σ

θ
θσ  

             4
21

2
21

2
2

2
1

2
2

)(
])2([

θθ
θθθθθ

−
−+

=       (2.1.18) 

 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  EErraassmmuuss,,  GG  BB    ((22000066))  



 32 

Hence, QŴ1  is a CAN estimator of QW1 .  There are several methods for 

generating CAN estimators and the Method of Moments and the Method of 

Maximum likelihood are commonly used to generate such estimators (Sinha 

[43]). 

 

 

Model II 

 

As in Model I,  

 

)),(,0()ˆ( 2
222 θσNWWn d

QQ →−  as ∞→n , where ),( 21 θθθ = , QW2  and QŴ2  are 

given by (4.16) and (4.17) respectively.  Further, )(2
2 θσ  is computed from the 

partial derivatives 2,1,2 =��
�

�
��
�

�

∂
∂

i
W

i

Q

θ
 as in Model I.  Thus QŴ2  is a CAN estimator of 

QW2 . 

2.1.4 Confidence limits for the expected waiting time 

 
Let )ˆ(2 θσi  be the estimator of )(2 θσi  (with 2,1=i  representing Models I and II) 

obtained by replacing θ  by a consistent estimator θ̂i  namely  

θ̂i ),( ii YX= , 2,1=i .  Let 2σ̂i = )ˆ(2 θσi .  Since )(2 θσi  is a continuous function of 

ϑ , 2σ̂i  is a consistent estimator of )(2 θσi , i.e., 2σ̂i →P )(2 θσi as ∞→n , 

2,1=i .  By the Slutsky theorem 

 

)1,0(
ˆ

)ˆ(
N

WWn d

i

QQi →
−

σ
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i.e., )1(
ˆ

)ˆ(
Pr

22

α
σ αα −=

�
�
	




�
�
�


<

−
<− k

WWn
k

i

QiQi  

 

where 
2
αk is obtained from Normal tables.  Hence, a )%1(100 α−  asymptotic 

confidence interval for QiW  is given by 

 

2,1,
ˆ

.ˆ
2

=± i
n

kW i
Qi

σ
α        (2.1.19) 
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Numerical Results 

Table 2 
Confidence limits for M/M/1/ ∞ : FCFS with 99% confidence interval and sample size of 20 
 

 µ   
λ           

0.04 0.06 0.08 0.1 

0.01 (8.289842877:8.376823789) (3.316926722:3.349739944) (1.777150118:1.794278453) (1.105858754:1.116363468) 
0.02 (24.83223528:25.16776472) (8.286718407:8.37994826) (4.144904413:4.18842892) (2.487402722:2.512597278) 
0.03 (74.16104529:75.83895471) (16.55477386:16.77855947) (7.456343866:7.543656134) (4.262400695:4.309027877) 

 
Table 3 

Confidence limits for M/M/1/N: FCFS with 99% confidence interval and sample size of 20 

 

       µ  
λ     

0.04 0.06 0.08 0.1 

0.01 (8.331269275:8.334920554) (3.331916366:3.334744788) (1.784518941:1.786909398) (1.110057009:1.112165194) 
0.02 (24.75248955:24.7587519) (8.328275966:8.332745576) (4.164721818:4.168373097) (2.498408635:2.501570885) 

 
N=10 

0.03 (60.07542472:60.08759256) (16.50061597:16.50687832) (7.490679322:7.495571505) (4.283054105:4.287193479) 

       µ  
λ     

0.04 0.06 0.08 0.1 

0.01 (8.331507591:8.335159075) (3.33191912:3.334747547) (1.784519057:1.786909514) (1.110057019:1.112165204) 
0.02 (24.99636102:25.0026853) (8.33109717:8.335569306) (4.164840925:4.168492408) (2.498418861:2.501581139) 

 
N=20 

0.03 (73.40387298:73.41482651) (16.66318663:16.66951092) (7.497549755:7.502448733) (4.283644082:4.287784475) 

       µ  
λ     

0.04 0.06 0.08 0.1 

0.01 (8.331507591:8.335159075) (3.33191912:3.334747547) (1.784519057:1.786909514) (1.110057019:1.112165204) 
0.02 (24.99683772:25.00316228) (8.331097265:8.335569401) (4.164840925:4.168492409) (2.498418861:2.501581139) 

 
N=40 

0.03 (74.98446701:74.99541962) (16.66350439:16.66982894) (7.49755051:7.50244949) (4.283644089:4.287784482) 
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As is to be expected, Wq is an increasing function of λ , and a decreasing 

function of µ , for both M/M/1/ ∞  and M/M/1/N queueing systems [See Tables 

2&3]. 
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2.2 Statistical analysis for a tandem queue with blocking 
 

A maximum likelihood estimator (MLE), a consistent asymptotically normal 

(CAN) estimator and asymptotic confidence limits for the expected service 

time per customer in the system in a two station tandem queue with zero 

queue capacity and with blocking are obtained. 

 

2.2.1 Introduction 

Many studies of queueing models are confined to obtaining expressions for 

transient or stationary (steady state) solutions and do not consider the 

associated statistical inference problems. Parametric estimation is one of the 

essential tools to understand random phenomena using stochastical models. 

Analysis of queueing systems in this context has not received due attention. 

Whenever the systems are fully observable in terms of their basic random 

components such as inter-arrival times and service times, standard 

parametric techniques of statistical theory are quite appropriate. Recently 

Bhat [41] has provided an overview of methods available for estimation, when 

the information is restricted to the number of entities in the system at some 

discrete point in time. Bhat has also described how maximum likelihood 

estimation is applied directly to the underlying Markov chain in the queue 

length process in M/G/1 and GI/M/1 queues. Yadavalli et al [44] have 

obtained asymptotic confidence limits for the expected waiting time per 

customer in the queues of M/M/1/ ∞  and M/M/1/N. Further, Yadavalli et al [45] 

have extended the same results to c parallel servers (c ≥  1). 

 

Generally speaking, the queueing models assume that each service channel 

consists of only one station. Situations do exist, where each service channel 

may consist of several stations in series. In this situation, an entity must 

successively pass through all the stations before completing service. Such 

situations are known as queues in series or tandem queues. Examples of 

such situations are as follows: 
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a) In a manufacturing process, units must pass through a series of service 

channels (work stations), where each service channel performs a given 

task or job. 

b) In a University registration process, each registrant must pass through 

a series of counters such as advisor, departmental chairman (Head of 

the Department), Cashier etc. 

c) In a clinical physical examination procedure, a patient goes through a 

series of stages such as laboratory tests, Electro Cardio Graph, Chest 

X-ray etc.  

In all these model structures, it is not only sufficient to know how many 

persons are in the system but also where they are. 

 

An attempt is made in this paper to study a two station tandem queue with 

blocking in detail, Taha [3]. An MLE, CAN and asymptotic confidence limits 

are obtained for the expected service time per entity in the system. 
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2.2.2 System description and assumptions 

Consider a simplified single channel queueing system consisting of two series 

stations as below: 

 

 

 

 

 

 

Fig. 2.2.1 System configuration 

 

An entity arriving for service must pass through station 1 and station 2 before 

completion of service. The precise assumptions of the model are as follows: 

(i) Arrivals occur according to a Poisson distribution with a mean rate λ . 

(ii) Service times at each station are exponentially distributed with a 

service rate µ . 

(iii) Queues are not permitted ahead of station 1 or station 2. 

(iv) Each station is either free or busy. 

(v) Station 1 is said to be blocked when the entity in station 1 completes 

service before station 2 becomes free. In such a case the entity cannot 

wait between the stations, since this is not allowed. 

 

2.2.3 Analysis of the system 

 
Let the symbols 0,1 and b represent free, busy or blocked states of a station. 

Let )(tX  and )(tY  respectively denote the states of station 1 and station 2 and 

the vector process { }0)),(),(()( ≥= ttYtXtZ  with state space 

{ })1,(),1,1(),0,1(),1,0(),0,0( bE = ,      (2.2.3.1) 

 

Service centre 
Station 1 Station 2 Input Output 
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the state of the system at time t. Since the inter-arrival and service times are 

exponential, it follows that the process Z(t) is a Markov process with the 

infinitesimal generator given by 

 

 

 
(2.2.3.2) 

 

Let EjijitZptpij ∈∀== ),()],,()([)(  represent the probability that the system 

is in state ),( ji  at time t with the initial condition 1)0(00 =p . From the 

infinitesimal generator given in (2.2.3.2), the following system of differential-

difference equations is obtained: 

 

)()(
)(

0100
00 tptp
dt

tdp µλ +−=         

(2.2.3.3) 

 

)()()()(
)(

11001
01 tptptp
dt

tdp
bµµµλ +++−=       

(2.2.3.4) 

)()()(
)(

111000
10 tptptp
dt

tdp µµλ +−=        

(2.2.3.5) 

)(2)(
)(

1101
11 tptp
dt

tdp µλ −=         

(2.2.3.6) 

)()(
)(

111
1 tptp

dt
tdp

b
b µµ −=         

(2.2.3.7) 
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2.2.3.1 Transient Solution 

Solving the system of equation (2.2.3.3)-(2.2.3.7) along with the equation 

1)(
),(

=�
∈Eji

ij tp  and using Laplace transforms, it is evident that: 

�
=

≠
=
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++
=

3

1
3

1

2
22

2

00

)()(

)2(

)243(
2

)(
i

t

ji

j
ijii

i ietp α

ααλαα

µα
λµ

µλµλ
µ

  

(2.2.3.8) 
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(2.2.3.10) 
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(2.2.3.11) 

t

i

t
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22
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(2.2.3.12) 

where 21 ,αα and 3α  are the roots of 

0)243()57()42( 222223 =++++++++ µλµλµµλµλµλ sss  
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2.2.3.2 The Steady state solution 

Since the stationary behaviour of the system is to be modelled, let 

ijijt
ptp =

∞→
)(lim . Let ),,,,( 11100100 bipppppp =  be the stationary distribution 

corresponding to the Markov process )(tz . It readily follows from (2.2.3.8)-

(2.2.3.12) that 

)243(
2

)(
22

2

00 µλµλ
µ

++
=tp         

(2.2.3.13) 

)243(
2

)(
2201 µλµλ

λµ
++

=tp         

(2.2.3.14) 

)243(
)2(

)(
2210 µλµλ

µλλ
++

+=tp         

(2.2.3.15) 

)243(
)(

22

2

11 µλµλ
λ

++
=tp         

(2.2.3.16) 

)243(
)(

22

2

1 µλµλ
λ

++
=tpb         

(2.2.3.17) 

 

It may be noted that the solution given in (2.2.3.13)-(2.2.3.17) is in agreement 

with Taha [3] with 
µ
λρ =  
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2.2.3.3 Expected service time per entity in the system 

 
The expected number of entities in the system is given by 

)243(
)45(

)(2)(

22

1111001

0

µλµλ
µλλ

++
+=

+++=

=�
∞

=

b

n
ns

pppp

npL

        

(2.2.3.18) 

The probability that an entity will enter station 1 is 

)243(
)(2

)(

22

0100

µλµλ
µλµ
++

+=

+ pp
         

(2.2.3.19) 

Ws represents the expected service time per entity in the system since 

queues are allowed and is given by 

)(2
)45(

)( 0100 µλµ
µλ

λλ +
+=

+
==

pp
LL

W s

eff

s
s        

(2.2.3.20) 

In the next section, the maximum likelihood and consistent asymptotically 

normal estimators for the expected service time per entity in the system are 

obtained. 

 

2.2.4 MLE and CAN estimator for the expected service time per entity in the system 

2.2.4.1 The ML estimator 

Let X1,X2,…,Xn and Y1,Y2,…,Yn be random samples of size n, each drawn 

from exponential inter-arrival time and exponential service time populations 

with parameters λ and µ  respectively. It is clear that 
λ
1

)( =Ε X  and 
µ
1

)( =Ε Y , 

where iX  and iY  are the sample means of inter-arrival times and service time 

respectively. 
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It can be shown that X  and Y  are MLEs of 
λ
1  and 

µ
1  respectively. 

Let 
λ

θ 1
1 =  and 

µ
θ 1

2 = . The average service time per customer in the system 

given in (2.2.3.20) reduces to 

)(2
)54(

21

212

θθ
θθθ

+
+

=sW           

(2.2.4.1) 

and hence the MLE of Ws is given by 

)(2
)54(ˆ

XY
YXY

Ws +
+=           

(2.2.4.2) 

 

It may be noted that sŴ  given in (2.2.4.2) is a real valued function in X  and 

Y ,  which are also differentiable.  Consider the following application of the 

multivariate central limit theorem. See Rao [42]. 

 

2.2.4.2 An application of the multivariate central limit theorem 

Suppose ,...,, 321 TTT ′′′  are independent and identically distributed k -

dimensional random variables such that 

 

...3,2,1),,...,,,( 321 ==′ nTTTTT knnnnn  

 

having the first and second order moments µ=Ε )( nT  and Σ=)( nTVar .  The 

sequence of random variables may be defined as 

 

...3,2,1),,...,,,( 321 ==′ nTTTTT knnnnn  
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where ki
n

T
T

n

j
ij

in ,...,2,1,1 ==
�

= and nj ,...,2,1=  

 

Then, ),0()( Σ→− NTn d
n µ as ∞→n  

 

2.2.4.3 The CAN Estimator 

By applying the multivariate central limit theorem to (2.2.4.2), it readily follows 

that  

 

),0()],(),[( 21 Σ→− NYXn dθθ   

 

as ∞→n , where the dispersion matrix ))(( ijσ=Σ is given by 

 

),( 2
2

2
1 θθdiag=Σ  

 

Again from Rao [42] it follows that 

 

)),(,0()ˆ( 2
111 θσNWWn d

ss →−  as ∞→n , where ),( 21 θθθ =  and  
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2
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2
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ϑϑ
ϑθθϑθθϑ

+
+++
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Thus, sŴ  is a CAN estimator of sŴ . There are several methods for generation 

of CAN estimators and the Method of Moments and the Method of Maximum 

likelihood are commonly used to generate such estimators. See Sinha [43]. 
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2.2.4.4 Confidence limits for the expected waiting time 

 
Let )ˆ(2 θσ  be the estimator of )(2 θσ  obtained by replacing θ  by a consistent 

estimator θ̂  namely. Let 2σ̂ = )ˆ(2 θσ .  Since )(2 θσ  is a continuous function 

ofθ , 2σ̂  is a consistent estimator of )(2 θσ , i.e., 2σ̂ →P )(2 θσ as ∞→n , 

2,1=i .  By the Slutsky theorem 

 

)1,0()ˆ( NWWn d
ss →−  

 

i.e., )1(
ˆ

)ˆ(
Pr

22

α
σ αα −=

�
�
	




�
�
�


<

−
<− k

WWn
k

i

ss  

 

where 
2
αk is obtained from Normal tables.  Hence, a )%1(100 α−  asymptotic 

confidence interval for sW  is given by 

 

n
kWs

σ
α

ˆ
.ˆ

2

±          (2.2.5.1) 

As is to be expected, Wq is an increasing function of λ , and a decreasing 

function of µ , for a tandem queue with blocking. The numerical illustration of 

the confidence interval of this model (tandem queues) is shown in Table 4. 
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Numerical Results 

Table 4 

Confidence limits for a tandem queue with blocking: 99% confidence interval and sample size of 20 

 
Graph illustrating Wq as a function of λ and µ . 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4       µ  

λ     LCL UCL LCL UCL LCL UCL LCL UCL LCL UCL LCL UCL LCL UCL LCL UCL 
0.01 41.57 41.76 20.41 20.50 13.51 13.57 10.10 10.14 8.06 8.10 6.71 6.74 5.74 5.77 5.02 5.04 

0.015 42.21 42.41 20.60 20.70 13.61 13.67 10.15 10.20 8.09 8.13 6.73 6.76 5.76 5.79 5.03 5.06 
0.02 42.76 42.96 20.79 20.88 13.69 13.76 10.20 10.25 8.13 8.17 6.76 6.79 5.78 5.80 5.05 5.07 

0.025 43.23 43.44 20.95 21.05 13.78 13.84 10.25 10.30 8.16 8.20 6.78 6.81 5.80 5.82 5.06 5.09 
0.03 43.65 43.85 21.10 21.20 13.86 13.92 10.30 10.35 8.20 8.23 6.80 6.83 5.81 5.84 5.08 5.10 

0.035 44.01 44.22 21.25 21.35 13.93 14.00 10.35 10.40 8.23 8.26 6.83 6.86 5.83 5.86 5.09 5.11 
0.04 44.34 44.55 21.38 21.48 14.00 14.07 10.39 10.44 8.26 8.29 6.85 6.88 5.85 5.87 5.10 5.13 

0.045 44.63 44.84 21.50 21.60 14.07 14.14 10.43 10.48 8.29 8.32 6.87 6.90 5.86 5.89 5.11 5.14 
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