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Summary 
 

 

Chapter 1 gives a brief introduction to statistical quality control (SQC) and provides background 

information regarding the research conducted in this thesis. 

 

 

We begin Chapter 2 with the design of Shewhart-type Phase I 2S , S  and R  control charts for the 

situation when the mean and the variance are both unknown and are estimated on the basis of m  

independent rational subgroups each of size n  available from a normally distributed process.  The 

derivations recognize that in Phase I (with unknown parameters) the signaling events are dependent and 

that more than one comparison is made against the same estimated limits simultaneously; this leads to 

working with the joint distribution of a set of dependent random variables.  Using intensive computer 

simulations, tables are provided with the charting constants for each chart for a given false alarm 

probability. Second an overview of the literature on Phase I parametric control charts for univariate 

variables data is given assuming that the form of the underlying continuous distribution is known. The 

overview presents the current state of the art and what challenges still remain. It is pointed out that, 

because the Phase I signaling events are dependent and multiple signaling events are to be dealt with 

simultaneously (in making an in-control or not-in-control decision), the joint distribution of the charting 

statistics needs to be used and the recommendation is to control the probability of at least one false alarm 

while setting up the charts. 

 

 

In Chapter 3 we derive and evaluate expressions for the run-length distributions of the Phase II 

Shewhart-type p-chart and the Phase II Shewhart-type c-chart when the parameters are estimated. We then 

examine the effect of estimating p  and c  on the performance of the p-chart and the c-chart via their run-

length distributions and associated characteristics such as the average run-length, the false alarm rate and 

the probability of a “no-signal”. An exact approach based on the binomial and the Poisson distributions is 

used to derive expressions for the Phase II run-length distributions and the related Phase II characteristics 

using expectation by conditioning (see e.g. Chakraborti, (2000)). We first obtain the characteristics of the 

run-length distributions conditioned on point estimates from Phase I and then find the unconditional 

characteristics by averaging over the distributions of the point estimators. The in-control and the out-of-
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control properties of the charts are looked at. The results are used to discuss the appropriateness of the 

widely followed empirical rules for choosing the size of the Phase I sample used to estimate the unknown 

parameters; this includes the number of reference samples m  and the sample size n . 

 

 

Chapter 4 focuses on distribution-free control charts and considers a new class of nonparametric 

charts with runs-type signaling rules (i.e. runs of the charting statistics above and below the control limits) 

for both the scenarios where the percentile of interest of the distribution is known and unknown. In the 

former situation (or Case K) the charts are based on the sign test statistic and enhance the sign chart 

proposed by Amin et al. (1995); in the latter scenario (or Case U) the charts are based on the two-sample 

median test statistic and improve the  precedence charts by Chakraborti et al. (2004). A Markov chain 

approach (see e.g. Fu and Lou, (2003)) is used to derive the run-length distributions, the average run-

lengths, the standard deviation of the run-lengths etc. for our runs rule enhanced charts. In some cases, we 

also draw on the results of the geometric distribution of order k  (see e.g. Chapter 2 of Balakrishnan and 

Koutras, (2002)) to obtain closed form and explicit expressions for the run-length distributions and/or 

their associated performance characteristics. Tables are provided for implementation of the charts and 

examples are given to illustrate the application and usefulness of the charts. The in-control and the out-of-

control performance of the charts are studied and compared to the existing nonparametric charts using 

criteria such as the average run-length, the standard deviation of the run-length, the false alarm rate and 

some percentiles of the run-length, including the median run-length.  It is shown that the proposed “runs 

rules enhanced” sign charts offer more practically desirable in-control average run-lengths and false alarm 

rates and perform better for some distributions. 

 

 

Chapter 5 wraps up this thesis with a summary of the research carried out and offers concluding 

remarks concerning unanswered questions and/or future research opportunities. 
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Chapter 1 
 

Introduction and research objectives 

 

 

1.0 Introduction 
 

 

Statistical process control (SPC) refers to the collection of statistical procedures and problem-

solving tools used to control and monitor the quality of the output of some production process, 

including the output of services (see e.g. Balakrishnan et al., (2006) p. 6678 and Montgomery, (2005) 

p. 148). The aim of SPC is to detect and eliminate or, at least reduce, unwanted variation in the output 

of a process. The benefits include saving time, increasing profits and an overall increase in the quality 

of products and services. 

 

 

The quality of process output can be measured in various ways. Frequently the percentage or the 

fraction of items that does not conform to specifications is used. In many practical situations it is more 

convenient to measure the quality of the product or the service by the number of nonconformities per 

“inspection unit” or the “unit area of opportunity” such as the number of scratches on a plate of glass, 

the number of tears in a sheet of material or the number of errors made by a cash register attendant 

during a day.  Sometimes the quality of a sample of items is measured by the mean (average) of the 

measurements or by some other measure of central tendency such as a percentile. Consider, for 

example, a beverage filling machine designed to fill each container (such as a bottle or a can) with 

500ml of cool drink. Some containers will have slightly more than 500ml and some will have slightly 

less, in accordance with a fill volume distribution. If the filling machine begins to wear or, its inputs or 

its environment changes, the distribution of the net filling volume can change. If such a change is 

permanent and goes undetected more and more containers will be filled incorrectly, resulting in waste 

or containers filled below specifications. While in the former case the waste is in the form of “free” 

product for the consumer, typically waste consists of rework or scrap. We can measure the quality of 

the process, i.e. the ability of the beverage filling machine to fill the containers with 500ml of cool 

drink, in a number of ways. We can, for instance, take successive samples of containers and count the 
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number of containers with too much or too little cool drink, according to the required specifications. 

Alternatively, we could measure the amount of cool drink in each container and then calculate the 

average fill volume for each sample. Both these summary measures provide useful information 

regarding the functioning of the process; for example, if either the number of containers that are not 

filled according to the specifications or the average fill volume increases above or drop below certain 

critical points, action is required to find the root cause and rectify the problem. 

 

 

SPC has long been applied in high-volume manufacturing processes such as the one described 

above. In recent times it has also been applied in government offices, by educators and administrators 

from the public and private sectors, by providers of healthcare services, and by those in the service 

industries (such as finance, hospitality and transportation) to name but a few. These are primarily 

service industries where the “volume” or the “speed” of production is less in comparison to the usual 

manufacturing process and the quality characteristics are less tangible and not easily measured on a 

numerical scale. The key idea, however, is that the principles and concepts of SPC can be applied to 

any repetitive process, i.e. a process wherein the same action is performed over-and-over with the 

intention to obtain the same “outcome” or “result” on each “trial”.  

 

 

A wide range of statistical procedures are used in the various stages of SPC; these range from basic 

descriptive techniques and summary measures (such as histograms, stem-and-leaf diagrams, check 

sheets, scatter diagrams etc.) to more advanced procedures (such as process optimization, evolutionary 

operation and design of experiments). Many of the statistical procedures that are used in SPC have a 

long and rich history and/or fill a separate niche in the process control environment; these include, 

amongst many other procedures, acceptance sampling and sampling schemes, measurement systems 

analysis, calibration, process capability analysis and capability indices, reliability analysis, statistical 

and stochastic modeling, six sigma as well as statistical process control and statistical process 

monitoring using control charts. For an excellent reference source and a comprehensive overview on 

these and other related topics see, for example, the Encyclopedia of Statistics in Quality and Reliability 

edited by Ruggeri et al. and published in 2007 by John Wiley & Sons Ltd.  

 

 

The collection of statistical tools is undoubtedly an important component of SPC but it should be 

kept in mind that they comprise merely its technical aspects. SPC, in general, builds an environment in 

which all the individuals of an organization seek continuous improvement in quality and productivity 
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and is best implemented and most successful when management becomes involved (Montgomery, 

(2005) p. 148). 

 

Given the multifaceted structure of SPC, it is essential that a researcher accurately describes as far 

as it is possible the context and the exact nature of his research within the SPC domain.  Therefore, it is 

appropriate to say that: 

 

This thesis focuses on improving existing control charting methodologies and 

developing new control charts; more specifically, it focuses on univariate parametric 

and nonparametric Shewhart-type Phase I and Phase II variables control charts and 

attributes control charts (for samples of size 1>n ) when process parameters are 

estimated. 

 

To have a better handle on the precise meaning of the above statement and the focus of this thesis, 

the rest of Chapter 1 is devoted to explaining what a control chart is and discusses the similarities 

and/or dissimilarities between the major types of control charts. This exposition includes a discussion 

on: 

(i) Shewhart-type charts vs. EWMA-type and CUSUM-type charts, 

(ii)  Univariate charts vs. multivariate charts, 

(iii)  Variables charts vs. attributes charts, 

(iv) Phase I charts vs. Phase II charts, and 

(v) Parametric charts vs. nonparametric charts. 

 

Following the discussion concerning the different types of control charts, we describe in more 

detail what is done in each of the remaining chapters of this thesis. 

 

It is important to note that the author of this thesis does not intend to present a full-blown 

discussion and/or overview on all the aspects of SPC in Chapter 1. Instead, we cover only the key 

aspects to equip the reader with the necessary terminology (principles) in order to grasp what is to be 

covered in the rest of this thesis.  We hope that a discussion regarding points (i) to (v) listed above will 

give the reader the necessary background of the underlying basic ideas about this vast area. 

 

Also, note that, we focus on control charts for samples of size 1>n  and use the phrases “rational 

subgroup” and “random sample” interchangeably throughout the thesis but, strictly speaking, a rational 

subgroup is not necessarily a random sample (see e.g. the discussion in Montgomery, (2005) on p. 

162).  
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Control chart 
 

A control chart is a statistical procedure (or scheme) that can be depicted graphically for on-line 

process monitoring of a measurable characteristic (such as the mean measurement value or the 

percentage nonconforming items) with the objective to show whether the process is operating within 

the limits of expected variation (see e.g. Ruggeri, Kenett and Faltin (2007) p. 429) . The simplest and 

most widely used control chart is the Shewhart-type of chart; this chart is named after the father of 

quality control i.e. Dr. Walter A. Shewhart (1891-1967) of Bell Telephone Laboratories, who 

developed the chart in the 1930’s and laid the foundation of modern statistical process control in his 

book Economic Control of Quality of Manufactured Product that was originally published in 1931.The 

the wider use and popularity of control charts outside manufacturing, which lead to Quality 

Management and Six Sigma, can be attributed to Deming (1986). 

 

Shewhart-type control chart 
 

A typical Shewhart-type control chart is shown in Figure 1.1. The chart is a basic graphical display 

of the successive values of a summary measure (statistic) calculated from a sample of measurements 

taken on a key quality characteristic and plotted on the vertical axis versus the sample number or time 

on the horizontal axis. The control chart usually has a centerline (CL ) and two horizontal lines, one 

line on either side of the centerline. The line above the centerline is called the upper control limit 

(UCL ) whereas the line below the centerline is called the lower control limit (LCL ). These three lines 

are placed on the control chart to aid the user in making an informed and objective decision whether a 

process is in-control or not; this decision is primarily based on the pattern of the points plotted on the 

chart and/or their position relative to the control limits. Notice that it is customary to join the points on 

a control chart using straight-line segments for easier visualization over time. 
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Figure 1.1: A Shewhart-type of control chart 
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The basic assumption underlying control chart analysis is that the variation in the quality of 

products or services is due in part to common causes (or chance causes) and in part to special causes 

(or assignable causes) – see Deming (1986). The term common cause refers to the inherent or the 

natural variability that is present in a process. This is also referred to as the uncontrollable or the ever 

present “background noise” that might be due to the cumulative effect of many small and undetectable 

(but unavoidable) causes. Special causes are those sources of variability that are not part of the 

common causes (or natural variability of a process) and therefore directly affect the quality of a 

process.  

 

Combining these two sources of variation, i.e. common causes and assignable causes of variation, 

accounts for the total variation present in a process. Based on this point of view, a process is 

considered to be in-control if it is operating only in the presence of common causes and when special 

causes are part of the process variability, the process is said to be out-of-control. The fundamental idea 

of the Shewhart-type of control chart entails identifying and removing, to an extent that is 

economically viable, the assignable causes of variation. 

 

Control charts play a crucial role in detecting whether a process is in-control or out-of-control. The 

standard Shewhart-type control charts are based on inspecting samples at equally spaced time intervals 

and issuing an alarm (a signal) if the “result of the sample” is considerably worse (i.e. larger or 

smaller) than what one can expect if the process was operating on target.   For example, a single point 

(plotting statistic) that plots outside the control limits i.e. lies above the upper control limit or lies 

below the lower control limit, is usually interpreted as a signal (an alarm) of a possible special cause. 

The alarm signals that the process is deemed to be in an out-of-control state, which is indicative of 

deteriorated performance of the process. Investigation is thus required to find the origin of the source 

of the variation and, if necessary, action is needed for its elimination. On the other hand, if no point 

plots outside the control limits we continue drawing successive samples from the output of the process 

to monitor the process. 

 

 

EWMA and CUSUM charts 
 

More technically sophisticated control charts than the Shewhart-type of chart have been proposed 

and are widely used in practice; the most popular being the exponentially weighted moving average 

(EWMA) and the cumulative sum (CUSUM) control charts. The EWMA and CUSUM control charts 
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are different from the Shewhart-type of chart in that they are memory-based charts which sequentially 

combine the information from multiple (past) samples with the present (or current) sample information 

in the decision making process. The Shewhart-type of chart, however, uses only the information 

available from the most recent (last) sample. For the essential theoretical underpinning of the CUSUM 

control chart the reader may consult the original articles by Page (1954, 1961) or the book by Hawkins 

and Olwell (1998). The seminal article by Roberts (1959), who introduced the EWMA chart, as well 

the articles by Crowder (1987, 1989) and Lucas and Saccucci (1990) provide good discussions on the 

EWMA chart. For an application-orientated perspective on the CUSUM and EWMA charts, the books 

by Montgomery (2005) and Ryan (2000) are worth reading.  

 

 

Multivariate control charts 
 

Some practical situations require the simultaneous monitoring and control of two or more related 

(correlated) quality characteristics. The usual practice (see Ryan, (2000) p. 253) is to monitor each 

characteristic separately; this results in a univariate control chart for each variable but, may be 

inefficient or may lead to erroneous conclusions (see Ryan, (2000) p. 254 and Montgomery, (2005) p. 

486). Control charts to deal with multiple measurements (variables) were therefore developed. 

 

The control charts for the monitoring and control of multiple variables parallel the charts for a 

single variable. Hence, there are multivariate extensions to the univariate Shewhart, the univariate 

EWMA and the univariate CUSUM charts. The corresponding multivariate charts are labeled the 

Hotelling’s 2T  chart, the multivariate EWMA (abbreviated MEWMA) control chart and the 

multivariate CUSUM chart. 

 

In this thesis, we focus on univariate control charts. An overview of multivariate control charts, 

which includes a discussion on the Hotelling’s 2T chart, the MEWMA chart and the multivariate 

CUSUM chart, can be found in Ruggeri, Kenett and Faltin (2007). For an applied and self-contained 

text that provides a detailed coverage of the practical and theoretical aspects of Hotelling’s 2T  chart, 

the book by Mason and Young (2002) gives a good exposition.  

 

 

Variables and Attributes control charts 
 

A quality characteristic that can be measured on a numerical scale is called a variable.  Examples 

include width, length, temperature, volume, speed etc. When monitoring a variable we need to monitor 
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both its location (i.e. mean or average) and its spread (i.e. variance or standard deviation or range). 

Sample statistics most commonly used to monitor the location of a process are the sample mean and 

the sample median or some other percentile (order statistic), whereas the sample range, the sample 

standard deviation and the sample variance are regularly used to monitor the process variation.  

 

In situations where it is not practical or the quality characteristics cannot conveniently be 

represented numerically, we typically classify each item as either conforming or nonconforming to the 

specifications on the particular quality characteristic(s) of interest; such types of quality characteristics 

are called attributes. Some examples of quality characteristics that are attributes, are the number of 

nonconforming parts manufactured during a given time period or the number of tears in a sheet of 

material. 

 

The p-chart and the np-chart are attribute charts that are based on the binomial distribution and are 

used to monitor the proportion (fraction) of nonconforming items in a sample and the number of 

nonconforming items in a sample, respectively. Another type of attribute chart is the c-chart, which is 

based on the Poisson distribution, and is useful for monitoring the number of occurrences of 

nonconformities (defects) over some interval of time or area of opportunity, rather than the proportion 

of nonconforming items in a sample.  

 

A thorough bibliography of articles related to attributes control charts can be found in Woodall 

(1997).  

 

 

Phase I and Phase II control charts 
 

The statistical process control regime is typically implemented in two stages: Phase I (the so-called 

retrospective phase) and Phase II (the prospective or the monitoring phase).  In Phase I, the primary 

interest is to better understand the process and to assess process stability; the latter step often consists 

of trying to bring a process in-control by analysing historical or preliminary data, locating and 

eliminating any assignable causes of variation.  A process operating at or around a desirable level or 

specified target with no assignable causes of variation is said to be stable or in statistical control, or 

simply in-control.  Once control is established to the satisfaction of the user, any unknown quantities 

(parameters) are estimated from the in-control data (also called reference data), leading to the setting 

up of control charts so that effective on-line process monitoring can begin in Phase II.    
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In Phase I the goal is to make sure that a process is operating at or near acceptable target(s) under 

some natural (common) causes of variation and that no special causes or concerns are present.   Phase I 

analysis is usually an iterative process in which control charts play an important role.  The control 

limits obtained early in Phase I are viewed as trial limits and are often revised and refined to ensure 

that the process is in-control.  If target values of the parameters of interest are known (often referred to 

as the standards known case or Case K), one needs to ensure that the process is operating at or close to 

these given targets subject only to common causes of variation.  If the parameters are unknown, 

establishing control of the process involves estimation of the parameters as well as setting up or 

estimating the control limits.  This situation is often referred to as the standards unknown case (or Case 

U).  Both of these situations (Case K, U) can occur in practice but Case U occurs more often, 

particularly when not much historical knowledge or expert opinion is available. 

 

The decision problem under a Phase I control charting scenario is similar, in principle, to that in a 

multi-sample test of homogeneity problem, where one tests whether the data from various groups 

come from the same distribution (in-control process).  Champ and Jones (2004) have noted this fact, 

for example.  Under this motivation, the false alarm probability (FAP ), i.e. the probability of at least 

one false alarm, is used to construct and evaluate Phase I control charts.  Thus a Phase I control chart is 

designed by specifying a nominal false alarm probability, say0FAP . 

 

In Phase II the control chart is used to monitor the process on-line in order to detect the occurrence 

of any assignable causes of variation (such as process shifts) so that any necessary corrective actions 

can be taken quickly. The operation of the Phase II chart involves: (i) taking successive samples from 

the output of the process, (ii) calculating the specified sample statistic from each sample, and (iii) 

comparing the value of each sample statistic (i.e. the plotting statistic), one after the other, with the 

Phase II control limits. If a point plots outside the control limits an alarm signals and a search for 

assignable causes typically follows. Because we want the Phase II chart to signal quickly when a 

change takes place and not signal too often when the process is actually in-control (which is when no 

shift or change has taken place) the design objective in Phase II focuses on the performance of the 

chart (i.e. how efficient the chart is in detecting changes) and therefore concentrates on the distribution 

of the run-length random variable associated with the chart. 

 

The run-length is defined as the number of samples to be collected or the number of points to be 

plotted on the chart before the first or next out-of-control signal is observed. The discrete random 

variable defining the run-length is called the run-length random variable and the distribution of this 
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random variable is called the run-length distribution. The characteristics of this distribution give us 

more insight into the performance of a chart and can be used to design a Phase II chart. Hence, in 

Phase II when designing the chart, we typically specify some attribute of the in-control Phase II run-

length distribution to be complied with, such as the average run-length, and determine the appropriate 

Phase II control limits that gives the desired performance. 

 

Parametric and Nonparametric control charts 
 

In the process control environment of variables data (i.e. data that can be measured on a continuous 

numerical scale) parametric control charts are typically used; these charts are based on the assumption 

that the process output follows a specific distribution, for example, a normal distribution. Often this 

assumption cannot be verified or is not met. It is well-known that if the underlying process distribution 

is not normal, the control limits are no longer valid so that the performance of the parametric charts 

can be degraded. Such considerations provide reasons for the development and application of easy to 

use and more flexible and robust control charts that are not specifically designed under the assumption 

of normality or any other parametric distribution. Distribution-free or nonparametric control charts can 

serve this broader purpose. 

 

A thorough review of the literature on nonparametric control charts can be found in Chakraborti et 

al. (2001, 2007).  The term nonparametric is not intended to imply that there are no parameters 

involved, quite to the contrary.  While the term distribution-free seems to be a better description of 

what one expects these charts to accomplish, nonparametric is perhaps the term more often used; in 

this thesis, both terms (distribution-free and nonparametric) are used since for our purposes they mean 

the same.   

 

The main advantage of nonparametric charts is their general flexibility i.e. their application does 

not require knowledge of the specific probability distribution for the underlying process.  In addition, 

nonparametric control charts are likely to share the robustness properties of the well-known 

nonparametric tests and confidence intervals; these properties entail, among others, that outliers and/or 

deviations from assumptions like symmetry far less impact them.  

 

A formal definition of a nonparametric or distribution-free control chart could be given in terms of 

its run-length distribution, namely that, if the in-control run-length distribution is the same for every 

continuous probability distribution, the chart is called distribution-free or nonparametric (see e.g. 

Chakraborti et al. 2001, 2007). 
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1.1 Research objectives  
 

We now turn our attention to the specific research questions studied in the remaining chapters of 

this thesis, which consists of Chapters 2, 3, 4 and 5. Each of Chapters 2, 3 and 4 focuses on a particular 

aspect of Shewhart-type Phase I and Phase II variables and attributes control charts when process 

parameters are estimated; these three chapters form the heart of this thesis. Chapter 5 provides a 

summary of the research done in this thesis and offers concluding remarks on some unanswered 

questions and/or future research. 

 

 

 

1.1.1 Chapter 2 
 

Chapter 2 focuses on Phase I Shewhart-type variables control charts to monitor the spread (i.e. the 

variance, the standard deviation or the range) of a process. 

 

Consider setting up a Shewhart-type Phase I control chart for the variance or the standard deviation 

or the range of a process that follows a normal distribution with an unknown mean, µ , and an 

unknown variance, 2σ , based on the availability of m  independent rational subgroups (samples) each 

of size n  taken when the process was thought to be in-control. 

 

Constructing a Shewhart-type Phase I control chart for a spread parameter typically entails: 
 

(i) Estimating the unknown parameters (if they are not known or unspecified), 

(ii)  Calculating or estimating the Phase I control limits, 

(iii)  Plotting the estimated Phase I control limits and the Phase I charting statistics on the 

control chart, and then 

(iv) Simultaneously comparing all the Phase I charting statistics with the estimated Phase I 

control limits. 
 

If any of the charting statistics plot on or outside the estimated control limits, the corresponding 

subgroups are suspected to be from an out-of-control process. These subgroups are then examined, 

possibly discarded and steps (i) to (iv) are repeated. This iterative, trial-and-error process usually 

continues until all the remaining charting statistics plot between the latest control limits and show no 

non-random pattern.  Once this state is reached, the remaining data are considered to be from an in-

control process and this final Phase I data set (often referred to as in-control or reference data) is used 

to estimate the process variance or the standard deviation or the range, which is subsequently used in 
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setting up the Shewhart-type Phase I control charts for the mean. Note that, if a Phase I charting 

statistic plots on or outside the estimated Phase I limits but no assignable cause can be found that 

warrants its removal, it is typically not discarded. To illustrate the above methodology and the way it is 

currently applied in practice, consider the data of Table 1.1. 

 

Table 1.1 displays 20=m  rational subgroups each of size 5=n  simulated from a normal 

distribution; for our current purpose the mean and the variance of the normal distribution(s) from 

which the samples were simulated are not mentioned because we assume that both these parameters 

are unknown. Also shown in Table 1.1 are the sample variances, 2
iS , the sample standard deviations, 

iS , and the sample ranges,iR , for 20,...,2,1=i . We use these data to construct Shewhart-type Phase I 

control charts for the variance, the standard deviation and the range. The purpose of setting up the 

Phase I charts is to inquire whether all 20 samples are from a normal distribution(s) with equal 

variances or equal standard deviations. 

 

 

 

Table 1.1: Data for constructing Shewhart-type Phase I control charts for the variance, the 
standard deviation and the range 

Sample number / 
Time (i) 1iX  2iX  3iX  4iX  5iX  2

iS  iS  iR  

1 23.0 27.8 21.5 24.3 18.9 10.93 3.31 8.90 
2 14.2 25.9 27.3 17.9 19.1 30.77 5.55 13.10 
3 24.7 16.6 22.8 26.9 21.5 15.03 3.88 10.30 
4 23.6 20.8 28.4 18.6 24.5 13.95 3.74 9.80 
5 14.1 20.9 18.2 19.0 28.7 28.85 5.37 14.60 
6 23.0 13.4 29.4 28.4 11.6 68.83 8.30 17.80 
7 19.5 14.9 23.3 12.1 11.2 26.20 5.12 12.10 
8 16.8 25.5 19.2 19.7 23.6 12.39 3.52 8.70 
9 15.1 18.1 22.3 18.4 23.0 10.64 3.26 7.90 

10 17.5 16.0 19.1 26.8 23.1 19.42 4.41 10.80 
11 26.2 24.3 22.0 21.4 25.9 4.82 2.20 4.80 
12 15.9 23.2 17.8 16.6 13.8 12.41 3.52 9.40 
13 14.8 17.0 19.1 13.1 15.0 5.32 2.31 6.00 
14 13.8 18.3 25.0 18.2 18.5 16.03 4.00 11.20 
15 28.2 23.2 16.6 18.8 18.7 21.53 4.64 11.60 
16 12.9 20.0 32.2 16.4 26.1 59.47 7.71 19.30 
17 22.0 11.9 21.5 21.1 17.9 17.80 4.22 10.10 
18 21.1 19.4 16.3 21.8 14.3 10.23 3.20 7.50 
19 16.2 21.4 25.5 14.2 28.0 34.67 5.89 13.80 
20 12.5 17.2 17.9 14.4 16.5 4.92 2.22 5.40 
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Phase I 2S  chart 
 

First, consider constructing a Shewhart-type Phase I 2S  control chart for the variance. In this case 

the unknown process variance, 2σ , is estimated using the unbiased pooled variance estimator 

∑
=

=
m

i
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22 1
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1
 for mi ,...,2,1=  denotes the i th sample variance. 

 

The charting statistics for the 2S  chart are the sample variances 2
iS , mi ,...,2,1=  and the estimated 

Phase I probability limits (see e.g. Montgomery, (2005) p. 231) are 
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where 2
1, −nαχ  is the )1(100 α− th percentile of the chi-square distribution with 1−n  degrees of freedom.  

Note that, typically one takes 00135.0=α  and finds the chi-square percentiles so that the probability 

that a single point plotting outside the control limits is 0.0027 for any sample.    

 

 

For the data in Table 1.1 we find that  

 

21.21)92.4...77.3093.10(
20

1

20

1 20

1

22 =+++== ∑
=i

ip SS . 

 

Taking 00135.0=α  with 4151 =−=−n  we calculate (using MS Excel) that 1058.02
4,99865.0 =χ  and 

8004.172
4,00135.0 =χ ; substituting these values of the percentiles and 21.212 =pS  in (1-2)  yields the 

values of the estimated Phase I control limits i.e. 

 

38.94
4

8004.1721.21ˆ =×=LCU           21.21ˆ =LC           561.0
4

1058.021.21ˆ =×=LCL . 

 

The corresponding Phase I 2S  chart is shown in Figure 1.2. Because all the sample variances, i.e. 

2
iS   for 20,...,2,1=i , displayed in Table 1.1, plot between the estimated control limits the process 

variance is considered to be in-control. Essentially, this decision implies that the underlying population 
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variances (from which the samples were obtained) are not significantly different but, as will be pointed 

out later, this conclusion might be wrong because of the fact that multiple comparisons (between the 

charting statistics and the same set of estimated control limits) are to be dealt with is not taken into 

account in making the in-control or not-in-control decision. 
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Figure 1.2: The Shewhart-type Phase I 2S  control chart for the data in Table 1.1 
 

 

 

Phase I S  chart 
 

Next, consider setting up a Shewhart-type Phase I S  control chart for the data in Table 1.1. In this 

case, the unknown process standard deviation, σ , is estimated using the unbiased point estimator  
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where 2
ii SS = denotes the ith  sample standard deviation and 4c  denotes the unbiasing constant, 

which is tabulated, for example, in Appendix VI of Montgomery (2005). 

 

The charting statistics for the S  chart are the sample standard deviations, i.e.iS , for mi ,...,2,1= .  

The estimated k-sigma control limits and the estimated centerline of the Phase I S  chart are 
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S
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where the charting constant, k , is typically set equal to 3 so that we can write  

SBLCU 4
ˆ =    SLC =ˆ               SBLCL 3

ˆ =       (1-5) 

    94.38 

    21.21 

    0.561 
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where 2
4

4
3 1

3
1 c

c
B −−=  and 2

4
4

4 1
3

1 c
c

B −+=  are constants and tabulated, for example, in 

Appendix VI of Montgomery, (2005). 

 

For the data of Table 1.1 we get  

317.4)22.2...55.531.3(
20

1

20

1 20

1

=+++== ∑
=i

iSS  

and find that the charting constants, for 5=n , are  089.24 =B  and 03 =B  . 

 

We find the estimated 3-sigma control limits for the Phase I S  chart by substituting 317.4=S , 

089.24 =B  and 03 =B   in (1-5), which gives 

 

018.9ˆ =LCU    317.4ˆ =LC     0ˆ =LCL . 

 

The corresponding Phase I S  chart is shown in Figure 1.3. The points plotted on the chart are the 

twenty sample standard deviation i.e. iS  for 20,...,2,1=i , of Table 1.1. Because none of the points 

plots outside the control limits, the process standard deviation is deemed to be in-control.  
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Figure 1.3: The Shewhart-type Phase I S  control chart for the data in Table 1.1 
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Phase I R  chart 
 

Lastly, consider the R  chart. This chart is popular in practice since the range is easy to calculate 

and it is known that for small samples, the range is an efficient estimator of the standard deviation of a 

normal distribution. 

 

In case of the R  control chart, the unknown process standard deviation, σ , is estimated using the 

unbiased point estimator  
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11σ̂    (1-6) 

where )min()max( ijiji XXR −= , nj ,...,2,1=  is the ith sample range and 2d  is an unbiasing constant 

which is tabulated, for example, in Appendix VI of Montgomery (2005). 

 

For the Phase I R  chart the charting statistics are the sample ranges i.e. iR  for mi ,...,2,1= , and 

the estimated k-sigma limits and the estimated centerline are (see e.g. Montgomery, (2005) p. 197 and 

p. 198) 

R
d

d
kLCU 
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2

31ˆ       RLC =ˆ            R
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31ˆ      (1-7) 

where 3d  is a known function of n  (see e.g. Montgomery, (2005) p.198). In routine applications, the 

charting constant k  is set equal to 3, which leads to a simpler representation of the estimated control 

limits of the R  chart i.e. 

   RDLCU 4
ˆ =   RLC =ˆ             RDLCL 3

ˆ =      (1-8) 

where 
2

3
3 31

d

d
D −=  and 

2

3
4 31

d

d
D +=  are constants and tabulated, for example, in Appendix VI of 

Montgomery, (2005). 

 

For the data of Table 1.1 it is calculated that  

66.10)40.5...10.1390.8(
20

1

20

1 20

1

=+++== ∑
=i

iRR  

and that 03 =D  and 114.24 =D ; using these values the estimated control limits and the estimated 

centerline of the R  chart are calculated using (1-8) and found to be 

 

52.22ˆ =LCU  66.10ˆ =LC       0ˆ =LCL . 

 
 
 



 16 

The Phase I R  chart is shown in Figure 1.4. The points plotted on the chart are the sample ranges 

i.e. iR  for 20,...,2,1=i  listed in the last column of Table 1.1. Like the Phase I 2S  chart and the Phase 

I S  chart, there is no indication that the process spread is out-of-control. One would thus typically 

proceed with setting up the Shewhart-type Phase I X  for the mean as described by Champ and Jones 

(2004). 
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Figure 1.4: The Shewhart-type Phase I S  control chart for the data in Table 1.1 

 

 

 

There are a number of problems in setting up the Phase I control charts in the usual manner as 

described above. These problems are: 

 

 

(i) The m  charting statistics are simultaneously compared to the estimated control limits, which 

are functions of the estimated parameters and are therefore random variables themselves (this 

was indicated by the  ̂ - notation; read hat-notation). Since the charting statistics and the 

control limits are obtained using the same data, successive comparisons (over subgroups) of the 

charting statistics with the estimated control limits are dependent events. The signaling events 

(defined as the event when a charting statistic plots on or outside the control limits) for the ith 

and the jth  subgroups (where mji ,...,2,1=≠ ) are therefore statistically dependent.  

 

Thus, in order to correctly design a Phase I control chart in the unknown parameter case, both 

the dependence of the signaling events and the multiple nature of the comparisons inherent in 

the decision process must be taken into account.  Both of these considerations require a certain 

    22.52 

    10.66 

      0 
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joint probability distribution and this joint distribution (and the associated manipulations 

thereof) are at the heart of the study of a Phase I control chart (which is done in Chapter 2). 

 

 

(ii)  The estimated control limits of the Phase I 2S , S  and R  charts ignores the dependency 

between the signaling events and are incorrectly calculated in such a way as to ensure that the 

false alarm rate (denoted FAR  and defined as the probability for a single charting statistic to 

plot outside the control limits when the process is in-control) is approximately 0.0027. Given 

the inherently repetitive nature of a Phase I analysis and the fact that the charting statistics from 

all the subgroups are simultaneously compared with the same estimated control limits, using 

the FAR to design a Phase I chart is not a good idea since this naturally inflates the FAP  i.e. 

the probability that at least one charting statistic plots outside the estimated control limits when 

the process is in-control.  

 

The following example illustrates this problem in the context of the Shewhart-type X control 

chart in Case K: If there are 15 samples and one uses the traditional 3-sigma control limits for 

setting up a Phase I chart for the mean, iX , when standards are known (i.e. mean of 0µ  and 

variance equal to 2
0σ ) , the FAR is equal to 
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for each sample, which is at a commonly desirable level, but theFAP  is equal to 
 

0397.0

)0027.01(1
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alarm) false oneleast At  Pr(

15

=
−−=

−=
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which may be deemed rather large. Thus the recommendation is to determine the Phase I 

control limits so that the FAP   is controlled at some desirable (nominal) small value. 

 

 

(iii)  The estimated k -sigma control limits of the S  chart and the R chart are based on the tacit 

assumption that the sampling distributions of the sample standard deviation and the sample 

range are symmetric. It is well-known that this is not the case; in fact, the sampling 

distributions are asymmetric. 
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By using the relevant joint distribution of the charting statistics to calculate the charting 

constants this common mistake can be corrected. 

 

 

The above-mentioned problems with regard to the construction of the Phase I control charts for the 

variance, the standard deviation and the range lead to the question:  

 

How should one calculate the control limits of these three Phase I charts so that, 

when one simultaneously compares all m  the charting statistics with the 

corresponding control limits, the probability that at least one point plots outside the 

limits, if the process is in-control, is equal to a nominal (desired) value?  

 

 

This question is answered in Chapter 2 where we specifically study and design the Phase I 2S , S  

and R  control charts assuming that the mean and the variance are both unknown and are estimated on 

the basis of m  independent rational subgroups each of size n  available from a normally distributed 

process.  The derivations recognize that in Phase I (with unknown parameters) the signaling events are 

dependent and that more than one comparison is made against the same estimated limits 

simultaneously and leads to working with the joint distribution of a set of random variables.  Using 

intensive computer simulations, tables are provided for the charting constants for each chart for a given 

false alarm probability of 0.01, 0.05 and 0.10, respectively. 

 

 

In view of the problems currently associated with setting up Phase I control charts for the variance, 

the standard deviation and the range, an extensive overview of the literature on Shewhart-type Phase I 

parametric control charts for univariate variables data is presented assuming that the form of the 

underlying continuous distribution is known. The overview not only presents the current state of the art 

but also points out what challenges still remain. 
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1.1.2   Chapter 3 
 

 

Chapter 3 focuses on the Phase II Shewhart-type p-chart and c-chart with unknown parameters. For 

completeness we also study the statistical properties of these charts assuming that the parameters are 

known.  

 

Consider constructing a Phase II attributes p-chart or a Phase II attributes c-chart for the situation 

when the process parameters p  and c  are unknown and estimated from an in-control reference sample 

following a Phase I analysis. 

 

The setting up of the Phase II  p-chart and the Phase II  c-chart, in general, entails: 

 

(i) Obtaining a point estimate of the unknown process parameter based on the in-control Phase 

I data, 

(ii)  Estimating the Phase II control limits, and then  

(iii)  Comparing each Phase II charting statistic, one at a time and based on new incoming 

samples or inspection units, with the estimated Phase II control limits.  

 

As long as no Phase II charting statistic plots on or outside the control limits, we continue to draw 

successive samples from the process output and monitor the process. However, as soon as a charting 

statistics plots on or outside the estimated Phase II control limits, we stop the charting procedure, 

declare the process out-of-control and start a search for assignable causes. To illustrate the steps 

outlined in (i) to (iii) listed above we look at an example based on the data of Table 1.2 next; this 

example demonstrates how the Phase II attributes p-chart is typically implemented in practice. 

 

Column 1 of Table 1.2 lists the sample numbers; these range from 1 to 25. The iX  values in 

column 2 were obtained via simulation from a binomial distribution with parameters 50=n  and p . 

Note that, because we assume that the fraction nonconforming is unknown the value of p  is not 

mentioned here. In this simulated scenario we can assume that theseiX ’s represent the number of 

nonconforming items in 25 consecutive Phase II samples, each of size 50 , taken from the output of 

some process. The corresponding observed fractions nonconforming, i.e. 50/ii Xp = , are displayed in 

column 3. To illustrate the approach outlined in steps (i) to (iii) listed above, assume that p  was 

estimated from a Phase I study and found to be 0.175. Using this point estimate of the unknown 
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fraction nonconforming, typically denoted as p , and the data from Table 1.2 we can construct a 

Shewhart-type Phase II  p-chart.  

 

Table 1.2: Data for constructing Shewhart-type Phase II p-chart for monitoring the fraction 
nonconforming items in samples of size 50====n  

Sample number / 
Time ( i) 

Number of 
nonconforming items,  

iX  

Sample fraction 
nonconforming 

50/ii Xp ====  

1 14 0.28 
2 8 0.16 
3 12 0.24 
4 9 0.18 
5 12 0.24 
6 13 0.26 
7 11 0.22 
8 10 0.20 
9 16 0.32 

10 10 0.20 
11 7 0.14 
12 10 0.20 
13 11 0.22 
14 14 0.28 
15 9 0.18 
16 4 0.08 
17 10 0.20 
18 8 0.16 
19 12 0.24 
20 7 0.14 
21 11 0.22 
22 10 0.20 
23 10 0.20 
24 13 0.26 
25 9 0.18 

 

In case of the Phase II  p-chart, the estimated 3-sigma control limits and center line are 

 

npppLCU /)1(3ˆ −+=   pLC =ˆ      npppLCL /)1(3ˆ −−=  

 

where p  denotes the point estimate of the unknown fraction nonconforming, p , obtained at the end of 

a successful Phase I analysis and n  denotes the sample size (see e.g. Montgomery, (2005) p. 269). 

Note that, if the estimated lower control limit turns out to be negative, it is adjusted upward and set 

equal to zero.  

 

The Phase II charting statistics are the fractions nonconforming in the samples, i.e. ip  for 

,...2,1=i , 25 calculated from successive Phase II samples taken from the output of the process. 
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Based on the point estimate 175.0=p  the estimated 3-sigma control limits and centerline, for our 

example, are 

 

3362.050/)825.0(175.03175.0ˆ =+=LCU  

         175.0ˆ =LC  

0138.050/)825.0(175.03175.0ˆ =−=LCL . 

 

The Phase II p - chart is shown in Figure 1.5. The points that are plotted on the control chart are 

the ip ’s from column 3 of Table 1.2. Note that, unlike the Phase I charts discussed earlier,  each 

charting statistic of a Phase II control chart is plotted one at a time as soon as it is calculated from the 

most recent (i.e. the latest or last) sample taken from the output of the process; this typically happen in 

real-time.  Because none of the points plot outside the control limits, the process is deemed to be in-

control and we can continue to draw successive samples from the process output and monitor the 

process over time. 
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Figure 1.5: The Shewhart-type Phase II p -chart for the data in Table 1.2 with 1750.0====p  
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There is a major concern in setting up the Phase II p-chart in the usual manner as described above: 

 

The point estimate p  influences the performance of the Phase II p-chart and this influence 

is typically not taken into account when setting up a Phase II chart. To illustrate how 

significant the influence of  p  can be, suppose, for example, that a different Phase I sample 

was used to estimate p  and that 16.0=p , that is, 1750.0≠p . Under these circumstances 

the estimated Phase II control limits would be  

 
 

3155.050/)84.0(16.0316.0ˆ =+=LCU  

16.0ˆ =LC  

0045.050/)84.0(16.0316.0ˆ =−=LCL  

  

and the Phase II  p-chart, based on the data in column 3 of Table 1.2, with these estimated 

control limits are shown in Figure 1.6. It is observed that, with the point estimate of 

16.0=p , the estimated control limits are narrower (than those in Figure 1.5) and that the 

chart signals on the 9th sample indicating that the process is out-of-control. Thus, with a 

different Phase I sample and/or a change in the value of the point estimate, p ,  the Phase II 

p-chart can lead to a different decision regarding the state of the process. The same concern 

appears in application of the Phase II c-chart.  
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                                Figure 1.6: The Shewhart-type Phase II p -chart for the data in  

Table 1.2 with 1600.0====p  
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The questions that emanate from the above-mentioned concern regarding the application of the 

Phase II p-chart and the Phase II c-chart is: 

 

How large should the Phase I reference samples (used to estimate the unknown 

parameters p  and c ) be so that the performance of the charts when the parameters 

are unknown and estimated, is comparable to their performance when the 

parameters are known?  Are the widely-followed empirical guidelines (i.e. 20=m  

or 25 with 4=n  or 5 to estimate the unknown parameters) reasonable? 

 

 

To answer these questions, we investigate the effect of estimating the unknown parameters p  and 

c  on the performance of the charts in detail in Chapter 3. To do this, we derive and evaluate 

expressions for the run-length distributions of the Phase II Shewhart-type p-chart and the Phase II 

Shewhart-type c-chart when the parameters are estimated. We then examine the effect of estimating p  

and c  on the performance of the p-chart and the c-chart via their run-length distributions and 

associated characteristics such as the average run-length, the false alarm rate and the probability of a 

“no-signal”.  

 

An exact approach based on the binomial and the Poisson distributions is used to derive 

expressions for the Phase II run-length distributions and the related Phase II characteristics using 

expectation by conditioning (see e.g. Chakraborti, (2000)). We first obtain the characteristics of the 

run-length distributions conditioned on point estimates from Phase I and then find the unconditional 

characteristics by averaging over the distributions of the point estimators. 

 

Next, the in-control and the out-of-control properties of the charts are looked at. The results are 

used to discuss the appropriateness of the widely followed empirical rules for choosing the size of the 

Phase I sample, used to estimate the unknown parameters; this includes both the number of reference 

samples m  and the sample size n . 
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1.1.3   Chapter 4 
 

 

Chapter 4 focuses on improving some of the existing nonparametric control charts and designing 

new distribution-free charting procedures. 

 

Consider the situation where monitoring the location parameter, θ , of a quality characteristic (that 

is measured on a continuous numerical scale) with an unknown continuous cumulative distribution 

function is of interest. In such a case the usual control chart procedures that are based on a particular 

parametric distribution are not appropriate and a distribution-free (or nonparametric) control chart 

procedure would be more useful. 

 

If θ  is the median and it is required to monitor whether or not θ  changes (i.e. moves away) from 

its specified or known value, 0θ  (say), one can construct a control chart that uses the well-known sign 

test statistic as a charting statistic. A Shewhart-type control chart based on the sign test statistic was 

studied by Amin, Reynolds and Bakir (1995) and is known as the sign chart. Using the sign chart 

entails that one: 

 

(i) Takes successive samples of size n  from the process output, 

(ii)  Calculates the number of observations greater than or equal to the specified value, 0θ , 

within each sample, iT  (say), and then 

(iii)  Compares each charting statistic, iT , one at a time, with appropriately chosen control 

limits. 

 

The sign chart signals, like any other typical Shewhart-type control chart, if a single point plots on 

or outside the control limits, that is, on or below the lower control limit or, on or above the upper 

control limit. 

 

The sign chart is easy to apply in practice and it requires the minimum number of assumptions 

(namely it only requires that the underlying process distribution be continuous and that a specified 

value, 0θ ,  for the location parameter, θ , is available) but, it has a serious shortcoming. For any 

sample size, n , the number of possible in-control average run-length values (0ARL ’s) to choose from 

when designing the chart is limited and, furthermore, the maximum attainable 0ARL , for a two-sided 

chart, is 12 −n . For 5=n , which is often the recommended sample size used in practice, the maximum 
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0ARL  is 162 15 =− ; the corresponding false alarm rate is 0625.016/1/1 0 ==ARL . Such a small 0ARL  

or, alternatively, such a large FAR , implies that the chart would signal (erroneously) more often than a 

typical 3-sigma Shewhart-type chart and would lead to deteriorated performance of the charting 

procedure.  

 

To allow the practitioner more flexibilily in designing the sign chart, that is, to have a wider range 

of  0ARL ’s and FAR ’s to choose from, in this thesis we enhance the sign chart by proposing new 

runs-type signaling rules  (i.e. decision rules). These signaling rules are based on runs of the charting 

statistics outside the control limits. Similar signaling rules were successfully used, for example, by 

Chakraborti and Eryilmaz (2007) to solve a similar weakness of the signed-rank chart introduced by 

Bakir (2004). In addition to the signaling rules, we further improve the sign chart of Amin, Reynolds 

and Bakir (1995) and consider the situation where it is required to monitor percentiles other than the 

median. 

 

If expert knowledge is not available and a value for the location parameter, θ , can not be specified 

one can not use the sign chart; this situation requires a different nonparametric control chart i.e. one 

requires a nonparametric control chart that can handle the scenario where monitoring a continuous 

random variable with an unknown cumulative distribution function and an unknown or an unspecified 

value for the location parameter is of interest. Chakraborti, Van der Laan and Van de Wiel (2004) 

considered a class of nonparametric control charts capable of solving this problem. Their charts, called 

precedence charts, are based on the two-sample median test statistic, which requires the availability of 

an in-control Phase I reference sample from which to estimate the control limits.  

 

To construct a precedence chart entails: 

 

(i) Arranging the observations mXXX ,...,, 21  from the in-control Phase I reference sample of 

size m  in ascending order i.e. mmmm XXX ::2:1 ,...,, , where miX :  is the i th smallest observation 

in the group of m ; 

 

(ii)  Estimating the lower control limit and the upper control limit by maXLCL :
ˆ =  and 

mbXLCU :
ˆ = , where maX :  and mbX :  (with mba ≤<≤1 ) are suitably selected order statistics 

from the Phase I sample; 
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(iii)  Obtaining new incoming Phase II samples each of size n  (independently from one another 

and from the Phase I sample);  

 

(iv) Calculating the charting statistic, njY : , which is the j th order statistic of the Phase II sample 

and depends on the quantile being monitored, and then 

 

(v) Comparing each  njY :  , one at a time, with the estimated control limits.  

 

The precedence chart signals if a single point plots on or outside the control limits. 

 

In this thesis we extend the precedence charts of Chakraborti et al. (2004) by incorporating the 

same signaling rules (or tests), involving runs of the charting statistic, that we used with the sign chart.  

These signaling rules, as mentioned earlier, are appealing because Chakraborti and Eryilmaz (2007) 

showed that when the in-control median is specified (and it is not necessary to estimate the median) 

the incorporation of similar rules provide more practical and powerful control charts. Similar 

extensions have been considered in the literature for Shewhart-type control charts in the case of the 

normal distribution (see e.g. Nelson, (1984), Klein, (2000) and Shmueli and Cohen, (2003)).  

 

To summarize:  

 

In Chapter 4 a new class of nonparametric control charts with runs-type signaling 

rules for the situations where the location parameter of the distribution is known 

and unknown is considered. In the former situation the charts are based on the sign 

test statistic and enhance the sign chart proposed by Amin et al. (1995); in the latter 

situation the charts are based on the two-sample median test statistic and improve 

the precedence charts by Chakraborti et al. (2004). 

 

 

To design the nonparametric control charts and study their performance, their run-length 

distributions are required. The run-length distributions and the associated performance characteristics 

for the “runs rule enhanced” charts are derived by using a Markov chain approach (see e.g. Fu and 

Lou, (2003)) and, in some cases, we also draw on the results of the geometric distribution of order k  

(see e.g. Balakrishnan and Koutras, (2002), Chapter 2). To implement the charts in practice we provide 

tables with the necessary charting constants and/or control limits and examples are given to illustrate 

the application and usefulness of the charts. 
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Lastly, the in-control and the out-of-control performance of the new distribution-free charts are 

studied and compared to the existing nonparametric charts, using the average run-length, the standard 

deviation of run-length, the false alarm rate and some percentiles of the run-length, including the 

median run-length.  It is shown that the newly developed runs rules enhanced sign charts offer more 

practically desirable in-control average run-lengths and false alarm rates than the sign chart of Amin, 

Reynolds and Bakir (1995) and the precedence charts of Chakraborti, Van der Laan and Van de Wiel 

(2004) and, perform better than the Shewhart X chart and a number of existing nonparametric charts 

for some distributions. 

 

 

Layout of the Thesis 
 

The rest of this thesis is structured as follows. In Chapter 2 we look at Phase I variables control 

charts; this includes the design of the Phase I 2S , S  and R  charts and an in-depth overview of the 

literature on Phase I parametric control charts for univariate variables data. In Chapter 3 we study the 

Phase II Shewhart-type p-chart and the Phase II Shewhart-type c-chart. In Chapter 4 we design a new 

class of nonparametric Shewhart-type control charts with runs-type signaling rules (i.e. runs of the 

charting statistics above and below the control limits) for the scenarios where the percentile of interest 

of the distribution is either known or unknown. Lastly, in Chapter 5 we wrap up this thesis with a 

summary of the research carried out and offer concluding remarks concerning unanswered questions 

and/or future research opportunities. In Chapter 5 we also list the research outputs related to and based 

on this thesis; this list includes the details of the technical reports and the peer-reviewed articles that 

were published, the articles that were accepted for publication, the local and the international 

conferences where papers were presented and the draft articles that were submitted and are currently 

under review.  
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Chapter 2 
 

Variables control charts: Phase I 
 

 

2.0    Chapter overview 
 

 

Introduction 
 

In practice the statistical process control (SPC) regime is implemented in two phases: Phase I, the 

so-called retrospective phase, and Phase II, the prospective or the monitoring phase (see e.g. Woodall, 

(2000)). 

 

In Phase I the primary interest is to better understand the process and to assess process stability. 

The latter step consists of trying to bring a process in-control by analyzing historical data in order to 

locate and eliminate assignable causes of variation.  A process operating at or around a desirable level 

or specified target with no assignable causes of variation is said to be stable, or in statistical control, or 

simply in-control (IC). 

 

Montgomery (2005) p. 199 describes the process of establishing control in Phase I as iterative and 

that the control limits are viewed as trial limits. Once statistical control is established to the satisfaction 

of the user, any unknown quantities or parameters are estimated from the in-control data which leads 

to the setting-up of control charts so that effective process monitoring can begin in Phase II. 

 

In addition to the use of various exploratory (e.g. graphical) and confirmatory (e.g. testing of 

hypotheses) statistical tools, control charts play a crucial role in a Phase I analysis.  They help in 

getting a better view of what is going on over time and assist in diagnosing the source(s) of assignable 

causes so that their effect can be minimized or removed. 
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Motivation 
 

The success of process monitoring in Phase II depends critically on the success of the 

corresponding Phase I analysis.  In this regard, the effects of parameter estimation based on Phase I 

reference data on the performance of Phase II control charts have been studied by several authors (see 

e.g. Jensen et al. (2006) for an overview). These studies emphasize the importance for a proper 

understanding of the issues while setting accurate Phase I control limits. 

 

The most familiar control charts in practice include those for the mean and the spread i.e. the 

variance and/or the standard deviation, of an assumed (at least approximately) normally distributed 

process.  While Champ and Jones (2004) studied the Shewhart-type Phase I X  chart for the mean, we 

study and design Shewhart-type Phase I 2S , S  and R  charts for the process variance and/or standard 

deviation. The spread charts are particularly important since an estimate of the variance or the standard 

deviation is usually necessary in setting up the control chart for the mean.  Thus, the spread of the 

process must be monitored and controlled before (or at least simultaneously) attempting to monitor the 

mean. 

 

Despite the fact that Phase I analysis is such an important component of SPC, not all authors make 

a clear distinction between Phases I and II or discuss the various ramifications in the current teaching 

and practice of SPC.  Moreover, although several authors studied some statistical aspects of Phase I 

control charting methods, a search of the standard textbooks on SPC methods (with some exceptions, 

such as Montgomery, (2005) p. 199) did not reveal much, if any, discussion of this important topic. It 

would therefore be helpful and beneficial for researchers, instructors (educators) and practitioners to 

know what the issues are, what the present state of the art is and what challenges still remain.  To this 

end, an overview of the literature on univariate parametric Shewhart-type Phase I variables control 

charts for the mean and the variance is given, under the assumption that the form of the underlying 

continuous process distribution is known. 

 

 

Methodology 
 

A key to the Phase I analysis, as Champ and Jones (2004) stated, “requires a different paradigm 

than studying the prospective monitoring of a process”.  One implication of this statement is that the 

metric of a control chart’s performance must be carefully chosen depending on which phase of the 

analysis (I or II) one is referring to.  
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Because Phase I control charting is about ensuring that a process is in-control, it is in principle 

similar to a multi-sample hypothesis testing problem for homogeneity that tests if the data from several 

independent samples come from the same (in-control) distribution or process.  With this motivation, 

the false alarm probability, denotedFAP , is the criterion typically used to measure and evaluate 

control limits in Phase I. The FAP  is defined as the probability of at least one false alarm (signal) 

when the process is actually in-control. 

 

The Phase I 2S , S  and R  control charts that are developed in this chapter are designed and/or 

implemented by specifying a nominal false alarm probability, say 0FAP , and then determining the 

charting constants (Phase I control limits) so that the FAP  is less than or equal to the 0FAP . The 

derivations take into account that the signaling events (when a charting statistic falls outside either of 

the control limits) are dependent and use the relevant joint probability distribution of the Phase I 

charting statistics while computing the FAP . 

 

 

Layout of Chapter 2 
 

We begin with a general discussion of Phase I, in which we describe the goals and discuss some of 

the standard methods for designing and implementing Shewhart-type Phase I charts; this is done 

Section 2.1. The design of the Shewhart-type Phase I 2S , S  and R  charts are then studied in Section 

2.2. This is followed by an overview of the literature on univariate parametric Shewhart-type Phase I 

control charts for the mean and the spread of variables data in Section 2.3. Finally, we conclude 

Chapter 2 with a summary and recommendations for future research. 
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2.1     Phase I SPC  
 

 

Introduction 
 

Much of the preliminary statistical analysis is done in Phase I. This includes planning, 

administration, design of the study, data collection, data management, exploratory work (including 

graphical and numerical analysis, goodness-of-fit analysis, and so on) to ensure that the process is truly 

in a state of statistical control (see e.g. Woodall, (2000) and Montgomery, (2005) p. 168 and p. 199). 

The goal is to make sure that a process is operating at or near an acceptable target(s) under some 

natural or common causes of variation and that no special causes or concerns are present. In this regard 

Phase I control charts play an important role. While Champ and Jones (2004) studied the Shewhart-

type Phase I X  chart for the mean, we study and design Shewhart-type Phase I 2S , S  and R  charts 

for the process variance and/or standard deviation. 

 

 

Case K and Case U 
 

If target values of the parameters of interest are known, one needs to ensure that the process is 

operating at or around these given targets subject only to common causes of variation. This situation is 

referred to as the “Standards Known Case” and denoted Case K. 

 

If the parameters are unknown, establishing control involves estimation of the parameters and the 

control limits; this causes that both the charting statistics and the control limits of a Phase I chart are 

random variables. This situation is referred to as the “Standards Unknown Case” and denoted Case U.   

 

Although both of these situations can occur in practice, Case U occurs more often, particularly 

when not much historical information or expert opinion is available. 

 

 

Phase I control charting 
 

At the beginning of a Phase I analysis it is assumed that m independent random samples or rational 

subgroups are available, each of size 1>n , taken sequentially over time from a process with a 

continuous cumulative distribution function (c.d.f) );( θxF , where F is a known function and 

),...,,( 21 kθθθ=θ , 1≥k , is a vector of unknown parameters.  Symbolically, we write );(~ θxiidFX ij  
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where iid denotes “independently and identically distributed”, andijX  denotes the thj  observation in 

the thi  sample for mi ,...,2,1=  and nj ,...,2,1= . 

  

 Generally speaking, depending on the parameter of interest, we calculate a charting statistic iC  for 

mi ,...,2,1=  from each subgroup and calculate the point estimates )ˆ,...,ˆ,ˆ(ˆ
21 kθθθ=θ  using the mn  

individual observations combined (pooled). Using statistical distribution theory and some given 

performance criterion, an estimated lower and upper control limit, denoted 

)ˆ(ˆ
1 θgLCL =             and             )ˆ(ˆ

2 θgLCU =  

are then obtained, where 1g  and 2g  are two specified functions of θ̂  such that LCULCL ˆˆ < . 

 

A plot of the charting statistics (from all m the subgroups) together with the estimated control 

limits constitutes the Phase I control chart. 

  

If all m  the charting statistics plot between the control limits and no systematic pattern is present, 

the process is considered to be in control (IC).  On the contrary, if any one or more of the iC ’s  fall on 

or outside the estimated control limits, the process is declared to be out-of-control (OOC) and some 

action or intervention is required. This entails, for example, that the OOC samples are re-examined, 

possibly discarded and the remaining samples are then re-checked for control.  Revised values are 

subsequently obtained for the estimators as well as the control limits from the remaining samples and 

the corresponding charting statistics are then plotted against the revised limits.  

 

This iterative trial-and-error process continues until all the charting statistics plot inside the latest 

control limits for the samples at hand.  Once this state is reached, the remaining data are thought to be 

from an in-control process and this final Phase I data set is used to find appropriate control limits for 

Phase II monitoring of the process.  This final Phase I data is referred to as in-control data or a set of 

reference data. 

 

Note that, if at any stage during Phase I control charting it happens that some of the Phase I 

charting statistics plot outside the estimated control limits but no assignable cause(s) can be found that 

justify their removal, the process may be considered in-control and the observations from these 

samples are then included in the reference data.  
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Remark 1 
 

(i) Intuitively, the charting statistic iC  for the ith sample is taken to be an efficient estimator of 

the parameter of interest. 

 

For example, if it is assumed that the underlying process distribution is normal with an 

unknown mean µ  and an unknown variance 2σ , the data would be represented as 

),(~ 2σµiidNX ij  for mi ,...,2,1=  and nj ,...,2,1= ; thus, if the unknown process mean µ  

is the parameter of interest, the ith sample mean iX  (the best estimator) is a natural charting 

statistic. 

 

(ii)  Estimation of the parameters is an important step in setting-up control charts in Case U.  

Unbiased estimators are preferred and if more than one such estimator is available, the 

minimum variance unbiased (MVU) estimators should be used. 

 

For example, if it is assumed that ),(~ 2σµiidNX ij  for mi ,...,2,1=  and nj ,...,2,1=  

where both µ  and 2σ  are unknown, it is common practice to use the overall mean of the 

pooled sample 

∑∑∑
= ==

==
m

i

n

j
ij

m

i

i X
mn

X
m

X
1 11

11
 

to estimate µ  and use the pooled variance 

∑∑∑
= ==

−
−

==
m

i

n

j
iij

m

i
i XX

nm
S

m
V

1 1

2

1

2 )(
)1(

11
 

 to estimate 2σ . In this case, we would say that ),(ˆ VX=θ  estimates ),( 2σµ=θ . 

 

(iii)  Since the Phase I charting statistics and the estimated control limits are obtained using the 

same data, successive comparisons (over subgroups) of the charting statistics with the 

estimated control limits are dependent events.  This implies that the signaling events (i.e. 

the event that a charting statistic falls on or outside the control limits) or the non-signaling  

events (i.e. the event that a charting statistic plots between the control limits) for the ith and 

the jth subgroups, where mji ,...,2,1=≠ , are statistically dependent. 
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To illustrate the dependency of the non-signaling events, assume, for example, that 

),(~ 2σµiidNX ij  for mi ,...,2,1=  and nj ,...,2,1=  where both µ  and 2σ  are unknown 

and that we are interested in monitoring the mean. In this case, the sample means iX  for 

mi ,...,2,1=  would be the Phase I charting statistics and the MVU’s are ),(ˆ VX=θ , which 

would be used to estimate the unknown parameters ),( 2σµ=θ . Thus, writing the 

estimated control limits as functions of θ̂  i.e. 

),(ˆ
1 VXgLCL =        and           ),(ˆ

2 VXgLCU =  

it is clear that the events 

       }|),(),({ 21 1
ICVXgXVXg t <<          and          }|),(),({ 21 2

ICVXgXVXg t <<  

where mtt ,...,2,121 =≠  are dependent, because the overall mean X  and the pooled 

variance V  are  functions of all the ijX ’s. 

 

It is important to note that, because the m  charting statistics are compared to the control 

limits simultaneously, the false alarm probability (which is the probability for one or more 

of the charting statistics to plot outside the control limits when the process is in-control) is 

expected to be inflated.  Thus, in order to correctly design a Phase I control chart in Case U, 

the dependence of the signaling events and the multiple nature of the comparisons must be 

taken into account.   

 

(iv) It is believed that at the end of a successful Phase I analysis the practitioner will have a set 

of in-control data or reference data which can be used to estimate any unknown parameters 

and to obtain a set of control limits to be used in Phase II process monitoring.  

Without any loss of generality, it is assumed that m  denotes the final number of reference 

samples at the end of a successful Phase I analysis.  Thus the reference data set is assumed 

to have mnN =  individual observations. 

 

(v) For greater generality, only two-sided charts are considered in the discussions that follow. 

In applications where a one-sided chart is more meaningful or preferred, these discussions 

can be suitably adapted. 
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2.1.1 Design and implementation of two-sided Shewhart-type Phase I charts 
 

 

Introduction 
 

The decision problem under a Phase I control charting scenario is similar, in principle, to a multi-

sample test of homogeneity problem where one tests whether the data from various samples come 

from the same in-control distribution or in-control process (see e.g. Champ and Jones, (2004)).  

 

Under this motivation, the false alarm probability (FAP ), which is the probability of at least one 

false alarm when the process is in-control, is used to construct and evaluate Phase I control charts and 

not the false alarm rate (FAR ), which is the probability for a single charting statistic to plot outside the 

control limits when the process is in-control. 

 

 

False alarm probability 
 

An out-of-control situation is indicated when a charting statistic falls either on or above the 

estimated upper control limit or plots on or below the estimated lower control limit.  This important 

event is called a signal or a signaling event. 

To study the false alarm probability it is convenient to consider the complementary event, that is, 

when a subgroup does not signal, called the non-signaling event.  Thus, if  

}ˆˆ{ LCUCLCLE ii <<=     for     mi ,...,2,1=  

denote the non-signaling event for the i th subgroup, the false alarm probability can be expressed as  
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where ),...,,( 21,...,, 21 mCCC cccf
m

 denotes the joint probability density function (p.d.f) of the charting 

statistics mCCC ,...,, 21  when the process is in-control and for notational convenience the estimated 

control limits are written as lLCL =ˆ  and uLCU =ˆ . 

 

 

False alarm rate 
 

The false alarm rate, which is the probability of a single charting statistic plotting outside the 

control limits when the process is in-control, can be expressed as  

∫−=<<−=
u

l

iiCi dccgICLCUCLCLFAR
i

)(1)|ˆˆPr(1   (2-2) 

where )( iC cg
i

 denotes the marginal p.d.f of any of the charting statistics iC  for mi ,...,2,1=  when the 

process is in-control. 

 

 

Remark 2 
 

(i) It is clear from (2-1) that theFAP  involves m non-signaling events simultaneously. Also, 

because the control limits are estimated and the charting statistics are all compared with the 

same pair of control limits, the non-signaling events are dependent. Hence, calculation of 

the FAP  requires knowledge of the joint (multivariate) distribution of the charting 

statistics, when the process is in-control; this is highlighted in the last step of (2-1). The 

derivation of this joint distribution and the subsequent determination of the control limits 

(associated charting constants) form the main stumbling blocks in the study and the design 

of Phase I control charts. 

 

(ii)  Expression (2-2) shows that the FAR  involves only a single sample and a single signaling 

event. Calculation of the FAR  therefore requires only the marginal (univariate) distribution 

of the ith charting statistic iC  when the process is in-control. This in-control marginal 

distribution is typically the same for all ,,....,2,1 mi =  so that it can be called a common 

FAR. 

 

(iii)  Given the inherent repetitive nature of a Phase I analysis and the fact that the charting 

statistics from all m  the subgroups are judged simultaneously, the FAP  is a more useful 

and logical metric.  The FAP  is as a result the recommended chart design criterion adopted 
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in Phase I so that a Phase I control chart is designed by specifying a nominal false alarm 

probability, say 0FAP , as apposed to specifying a nominal FAR , say 0FAR . 

 

(iv) The objective and the design criterion in Phase I is different from designing Phase II 

control charts (see e.g. Chapter 3), based on in-control Phase I data, where one would 

specify some attribute of the in-control Phase II run-length distribution, such as the average 

run-length ( 0ARL ), to determine the control limits.  

 

Also, even though the FAR  is a commonly used performance measure in practice, it is 

most often used in the design of Phase II control charts. When the FAR  is used in 

designing a Phase I control chart it should be done with caution and the user should be 

aware of the effects on the performance of the Phase I chart; this is discussed in more detail 

in the next section.  

 

 

Implementation of two-sided Shewhart-type Phase I charts 
 

Implementation of Phase I charts requires the determination of the control limits and/or the 

charting constants. Different approaches exist and may be used. Each approach is based on an 

assumption regarding the dependence or independence of the charting statistics coupled with a 

particular performance criterion. Four approaches are considered and they are: 

(i) FAP-based control limits, 

(ii)  FAR-based control limits, 

(iii)  Approximate FAR-based control limits, and  

(iv) Bonferroni control limits. 

 

Methods (ii), (iii) and (iv) assume that the charting statistics are independent and use the FAR , in 

some way or another, in their design. However, while method (ii) incorrectly ignores the fact that 

several charting statistics are compared to the control limits at the same time, methods (iii) and (iv) do 

not. Furthermore, while method (ii) focuses exclusively on controlling the FAR  at a nominal value of 

0FAR , methods (iii) and (iv) indirectly controls the FAP  by adjusting the FAR . 

 

Method (i), on the other hand, is distinctly different from methods (ii), (iii) and (iv) as it correctly 

controls the FAP  by explicitly taking into account the dependency between the charting statistics and 

the signaling events. 
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Method (i): FAP-based control limits 
 

The FAP-based control limits are the optimal pair of limits because they are derived from the 

relevant joint p.d.f of the charting statistics which correctly accounts for: (i) the fact that the Phase I 

control limits are estimated, (ii) the Phase I signaling events are dependent, and (iii) that multiple 

charting statistics are compared with the estimated control limits in a single step. 

 

In this approach the design of a Phase I control chart requires the user to specify a desirable 

nominal FAP value and then find the corresponding control limits.   This means that one needs to solve 

for that combination(s) of values of 
0FAPll =  and 

0FAPuu =   such that 

 

mm

u

l

u

l

u

l

CCC dcdcdccccfFAP
FAP

FAP

FAP

FAP

FAP

FAP

m
...),...,,(1 2121,...,,0

0

0

0

0

0

0

21∫ ∫ ∫−= L      (2-3) 

 

where 0FAP  is the nominal value of FAP (typically set equal to 0.01, 0.05 or 0.10 in practice) and 

0FAPl  and 
0FAPu  denote the lower and the upper FAP -based control limits, respectively. 

 

Finding the two unknowns 
0FAPl  and 

0FAPu  from expression (2-3), uniquely, poses a problem 

without additional restrictions.    For example, in some cases the charting statistics are symmetrically 

distributed around zero (without any loss of generality) and then it makes sense to use symmetric 

control limits, that is, setting dLCULCL −=−= ˆˆ , say, where d  is then obtained by solving 
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If the plotting statistics are not symmetrically distributed and two-sided control charts are desired, 

one possibility is to use the equal-tailed conservative approach in which half the nominal FAP  is 

assigned in each tail i.e. half above the LCU ˆ  and half below the LCL ˆ , respectively.   This approach 

can be more clearly explained by expressing the FAP  of (2-1) as 
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Expression (2-5a) follows since the event that at least one of the charting statistics plot either above 

or below the control limits can be equivalently expressed as the union of two events: (i) that the 

minimum of the charting statistics lies below the LCL ˆ , and (ii) that the maximum of the charting 

statistics lies above the LCU ˆ .  From (2-5a) it follows that an upper bound for the FAP  is given by 

  
).|),...,,Pr(max()|),...,,Pr(min( 2121 ICuCCCIClCCCFAP mm ≥+≤≤     (2-5b) 

 

The equal-tails conservative method entails that one finds those values of the FAP -based control 

limits 
0FAPll =  and 

0FAPuu =  such that  

( ) 2/|),...,,min(Pr 021 0
FAPIClCCC FAPm =≤    (2-6a) 

and  

                                      ( ) 2/|),...,,max(Pr 021 0
FAPICuCCC FAPm =≥ .    (2-6b) 

and ensures that the false alarm probability is not greater than 0FAP . 

 

Using expressions (2-6a) and (2-6b) rather than (2-3) or (2-5a) to solve for 
0FAPl  and 

0FAPu  may be 

advantageous in some cases in the sense that it involves calculating the percentiles of some univariate 

distributions i.e. the distributions of the minimum and the maximum, which might be computationally 

easier than using the multivariate p.d.f in (2-3) or using the joint distribution of the minimum and the 

maximum in (2-5b) . However, finding closed form expressions for the p.d.f.’s of 

),...,,min( 21min mCCCC =        and       ),...,,max( 21max mCCCC =  

to evaluate analytically is complex as the iC ’s are statistically dependent random variables. 

 

Attained False Alarm Rate 
 

Given the FAP -based control limits 
0FAPl  and 

0FAPu  that satisfy (2-3) or (2-6a) and (2-6b), one may 

be interested in calculating the attained false alarm rate (AFAR ). TheAFAR  is the resultant 

probability for a single charting statistic to plot outside the FAP -based control limits when the process 

is in-control, and defined as  

    ∫−=<<−=
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)(1)|Pr(1

FAP
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iiCFAPiFAP dccgICuClAFAR .                             (2-7) 

Using (2-7) one can compute the AFAR  given the marginal distribution )(iC cg
i

 of iC  for mi ,...,2,1=   

is known.
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Method (ii): FAR -based control limits 
 

Classically (see e.g. Hillier, (1969) and Yang and Hillier, (1970)) a Phase I chart is designed by 

controlling the false alarm rate at a nominal FAR  value, 0FAR  say. This entails finding that/those 

combination(s) of values for the control limits such that  

 

     ∫−=<<−=
0

0

00
)(1)|Pr(10

FAR

FAR

i

u

l

iiCFARiFAR dccgICuClFAR                  (2-8) 

where 
0FARl  and 

0FARu  denote the lower and the upper FAR -based control limits, respectively. 

 

It is evident from (2-8) that the FAR-based control limits use only the marginal distribution )(iC cg
i

 

for mi ,...,2,1=  of a single charting statistic to find the Phase I control limits and overlooks the fact 

that multiple charting statistics are simultaneously compared with the estimated control limits. Hence, 

this approach is flawed can be improved upon.  

 

Attained False Alarm Probability 
 

Given the values 
0FARl  and 

0FARu  that satisfy (2-8), the attained false alarm probability (AFAP ) 

may be calculated from (2-3) as  
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The AFAP  is the resultant probability that at least one charting statistic will plot outside the FAR-

based control limits when the process is in-control.  

 

Remark 3 
 

Solving for the control limits from (2-8) and then using the resultant FAR-based control 

limits to construct a Phase I chart not only ignores the fact that multiple charting statistics 

are compared to the control limits at the same time, but also ignores the dependency 

between the signaling events. The attained false alarm probably might thus be far-off the 

desired 0FAP  and, as a result, this approach is not recommended. Typically the AFAP  is 

inflated and larger than the chosen 0FAR . 
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If only the marginal distribution of iC  for mi ,...,2,1=  is available and one wishes to design a 

Phase I chart so that the FAP  is close to 0FAP  one may use the approximate FAR-based control limits 

or the Bonferroni control limits to find approximate Phase I control limits. Both these approaches 

assume that the iC ’s are independent and works with the (exact) marginal distribution of the charting 

statistic, but they do take into account that more than one signaling event need to be dealt with. 

 

 

Method (iii): Approximate  FAR-based control limits 
 

A simple and popular alternative to the exact FAP-based control limits is the approximate FAR-

based control limits. The latter is often used and yields an approximate solution (see e.g. Champ and 

Jones, (2004)). 

 

In this approach one approximates the Phase I control limits by ignoring the dependence among the 

signaling events, but account for the fact that multiple comparisons are made at the same time. 

 

In particular, when the number of subgroups m is large, the correlation among the charting 

statistics approaches zero and the charting statistics are approximately independent. Then, from (2-1) 

and (2-2) it can be seen that 

    ∏
=

−−=−=−≈
m

i

mm
ii FARICEICEFAP

1

)1(1)]|[Pr(1)|Pr(1   (2-10) 

so that  

     mFAPFAR
1

)1(1 −−≈ .     (2-11) 

 

Expressions (2-10) and (2-11) show the relationship between the FAP  and the FAR  for large m  

and can be used to ensure that the 0FAPFAP ≈  by controlling the FAR . 

 

For example, it follows from (2-11) that for symmetrically distributed charting statistics the 

approximate FAR-based control limits are given by the 

100])1(1[
2

1 1

0
mFAP−− th    and  100}])1(1{

2
1

1[
1

0
mFAP−−− th 

percentiles of the marginal in-control distribution of a single charting statistic and would yield a false 

alarm probability of approximately 0FAP . 
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For asymmetric approximate FAR-based control limits one may use the 

100])1(1[
1

0
mFAPw −− th  and  100}])1(1){1(1[

1

0
mFAPw −−−− th 

percentiles of the marginal in-control distribution of iC  for  mi ,...,2,1= , with 10 ≤≤ w . 

 

 

Method (iv): Bonferroni control limits 
 

A fourth approach is to use a Bonferroni-type adjustment when calculating the Phase I limits. This 

method also yields an approximate solution, but is applicable whether or not the charting statistics are 

symmetrically distributed and ensures that the false alarm probability is at most as specified (see e.g. 

Ryan, (1989) p. 74 - 76). 

 

It follows from Bonferroni’s inequality (see e.g. Casella and Berger, (2002) p. 13) that one can find 

an upper bound for the false alarm probability as a function of the false alarm rate; this upper bound is 

given by  

 

mFARFARmICEmICEFAP
m

i
i

m

i

m

i
i =−−=−≤−= ∑∑

=== 111

)1()|}{Pr()|}{Pr(1 I . (2-12) 

 

If it is desired that the 0FAPFAP ≤ , it is seen from (2-12) that setting 0FAPmFAR =  i.e. setting 

the false alarm rate equal to mFAPFAR /0= , would meet the requirement. In this case, the 

symmetrically placed control limits are given by the 

 

    100]2/[ 0 mFAP th       and       100)]2/(1[ 0 mFAP− th 

 

percentiles of the marginal in-control distribution of a single charting statistic. 
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Remark 4 
 

(i) In some situations it may be reasonable to assume that the marginal distribution of the 

charting statistics iC  for mi ,...,2,1=  is normal (or, at least approximately so) and then use 

the percentiles of a normal distribution to find the control limits in the FAR-based  

approach, the approximate FAR-based approach and/or the Bonferroni approach, instead of 

using the exact marginal distribution )(iC cg
i

 for mi ,...,2,1= . This, however, might result 

in a Phase I control chart with incorrectly placed limits, especially when m  and n  are not 

large. 

 

Although the assumption of normality might be acceptable in some cases, there are 

scenarios (e.g. the 2S , S  and R  charts) where the marginal distribution of the charting 

statistic (e.g. the sample variance or the sample standard deviation or the sample range) is 

markedly non-normal; this is particularly true when small sample sizes are used. 

 

(ii)  The approximate FAR-based limits and the Bonferroni limits are easier to calculate than the 

exact FAP-based limits because one does not need to work with the joint distribution of the 

entire set of charting statistics. However, these two sets of limits are generally not suitable 

if the number of subgroups m  is small. 
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Comparison of methods (i), (ii), (iii) and (iv) to design a Shewhart-type Phase I control chart 
 

The four methods to design a Shewhart-type Phase I chart are illustrated in Figure 2.1 for the X  

chart in Case U. For this illustration a set of simulated data from the standard normal distribution was 

used and it was assumed that 15=m  random samples each of size 5=n  are available. The charting 

statistics are the sample means iX  for 15,...,2,1=i  of the simulated data in this research. The details 

on how to calculate the four pairs of control limits are given in Champ and Jones, (2004). 

 

It is seen that there can be more false alarms if one uses the FAR-based control limits, denoted 

LCL(FAR) and UCL(FAR), than when one uses the FAP -based control limits.  This is simply because 

the FAR-based control limits are tighter than the FAP-based control limits, denoted LCL(FAP) and 

UCL(FAP).  

 

In contrast, it is noticed that the approximate FAR-based control limits (i.e. LCL(Approx FAR) 

and UCL(Approx FAR)) and the Bonferroni control limits (i.e. LCL(Bon) and UCL(Bon)) almost 

coincide and are both slightly wider than the FAP-based control limits. It is thus likely that one can 

observe less false alarms if one uses the approximate FAR-based control limits or the Bonferroni 

control limits instead of the FAP-based control limit. Although less false alarms might be appealing 

from a practical point of view, if the control limits are too wide, unwanted variation might go 

undetected. 
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Figure 2.1:   Shewhart-type Phase I X  control charts in Case U 
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2.2    Shewhart-type S2, S and R charts: Phase I 
 

 

Introduction 
 

The most familiar control charts in practice include those for the mean and the variance of an 

assumed (at least approximately) normally distributed process. While Champ and Jones (2004) studied 

the Shewhart-type Phase I X  chart for the mean, we study and design Shewhart-type Phase I 2S , S  

and R  charts for the spread. 

 

Control charts for the spread are particularly important since an estimate of the variance or the 

standard deviation is necessary in creating a control chart for the mean.  The spread must therefore be 

monitored and controlled before (or at least simultaneously) attempting to monitor the mean. 

 

 

Assumptions 
 

Suppose that m  independent rational subgroups each of size 1>n  are available from a normal 

distribution with an unknown mean µ  and an unknown variance 2σ .  The data are represented as 

),(~ 2σµiidNX ij  for mi ,...,2,1=  and nj ,...,2,1=  where ijX  is thej th observation from the i th 

subgroup.  

 

 

Point estimators for the unknown standard deviation and the unknown variance and their 

probability distributions 
 

Estimation of the mean and the variance affects the performance of the 2S , S  and R  charts 

because their control limits are defined in terms of the unknown variance and the charting statistics (in 

case of the 2S  chart and the S  chart) also depend on the unknown mean.  Furthermore, the sampling 

distributions of the charting statistics are affected since the degrees of freedom of the chi-square 

distribution and the chi distribution changes from n  to 1−n  when the mean is estimated. 
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Point estimators 
 

Two unbiased point estimators for the process standard deviation and one for the process variance 

are 
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respectively, where 
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denotes the i th  sample range, 
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denote the i th  sample variance and the sample mean, respectively and the i th  sample standard 

deviation is defined as  

2
ii SS =   

for mi ,...,2,1= . 

 

The unbiasing constants 2d  and 4c  are tabulated, for example, in Appendix VI of Montgomery (2005). 

 

The first estimator in (2-13) is typically used when the R  chart is used to monitor spread. The 

second estimator in (2-14) is used in the application of the S  chart, while the third estimator in (2-15) 

is a pooled variance estimator and is used in the 2S  chart. 
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Distribution of the point estimators 
 

Under the assumption that the process follows a normal distribution, it is well-known that 

2
)1(2

~
)1(

−
−

nm

Vnm χ
σ

 

so that  

)1(
~

2
)1(

2

−
−

nm
V nmχσ

; 

this is an exact result. 

 

 

The exact distribution of 2ˆ Rσ  is complicated. Patnaik (1950) presented a method for approximating 

the distribution of 
22

2ˆ

σ
σ

c

w R  by that of a 2
wχ  distribution where )(wcc =  is a constant and a function of 

w .  This is done using a technique called “moment matching” (see e.g. Casella and Berger, (2002) p. 

314) and involves setting the first two moments of the distribution of 
σ

σ Rˆ
 equal to those of 

w

c wχ
 

where wχ  is a random variable which follows a chi distribution i.e. the square root of a chi-square 

random variable with w  degrees of freedom (see e.g. Johnson, Kotz and Balakrishnan, (1994, 1995)). 

Then, approximately, 

w

c w
R

χσσ ~ˆ . 

 

Using a similar approach, one can show that approximately 

t

d t
S

χσσ ~ˆ , 

where the constant )(tdd =  is a function of t  (see e.g. Champ and Jones, (2004)). 

 

Values of the constants c  and d  for  Rσ̂  and Sσ̂  were numerically approximated and tabulated by 

Champ and Jones (2004) for 40)5(10)1(3=m  and .10)1(3=n  
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2.2.1  Phase I  S2 chart 
 

 

Introduction  
 

The application of the 2S  chart in Case K and its operation in prospective process monitoring in 

Case U, are discussed in various SPC textbooks (see e.g. Ryan, (1989) and Montgomery, (2005) p. 

231). Here we study the retrospective use of the Phase I 2S  chart in Case U. 

 

 

Charting statistics and control limits 
 

For the Phase I 2S  chart the charting statistics are the sample variances 2
iS  for mi ,...,2,1=  and 

one uses the probability limits  

 

1
ˆ

2
1,1

−
= −−

n

V
LCL

nLαχ
     VLC =ˆ   

1
ˆ

2
1,

−
= −

n

V
LCU

nUαχ
     (2-16) 

 

where 2
1, −nξχ  is the )1(100 ξ− th percentile of the chi-square distribution with 1−n  degrees of freedom 

(see e.g. Montgomery, (2005) p. 231). 

 

Typically one would take 00135.0== UL αα  and find the chi-square percentiles with the idea that 

the false alarm rate is approximately 0.00270 =FAR . However, in Phase I charting, as noted earlier, it 

is better to control the false alarm probability at some nominal value i.e. 0FAPFAP = , which results in 

some false alarm rate  

 

UL AFARAFARAFAR +=       (2-17) 

where 

 

)|ˆPr(
0

2 ICLCLSAFAR FAPiL ≤=  and            )|ˆPr(
0

2 ICLCUSAFAR FAPiU ≥=     (2-18) 

 

are the probabilities that a charting statistic plots on or outside the estimated lower and upper limits, 

respectively, which result from controlling the false alarm probability. The resultant FAR  is called the 

attained false alarm rate and denoted AFAR . Depending on the values of 0FAP , m  and n , the AFAR  

can be substantially different from 0.0027, as will be seen later. 
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Design of the Phase I 2S chart for a nominal FAP  
 

The objective when designing a Phase I 2S  chart is to know where to place the control limits of 

the 2S  chart so that if the m  charting statistics are simultaneously plotted on the chart, the probability 

of at least one charting statistic plotting on or outside the estimated control limits, when the process is 

in-control, is at most equal to 0FAP . This goal is identical to ensure that the FAP  of the Phase I 2S  

chart is less than or equal to a pre-specified FAP  i.e. 0FAPFAP ≤ ; for this we need an expression to 

calculate the FAP . 

 

First we derive FAP-based control limits for the 2S  chart, which is an exact solution and takes 

account of the dependence between the signaling events. We then also find approximate FAR-based 

control limits, which is an approximate solution and is suitable when the number of Phase I subgroups 

m  is large. 
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False alarm probability of the Phase I S2 chart  
 

The exact false alarm probability of the Phase I 2S  chart, under the assumption of i.i.d. observations 

from a normal distribution with the mean and the variance both unknown, is 
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where 
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are called the charting constants, and 
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where the iX  for mi ,...,2,1=  denotes independent chi-square random variables each with 1−n  

degrees of freedom and  ),...,,( 21 myyyf  denotes the joint p.d.f of ),...,,( 21 mYYY  when the process is 

in-control. 

 
 
 



 51 

Remark 5 
 

 

(i) From the definitions of the estimated control limits LCL ˆ  and LCU ˆ  and the charting 

constants a  and b  in (2-16) and (2-20), respectively, it is seen that one may also write the 

control limits as 

 

      VmaLCL =ˆ      and              VmbLCU =ˆ   (2-22) 

 where m  is the number of Phase I subgroups and V  is defined in (2-15). 

 

The control limits in (2-16) are defined in terms of the marginal distribution of the charting 

statistics (i.e. the percentiles of the 2
1−nχ  distribution) and allows one to easily calculate the 

estimated control limits of a Phase II 2S  chart. In contrast, the alternative form of the 

estimated control limits in (2-22) simplifies the calculation of the limits for a Phase I 

2S chart, which is the focus here. Example 1 (given later) explains how the limits in (2-22) 

may be used. 

 

 

(ii)  From the derivation of theFAP  in (2-19) it is clear that any two non-signaling or signaling 

events are dependent since the corresponding iY  random variables are statistically 

dependent. This is so because each iY  is a function of and depends on all the 2
iS ’s through 

∑
=

=
m

i
iS

m
V

1

21
  in their denominators (see e.g. expression (2-21)). The joint probability 

distribution of the charting statistics when the process is in-control i.e. ),...,,( 21 myyyf , is 

therefore needed to calculate and study the false alarm probability; this is highlighted by the 

last step in (2-19). 
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Joint probability distribution of  ),...,,( mYYY 21  

 

Deriving an exact closed form expression for ),...,,( 21 myyyf  in order to calculate the FAP  of the 

2S  chart is difficult. A particular obstacle is the fact that the iY  random variables are linearly 

dependent i.e. 1
1

=∑
=

m

i
iY ; this causes the joint distribution of 1 2( , ,..., )mY Y Y  to be singular and of 

dimension 1−m . To calculate the FAP  one can use the joint distribution of ),...,,( 121 −mYYY ; this is 

looked at next. 

 

 

Calculating the exact FAP of the S2 chart 
 

To analytically calculate the FAP  one may begin with (2-19) and proceed as follows: 
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where the joint p.d.f of ),...,,( 121 −mYYY , which is denoted ),...,,( 121 −myyyf , is integrated over the 

region  
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Remark 6 
 

 

(i) The first two steps in (2-23) are identical to the last two steps of (2-19) but in the reverse 

order.  

 

(ii)  The third step in (2-23) follows by using the fact that 1
1

=∑
=

m

i
iY  and then writing 

∑
−

=
−=

1

1

1
m

i
im YY . 

 

(iii)  From the third and the fourth steps in (2-23) it is evident that calculating the FAP  does not 

necessarily require the joint distribution of ),...,,( 21 mYYY . Instead one may use the joint 

distribution of ),...,,( 121 −mYYY , which is known. 

 

(iv) Given a closed form expression for the joint p.d.f ),...,,( 121 −myyyf , the last integral 

expression in (2-23) can be evaluated using a computer software package(s) capable of 

numerical integration (for e.g. Mathcad® or Mathematica®). 
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Joint probability distribution of ),...,,( 121 −mYYY  

 

The joint distribution of iY  for 1,...,2,1 −= mi  is the type I or standard Dirichlet distribution and is 

regarded as a multivariate generalization of the beta distribution (see e.g. Chapter 49 of Kotz, 

Balakrishnan and Johnson, (2000)). 

 

The standard Dirichlet distribution, in general, is denoted );,...,,(~),...,,( 121121 mm
I

m DYYY θθθθ −−   

where iθ  for mi ,...,2,1=  are the parameters of the distribution. 

 

The joint p.d.f of ),...,,( 121 −mYYY  is given by 
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where }1  and  1,...,2,1for    0{
1

1
∑

−

=
≤−=≤

m

i
ii ymiy  and the correlation between iY  and jY  for all 

1,...,2,1 −=≠ mji ,  is given by 
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11

j

m

k
ki

m

k
kjiji YY θθθθθθ −−−= ∑∑

==

   (2-25) 

 

(see e.g. Chapter 49 of Kotz, Balakrishnan and Johnson, (2000)). 

 

Substituting (2-24) in (2-23), with each 
2

1−= n
iθ  for mi ,...,2,1= , one can analytically calculate the 

FAP  of the 2S  chart. 
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FAP-based control limits for the S2 chart 
 

Calculating the FAP  of the Phase I 2S  chart and designing the chart is not the same. Calculating 

the FAP  requires one to evaluate expression (2-23). The design, as noted earlier, requires one to find 

the proper position of the control limits so that the FAP  is less than or equal to 0FAP . This implies 

that one has to find combinations of values for a  and b , denoted â  and b̂ , so that  
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mm ≤−=== ∫ ∫ ∫   (2-26) 

 

or, equivalently, such that 
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where 
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1
121

ˆ1ˆ  and  1,...,2,1for    ˆˆ|),...,,()(ˆ
m

i
iim byamibyayyyR y . (2-28) 

 

 

Remark 7 
 

(i) The equivalence of expressions (2-26) and (2-27) follows from the first and the last steps in 

(2-23). 

 

(ii)  Solving for â  and b̂  from (2-26) is not possible because, as mentioned earlier, a closed 

form expression for ),...,,( 21 myyyf  is not traceable. Also, solving for â  and b̂  from 

(2-27) involves multiple integrals (as little as 2=m  but even as many as 300=m  or 500) 

to be evaluated using numerical integration procedures; because this approach is 

computationally very demanding (i.e. computer intensive and time consuming) it is 

undesirable. As an alternative approach, we use a re-written form of (2-26) coupled with 

computer simulation experiments to solve for â  and b̂ .  
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From expressions (2-5a) and (2-5b) it follows that expression (2-26) can also be written as 

 

       
)|ˆ),...,,max(  and  ˆ),...,,Pr(min(                                    

)|ˆ),...,,Pr(max()|ˆ),...,,Pr(min()ˆ,ˆ(
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ICbYYYaYYY
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≥+≤===
 (2-29a) 

which implies that 

)|ˆ),...,,Pr(max()|ˆ),...,,Pr(min( 2121 ICbYYYICaYYYFAP mm ≥+≤≤ .  (2-29b) 

 

Expressions (2-29a) and (2-29b) follow because we need the probability that at least one of the iY ’s 

plots either on or below the estimated lower control limit or, on or above the estimated upper control 

limit.  The first probability can be expressed in terms of the smallest of the iY ’s whereas the second in 

terms of the largest of the iY ’s. This is consistent with our earlier discussions in section 2.1.1. 

 

Because, in general, the iY ’s are not symmetrically distributed the two probabilities on the right in 

(2-29b) will not be equal in general. This creates a problem since two unknowns cannot ordinarily be 

determined uniquely from a single condition. 

 

 

To simplify matters we follow an equal-tailed conservative approach in that â  and b̂  are found 

such that each term on the right in (2-29) is at most  
2

0FAP
.  Thus, we find â  and b̂   so that 

 

        
2

)|ˆ),...,,Pr(min( 0
21

FAP
ICaYYY m ≤≤     and    

2
)|ˆ),...,,Pr(max( 0

21

FAP
ICbYYY m ≤≥ .         (2-30) 

 

The distribution theory of the largest and the smallest of order statistics of the iY ’s is fairly 

involved and is not attempted here (see e.g. Eisenhart, Hastay and Wallis, (1947)). Instead we use 

intensive computer simulations (accounting for the dependence among the charting statistics) to solve 

the equations in (2-30) and find the charting constants â  and b̂ .  
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Simulation algorithm for determining the FAP-based control limits of the S2 chart  
 

The steps of the computer simulation algorithm to find â  and b̂  are: 

 

Step 1:   Generate 100,000 vector valued observations from the joint distribution of ),...,,( 21 mYYY . 

To obtain one such observation we generate m  independent 2
1−nχ  random variables for a given m and n 

(denoted by iX  for mi ,...,2,1= ), calculate the sum ∑
=

=
m

j
jXSUM

1
1 , and then calculate 

1SUM

X
Y i

i =  for 

mi ,...,2,1= . The vector ),...,,( 21 mYYY  is one such observation. 

 

Step 2:   Find ),...,,max( 21max mYYYY =  and ),...,,min( 21min mYYYY = . 

 

Step 3:  

Let  







 ≤≤=

2
)|),...,,(min(rP̂:maxˆ 0

211

FAP
ICuYYYua m  

and 







 ≤≥=

2
)|),...,,(max(rPˆ:minˆ 0

212

FAP
ICuYYYub m  

 

where 10 << u ; this means that we choose â  to be that value of  u  such that the proportion of minY ’s  

less than or equal to â  is at most 
2

0FAP
 and we choose b̂  to be that value of u  such that the 

proportion of maxY ’s greater than or equal to b̂  is less than or equal to 
2

0FAP
. 

 

 

Note that, in the above expressions for â  and b̂ , the "rP̂" 1  and the "rPˆ" 2  denote relative 

frequencies and are therefore, strictly speaking, empirical probabilities i.e. 

    

100,000

      values simulated ofnumber 
)(rP̂ min

1

uY
u

≤=    and   
100,000

      values simulated ofnumber 
)(rP̂ max

2

uY
u

≥= . 
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Remark 8 
 

Step 3 of the simulation algorithm is a conservative equal-tailed approach that ensures that 

the false alarm probability is not greater than the nominal FAP . 

 

 

FAP-based charting constants for S2 chart 
 

The values of â  and b̂  for  25,20,15,10)1(3=m  and 10)1(3=n  such that the FAP  does not 

exceed 0.01, 0.05 and 0.10 are given in Tables 2.1, 2.2 and 2.3, respectively. Note that, for some 

combinations of m  and n  it is seen that 0ˆ =a  so that the estimated lower control limit equals zero; 

this implies that the Phase I2S  chart would have only an upper control limit. 

 

To find the position of the Phase I control limits one replaces a  with â , substitute b̂  for  b  and 

replace V  with its observed value v  into (2-22). 

 

 

Example 1 
 

Suppose that 7=m  Phase I samples are available each of size 6=n  and that it is desired that 

05.00 =≤ FAPFAP .  

From Table 2.1 we obtain 0115.0ˆ =a  and 4271.0ˆ =b ; thus 0805.0)0115.0)(7(ˆ ==am  and 

9897.2)4271.0)(7(ˆ ==bm  so that the estimated lower and upper control limits of the Phase I 2S  chart 

in (2-22) are found to be  

vLCL 0805.0ˆ =            and           vLCU 9897.2ˆ =  

respectively. These limits ensure a 05.0≤FAP . 
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Table 2.1: Values of â  and b̂  so that the false alarm probability of the Phase I 2S  chart is  

less than or equal to  0.01 when m = 3(1)10,15,20,25 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

0.0008 0.0053 0.0135 0.0219 0.0320 0.0418 0.0501 0.0600 
3 

0.9595 0.9080 0.8604 0.8199 0.7881 0.7621 0.7384 0.7176 
0.0004 0.0029 0.0078 0.0141 0.0208 0.0271 0.0336 0.0389 

4 
0.8910 0.8107 0.7520 0.7074 0.6669 0.6418 0.6144 0.5954 
0.0002 0.0018 0.0056 0.0099 0.0146 0.0194 0.0240 0.0288 

5 
0.8213 0.7284 0.6683 0.6200 0.5800 0.5496 0.5286 0.5101 
0.0001 0.0013 0.0040 0.0074 0.0109 0.0149 0.0184 0.0223 

6 
0.7615 0.6624 0.5952 0.5494 0.5105 0.4812 0.4630 0.4445 
0.0001 0.0010 0.0031 0.0059 0.0087 0.0122 0.0155 0.0179 

7 
0.7011 0.5997 0.5384 0.4915 0.4588 0.4322 0.4124 0.3956 
0.0000 0.0008 0.0024 0.0050 0.0074 0.0099 0.0125 0.0156 

8 
0.6533 0.5521 0.4869 0.4472 0.4161 0.3909 0.3722 0.3543 
0.0000 0.0006 0.0019 0.0041 0.0062 0.0084 0.0107 0.0133 

9 
0.6042 0.5132 0.4533 0.4108 0.3832 0.3567 0.3367 0.3222 
0.0000 0.0005 0.0017 0.0033 0.0051 0.0075 0.0095 0.0115 

10 
0.5715 0.4749 0.4182 0.3793 0.3495 0.3296 0.3100 0.2950 
0.0000 0.0002 0.0009 0.0019 0.0030 0.0043 0.0055 0.0067 

15 
0.4366 0.3533 0.3092 0.2766 0.2542 0.2363 0.2221 0.2114 
0.0000 0.0001 0.0005 0.0012 0.0020 0.0029 0.0038 0.0047 

20 
0.3564 0.2822 0.2440 0.2172 0.1990 0.1846 0.1737 0.1648 
0.0000 0.0001 0.0004 0.0008 0.0015 0.0021 0.0028 0.0035 

25 
0.2985 0.2370 0.2022 0.1806 0.1650 0.1521 0.1432 0.1361 
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Table 2.2: Values of â  and b̂  so that the false alarm probability of the Phase I 2S  chart is 

less than or equal to 0.05 when m = 3(1)10,15,20,25 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

0.0041 0.0156 0.0301 0.0433 0.0568 0.0694 0.0790 0.0889 
3 

0.9088 0.8413 0.7877 0.7483 0.7173 0.6896 0.6682 0.6498 
0.0020 0.0089 0.0179 0.0273 0.0361 0.0444 0.0524 0.0580 

4 
0.8151 0.7303 0.6722 0.6303 0.5964 0.5712 0.5514 0.5335 
0.0012 0.0056 0.0123 0.0191 0.0257 0.0319 0.0380 0.0431 

5 
0.7329 0.6433 0.5854 0.5440 0.5116 0.4867 0.4673 0.4507 
0.0008 0.0041 0.0089 0.0144 0.0197 0.0245 0.0292 0.0337 

6 
0.6673 0.5765 0.5183 0.4789 0.4492 0.4253 0.4063 0.3929 
0.0005 0.0031 0.0069 0.0115 0.0156 0.0198 0.0239 0.0272 

7 
0.6067 0.5203 0.4662 0.4271 0.4008 0.3789 0.3617 0.3482 
0.0004 0.0024 0.0055 0.0094 0.0129 0.0162 0.0197 0.0230 

8 
0.5625 0.4740 0.4216 0.3876 0.3612 0.3415 0.3249 0.3116 
0.0003 0.0019 0.0046 0.0078 0.0109 0.0139 0.0167 0.0196 

9 
0.5210 0.4389 0.3882 0.3546 0.3301 0.3119 0.2960 0.2839 
0.0002 0.0016 0.0039 0.0066 0.0093 0.0121 0.0146 0.0171 

10 
0.4866 0.4072 0.3599 0.3282 0.3034 0.2863 0.2724 0.2597 
0.0001 0.0008 0.0020 0.0036 0.0053 0.0070 0.0086 0.0100 

15 
0.3676 0.3026 0.2629 0.2374 0.2190 0.2054 0.1943 0.1857 
0.0000 0.0005 0.0013 0.0023 0.0035 0.0047 0.0059 0.0070 

20 
0.2972 0.2405 0.2085 0.1872 0.1720 0.1609 0.1521 0.1446 
0.0000 0.0003 0.0009 0.0017 0.0026 0.0035 0.0044 0.0052 

25 
0.2492 0.2016 0.1734 0.1554 0.1430 0.1328 0.1256 0.1195 
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Table 2.3: Values of â  and b̂   so that the false alarm probability of the Phase I 2S  chart is 

less than or equal to 0.10 when m = 3(1)10,15,20,25 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

0.0083 0.0248 0.0431 0.0586 0.0740 0.0863 0.0967 0.1066 
3 

0.8709 0.7979 0.7441 0.7078 0.6778 0.6516 0.6325 0.6161 
0.0042 0.0141 0.0256 0.0366 0.0467 0.0555 0.0639 0.0700 

4 
0.7689 0.6823 0.6283 0.5904 0.5586 0.5363 0.5176 0.5023 
0.0025 0.0092 0.0175 0.0254 0.0329 0.0397 0.0463 0.0516 

5 
0.6817 0.5969 0.5445 0.5063 0.4780 0.4549 0.4383 0.4237 
0.0016 0.0067 0.0128 0.0193 0.0256 0.0307 0.0356 0.0401 

6 
0.6159 0.5323 0.4803 0.4451 0.4185 0.3975 0.3813 0.3685 
0.0012 0.0049 0.0100 0.0153 0.0201 0.0247 0.0290 0.0326 

7 
0.5598 0.4795 0.4309 0.3971 0.3729 0.3529 0.3376 0.3257 
0.0009 0.0039 0.0080 0.0125 0.0167 0.0204 0.0241 0.0274 

8 
0.5164 0.4374 0.3910 0.3595 0.3353 0.3183 0.3036 0.2922 
0.0007 0.0031 0.0066 0.0105 0.0140 0.0173 0.0204 0.0235 

9 
0.4779 0.4029 0.3582 0.3285 0.3069 0.2904 0.2768 0.2663 
0.0005 0.0026 0.0056 0.0089 0.0120 0.0150 0.0178 0.0204 

10 
0.4456 0.3731 0.3314 0.3035 0.2819 0.2669 0.2543 0.2439 
0.0002 0.0012 0.0029 0.0049 0.0067 0.0087 0.0104 0.0120 

15 
0.3352 0.2768 0.2420 0.2198 0.2035 0.1914 0.1811 0.1737 
0.0001 0.0007 0.0019 0.0031 0.0045 0.0058 0.0071 0.0083 

20 
0.2699 0.2204 0.1922 0.1734 0.1597 0.1500 0.1420 0.1357 
0.0000 0.0005 0.0013 0.0023 0.0033 0.0043 0.0053 0.0062 

25 
0.2276 0.1846 0.1603 0.1442 0.1328 0.1237 0.1175 0.1119 
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Attained false alarm rate 
 

To calculate the attained FAR  of the Phase I 2S  chart designed such that its 0FAPFAP ≤ , one 

needs the marginal distribution of iY  for mi ,...,2,1= . 

 

It can be verified (see e.g. Chapter 49 of Kotz, Balakrishnan and Johnson, (2000)) that each iY  for 

mi ,...,2,1=  follows a standard or type I beta distribution with parameters 
2

1−n
 and 

2

)1)(1( −− nm
. 

The beta distribution, in general, is denoted ),(~ vuBetaYi , where 0, >vu  are the parameters of 

the distribution (see e.g. Gupta and Nadarajah, (2004)).  

 

Given the FAP-based control limits aa ˆ=  and bb ˆ= , the attained false alarm rate can be calculated as 
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  (2-31) 

 

where   ∫
−−− −=

x
vu

x dtttvuBvuI
0

111 )1()],([),( ,     10 << x  

is the c.d.f of the beta distribution, also known as the incomplete beta function (see e.g. Gupta and 

Nadarajah, (2004)). 

 

Some AFAR values for the Phase I 2S  chart are shown in Table 2.4 for some selected values of m  and 

n . 

Table 2.4: AFAR values for the 2S  chart for selected values of m and n when 0500 .=FAP  

  Sample size (n) 

m 4 6 8 10 

15 0.00322 0.00328 0.00335 0.00327 
20 0.00252 0.00240 0.00249 0.00256 
25 0.00182 0.00196 0.00201 0.00195 
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Example 2 
 

Consider again Example 1. It was found that 0115.0ˆ =a  and 4271.0ˆ =b . Since 7=m  and 6=n  it 

follows that )15 , 5.2(~BetaYi  for mi ,...,2,1=  so that the attained false alarm rate of this Phase I 2S  

chart corresponding to a 05.00=FAP can be calculated using (2-31) and is equal to 

 

                         

.007391.0

003737.0003654.0

)15 , 5.2()]15 , 5.2(1[ 0115.04271.0

=
+=

+−= IIAFAR

 

 

TheAFAR  is different from the typical and anticipated 0.0027 and is a result of the parameter 

estimation and the simultaneous comparisons. Note that the tail false alarm probabilities UAFAR  and 

LAFAR   are unequal in this case; this is so since the )15 , 5.2(Beta  distribution is asymmetric. 

 

 

Remark 9 
 

Because marginally each )
2

)1)(1(
,

2

1
(~

−−− nmn
BetaYi  for mi ,...,2,1=  it follows that 

each 
2

1−= n
iθ  for mi ,...,2,1=  in (2-24) and (2-25). Thus, in our situation (with equal 

sample sizes) the correlation between any iY  and jY  is equal to  

 

)1/(1),(corr −−= mYY ji    for all    1,...,2,1 −=≠ mji   (2-32) 

 

and follows by substituting 
2

1−n
 for iθ  where 1,...,3,2,1 −= mi  in (2-25). 

 

The result of (2-32) means that any two of the iY ’s are equally and negatively correlated; 

this corresponds to the result of Champ and Jones (2004) in case of the Shewhart-type 

Phase I X  chart. Most importantly, as m  increases )1/(1),(corr −−= mYY ji  tends to zero; 

the significance thereof is described below. 
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Approximate FAR-based control limits for the Phase I S2 chart  
 

Because the correlation between iY  and jY  approaches zero as the number of subgroups m  

increases, we can approximate a  and b  assuming that the iY ’s are independently distributed when m  

is large. In particular, for 25≥m  the correlation between any pair of iY ’s  is less than 0.05 in absolute 

value.  

 

If the iY ’s are independent and identically distributed the false alarm probability equals 
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It follows from (2-33) that  

m
i FAPICbYaFAR

1
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so that, under the equal-tailed approach, we may approximate a  and b  for a specified 0FAP  

such that  
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Thus, a  and b  can be approximated by the 
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Beta  distribution; these approximate FAR -based control limits 

are denoted by a~  and b
~

, respectively. 

 

Moreover, it follows from (2-31) and (2-33) that the (approximate) attained false alarm rate is 
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Approximate FAR-based charting constants 
 

Tables 2.5, 2.6 and 2.7 give the approximate values of a  and b , denoted a~  and b
~

, for m = 

25,30,50,100,300, n = 3(1)10 and a false alarm probability of 0.01, 0.05 and 0.10, respectively. 

 

 

Table 2.5: Values of a~  and b
~

 so that the false alarm probability of the Phase I 2S  chart 

approximately equals 0.01 when m = 25,30,50,100,300 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

0.0000 0.0001 0.0004 0.0009 0.0015 0.0022 0.0029 0.0035 25 
0.2986 0.2374 0.2029 0.1805 0.1646 0.1526 0.1432 0.1356 
0.0000 0.0001 0.0003 0.0007 0.0012 0.0017 0.0023 0.0028 

30 
0.2590 0.2046 0.1742 0.1545 0.1406 0.1302 0.1220 0.1154 
0.0000 0.0000 0.0001 0.0003 0.0006 0.0009 0.0012 0.0015 

50 
0.1713 0.1333 0.1125 0.0991 0.0898 0.0828 0.0774 0.0730 
0.0000 0.0000 0.0001 0.0001 0.0002 0.0004 0.0005 0.0006 

100 
0.0952 0.0730 0.0610 0.0535 0.0482 0.0443 0.0413 0.0388 
0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 

300 
0.0361 0.0273 0.0226 0.0197 0.0176 0.0161 0.0150 0.0140 

 

 

Table 2.6: Values of a~  and b
~

  so that the false alarm probability of the Phase I 2S  chart 

approximately equals 0.05 when m = 25,30,50,100,300 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

0.0000 0.0003 0.0009 0.0017 0.0026 0.0035 0.0044 0.0053 
25 

0.2493 0.2004 0.1729 0.1550 0.1423 0.1327 0.1251 0.1190 
0.0000 0.0002 0.0007 0.0013 0.0020 0.0028 0.0035 0.0042 

30 
0.2162 0.1728 0.1486 0.1328 0.1217 0.1133 0.1067 0.1014 
0.0000 0.0001 0.0003 0.0006 0.0010 0.0014 0.0018 0.0022 

50 
0.1432 0.1129 0.0963 0.0856 0.0780 0.0724 0.0680 0.0644 
0.0000 0.0000 0.0001 0.0002 0.0004 0.0006 0.0007 0.0009 

100 
0.0801 0.0623 0.0526 0.0465 0.0422 0.0389 0.0365 0.0345 
0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 

300 
0.0309 0.0236 0.0197 0.0173 0.0156 0.0143 0.0134 0.0126 
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Table 2.7: Values of a~  and b
~

  so that the false alarm probability of the Phase I 2S  chart 

approximately equals 0.10 when m = 25,30,50,100,300 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

0.0001 0.0006 0.0014 0.0024 0.0034 0.0044 0.0054 0.0063 25 
0.2265 0.1834 0.1592 0.1433 0.1320 0.1235 0.1168 0.1114 
0.0001 0.0004 0.0010 0.0018 0.0026 0.0035 0.0042 0.0050 

30 
0.1965 0.1583 0.1369 0.1229 0.1130 0.1056 0.0998 0.0950 
0.0000 0.0002 0.0005 0.0009 0.0013 0.0018 0.0022 0.0026 

50 
0.1306 0.1038 0.0890 0.0794 0.0727 0.0676 0.0637 0.0605 
0.0000 0.0001 0.0002 0.0003 0.0005 0.0007 0.0009 0.0011 

100 
0.0734 0.0575 0.0489 0.0433 0.0394 0.0365 0.0343 0.0325 
0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0003 

300 
0.0285 0.0220 0.0184 0.0162 0.0147 0.0135 0.0126 0.0119 

 

Comparing the approximate charting constants a~  and b
~

 from Tables 2.5, 2.6 and 2.7 with the 

exact (simulated) charting constants â  and b̂  in Tables 2.1, 2.2 and 2.3, for 25=m , we see that the 

values are almost identical and the approximation is thus reasonable. 
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2.2.2  Phase I S chart 
 

 

Introduction 
 

In situations where it is desirable to estimate and monitor the process spread using the sample 

standard deviation  the S  chart is used. 

 

 

Charting statistics and control limits 
 

The charting statistics for the Phase I S  chart are the sample standard deviations iS  for 

mi ,...,2,1= .  The estimated k-sigma control limits and the centerline of the Phase I S  chart are  

 

  2
4

4

1ˆ c
c

S
kSLCL L −−=  SLC =ˆ       2

4
4

1ˆ c
c

S
kSLCU U −+= .  (2-36) 

 

Typically the charting constants 0, ≥UL kk  are taken to be 3=== kkk UL ; in these scenarios the 

constants 3B  and 4B  are defined as 

 

2
4

4
3 1

3
1 c

c
B −−=       and   2

4
4

4 1
3

1 c
c

B −+=      (2-37) 

 

and the control limits are written as 

 

SBLCL 3
ˆ =  SLC =ˆ      SBLCU 4

ˆ =  

 

(see e.g. Montgomery, (2005) p. 224). 

 

For more flexibility and to account for the fact that the sampling distribution of iS  is not 

symmetric we assume that Lk  is not necessarily equal to Uk . 
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Design of the Phase I S chart for a nominal FAP 
 

The Phase I S  chart is applied in a manner similar to the 2S  chart. The aim is also the same i.e. we 

want to find values for the charting constants Lk  and Uk  so that if the m  charting statistics  are 

simultaneously plotted on the S  chart the probability that at least one of the iS ’s for mi ,...,2,1=  plot 

outside LCL ˆ  and/or LCU ˆ  is at most equal to 0FAP . To design the Phase I S  chart we need an 

expression for the false alarm probability. 

 

 

False alarm probability of the Phase I S chart 
 

The false alarm probability of the Phase I S  chart is derived as follows: 
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(2-38) 

where 

m

B
c

**
3=       and    

m

B
d

**
4=       (2-39) 

with 

2
4

4
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3 11 c

c

k
B L −−=       and   2

4
4
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4 11 c

c

k
B U −+=      (2-40) 
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and 
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σ
i

i

Sn
W

1−
=       for     mi ,...,2,1=  

 

are independent and identically distributed chi random variables each with 1−n  degrees of freedom. 

 

 

Remark 10 
 

If 3== UL kk  it follows from (2-37) and (2-40) that 3
**

3 BB =  and 4
**

4 BB = .  
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FAP-based control limits for the S chart 
 

The design of a Phase I S  chart requires one to find that combination(s) of values for c  and d , 

denoted ĉ  and d̂ , so that 

 

0
1

|}ˆˆ{Pr1 FAPICdVcFAP
m

i
i ≤







 <<−=
=
I    (2-41) 

 

and then obtain Lk  and Uk  needed for calculating the estimated control limits. 

 

A major problem in the analytical determination of ĉ  and d̂  from (2-41) is finding a closed form 

expression for the joint distribution of 1 2( , ,..., )mV V V . In this regard, note that, the iV ’s are correlated 

and linearly dependent. In particular, it is seen from the definition of iV  for mi ,...,2,1=  that ∑
=

=
m

i
iV

1

1. 

As a result, even for an in-control process, the joint distribution of  1 2( , ,..., )mV V V  is complicated.  

 

To overcome these obstacles in designing the Phase I S  chart we make use of the equal-tails 

approach (described in section 2.1.1) coupled with computer simulation (as was the case for the 2S  

chart) and obtain the charting constants Lk  and Uk  of the S  chart by first solving for ĉ  and d̂  from  

 

( )
2

|ˆ),...,,min(Pr 0
21

FAP
ICcVVV m ≤≤        and      ( )

2
|ˆ),...,,max(Pr 0

21

FAP
ICdVVV m ≤≥    (2-42) 

 

and then calculating the values of Lk  and Uk  as  
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=            and  

2
4

4

1

)1ˆ(

c

dmc
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−

−
= ,  (2-43) 

where equation (2-43) follows from the definitions of c , d , **
3B  and **

4B  given in (2-39) and (2-40), 

respectively. 

 

The steps of the simulation algorithm for determining the charting constants of the S  chart are 

similar to those of the 2S chart and found by modifying steps 1, 2 and 3, described earlier, in a natural 

way.  

 

 
 
 



 71 

 

Simulation algorithm for determining the FAP-based control limits of the S chart 
 

Step 1:   Generate 100,000 vector valued observations from the joint distribution of ),...,,( 21 mVVV . 

To obtain one such observation we generate m  independent 2
1−nχ  random variables for a given m and n 

(denoted by iX  for mi ,...,2,1= ), calculate iX  for mi ,...,2,1= , calculate their sum 

∑
=

=
m

j
jXSUM

1
2 , and then calculate 

2SUM

X
V i

i =  for mi ,...,2,1= . The vector ),...,,( 21 mVVV  is one 

such observation. 

 

Step 2:   Find ),...,,max( 21max mVVVV =  and ),...,,min( 21min mVVVV = . 

 

Step 3:  

Let  







 ≤≤=

2
)|),...,,(min(rP̂:maxˆ 0

211

FAP
ICuVVVuc m  

and 







 ≤≥=

2
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212

FAP
ICuVVVud m  

 

where 10 << u  and the empirical probabilities are defined as 

 

100,000

      values simulated ofnumber 
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100,000

      values simulated ofnumber 
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2

uY
u
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respectively. 
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FAP-based charting constants for the S chart 
 

Tables 2.8, 2.9 and 2.10 display the values of Lk  and Uk  for 300,100,50,30,25,20,15,10)1(3=m  

and 10)1(3=n  so that the false alarm probability of the S  chart do not exceed 0.01, 0.05 and 0.10, 

respectively. 

 

For 3=n  and 100≥m , the tabulated values of Lk  is 1.9128, which results in a lower control limit 

of zero, when 01.0=FAP . Similar observations can also be made when 05.0=FAP  or 0.10 when 

3=n  for 300=m . This is interesting to note because for the usual S  chart, the lower control limit is 

negative for 5≤n  and is therefore adjusted upwards to be equal to zero - see e.g. the values of the 

constant 3B  in Appendix VI of Montgomery, (2005) p. 725. 
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Table 2.8: Values of Lk  and Uk   so that the false alarm probability of the Phase I S  chart is 

less than or equal to 0.01 when m = 3(1)10,15,20,25,30,50,100,300  and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

1.7974 2.0132 2.1105 2.1789 2.2311 2.2435 2.2640 2.2613 
3 

2.6131 2.6140 2.5992 2.5624 2.5600 2.5331 2.5293 2.5132 
1.8156 2.0613 2.1898 2.2775 2.3335 2.3624 2.3937 2.4059 

4 
3.0413 2.9607 2.9106 2.8788 2.8437 2.8098 2.7910 2.8183 
1.8325 2.1004 2.2413 2.3320 2.3981 2.4360 2.4658 2.4855 

5 
3.2957 3.1594 3.1079 3.0557 3.0376 3.0082 2.9980 2.9801 
1.8393 2.1219 2.2841 2.3877 2.4403 2.4742 2.5277 2.5442 

6 
3.4962 3.3369 3.2539 3.2110 3.1641 3.1270 3.1230 3.1168 
1.8472 2.1421 2.3097 2.4108 2.4872 2.5438 2.5762 2.6188 

7 
3.6037 3.4471 3.3952 3.3155 3.2988 3.2363 3.2270 3.2228 
1.8516 2.1513 2.3364 2.4347 2.5253 2.5728 2.6113 2.6624 

8 
3.7261 3.5653 3.4495 3.3996 3.3634 3.3353 3.3083 3.2828 
1.8560 2.1667 2.3411 2.4582 2.5443 2.6001 2.6613 2.6637 

9 
3.7940 3.6226 3.5531 3.4457 3.4407 3.4107 3.3772 3.3607 
1.8631 2.1679 2.3612 2.4743 2.5614 2.6199 2.6728 2.7119 

10 
3.8428 3.6961 3.5955 3.5475 3.4696 3.4773 3.4533 3.4412 
1.8697 2.2022 2.4039 2.5407 2.6311 2.7083 2.7654 2.8146 

15 
4.1240 3.9034 3.8242 3.7640 3.6958 3.6999 3.6504 3.6235 
1.8822 2.2176 2.4356 2.5856 2.6736 2.7671 2.8226 2.8670 

20 
4.2196 4.0562 3.9179 3.8660 3.8437 3.7754 3.7529 3.7639 
1.8841 2.2271 2.4590 2.6134 2.7127 2.7874 2.8482 2.9026 

25 
4.3659 4.1107 4.0364 3.9743 3.9288 3.9097 3.8633 3.8352 
1.8841 2.2413 2.4659 2.6196 2.7382 2.8186 2.8896 2.9215 

30 
4.4166 4.2410 4.0887 4.0423 3.9968 3.9373 3.9461 3.9065 
1.8937 2.2627 2.5072 2.6753 2.8063 2.8886 2.9566 3.0179 

50 
4.6576 4.4069 4.3119 4.2526 4.2179 4.1397 4.1195 4.0867 
1.9128 2.2982 2.5623 2.7526 2.8913 2.9806 3.0355 3.1436 

100 
4.8776 4.6675 4.5461 4.4846 4.4560 4.4156 4.3364 4.3172 
1.9128 2.3693 2.6725 2.8145 2.9934 3.1277 3.2326 3.3113 

300 
5.2028 4.9518 4.8491 4.7939 4.7622 4.7100 4.5729 4.6106 
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Table 2.9: Values of Lk  and Uk   so that the false alarm probability of the Phase I S  chart is 

less than or equal to 0.05 when m = 3(1)10,15,20,25,30,50,100,300 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

1.6500 1.7722 1.8187 1.8579 1.8698 1.8748 1.8867 1.8878 3 
2.1442 2.1207 2.0851 2.0669 2.0743 2.0529 2.0420 2.0278 
1.7001 1.8594 1.9319 1.9658 2.0001 2.0121 2.0326 2.0354 

4 
2.4644 2.3968 2.3628 2.3406 2.3253 2.2976 2.2817 2.2852 
1.7330 1.9132 2.0003 2.0614 2.0834 2.1103 2.1268 2.1418 

5 
2.6693 2.5849 2.5362 2.5021 2.4933 2.4709 2.4658 2.4541 
1.7521 1.9428 2.0526 2.1149 2.1382 2.1806 2.2060 2.2123 

6 
2.8455 2.7228 2.6786 2.6524 2.6212 2.5905 2.5837 2.5811 
1.7682 1.9762 2.0860 2.1446 2.2015 2.2321 2.2478 2.2873 

7 
2.9597 2.8384 2.7858 2.7483 2.7345 2.6954 2.6751 2.6888 
1.7797 1.9959 2.1226 2.1872 2.2505 2.2696 2.2928 2.3338 

8 
3.0390 2.9360 2.8588 2.8404 2.8056 2.7730 2.7627 2.7530 
1.7871 2.0217 2.1402 2.2188 2.2658 2.3053 2.3456 2.3506 

9 
3.1243 3.0149 2.9530 2.8918 2.8682 2.8477 2.8344 2.8175 
1.7980 2.0281 2.1656 2.2392 2.2926 2.3292 2.3692 2.3975 

10 
3.1886 3.0730 3.0004 2.9567 2.9219 2.9106 2.8896 2.8795 
1.8210 2.0814 2.2303 2.3273 2.3913 2.4433 2.4757 2.5002 

15 
3.4354 3.3028 3.2167 3.1794 3.1345 3.1149 3.1005 3.0891 
1.8363 2.1134 2.2813 2.3815 2.4491 2.5022 2.5387 2.5736 

20 
3.5846 3.4355 3.3558 3.2969 3.2791 3.2529 3.2168 3.2107 
1.8458 2.1324 2.3075 2.4124 2.4916 2.5390 2.5920 2.6197 

25 
3.7060 3.5421 3.4646 3.4176 3.3930 3.3485 3.3213 3.3008 
1.8497 2.1489 2.3254 2.4433 2.5239 2.5758 2.6294 2.6574 30 
3.7739 3.6297 3.5432 3.4856 3.4560 3.4295 3.4021 3.3658 
1.8650 2.1916 2.3832 2.5052 2.6022 2.6678 2.7398 2.7664 50 
4.0073 3.8382 3.7471 3.6650 3.6567 3.6245 3.6071 3.5837 
1.8937 2.2271 2.4521 2.5980 2.7212 2.7966 2.8383 2.8921 100 
4.2846 4.0989 3.9950 3.9588 3.9118 3.8637 3.8239 3.8142 
1.9128 2.2982 2.5899 2.7217 2.8913 3.0174 2.9960 3.0598 300 
4.6863 4.4542 4.3532 4.2372 4.2519 4.1581 4.0998 4.1076 
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Table 2.10: Values of Lk  and Uk   so that the false alarm probability of the Phase I S  is 

less than or equal to 0.10 when m = 3(1)10,15,20,25,30,50,100,300  and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

1.5461 1.6251 1.6559 1.6704 1.6861 1.6838 1.6904 1.6904 
3 

1.9032 1.8691 1.8446 1.8285 1.8212 1.8100 1.7996 1.7990 
1.6136 1.7277 1.7810 1.8062 1.8259 1.8369 1.8497 1.8526 

4 
2.1813 2.1276 2.0984 2.0759 2.0668 2.0489 2.0310 2.0354 
1.6574 1.7971 1.8570 1.9021 1.9151 1.9392 1.9533 1.9637 

5 
2.3757 2.3065 2.2717 2.2407 2.2297 2.2189 2.2076 2.2005 
1.6844 1.8348 1.9138 1.9646 1.9811 2.0150 2.0334 2.0362 

6 
2.5276 2.4427 2.4042 2.3778 2.3559 2.3322 2.3211 2.3196 
1.7053 1.8750 1.9567 2.0060 2.0467 2.0647 2.0795 2.1054 

7 
2.6477 2.5581 2.5138 2.4863 2.4631 2.4352 2.4185 2.4277 
1.7246 1.8973 1.9970 2.0512 2.0926 2.1136 2.1256 2.1628 

8 
2.7330 2.6498 2.5855 2.5633 2.5389 2.5199 2.5072 2.5015 
1.7355 1.9257 2.0212 2.0796 2.1219 2.1464 2.1788 2.1846 

9 
2.8162 2.7142 2.6629 2.6273 2.6018 2.5894 2.5790 2.5610 
1.7464 1.9381 2.0499 2.1062 2.1498 2.1821 2.2076 2.2299 

10 
2.8826 2.7768 2.7194 2.6877 2.6566 2.6494 2.6334 2.6239 
1.7808 2.0068 2.1311 2.2067 2.2586 2.2943 2.3278 2.3493 

15 
3.1312 3.0185 2.9439 2.9103 2.8794 2.8610 2.8403 2.8313 
1.8018 2.0471 2.1821 2.2639 2.3267 2.3697 2.3968 2.4311 

20 
3.2900 3.1559 3.0858 3.0433 3.0206 2.9953 2.9645 2.9592 
1.8124 2.0672 2.2179 2.3119 2.3641 2.4102 2.4540 2.4835 

25 
3.3904 3.2637 3.1960 3.1547 3.1209 3.0909 3.0749 3.0493 
1.8267 2.0921 2.2427 2.3413 2.4117 2.4544 2.4993 2.5317 

30 
3.4870 3.3525 3.2787 3.2258 3.2008 3.1645 3.1537 3.1394 
1.8458 2.1442 2.3144 2.4279 2.5001 2.5574 2.6018 2.6406 

50 
3.7204 3.5776 3.4991 3.4330 3.4015 3.3669 3.3705 3.3322 
1.8745 2.2034 2.3970 2.5361 2.6192 2.6862 2.7595 2.8083 

100 
4.0169 3.8619 3.7471 3.7114 3.6737 3.6429 3.5874 3.5628 
1.9128 2.2982 2.5072 2.6289 2.7893 2.9070 2.9960 3.0598 

300 
4.3994 4.2410 4.1052 4.0516 4.0478 3.9373 3.9816 3.8562 
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Attained false alarm rate 
 

To analytically calculate the attained false alarm rate of the S  chart for given m , n  and 0FAP  the 

marginal distribution of iV  i.e. the ratio of a chi random variable, iW , to the sum of m  independent chi 

random variables, ∑
=

m

j
jX

1

, is needed. Currently, the distribution of ∑
=

m

j
jX

1

for 3≥m  is unknown; only 

the distributions of the sum and the ratio of 2=m  correlated chi variates are known and available in 

the literature (see e.g. Krishnan, (1967)). Thus, we used computer simulation to determine the AFAR  

for selected values of m  and  n  when 05.00 =FAP . These values are shown in Table 2.11.  

 

 

Table 2.11: The AFAR values for the S  chart for selected m, n values when 0500 .=FAP  

 Sample size (n) 
m 4 6 8 10 
15 0.00324 0.00343 0.00329 0.00320 
20 0.00252 0.00261 0.00247 0.00258 
25 0.00209 0.00177 0.00212 0.00192 
50 0.00096 0.00112 0.00098 0.00069 
100 0.00062 0.00051 0.00046 0.00061 

 

 

From Table 2.11 it is seen that, for a fixed 0FAP  of 0.05, the AFAR  (i) decreases as the number of 

samples, m , increases, for a fixed sample size n, and (ii) stays fairly constant for a fixed m but with 

increasing n .  Also, note that for 20m =  and 05.00 =FAP , the AFAR  is close to 0.0027 for all values 

of n considered. 
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2.2.3  Phase I  R  chart 
 

 

Introduction 
 

Finally we consider the R  chart.  This chart is popular in the industry since the range is easy to 

calculate and for small n it is known that the range is a fairly efficient estimator of the standard 

deviation of a normal distribution. 

 

 

Charting statistics and control limits 
 

For the Phase I R  chart the charting statistics are the sample ranges iR  for mi ,...,2,1=  and we 

define the estimated k-sigma control limits and the centerline of the R  chart as 

 

RDLCL **
3

ˆ =  RLC =ˆ         RDLCU **
4

ˆ =     (2-44) 

where 

 

2

3**
3 1

d

d
kD L−=  and 

2

3**
4 1

d

d
kD U+= .  (2-45) 

 

and 0, ≥UL kk  are the charting constants. 

 

If 3== UL kk   then 3
**

3 DD =  and 4
**

4 DD =  where 

 

2

3
3 31

d

d
D −=  and 

2

3
4 31

d

d
D +=   (2-46) 

 

(see e.g. Montgomery, (2005) p. 197 and p. 198). 

 

As in the case of the S  chart, the definitions of **
3D  and **

4D  in (2-45) extend the usual R  chart by 

accounting for the fact that the sampling distribution of iR  is asymmetric and thus allows for a 

charting constant(s) other than 3. 
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False alarm probability of the R chart 
 

An expression for the false alarm probability of the R  chart is needed to design the chart. Such an 

expression is obtained in a similar manner as that of the 2S  chart and the S  chart and is derived as 

follows: 
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(2-47) 

 

where  

m

D
e

**
3=             and          

m

D
f

**
4=    (2-48) 

 

and  

∑
=

= m

j
j

i
i
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R
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1

.    (2-49) 
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FAP-based control limits for the R chart 
 

As in the case of the S chart, the charting constants Lk  and Uk  of the R  chart are obtained by first 

finding that combination of values for the charting constants ee ˆ=  and ff ˆ=  such that 

 

( )
2

|ˆ),...,,min(Pr 0
21

FAP
ICeUUU m ≤≤     and     

2
)|ˆ),...,,Pr(max( 0

21

FAP
ICfUUU m ≤≥     (2-50) 

 

and then, once e  and f  are found, we calculate the charting constants Lk   and Uk  from 

 

3

2)ˆ1(
d

d
mekL −=   and  

3

2)1ˆ(
d

d
mfkU −=                      (2-51) 

 

which follow directly from the definitions of e , f , **
3D  and **

4D  given in (2-48) and (2-45), 

respectively 

 

 

Here, similar to the S  chart, there are problems in the analytical determination of the constants ê  

and f̂ ; these obstacles arise due to the fact that even for an in-control process, the marginal 

distribution of iU  as well as the joint distribution of 1 2( , ,..., )mU U U are complicated. Thus, we again 

find the values of  ê  and f̂  via computer simulation. 
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Simulation algorithm for determining the FAP-based control limits of the R chart 
 

 

The steps of the simulation algorithm to find ê  and f̂ were as follows: 

 

Step 1:   Generate 100,000 vector valued observations from the joint distribution of ),...,,( 21 mUUU . 

To obtain one such observation we: (i) generate m  independent random samples each of size n  from 

the standard normal distribution, (ii) calculate the range iR , mi ,...,2,1=  for each sample, (iii) obtain 

the sum ∑
=

=
m

j
jRSUM

1
3 , and (iv) calculate 

3SUM

R
U i

i =  for mi ,...,2,1= . The vector ),...,,( 21 mUUU  is 

one such observation. 

 

Step 2:   Find ),...,,max( 21max mUUUU =  and ),...,,min( 21min mUUUU = . 

 

Step 3:  

Let  







 ≤≤=

2
)|),...,,(min(rP̂:maxˆ 0

211

FAP
ICuUUUue m  

and 







 ≤≥=

2
)|),...,,(max(rP̂:minˆ 0

212

FAP
ICuUUUuf m  

 

where 10 << u  and the empirical probabilities "Pr" 1  and "Pr" 2 are as defined earlier. 
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FAP-based charting constants for the R chart 
 

Tables 2.12, 2.13 and 2.14 display the values of the charting constants Lk  and Uk  for 

300,100,50,30,25,20,15,10)1(3=m  and 10)1(3=n  so that the false alarm probability does not exceed 

0.01, 0.05 and 0.10, respectively.  

 

Note that, similar to the S  chart, when 0.01FAP = , 3=n  and 100m ≥ , the tabulated value of Lk  

is 1.9065, which results in a lower control limit equal to zero, for the Phase I R chart.  Similar 

observations can also be made when 0.05FAP =  or 0.10 for 300m ≥  and when 3=n .  For the usual 

R  chart with symmetrically placed limits, on the other hand, the lower control limit is negative for 

6≤n  and is therefore adjusted upwards to be equal to zero - see e.g. the values of the constant 3D  in 

Appendix VI of Montgomery (2005) p. 725. 
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Table 2.12: Values of Lk  and Uk   so that the false alarm probability of the Phase I R  chart is  
less than or equal to 0.01 when  m = 3(1)10,15,20,25,30,50,100,300  and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

1.7881 1.9853 2.0686 2.1222 2.1340 2.1564 2.1782 2.1890 
3 

2.5799 2.6011 2.5898 2.5591 2.5560 2.5255 2.5127 2.5265 
1.8112 2.0487 2.1569 2.2172 2.2463 2.2845 2.2760 2.2863 

4 
3.0321 2.9575 2.8946 2.8711 2.8618 2.8664 2.8450 2.8501 
1.8246 2.0719 2.2143 2.2695 2.3112 2.3366 2.3488 2.3771 

5 
3.2993 3.1739 3.1538 3.1107 3.0805 3.0484 3.0619 3.0799 
1.8368 2.0997 2.2318 2.3194 2.3599 2.3991 2.4120 2.4323 

6 
3.5111 3.3599 3.3006 3.2727 3.2454 3.2296 3.2383 3.2356 
1.8411 2.1138 2.2681 2.3398 2.3985 2.4318 2.4407 2.4697 

7 
3.6426 3.4942 3.4457 3.4167 3.3980 3.3525 3.3640 3.3344 
1.8455 2.1226 2.2808 2.3738 2.4229 2.4665 2.4789 2.5026 

8 
3.7124 3.6070 3.5041 3.4735 3.4798 3.4636 3.4258 3.4356 
1.8516 2.1418 2.3045 2.3965 2.4398 2.4814 2.5146 2.5203 

9 
3.8091 3.6639 3.5978 3.5685 3.5464 3.5150 3.5394 3.5449 
1.8570 2.1432 2.3098 2.4055 2.4735 2.5102 2.5326 2.5528 

10 
3.8817 3.7647 3.6748 3.6187 3.6356 3.6247 3.6169 3.6264 
1.8665 2.1783 2.3610 2.4638 2.5352 2.5762 2.6171 2.6397 

15 
4.1505 3.9741 3.9184 3.9056 3.8580 3.8504 3.8834 3.8311 
1.8722 2.1947 2.3852 2.5101 2.5839 2.6248 2.6612 2.6879 

20 
4.2783 4.1461 4.0705 4.0580 4.0381 4.0344 4.0139 4.0165 
1.8779 2.2052 2.4095 2.5250 2.6131 2.6647 2.6925 2.7420 

25 
4.3803 4.2291 4.1593 4.1088 4.1225 4.0882 4.1260 4.0937 
1.8837 2.2134 2.4095 2.5489 2.6326 2.6908 2.7384 2.7613 

30 
4.4708 4.3216 4.2455 4.2014 4.2427 4.1837 4.2087 4.2250 
1.8875 2.2462 2.4633 2.5848 2.6943 2.7602 2.7936 2.8386 

50 
4.6996 4.5158 4.4824 4.4973 4.4472 4.4441 4.4293 4.4606 
1.9065 2.2696 2.5037 2.6595 2.7592 2.8470 2.9038 2.9351 

100 
4.9189 4.7731 4.7112 4.7214 4.7068 4.7219 4.7050 4.7116 
1.9065 2.3398 2.6114 2.7193 2.8566 2.9512 3.0141 3.0510 

300 
5.3002 5.1709 5.0612 5.0800 5.0315 5.0690 5.0358 5.0592 
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Table 2.13: Values of Lk  and Uk   so that the false alarm probability of the Phase I R  chart is  
less than or equal to 0.05 when m = 3(1)10,15,20,25,30,50,100,300 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

1.6451 1.7523 1.7900 1.8210 1.8175 1.8273 1.8353 1.8286 3 
2.1401 2.1070 2.0891 2.0607 2.0564 2.0516 2.0485 2.0411 
1.6945 1.8428 1.8974 1.9292 1.9490 1.9610 1.9555 1.9634 

4 
2.4594 2.4025 2.3594 2.3475 2.3320 2.3318 2.3113 2.3187 
1.7273 1.8917 1.9653 1.9991 2.0239 2.0380 2.0400 2.0584 

5 
2.6863 2.5901 2.5683 2.5385 2.5190 2.5033 2.5032 2.5084 
1.7487 1.9298 2.0089 2.0577 2.0833 2.1012 2.1099 2.1218 

6 
2.8316 2.7478 2.7061 2.7043 2.6514 2.6505 2.6473 2.6516 
1.7611 1.9565 2.0571 2.0992 2.1327 2.1498 2.1551 2.1697 

7 
2.9593 2.8718 2.8351 2.8143 2.7959 2.7668 2.7697 2.7694 
1.7693 1.9748 2.0783 2.1348 2.1606 2.1859 2.2054 2.2091 

8 
3.0505 2.9575 2.9140 2.8854 2.8696 2.8664 2.8494 2.8548 
1.7813 1.9965 2.1082 2.1653 2.1885 2.2095 2.2301 2.2353 

9 
3.1416 3.0405 2.9920 2.9715 2.9533 2.9307 2.9307 2.9401 
1.7902 2.0075 2.1187 2.1784 2.2268 2.2464 2.2606 2.2708 

10 
3.2049 3.1096 3.0502 3.0360 3.0156 3.0137 3.0141 3.0123 
1.8150 2.0590 2.1874 2.2621 2.3112 2.3314 2.3525 2.3674 

15 
3.4670 3.3424 3.2804 3.2870 3.2591 3.2567 3.2549 3.2402 
1.8303 2.0918 2.2291 2.3129 2.3632 2.3956 2.4186 2.4330 

20 
3.6072 3.5003 3.4459 3.4364 3.4214 3.4095 3.3964 3.3985 
1.8350 2.1058 2.2614 2.3457 2.4021 2.4390 2.4627 2.4910 

25 
3.7320 3.6033 3.5671 3.5261 3.5220 3.5154 3.5103 3.5047 
1.8436 2.1222 2.2802 2.3696 2.4281 2.4720 2.4958 2.5180 30 
3.8131 3.7039 3.6478 3.6187 3.6194 3.5900 3.5912 3.5994 
1.8589 2.1643 2.3287 2.4354 2.5157 2.5519 2.5914 2.6068 50 
4.0514 3.9074 3.8767 3.8697 3.8466 3.8365 3.8412 3.8427 
1.8875 2.1994 2.3960 2.5101 2.5969 2.6734 2.6833 2.7420 100 
4.3278 4.1882 4.1459 4.1237 4.1225 4.1316 4.1168 4.1323 
1.9065 2.2696 2.5306 2.6296 2.7592 2.8470 2.9038 2.9351 300 
4.7282 4.6094 4.5766 4.5421 4.5445 4.5483 4.4844 4.4799 
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Table 2.14: Values of Lk  and Uk   so that the false alarm probability of the Phase I R  chart is  
less than or equal to 0.10 when m = 3(1)10,15,20,25,30,50,100,300 and n = 3(1)10 

 Sample size (n) 
m 3 4 5 6 7 8 9 10 

1.5353 1.6105 1.6325 1.6426 1.6461 1.6513 1.6522 1.6456 
3 

1.8970 1.8620 1.8460 1.8267 1.8149 1.8110 1.8092 1.7989 
1.6091 1.7136 1.7499 1.7690 1.7828 1.7887 1.7805 1.7873 

4 
2.1826 2.1339 2.0966 2.0882 2.0788 2.0762 2.0599 2.0654 
1.6549 1.7747 1.8266 1.8542 1.8649 1.8766 1.8765 1.8846 

5 
2.3851 2.3129 2.2856 2.2710 2.2528 2.2394 2.2477 2.2399 
1.6812 1.8232 1.8780 1.9160 1.9314 1.9492 1.9489 1.9596 

6 
2.5319 2.4586 2.4267 2.4246 2.3865 2.3859 2.3826 2.3828 
1.6997 1.8582 1.9327 1.9633 1.9873 2.0016 2.0033 2.0102 

7 
2.6470 2.5885 2.5411 2.5277 2.5050 2.4970 2.4892 2.4991 
1.7159 1.8812 1.9620 1.9985 2.0256 2.0415 2.0525 2.0546 

8 
2.7378 2.6673 2.6189 2.5985 2.5917 2.5915 2.5760 2.5767 
1.7298 1.9018 1.9919 2.0308 2.0541 2.0721 2.0779 2.0893 

9 
2.8327 2.7520 2.7061 2.6837 2.6728 2.6494 2.6561 2.6551 
1.7407 1.9210 2.0083 2.0589 2.0872 2.1005 2.1136 2.1241 

10 
2.8922 2.8124 2.7648 2.7492 2.7365 2.7290 2.7274 2.7188 
1.7778 1.9818 2.0864 2.1500 2.1846 2.2012 2.2201 2.2342 

15 
3.1582 3.0476 2.9936 2.9957 2.9718 2.9650 2.9682 2.9563 
1.7960 2.0216 2.1376 2.2053 2.2463 2.2707 2.2937 2.3017 

20 
3.3097 3.2008 3.1606 3.1496 3.1357 3.1178 3.1097 3.1282 
1.8064 2.0473 2.1739 2.2486 2.2885 2.3175 2.3341 2.3558 

25 
3.4270 3.3166 3.2777 3.2422 3.2380 3.2376 3.2438 3.2248 
1.8207 2.0660 2.1995 2.2710 2.3307 2.3575 2.3745 2.3906 

30 
3.5156 3.4090 3.3571 3.3408 3.3370 3.3192 3.3155 3.3213 
1.8398 2.1175 2.2614 2.3607 2.4183 2.4477 2.4811 2.4910 

50 
3.7559 3.6383 3.5940 3.5858 3.5707 3.5588 3.5471 3.5723 
1.8684 2.1760 2.3422 2.4503 2.5320 2.5692 2.6098 2.6261 

100 
4.0418 3.9308 3.8767 3.8548 3.8629 3.8539 3.8595 3.8620 
1.9065 2.2696 2.4498 2.6296 2.6618 2.7428 2.7936 2.8192 

300 
4.4422 4.3286 4.2536 4.2731 4.2524 4.2358 4.2639 4.2482 
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Attained false alarm rate 
 

To calculate the attained false alarm rate of the R  chart given m , n  and a specified FAP  the 

(marginal) distribution of iU  i.e. the ratio of a range to the sum of m  independent ranges, one of 

which is iU , is required. Again as noted earlier, this distribution is complex and not available. Instead, 

we used simulation to determine the AFAR  for selected values of m  and  n  when 05.00 =FAP . 

These values are shown in Table 2.15. 

 

Table 2.15: AFAR values for the R  chart for selected m , n  values when 0500 .=FAP  

 Sample size (n ) 

m 4 6 8 10 
15 0.00311 0.00322 0.00357 0.00352 
20 0.00233 0.00238 0.00239 0.00245 
25 0.00205 0.00216 0.00207 0.00196 
50 0.00099 0.00096 0.00105 0.00110 
100 0.00044 0.00057 0.00033 0.00039 

 

 

The findings in case of the R  chart is similar to that of the S  chart i.e. from Table 2.15 we see that 

for a fixed FAP , the attained false alarm rate (i) decreases as the number of samples m  increases, for 

a fixed sample size n, and (ii) stays fairly constant for a fixed m but with increasing n . Also, note that 

for 20m =  and 05.00 =FAP , the AFAR  is close to 0.0027 for all  n considered. 
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Example 3 
 

To illustrate the calculations of the control limits for the Phase I 2S , S  and R  charts we use a 

dataset from Montgomery (2005), page 223, on the inside diameter measurements for automobile 

engine piston rings.  The data consists of 25=m  samples each of size 5=n  and are shown in Table 

2.16. Also shown in Table 2.16 are the sample mean iX , the sample range iR , the sample standard 

deviation iS  and the sample variance 2iS  for each sample. The unit of measurement is millimetre (mm) 

and we omit mentioning this below to avoid repetition. 

Table 2.16: Inside diameter measurements (in mm) for automobile engine piston rings* 

 Observations Sample statistics 

Sample number (i) 1X  2X  3X  4X  5X  iX  iR  iS  2
iS  

1 74.030 74.002 74.019 73.992 74.008 74.010 0.038 0.0148 0.0002182 

2 73.995 73.992 74.001 74.011 74.004 74.001 0.019 0.0075 0.0000563 

3 73.988 74.024 74.021 74.005 74.002 74.008 0.036 0.0147 0.0002175 

4 74.002 73.996 73.993 74.015 74.009 74.003 0.022 0.0091 0.0000825 

5 73.992 74.007 74.015 73.989 74.014 74.003 0.026 0.0122 0.0001493 

6 74.009 73.994 73.997 73.985 73.993 73.996 0.024 0.0087 0.0000758 

7 73.995 74.006 73.994 74.000 74.005 74.000 0.012 0.0055 0.0000305 

8 73.985 74.003 73.993 74.015 73.988 73.997 0.030 0.0123 0.0001502 

9 74.008 73.995 74.009 74.005 74.004 74.004 0.014 0.0055 0.0000307 

10 73.998 74.000 73.990 74.007 73.995 73.998 0.017 0.0063 0.0000395 

11 73.994 73.998 73.994 73.995 73.990 73.994 0.008 0.0029 0.0000082 

12 74.004 74.000 74.007 74.000 73.996 74.001 0.011 0.0042 0.0000178 

13 73.983 74.002 73.998 73.997 74.012 73.998 0.029 0.0105 0.0001093 

14 74.006 73.967 73.994 74.000 73.984 73.990 0.039 0.0153 0.0002342 

15 74.012 74.014 73.998 73.999 74.007 74.006 0.016 0.0073 0.0000535 

16 74.000 73.984 74.005 73.998 73.996 73.997 0.021 0.0078 0.0000608 

17 73.994 74.012 73.986 74.005 74.007 74.001 0.026 0.0106 0.0001117 

18 74.006 74.010 74.018 74.003 74.000 74.007 0.018 0.0070 0.0000488 

19 73.984 74.002 74.003 74.005 73.997 73.998 0.021 0.0085 0.0000717 

20 74.000 74.010 74.013 74.020 74.003 74.009 0.020 0.0080 0.0000637 

21 73.982 74.001 74.015 74.005 73.996 74.000 0.033 0.0122 0.0001477 

22 74.004 73.999 73.990 74.006 74.009 74.002 0.019 0.0074 0.0000553 

23 74.010 73.989 73.990 74.009 74.014 74.002 0.025 0.0119 0.0001423 

24 74.015 74.008 73.993 74.000 74.010 74.005 0.022 0.0087 0.0000757 

25 73.982 73.984 73.995 74.017 74.013 73.998 0.035 0.0162 0.0002617 
*Note: Table 2.16 is a modified version of Table 5.3 in Montgomery (2005). 
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To illustrate how to construct the Phase I charts for a small number of samples (which is often the 

case in practice) we use only the first 10 samples. Afterwards all 25 samples are used to illustrate the 

construction of the charts for a larger number of samples. 

 

Using only the first 10=m  samples the unbiased point estimates for the process standard 

deviation, calculated using (2-13) and (2-14), are found to be 

010232.0
10

1

326.2

1
ˆ

10

1

=






= ∑
=i

iR Rσ       and       010280.0
10

1

94.0

1
ˆ

10

1

=






= ∑
=i

iS Sσ  

respectively. 

 

The values of Rσ̂  and Sσ̂  are displayed in the first panel (labeled 10=m ) of Table 2.17 along 

with the charting constants Lk  and Uk  for the Phase I S  chart and the Phase I R  chart which ensures 

that the false alarm probability of these charts is at most 0.05; these charting constants were obtained 

from Tables 2.9 and 2.13, respectively. The estimated lower control limit, the estimated centerline and 

the estimated upper control limit (which are also shown in Table 2.17) are calculated from (2-36) and 

(2-44), respectively. 

 

The unbiased point estimate of the process variance (based on the first 10 samples only) is 

calculated using (2-15) i.e. 

000105.0
10

1 10

1

2 == ∑
=i

iSV  

and is listed in the first panel (labeled 10=m ) of Table 2.18. Also shown in Table 2.18 are the values 

for the charting constants â  and b̂ , obtained from Table 2.2, so that the false alarm probability of the 

Phase I 2S  chart is less than or equal to 0.05. The estimated control limits and estimated centerline 

were computed according to (2-22). 

 

For all 25=m  samples similar calculations were carried out. The unbiased point estimates, the 

charting constants, the estimated control limits and the estimated centerlines are given in the second 

panel (labeled 25=m ) of each of Tables 2.17 and 2.18, respectively. 

 

For large m  the 0.001025th and the 0.998975th percentiles of the univariate type I or standard 

beta distribution with parameters 2 and 48 was used to approximate the charting constants a  and b in 

case of the 2S  chart. These percentiles and the ensuing estimated control limits are also shown in the 

third panel of Table 2.18. A Phase I 2S  chart designed with these limits has a false alarm probability 
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approximately equal to 0.05.  It is seen that for 25=m , the univariate beta approximation is 

reasonably good compared to the simulation results. 

 

The resultant Shewhart-type Phase I R , S  and 2S  charts for 10=m  and 25=m  are shown in 

panels (a), (b) and (c) of Figures 2.2 and 2.3, respectively. It appears that the process standard 

deviation is in control and it would be safe to use 0.00999, which is the centerline of the Phase I R  

chart, as an unbiased estimate of the process standard deviation to calculate the Phase I mean control 

chart proposed by Champ and Jones (2004) and to check to see if the process mean is in-control.  

The Shewhart-type Phase I 2S , assuming independence of the of the charting statistics, is shown 

in Figure 2.4; it is seen to be almost identical to the Shewhart-type Phase I 2S  for 25=m . 

 

Table 2.17: Parameter estimates and chart constants for the R chart and the S chart 

m = 10 m = 25 
 

S chart R chart S chart R chart 

Unbiased  
Point Estimate 

0.010280 0.010232  0.010000 0.009991 

Lk  2.1656 2.1187 2.3075 2.2614 

Uk  3.0004 3.0502 3.4646 3.5671 

LCL ˆ  0.002068 0.005069 0.001527 0.003718 

LĈ  0.009663 0.023800 0.009400 0.023240 

LCU ˆ  0.020187 0.050766 0.021219 0.054033 

 
 
 

Table 2.18: Parameter estimates and chart constants for the S2 chart 

 m = 10 m = 25 
Univariate beta distribution 

assuming independence 
(m ≥  25) 

Unbiased  
Point Estimate 

0.000105 0.000101  

â  0.0039 0.0009 a = 0.001025th percentile  = 0.0009 

b̂  0.3599 0.1734 b = 0.998975th percentile  = 0.1729 

LCL ˆ  0.000004 0.000002 0.000002 

LĈ  0.000105 0.000101 0.000101 

LCU ˆ  0.000378 0.000436 0.000434 
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Figure 2.2: Shewhart-type Phase I R , S  and 2S  charts for 10=m  
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Figure 2.3: Shewhart-type Phase I R , S  and 2S  charts for 25=m  
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Figure 2.4: Shewhart-type Phase I 2S  assuming independence of the charting statistics 
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2.3    Literature review: Univariate parametric Shewhart-type Phase I 

variables charts for location and spread 
 

 

Phase I control charts form an integral part of SPC, but only a few authors make a clear distinction 

between Phases I and II, and no more than one of the popular SPC textbooks (e.g. Montgomery, 

(2005) p. 199 and p. 204) briefly talks about this important topic. 

 

By giving an overview of the literature on univariate parametric Shewhart-type Phase I variables 

control charts for the mean, standard deviation and variance this gap would be filled. The overview 

would be particularly helpful to researchers, instructors and practitioners as they would get to know 

what the issues related to Phase I are, what the present state of the art is and what challenges and future 

research still remain. 
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2.3.1  Phase I charts for the normal distribution 
 

 

Introduction 
 

First we review Shewhart-type Phase I control charts for the mean, standard deviation and variance 

when the underlying distribution is normally distributed. 

 

 

Assumptions 
 

Let ),(~ 2σµiidNX ij  represent the Phase I data where ijX  for mi ,...,2,1=  and nj ,...,2,1=   

denotes thej th observation from the i th subgroup, µ  denotes the unknown mean and 2σ  denotes the 

unknown variance. 
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(a)  King (1954): “Probability Limits for the Average Chart When Process Standards Are  

                               Unspecified” 
 

One of the first authors to consider the Phase I problem was King (1954) who studied the Phase I 

X  chart for Case U.  

 

Using the overall average 
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(where iX  is the i th sample mean and iR  is the i th sample range) to estimate the unknown mean µ  

and the unknown standard deviation σ , respectively, he suggests replacing the traditional estimated  

3-sigma control limits 

RAXLCLLCU 2
ˆ/ˆ ±=  

where
nd

A
2

2

3=  is a function of the sample size n  only, with the limits  

RCXLCLLCU ±=ˆ/ˆ  

where the charting constant 
nd

k
C m

2

=  is a function of the number of rational subgroups m  and the 

sample size n . 

 

Essentially, King proposes to replace the number “3” in the expression for 2A  by a factor mk  

which depends on and is a function of m . So to calculate the limits proposed by King one has to find 

mk  and then substitute it in C  , which is then used to calculate the limits. 

 

King graphically provides approximate values of C  for 25)1(3=m  and 10,5,4,3,2=n  so that the 

false alarm probability of the Phase I X  chart is approximately 0.05.  

 

The values of 3k  and 4k  are (apparently) obtained from theoretical considerations, whereas the 

values of  mk  for 5≥m  are obtained using the fact that the false alarm probability for the Phase I X  

chart can be written as 
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where σ  denotes the unknown (but constant) process standard deviation. 

 

King constructs the 95th percentile of the sampling distribution of 
n

XX i

/

||max

σ
−

 for mi ,...,2,1=   

(for values of 5≥m ) to find mk  and then approximates the multiplier C  by taking 
nd

k
C m

2

=  . 

 

King observes that the proposed charting constant C approaches 2A  rather rapidly as m increases, 

but he also notes that his approximation is based on ignoring the sampling fluctuations of R  and that 

some of his C  values are obtained from simulations.  

 

 

Remark 11 
 

Despite the shortcomings in the approach used by King, his idea to design a Phase I control 

chart using a nominal (specified) false alarm probability turned out to be the correct 

approach. 
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(b)  Hillier (1969): “ X - and R-Chart Control Limits Based on A Small Number of Subgroups” 
 

Hillier (1969) proposes a method for finding the control limits for the Phase I X  chart and the 

Phase I R  chart that can be reliably used regardless of how few Phase I subgroups are available.    

 

Hillier acknowledges the fact that the Phase I signaling events are dependent and suggests that the 

conventional factors 2A , 3D  and 4D  usually given in SPC textbooks and used in setting-up the control 

limits at  

RAXLCLLCU
XX 2

ˆ/ˆ ±=  

for the X  chart and 

RDLCL R 3
ˆ =   and  RDLCU R 4

ˆ =  

for the R  chart, be replaced by more appropriate charting constants **
2A , **

3D  and **
4D  so that the false 

alarm rates of the X  and theR  charts are controlled at  

2α=
X

FAR         and         43 αα +=RFAR , 

respectively; where 2α  is the 
X

FAR  for the X  chart and 3α  and 4α  are the probabilities that a Phase 

I sample range iR  for each mi ,...,2,1=  plots below or above the estimated lower and upper control 

limits of the R  chart, respectively. 

 

The factor **
2A  is derived by studying the probability expression of the false alarm rate for the 

Phase I X  chart, which is given by 

 

.,...,2,1each  for     )|Pr(1

)|Pr(1

)|ˆˆPr(1

**
2

**
2

**
2

**
2

miICA
R

XX
A

ICRAXXRAX

ICLCUXLCLFAR

i

i

XiXX

=<
−

<−−=

+<<−−=

<<−=
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If the false alarm rate of the X  chart should be controlled at 2α , it implies that  

miICA
R

XX
A i ,...,2,1for       )|Pr(1 **

2
**

22 =<
−

<−−=α  

and that one has to solve for**
2A ; for this one requires the distribution of 

R

XX i −
. 

 

To this end, Hillier notes that, under the assumption of normality, 

)
1

,0(~)( 2σ
mn

m
NXX i

−−    for    mi ,...,2,1=  

(which is an exact result) and approximates the distribution of 
22

2

σc

Rv
 by that of a 2

vχ  distribution 

where c  (which is a constant) and v  are functions of m  and n (see Patnaik, (1950)). Hillier then uses 

the fact that the numerator )( XX i −  for mi ,...,2,1=  and the denominator R  are independent, to write 

the probability expression of the false alarm rate of the Phase I X  chart as 

)|
11

Pr(1

)|
1/

1
/)(

1
Pr(1

**
2

**
2

**
2222

2

**
22

ICA
m

mn
cTA

m

mn
c

ICA
m

mn
c

v

cRv

mn

m
XX

A
m

mn
c

v

i

−
<<

−
−−≈

−
<

−−
<

−
−−=

σ

σ
α

 

where 

v

i

T

v

cRv

mn

m
XX

=

−−

222

2

/

1
/)(

σ

σ
 

has approximately a Student’s t-distribution with v  degrees of freedom when the process is in-control. 

 
 
 



 98 

Approximate values for **
2A  can therefore  be obtained by setting 

v
tA

m

mn
c

,
2

**
2 21 α=

−
 

and solving for **
2A i.e. 

v
t

mn

m

c
A

,
2

**
2 2

11
α

−=   

where 
v

t
,

2
2α  denotes the value such that, if the random variable vT  has a t-distribution with v  degrees 

of freedom, then  2
,

2
,

2

1)|Pr(
22

ααα −=<<− ICtTt
v

v
v

 where 2α  is the desired false alarm rate. 

The constants **
3D  and **

4D  for the Phase I R  chart are obtained in a similar manner by studying 

an expression for the false alarm rate of the R chart. The details can be found in Hillier, (1969). 

Tables with values of **
2A , **

3D  and **
4D  are provided by Hillier (1969) for subgroups of size 5=n  

when ∞= ,100,50,25,20,15,10)1(2m  and 2α  and/or 3α  and/or 4α  are equal to 0.001, 0.0027, 0.01, 

0.025 and 0.05, respectively. 

The implementation of Hillier’s procedure is straightforward. First one chooses the desired values 

of 2α , 3α  and 4α  and calculate the recommended control limits using the appropriate values of **
2A , 

**
3D  and **

4D . Then, for each Phase I subgroup, one checks if both its average iX  and its range iR  fall 

inside the control limits for the X  chart and between those of the R chart. If they do not, the particular 

subgroup(s) are discarded (only if an assignable cause was found) and the overall mean X , the mean 

range R  and the control limits are re-calculated using the remaining subgroups where the factors **
2A , 

**
3D  and **

4D  are based on the updated value of m  i.e. the number of Phase I subgroups still being 

used to calculate X  and R . This iterative procedure is continued until all the remaining subgroup 

means and subgroup ranges fall between the control limits of both the charts. Once this state is reached 

one may calculate the appropriate control limits for prospective monitoring of the process in Phase II. 

Note that, if at any stage during Phase I control charting it happens that some of the Phase I 

charting statistics plot outside the estimated control limits but no assignable cause(s) can be found that 

justify their removal, the process may be considered in-control and the observations from these 

samples are then included in the reference data.  
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(c)  Yang and Hillier (1970): “Mean and Variance Control Chart Limits Based on a Small  

                                                    Number of Subgroups” 

 

Yang and Hillier (1970) extend and improve the method proposed by  Hillier (1969) to find 

probability limits for the Phase I X  chart using the average (pooled) sample variance ∑
=

=
m

i
iS

m
V

1

21
 

(instead of the mean range R )  where 2
iS  for mi ,...,2,1=  is the thi  subgroup variance; they also 

develop Phase I limits for a variance chart and a standard deviation chart based on V .  

 

Phase I X  chart 

 

In particular, Yang and Hillier (1970) recommend that instead of calculating the estimated control 

limits of the Phase I X  chart in the usual way i.e.  

                                                RAXLCLLCU 2
ˆ/ˆ ±=  

 

one should replace R  with V  and substitute **
4A  for 2A  and calculate the control limits as 

                                               VAXLCLLCU **
4

ˆ/ˆ ±= . 

 

The charting constant **
4A  comes from studying the false alarm rate of the Phase I X  chart, which 

is given by 

 

.,...,2,1for       )|Pr(1

)|Pr(1

)|ˆˆPr(1
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4
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4
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4
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4
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V
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To control the 
X

FAR  at a level of α  implies that one has to find that value of  **
4A  such that 

miICA
V

XX
A i ,...,2,1for       )|Pr(1 **

4
**

4 =<
−

<−−=α ; 

this requires one to find the distribution of 
V

XX i −
. 

 

In this regard, the authors note that, under the assumption of normality, the numerator 

 )
1

,0(~)( 2σ
mn

m
NXX i

−−    for    mi ,...,2,1=  

and that the random variable 

2
)1(2

~
)1(

−
−

nm

Vnm χ
σ

; 

they then write  the false alarm rate of the Phase I X  chart as  
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m
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A
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−
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where )1( −nmT  is a random variable which has a Student’s t-distribution with )1( −nm  degrees of 

freedom; this is an exact result. 

 

The charting constant  can thus be calculated by solving for **
4A  from   

miICA
m

mn
TA

m

mn
nm ,...,2,1for      )|

11
Pr(1 **

4)1(
**

4 =
−

<<
−

−−= −α . 
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This is done by setting  

)1(,
2

**
41 −

=
− nm

tA
m

mn
α  

and solving for **
4A  i.e. 

)1(,
2

**
4

1
−

−=
nm

t
mn

m
A α  

where 
)1(,

2
−nm

tα  denotes the value such that  

ααα −=<<−
−−

1)|Pr(
)1(,

2
)1(,

2

ICtTt
nm

v
nm

 

and α=
X

FAR  is the desired false alarm rate.  

 

The authors provide a table with values of **
4A  for subgroups of size 5=n  when 

∞= ,100,50,25,20,15,10)1(2m  and α  equal to 0.001, 0.002, 0.01 and 0.05, respectively. 

 

Phase I variance chart 

 

For the variance chart based on ∑
=

=
m

i
iS

m
V

1

21
 Yang and Hillier (1970) propose that one uses 2

iS  

for mi ,...,2,1=  as charting statistics and that the estimated control limits be calculated as 

VBLCL
S

**
72

ˆ =   and  VBLCU
S

**
82

ˆ =  

where **
7B  and **

8B  are the charting constants. 

 

The charting constants **
7B  and **

8B   are found using the fact that the random variable 

                        
2

2

22

22 )1(

)1)(1/(])1()1([

/

i

i

i

i

SVm

Sm

nmSnVnm

S

−
−

=
−−−−− σ

σ
 

has an F -distribution with degrees of freedom equal to )1(−n  and )1)(1( −− nm  i.e. 
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                                             )1)(1(,12

2)1(
−−−=

−
−

nmn

d

i

i F
SVm

Sm
  for mi ,...,2,1= . 

Solving algebraically for 2
iS  in terms of the random variables V  and )1)(1(,1 −−− nmnF  one finds that 

                                          V
Fm

mF
S

nmn

nmn
d

i
)1)(1(,1

)1)(1(,12

1 −−−

−−−

+−
=  for each mi ,...,2,1=  

which is a strictly increasing and monotone function of )1)(1(,1 −−− nmnF  for 1>m . 

 

The proposed control limits of Yang and Hillier for their Phase I variance chart to retrospectively 

test the initial subgroups (using V ) are thus obtained by setting 

 

)1)(1(,1,1

)1)(1(,1,1**
7 1 −−−−

−−−−

+−
=

nmn

nmn

L

L

Fm

mF
B

α

α   and   
)1)(1(,1,1

)1)(1(,1,1**
8 1 −−−−

−−−−

+−
=

nmn

nmn

U

U

Fm

mF
B

α

α
 

 

where )1)(1(,1, −−− nmnFβ  is the fractile such that, if the random variable 
21,nnF  has an F -distribution with 

1n  and 2n  degrees of freedom, then ββ => −−− )Pr( )1)(1(,1,, 21 nmnnn FF  and Lα  ( Uα ) is the desired 

probability that a Phase I sample variance 2
iS  for mi ,...,2,1=  plots below (above) the estimated 

control limit. 

 

Phase I standard deviation chart 

 

Because 2
iS  is expressed in terms of a strictly increasing and monotone function of )1)(1(,1 −−− nmnF  for 

1>m , the authors proposed that the adjusted control limits of their Phase I standard deviation chart be 

calculated as  

 VBLCL **
7

ˆ =   and  VBLCU **
8

ˆ = . 

One would then compare each sample standard deviation iS  for mi ,...,2,1=  with the estimated limits 

VB **
7  and VB **

8 , respectively. 
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Tables with values of **
7B  and **

8B  are provided for subgroups of size 5=n  when 

∞= ,100,50,25,20,15,10)1(1m  and Lα  and/or Uα  are equal to 0.001, 0.005, 0.025, respectively. 

 

 

Remark 12 

 

It is important to note that, unlike King (1954), neither Hillier (1969) nor Yang and Hillier 

(1970) consider the correlation (i.e. dependency) between the signaling events that result 

from the use of estimated process parameters, and they control the false alarm rate of each 

subgroup and not the false alarm probability (like King, (1954)). 

 

 

 

The control limits by Hillier (1969) and Yang and Hillier (1970) are referred to as the “standard 

limits”. Yang and Hillier (1970) also suggest a second method for constructing Phase I charts referred 

to as “individual limits”. In the latter approach each subgroup is tested one at a time while treating the 

other 1−m  subgroups as in-control.  The control limits for the plotted charting statistic at time i  are 

therefore functions of the other 1−m  samples and require recalculating m  different sets of control 

limits.  
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(d)  Chou and Champ (1995): “A comparison of two Phase I control charts”, and  

       Champ and Chou (2003): “Comparison of Standard and Individual Limits Phase I Shewhart     

                                                     X , R, and S Charts” 
 

The standard limits and the individual limits are studied in detail by Chou and Champ (1995) and 

Champ and Chou (2003).  These authors discuss, evaluate and compare the standard limits and the 

individual limits Shewhart-type Phase I X  charts assuming normality when the process parameters are 

unknown. 

 

Champ and Chou (2003) also show that the individual limits and the standard limits Shewhart-type 

Phase I R  charts can be designed to be equivalent; a result that they show also holds for the individual 

limits and the standard limits Shewhart-type Phase I S  charts. 

 

Standard limits Phase I X  chart 

In particular, Champ and Chou (2003) define the estimated control limits of the standard limits 

Shewhart-type Phase I X  chart as 

nc

V
kXLCLLCU

m
XXX

,4

ˆ/ˆ ±=  

where 

∑
=

=
m

i
iX

m
X

1

1
  and  ∑

=

=
m

i
iS

m
V

1

21
 

 

are the overall mean and the pooled variance (which includes all m  the Phase I samples), 

 

 
)2/)1(()1(

)2/)1)1(((2
,4 −Γ−

+−Γ=
nmnm

nm
c m  

 

is the unbiasing constant and the charting constant 

 

)2/(,0),1(,4/)1( mnmmX
tcmmk α−−=  

was chosen using Boole’s inequality such that, if the process is in-control, the probability that at least 

one sample mean iX  for mi ,...,2,1=  is outside the control limits is at most α , 10 << α  and where 

)2/(,0),1( mnmt α−  is the 100)]2/(1[ mα− th percentage point of the univariate central Student’s t -distribution 

with )1( −nm  degrees of freedom. 
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Individual limits Phase I X  chart 

The estimated control limits of the standard limits Shewhart-type Phase I X  chart are re-expressed 

as 

VAXLCLLCU XX
***

4
ˆ/ˆ ±=  

where 

)2/(,0),1(
***

4 )/()1( mnmtmnmA α−−= , 

and then, Champ and Chou (2003) define the estimated control limits of the individual limits 

Shewhart-type Phase I X  chart as 
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][,4][][,][,

ˆ/ˆ
iiiiXiX

VAXLCLLCU ±=  

where 

)(
1

1

1

1

1,1

][ i

m

k
k

m

ikk
ki XX

m
X

m
X −

−
=

−
= ∑∑

=≠=

 

and 

)(
1

1

1

1 2

1

2

,1

2
][ i

m

k
k

m

ikk
ki SS

m
S

m
V −

−
=

−
= ∑∑

=≠=

 

 

are the overall mean and the pooled variance when only the i th  sample is removed, respectively and  

)2/(,0),1)(1(
***
][,4 ))1/(( mnmi tnmmA α−−−= . 

Tables with values of ***
4A  and ***

][,4 iA  when 25)10(5=m  and 10)1(2=n  for 05.0=α  are provided. 

 

Performance comparison 

In the performance comparison of the standard limits versus the individual limits of the Shewhart-

type Phase I X  chart, the authors evaluate the effectiveness of the two charts in identifying an out-of-

control process. A simple out-of-control scenario is chosen where one of the samples is assumed to be 

out-of-control and the other 1−m  samples are in-control. Without any loss of generality they take the 

first sample to be out-of-control and assume that  

),(~
2

11 n
NX

σµ           and          ),(~
2

n
NX i

σµ  for  mi ,...,3,2=  

where 
n

σδµµ +=1  so that the first sample is out-of-control and reflected only in its mean. 
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The probabilities that the first and the second (without loss of generality) sample means fall outside the 

standard limits are shown to be 
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respectively, whereas the probabilities that the first and the second sample means fall outside the 

individual limits are shown to be  












−
−+










−
−= −−−−

***
]1[,4),1)(1(

***
]1[,4),1)(1(

***
]1[, 1

~
1

~
1

]1[]1[
A

m

mn
TA

m

mn
Tp nmnmX θθ  

and 












−
−+










−
−= −−−−

***
]1[,4),1)(1(

***
]1[,4),1)(1(

***
]2[, 1

~
1

~
1

]2[]2[
A

m

mn
TA

m

mn
Tp nmnmX θθ , 

 

respectively, where 

δθθ mm /)1(1]1[ −== , 

 

δθθ )]1(/[12]2[ −−=−= mm  

and θ,
~

vT  denotes the c.d.f of a univariate non-central Student’s t -distribution with v  degrees of 

freedom and non-centrality parameter θ . 

 

Tables with values of  ***
1,Xp , ***

2,X
p , ***

]1[,X
p  and ***

]2[,X
p  are provided for 0.2)1.0(0.0=δ , 25)5(5=m  

and 05.0=α  and used in the performance comparison. 

 

Champ and Chou (2003) notes that, in general, ***
]1[,

***
1, XX

pp >  for all size shifts δ  in the mean, 

number of samples m , and the sample size n . They also point out that although ***
]2[,

***
2, XX pp ≈ , in 

general,  ***
2,X

p  is slightly larger than ***
]2[,X

p . 

Based on these results, they conclude that the standard limits X  chart slightly outperforms the 

corresponding individual limits X  chart and highlight the fact that there is more work involved in 

setting up the individual limits chart. 
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Standard limits and Individual limits Phase I R and S  charts 

Lastly, Champ and Chou (2003) consider the Shewhart-type Phase I R  and S  charts. Specifically, 

they show that if the standard limits and the individual limits Phase I R  charts are defined as  

2
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then the standard limits and the individual limits Phase I R  charts are equivalent; where ∑
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is the mean range excluding only the i th sample.  

 

 

Similarly, the authors show that if the standard limits and the individual limits Phase I S  charts are 

defined as  
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respectively,  or, if the standard limits and the individual limits Phase I S  charts are defined as  
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respectively, the standard limits and the individual limits Phase I S  charts are equivalent if one takes 
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is the average standard deviation excluding only the i th sample. 
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(e)  Champ and Jones (2004): “Designing Phase I X  Charts with Small Sample Sizes” 
 

One of the problems with the approach by Chou and Champ (1995) and Champ and Chou (2003) 

in developing their Phase I X  chart is that they use Boole’s inequality and do not explicitly take 

account of the large number of simultaneous comparisons inherent in Phase I.  Champ and Jones 

(2004) recognized this by setting up FAP-based probability limits for the Shewhart-type Phase I X  

chart in Case U, when the mean and the standard deviation are both unknown.   They use three 

unbiased estimators σ̂  of σ  in the calculations of the control limits, which are defined as 

n
kXLCLLCU

σ̂ˆ/ˆ ±= . 

The estimators σ̂  are (i) the average sample range 
2d

R
, (ii) the  average sample standard deviation 

4c

S
, and (iii) the square root of the pooled sample variance 
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The authors show that the joint distribution of the m  standardized subgroups means 
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follows either an exact or an approximate (depending on the estimator used for σ ) equi-correlated 

central multivariate t -distribution with correlation )1/(1 −− m , where the degrees of freedom v  and 

the unbiasing constant c  (which varies depending on the particular estimator (i), (ii) or (iii) used for 

σ ,  see Champ and Jones (2004) for details) are both functions of m  and n . 

 

The exact false alarm probability of the Phase I X  chart is shown to be  
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where ),...,,( ,2,1,,...,, ,2,1, mvvvTTT tttf
mvvv

 is the joint density of mvvv TTT ,2,1, ,...,,  , 
1−

=
m

m
kcd  and k  equals 

either Rk  or Sk  or Vk  depending on which unbiased estimator of σ  was used.  

 

 

Using a modified version of a program by Nelson (1982) for the equi-correlated multivariate t-

distribution, Champ and Jones (2004) provide tables for the charting constants Rk , Sk  and Vk  for 

15,10)1(4=m  and 10)1(3=n  for a nominal false alarm probability of  0.1, 0.05 and 0.01, respectively. 

Note that, although Champ and Jones (2004) followed an exact approach, the accuracy of the values of 

the charting constants Rk , Sk  and Vk  that they obtained, depend on the accuracy of the program by 

Nelson (1982). 

 

 

Champ and Jones (2004) use simulations to compare the performance of their control limits of the 

X chart when 20≥m  with: (i) approximate limits using univariate Student’s t  critical values, and (ii) 

approximate limits assuming that each ivT ,  approximately follows a standard normal distribution.  

Although both of these approximate procedures are easy to use, the latter is not recommended unless 

the number of subgroups m  is at least 30. 
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(f)  Neduraman and Pignatiello (2005): “On Constructing Retrospective X  Control Chart  

                                                                     Limits” 
 

Neduraman and Pignatiello (2005) adopted the analysis of means (ANOM) approach (see e.g. the 

book by Nelson, Wludyka and Copeland, (2005)) to construct a Shewhart-type Phase I X  chart for the 

mean while maintaining the false alarm probability at a desired level. They also compare the 

performance of their ANOM based control limits with that of Bonferroni-adjusted control limits 

through computer simulation experiments and make recommendations as to when each of the 

approaches may be used.  

 

 Their chart is based on the result that if 
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then the standardized charting statistics ),...,,( 21 mTTT  has an equi-correlated multivariate t -

distribution with common correlation )1/(1 −− m . Using this result they find critical values, denoted 

by vmFAPh ,,0
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where  )1( −= nmv  represents the degrees of freedom of the variance estimator V  and 0FAP  is the 

nominal false alarm probability.  The Phase I ANOM based control limits are given by  

 

mnVmhXLCLLCU vmFAP /)1(ˆ/ˆ
,,0

−±=  

 

 where the plotting statistics are the usual sample means iX  for  mi ,...,2,1= . 

 

The authors provide tables for the critical values vmFAPh ,,0
 for 100,75,50)10(30)5(5=m , 10,7,5=n  

and 05.0,01.0,0027.00 =FAP .  

 

Finally, Neduraman and Pignatiello (2005) compare the performance of their ANOM based control 

limits with those obtained by a Bonferroni-type adjustment via computer simulation. 
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The Bonferroni-adjusted control limits are obtained by setting the false alarm rate for each 

subgroup equal to mFAP /0  so that the estimated Bonferroni-adjusted control limits are given by 

 

 ncSzXLCLLCU mFAP /)/(ˆ/ˆ
4)2/(0

±=  

 

where S  denotes the average of the m sample standard deviations, 4c  is the unbiasing constant and 

mFAPz 2/0
 is the 100)2/1( 0 mFAP− th percentage point of the standard normal distribution.   

 

Neduraman and Pignatiello (2005) found that: (i) for small subgroup sizes the ANOM based 

control limits perform better than the Bonferroni-adjusted limits in that it maintains the false alarm 

probability at the desired level for all subgroup sizes considered, (ii) that the estimated (or empirical) 

false alarm probability of the ANOM approach is relatively close to the desired level, whereas it is 

higher than the desired level when the Bonferroni-adjusted limits are used for small sample sizes, but 

(iii) for large n , the two sets of limits perform relatively similarly. 

 

The authors recommend that the exact ANOM control limits be used for small subgroup sizes and 

that either approach may be used for larger subgroup sizes to control the overall probability of a false 

alarm (i.e. theFAP ). Note, however, that these authors incorrectly base the two-sided Bonferroni-

adjusted control limits on mFAPz /0
 and not on mFAPz 2/0

. 
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Remark 13 
 

 

(i) The ANOM based control limits of Neduraman and Pignatiello (2005) are derived using V  

whereas the Bonferroni-adjusted limits, to which they compare their ANOM based limits, 

are based on S . 

 

(ii)  It is apparent that the ANOM based approach of Neduraman and Pignatiello (2005) is 

similar in spirit to that of Champ and Jones (2004), particularly when using V  as an 

estimator of 2σ . It should be noted that while Champ and Jones (2004) used the unbiased 

estimator 4/ cV  of σ , Nedumaran and Pignatiello (2005) did not; they simply used V . 

 

(iii)  In the approach by Neduraman and Pignatiello (2005) and that of Champ and Jones (2004) 

we are working with a singular multivariate t-distribution (since 1
1

,∑
=

=
m

i
ivT  and 1

1
∑

=

=
m

i
iT ) 

with a negative and common correlation of )1/(1−− m . So, the computer programs used to 

find the critical values must take account of the singularity of the joint distribution. 
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2.3.2  Phase I charts for other settings 
 

 

Control charts for rational subgroups of size 1>n  from a normal distribution is important, but 

there are situations where (a) the assumption of normality is not valid, for example, when the time 

between some events (such as failures) is monitored and it is well-known that the exponential 

distribution is a better model, and (b) in some cases it is more natural to analyze the individual 

observations as they are collected so that the sample size 1=n  (see e.g. Montgomery, (2005)) .  Two 

methods that are useful in these situations are considered next. 

 

 

(a)   Jones and Champ (2002): “Phase I control chart for times between events” 
 

Phase I charts have been considered for distributions other than the normal that is useful in SPC 

applications.  Jones and Champ (2002) proposed Phase I charts to monitor the time between events for 

the standards known and unknown cases. These charts are referred to as Phase I exponential charts. 

 

Assuming that the occurrence of defects in a continuous process variable can be well modelled by 

a Poisson process and denoting the time of occurrence of the thi  defect by iT ,  with the time between 

successive defects denoted by 1−−= iii TTX , it is well-known that )(~ ii iidEXPX µ  for mi ,...,2,1= .  

 

Standard known: Case K 

In the standards known case 0µµ =i  for all mi ,...,2,1= , the charting statistics are the iX ’s and 

the control limits for the Phase I exponential chart are given by 

0
ˆ µLkLCL =          and        0

ˆ µUkLCU =  

where 0µ  is the known (specified) value of µ  and  the charting constants Lk  and Uk   are selected 

such that UL kk <<0 .  

 

Jones and Champ (2002) show that the Phase I exponential chart in Case K can be designed by 

choosing values for Lk  and Uk  such that the probability of an alarm in case of an out-of-control 

process is greater than the desired false alarm probability 0FAP   i.e. choosing Lk  and Uk  such that 

0
1

000 ), oneleast at |}{Pr(1 FAPikXk
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i
iUiL ≥∀≠<<−

=
I µµµµ . 
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Because the above equation  is satisfied when 0µLk  and 0µUk  are taken to be the τ th and the 

)1( τα +− th percentage points of the exponential distribution with mean 0µ , it follows that 

 )1ln( τ−−=Lk      and  )ln( τα −−=Uk  

with mFAP 1
0 )1(1 −−=α  , ατ <<0 , and where τ  is determined such that 

0)ln()()1ln()1( =−−−−− ταταττ . 

 

Tables with values of τ , Lk  and Uk  for various values of 0FAP  and m  are provided that can be 

used to easily calculate the control limits. 

 

Standard unknown: Case U 

For the standards unknown case the authors design exact lower one-sided charts (details omitted) 

as well as approximate two-sided Phase I exponential charts so that the false alarm probability is at 

most α . This is done using the fact that µ̂iX  is related to the univariate F -distribution, when the 

process is in-control, through  
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=
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µ
 

where the random variable 2),1(2 −mF  follows an F - distribution with )1(2 −m  and 2  degrees of 

freedom. 

 

Using this result together with Boole’s inequality it is shown that  
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where mFAP0=α , ατ <<0 , and τα +−− 1,2),1(2 mF  and τ,2),1(2 −mF  are the )1( τα +− th and τ th 

percentage points of the F -distribution with )1(2 −m  and 2  degrees of freedom, respectively.  

 

Consequently, the estimated control limits for the approximate two-sided Phase I exponential chart 

are given by  

τα

µ
−−−−+

=
mmFm

m
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1µ̂  and mατ <<0 , respectively. 
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The performance of the Phase I exponential charts are evaluated by Jones and Champ (2002) using 

computer simulation experiments and assuming that n  of the m  iX ’s ~ )( µµ cEXP +  are out-of-

control while the remaining nm −  iX ’s ~ )(µEXP  are in-control. 

 

For the standards known case a table containing values of  the probability of at least one signal for 

various values of 0FAP , n  and c , and samples of size 30=m , is provided. For the standards 

unknown case similar tables are provided which contain values of the proportion of charts with at least 

one signal for various values of 0FAP , n  and c , and samples of size 30=m . 

 

The authors point out that the sensitivity of the Phase I exponential charts is inversely related to 

the 0FAP  value and it should therefore not be set too low or the charts may not achieve the desired 

level of sensitivity. 
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(b)  Change-point modeling and other control charting methods 
 

In some applications it is natural to collect and record the data as they are observed individually.  

In this setting, some authors have suggested formulating the question of whether or not a process is in-

control as a change-point problem.  This formulation typically assumes that the observations up to and 

including a point in time (called the change-point) are i.i.d. (with the same mean and variance) with 

some known distribution (such as the normal) while the observations after the change-point are also 

i.i.d. with the same distribution but with a different mean and/or variance. 

 

For example, when the common distribution is normal, one writes 
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where iX  for mi ,...,2,1=  denotes an individual observation and n<≤ τ0  is the unknown change-

point (in time).   The goal is to be able to detect and/or locate the change-point as well as measure the 

magnitude of the change as quickly as possible.  

 

The change-point problem has a rich history in the statistics literature.  In the SPC context, there 

are several papers, including Hawkins (1977), Sullivan and Woodall (1996), Hawkins, Qiu and Kang 

(2003) as well as Hawkins and Zamba (2005). Because the majority of these methods are based on the 

likelihood ratio testing procedure and because only the typical Phase I setting (i.e. checking whether 

one or more Phase I plotting statistics plot outside the control limits) is the focus here, a detailed 

discussion is not given. 

 

Other control charting methods for Case U include, for example 

(i) Q-charts (Quesenberry, (1991)), 

(ii)  control charts using sequential sampling schemes (see e.g. Zhang, Xie and Goh, (2006)), 

and  

(iii)  the model-based control charts (Koning, (2006)).  

 

The Q-charts and charts based on sequential sampling schemes can be used in situations where 

self-starting techniques are needed, for example, in low-volume, job-shop (short-run) processes and/or 

in start-up situations.   While these charts are useful in these situations, they are not applied in a typical 

Phase I setting. 
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2.4    Concluding remarks: Summary and recommendations 
 

 

The focus in this chapter was primarily univariate variables Shewhart-type Phase I control charts. 

 

In particular, we  

(i) looked at what a Shewhart-type Phase I control chart is and how it is typically designed,  

(ii)  studied the design of Phase I control charts for process spread, and 

(iii)  gave an overview on the literature of univariate parametric Shewhart-type Phase I control 

chart for location and spread. 

 

Section 2.1 gave a general discussion on Shewhart-type Phase I control charts in which the goals of 

Phase I control charting and the methods for designing and implementing Shewhart-type Phase I charts 

were described. 

It turned out that the FAP-based control limits are the best to use when designing a Phase I chart 

because they correctly account for the fact that the Phase I signaling events are dependent and that 

multiple signaling events have to be dealt with simultaneously to make an in-control or not in-control 

decision; as a result it is recommended that the exact joint probability distribution of the charting 

statistics should be used (where possible) to control the false alarm probability when designing a Phase 

I chart. 

The approximate FAR-based limits and the Bonferroni control limits were both shown to be close 

competitors of the FAP-based control limits; however, these two sets of control limits are both slightly 

wider than the FAP-based control limits and might lead to fewer alarms. In situations where the exact 

joint probability distribution is not available either of these two simpler (approximate) sets of control 

limits may be used; in such scenarios the marginal in-control distribution of each charting statistic is 

required. 

Lastly, it was shown that the FAR-based control limits ignore the dependency of the Phase I 

charting statistics and overlooks the fact that multiple charting statistics are to be dealt with 

simultaneously; as a result, it is likely that one my observe more false alarms that what is typically 

expected and this approach should therefore not be used in designing a Shewhart-type Phase I control 

chart. 
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The techniques used in designing the Phase I 2S , S and R  charts of section 2.2 recognized that 

multiple signaling events are involved and that the comparisons of the charting statistics with the 

estimated control limits are not independent.  The design of the 2S  chart for 25<m  needs to be based 

on a multivariate singular beta distribution, also known as the type I or standard Dirichlet distribution, 

with common correlation )1/(1 −− m ; whereas for 25≥m , percentiles of the univariate type I or 

standard beta distribution may be used as an approximation.  For the R  and the S  charts, the design of 

the charts depends on some joint probability distribution(s) that are currently unknown. 

Using computer simulations, the necessary charting constants for each chart were calculated so that 

the false alarm probabilities of the charts do not exceed 0.01, 0.05 and 0.10, respectively.  For other 

desirable nominal false alarm probabilities the methods given in section 2.2 can be used to find the 

appropriate charting constants.  

It is recommended that practitioners use the charting constants provided in Tables 2.1, 2.2, 2.3, 2.5, 

2.6, 2.7, 2.8, 2.9, 2.10, 2.12, 2.13, 2.14 when computing the control limits of the Phase I 2S , S and R  

charts.  The connection between the false alarm rate and the false alarm probability in a number of 

selective cases was also examined in order to provide some guidance to the user.   

 

 

Finally, In section 2.3 we gave an overview on univariate parametric Shewhart-type Phase I control 

charts for location and spread. It is believed that this would be to the benefit of all users of control 

charts in that it informs them what the present state of the art is and what future research still remains. 

Although the Phase I control charts included in the overview are all based on the assumption that 

the observations are i.i.d., one can argue that autocorrelation can be present in a number of potential 

applications.  Thus further research on Phase I control charts for autocorrelated data (see e.g. Maragah 

and Woodall, (1992) and Boyles, (2000)) will be of great benefit to the SPC practitioner.  Also, even 

though the overview focused on variables data, attributes data are common in some applications and as 

a result Phase I charts for attributes data (see e.g. Borror and Champ (2001)) are also useful and more 

work needs to be done in this area. Moreover, since not much is typically known or can be assumed 

about the underlying process distribution in a Phase I setting, nonparametric Phase I control charts 

would be of practical benefit and should be investigated. 

It should be noted that, a clear consensus does not appear to exist as to how Phase I charts should 

be compared and contrasted.  In Phase II, control chart performance is typically measured in terms of 

some attribute of the run-length distribution. In Phase I, the preferred performance metric is the 

probability of at least one signal.  So for the in-control case, one can compare two or more charts by 

comparing their FAP’s.  In the out-of-control case, if there are two control charts with the same or 
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roughly the same FAP, one can examine the probability of at least one signal when there is a shift in 

the process parameter and the chart with a higher probability of a signal should be preferred.  This 

would be in line with comparing the power of two tests that are of the same size.  Champ and Jones 

(2004) undertook the in-control FAP comparison in a simulation study whereas Jones and Champ 

(2002) looked at the out-of-control comparison of Phase I control charts. 
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2.5   Appendix 2A: SAS® programs 
 
 
 
 

2.5.1   SAS® program to find the charting constants for the Phase I S2 chart 
 
 
 
proc iml; 
 
sim= 100000;   
m=5; 
dof= 4; 
x=j(sim,m, .); 
y=j(sim, 2, .);   
call  randgen(x, 'CHISQ' ,dof); 
 
do i= 1 to sim; 
sum=x[i,+]; 
y[i, 1]=max(x[i,])/sum; 
y[i, 2]=min(x[i,])/sum; 
end ; 
 
out=j( 2000, 2, .); 
 
do alpha= 0.0001 to 0.2 by 0.0001; 
a=cinv(alpha/ 2,dof)/(m*dof); 
b=cinv( 1-alpha/ 2,dof)/(m*dof); 
r= 10000*alpha; 
t=j(sim, 3, .); 
t[, 1] = y[, 1] > j(sim, 1,b);  
t[, 2] = y[, 2] < j(sim, 1,a); 
t[, 3] = t[, 1]|t[, 2];  
FAP   = t[+, 3]/sim; 
out[r, 1] = alpha; 
out[r, 2] = FAP; 
end ; 
 
create  FAP_Ssq from out[colname={alpha  FAP}]; 
append  from out; 
quit; 
 
proc export data =FAP_Ssq 
outfile ="c:\FAP_Ssq.xls"  replace ; 
run;  
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2.5.2   SAS® program to find the charting constants for the Phase I S chart 
 
 
 
proc iml; 
 
sim= 10; 
m=5; 
n=5; 
x=j(sim,m, 0); 
y=j(sim, 2, .); 
 
do i= 1 to sim; 
 do j= 1 to m; 
  z=j( 1,n, 0); 
  call  randgen(z, 'NORMAL' );   
  x[i,j]=sqrt((ssq(z)-sum(z)*sum(z)/n)/(n- 1)); 
 end ; 
end ; 
 
do i= 1 to sim; 
sum=x[i,+]; 
y[i, 1]=max(x[i,])/sum; 
y[i, 2]=min(x[i,])/sum; 
end ; 
 
out=j( 350, 2, .); 
do k= 0.01 to 3.5 by 0.01; 
lcl=( 1-k*sqrt( 1- 0.94* 0.94)/ 0.94)/m; 
ucl=( 1+k*sqrt( 1- 0.94* 0.94)/ 0.94)/m; 
r= 100*k; 
t=j(sim, 3, .); 
t[, 1] = y[, 1] > j(sim, 1,ucl);  
t[, 2] = y[, 2] < j(sim, 1,lcl);  
t[, 3] = t[, 1]|t[, 2]; 
FAP = t[+, 3]/sim; 
out[r, 1] = k; 
out[r, 2] = FAP; 
end ; 
 
create  FAP_S from out[colname={k FAP}]; 
append  from out; 
 
proc export data =FAP_S 
outfile ="c:\FAP_S.xls"  replace ;  
quit; 
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2.5.3   SAS® program to find the charting constants for the Phase I R chart 
 
 
 
proc iml; 
 
sim= 10; 
m=5; 
n=5; 
x=j(sim,m, 0); 
y=j(sim, 2, .); 
 
do i= 1 to sim; 
 do j= 1 to m; 
    z=j( 1,n, 0); 
    call  randgen(z, 'NORMAL' );  
 x[i,j]=max(z)-min(z); 
 end ; 
end ; 
 
do i= 1 to sim; 
sum=x[i,+]; 
y[i, 1]=max(x[i,])/sum; 
y[i, 2]=min(x[i,])/sum; 
end ; 
 
out=j( 350, 2, .); 
 
do k= 0.01 to 3.5 by 0.01; 
ucl=( 1+k* 0.864/ 2.326)/m; 
lcl=( 1-k* 0.864/ 2.326)/m; 
r= 100*k; 
t=j(sim, 3, .); 
t[, 1] = y[, 1] > j(sim, 1,ucl);  
t[, 2] = y[, 2] < j(sim, 1,lcl); 
t[, 3] = t[, 1]|t[, 2]; 
FAP   = t[+, 3]/sim; 
out[r, 1] = k; 
out[r, 2] = FAP; 
end ; 
 
create  FAP_R from out[colname={k FAP}]; 
append  from out; 
 
proc export data =FAP_R 
outfile ="c:\FAP_R.xls"  replace ;  
quit; 
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Chapter 3 
 

Attributes control charts: Case K and Case U 
 

 

3.0 Chapter overview 
 

 

Introduction 
 

When studying categorical quality characteristics the items or the units of product are inspected 

and classified simply as conforming (they meet certain specifications) or nonconforming (they do not 

meet the specifications). The classification is typically carried out with respect to one or more of the 

specifications on some desired characteristics.  We label such characteristics “attributes” and call the 

data collected “attributes data” (see e.g. Chapter 6, p.265 of Montgomery, (2005)). 

 

The p-chart and the c-chart are well known and commonly used attributes control charts. The p-

chart is based on the binomial distribution and works with the fraction of nonconforming items in a 

sample. The c-chart is based on the Poisson distribution and deals with the number of nonconformities 

in an inspection unit. Several statistical process control (SPC) textbooks including the ones by Farnum 

(1994), Ryan (2000) and Montgomery (2005) describe these charts.  

 

 

Motivation 
 

The p-chart and c-chart are particularly useful in the service industries and in non-manufacturing 

quality improvements efforts since many of the quality characteristics found in these environments are 

in actual fact attributes. SPC with attributes data therefore constitutes an important area of research and 

applications (see e.g. Woodall (1997) for a review). 

 

The classical application of the p-chart and the c-chart requires that the parameters of the 

distributions are known. In many situations the true fraction nonconforming, p , and the true average 

number of nonconformities in an inspection unit, c , are unknown or unspecified and need to be 
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estimated from a reference sample or historical (past) data. While there are empirical rules and 

guidelines for setting up the charts, little is known about their run-length distributions when the fact 

that the parameters are estimated is taken into account. Understanding the effect of estimating the 

parameters on the in-control (IC) and the out-of-control (OOC) performance of the charts are therefore 

of interest from a practical and a theoretical point of view. 

 

In this chapter we derive and evaluate expressions for the run-length distributions of the Shewhart-

type p-chart and the Shewhart-type c-chart when the parameters are estimated. An exact approach 

based on the binomial and the Poisson distributions is used since in many applications the values of  p 

and c are such that the normal approximation to the binomial and the Poisson distributions is quite 

poor, especially in the tails. The results are used to discuss the appropriateness of the widely followed 

empirical rules for choosing the size of the Phase I sample used to estimate the unknown parameters; 

this includes both the number of reference samples (or inspection units) m  and the sample size n . 

Note that, in our developments, we assume that the size of each subgroup or the size of each inspection 

unit stays constant over time. 

 

 

Methodology 
 

We examine the effect of estimating p  and c  on the performance of the p-chart and the c-chart via 

their run-length distributions and associated characteristics such as the average run-length (ARL ), the 

false alarm rate (FAR ) and the probability of a “no-signal”. Exact expressions are derived for the 

Phase II run-length distributions and the related Phase II characteristics using expectation by 

conditioning (see e.g. Chakraborti, (2000)). We first obtain the characteristics of the run-length 

distributions conditioned on point estimates from Phase I and then find the unconditional 

characteristics by averaging over the distributions of the point estimators. This two-step analysis 

provides valuable insight into the specific as well as the overall effects of parameter estimation on the 

performance of the charts in Phase II. 

 

The conditional characteristics let us focus on specific values of the estimators and look at the 

performance of the charts in more detail for the particular value(s) at hand. The unconditional 

characteristics characterize the overall performance of the charts i.e. averaged over all possible values 

of the estimators. 

 

In practice we will obviously have only a single realization for each of the point estimators and the 

characteristics of the conditional run-length distribution therefore provide important information 
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specific only to our particular situation; but, since each user will have his own values for each of the 

point estimators the conditional run-length performance will be different from user to user.  The 

unconditional run-length, on the other hand, lets us look at the bigger picture, averaged over all 

possible values of the point estimators, and is therefore the same for all users. 

 

 

Layout of Chapter 3 
 

This chapter consists of two main sections and an appendix. The first section is labeled “The p-

chart and the c-chart for standards known (Case K)” and the second section is called “The p-chart and 

the c-chart for standards unknown (Case U)”. In the first section we study the charts when the 

parameters are known. The second section focuses on the situation when the parameters are unknown 

and forms the heart of Chapter 3. In both sections we study the p-chart and the c-chart in unison; this 

points out the similarity and the differences between the charts and helps one to understand the theory 

and/or methodology better. 

 

Appendix 3A gives an example of each chart and contains a discussion on the characteristics of the 

p-chart and the c-chart in Case K. To the author’s knowledge none of the standard textbooks and/or 

articles currently available in the literature give a detailed discussion of the Case K p-chart’s and the 

Case K c-chart’s characteristics. 
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3.1 The p-chart and the c-chart for standards known (Case K) 
 

 

Introduction 
 

Case K is the scenario where known values for the parameters are available. This will happen in 

high volume manufacturing processes where ample reliable information is available so that it is 

possible to specify values for the parameters. 

 

Studying Case K not only sets the stage for the situation when the parameters are unknown (Case 

U), but the characteristics and the performance of the charts in Case K are also important. In particular, 

it helps us understand the operation and the performance of the charts in the simplest of cases (when 

the parameters are known) and provides us with benchmark values which we can use to determine the 

effect of estimating the parameters on the operation and the performance of the charts in Case U (when 

the parameters are unknown). 

  

The p-chart is used when we monitor the fraction of nonconforming items in a sample of size 1≥n  

and is based on the binomial distribution. The c-chart is based on the Poisson distribution and used 

when we focus on monitoring the number of nonconformities in an inspection unit, where the 

inspection unit may consist of one or more than one physical unit.  

 

 

Assumptions 
 

We derive and study the characteristics of the charts in Case K assuming that: (i) the sample size 

and the size of an inspection unit (whichever is applicable) stay constant over time, (ii) the 

nonconforming items occur independently i.e. the occurrence of a nonconforming item at a particular 

point in time does not affect the probability of a nonconforming item in the time periods that 

immediately follow, and (iii) the probability of observing a nonconformity in an inspection unit is 

small, yet the number of possible nonconformities in an inspection unit is infinite. 

 

To this end, let ),(~ pniidBinX i  for ,...2,1=i  denote the number of nonconforming items in a 

sample of size 1≥n  with true fraction nonconforming 10 << p ; the sample fraction nonconforming 

is then defined as nXp ii /= . Similarly, let )(~ ciidPoiYi , 0>c  for ,...2,1=i  denote the number of 

nonconformities in an inspection unit where c  denotes the true average number of nonconformities in 

an inspection unit. 
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Charting statistics 
 

The charting statistics of the p-chart is the sample fraction nonconforming nXp ii /=  for 

,...2,1=i ; the charting statistics of the c-chart is the number of nonconformities iY  for ,...2,1=i , in an 

inspection unit. 

 

 

Control limits 
 

For known values of the true fraction nonconforming and the true average number of 

nonconformities in an inspection unit, denoted by 0p  and 0c  respectively, the upper control limits 

(UCL ’s), the centerlines (CL ’s), and the lower control limits (LCL ’s) of the traditional p-chart and 

the traditional c-chart are  

npppLCLpCLnpppUCL ppp /)1(3              /)1(3 0000000 −−==−+=               (3-1) 

and 

 

00000 3                    3 ccLCLcCLccUCL ccc −==+=                    (3-2) 

 

respectively (see e.g. Montgomery, (2005) p. 268 and p. 289). 

 

 

The control limits in (3-1) and (3-2) are k -sigma limits (where 3=k ) and based on the tacit 

assumption that both the binomial distribution and the Poisson distribution are well approximated by 

the normal distribution. 

 

The subscripts “p” and “c” in (3-1) and (3-2) are used to distinguish the control limits of the two 

charts; where no confusion is possible the subscripts are dropped.  

 
 
 



 129 

Implementation 
 

The actual operation of the charts consist of: (i) taking independent samples and independent 

inspection units at equally spaced successive time intervals, (ii) computing the charting statistics, and 

then (iii) plotting the charting statistics (one at a time) reflected on the vertical axis of the control 

charts versus the sample number and the inspection unit number ,...2,1=i  reflected on the horizontal 

axis. 

 

The control limits are also displayed on the charts so that every time a new charting statistic is 

plotted it is in actual fact compared to the control limits. The aim is to detect when (or if) the true 

process parameters p  and c  change (moves away) from their known or specified or target values 0p  

and 0c , respectively. 

 

 

Signaling and non-signaling events 
 

The event when a charting statistic (point) plots outside the control limits, which is called a  

signaling event and denoted by iA  for ,...2,1=i , is interpreted as evidence that the parameter is no 

longer equal to its specified value. The charting procedure therefore stops, a signal (alarm) is given, 

and we declare the process out-of-control (OOC) i.e. we say that 0pp ≠  or state that 0cc ≠ . 

Investigation and corrective action is typically required to find and eliminate the possible assignable 

cause(s) and/or source(s) of variability responsible for the behavior. 

 

The complimentary event is when a plotted point lies between (within) the control limits and 

labeled a non-signaling event or a “no-signal”. In case of a no-signal the charting procedure continues, 

no user intervention is necessary, and we consider the process to be in-control (IC) i.e. we say that 

0pp =  or declare that 0cc = .  We denote the non-signaling event by  

}{: UCLQLCLA i
C
i <<  

where ii pQ =  or iY  for ,...2,1=i  and LCL  and UCL  denote the control limits in either (3-1) or (3-2). 

 

Note that, in a hypothesis-testing framework, concluding that the process is out-of-control when 

the process is actually in-control is called a type I error; similarly, concluding that the process is in-

control when it is really out-of-control is a called a type II error. 
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3.1.1 Probability of a no-signal 
 

 

Introduction 
 

The probability of a no-signal refers to the probability of a non-signaling event and is denoted by 

)Pr( C
iA=β    for   ,...2,1=i . 

The probability of a no-signal is important because: (i) it is the key for the derivation of the run-

length distribution, and (ii) plays a central role when we assess the performance of a control chart. 

Once we have the probability of a no-signal, the run-length distribution is completely known. 

 

 

Probability of a no-signal: p-chart 
 

The probability of a no-signal on the p-chart is the probability of the event 

}{ pip UCLpLCL <<    for   ,...2,1=i .  (3-3) 

Since p  is known and equal to 0p  the control limits pLCL  and pUCL  are known values (constants) 

which makes nXp ii /=  the only random quantity in (3-3). 

 

The cumulative distribution function of the sample fraction nonconforming ip  is known and given 

by 

jnj
na

j

na

j
iiii ppj

njXnaXanXap −

==

−




===≤=≤=≤ ∑∑ )1()Pr()Pr()/Pr()Pr(

][

0

][

0

 

 

for 10 ≤≤ a , 10 << p  and where ][na  denotes the largest integer not exceeding na . Because the 

distribution of ip  is defined in terms of that of ),(~ pnBinX i  we re-express the non-signaling event 

in (3-3) as 

}{ pip nUCLXnLCL <<  

and use the properties of the distribution of iX  to derive the probability of a no-signal. 
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Thus, at the i th observation the non-signaling probability for the p-chart is a function of and 

depends on p , 0p  and n , and is derived as follows 

 

)),1(1)((1),1(1

0  if),1(),1(

0  if),1(1

0  if),;(),;(

0  if),;(
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(3-4) 

 

for 1,0 0 << pp , where pUCL  and pLCL  are defined in (3-1) and both are functions of n  and 0p , 

∑
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)1()Pr(),;(  

denotes the cumulative distribution function (c.d.f) of the ),(pnBin  distribution, 

),;()),((),( 1 vutBvuvuI t
−= β    for   10 << t          and       ∫

−− −=
t

vu dsssvutB
0

11 )1(),;(    for   0, >vu  

denotes the c.d.f of the ),(vuBeta  distribution (also known as the incomplete beta function) with 

),;1(),( vuBvu =β , 
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][ pnLCLa =  &       


 −

=
integeran not  is      if }],min{[

integeran  is      if},1min{

pp

pp

nUCLnnUCL

nUCLnnUCL
b     (3-5) 

 

and ][x  denotes the largest integer not exceeding x .  
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Remark 1 
 

(i) Making use of the c.d.f of the beta distribution and the indicator function )(1}0:{ xxx ≥  helps us 

write the probability of a no-signal in a more compact way (see e.g. the last line of (3-4)). 

 

(ii) The relationship between the c.d.f of the binomial distribution and the c.d.f of the type I or 

standard beta distribution is evident from (3-4) and given by 

)1,(),1(1),;( 1 +−=−+−= − bbnIbnbIpnbH pp . 

 

(iii) The charting constants a  and b  in (3-5) are suitably modified to take account of the fact 

that the ),( pnBin distribution assigns nonzero probabilities only to integers from 0  to n . 

 

(iv) To cover both the in-control and the out-of-control scenarios we do not assume that the 

specified value for the fraction nonconforming 0p  in (3-4) is necessarily equal to the true 

fraction nonconforming p . 
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Probability of a no-signal: c-chart 
 

The probability of a no-signal on the c-chart is the probability that the event  

}{ cic UCLYLCL <<    for   ,...2,1=i           (3-6) 

occurs. Since c  is specified and equal to 0c  the control limits cLCL  and cUCL   are constants.  As a 

result iY  is the only random variable in (3-6). Because the distribution of iY  is known (assumed) to be 

Poisson with parameter (in general) c , we derive the probability of a no-signal on the c-chart (directly) 

in terms of the distribution of iY  . 

 

The probability of a no-signal on the c-chart is a function of and depends on c  and 0c , and is 

derived as follows 

 

    

)()(

);();(

)Pr()Pr(

)Pr(),(

11

0
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cdGcfG

LCLYUCLY

UCLYLCLcc
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≤−<=
<<=β

   (3-7) 

 

for 0, 0 >cc , where cUCL  and cLCL  are defined in (3-2) and both are functions of 0c , 
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denotes  the c.d.f of the )(cPoi  distribution, 
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denotes the upper incomplete gamma function, 
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Remark 2 
 

(i) The relationship between the c.d.f of the Poisson distribution and the lower incomplete 

gamma function is evident from (3-7) and given by )();( 1 ccfG f +Γ= . 

 

(ii) The constants d  and f  in (3-8) incorporate the fact that the )(cPoi  distribution only 

assigns nonzero probabilities to non-negative integers. 

 

(iii) We do not assume that c  in (3-7) is necessarily equal to 0c ; this enables us to study both 

the in-control and the out-of-control properties of the c-chart. 

 

 

3.1.2 Operating characteristic and the OC-curve 
 

The Operating Characteristic (OC) or the β -risk is the probability that a chart does not signal on 

the first sample or the first inspection unit following a sustained (permanent) step shift in the parameter 

and thus failing to detect the shift. For the p-chart the OC is the probability of a no-signal ),,(0 nppβ  

with 0pp ≠  and for the c-chart the OC is the probability 0,( ccβ ) with 0cc ≠ . 

 

A graphical display (plot) of the OC as a function of 10 << p  (in case of the p-chart), or as a 

function of 0>c  (in case of the c-chart), is called the operating characteristic curve or simply the OC-

curve. The OC-curve lets us see a chart’s ability to detect a shift in the process parameter and therefore 

describes the performance of the chart. 

 

 

3.1.3 False alarm rate 
 

As an alternative to the OC-curve we can graph the probability of a signal as a function of p  for 

values of 10 << p  or as a function of c  for values of 0>c . The probability of a signal is β−1  i.e. 

one minus the probability of a no-signal, and is in some situations intuitively easier understood than 

the OC. 

 

For the p-chart the probability of a signal is ),,(1 0 nppβ−  where ),,( 0 nppβ  is defined in (3-4) 

and for the c-chart the probability of a signal is ),(1 0ccβ−  where ),( 0ccβ  is given in (3-7). 
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When we substitute p  with 0p  in ),,(1 0 nppβ−  and replace c  with 0c  in ),(1 0ccβ−  we obtain 

the false alarm rate (FAR ) of the charts, that is, 

),,(1),,( 0000 nppnppFAR β−=          and         ),(1),( 0000 ccccFAR β−= . 

The false alarm rate is the probability of a signal when the process is in-control (i.e. no shift 

occurred) and often used a measure of a control chart’s in-control performance. 

 

The OC-curve and the probability of a signal as functions of p  or c  i.e. given a shift in the 

process, focus on the probability of a single event and involves only one charting statistic. A more 

popular and perhaps more useful method to evaluate and examine the performance of a control chart is 

its run-length distribution. 

 

 

3.1.4 Run-length distribution 
 

The number of rational subgroups to be collected or the number of charting statistics to be plotted 

on a control chart before the first or next signal, is called the run-length of a chart. The discrete random 

variable defining the run-length is called the run-length random variable and denoted by N . The 

distribution of N  is called the run-length distribution. 

 

Characteristics of the run-length distribution give us more insight into the performance of a chart. 

The characteristics of the run-length distribution most often looked at are, for example, its moments 

(such as the expected value and the standard deviation) as well as the percentiles or the quartiles (see 

e.g. Shmueli and Cohen, (2003)). 

 

If no shift occurred (i.e. 0pp =  or 0cc = ) the distribution of N  is called the in-control run-length 

distribution. In contrast, if the process did encounter a shift (i.e. 0pp ≠  or 0cc ≠ ) the distribution of 

N  is labeled the out-of-control run-length distribution. To distinguish between the in-control and the 

out-of-control situations the notations 0N  and 1N  are used; this notation is also used for the 

characteristics of the run-length distribution. 

 

Assuming that the rational subgroups are independent and that the probability of a signal is the 

same for all samples (inspection units) the run-length distribution is given by 

1,2,...          )1()Pr( 1 =−== − jjN j ββ    (3-9) 

where β  denotes the probability of a no-signal defined in (3-4) or (3-7).  
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The distribution in (3-9) is recognized as the geometric distribution (of order 1) with probability of 

“success” β−1  so that we write, symbolically, )1(~ β−GeoN . The success probability is the 

probability of a signal and, as mentioned before, completely characterizes the geometric (run-length) 

distribution.  

 

Various statistical characteristics of the run-length distribution provide insight into how a control 

chart functions and performs.  Typically we want the chart to signal quickly once a change takes place 

and not signal too often when the process is actually in-control, which is when no shift or no change 

has occurred.  We are interested in the typical value as well as the spread or the variation in the run-

length distribution. 

 

 

3.1.5 Average run-length 
 

A popular measure of the central tendency of a distribution is the expected value (mean) or the 

average.  Accordingly, the average has been the most popular index or measure of a control chart’s 

performance and is called the average run-length (ARL). The ARL is defined as the expected number of 

rational subgroups that must be collected before the chart signals. 

 

When the process is in-control the expected number of charting statistics that must be plotted 

before the control chart signals erroneously is called the in-control average run-length and denoted by 

0ARL . The out-of-control average run-length is denoted by 1ARL  and is the expected number of 

charting statistics to be plotted before a chart signals after the process has gone out-of-control.  

Obviously, for an efficient control chart the in-control average run-length should be large and the out-

of-control average run-length should be small. 

 

From the properties of the geometric distribution the ARL is the expected value of N  so that 

)1/(1)( β−== NEARL .              (3-10) 

Therefore, when the signaling events are independent and have the same probability the ARL of the 

chart is simply the reciprocal of the probability of a signal β−1 . If the process is in-control, the in-

control ARL is equal to the reciprocal of the FAR, that is, FARARL /10 = .  It is this simple relationship 

between the average run-length and the probability of a signal, or the in-control average run-length and 

the false alarm rate, that accounts for the popularity of the (in-control) average run-length and the 

probability of a signal (false alarm rate) as measures of a control chart’s performance. 

 
 
 



 137 

3.1.6 Standard deviation and percentiles of the run-length 
 

Other characteristics of the run-length distribution are also of interest.  For example, in addition to 

the mean we should also look at the standard deviation of the run-length distribution to get an idea 

about the variation or spread. 

 

Using results for the geometric distribution, the standard deviation of the run-length, denoted by 

SDRL, is given by 

   )1/()(stdev ββ −== NSDRL .   (3-11) 

 

Since the geometric distribution is skewed to the right the mean and the standard deviation become 

questionable measures of central tendency and spread so that additional descriptive measures are 

useful.  For example, the percentiles, such as the median and the quartiles (which are more robust or 

outlier resistant), can provide valuable information about the location as well as the variation in the 

run-length distribution. 

 

Because the run-length distribution is discrete, the th100q  percentile ( 10 << q ) is defined as the 

smallest integer j such that the cumulative probability is at least q , that is, qjN ≥≤ )Pr( .  The median 

run-length (denoted by MDRL) is the 50th percentile so that 5.0=q , whereas the first quartile (1Q ) is 

the 25th percentile so that .25.0=q  
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3.1.7 In-control and out-of-control run-length distributions 
 

The characteristics of the in-control run-length distributions are essential in the design and 

implementation of a control chart. Furthermore, for out-of-control performance comparisons we need 

the out-of-control run-length distributions and/or characteristics. For example, the in-control average 

run-lengths of the charts are typically fixed at an acceptably high level so that the number of false 

alarms or the false alarm rate is reasonably small. The chart with the smallest or the lowest out-of-

control average run-length for a certain change (or shift of a specified size) in the process parameter is 

then selected to be the winner (i.e. the best performing chart). Alternatively, we can fix the false alarm 

rate of the charts at an acceptably small value and then select that chart with the highest probability of 

a signal (given a specified shift in the parameter) as the winner. 

 

Note that, the average run-length and the probability of a signal are two equivalent performance 

measures in that they both lead to the same decision and follows from the relationship between the 

average run-length and the probability of a signal given in (3-10).  

The run-length distributions and some related characteristics of the run-length distributions of the  

p-chart and the c-chart, which all conveniently follow from the properties of the geometric distribution 

of order 1, are summarized in Table 3.1 and Table 3.2, respectively.  

 

The characteristics of the p-chart and the c-chart are seen to be all functions of and depend entirely 

on the probability of a no-signal, that is, ),,( 0 nppβ  or ),( 0ccβ ; once we have expressions and/or 

numerical values for the two probabilities ),,( 0 nppβ  and ),( 0ccβ  the run-length distributions are 

completely known. 

 

The in-control run-length distributions and the in-control characteristics of the run-length 

distributions are obtained when 0pp =  and 0cc = . The out-of-control run-length distributions and the 

out-of-control characteristics are found by setting 0pp ≠  and 0cc ≠ , respectively.  

 

An in-depth analysis and discussion of the in-control run-length distributions of the p-chart and the 

c-chart in Case K (and their related in-control properties) are given in Appendix 3A. From time to time 

we will refer to the results therein; especially when we study and look at the effects of parameter 

estimation on the performance of the charts in Case U. 
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Table 3.1: The probability mass function (p.m.f), the cumulative distribution function (c.d.f), the 
false alarm rate (FAR), the average run-length (ARL), the standard deviation of the run-length 

(SDRL) and the quantile function (qf) of the run-length distribution of the p-chart in Case K 
 

p.m.f 
, . . .

21         )),,(1(),,(),,;Pr( 0
1

00 ,jnppnppnppjN j
p =−== − ββ  (3-12) 

c.d.f 
, . . .

21          )),,((1),,;Pr( 00 ,jnppnppjN j
p =−=≤ β  (3-13) 

FAR ),,(1),( 000 nppnpFAR β−=  (3-14) 

ARL )),,(1/(1)(),,( 00 nppNEnppARL p β−==  (3-15) 

SDRL )),,(1/(),,()(stdev),,( 000 nppnppNnppSDRL p ββ −==  (3-16) 

qf }),,;Pr(:inf{int),,;( 00 qnppxNxnppqQ pN p
≥≤=   10 << q  (3-17) 

 

 

 

Table 3.2: The probability mass function (p.m.f), the cumulative distribution function (c.d.f), the 
false alarm rate (FAR), the average run-length (ARL), the standard deviation of the run-length 

(SDRL) and the quantile function (qf) of the run-length distribution of the c-chart in Case K 
 

p.m.f 
, . . .

21)),(1(),(),;Pr( 0
1

00 ,j          ccβccβccjN j
c =−== −  (3-18) 

c.d.f 
, . . .

21)),((1),;Pr( 00 ,        jccβccjN j
c =−=≤  (3-19) 

FAR ),(1)( 000 ccβcFAR −=  (3-20) 

ARL )),(1/(1)(),( 00 ccβNEccARL c −==  (3-21) 

SDRL )),(1/(),()(stdev),( 000 ccβccβNccSDRL c −==  (3-22) 

qf }),;Pr(:inf{int),;( 00 qccxNxccqQ cNc
≥≤=     10 << q  (3-23) 
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3.2 The p-chart and the c-chart for standards unknown (Case U) 
 

 

Introduction 
 

Case U is the scenario when the parameters p  and c  are unknown. Case U occurs more often in 

practice than Case K particularly when not much historical knowledge or expert opinion is available. 

In the service industries, non-manufacturing environments and job-shop environments, which all 

involve low-volume of “production”, it often happens that there is a scarcity of historical data. 

 

Setting up a control chart in Case U consists of two phases: Phase I and Phase II. The former is the 

so-called retrospective phase whereas the latter is labeled the prospective or the monitoring phase (see 

e.g. Woodall, (2000)). In Phase I the parameters and the control limits are estimated from an in-control 

reference sample or calibration sample. In Phase II, new incoming subgroups are collected 

independently from the Phase I reference sample. The charting statistic for each Phase II subgroup is 

then calculated and individually compared to the estimated Phase II control limits until the first point 

plots outside the limits. The goal is to detect when (or if) the process parameters change. 

 

We study and analyze the performance of the p-chart and c-chart following a Phase I analysis. In 

other words, we focus on the run-length distributions and the associated characteristics of the run-

length distributions of the p-chart and the c-chart in Phase II.  
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3.2.1 Phase I of the Phase II p-chart and c-chart 
 

 

The charting procedures to ensure that the Phase I data is representative of the in-control state of 

the process were discussed in Chapter 2.  Here we consider the matter only in very general terms and 

assume that such in-control Phase I data is available; this implies that each sample and each inspection 

unit in the reference sample has identical (unknown) parameters. 

 

 

Phase I data and assumptions 
 

The Phase I data is the in-control reference sample or the historical (past) data that is used to 

estimate the unknown parameters. In case of the p-chart the Phase I data consists of m  mutually 

independent samples each of size 1≥n . The Phase I data for the c-chart consists of m  mutually 

independent inspection units. 

 

To this end, let ),(~ pniidBinX i  for mi ,...,2,1=  denote the number of nonconforming items in 

the ith reference sample of size 1≥n  with unknown true fraction nonconforming 10 << p . The 

sample fraction nonconforming of each preliminary sample is nXp ii /=  for mi ,...,2,1= . Similarly, 

let )(~ ciidPoiYi , 0>c  for mi ,...,2,1=  denote the number of nonconformities in the ith reference 

inspection unit where c  denotes the unknown true average number of nonconformities in an inspection 

unit. 

 

 

Phase I point estimators for p and c 
 

The average of the m  Phase I sample fractions nonconforming mppp ,...,, 21  and the average of the 

numbers of nonconformities in each Phase I inspection unit mYYY ,...,, 21 , are used to estimate p  and c , 

respectively. In other words, we estimate p  by 
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and c  by  
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where the random variable 
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),(~
1
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=  

denotes the total number of nonconforming items in the entire set of mn  reference observations and 

the random variable 

)(~
1

mcPoiYV
m

i
i∑

=

=  

denotes the total number of nonconformities in the entire set of m  reference inspection units. 

 

 

 

Remark 3 
 

 

(i) It can be verified that the point estimators p  and c  in (3-24) and (3-25) are: (a) the 

maximum likelihood estimators (MLE’s), and (b) the minimum variance unbiased 

estimators (MVUE’s), of p  and c , respectively (see e.g. Johnson, Kemp and Kotz, (2005) 

p. 126 and p. 174). 

 

In particular, note that, the expected value and the variance of p  are 

p
mn

mnp

mn

UE
pE === )(
)( , 

and 

mn

pp

mn

pmnp

mn

U
p

)1(

)(

)1(

)(

)var(
)var(

22

−=−== , 

 

respectively, whereas the expected value and the variance of c  are 

c
m

mc

m

VE
cE === )(
)( , 

and 

m

c

m

mc

m

V
c ===

22

)var(
)var( , 

 respectively. 
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(ii)  It is essential to note that the distribution of U  depends on the unknown parameter p  and 

the distribution of V  depends on the unknown parameter c  so that it  is technically correct 

to write 

 

),(~| pmnBinpU  and   )(~| mcPoicV . 

 

This observation will become vital when we study the unconditional run-length 

distributions and the characteristics of the unconditional run-length distribution in later 

sections. 
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3.2.2 Phase II p-chart and c-chart 
 

 

A Phase II chart refers to the operation and implementation of a chart following a Phase I analysis 

in which any unknown parameters were estimated from the Phase I reference sample.  

 

 

Phase II estimated control limits 
 

It is standard practice to replace 0p  with p   in (3-1) and substitute c  for 0c  in (3-2) when the 

parameters p  and/or c  are unknown (see e.g. Ryan, (2000) p. 155 and p. 169 and, Montgomery, 

(2005) p. 269 and p. 290). The estimated upper control limits (LCU ˆ ’s), the estimated centerlines 

LĈ( ’s), and the estimated lower control limits (LCL ˆ ’s) of the p-chart and the c-chart are therefore 

given by  

 

npppLCLpLCnpppLCU ppp /)1(3ˆ        ˆ         /)1(3ˆ −−==−+=               (3-26) 

and 

            ccLCLcLCccLCU ccc 3ˆ         ˆ          3ˆ −==+=                    (3-27) 

respectively. 

 

By the invariance property of MLE’s the estimated control limits in (3-26) and (3-27) are the 

MLE’s of the control limits of (3-1) and (3-2) in Case K (see e.g. Theorem 7.2.10 in Casella and 

Berger, (2002) p. 320). However, unlike in Case K, the Phase II estimated control limits are functions 

of and depend on the point estimators (variables) p  or c  and are random variables. We therefore need 

to account for the variability in the estimated control limits while determining and understanding the 

chart’s properties. 

 
 

Phase II charting statistics 
 

Let nXp ii /=  for ,...2,1 ++= mmi  denote the Phase II charting statistics for the p-chart where 

),(~ 1pniidBinX i  denote the number of nonconforming items in the ith Phase II sample of size 1≥n  

with fraction nonconforming 10 1 << p . Similarly, let )(~ 1ciidPoiYi , 01 >c  for ,...2,1 ++= mmi  

denote the number of nonconformities in the ith Phase II inspection unit where 1c  denotes the average 

number of nonconformities in an inspection unit in Phase II. These iY ’s are the Phase II charting 

statistics of the c-chart. 
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Remark 4 
 

(i)         The p-chart  
 

It is important to note that the application of the p-chart in Case U depends on three 

parameters: the unknown true fraction nonconforming p , the point estimate p  and 1p . 

 

In Phase II we denote p  with 1p  so that 1p  denotes the probability of an item being 

nonconforming in the prospective monitoring phase and p  denotes the probability of an 

item being nonconforming in the retrospective phase. To maintain greater generality and to 

cover both the in-control (IC) and the out-of-control (OOC) cases, we do not assume that 

1p  is necessarily equal to p . We therefore write pp =1  for the IC scenario and  pp ≠1  

for the OOC case. 

 

Also, in Phase I we estimate p  by p , which (due to sampling variability) is not 

necessarily equal to p ; we write this as pp =  and pp ≠ . When pp =  we say that p  is 

estimated without error. 

 

This is a key observation. Because we use p  to calculate the estimated control limits, in 

Phase II we are actually comparing 1p  against p  and not against p ; this leads to the 

following four unique scenarios: 

 

(i)   ppp ==1  : the process is IC in Phase II and p  is estimated without error, 

(ii)  ppp =≠1  : the process is OOC in Phase II and p  is estimated without error, 

(iii) ppp ≠=1 : the process is IC in Phase II and p  is not estimated without error, and 

(iv) ppp ≠≠1 : the process is OOC in Phase II and p  is not estimated without error. 

 

To simplify matters we assume, without loss of generality, that the process operates IC in 

Phase II  and p  is not necessarily equal to p ; this is scenario (iii) listed above. 
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(ii)        The c-chart  
 

For the c-chart in Case U we have a similar situation as that for the p-chart i.e. the 

application of the c-chart in Case U depends on three parameters: the true (but unknown) 

average number of nonconformities in an inspection unit c , the point estimate c  and 1c . 

 

In Phase II we denote c  with 1c  so that 1c  denotes the average number of nonconformities 

in an inspection unit in the prospective monitoring phase and c  denotes the average 

number of nonconformities in an inspection unit in the retrospective phase. To maintain 

greater generality and to cover both the in-control (IC) and the out-of-control (OOC) cases, 

we do not assume that 1c  is necessarily equal to c , which we write as cc =1  for the IC 

scenario and  cc ≠1  for the OOC case. 

 

In Phase I however we estimate c  by c , which (due to sampling variability) is not 

necessarily equal to c  and we write this as cc =  and cc ≠ . When cc =  we say that c  is 

estimated without error. 

 

Now, because we use c  to calculate the estimated control limits, in Phase II we are 

actually comparing 1c  against c  and not c ; this leads to the following four unique 

scenarios for the Phase II c-chart: 

 

(i)   ccc ==1  : the process is IC in Phase II and c  is estimated without error, 

(ii)  ccc =≠1 : the process is OOC in Phase II and c  is estimated without error, 

(iii) ccc ≠=1 : the process is IC in Phase II and c  is not estimated without error, and 

(iv)  ccc ≠≠1  : the process is OOC in Phase II and c  is not estimated without error. 

 

To simplify matters we assume, without loss of generality, that the process operates IC in 

Phase II  and we assume that c  is not necessarily equal to c ; this is scenario (iii) listed 

above. 
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Phase II implementation and operation 
 

The actual operation of the p-chart and the c-chart in Phase II consists of: (i) taking independent 

samples and independent inspection units (independent from the Phase I data), (ii) calculating the 

Phase II sample fractions nonconforming nXp ii /=  and the numbers of nonconformities in each 

Phase II inspection unit iY  for  ,...2,1 ++= mmi , and then (iii) comparing these charting statistics 

(one at a time) to the estimated control limits in (3-26) and (3-27), respectively. 

 

The moment that the first charting statistic plots on or outside the estimated limits a signal is given 

and the charting procedure stops. The process is then declared out-of-control and we say (in practice) 

that pp ≠1  (in case of the p-chart) or state that cc ≠1  (in case of the c-chart). 

 

By comparing the Phase II charting statistics with the estimated control limits, the Phase II 

characteristics of the charts are (unlike in case K) affected by the variation in the point estimates 

mnUp /=  and mVc /=  where ),(~| pmnBinpU  and )(~| mcPoicV  are random variables but 

the values of m  and n  can be controlled or decided upon by the user. 

 

The variation in the estimated control limits has significant implications on the properties of the 

charts. Most importantly the Phase II run-length distributions are no longer geometric since the Phase 

II signaling events are no longer independent. Intuitively, since estimating the limits introduces extra 

uncertainty it is expected that the run-length distributions in Case U will be more skewed to the right 

than the geometric. The additional variation must therefore be accounted for while determining and 

understanding the chart’s properties. We give a systematic examination and detailed derivations of the 

Phase II run-length distributions of the p-chart and c-chart in what follows. 
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Phase II signaling event and Phase II non-signaling event 
 

The event that occurs when a Phase II charting statistic plots outside the estimated control limits is 

called a Phase II signaling event and denoted by iB  for ,...2,1 ++= mmi . In case of a Phase II 

signaling event, an alarm or signal is given and we declare the process out-of-control, that is, we say 

that pp ≠1  or state that cc ≠1 . This means, for instance, that in practice we conclude that the 

probability 1p  of an item being nonconforming in Phase II is not equal to the estimated value p . 

 

The Phase II non-signaling event is the complementary event of the Phase II signaling event and 

occurs when a Phase II charting statistic plots within or between the estimated control limits. We 

denote the Phase II non-signaling event by 

}ˆˆ{: LCUQLCLB i
C
i <<  

where ii pQ =  or iY  for ,...2,1 ++= mmi  and LCL ˆ  and LCU ˆ  are the control limits in either (3-26) or 

(3-27), respectively. 

 

In case of a Phase II non-signaling event no signal is given and we consider the process in-control, 

that is, we say that pp =1  or state that cc =1 . 

 

 

Dependency of the Phase II non-signaling events 
 

If the Phase II signaling events were independent, the sequence of trials comparing each Phase II 

charting statistic iQ  with the estimated limits LCU ˆ  and LCL ˆ , would be a sequence of independent 

Bernoulli trials. The run-length between occurrences of the signaling event would therefore be a 

geometric random variable with probability of success equal to )Pr(iB . Moreover, the average run-

length would be )Pr(/1 iBARL = . 

 

However, the signaling events iB  and jB  (or, equivalently, the non-signaling events  C
iB  and 

C
jB ) are not mutually independent for ,...2,1 ++=≠ mmji  and the distribution of the run-length 

between the occurrences of the event iB  is as a result not geometric. In particular, because each Phase 

II ip  (or iY )  for ,...2,1 ++= mmi  is compared to the same set of estimated control limits, which are 

random variables, the signaling events are dependent. 
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To derive exact closed form expressions for the Phase II run-length distributions we use a two-step 

approach called the “method of conditioning” (see e.g. Chakraborti, (2000)). First we condition on the 

observed values of the random variables U  and V  to obtain the conditional Phase II run-length 

distribution and then use the conditional Phase II run-length distributions to obtain the marginal or 

unconditional Phase II run-length distributions. 

 

To this end, note that, given (or conditional on or having observed) particular estimates of p  and 

c  (say obsp  and obsc ), the Phase II non-signaling events are mutually independent each with the same 

probability so that the conditional Phase II run-length distributions are geometric.  For instance, for a 

given or observed value of p  (say obsp ), the estimated Phase II control limits of the p-chart are 

constant i.e. they are not random variables, so that the conditional Phase II non-signaling events of the 

p-chart 

 

}|/)1(3/)1(3{ obsppnppppnppp i =−+<<−−     for    ,...2,1 ++= mmi  

 

are mutually independent each with the same probability given by 

 

)|/)1(3/)1(3Pr(1ˆ1 obsppnppppnppp ip =−+<<−−−=− β .  (3-28) 

 

The same is true for the c-chart. That is, for an observed value of c  (say obsc ) the events  

 

}|33{ obsccccYcc i =+<<−     for    ,...2,1 ++= mmi  

 

are mutually independent each with the same probability given by  

 

)|33Pr(1ˆ1 obsccccYcc ic =+<<−−=− β .  (3-29) 
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The parameters of the conditional Phase II (geometric) run-length distributions are the conditional 

probabilities pβ̂1−  and cβ̂1−  so that, symbolically, we write 

 

)ˆ1(~)|( obs pGeoppN β−=         and        )ˆ1(~)|( obs cGeoccN β−= . 

 

Thus, once the Phase I reference samples are gathered and the control limits are estimated, the 

Phase II run-length of a particular chart will follow some conditional distribution which will depend 

on the realization of the random variable  uU =  or vV = , or, alternatively, on the observed values 

obspp =  or obscc = . 

 

 

Note that the distributions of ),(~| pmnBinpU  and )(~| mcPoicV , or, equivalently, the 

distributions of p  and c , depend on the values of the unknown parameters p  or c  (see e.g. Remark 

3(ii) as well as expressions (3-24) and (3-25), respectively). It is therefore better to write the 

conditional run-length distributions as  

)ˆ1(~),|( obs pGeopppN β−=         and        )ˆ1(~),|( obs cGeocccN β−= . 

 

Moreover the conditional Phase II run-length distribution therefore provides only hypothetical 

information about the performance of a control chart with an estimated parameter. We can, for 

example, only assume some hypothetical value for p  or c  and then suppose that this estimate of p  or 

c  is the 25th or the 75th percentile of the sampling distributions of p  or c  so that the run-length 

distribution, conditioned on such a value, gives some insight into how a chart with this estimate 

performs in practice. This gives the user an idea of just how poorly or how well a chart will perform in 

a hypothetical case with an estimated parameter. 

 

 

To overcome this abovementioned dilemma, the marginal or the unconditional run-length 

distribution can give a practitioner insight into a chart’s general performance. The marginal 

distribution incorporates the additional variability which is introduced to the run-length through 

estimation of p  or c  by averaging over all possible values of the random variable U  or V  (while, of 

course, assuming a particular value for p  or c ). With the unconditional run-length distribution the 

practitioner therefore sees the overall effect of estimation on the run-length distribution before any data 

is collected. 
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3.2.3 Conditional Phase II run-length distributions and characteristics 
 

 

The conditional run-length distributions and the associated conditional characteristics focus on the 

performance of the charts given obspp =  and obscc = . 

 

 

Conditional probability of a no-signal 
 

The probability of a no-signal in Phase II conditional on the point estimate obspp =  or obscc =  is 

called the conditional probability of a no-signal.  This probability, which we previously denoted by pβ̂  

or cβ̂ , is in general denoted by 

 

)ˆ|Pr(ˆ θβ C
iB=    for    ,...2,1 ++= mmi  

 

where ),(ˆ pp=θ  in case of the p-chart  and ),(ˆ cc=θ  in case of the c-chart. 

 

 

The conditional probability of a no-signal, like in Case K (see e.g. Tables 3.1 and 3.2), completely 

characterizes the conditional Phase II run-length distribution and is thus the key to derive and examine 

the conditional Phase II run-length distributions of Case U. We derive exact expressions for β̂  for  

both charts in what follows. 
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Conditional probability of a no-signal: p-chart 
 

 

This probability is derived by conditioning on an observed value u  of the random variable U  or, 

equivalently, conditioning on an observed value obsp  of the point estimator mnUp /=  (see e.g.  

(3-28)). 

 

In doing so, the Phase II charting statistic nXp ii /=  for ,...2,1 ++= mmi is the only random 

variable in (3-28). The cumulative distribution function of ip  for ,...2,1 ++= mmi , as mentioned 

earlier, is completely known and given by  

 

∑∑
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1p  denotes the true fraction nonconforming in Phase II (see Remark 4). 

 

We therefore derive the conditional probability of a no-signal by first re-expressing the Phase II 

conditional non-signaling event in terms of iX . This is done by making use of the relationship 

ii npX = . We then use the properties of iX  to derive an explicit and exact expression for the 

conditional probability of a no-signal. 
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For the p-chart the conditional probability of a no-signal in Phase II is 
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denotes the c.d.f of the ),( 1pnBin  distribution and 
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Remark 5 
 

 

(i) The conditional probability of a no-signal for the p-chart is a function of and depends on 

 

a. the fraction nonconforming in Phase II 1p ,   

b. the number of reference samples m ,  

c. the sample size n , 

d. the point estimator p  or, equivalently, the random variable U , and 

e. the unknown true fraction nonconforming p ; indirectly via the random variable 

),(~| pmnBinpU . 

 

As noted earlier in Remark 4(i), 1p  is not necessarily equal to p  and because of sampling 

variability p  is typically different from p . 

 

 

(ii)  When none of the Phase I reference sample observations are nonconforming, that is, when 

 0=U or 0=p , it makes sense not to continue to Phase II but examine the situation in 

more detail.  Similar logic applies to the other extreme, that is when all the observations are 

nonconforming so that mnU =  or 1=p .  

 

Based on this intuitive reasoning the conditional probability of a no-signal 

),|,,(ˆ
1 ppnmpβ  is defined to be zero in both of these boundary situations.  It then follows 

that the conditional probability of a signal ),|,,(ˆ1 1 ppnmpβ−  is one. Effectively the 

control chart signals, in these cases, when ip  for ,...2,1 ++= mmi  plots on or beyond 

either of the two estimated control limits or is equal to either 0 or n ; this, in actual fact, 

implies that the p-chart signals on the first Phase II sample. 
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Conditional probability of a no-signal: c-chart 
 

By conditioning on an observed value v  of the random variable V  or, equivalently, conditioning 

on an observed value obsc  of the point estimator mVc /= , the Phase II charting statistic iY  for 

,...2,1 ++= mmi  is the only random quantity (variable) in (3-29). 

Because the distribution of iY  is known (assumed) to be Poisson with parameter 1c , we use the 

properties of this distribution to derive an explicit and exact expression for the conditional probability 

of a no-signal for the c-chart. 

 

The conditional probability of a no-signal in Phase II is 
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Remark 6 
 

 

(i) The probability of a no-signal for the c-chart is a function of and depends on 

 

a. the average number of nonconformities in an inspection unit in Phase II 1c ,  

b. the number of reference inspection units m  from Phase I,  

c. the point estimator c  or, equivalently, the random variable V , and 

d. the unknown true average number of nonconformities in an inspection unit c ; indirectly 

via the random variable )(~| mcPoicV . 

 

Again, note that, 1c  is not necessarily equal to c , and since c  is subject to sampling 

variation it is typically different from c . 

 

 

(ii)  When we observe no nonconformities in the Phase I reference sample i.e. when 0V =  or 

0=c , it is essential to pause and examine the situation in more detail. Thus, for 0V =  the 

conditional probability of a no-signal in Phase II is defined to be zero so that the 

conditional probability of a signal in Phase II is one.  
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Summary of the conditional run-length distributions and the related conditional characteristics 
 

Given observed values u  and v  of the random variables U  and V, the conditional run-length 

distributions of the charts are geometric with the probability of success equal to the conditional 

probability of a signal i.e.  

),|,,(ˆ1 1 puUnmp =− β       and     ),|,(ˆ1 1 cvVmc =− β  

respectively.  

 

This is so, because for given or fixed values of uU =  and vV =  the control limits can be 

calculated exactly and the analyses continue as if the parameters p  and c  are known. This is similar 

to the standards known case (Case K) where the run-length distribution was seen to be geometric. All 

the characteristics of the conditional run-length distributions therefore follow from the well-known 

properties of the geometric distribution. In particular, the conditional run-length distributions and the 

associated conditional characteristics for the p-chart and the c-chart are summarized in Table 3.3 and 

Table 3.4, respectively. 

 

The conditional run-length distribution and the conditional characteristics of the run-length 

distributions all depend on either the observed value of the random variable U  or that of V ; these 

observed values cannot be controlled by the user and is a direct result of estimating p  and c . Thus, as 

the values of U  and V  change (randomly), the conditional run-length distributions and the conditional 

characteristics of the run-length distributions will also change randomly. This implies, for example, 

that the conditional characteristics are random variables which all have their own probability 

distributions so that one can present a quantity such as the expected conditional SDRL i.e. 

),|,,(( 1 pUnmpCSDRLEU  or ),|,(( 1 cVmcCSDRLEV . Although this is technically correct it is not the 

best approach; a better approach would be to calculate the unconditional standard deviation i.e. 

)),|,,((var)),|,,(var( 11 pUnmpEpUnmpEUSDRL UU +=  

or  

)),|,((var)),|,(var( 11 cVmcEcVmcEUSDRL VV +=  

which is computed from the marginal run-length distribution and incorporates both the expected 

conditional SDRL  and the variation in the expected conditional ARL.  We discuss this in more detail 

later when we examine the conditional and unconditional properties of the charts. 
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Table 3.3: The conditional probability mass function (c.p.m.f), the conditional cumulative 
distribution function (c.c.d.f), the conditional false alarm rate (CFAR), the conditional average 
run-length (CARL) and the conditional standard deviation of the run-length (CSDRL) of the      

p-chart in Phase II of Case U 

 

c.p.m.f ,....2,1      )],|,,(ˆ-[1)],|,,(ˆ[),|,,;Pr( 1
1

11 === − jpUnmppUnmppUnmpjN j
p ββ  (3-34) 

 c.c.d.f ,....2,1      )],|,,(ˆ[1),|,,;Pr( 11 =−=≤ jpUnmppUnmpjN j
p β  (3-35) 

 CFAR ),|,,(ˆ1),|,,( 1111 ppUnmpppUnmpCFAR =−== β   (3-36) 

 CARL )],|,,(ˆ1/[1),|,,( 11 pUnmppUnmpCARL β−=  (3-37) 

CSDRL )],|,,(ˆ1/[),|,,(ˆ),|,,( 111 pUnmppUnmppUnmpCSDRL ββ −=  (3-38) 

cqf }),|,,;Pr(:inf{int),|,,;( 11 qpUnmpjNxpUnmpqQ pN p
≥≤=   10 << q  (3-39) 

 

 

 

Table 3.4: The conditional probability mass function (c.p.m.f), the conditional cumulative 
distribution function (c.c.d.f), the conditional false alarm rate (CFAR), the conditional average 
run-length (CARL) and the conditional standard deviation of the run-length (CSDRL) of the      

c-chart in Phase II of Case U 

 

c.p.m.f ,....2,1      ]),|,(ˆ-[1)],|,(ˆ[),|,;Pr( 1
1

11 === − jcVmccVmccVmcjN j
c ββ  (3-40) 

 c.c.d.f ,....2,1      )],|,(ˆ[1),|,;Pr( 11 =−=≤ jcVmccVmcjN j
c β  (3-41) 

 CFAR ),|,(ˆ1),|,( 1111 ccVmcccVmcCFAR =−== β   (3-42) 

 CARL )],|,(ˆ1/[1),|,( 11 cVmccVmcCARL β−=  (3-43) 

CSDRL )],|,(ˆ1/[),|,(ˆ),|,( 111 cVmccVmccVmcCSDRL ββ −=  (3-44) 

cqf }),|,;Pr(:inf{int)|,;( 11 qcVmcjNxVmcqQ cNc
≥≤=   10 << q  (3-45) 
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It is important to note that the conditional run-length distributions and the associated characteristics 

of the conditional run-length distributions do not only depend on the random variables U  and V ; they 

also indirectly depend on the unknown parameters p  and c . 

 

The dependency on U  and V  follows from the fact that we estimate p  using mnUp /=  and we 

estimate c  using mVc /= . The indirect dependency on p  and c  follows from the fact that the 

distribution of U  (which is binomial with parameters mn  and p ) and the distribution of V  (which is 

Poisson with parameter mc ) depend on the unknown parameters p  and c . To evaluate any of the 

conditional characteristics we need the observed values of U  and V  but we also need to assume 

values for p  and c .  

 

The aforementioned point is demonstrated in the following two examples which illustrate the 

operation and the implementation of the Phase II p-chart and the Phase II c-chart when we are given a 

particular Phase I sample. 
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Example 1: A Phase II p-chart 
 

 

Consider Example 6.1 on p. 289 of Montgomery (2001) concerning a frozen orange juice 

concentrate that is packed in 6-oz cardboard cans.  A machine is used to make the cans and the goal is 

to set up a control chart to improve i.e. decrease,  the fraction of nonconforming cans produced by the 

machine.  Since no specific value of the fraction nonconforming p  is given the scenario is an example 

of Case U, that is, when the standard is unknown. The chart is therefore implemented in two stages. 

 

 

Phase I 
 

To establish the control chart 30=m  reference samples were taken each with 50=n  cans, 

selected in half hour intervals over a three-shift period in which the machine was in continuous 

operation. Once the Phase I control chart was established samples 15 and 23 were found to be out-of-

control and eliminated after further investigation.  Revised control limits were calculated using the 

remaining 28=m  samples.  Based on the revised control limits sample 21 was found out-of-control, 

but since further investigations regarding sample 21 did not produce any reasonable or logical 

assignable cause  it was not discarded.  This is the retrospective phase (or Phase I) of the analysis.   

The final 28 samples were used to estimate the control limits and then monitor the process in Phase II. 

 

 

Phase II (conditional) 
 

Although the random variable U  could theoretically take on any integer value from 0 to 

14005028 =×=mn , for the given set of reference data it was found that 301=U ; this was the total 

number of nonconforming cans after discarding samples 15 and 23. It follows from (3-24) that the 

point estimate of p  is 215.01400/301 ==p . 

 

The estimated control limits and centerline corresponding to 301=U  are found from (3-26) to be 

 

3893.050/)785.0(215.03215.0ˆ =+=pLCU  and 0407.050/)785.0(215.03215.0ˆ =−=pLCL . 

 

We find the constants â  and b̂  using (3-31) to be 

19),301|50,28(ˆ ==== pUnmb     and    .2),301|50,28(ˆ ==== pUnma  
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Because U  is unequal to 0 or mn  it follows from (3-30) that the conditional probability of a no-signal 

in Phase II is  

 

)30,19()47,2(                                                         

))1250,2(1()11950,19(1),215.0|50,28,(ˆ

11

111

pp

pp

II

IIppnmp

−=

−−−−−−−====β
 

for 1,0 1 << pp . 

 

Assuming, without loss of generality, that the process is in-control at a fraction nonconforming of 

0.2, that is, 2.01 == pp , the conditional false alarm rate (CFAR) is equal to 

 

002218.0)30,19()47,2(1)2.0,215.0|50,28,2.0(ˆ1 2.02.01 =+−====− IIpppβ . 

 

The in-control conditional average run-length therefore equals 

 

450.89  1/0.0022180 ==CARL  

and is found using (3-37). 

 

Compared to the Case K FAR and ARL of 0.0027 and 369.84 (see e.g. Tables A3.4 and A3.5 of 

Appendix 3A) we see that our p-chart (here, in Case U, with 215.0=p  and assuming that 

2.01 == pp ) would signal less often, if the process is in-control, than what it would if p  had in fact 

been known to be equal to 0.2. 

 

However, note that, since each user has his/her own unique reference sample, the point estimate p  

will differ from one user to the next so that the performance of each user’s chart will also vary. To this 

end, the unconditional characteristics are useful as they do not depend on any specific observed value 

of the point estimate. This, however, is looked at later when we continue Example 1 after having 

derived expressions for the unconditional characteristics of the p-chart’s Phase II run-length 

distribution. ■ 
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Example 2: A Phase II c-chart 
 

 

Consider Example 6.3 on p. 310 in Montgomery (2001) about the quality control of manufactured 

printed circuit boards. Since c  is not specified it had to be estimated. The chart was therefore 

implemented in two phases. 

 

 

Phase I 
 

A total of 26 successive inspection units each consisting of 100 individual items of product were 

obtained to estimate the unknown true average number of nonconformities in an inspection unit c.  It 

was found that units number 6 and 20 were out-of-control and therefore eliminated. The revised 

control limits were calculated using the remaining 24m =  inspection units with the number of 

nonconformities in an inspection unit shown in Table 6.7 on p. 311 of Montgomery (2001). The 

revised control limits were used for monitoring the process in Phase II. 

 

 

Phase II (conditional) 
 

Theoretically the variable V , the total number of nonconformities in the 24 inspection units, could 

take on any positive integer value including zero i.e. ,...}2,1,0{∈V .  For the given Phase I data it is 

found that 472V = . Using (3-25) the average number of nonconformities in an inspection unit c  is 

estimated as 67.1924/472 ==c  so that the estimated 3-sigma control limits are found from (3-27) to 

be 

97.32ˆ =cLCU      and       36.6ˆ =cLCL . 

 

These estimated limits yield 

6),472|24(ˆ === cVmd     and     32),472|24(ˆ === cVmf . 

 

Because V  is unequal to zero it follows from (3-32) that the probability of a no-signal is 

 

)()(),67.19|24,(ˆ
171331 ccccc Γ−Γ==β      for     0, 1 >cc . 
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For the given (observed) value of 472V =  one can investigate the chart’s performance using the 

conditional properties.  Assuming, without loss of generality, that the process operates in-control at an 

average of twenty nonconformities in an inspection unit, that is, 201 == cc  is the true in-control 

average number of nonconformities in an  inspection unit, the conditional false alarm rate i.e. the false 

alarm rate given 472V = , is found to be equal to 

004983.0)20()20(1 733 =Γ−Γ−=CFAR . 

 

The CFAR is approximately 72% larger than the value of 0.0029 one would have obtained in Case 

K for 200 =c  and is 85% higher than the nominal value 0.0027 (see e.g. Table A3.12 in Appendix 

3A); this is true even though the estimated average number of nonconformities in an inspection unit 

( 67.19=c ) is within 07020)206719( .|/.| =−  standard deviation units of the true average number of 

nonconformities in an inspection unit ( 20=c ). However, note that, like the p-chart of Example 1, 

each user typically has his/her own distinct Phase I data so that the performance of the c-chart in Case 

U will be different for each user. ■ 

 

 

 

To get an overall picture of a p-chart’s or a c-chart’s performance one needs to look at the 

unconditional properties of the chart; this is looked at later. First we look at the conditional run-length 

distribution and the related conditional characteristics of the p-chart and c-chart. 

 

The characteristics of the conditional run-length distribution depend on and are functions of the 

random variables U  or V ; as a result, these characteristics are random variables themselves and vary 

as U  or V  changes. 

 

To understand the effect of U  or V  on the characteristics of the conditional run-length 

distribution, it is instructive to study the conditional characteristics of the charts as functions of U  and 

V  as they show precisely how the conditional characteristics of each chart vary as the point estimates 

p  and c  fluctuate. 

 

First we look at the conditional characteristics of the p-chart and then at those of the c-chart. 
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3.2.3.1 Conditional characteristics of the p-chart 
 

 

Once we observed a value u  of the random variable U  we can calculate the conditional 

probability of a signal. The Phase II conditional run-length distribution is then completely known (see 

e.g. Table 3.3). 

 

Tables 3.5 and 3.6 illustrate the exact steps to calculate the conditional probability of a no-signal, 

the conditional probability of a signal or the conditional false alarm rate (CFAR), the conditional 

average run-length (CARL) and the conditional standard deviation of the run-length (CSDRL) for the p-

chart. These are all conditional Phase II properties as they all depend on an observed value from Phase 

I. 

 

For illustration purposes we assume a total of 20== mnT  individual Phase I observations is used 

to estimate p  using mnUp /=  as point estimate and that 5.01 == pp . The latter assumption implies 

that the process operated at a fraction nonconforming of 5.0=p  during Phase I and that in Phase II 

the process continues to operate at this same level so that 5.01 =p ; this is the same as saying that the 

process is in-control in Phase II. However, note that, because of sampling variation the observed value 

of p  may of course not be equal top  (see e.g. Remark 4(i)). 

 

The calculations of Table 3.5 are based on the assumption that 4=m  independent Phase I 

reference samples each of size 5=n  are used whereas the computations of Table 3.6 are based on 

1=m  with 20=n . 

 

In particular, column 1 lists all the values of U  (the total number of possible nonconforming items 

in the entire Phase I reference sample) that can possibly be attained. This ranges from a minimum of 

zero to a maximum of twenty.  Column 2 converts the observed value u  of U  into a point estimate of 

the unknown true fraction of nonconforming items, that is, we calculate obs20/ pup ==  which 

estimatesp . Because each row entry in each of the succeeding columns (i.e. columns 3 to 12) is 

computed by conditioning on a row entry from column 1 (or, equivalently, from column 2) we start 

calculating the conditional properties in columns 1 and/or 2 and sequentially proceed to the right-hand 

side of the tables. Thus, given a value u  or obsp  the lower and the upper control limits are estimated in 

columns 3 and 4 using (3-26). These estimated limits are then used to compute the two constants â  

and b̂  defined in (3-31), which are shown in columns 5 and 6, respectively.  Finally, columns 7 
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through 10 list the probability of a no-signal, the FAR, the in-control ARL and the in-control SDRL 

given the observed value u  from column 1, respectively. These properties are labeled 

),|Signal NoPr( pU , CFAR, CARL0 and CSDRL0, and calculated using (3-30) and the expressions in 

Table 3.3. Columns 11 and 12 show the values of the probability mass function (p.m.f) and the 

cumulative distribution function (c.d.f) of the random variable )5.0,20(~5.0| BinpU = , that is, 

205.0
20

)5.0|Pr( 







===

u
puU      and     ∑

=








==≤

u

j j
puU

0

205.0
20

)5.0|Pr(     for   20,...,2,1,0=u . 

Both these probability functions are useful when interpreting the characteristics of the conditional 

run-length distribution. The former shows the exact probability of obtaining a particular value u  of U  

whereas the latter can be used to find the percentiles of the distribution of U .  

 

 

T = 20 with m = 4 and n = 5 
 

Consider Table 3.5 which uses a total of 20=T  individual in-control Phase I reference 

observations from 4=m  independent samples each of size 5=n . 

 

There are two unique scenarios. The first takes place when 0=U (the minimum value possible) 

and the second occurs when 2054=×=U  (the maximum value). In both these cases the probability 

of a no-signal is zero by definition and the chart signals once the first Phase II sample is observed. As 

a result the conditional in-control average run-length is 10 =CARL . In the former situation the 

estimated control limits are 0ˆˆ == pp LCULCL  and in the latter the limits are 1ˆˆ == pp LCULCL . In 

both these situations the constants â  and b̂  need not be calculated; this is indicated by NA (read as 

“not applicable”) in columns 5 and 6, respectively (see e.g. (3-30) and Remark 5(ii)). 

 

The probability that none or all of the Phase I reference observations are nonconforming is of 

course rather small. The probabilities of these two events are 205.0)5.0|20()5.0|0( ==== UPUP  

which are zero when rounded to four decimal places (see e.g. column 11). For all other values of 

0≠U  and 20=≠ mnU , that is, when }19,...,2,1{∈U , we proceed with the calculation of the 

conditional characteristics as follows. 
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Table 3.5: Conditional probability of a no-signal, the conditional false alarm rate (CFAR), the 
in-control conditional average run-length (CARL0) and the in-control conditional standard 

deviation of the run-length (CSDRL0) of the p-chart in Case U for 4====m  and 5====n , assuming 
that 5.01 ======== pp  

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

u  obsp  pLCL ˆ  pLCU ˆ  â  b̂  Pr(No Signal | U, p) CFAR CARL0 CSDRL0 Pr(U=u| p) Pr(U<=u| p) 

0 0.00 0.00 0.00 NA NA 0.0000 1.0000 1.00 0.00 0.0000 0.0000 
1 0.05 -0.24 0.34 NA 1 0.1875 0.8125 1.23 0.53 0.0000 0.0000 
2 0.10 -0.30 0.50 NA 2 0.5000 0.5000 2.00 1.41 0.0002 0.0002 
3 0.15 -0.33 0.63 NA 3 0.8125 0.1875 5.33 4.81 0.0011 0.0013 
4 0.20 -0.34 0.74 NA 3 0.8125 0.1875 5.33 4.81 0.0046 0.0059 
5 0.25 -0.33 0.83 NA 4 0.9688 0.0313 32.00 31.50 0.0148 0.0207 
6 0.30 -0.31 0.91 NA 4 0.9688 0.0313 32.00 31.50 0.0370 0.0577 
7 0.35 -0.29 0.99 NA 4 0.9688 0.0313 32.00 31.50 0.0739 0.1316 
8 0.40 -0.26 1.06 NA 5 1.0000 0.0000 ∞  ∞  0.1201 0.2517 
9 0.45 -0.22 1.12 NA 5 1.0000 0.0000 ∞  ∞  0.1602 0.4119 
10 0.50 -0.17 1.17 NA 5 1.0000 0.0000 ∞  ∞  0.1762 0.5881 
11 0.55 -0.12 1.22 NA 5 1.0000 0.0000 ∞  ∞  0.1602 0.7483 
12 0.60 -0.06 1.26 NA 5 1.0000 0.0000 ∞  ∞  0.1201 0.8684 
13 0.65 0.01 1.29 0 5 0.9688 0.0313 32.00 31.50 0.0739 0.9423 
14 0.70 0.09 1.31 0 5 0.9688 0.0313 32.00 31.50 0.0370 0.9793 
15 0.75 0.17 1.33 0 5 0.9688 0.0313 32.00 31.50 0.0148 0.9941 
16 0.80 0.26 1.34 1 5 0.8125 0.1875 5.33 4.81 0.0046 0.9987 
17 0.85 0.37 1.33 1 5 0.8125 0.1875 5.33 4.81 0.0011 0.9998 
18 0.90 0.50 1.30 2 5 0.5000 0.5000 2.00 1.41 0.0002 1.0000 
19 0.95 0.66 1.24 3 5 0.1875 0.8125 1.23 0.53 0.0000 1.0000 
20 1.00 1.00 1.00 NA NA 0.0000 1.0000 1.00 0.00 0.0000 1.0000 

 

 

 

Suppose, for instance, that we observe seven nonconforming items out of the possible twenty in the 

entire Phase I reference sample. Our chance to find exactly seven nonconforming items is 

approximately 0.0739 (which is relatively high, see e.g. column 11); the probability to find less than 

seven nonconforming items is 0577.0)5.0|7( ≈<UP  (see e.g. column 12). 

 

A value of 7=U  gives a point estimate for p  of 35.020/7 ==p  so that (3-26) yields an 

estimated upper control limit and an estimated lower control limit of 

   99.05/)65.0(35.0335.0ˆ =+=pLCU      and     29.05/)65.0(35.0335.0ˆ −=−=pLCL  

respectively . 

Because 45.1)29.0)(5(ˆ −=−=pLCnL  is less than zero the chart has no lower control limit. We 

therefore do not calculate a value for â  in this case. The constant b̂ , on the other hand, is found to be 

4}5],95.4min{[}5)],99.0)(5min{[(}5],ˆmin{[ˆ ==== pLCnUb . 
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Finally, after substituting b̂  in (3-30) we calculate the conditional probability of a no-signal and 

then also the CFAR, the CARL0 and the CSDRL0 using expressions (3-36), (3-37) and (3-38) in Table 

3.3. 

 

The conditional probability of a no-signal is 

 9688.0)5.0,35.0|5,4,5.0(ˆ)5.0,7|5,4,5.0(ˆ
11 ============ ppnmppUnmp ββ , 

so that the conditional false alarm rate is 

0313.09688.01)5.0,7|5,4,5.0(1 =−==== pUpCFAR . 

The Phase II  p-chart then has an in-control conditional ARL of 

00.320313.0/1)5.0,7|5,4,5.0(10 ===== pUpCARL  

and an in-control conditional SDRL of  

50.310313.0/9688.0)5.0,7|5,4,5.0(10 ===== pUpSDRL . 

 

If the process remains to operate at 5.01 =p  (i.e. the process stays in-control) we expect that the 

chart would, on average, give a false alarm or erroneous signal on every 32nd sample. This is more 

often that what we would nominally expect from a 3-sigma Shewhart-type control chart, which 

typically has an in-control ARL of 370.4.  We also see that the conditional false alarm rate (CFAR), 

particularly for 7=U , is much higher than the nominally expected 0.0027 even though the point 

estimate 35.0=p  is  0.70)35.01(35.0/)50.035.0(5 =−− standard deviation units from the 

supposedly known value of 5.0=p .  

 

For values of U  from 8 to 12 the CFAR is equal to zero and as a result the moments of the run-

length distribution, such as the 0CARL  and the 0CSDRL , are all undefined; this implies that, in 

practice, the conditional Phase II chart will not signal and that the 0CARL  and the 0CSDRL  are both 

infinite. Although we typically want a high in-control ARL , an ARL of infinity is not practical. Thus, 

4=m  subgroups each of size 5=n  is not adequate to control the false alarm rate (FAR) at a small yet 

practically desirable level, and at the same time ensure that a high in-control ARL is achieved.  This 

suggests that one needs more reference data and that n  needs to be larger relative to m  in order to 

achieve any reasonable probability of a false alarm with attributes data. 
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T = 20 with m = 1 and n = 20 
 

 

To study the effect of choosing a larger value of n  relative to m  suppose that a total of 20=T  in-

control Phase I reference observations are available but in one sample of twenty observations, that is, 

1=m  and 20=n .  Calculations for this situation are shown in Table 3.6. 

 

We observe that the conditional probability of a no-signal i.e. 

)5.0,|20,1,5.0(ˆ),|Signal NoPr( 1 ====== puUnmppU β  

is non-zero for all values of 20,...,1,0=U . As a result none of the CFAR’s values are zero and 

therefore all the moments (such as the in-control ARL, the in-control SDRL etc.) of the conditional run-

length distribution are defined and finite. This suggests the need for a very careful choice of the 

number of reference samples m  and the size n  of each of the samples before a p-chart with an 

unknown value of p  is implemented in practice. 

 

 

Table 3.6: Conditional probability of a no-signal, the conditional false alarm rate (CFAR), the in-
control conditional average run-length (CARL0) and the in-control conditional standard 

deviation of the run-length (CSDRL0) of the p-chart in Case U for 1====m  and 20====n , assuming 
that 5.01 ======== pp  

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

u  obsp  pLCL ˆ  pLCU ˆ  â  b̂  Pr(No Signal | U, p) CFAR CARL0 CSDRL0 Pr(U=u| p) Pr(U<=u| p) 

0 0.00 0.00 0.00 NA NA 0.0000 1.0000 1.00 0.00 0.0000 0.0000 
1 0.05 -0.10 0.20 NA 3 0.0013 0.9987 1.00 0.04 0.0000 0.0000 
2 0.10 -0.10 0.30 NA 6 0.0577 0.9423 1.06 0.25 0.0002 0.0002 
3 0.15 -0.09 0.39 NA 7 0.1316 0.8684 1.15 0.42 0.0011 0.0013 
4 0.20 -0.07 0.47 NA 9 0.4119 0.5881 1.70 1.09 0.0046 0.0059 
5 0.25 -0.04 0.54 NA 10 0.5881 0.4119 2.43 1.86 0.0148 0.0207 
6 0.30 -0.01 0.61 NA 12 0.8684 0.1316 7.60 7.08 0.0370 0.0577 
7 0.35 0.03 0.67 0 13 0.9423 0.0577 17.34 16.84 0.0739 0.1316 
8 0.40 0.07 0.73 1 14 0.9793 0.0207 48.27 47.77 0.1201 0.2517 
9 0.45 0.12 0.78 2 15 0.9939 0.0061 163.66 163.16 0.1602 0.4119 
10 0.50 0.16 0.84 3 16 0.9974 0.0026 388.07 387.57 0.1762 0.5881 
11 0.55 0.22 0.88 4 17 0.9939 0.0061 163.66 163.16 0.1602 0.7483 
12 0.60 0.27 0.93 5 18 0.9793 0.0207 48.27 47.77 0.1201 0.8684 
13 0.65 0.33 0.97 6 19 0.9423 0.0577 17.34 16.84 0.0739 0.9423 
14 0.70 0.39 1.01 7 20 0.8684 0.1316 7.60 7.08 0.0370 0.9793 
15 0.75 0.46 1.04 9 20 0.5881 0.4119 2.43 1.86 0.0148 0.9941 
16 0.80 0.53 1.07 10 20 0.4119 0.5881 1.70 1.09 0.0046 0.9987 
17 0.85 0.61 1.09 12 20 0.1316 0.8684 1.15 0.42 0.0011 0.9998 
18 0.90 0.70 1.10 13 20 0.0577 0.9423 1.06 0.25 0.0002 1.0000 
19 0.95 0.80 1.10 16 20 0.0013 0.9987 1.00 0.04 0.0000 1.0000 
20 1.00 1.00 1.00 NA NA 0.0000 1.0000 1.00 0.00 0.0000 1.0000 
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The conditional false alarm rate  
 

Panels (a) to (f) of Figures 3.1 and 3.2 display the conditional false alarm rate (CFAR) 

)5.0,|,,5.0(ˆ1 1 ===− puUnmpβ      as a function of    mnu ,...,1,0=  

for various combinations of m and n  when a total of 20=T  and a total of 50=T  individual Phase I 

reference observations are used to estimate p . For illustration purposes we assume that 50.01 == pp .  

 

The impact of the actual number of nonconforming items u  in the entire Phase I reference sample 

is easily noticed. The distribution of the CFAR is seen to be U-shaped and symmetric at the point 

2/mn ; this is  the mean value of U.  For values of U near the two tails the CFAR can be very high, 

sometimes close to 1 or 100%, which obviously means many false alarms.  Of course, this only 

happens at the rather extreme values of U that occur with very small probabilities (see e.g. columns 11 

and 12 in Tables 3.5 and 3.6). However, even when U  is not as extreme there can be a significantly 

high probability of a false alarm and it is seen that only when U   takes on a value in the 

neighbourhood of its mean, will the CFAR be reasonably small. A potential problem is that for some 

combinations of m and n values, especially with smaller values of n relative to m , some of the CFAR 

values equal 0, which (as mentioned before) leads to an in-control average run-length that is 

undefined.  

 

Note that, panels (d) and (f) of Figure 3.1 are in fact displaying the CFAR’s of column 8 in Tables 

3.5 and 3.6, respectively. 
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(a)  T = 20 (m = 20 , n = 1) 

T=20 (m=10,n=2)
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(b)  T = 20 (m = 10 , n = 2) 

T=20 (m=5,n=4)
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(c)  T = 20 (m = 5 , n = 4) 
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(d)  T = 20 (m = 4 , n = 5) 

T=20 (m=2,n=10)
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(e)  T = 20 (m = 2 , n = 10) 

T=20 (m=1,n=20)
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(f)  T = 20 (m = 1 , n = 20) 

Figure 3.1: The conditional false alarm rate (CFAR) as a function of 20,...,1,0====u  for various 
combinations of m  and n  such that 20======== mnT
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T=50 (m=50,n=1)
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(a)  T = 50 (m = 50 , n = 1) 

T=50 (m=25,n=2)
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(b)  T = 50 (m = 25 , n = 2) 

T=50 (m=10,n=5)
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(c)  T = 50 (m = 10 , n = 5) 

T=50 (m=5,n=10)
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(d)  T = 50 (m = 5 , n = 10) 

T=50 (m=2,n=25)
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(e)  T = 50 (m = 2 , n = 25) 

T=50 (m=1,n=50)
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(f)  T = 50 (m = 1 , n = 50) 

Figure 3.2: The conditional false alarm rate (CFAR) as a function of 50,...,1,0====u  for various 
combinations of m  and n  such that 50======== mnT  
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The conditional probability of a no-signal 
 

 

The distribution of 1-CFAR, which is the conditional probability of a no-signal when the process is 

in-control, is shown in panels (a) to (d) of Figure 3.3 for 20=T , 50, 100 and  200 when 1=m  and 

Tn =  i.e. for large n  relative to m . 

 

It is seen that the distribution of 1-CFAR is bell-shaped and symmetric; these two characteristics 

follow from that of CFAR shown in Figure 3.1 and 3.2.  
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(a)  T = 20 (m = 1 , n = 20) 
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(b)  T = 50 (m = 1 , n = 50) 

T=100 (m=1,n=100)
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(c)  T = 100 (m = 1 , n = 100) 

T=200 (m=1,n=200)
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(d)  T = 200 (m = 1 , n = 200) 

Figure 3.3: The conditional probability of a no-signal when the process is in-control (1-CFAR) as 
a function of Tu ,...,1,0====  for 1====m  and 20======== Tn ,50, 100 and 200 
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The out-of-control conditional performance of the p-chart  
 

 

The in-control performance of the Phase II p-chart (in theory) refers to the characteristics of the 

chart in the situation where the process operates at the same level in Phase II as what it did in Phase I; 

this is the scenario when pp =1 . However, because p  is unknown and estimated by p , the observed 

value obsp  plays the role of p  so that the conditional in-control performance (in practice) refers to the 

situation when obs1 pp =  (see e.g. the earlier section labelled “Phase II implementation and 

operation”). The out-of-control performance (in practice) then refers to the characteristics of the p-

chart when obs1 pp ≠ . 

 

Taking into consideration the aforementioned, we can study the out-of-control performance of the 

Phase II p-chart by making use of the results from the previous section. In particular, by conditioning 

on a specific observed value obsp , the run-length distribution is affected in the same way it would be if 

the unknown true fraction nonconforming was to change from p  (in Phase I) to 1p  (in Phase II). In 

other words, the out-of-control performance of the Phase II  p-chart (i.e. when p  has incurred either a 

downward or an upward shift to 1p  so that pp ≠1 ) is  equivalent  to the  performance of the 

conditional p-chart when obspp ≠  i.e. if p  was either overestimated or underestimated (see e.g. Jones, 

Champ and Rigdon, (2004)); this correspondence allows us to examine the out-of-control performance 

of the p-chart by using the conditional statistical characteristics. 

 

To this end, consider, for example, Table 3.7 which lists the false alarm rate (CFAR), the average 

run-length (CARL0) and the standard deviation of the run-length (CSDRL0) of the conditional run-

length distribution for different combinations of m  and n , provided that 20== mnT  and 

5.01 == pp . In each case the run-length distribution is conditioned on an estimate of p  through a 

particular realization u  of the random variable U  or, equivalently, on a specific realization obsp . 

 

The values on which we condition are, for illustration proposes only, 7=U  (i.e. 

35.020/7 ==p ), 8=U  (i.e. 40.020/8 ==p )  and 10=U  (i.e. 50.020/10 ==p ). These values 

correspond to the 10th, the 25th and the 50th percentiles of the probability distribution of 

U ~ )5.0,20( == pmnBin , respectively; note that, because the )5.0,20(Bin  distribution is symmetric, 

conditioning on 7=U  and 8=U  are like conditioning on 13720 =−=U  (i.e. 65.020/13 ==p )  

and 12820 =−=U  (i.e. 60.020/12 ==p ), which are the  90th and the 75th percentiles of the 

probability distribution of U , respectively. 
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In particular, by assuming that 5.01 == pp  and then conditioning on 7=U  or 8=U  (i.e. 

35.0=p  or 40.0=p ) the performance of the Phase II  p-chart are comparable to that of a process that 

has sustained a permanent step shift from 0.35 to 0.5 or encountered a lasting step shift from 0.4 to 0.5 

i.e. an increase of either 43% or 25%, respectively. Similarly, if we assume that 5.01 == pp  and then 

condition on 13=U  or 12=U  (i.e. 65.0=p  or 60.0=p ) the performance of the Phase II  p-chart is 

like that of a process that has sustained a permanent step shift from 0.65 to 0.5 (a decrease of 23%) or 

incurred a step shift from 0.6 to 0.5 (a decrease of 17%). 

 

When )20,1(),( =nm  and we condition on a value of 8=U  (or 12), which is the 25th (or the 75th) 

percentile of the distribution of )5.0,20(~5.0| BinpU = , the CFAR is 0.0207 and the CARL0 is 48.27. 

The CFAR is approximately %29%100)10160.0/0207.0( ≈×−  higher than the probability of a signal 

of 0160.0)20,5.0,6.0or  4.0(1 0 ====− nppβ  of Case K whereas the CARL0 is roughly 

%23%100)15.62/27.48( ≈×−   lower than the out-of-control (OOC) ARL of Case K following a 

sustained shift from 0.4 or 0.6 to 5.0 , which is equal to 5.62)20,5.0,6.0or  4.0( 0 ==== nppARL  

(see e.g. Tables A3.4 and A3.5 in Appendix 3A). 

This means that when 1=m  and 20=n , and p  is either underestimated or overestimated by 25% 

(i.e. the process fraction nonconforming has endured either a 25% decrease or increase and is out-of-

control), the p-chart of Case U would be better at detecting such a shift than the p-chart of Case K. 

However, note that, this superior performance is a side-effect of estimating p . 

 

The same is true for other combinations of ),(nm . For example, if our Phase I reference data 

consisted of 2=m  samples each of size 10=n  and we then condition on  8=U  (or 12), the 

conditional FAR is 0107.0=CFAR  and the in-control conditional ARL is 09.930 =CARL . These 

values are approximately 73% higher and 43% lower than the probability of a signal and the out-of-

control ARL of 0.0062 and 162.6 if p  had been known. 

 

In contrast, it is noteworthy to see what happens if we condition on  10=U  (i.e. the 50th percentile 

of the distribution of U ), which implies that our estimate of p  is spot on, that is, the point estimate 

5.0=p  on which we condition is equal to p , so that we are in actual fact dealing with the in-control 

(IC) performance of the p-chart in Case U.  

 

In this case, the CFAR and the in-control conditional ARL for both the scenarios )20,1(),( =nm  

and )10,2(),( =nm , are exactly equal to the in-control performance of the p-chart in Case K  with 
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0026.0=FAR  &  388.070 =ARL and 0020.0=FAR  & .005120 =ARL , respectively (see e.g. Tables 

A3.4 and A3.5 in Appendix 3A). Furthermore, note that, as mentioned before, for some combinations 

of ),( nm , especially when nm >> , it happens that  for certain values of U  the CFAR  equals zero 

which causes the 0CARL  and 0CSDRL  to be undefined, which is undesirable. 

 

To summarize, when 20=T  and p  is either underestimated or overestimated (i.e. the process is 

OOC), the Case U p-chart would do better than the Case K chart at detecting a shift, and only if our 

estimate p  of p is on target (i.e. the process is IC) would the performance of the Case U and Case K 

charts be similar. 

 

Table 3.7: The false alarm rate (CFAR), the average run-length (CARL) and the standard 
deviation of the run-length (CSDRL) of the conditional run-length distribution for different 

combinations of m  and n , provided that 20======== mnT  and 5.01 ======== pp  

 

U = 7 or 13 (OOC) 
( 0.65or  35.0====p ) 

U = 8 or 12 (OOC) 
( 0.6or  4.0====p ) 

U = 10 (IC) 
( 5.0====p ) T = 20 

10th or 90th Percentile 25th or 75th Percentile 50th Percentile 

m n CFAR CARL0 CSDRL0 CFAR CARL0 CSDRL0 CFAR CARL0 CSDRL0 

1 20 0.0577 17.34 16.84 0.0207 48.27 47.77 0.0026 388.07 387.57 
2 10 0.0107 93.09 92.59 0.0107 93.09 92.59 0.0020 512.00 511.50 
4 5 0.0313 32.00 31.50 0.0 ∞  ∞  0.0 ∞  ∞  

5,4 10,2 
20,1  

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

 

 

Calculations similar to those in Table 3.7 are shown in Tables 3.8, 3.9, 3.10, and 3.11 for a larger 

range of values for T ; we specifically look at 10=T ,15, 25, 30, 50, 75, 100, 200, 250, 300, 500, 750, 

1000 and 1500. 

For each value of T  we look at all possible combinations of m  and n  such that mnT =  where 

both m  and n  are integers. We again condition on the 10th (or the 90th), the  25th (or the 75th), and the 

50th percentiles of )5.0,(~5.0| mnTBinpU ==  so that the interpretation of these conditional 

characteristics is similar to those for 20=T  of Table 3.7. The values of the percentiles of U  and the 

corresponding values of p  are clearly indicated. 

The characteristics that are highlighted in grey indicate those ),(nm  combinations for which the 

Case U p-chart performs worse than the Case K p-chart; for all the other ),( nm  combinations the Case 

U p-chart performs better or just as well as the Case K p-chart. 
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The conditional characteristics of Tables 3.8, 3.9, 3.10, and 3.11 are of great help to the 

practitioner as he/she gets an idea of the ramifications when (or if) p  is underestimated or 

overestimated for his/her particular combination of m  and n  values at hand (even before any data is 

collected); this is similar to investigating the power of a test. 

 

 

Table 3.8: The false alarm rate (CFAR), the average run-length (CARL) and the standard 
deviation of the run-length (CSDRL) of the conditional run-length distribution for different 

combinations of m  and n , provided that ====T 10, 15, 25 and 30 and 5.01 ======== pp  

 

 10th or 90th Percentile 25th or 75th Percentile 50th Percentile 

m n CFAR CARL0 CSDRL0 CFAR CARL0 CSDRL0 CFAR CARL0 CSDRL0 

T = 10 
U = 3 or 7 (OOC) 
( 0.7or  3.0====p ) 

U = 4 or 6 (OOC) 
( 0.6or  4.0====p ) 

U = 5 (IC) 
( 5.0====p ) 

1 10 0.0547 18.29 17.78 0.0107 93.09 92.59 0.0020 512.00 511.50 
2 5 0.0313 32.00 31.50 0.0 ∞  ∞  0.0 ∞  ∞  

5,2 10,1 0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 15 
U = 5 or 10 (OOC) 
( .. 0.66or  33.0====p ) 

U = 6 or 9 (OOC) 
( 0.6or  4.0====p ) 

U = 7 (IC) 
( .46.0====p ) 

1 15 0.0592 16.88 16.37 0.0176 56.79 56.29 0.0042 239.18 238.68 
3 5 0.0 32.00 31.50 0.0 ∞  ∞  0.0 ∞  ∞  

5,3 15,1 0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 25 
U = 9 or 16 (OOC) 
( 0.64or  36.0====p ) 

U = 11 or 14 (OOC) 
( 0.56or  44.0====p ) 

U = 12 (IC) 
( 48.0====p ) 

1 25 0.0539 18.56 18.05 0.0074 135.23 134.73 0.0025 400.98 400.48 
5,5 25,1 0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 30 
U = 11 or 19 (OOC) 
( .. 0.63or  36.0====p ) 

U = 13 or 17 (OOC) 
( .. 0.56or  43.0====p ) 

U = 15 (IC) 
( 5.0====p ) 

1 30 0.1002 9.98 9.46 0.0081 123.58 123.08 0.0014 698.86 698.36 
2 15 0.0176 56.89 56.39 0.0037 268.59 268.09 0.0010 1024.00 1023.50 
3 10 0.0107 93.09 92.59 0.0010 1024.00 1023.50 0.0020 512.00 511.50 
5 6 0.0 64.00 63.50 0.0 ∞  ∞  0.0 ∞  ∞  

6,5 10,3 
15,2 30,1 

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  
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Table 3.9: The false alarm rate (CFAR), the average run-length (CARL) and the standard 
deviation of the run-length (CSDRL) of the conditional run-length distribution for different 

combinations of m  and n , provided that ====T 50 , 75, 100, 200 and 250 and 5.01 ======== pp  

 10th or 90th Percentile 25th or 75th Percentile 50th Percentile 

m n CFAR CARL0 CSDRL0 CFAR CARL0 CSDRL0 CFAR CARL0 CSDRL0 

T = 50 
U = 20 or 30 (OOC) 

( 0.6or  4.0====p ) 
U = 23 or 27 (OOC) 
( 0.54or  46.0====p ) 

U = 25 (IC) 
( 5.0====p ) 

1 50 0.0595 16.82 16.31 0.0078 127.77 127.27 0.0026 384.29 383.79 
2 25 0.0217 46.18 45.68 0.0078 128.67 128.17 0.0041 245.26 244.76 
5 10 0.0107 93.09 92.59 0.0010 1024.00 1023.50 0.0020 512.00 511.50 

10,5 25,2 
50,1  

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 75 
U = 32 or 43 (OOC) 

( .. 0.573or  426.0====p ) 
U = 35 or 40 (OOC) 
( .. 0.53or  46.0====p ) 

U = 37 (IC) 
( .493.0====p ) 

1 75 0.0527 18.98 18.47 0.0104 96.39 95.89 0.0038 260.67 260.17 
3 25 0.0074 135.23 134.73 0.0025 400.98 400.48 0.0025 400.98 400.48 
5 15 0.0037 268.59 268.09 0.0042 239.18 238.68 0.0010 1024.00 1023.50 

15,5 25,3 
75,1  

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 100 
U = 44 or 56 (OOC) 
( 0.56or  44.0====p ) 

U = 47 or 53 (OOC) 
( 0.53or  47.0====p ) 

U = 50 (IC) 
( 5.0====p ) 

1 100 0.0443 22.56 22.05 0.0107 93.51 93.01 0.0035 284.28 283.78 
2 50 0.0165 60.74 60.23 0.0035 289.59 289.09 0.0026 384.29 383.79 
4 25 0.0074 135.23 134.73 0.0025 400.98 400.48 0.0041 245.26 244.76 
5 20 0.0061 163.66 163.16 0.0015 671.30 670.80 0.0026 388.07 387.57 
10 10 0.0010 1024.00 1023.50 0.0010 1024.00 1023.50 0.0020 512.00 511.50 

20,5 25,4 
50,2 100,1 

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 200 
U = 91 or 109 (OOC) 
( 0.545or  455.0====p ) 

U = 95 or 105 (OOC) 
( 0.525or  475.0====p ) 

U = 100 (IC) 
( 5.0====p ) 

1 200 0.0384 26.02 25.52 0.0098 102.24 101.74 0.0023 438.70 438.20 
2 100 0.0176 56.69 56.19 0.0062 160.75 160.25 0.0035 284.28 283.78 
4 50 0.0078 127.77 127.27 0.0038 265.37 264.87 0.0026 384.29 383.79 
5 40 0.0084 119.25 118.75 0.0036 281.45 280.95 0.0022 450.16 449.66 
8 25 0.0074 135.23 134.73 0.0025 400.98 400.48 0.0041 245.26 244.76 
10 20 0.0061 163.66 163.16 0.0015 671.30 670.80 0.0026 388.07 387.57 
20 10 0.0010 1024.00 1023.50 0.0020 512.00 511.50 0.0020 512.00 511.50 
25 8 0.0039 256.00 255.50 0.0 ∞  ∞  0.0 ∞  ∞  

40,5 50,4 
100,2 200,1 

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 250 
U = 115 or 135 (OOC) 

( 0.54or   46.0====p ) 
U = 120 or 130 (OOC) 

( 0.52or  48.0====p ) 
U = 125 (IC) 

( 5.0====p ) 

1 250 0.0438 22.85 22.35 0.0097 103.13 102.63 0.0029 347.38 346.88 
2 125 0.0157 63.53 63.03 0.0063 159.02 158.52 0.0022 449.14 448.64 
5 50 0.0078 127.77 127.27 0.0038 265.37 264.87 0.0026 384.29 383.79 
10 25 0.0078 128.67 128.17 0.0025 400.98 400.48 0.0041 245.26 244.76 
25 10 0.0010 1024.00 1023.50 0.0020 512.00 511.50 0.0020 512.00 511.50 

50,5 125,2 
250,1  

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  
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Table 3.10: The false alarm rate (CFAR), the average run-length (CARL) and the standard 
deviation of the run-length (CSDRL) of the conditional run-length distribution for different 

combinations of m  and n , provided that ====T 300, 500 and 750 and 5.01 ======== pp  
 

 10th or 90th Percentile 25th or 75th Percentile 50th Percentile 

m n CFAR CARL0 CSDRL0 CFAR CARL0 CSDRL0 CFAR CARL0 CSDRL0 

T = 300 
U = 139 or 161 (OOC) 
( .. 0.536or  463.0====p ) 

U = 144 or 156 (OOC) 
( 0.52or  48.0====p ) 

U = 150 (IC) 
( 5.0====p ) 

1 300 0.0470 21.29 20.79 0.0122 81.82 81.32 0.0032 315.53 315.03 
2 150 0.0205 48.81 48.30 0.0058 173.44 172.94 0.0024 415.71 415.21 
3 100 0.0106 94.51 94.01 0.0065 154.96 154.46 0.0035 284.28 283.78 
4 75 0.0102 97.68 97.18 0.0058 171.50 171.00 0.0024 409.13 408.63 
5 60 0.0069 144.06 143.56 0.0036 274.60 274.10 0.0027 374.47 373.97 
6 50 0.0078 127.77 127.27 0.0038 265.37 264.87 0.0026 384.29 383.79 
10 30 0.0028 360.50 360.00 0.0033 300.58 300.08 0.0014 698.86 698.36 
12 25 0.0025 400.98 400.48 0.0025 400.98 400.48 0.0041 245.26 244.76 
15 20 0.0061 163.66 163.16 0.0015 671.30 670.80 0.0026 388.07 387.57 
20 15 0.0042 239.18 238.68 0.0010 1024.00 1023.50 0.0010 1024.00 1023.50 
25 12 0.0034 292.57 292.07 0.0034 292.57 292.07 0.0005 2048.00 2047.50 
30 10 0.0010 1024.00 1023.50 0.0020 512.00 511.50 0.0020 512.00 511.50 

50,6 60,5 
75,4 100,3 
150,2 300,1 

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 500 
U = 236 or 264 (OOC) 
( 0.528or   472.0====p ) 

U = 242 or 258 (OOC) 
( 0.516or   484.0====p ) 

U = 250 (IC) 
( 5.0====p ) 

1 500 0.0405 24.68 24.17 0.0113 88.24 87.74 0.0027 370.81 370.31 
2 250 0.0184 54.39 53.88 0.0070 143.25 142.75 0.0029 347.38 346.88 
4 125 0.0100 100.06 99.56 0.0038 260.91 260.41 0.0022 449.14 448.64 
5 100 0.0062 160.75 160.25 0.0038 266.28 265.78 0.0035 284.28 283.78 
10 50 0.0038 265.37 264.87 0.0038 265.37 264.87 0.0026 384.29 383.79 
20 25 0.0025 400.98 400.48 0.0025 400.98 400.48 0.0041 245.26 244.76 
25 20 0.0015 671.30 670.80 0.0015 671.30 670.80 0.0026 388.07 387.57 
50 10 0.0010 1024.00 1023.50 0.0020 512.00 511.50 0.0020 512.00 511.50 

100,5 125,4 
250,2 500,1 

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 750 
U = 357 or 393 (OOC) 
( 0.524or   476.0====p ) 

U = 366 or 384 (OOC) 
( 0.512or  488.0====p ) 

U = 375 (IC) 
( 5.0====p ) 

1 750 0.0430 23.24 22.73 0.0089 112.45 111.95 0.0024 413.68 413.18 
2 375 0.0194 51.54 51.03 0.0051 196.82 196.32 0.0027 370.96 370.46 
3 250 0.0134 74.53 74.02 0.0051 197.15 196.65 0.0029 347.38 346.88 
5 150 0.0090 111.07 110.56 0.0038 262.77 262.27 0.0024 415.71 415.21 
6 125 0.0061 163.01 162.51 0.0041 242.72 242.22 0.0022 449.14 448.64 
10 75 0.0055 181.29 180.79 0.0032 317.07 316.57 0.0024 409.13 408.63 
15 50 0.0038 265.37 264.87 0.0018 565.23 564.73 0.0026 384.29 383.79 
25 30 0.0033 300.58 300.08 0.0033 300.58 300.08 0.0014 698.86 698.36 
30 25 0.0025 400.98 400.48 0.0025 400.98 400.48 0.0041 245.26 244.76 
50 15 0.0042 239.18 238.68 0.0010 1024.00 1023.50 0.0010 1024.00 1023.50 
75 10 0.0020 512.00 511.50 0.0020 512.00 511.50 0.0020 512.00 511.50 

125,6 150,5 
250,3 375,2 
750,1  

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  
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Table 3.11: The false alarm rate (FAR), the average run-length (ARL) and the standard 

deviation of the run-length (SDRL) of the conditional run-length distribution for different 
combinations of m  and n , provided that ====T 1000 and 1500 and 5.01 ======== pp  

 
 10th or 90th Percentile 25th or 75th Percentile 50th Percentile 

m n CFAR CARL CSDRL CFAR CARL CSDRL CFAR CARL CSDRL 

T = 1000 
U = 480 or 520 (OOC) 

( 0.52or   48.0====p ) 
U = 489 or 511 (OOC) 
( 0.511or  489.0====p ) 

U = 500 (IC) 
( 5.0====p ) 

1 1000 0.0410 24.40 23.90 0.0106 94.61 94.11 0.0026 378.00 377.50 
2 500 0.0178 56.25 55.75 0.0056 179.73 179.23 0.0027 370.81 370.31 
4 250 0.0097 103.13 102.63 0.0051 197.15 196.65 0.0029 347.38 346.88 
5 200 0.0067 149.04 148.53 0.0033 306.27 305.77 0.0023 438.70 438.20 
8 125 0.0063 159.02 158.52 0.0041 242.72 242.22 0.0022 449.14 448.64 
10 100 0.0065 154.96 154.46 0.0038 266.28 265.78 0.0035 284.28 283.78 
20 50 0.0038 265.37 264.87 0.0018 565.23 564.73 0.0026 384.29 383.79 
25 40 0.0036 281.45 280.95 0.0022 450.16 449.66 0.0022 450.16 449.66 
40 25 0.0025 400.98 400.48 0.0025 400.98 400.48 0.0041 245.26 244.76 
50 20 0.0015 671.30 670.80 0.0026 388.07 387.57 0.0026 388.07 387.57 
100 10 0.0020 512.00 511.50 0.0020 512.00 511.50 0.0020 512.00 511.50 

125,8 200,5 
250,4 500,2 
1000,1  

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  

T = 1500 
U = 725 or 775 (OOC) 
( .. 0.516or   483.0====p ) 

U = 737 or 763 (OOC) 
( .. 0.5086or   4913.0====p ) 

U = 750 (IC) 
( 5.0====p ) 

1 1500 0.0418 23.92 23.41 0.0095 105.36 104.85 0.0025 398.62 398.12 
2 750 0.0187 53.44 52.94 0.0061 163.72 163.22 0.0024 413.68 413.18 
3 500 0.0113 88.24 87.74 0.0045 221.21 220.71 0.0027 370.81 370.31 
4 375 0.0089 112.99 112.48 0.0040 247.16 246.66 0.0027 370.96 370.46 
5 300 0.0091 109.95 109.45 0.0038 265.71 265.21 0.0032 315.53 315.03 
6 250 0.0070 143.25 142.75 0.0038 261.95 261.45 0.0029 347.38 346.88 
10 150 0.0059 168.33 167.83 0.0027 364.75 364.25 0.0024 415.71 415.21 
12 125 0.0038 260.91 260.41 0.0026 383.35 382.84 0.0022 449.14 448.64 
15 100 0.0038 266.28 265.78 0.0027 376.82 376.32 0.0035 284.28 283.78 
20 75 0.0032 317.07 316.57 0.0032 317.07 316.57 0.0024 409.13 408.63 
25 60 0.0036 274.60 274.10 0.0019 535.30 534.80 0.0027 374.47 373.97 
30 50 0.0038 265.37 264.87 0.0018 565.23 564.73 0.0026 384.29 383.79 
50 30 0.0033 300.58 300.08 0.0033 300.58 300.08 0.0014 698.86 698.36 
60 25 0.0025 400.98 400.48 0.0025 400.98 400.48 0.0041 245.26 244.76 
75 20 0.0015 671.30 670.80 0.0026 388.07 387.57 0.0026 388.07 387.57 
100 15 0.0010 1024.00 1023.50 0.0010 1024.00 1023.50 0.0010 1024.00 1023.50 
125 12 0.0034 292.57 292.07 0.0005 2048.00 2047.50 0.0005 2048.00 2047.50 
150 10 0.0020 512.00 511.50 0.0020 512.00 511.50 0.0020 512.00 511.50 

250,6 300,5 
375,4 500,3 
750,2 1500,1 

0.0 ∞  ∞  0.0 ∞  ∞  0.0 ∞  ∞  
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3.2.3.2 Conditional characteristics of the c-chart 
 

 

Like the p-chart, once we observe a value v  of the random variable V  we can calculate the 

conditional probability of a no-signal of the c-chart so that the Phase II conditional run-length 

distribution and its associated conditional characteristics are completely known (see e.g. Table 3.4). To 

this end, Table 3.12 illustrates the steps to calculate the conditional probability of a no-signal, the 

conditional false alarm rate (CFAR), the conditional average run-length (CARL) and the conditional 

standard deviation of the run-length (CSDRL) of the c-chart. 

 

For illustration purposes we assume that 201 == cc ; this implies that the process operated at a 

level of twenty nonconformities (on average) in an inspection unit during Phase I and that in Phase II 

the process continues to operate at this same level. In addition, we assume that 100=m  Phase I 

inspection units are available to estimate c  using obs/ cmVc == , which (because of sampling 

variation) may or may not be equal to c . 
 

In particular, column 1 lists some values of 6000)200(0=V , which (in theory) can be any integer 

greater than or equal to zero.  Column 2 converts the observed value v  of V  of column 1 into a point 

estimate of c  by calculating 100/obs vc = . Because each row entry in each of the succeeding columns 

(i.e. columns 3 to 10) is computed by conditioning on a row entry from column 1 or column 2, we start 

calculating the conditional properties in column 1 or 2 and sequentially proceed to the right-hand side 

of the table. So, given a value v  or obsc  the lower and the upper control limits are estimated in columns 

3 and 4 using (3-27) and then used to compute the two constants d̂  and f̂  defined in (3-33), which are 

shown in columns 5 and 6, respectively.  Finally, columns 7 through 10 list the probability of a no-

signal, the FAR, the ARL and the SDRL conditioned on the observed value v  from column 1, 

respectively. These properties are labeled ),|Signal NoPr( cV , CFAR, CARL0 and CSDRL0, and 

calculated using (3-32) and the expressions in Table 3.4. 

 

An examination of Table 3.12 reveals one special scenario i.e. when 0=V  (the minimum possible 

value). In this particular case the estimated control limits are 0ˆˆ == cc LCULCL  so that the constants 

d̂  and f̂ need not be calculated (see e.g. expression (3-32) and Remark 6(ii)); as a result, the 

probability of a no-signal is defined to be zero so that the c-chart signals with probability one once the 

first Phase II inspection unit is sampled i.e. both the conditional FAR and the conditional ARL are one 

(as shown in columns 8 and 9, respectively). For values of 0≠V  we proceed as follows. 
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Table 3.12: Conditional Probability of a no-signal, the conditional false alarm rate (CFAR), 
the conditional average run-length (CARL) and the conditional standard deviation of the run-

length (CSDRL) of the c-chart in Case U for 100====m  and assuming that 201 ======== cc  
 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

v  obsc  
cLCL ˆ  cLCU ˆ  d̂  f̂  Pr(No Signal | V, c) CFAR CARL0 CSDRL0 

0 0 0.00 0.00 NA NA 0.0000 1.0000 1.00 0.00 
200 2 -2.24 6.24 0 6 0.0003 0.9997 1.00 0.02 
400 4 -2.00 10.00 0 9 0.0050 0.9950 1.01 0.07 
600 6 -1.35 13.35 0 13 0.0661 0.9339 1.07 0.28 
800 8 -0.49 16.49 0 16 0.2211 0.7789 1.28 0.60 
1000 10 0.51 19.49 0 19 0.4703 0.5297 1.89 1.29 
1200 12 1.61 22.39 1 22 0.7206 0.2794 3.58 3.04 
1400 14 2.78 25.22 2 25 0.8878 0.1122 8.91 8.40 
1600 16 4.00 28.00 4 27 0.9475 0.0525 19.05 18.54 
1800 18 5.27 30.73 5 30 0.9865 0.0135 73.82 73.32 
2000 20 6.58 33.42 6 33 0.9971 0.0029 339.72 339.22 
2200 22 7.93 36.07 7 36 0.9988 0.0012 832.30 831.80 
2400 24 9.30 38.70 9 38 0.9949 0.0051 195.92 195.42 
2600 26 10.70 41.30 10 41 0.9892 0.0108 92.39 91.89 
2800 28 12.13 43.87 12 43 0.9610 0.0390 25.63 25.13 
3000 30 13.57 46.43 13 46 0.9339 0.0661 15.12 14.61 
3200 32 15.03 48.97 15 48 0.8435 0.1565 6.39 5.87 
3400 34 16.51 51.49 16 51 0.7789 0.2211 4.52 3.99 
3600 36 18.00 54.00 18 53 0.6186 0.3814 2.62 2.06 
3800 38 19.51 56.49 19 56 0.5297 0.4703 2.13 1.55 
4000 40 21.03 58.97 21 58 0.3563 0.6437 1.55 0.93 
4200 42 22.56 61.44 22 61 0.2794 0.7206 1.39 0.73 
4400 44 24.10 63.90 24 63 0.1568 0.8432 1.19 0.47 
4600 46 25.65 66.35 25 66 0.1122 0.8878 1.13 0.38 
4800 48 27.22 68.78 27 68 0.0525 0.9475 1.06 0.24 
5000 50 28.79 71.21 28 71 0.0343 0.9657 1.04 0.19 
5200 52 30.37 73.63 30 73 0.0135 0.9865 1.01 0.12 
5400 54 31.95 76.05 31 76 0.0081 0.9919 1.01 0.09 
5600 56 33.55 78.45 33 78 0.0027 0.9973 1.00 0.05 
5800 58 35.15 80.85 35 80 0.0008 0.9992 1.00 0.03 
6000 60 36.76 83.24 36 83 0.0004 0.9996 1.00 0.02 

M  M  M  M  M  M  M  M  M  M  
 
 

 

Suppose, for example, that we observe two thousand four hundred nonconformities in the entire 

Phase I reference sample. The value of 2400=V  gives an observed value of the point estimate for c  

of 24100/2400obs ==c  so that (3-27) yields an estimated upper control limit and an estimated lower 

control of  

70.3824324ˆ =+=cLCU       and      30.924324ˆ =−=cLCL  

respectively. 
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The constants d̂  and f̂   are thus found to be 

9]}3.9[,0max{]}ˆ[,0max{ˆ === cLCLd        and       38]70.38[]1ˆ[ˆ ==−= cLCUf  

so that upon substituting d̂  and f̂ in (3-32) we calculate the conditional probability of a no-signal and 

then also the CFAR, the CARL0 and the CSDRL0 using expressions (3-42), (3-43) and (3-44) in Table 

3.4. 

 

The conditional probability of a no-signal, in particular, is 

9949.0)20,24|100,20(ˆ)20,2400|100,20(ˆ
11 ========== ccmccVmc ββ  

so that the conditional false alarm rate is 

0051.09949.01)20,2400|100,20(1 =−==== cVcCFAR . 

 

The Phase II  c-chart then has a conditional in-control ARL of 

92.1950051.0/1)20,2400|100,20(10 ===== cVcCARL  

and a conditional in-control SDRL of 

42.1950051.0/9949.0)20,2400|100,20(10 ===== cVcSDRL . 

 

 

The conditional false alarm rate 
 

Figure 3.4 displays the conditional false alarm rate (CFAR), that is, )20,|,20(ˆ1 1 ===− cvVmcβ  

as a function of ,...2,1,0=v  when m = 50 or 75 or 100 individual Phase I inspection units are used to 

estimate c ; the curve labeled 100=m  corresponds to the CFAR ’s of column 8 in Table 3.12. 

 

The impact of the actual observed number of nonconformities v  in the entire Phase I reference 

sample is easily noticed. The distribution function of the CFAR is seen to be slightly negatively U-

shaped.  For values of V near the two tails (i.e. the extreme left and right) the CFAR can be very high, 

sometimes close to 1 or 100%, which obviously means many false alarms. 
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Figure 3.4: The conditional false alarm rate (CFAR) as a function of 

,...2,1,0====v  for m  = 50,75 and 100  

 

 

However, even when V  is not near the two tails there can be a significantly high probability of a 

false alarm; this is more easily seen from Figure 3.5, which (for illustration purposes) displays values 

of )20,|100,20(ˆ1 1 ====− cvVmcβ  for values of v  between 1800 and 2600 only. 

 

It is seen that only when V   takes on a value in the neighbourhood of its mean i.e. 

200020100)20|( =×=== mccVE  (or, equivalently, when c  is close to the true average number of 

nonconformities, which is 20 in this case) will the CFAR be reasonably small and close to its Case K 

value of 0.0029 (see e.g. Table A3.12 in Appendix 3A). 

 

However even though the CFAR may be small, it is (for most values of v ) still far from the typical 

or nominal expected value of 0.0027 of a Shewhart X-bar chart with 3-sigma limits. Thus, the 

performance of the c-chart, as measured by the false alarm rate, is considerably degraded and 

unfavourably affected by a poor point estimate c . 

 
 
 



 184 

 

 

Figure 3.5: The conditional false alarm rate (CFAR) as a function of 2600,...,1800====v  when      
m  = 100 in relation to the nominal FAR of 0.0027 

)20,|100,20(ˆ1 1 ====− cvVmcβ  
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The out-of-control conditional performance of the c-chart  
 

The in-control performance of the Phase II c-chart (in theory) refers to the characteristics of the 

chart in the situation where the process operates at the same level in Phase II than what it did in Phase 

I; this is the scenario when cc =1 . But, because c  is unknown and estimated by c , the observed value 

obsc  plays the role of c  so that the conditional in-control performance (in practice) refers to the 

situation when obs1 cc =  (see e.g. the earlier section labelled “Phase II implementation and operation”). 

The out-of-control performance (in practice) then refers to the characteristics of the c-chart when 

obs1 cc ≠ . 

 

In view of the abovementioned, we can study the out-of-control performance of the Phase II c-

chart by making use of the results from the previous section concerning the conditional characteristics 

of the Phase II c-chart. In particular, note that, by conditioning on a specific observed value obsc  the 

run-length distribution of the Phase II c-chart is affected in the same way it would be if the unknown 

true average number of nonconformities in an inspection was to change from c  (in Phase I) to 1c  (in 

Phase II). In other words, the out-of-control performance of the Phase II  c-chart (i.e. when c  has 

incurred either a downward or an upward shift to 1c  so that cc ≠1 ) is  equivalent  to the  performance 

of the c-chart when obscc ≠  i.e. if c  was either overestimated or underestimated (see e.g. Jones, 

Champ and Rigdon, (2004)); this correspondence allows us to examine the out-of-control performance 

of the c-chart by using the conditional statistical characteristics of the Phase II c-chart. 

 

Consider, for example, Tables 3.13, 3.14 and 3.15 which list the false alarm rate (CFAR), the 

average run-length (CARL) and the standard deviation of the run-length (CSDRL) of the conditional 

run-length distribution assuming that 30 and 20 , 15 , 10 , 5 =c  with 150 ,100 ,75 ,50 ,25 ,20 ,15 ,10=m  

and 200. For each combination of ),(cm -values the run-length distribution is conditioned on (for 

illustration purposes only) the 10th , 25th , 50th , 75th and 90th percentiles of the distribution of 

)(~| mcPoicV . 

 

In particular, suppose that )20,20(),( =cm  and we observed 400=V  so that our estimate 20=c  

is spot on. In this case, Table 3.14 shows that the conditional false alarm rate is 

0029.0)20,400|20,20(1 ===== cVmcCFAR , 

the conditional average run-length is 

72.3390029.0/1)20,400|20,20(10 ====== cVmcCARL  
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and the conditional standard deviation of the run-length is 

22.3390029.0/0029.01)20,400|20,20(10 =−===== cVmcCSDRL . 

 

These conditional characteristics i.e. conditioned on the 50th percentile of )400(~20| PoicV = , 

are identical to the in-control characteristics of the Case K c-chart, that is, 

0029.0)20,20(1 0 ===− ccβ , 72.339)20,20( 0 === ccARL  and 22.339)20,20( 0 === ccSDRL , 

which can be found from Table A3.12 in Appendix 3A. To illustrate the out-of-control (OOC) 

performance of the Case U c-chart we should condition on a percentile of )(~| mcPoicV  other than 

the 50th percentile. To this end, consider again, for example, the situation when )20,20(),( =cm , but 

conditioning on the 25th percentile of )400(~20| == mcPoicV , that is, 386=V  or 

30.1920/386 ==c ; this implies that c  is underestimated by approximately %4%100)13.19/20( ≈−  

or, equivalently, that the average number of nonconformities in an inspection unit has increased by 

4%. 

 

Table 3.14 shows that the 0050.0=CFAR , the 70.2000 =CARL  and the 20.2000 =CSDRL . 

Compared to the probability of a signal of 0020.0)20,30.19(1 0 ===− ccβ , the OOC average run-

length of 85.507)20,30.19( 0 === ccARL  and the OOC  standard deviation of the run-length of 

35.507)20,30.19( 0 === ccSDRL  of Case K (which are found by evaluating expressions (3-7), (3-21) 

and (3-22), respectively)  we observe that the Case U c-chart would detect an increase from 19.30 to 

20 quicker than the c-chart of Case K. However, this is (as mentioned earlier in case of the p-chart) a 

side-effect of estimating c  and not due to improved performance. 

 

On the other hand, when )20,20(),( =cm , and we condition on the 90th percentile of 

)400(~20| == mcPoicV , that is, 426=V  or 30.2120/426 ==c , which implies that c  is 

overestimated by %5.6%100)120/3.21( =−  (or, equivalently, that the average number of 

nonconformities in an inspection unit has decreased by 6.5%), Table 3.14 shows that the 

0016.0=CFAR , the 01.6320 =CARL  and the 51.6310 =CSDRL which implies that the Case U c-

chart performs worse than the Case K c-chart with probability of a signal of 

0068.0)20,3.21(1 0 ===− ccβ , an out-of-control ARL of 15.146)20,30.21( 0 === ccARL  and an 

out-of-control  SDRL of 65.145)20,30.21( 0 === ccSDRL . 

Note that, when conditioning on a particular percentile of V , the OOC performance of the Case U 

c-chart is the same for two or more ),(cm  combinations and thus the overlap of  certain of the cells as 
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seen in Tables 3.13, 3.14 and 3.15. For example, the OOC performance of the Case U c-chart when (i) 

)20,20(),( =cm and conditioning on the 90th percentile of )400(~20| == mcPoicV , and (ii) 

)20,15(),( =cm  and we condition on the 90th percentile of )3002015(~20| =×= PoicV  i.e. 

322=V  so that 47.21=c  (which corresponds to an decrease of 7.35% in c  from 21.47 to 20), are 

similar. 

Table 3.13: The false alarm rate (FAR), the average run-length (ARL) and the standard 
deviation of the run-length (SDRL) of the conditional run-length distribution of the c-chart  for 

m  = 10, 15, 20, 25, 50, 75, 100, 150, 200 when 10 and  5====c  

 c = 5 c = 10 
Percentile m = 10 15 20 25 50 75 100 150 200 10 15 20 25 50 75 100 150 200 

10th  
(OOC) 

0.0204 
48.94 
48.44 

0.0122 
82.03 
81.53 

0.0143 
69.82 
69.32 

0.0072 
138.28 
137.78 

0.0035 
285.74 
285.23 

25th 

(OOC) 

0.0204 
48.94 
48.44 

0.0122 
82.03 
81.53 

0.0072 
138.28 
137.78 

0.0035 
285.74 
285.23 

50th 

(IC) 

CFAR = 0.0122 
CARL = 82.03 

CSDRL = 81.53 

CFAR = 0.0035 
CARL = 285.74 

CSDRL = 285.23 

75th 

(OOC) 

0.0088 
114.20 
113.70 

0.0122 
82.03 
81.53 

0.0016 
612.12 
611.62 

0.0035 
285.74 
285.23 

90th 

(OOC) 

0.0074 
134.48 
133.98 

0.0088 
114.20 
113.70 

0.0012 
833.99 
833.49 

0.0016 
612.12 
611.62 

0.0035 
285.74 
285.23 

 
 

Table 3.14: The false alarm rate (FAR), the average run-length (ARL) and the standard 
deviation of the run-length (SDRL) of the conditional run-length distribution of the c-chart  for 

m  = 10, 15, 20, 25, 50, 75, 100, 150, 200 when 20 and  15====c  

 c = 15 c = 20 
Percentile m  = 10 15 20 25 50 75 100 150 200 10 15 20 25 50 75 100 150 200 

10th  
(OOC) 

0.0112 
89.25 
88.75 

0.0062 
160.66 
160.16 

0.0064 
156.34 
155.84 

0.0035 
283.83 
283.33 

0.0135 
73.82 
73.32 

0.0082 
122.49 
121.99 

0.0050 
200.70 
200.20 

25th 

(OOC) 

0.0062 
160.66 
160.16 

0.0064 
156.34 
155.84 

0.0035 
283.83 
283.33 

0.0048 
208.36 
207.86 

0.0050 
200.70 
200.20 

0.0029 
339.72 
339.22 

50th 

(IC) 

CFAR = 0.0035 
CARL = 283.83 

CSDRL = 283.33 

CFAR = 0.0029 
CARL = 339.72 

CSDRL = 339.22 

75th 

(OOC) 

0.0019 
518.90 
518.40 

0.0035 
283.83 
283.33 

0.0023 
440.99 
440.49 

0.0017 
573.34 
572.84 

0.0029 
339.72 
339.22 

90th 

(OOC) 

0.0017 
582.29 
581.79 

0.0026 
388.74 
388.24 

0.0019 
518.90 
518.40 

0.0016 
632.01 
631.51 

0.0023 
440.99 
440.49 

0.0017 
573.34 
572.84 

0.0029 
339.72 
339.22 
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Table 3.15: The false alarm rate (FAR), the average run-length (ARL) and the standard 
deviation of the run-length (SDRL) of the conditional run-length distribution of the c-chart  for 

m  = 10, 15, 20, 25, 50, 75, 100, 150, 200 when 30====c  

 
 c = 30 

Percentile m = 10 15 20 25 50 75 100 150 200 

10th   
(OOC) 

0.0098 
102.05 
101.55 

0.0064 
155.37 
154.87 

0.0041 
242.41 
241.91 

0.0044 
229.10 
228.60 

25th 

(OOC) 

0.0064 
155.37 
154.87 

0.0041 
242.41 
241.91 

0.0044 
229.10 
228.60 

0.0029 
349.94 
349.44 

50th 

(IC) 

CFAR = 0.0029 
CARL = 349.94 

CSDRL = 349.44 

75th 

(OOC) 

0.0024 
415.11 
414.61 

0.0019 
527.54 
527.04 

0.0029 
349.94 
349.44 

90th 

(OOC) 

0.0025 
405.45 
404.95 

0.0018 
553.19 
552.69 

0.0024 
415.11 
414.61 

0.0019 
527.54 
527.04 
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3.2.4 Unconditional Phase II run-length distributions and characteristics 
 

 

The conditional run-length distribution and the associated characteristics of the conditional run-

length distribution present the performance of a chart only for one particular realization of the point 

estimator and a supposed value for the parameter. For each individual realization of mnUp /=  or 

mVc /=  and the true p  or c  value the performance of the chart will be different – some charts 

performing acceptable and others poorly. 

 

In case of the p-chart the variable U  can take on any value between and including 0 and mn  i.e. 

},...,1,0{ mnU ∈ , so that there is a finite number 1+mn  possible values on which we can condition. 

For the c-chart the variable V  can be any positive integer greater or equal to zero i.e. ,...}2,1,0{∈V , 

and so the number of possible values on which we can condition is infinite. 

 

To avoid calculating the conditional performance of the charts for each realization of the point 

estimator and to asses the overall performance of the charts, the influence of a single realization should 

ideally be removed. The unconditional run-length distribution and its associated characteristics serve 

this purpose and better represent the overall performance of the charts when the parameters are 

estimated and let one see the bigger picture. 

 

The unconditional characteristics of the charts can be found from the conditional run-length 

distribution by averaging over the distributions of U  and V  respectively, and allow us to look at the 

marginal (or the unconditional) run-length distribution. This incorporates the additional variation 

introduced to the run-length through the estimation of p  and c  by taking into account all possible 

realizations of the random variables on which we condition. In particular, we derive expressions for 

the: 

(i) unconditional run-length distribution, 

(ii)  unconditional average run-length, and 

(iii)  unconditional variance of the run-length 

of each chart.  
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Unconditional run-length distribution: p-chart and c-chart (Case U) 
 

 

Because: 

 

(i) the observations in the Phase I reference sample are assumed to be independent and 

identically distributed, that is, ),(~ pniidBinX i  and )(~ ciidPoiYi  for mi ,...,2,1= , and 

 

(ii)  we assume that the Phase I iX ’s and iY ’s are independent from the Phase II observations 

i.e. ),(~ 1pniidBinX i  and )(~ 1ciidPoiYi  for ,...2,1 ++= mmi , 

 

the joint probability distribution of  

 

(i) the Phase I point estimator pmnU =  and the Phase II run-length random variable pN , and 

 

(ii)  the Phase I point estimator cmV =  and the Phase II run-length random variable cN  

 

can straightforwardly be obtained (see e.g. Definition 4.2.1 in Casella and Berger, (2002) p. 148) as 

 

)|Pr().,|,,;Pr()|,,;,Pr( 11 puUpuUnmpjNpnmpuUjN pp ======  (3-46) 

and 

)|Pr().,|,;Pr()|,;,Pr( 11 cvVcvVmcjNcmcvVjN cc ======   (3-47) 

 

for ,...2,1=j , mnu ,...,1,0=  and ,...2,1,0=v  where 

 

),|,,;Pr( 1 puUnmpjN p ==        and        ),|,;Pr( 1 cvVmcjN c ==  

 

are the conditional run-length distributions of the p-chart and the c-chart given in Tables 3.3 and 3.4, 

respectively, and 

umnu pp
u

mn
puU −−








== )1()|Pr(     for    mnu ,...,2,1,0=  

and 

!

)(
)|Pr(

v

mce
cvV

vmc−

==     for    ,...2,1,0=v  

are the probability distributions of the estimators U  and V , which depend on the unknown parameters 

p  and c , respectively. 
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The marginal or unconditional run-length distributions are then found from the joint probability 

distributions and given by  

 

∑

∑

∑

=

−−

=

=

−







=

====

====

mn

u

umnuj

mn

u
p

mn

u
pp

pp
u

mn
punmppunmp

puUpuUnmpjN

pnmpuUjNpnmpjN

0
1

1
1

0
1

0
11

)1()].,|,,(ˆ-[1),|,,(ˆ                                    

)|Pr().,|,,;Pr(                                    

)|,,;,Pr()|,,;Pr(

ββ

 (3-48) 

 

and 
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for ,...2,1=j  (see e.g. Definition 4.2.1 in Casella and Berger, (2002) p. 148). 

 

 

One can think of these unconditional distributions as weighted averages i.e. the conditional 

distributions averaged over all possible values of the parameter estimators, where a weight is the 

probability of obtaining a particular realization of the point estimator which is given by )|Pr( puU =  

or )|Pr( pvV = . 

 

It is important to note that the unconditional run-length distributions in (3-48) and (3-49) are 

unconditional only with respect to the random variables U  and V ; the unconditional run-length 

distributions still depend on the parameters p  and c . This means that when we evaluate the 

unconditional run-length distributions and the associated characteristics of the unconditional run-

length distributions, the results apply only for those particular values of p  and c  that are used. 
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The unconditional average run-length and the unconditional variance of the run-length 

distributions 
 

 

Apart from the unconditional run-length distributions we can also compute higher order moments 

of the unconditional run-length distribution. 

 

The unconditional k th non-central moments, for example, are 

)),|(()|( pUNEEpNE k
pU

k
p =      and     )),|(()|( cVNEEcNE k

cV
k
c =  

where 

),|( pUNE k
p          and         ),|( cVNE k

c  

are the k th non-central moments of the conditional run-length distributions of the p-chart and c-chart, 

respectively (see e.g. Theorem 5.4.4 in Bain and Engelhardt, (1992) p. 183). 

 

 

In particular, when 1=k  we have that the unconditional average run-length, denoted by UARL, 

which are  

 

)),|(()|( pUNEEpNEUARL pUpp ==      and     )),|(()|( cVNEEcNEUARL cVcc ==  

where  

1
1 )),|,,(ˆ1(),|( −−= pUnmppUNE p β         and         1

1 )),|,(ˆ1((),|( −−= cVmccVNE c β  

 

are the conditional ARL’s (conditioned on  particular observations of  the random variables U  and V ), 

respectively. 

 

Hence, it follows that 
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Similarly, the unconditional variance of the run-length, denoted by UVARL, can be found using 

 

(i) the conditional variance of the run-length (CVAR ), 

(ii)  the conditional average run-length (CARL ), and 

(iii)  the unconditional average run-length (UARL ), 

 

and is given by  

22)()( UARLCARLECVARLEUVARL ZZ −+= .   (3-52a) 

where Z  plays the role of U  and/or V . 

 

Result (3-52a) follows from the fact that, in general, the unconditional variance can be obtained 

from the expected value of the conditional variance and the variance of the conditional expected value 

i.e.  

 

22

22

)()(

}))]|(([]))|([({))|(var(

))|((var))|(var()var(

UARLCARLECVARLEUVARL

ZNEEZNEEZNE

ZNEZNEN

ZZ

ZZZ

ZZ

−+=

−+=

+=

  (3-52b) 

 

where )var(N  is the unconditional variance of the run-length , 

2)ˆ1/(ˆ)|var( ββ −== ZNCVARL  

denotes the conditional variance of the run-length, 

)ˆ1/(1)|( β−== ZNECARL  

denotes the conditional average run-length, β̂   denotes (in general) the conditional probability of a no-

signal and Z  plays the role of U  and/or V , which is the random variable on which we condition in 

the particular  case (see e.g. Theorem 5.4.3 in Bain and Engelhardt, (1992) p. 182). 
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In case of the p-chart, using (3-52a), the unconditional variance of the run-length is 
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whilst for the c-chart we have  
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The unconditional standard deviation of the run-length follows by taking the square root of the 

unconditional variance of the run-length i.e. UVARLUSDRL = . 

 

The unconditional probability mass function (u.p.m.f), the unconditional cumulative distribution 

function (u.c.d.f), the unconditional false alarm rate (UFAR), the unconditional average run-length 

(UARL), and the unconditional variance of the run-length (UVARL) for the p-chart and the c-chart are 

summarized in Tables 3.16 and 3.17, respectively. 

 

These characteristics, as mentioned before, are important as they help us understand the full impact 

of estimating the unknown parameters on the performance of the charts. Note, however, that when 

evaluating the unconditional distributions and the unconditional characteristics in Tables 3.16 and 3.17 
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one still has to select values for p  and c ; hence, the results are only applicable to the particular values 

of p  and c  that are selected. 

 

 

Table 3.16: The unconditional probability mass function (u.p.m.f), the unconditional cumulative 
distribution function (u.c.d.f), the unconditional false alarm rate (UFAR), the unconditional 

average run-length (UARL) and the unconditional variance of the run-length (UVARL) of the    
p-chart in Case U 
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Table 3.17: The unconditional probability mass function (u.p.m.f), the unconditional cumulative 

distribution function (u.c.d.f.), the unconditional false alarm rate (UFAR), the unconditional 
average run-length (UARL) and the unconditional variance of the run-length (UVARL) of the    

c-chart in Case U 
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3.2.4.1 Unconditional characteristics of the p-chart 
 

The necessary steps and calculations to obtain a numerical value for a particular unconditional 

characteristic of the Phase II run-length distribution of the p-chart are explained via the examples 

shown in Tables 3.18 and 3.19; these tables are essentially the same as Tables 3.5 and 3.6 that we used 

to illustrate the mechanics for calculating the FAR , the ARL and the SDRL of the conditional run-

length distribution. However, here, we go a step further and calculate the unconditional characteristics 

of the run-length distribution, that is, the unconditional FAR (UFAR), the unconditional ARL (UARL) 

and the unconditional SDRL (USDRL). In addition, note that, although we still assume that 

5.01 == pp  we now assume that 15== mnT  with )15,1(),( =nm  and )5,3(),( =nm  individual Phase 

I reference observations are used to estimate p . 

 

T = 15 with m = 1 and n = 15 
 

First consider Table 3.18 which assumes that )15,1(),( =nm . Recall that to calculate the conditional 

properties we begin in column 1 and sequentially move to the right-hand side of the table up to column 

9. To illustrate the concept once more, assume that we observe nine nonconforming items from the 

entire fifteen reference observations i.e. suppose that 9=U , so that we get a point estimate of 

6.015/9obs ==p  for the unknown true fraction nonconforming 10 << p  in column 2. Thus, using  

(3-26), we find that the estimated control limits are 22.0ˆ =pLCL  and 98.0ˆ =pLCU ; these values are  

listed in columns 3 and 4, respectively. Then, making use of (3-31) we find that the charting constants 

are 3ˆ =a  and 14ˆ =b  (which are listed in columns 5 and 6, respectively) so that (3-36) yields a 

conditional false alarm rate of 0176.0)5.0,9|15,1,5.0(1 ====== pUnmpCFAR  which leads to a 

conditional average run-length and a conditional variance of the run-length (found from (3-37) and  

(3-38)) of  

79.56)5.0,9|15,1,5.0(1 ====== pUnmpCARL  

and 

[ ] 35.3168)5.0,9|15,1,5.0( 2
1 ======= pUnmpCSDRLCVARL ; 

these values are displayed in columns  8 and 9, respectively. 

To calculate the unconditional properties of the p-chart we calculate a weighted average of all the 

values (rows) for each of columns 7, 8 and 9, respectively. The weights are found from the probability 
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distribution of the random variable )5.0,15(~5.0| BinpU =  which is given in column 10 and 

calculated from evaluating 155.0
15

)5.0|Pr( 







===

u
puU  for 15,...,1,0=u . 

Table 3.18: The conditional and unconditional characteristics of the run-length distribution 
for 1====m  and 15====n  when 5.01 ======== pp  

Phase I Phase II : Conditional Properties Phase II : Unconditional Properties 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)=(7)x(10) (12)=(8)x(10) (13)=(8)2x(10) (14)=(9)x(10) 

U obsp  pLCL ˆ  pLCU ˆ  â  b̂  CFAR CARL CVARL Pr(U=u|p) CFAR.Pr(U=u|p) CARL.Pr(U=u|p) CARL2.Pr(U=u|p) CVARL.Pr(U=u|p) 

0 0.00 0.00 0.00 NA NA 1.0000 1.00 0.00 0.0000 0.00003 0.00003 0.0000 0.0000 

1 0.07 -0.13 0.26 NA 3 0.9824 1.02 0.02 0.0005 0.00045 0.00047 0.0005 0.0000 

2 0.13 -0.13 0.40 NA 5 0.8491 1.18 0.21 0.0032 0.00272 0.00377 0.0044 0.0007 

3 0.20 -0.11 0.51 NA 7 0.5000 2.00 2.00 0.0139 0.00694 0.02777 0.0555 0.0278 

4 0.27 -0.08 0.61 NA 9 0.1509 6.63 37.30 0.0417 0.00629 0.27609 1.8299 1.5538 

5 0.33 -0.03 0.70 NA 10 0.0592 16.88 268.12 0.0916 0.00543 1.54714 26.1189 24.5717 

6 0.40 0.02 0.78 0 11 0.0176 56.79 3168.35 0.1527 0.00269 8.67418 492.60905 483.9349 

7 0.47 0.08 0.85 1 12 0.0042 239.18 56969.08 0.1964 0.00082 46.97080 11234.5932 11187.6224 

8 0.53 0.15 0.92 2 13 0.0042 239.18 56969.08 0.1964 0.00082 46.97080 11234.5932 11187.6224 

9 0.60 0.22 0.98 3 14 0.0176 56.79 3168.35 0.1527 0.00269 8.67418 492.6091 483.9349 

10 0.67 0.30 1.03 4 15 0.0592 16.88 268.12 0.0916 0.00543 1.54714 26.1189 24.5717 

11 0.73 0.39 1.08 5 15 0.1509 6.63 37.30 0.0417 0.00629 0.27609 1.8299 1.5538 

12 0.80 0.49 1.11 7 15 0.5000 2.00 2.00 0.0139 0.00694 0.02777 0.0555 0.0278 

13 0.87 0.60 1.13 9 15 0.8491 1.18 0.21 0.0032 0.00272 0.00377 0.0044 0.0007 

14 0.93 0.74 1.13 11 15 0.9824 1.02 0.02 0.0005 0.00045 0.00047 0.0005 0.0000 

15 1.00 1.00 1.00 NA NA 1.0000 1.00 0.00 0.0000 0.00003 0.00003 0.0000 0.0000 

          0.05074 115.00 23510.42 23395.42 

          UFAR UARL USDRL = 183.52 

 

Unconditional false alarm rate  
 

To obtain the unconditional false alarm rate (UFAR), we need the conditional false alarm rate and 

the related probability )5.0|Pr( == puU  for 15,...,1,0=u , which are listed in columns 7 and 10, 

respectively. Multiplying corresponding row entries of column 7 and column 10, we end up with 

column 11, that is, 

)5.0|Pr()),|15,1,5.0(ˆ1()5.0|Pr()5.0,|15,1,5.0(1 ==×−===×=== puUpUpuUpuUpCFAR β  

for 15,...,1,0=u  so that adding up all the entries in column 11 yields the unconditional false alarm rate 

i.e.  

05074.0)5.0|Pr()5.0,|15,1,5.0()5.0|15,1,5.0(
15

0
1 ======== ∑

=u

puUpuUCFARppUFAR  

(see e.g. (3-55) in Table 3.16).  The unconditional FAR value implies that the probability of a signal on 

any new incoming Phase II sample, for any practitioner, while the process is in-control at a fraction 

nonconforming of 0.5, is expected to be 0.05074.

 
 
 



 198 

Unconditional average run-length 
 

Like the unconditional FAR, the unconditional ARL is found by multiplying each of the conditional 

average run-length values listed in column 8 with the corresponding probability )5.0|Pr( == puU  

listed in column 10 and then adding up all the resultant products. 

 

To this end, column 12 lists all the values of 

)5.0|Pr()5.0,|15,1,5.0(1 ==×=== puUpuUpCARL        for        15,...,1,0=u  

so that by totalling the values of column 12 we find the unconditional average run-length to be 

00.115)5.0|(Pr)5.0,15150()5.0|15,1,5.0(
15

0
11 ========= ∑

=u

puUpu|U,,.pCARLppUARL  

(see Table 3.16, (3-56)). 

 

An unconditional ARL of 115.00 means that a practitioner that estimates p  using mnUp /=  , (which 

is based on a Phase I reference sample that consists of a total of 15=T  individual observations from  

1 sample of size 15) can expect that his Phase II p-chart would, on average, signal on the 115th sample 

when the process remains in-control at a fraction nonconforming of 0.5.  

 

 

 

Unconditional variance of the run-length 
 

Using expression (3-52a) to calculate the unconditional variance of the run-length we note that, 

42.23395)( =CVARLEU  (listed in column 14), 42.23510)( 2 =CARLEU  (listed in column 13) so that 

the unconditional standard deviation of the run-length is found to be 

 52.183)00.115(42.2351042.23395)()( 222 =−+=−+= UARLCARLECVARLEUSDRL UU . 

 

The unconditional standard deviation is the same for all the users and measures the overall 

variation in the run-length distribution. 
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Remark 7 
 

 

In particular, note that, for 15=T  where )15 , 1() , ( =nm : 

 

(i) The unconditional average run-length is not equal to the reciprocal of the unconditional false 

alarm rate i.e. 1)( −≠ UFARUARL . The reason is that the unconditional run-length distribution 

is not geometric (see e.g. expression (3-53) in Table 3.16). 

 

This is unlike in Case K where 1)( −= FARARL  (see e.g. expression (3-12) in Table 3.1), 

which makes both the average run-length and false alarm rate popular measures of a control 

chart’s performance. 

 

(ii)  The unconditional average run-length is smaller than the unconditional standard deviation of 

the run-length; this is not the situation in Case K where )1( −=> ARLARLSDRLARL  (see 

e.g. Appendix 3A, section 3.4.2.2) and is due to extra variation introduced to the run-length 

distribution when estimating p .  

 

(iii)  The unconditional FAR  is greater than theFAR  of 0.0010 of Case K whilst the unconditional 

ARL  and the unconditional SDRL  is less than the ARL  of 1024.00 and SDRL of 1023.50 of 

Case K, respectively. 

 

This implies that a Phase II  p-chart in Case U, based on an estimate of p  using  15=T  

observations, will signal more often than the Case K p -chart with a known standard. 
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T = 15 with m = 3 and n = 5 
 

To study the effect of choosing a smaller value of n  relative to m  (i.e. changing the composition 

of the reference sample while keeping the total number of Phase I observation the same) on the 

unconditional characteristics of the run-length distribution, Table 3.19 shows the calculations 

necessary to obtain the unconditional FAR, the unconditional ARL and the unconditional SDRL when 

15=T  with 3=m  and 5=n . 

 

Although the steps in calculating the values in Table 3.19 are similar to that of Table 3.18, we note 

that the finer points where the 0=CFAR , are somewhat lost when we look at the unconditional FAR , 

which is found by averaging the conditional FAR  (given in column (7)) over all fifteen values of U  

and their associated probabilities (as given in column (10)).  For example, from column (11) in Table 

3.19 an unconditional FAR equal to 0.01726 is found, which is more than six times the nominal false 

alarm rate of 0.0027; in spite of this, the unconditional ARL  and the unconditional SDRL  are still 

undefined.  One can therefore deduce that three subgroups each consisting of five in-control 

observations do not work satisfactorily in practice. 

 

Table 3.19: The conditional and unconditional characteristics of the run-length distribution for 
3====m  and 5====n  when 5.01 ======== pp  

 

Phase I Phase II : Conditional Properties Phase II : Unconditional Properties 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)=(7)x(10) (12)=(8)x(10) (13)=(8)2x(10) (14)=(9)x(10) 

U obsp  pLCL ˆ  pLCU ˆ  â  b̂  CFAR CARL CVARL Pr(U=u|p) CFAR.Pr(U=u|p) CARL.Pr(U=u|p) CARL2.Pr(U=u|p) CVARL.Pr(U=u|p)

0 0.00 0 0 NA NA 1.0000 1.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.07 -0.27 0.40 NA 2 0.5000 2.00 2.00 0.0005 0.0002 0.0009 0.0018 0.0009 

2 0.13 -0.32 0.59 NA 2 0.5000 2.00 2.00 0.0032 0.0016 0.0064 0.0128 0.0064 

3 0.20 -0.34 0.74 NA 3 0.1875 5.33 23.11 0.0139 0.0026 0.0741 0.3950 0.3209 

4 0.27 -0.33 0.86 NA 4 0.0313 32.00 992.00 0.0417 0.0013 1.3330 42.6563 41.3232 

5 0.33 -0.30 0.97 NA 4 0.0313 32.00 992.00 0.0916 0.0029 2.9326 93.8438 90.9111 

6 0.40 -0.26 1.06 NA 5 0.0000 ∞  ∞  0.1527 0.0000 ∞  ∞  ∞  
7 0.47 -0.20 1.14 NA 5 0.0000 ∞  ∞  0.1964 0.0000 ∞  ∞  ∞  
8 0.53 -0.14 1.20 NA 5 0.0000 ∞  ∞  0.1964 0.0000 ∞  ∞  ∞  
9 0.60 -0.06 1.26 NA 5 0.0000 ∞  ∞  0.1527 0.0000 ∞  ∞  ∞  
10 0.67 0.03 1.30 0 5 0.0313 32.00 992.00 0.0916 0.0029 2.9326 93.8438 90.9111 

11 0.73 0.14 1.33 0 5 0.0313 32.00 992.00 0.0417 0.0013 1.3330 42.6563 41.3232 

12 0.80 0.26 1.34 1 5 0.1875 5.33 23.11 0.0139 0.0026 0.0741 0.3950 0.3209 

13 0.87 0.41 1.32 2 5 0.5000 2.00 2.00 0.0032 0.0016 0.0064 0.0128 0.0064 

14 0.93 0.60 1.27 2 5 0.5000 2.00 2.00 0.0005 0.0002 0.0009 0.0018 0.0009 

15 1.00 1.00 1.00 NA NA 1.0000 1.00 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 

          0.01726 ∞  ∞  ∞  
          UFAR UARL USDRL = ∞  
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To illustrate and help understand the overall effects of parameter estimation on the properties of 

the p-chart in more detail, some results (similar to those in Tables 3.18 and 3.19) are presented in 

Tables 3.20, 3.21 and 3.22 for 1500 and 1000 750, 500, 300, 250, 200, 100, 75, 50, 30, 25, 20, 10,=T , 

each time considering several combinations of m  and n  values so that mnT = . Thus, we look at what 

happens to the unconditional characteristics (in particular the UFAR and the UARL) when: 

(a) T  increases, and 

(b) when the composition of the Phase I sample changes i.e. varying m  and n . 

 

The resulting unconditional FAR’s and the unconditional in-control ARL’s are listed under UFAR 

and UARL0, respectively. Also shown is the percentage difference of the unconditional FAR and in-

control unconditional ARL of Case U versus 

(a) the FAR and ARL of Case K (see e.g. Tables A3.4 and A3.5 in Appendix 3A), and 

(b) the nominal FAR of 0.0027 and the nominal ARL of 370. 

 

Several interesting facts emerge from an examination of the results in Tables 3.20, 3.21 and 3.22: 
 

 

(i) A lot of reference data is needed before the UFAR is anywhere near the nominal value of 

0.0027 implicitly expected in a typical application of the p-chart.  In addition, the choice of 

the number of subgroups m  and the subgroup size n  are both seen to be important. 

 

For example, the calculations show that unlike in the case with variables data, when studying 

attributes data the subgroup size n  needs to be much larger than the number of subgroups 

m , to ensure that the UFAR is reasonably close to the nominal value and (at the same time) 

ensure that the UARL  is not undefined (see e.g. Table 3.21 where 300=T  with 10=m  and 

30=n ).  

 

(ii)  There is great variation in the UFAR values and it could be hundreds of percents off from its 

nominal value of 0.0027 and/or its Case K value for many combinations of m  and n  that are 

typically used in practice. 

 

For example, when 100=T , we find that  

(a) with 4=m  and 25=n  the UFAR is 191.5% above the nominal value and 92% above 

its Case K value of 0.0041, and  

(b) with 20=m  and 5=n  the UFAR is 95.9% lower than the nominal value but close to 

its Case K value of zero.  
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(iii)  Unless one is careful about the choice of m and n, the unconditional in-control average run-

length of the chart can be undefined particularly when nm >> , which is undesirable in 

practice. This is due to the fact that the conditional probability of a false alarm can be zero 

for certain values of m  and n , since although U  can take on any integer value between 0  

and mn  (including both) with a non-zero probability, the binomial distribution (for the 

number of nonconforming items within each monitored group) assigns zero probability to 

any value greater than n .  

 

(iv) The effect of the discreteness of the binomial distribution is also seen to be substantial on 

both the FAR and ARL values.  For example, unlike in the variables case, with attributes 

data, only a certain number of ARL0 values are attainable depending on the combination of 

values of m , n  and p  the user has at hand.  

 

(v) As mentioned before, unlike in Case K, the unconditional ARL is not equal to the reciprocal 

of the unconditional FAR nor is it smaller than the unconditional SDRL (not listed here); this 

is an  important effect of estimating the unknown parameterp . 

 

(vi) For the ),( nm  combinations where 8≤n  the Case K FAR is zero and the associated Case K 

ARL is undefined  (see e.g. Tables A3.4 and A3.5 in Appendix 3A). 

 

In these cases, it is not practical to calculate the percentage difference and therefore 

indicated by an asterisk. In addition, for those ),(nm  combinations where the UFAR  is zero 

and/or the UARL  is undefined it is impractical to calculate the percentage difference from 

the nominal values and thus indicated by the hash sign. 

 

The aforementioned results suggest that there is a need for a large amount of reference data, with a 

larger amount of data in each subgroup than the number of subgroups i.e. mn >> .  For example, when 

200=T  with 8=m  and 25=n , the UFAR is 0.00447 which is 65.5% above the nominal value, 

whereas when 500=T , both )20,25(),( =nm  and )25,20(),( =nm  lead to an unconditional false 

alarm rate close to the nominal.  This suggests one would need at least 400-500 in-control reference 

data points to achieve any meaningful control of the false alarm rate near the nominal 0.0027. An 

examination of the UARL values also lead to similar conclusions, in the sense that the combination of 

the number of subgroups and the size of the subgroup play an important role in dictating the (stable) 

properties of the p-chart. 
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Table 3.20: The unconditional false alarm rate (UFAR ) and the unconditional in-control average 
run-length (UARL0 ) values for the p-chart for various values of m  and n  such that mnT ====  

when 5.01 ======== pp  
 

 m n UFAR UARL0 
% difference 
from Case K 

FAR1 

% difference 
from Case K 

ARL2 

% difference 
from nominal 
FAR=0.00273 

% difference 
from nominal 

ARL=3704 

1 10 0.06896 168.73 3348.1 203.5 2454.2 -54.4 
2 5 0.03552 ∞  * * 1215.6 # 
5 2 0.00684 ∞  * * 153.2 # 

T = 10 

10 1 0.01172 ∞  * * 334.0 # 
1 20 0.04553 135.62 1651.0 186.1 1586.2 -63.3 
2 10 0.01913 455.94 856.4 12.3 608.5 23.2 
4 5 0.01021 ∞  * * 278.1 # 
5 4 0.00787 ∞  * * 191.4 # 
10 2 0.00065 ∞  * * -76.1 # 

T = 20 

20 1 0.00020 ∞  * * -92.5 # 
1 25 0.04567 171.89 1014.0 42.7 1591.7 -53.5 
5 5 0.00405 ∞  * * 50.1 # T = 25 
25 1 0.00001 ∞  * * -99.6 # 
1 30 0.04287 235.16 2962.0 197.2 1487.7 -36.4 
2 15 0.01765 288.78 1665.1 254.6 553.7 -22.0 
3 10 0.01119 605.83 459.4 -15.5 314.3 63.7 
5 6 0.00724 ∞  * * 168.2 # 
6 5 0.00333 ∞  * * 23.2 # 
10 3 0.00066 ∞  * * -75.7 # 
15 2 0.00008 ∞  * * -97.0 # 

T = 30 

30 1 0 ∞  * * # # 
1 50 0.03686 140.47 1317.6 173.6 1265.1 -62.0 
2 25 0.01838 171.32 348.2 43.2 580.6 -53.7 
5 10 0.00600 553.53 200.1 -7.5 122.3 49.6 
10 5 0.00104 ∞  * * -61.5 # 

T = 50 

25,2 50,1 0 ∞  * * # # 
1 75 0.04094 105.69 1606.0 287.1 1416.4 -71.4 
3 25 0.01022 254.50 149.2 -3.6 278.5 -31.2 
5 15 0.00612 492.82 512.3 107.8 126.8 33.2 
15 5 0.00033 ∞  * * -87.7 # 

T = 75 

25,3 75,1 0 ∞  * * # # 
1 100 0.04006 108.45 1044.5 162.1 1383.6 -70.7 
2 50 0.01475 234.72 467.3 63.7 446.3 -36.6 
4 25 0.00787 246.68 92.0 -0.6 191.5 -33.3 
5 20 0.00577 348.72 122.0 11.3 113.7 -5.8 
10 10 0.00332 647.93 65.9 -21.0 22.9 75.1 
20 5 0.00011 ∞  * * -95.9 # 

25,4 50,2 

T = 100 

100,1  
0 ∞  * * # # 

1 )1100( deviation  % K Case −= UFAR/FAR ; 2 )1100( deviation  % K Case0 −= /ARLUARL ;  
3 )10027.0100( deviation  % −= UFAR/ ; 4 )1370100( deviation  % 0 −= /UARL  
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Table 3.21: The unconditional false alarm rate (UFAR) and the unconditional in-control average 
run-length (UARL0) values for the p-chart for various values of m  and n  such that mnT ====  

when 5.01 ======== pp  
 

 m n UFAR UARL0 
% difference 
from Case K 

FAR1 

% difference 
from Case K 

ARL2 

% difference 
from nominal 
FAR=0.00273 

% difference 
from nominal 

ARL=3704 

1 200 0.03328 162.34 1347.0 170.2 1132.6 -56.1 
2 100 0.01587 164.72 353.3 72.6 487.6 -55.5 
4 50 0.00708 259.93 172.2 47.8 162.1 -29.7 
5 40 0.00593 275.48 169.4 63.4 119.5 -25.5 
8 25 0.00447 312.51 9.0 -21.5 65.5 -15.5 
10 20 0.00374 409.26 43.8 -5.2 38.5 10.6 
20 10 0.00207 683.52 3.7 -25.1 -23.2 84.7 
25 8 0.00171 ∞  * * -36.7 # 

T = 200 

40,5 
100,2 

50,4 
200,1 

0 ∞  * * # # 

1 250 0.03546 131.33 1122.7 164.5 1213.3 -64.5 
2 125 0.01440 187.77 554.7 139.2 433.4 -49.3 
5 50 0.00616 285.03 137.0 34.8 128.3 -23.0 
10 25 0.00392 330.65 -4.4 -25.8 45.1 -10.6 
25 10 0.00181 697.63 -9.4 46.8 -32.9 88.5 

125,2 

T = 250 

50,5 
250,1  

0 ∞  * * # # 

1 300 0.03725 120.40 1064.0 162.1 1279.6 -67.5 
2 150 0.01488 177.10 520.1 134.7 451.2 -52.1 
3 100 0.01006 197.37 187.3 44.0 272.5 -46.7 
4 75 0.00765 223.40 218.9 83.1 183.5 -39.6 
5 60 0.00602 282.98 122.8 32.3 122.8 -23.5 
6 50 0.00532 276.87 104.7 38.8 97.2 -25.2 
10 30 0.00387 369.27 176.1 89.3 43.2 -0.2 
12 25 0.00362 343.82 -11.7 -28.7 34.0 -7.1 
15 20 0.00303 444.15 16.4 -12.6 12.1 20.0 
20 15 0.00245 670.29 144.9 52.8 -9.3 81.2 
25 12 0.00228 988.67 355.3 107.1 -15.7 167.2 
30 10 0.00175 693.34 -12.5 -26.2 -35.2 87.4 
50 6 0.00001 ∞  * * -99.6 # 

75,4 
150,2 

T = 300 

60,5 
100,3 
300,1  

0 ∞  * * # # 

1 500 0.03406 139.83 1161.6 165.2 1161.6 -62.2 
2 250 0.01416 187.50 388.3 85.3 424.4 -49.3 
4 125 0.00735 245.93 234.2 82.6 172.3 -33.5 
5 100 0.00638 236.94 82.3 20.0 136.3 -36.0 
10 50 0.00398 328.92 53.0 16.8 47.3 -11.1 
20 25 0.00296 373.74 -27.8 -34.4 9.7 1.0 
25 20 0.00258 470.72 -0.9 -17.6 -4.6 27.2 
50 10 0.00175 626.47 -12.5 -18.3 -35.2 69.3 

100,5 125,4 

T = 500 

250,2 500,1 
0 ∞  * * # # 

1 )1100( deviation  % K Case −= UFAR/FAR ; 2 )1100( deviation  % K Case0 −= /ARLUARL ;  
3 )10027.0100( deviation  % −= UFAR/ ; 4 )1370100( deviation  % 0 −= /UARL
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Table 3.22: The unconditional false alarm rate (UFAR) and the unconditional in-control average 
run-length (UARL0) values for the p-chart for various values of m  and n  such that mnT ====  

when 5.01 ======== pp  
 

 m n UFAR UARL0 
% difference 
from Case K 

FAR1 

% difference 
from Case K 

ARL2 

% difference 
from nominal 
FAR=0.00273 

% difference 
from nominal 

ARL=3704 

1 750 0.03373 154.68 1305.5 167.4 1149.3 -58.2 
2 375 0.01429 195.58 429.2 89.7 429.2 -47.1 
3 250 0.00927 220.66 219.5 57.4 243.2 -40.4 
5 150 0.00628 239.35 161.6 73.7 132.6 -35.3 
6 125 0.00543 259.56 147.0 73.0 101.3 -29.8 
10 75 0.00417 291.37 73.6 40.4 54.3 -21.3 
15 50 0.00339 351.05 30.3 9.5 25.5 -5.1 
25 30 0.00282 426.66 101.5 63.8 4.5 15.3 
30 25 0.00270 388.13 -34.3 -36.8 -0.2 4.9 
50 15 0.00180 822.08 79.8 24.6 -33.4 122.2 
75 10 0.00180 590.93 -9.8 -13.4 -33.2 59.7 

125,6 150,5     
250,3 375,2 * * # # 

T = 750 

750,1  
0 ∞  

    
1 1000 0.03362 142.52 1193.2 165.2 1145.3 -61.5 
2 500 0.01434 193.35 431.0 91.8 431.0 -47.7 
4 250 0.00746 221.21 157.4 57.0 176.5 -40.2 
5 200 0.00613 253.58 166.6 73.0 127.1 -31.5 
8 125 0.00456 286.10 107.5 57.0 69.1 -22.7 
10 100 0.00422 285.01 20.6 -0.3 56.3 -23.0 
20 50 0.00312 364.70 20.0 5.4 15.6 -1.4 
25 40 0.00290 374.32 31.7 20.3 7.3 1.2 
40 25 0.00260 393.72 -36.7 -37.7 -3.8 6.4 
50 20 0.00232 475.03 -10.7 -18.3 -14.0 28.4 
100 10 0.00186 559.96 -6.9 -8.6 -31.0 51.3 
125 8 0.00024 ∞  * * -91.0 # 

200,5 250,4 

T = 1000 

500,2 1000,1 
0 ∞  * * # # 

1 1500 0.03315 149.71 1226.1 166.3 1127.9 -59.5 
2 750 0.01401 189.14 483.9 118.7 419.0 -48.9 
3 500 0.00943 205.42 249.4 80.5 249.4 -44.5 
4 375 0.00716 233.25 165.1 59.0 165.1 -37.0 
5 300 0.00629 235.43 96.4 34.0 132.8 -36.4 
6 250 0.00538 258.84 85.4 34.2 99.1 -30.0 
10 150 0.00418 287.19 74.3 44.8 55.0 -22.4 
12 125 0.00382 307.31 73.8 46.2 41.6 -16.9 
15 100 0.00361 308.79 3.3 -7.9 33.9 -16.5 
20 75 0.00327 331.32 36.3 23.5 21.1 -10.5 
25 60 0.00303 360.64 12.4 3.8 12.4 -2.5 
30 50 0.00287 380.90 10.5 0.9 6.4 2.9 
50 30 0.00253 466.77 81.0 49.7 -6.2 26.2 
60 25 0.00254 397.09 -38.1 -38.2 -6.0 7.3 
75 20 0.00235 453.58 -9.8 -14.4 -13.1 22.6 
100 15 0.00135 933.58 34.6 9.7 -50.2 152.3 
125 12 0.00109 1686.74 118.2 21.4 -59.6 355.9 
150 10 0.00191 533.16 -4.4 -4.0 -29.2 44.1 

250,6 300,5     
375,4 500,3 * * # # 

T = 1500 

750,2 1500,1 
0 ∞  

    
1 )1100( deviation  % K Case −= UFAR/FAR ; 2 )1100( deviation  % K Case0 −= /ARLUARL ;  
3 )10027.0100( deviation  % −= UFAR/ ; 4 )1370100( deviation  % 0 −= /UARL
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3.2.4.2 Unconditional characteristics of the c-chart 

 

The unconditional characteristics of the c-chart can be calculated in the same manner as that of the 

p-chart. To this end, the necessary steps are shown in Table 3.23 where we assume that 11 == cc  and 

5=m  individual and independent Phase I inspection units are used to estimate c . 

 

First, we calculate the conditional characteristics in columns 7, 8 and 9 (based on the observed 

value u  or obsc  and the estimated control limits and resulting chart constants listed in columns 1 to 6) 

and then we calculate the unconditional properties of the run-length distribution (in particular, the 

UFAR, the UARL and the USDRL using expressions (3-59), (3-61) and (3-52)) by means of the results 

of columns 11 to 14. Note, however, that although theoretically ,...}2,1,0{∈V , Table 3.23 only shows 

the conditional properties for  }20,...,2,1,0{∈V  in order to save space. 

 
 
Table 3.23: The conditional and unconditional characteristics of the run-length distribution for 

5====m  when 1====c  
 

Phase I Phase II : Conditional Properties Phase II : Unconditional Properties 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)=(7)x(10) (12)=(8)x(10) (13)=(8)2x(10) (14)=(9)x(10) 

v obsc
cLCL ˆ  cLCU ˆ  d̂  f̂  CFAR CARL CVARL Pr(V=v|c) CFAR.Pr(V=v|c) CARL.Pr(V=v|c) CARL2.Pr(V=v|c) CVARL.Pr(V=v|c) 

0 0.0 0.00 0.00 0 0 1.0000 1.0000 0.0000 0.00674 0.00674 0.00674 0.0067 0.0000 

1 0.2 -1.14 1.54 0 1 0.6321 1.5820 0.9207 0.03369 0.02130 0.05330 0.0843 0.0310 

2 0.4 -1.50 2.30 0 2 0.4482 2.2312 2.7472 0.08422 0.03775 0.18792 0.4193 0.2314 

3 0.6 -1.72 2.92 0 2 0.4482 2.2312 2.7472 0.14037 0.06291 0.31321 0.6988 0.3856 

4 0.8 -1.88 3.48 0 3 0.3869 2.5849 4.0967 0.17547 0.06788 0.45356 1.1724 0.7188 

5 1.0 -2.00 4.00 0 3 0.3869 2.5849 4.0967 0.17547 0.06788 0.45356 1.1724 0.7188 

6 1.2 -2.09 4.49 0 4 0.3715 2.6915 4.5527 0.14622 0.05433 0.39356 1.0593 0.6657 

7 1.4 -2.15 4.95 0 4 0.3715 2.6915 4.5527 0.10444 0.03881 0.28111 0.7566 0.4755 

8 1.6 -2.19 5.39 0 5 0.3685 2.7139 4.6513 0.06528 0.02405 0.17716 0.4808 0.3036 

9 1.8 -2.22 5.82 0 5 0.3685 2.7139 4.6513 0.03627 0.01336 0.09842 0.2671 0.1687 

10 2.0 -2.24 6.24 0 6 0.3680 2.7177 4.6680 0.01813 0.00667 0.04928 0.1339 0.0846 

11 2.2 -2.25 6.65 0 6 0.3680 2.7177 4.6680 0.00824 0.00303 0.02240 0.0609 0.0385 

12 2.4 -2.25 7.05 0 7 0.3679 2.7182 4.6704 0.00343 0.00126 0.00933 0.0254 0.0160 

13 2.6 -2.24 7.44 0 7 0.3679 2.7182 4.6704 0.00132 0.00049 0.00359 0.0098 0.0062 

14 2.8 -2.22 7.82 0 7 0.3679 2.7182 4.6704 0.00047 0.00017 0.00128 0.0035 0.0022 

15 3.0 -2.20 8.20 0 8 0.3679 2.7183 4.6707 0.00016 0.00006 0.00043 0.0012 0.0007 

16 3.2 -2.17 8.57 0 8 0.3679 2.7183 4.6707 0.00005 0.00002 0.00013 0.0004 0.0002 

17 3.4 -2.13 8.93 0 8 0.3679 2.7183 4.6707 0.00001 0.00001 0.00004 0.0001 0.0001 

18 3.6 -2.09 9.29 0 9 0.3679 2.7183 4.6708 0.00000 0.00000 0.00001 0.0000 0.0000 

19 3.8 -2.05 9.65 0 9 0.3679 2.7183 4.6708 0.00000 0.00000 0.00000 0.0000 0.0000 

20 4.0 -2.00 10.00 0 9 0.3679 2.7183 4.6708 0.00000 0.00000 0.00000 0.0000 0.0000 

M  M  M  M  M  M  M  M  M  M  M  M  M  M  
          0.40672 2.51 6.35 3.85 

          UFAR UARL USDRL = 1.98 
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To obtain the unconditional false alarm rate, for instance, we need the conditional false alarm rate 

and the related probability )1|Pr( == cvV  for ,...2,1,0=v  listed in columns 7 and 10, respectively. 

Multiplying the corresponding row entries of columns 7 and 10, we end up with column 11, that is, 

)1|Pr())1,|5  ,  1(ˆ1()1|Pr()1,|5 , 1( 11 ==×====−===×==== cvVcvVmccvVcvVmcCFAR β
 

 for     ,...2,1,0=v  

so that summing the entries in column 11 yields the unconditional false alarm rate i.e. 

40672.0)1|Pr()1,|5,1()1|5,1(
0

11 =========== ∑
∞

=v

cvVcvVmcCFARcmcUFAR  

(see e.g. (3-61) in Table 3.17). Similarly, we find an unconditional ARL and unconditional SDRL of 

2.51 and 1.98, respectively. Note that, in the calculation of the unconditional characteristics in Table 

3.23 the summation was done until 0)1|( ≈== cvVP . 

 

Compared to the Case K FAR, ARL and SDRL of 0.3869, 2.58 and 2.02, respectively (see e.g. 

Table A3.12 in Appendix 3A) we see that the unconditional values are not far off. However, the 

unconditional values do not measure up to the nominal FAR, ARL and SDRL values of 0.0027, 370 and 

369 typically expected from a 3-sigma control chart; the reason for this big discrepancy is twofold: 

 

(i) the normal approximation to the )(cPoi , for small c , is inaccurate so that the charting 

formula (mean ±  3 standard deviations) may be inaccurate, and 

 

(ii)  due to the discrete nature of the Poisson distribution only certain (conditional) FAR, ARL 

and SDRL values can be attained. 

 

Note that, from Table 3.23 it is clear that, unlike in case of the p-chart, none of the CFAR values of 

the c-chart are zero and thus none of the moments, such as the UFAR and the USDRL, are undefined. 

 

To illustrate the effect of parameter estimation on the overall performance of the c-chart, Table 

3.24 displays the UFAR, the UARL and the USDRL for various values of m  when 

30 and 20 10, 8, 6, 4, 2, 1,1 == cc . Also shown are the FAR, the ARL and the SDRL for Case K and the 

nominal values – given in the last two rows of the table.  
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We observe that, in general: 

 

 

(i) As the size of the Phase I reference sample m  becomes larger, the unconditional properties 

gets closer to the Case K values, regardless the value of c . 

 

For instance, when 81 == cc  and 20=m , the 0054.0=UFAR , the 32.315=UARL  and the 

24.468=USDRL  but, when the Phase I sample increase to 500=m  inspection units, the 

0041.0=UFAR , the 81.246=UARL  and the 68.247=USDRL , which is close to the FAR, 

the ARL and the SDRL of Case K i.e. 0.0041, 246.70 and 246.20, respectively; 
 

 

(ii)  Unless c  and m  are both large the UFAR, the UARL and the USDRL are nowhere near the 

nominally expected values of 0.0027, 370.0 and 369.9. 

 

For instance, when 6=c  and 25=m , the 0079.0=UFAR , the 49.156=UARL  and the 

41.181=USDRL  but, when 20=c  and 200=m  the 0032.0=UFAR , the 40.333=UARL  

and the 01.352=USDRL  gets closer but still not equal to the nominal values. Although this 

could be a reason for concern for the practitioner, the nominal values are not entirely 

appropriate given the fact that the Poisson distribution is discrete ; 

 

 

(iii)  The unconditional ARL is not equal to the reciprocal of the unconditional FAR nor is it 

smaller than the unconditional SDRL (for all combinations of m  and c ). 

 

This is unlike the situation of the c-chart in Case K and is a result of estimating the unknown 

parameter c ; this was also observed in the case of the p -chart with an unknown standard. 
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Table 3.24: The unconditional false alarm rate (UFAR), the unconditional in-control average 

run-length (UARL0) and the unconditional in-control standard deviation of the run-length 
(USDRL0) values for the c-chart for various values of m  when 30 and 20 10, 8, 6, 4, 2, 1,1 ======== cc 1 

 
 c 

m 1 2 4 6 8 10 20 30 
0.4067 0.1603 0.0325 0.0136 0.0104 0.0095 0.0078 0.0072 
2.51 6.54 38.49 166.91 436.17 399.00 303.41 269.39 5 
1.98 6.22 42.31 226.85 855.24 664.34 420.94 345.01 

0.3901 0.1485 0.0272 0.0097 0.0069 0.0062 0.0052 0.0048 
2.58 6.82 40.34 162.21 370.41 378.91 330.91 307.82 10 
2.03 6.37 42.30 205.76 653.10 577.22 427.50 369.61 

0.3845 0.1463 0.0259 0.0087 0.0060 0.0053 0.0045 0.0042 
2.61 6.88 41.04 159.53 326.93 356.59 333.40 321.49 15 
2.05 6.40 42.33 194.19 525.47 520.67 416.14 376.15 

0.3824 0.1448 0.0252 0.0082 0.0054 0.0048 0.0041 0.0038 
2.62 6.93 41.48 157.90 315.32 353.51 338.79 328.11 20 
2.06 6.44 42.35 187.07 468.24 489.44 412.20 377.23 

0.3813 0.1446 0.0248 0.0079 0.0052 0.0045 0.0039 0.0037 
2.63 6.94 41.74 156.49 298.67 343.85 336.93 330.19 25 
2.07 6.44 42.37 181.41 425.57 460.87 403.04 373.39 

0.3807 0.1439 0.0247 0.0077 0.0050 0.0044 0.0038 0.0036 
2.63 6.96 41.78 155.76 290.10 333.52 334.53 332.60 30 
2.07 6.46 42.32 177.97 395.40 438.50 392.87 372.15 

0.3799 0.1434 0.0241 0.0073 0.0047 0.0040 0.0035 0.0033 
2.63 6.99 42.22 154.09 276.24 322.48 335.16 336.25 50 
2.08 6.48 42.42 169.72 344.81 401.00 379.88 366.80 

0.3796 0.1424 0.0239 0.0070 0.0044 0.0038 0.0033 0.0032 
2.64 7.03 42.40 154.12 261.79 308.18 334.20 339.49 100 
2.08 6.52 42.44 162.69 300.06 360.11 363.95 360.06 

0.3795 0.1413 0.0239 0.0066 0.0042 0.0037 0.0032 0.0031 
2.64 7.08 42.45 156.83 252.11 295.09 333.40 341.43 200 
2.08 6.57 42.48 160.31 268.28 320.34 352.01 355.01 

0.3794 0.1407 0.0238 0.0064 0.0041 0.0036 0.0031 0.0030 
2.64 7.11 42.47 159.17 248.61 289.82 332.90 342.34 300 
2.08 6.59 42.49 160.92 255.61 302.17 344.89 352.47 

0.3794 0.1402 0.0238 0.0062 0.0041 0.0035 0.0031 0.0030 
2.64 7.13 42.48 161.91 246.81 285.81 331.23 339.38 500 
2.08 6.61 42.51 162.24 247.68 287.77 334.07 342.30 

0.3869 0.1399 0.0264 0.0061 0.0041 0.0035 0.0029 0.0029 
2.58 7.15 37.81 163.74 246.70 285.74 339.72 349.94 Case K 
2.02 6.63 37.31 163.24 246.20 285.23 339.22 349.44 

Nominal 0.0027 ,  370.0 ,  369.9 
1The three rows of each cell shows the UFAR, the UARL0 and the USDRL0, respectively 
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Example 1 continued: A Phase II p-chart  
 

 

Phase I and Phase II (conditional) 
 

Recall that the final Phase I data consisted of 28=m  samples each of size 50=n  (see pages 160-

161). Based on these data, it was found that 215.01400/301 ==p  so that the estimated Phase II 

control limits were set at 3893.0ˆ =pLCU  and 0407.0ˆ =pLCL . Given the particular Phase I data, it 

was shown that the resultant Phase II p -chart has a conditional false alarm rate of 002218.0=CFAR  

and a conditional average run-length of 89.4500 =CARL . 

 

To get an idea of the general performance of a Phase II p -chart based on 28=m  samples each of 

size 50=n  (even prior to collecting the data) one has to look at the unconditional properties of the 

Phase II p -chart; the unconditional properties takes into account all the possible realizations of 

}1,
1

,...,
2

,
1

,0{
mn

mn

mnmnmn

U
p

−∈= . 

 

 

Phase II (unconditional) 
 

Using (3-56) and averaging over all 1401150281 =+×=+mn  possible values and the 

corresponding binomial probabilities of U , the in-control unconditional ARL is found to be  

51.401)8.0(2.0
1400

))2.0,|50,28,2.0(ˆ1()2.0|50,28,2.0(
1400

0

14001
10 =








−===== ∑

=

−−

u

uu

u
upnmpUARL β

 

which is about 11% smaller than the in-control conditional ARL for the given data, 

89.450)2.0,301|50,28,2.0(10 ==== pUpCARL . 

 

Perhaps more importantly, it is seen that when p  is estimated from Phase I data, the in-control 

unconditional ARL is 8.5% higher than the corresponding in-control ARL of 370 as obtained in the 

standard known case.  Thus, when p  is estimated, the in-control ARL can be much larger than the 

nominal value.  
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Example 2 continued: A Phase II c-chart  
 

 

Phase I and Phase II (conditional) 
 

The final Phase I data consisted of 24=m  inspection units each of 100 individual items of 

product; this resulted in a point estimate 67.1924/472 ==c  so that the estimated Phase II control 

limits were set at 97.32ˆ =cLCU  and 36.6ˆ =cLCL  (see pages 162 – 163). Given the particular Phase I 

data, it was shown that the resultant Phase II c -chart has a conditional false alarm rate of 

004983.0=CFAR ; it follows that the  conditional average run-length is 

68.200004983.0/10 ==CARL . 

 

Like in the case of the Phase II p -chart, one can get an idea of the general performance of a Phase 

II c -chart based on 24=m  inspection units each of 100 individual items of product (even prior to 

collecting the data) by looking at the unconditional properties of the Phase II c -chart; the 

unconditional properties take into account all the possible realizations of ,...}
2

,
1

,0{
mmm

V
c ∈= . 

 

 

Phase II (unconditional) 
 

Using (3-60) and (3-61), and averaging over all the possible values and the corresponding 

probabilities of )480(~20| == mcPoicV , the unconditional false alarm rate (UFAR ) is found to be 

0.0039 and the in-control unconditional average run length ( 0UARL ) is found to be 335.30. 

The UFAR  is 20% less than theCFAR  of 0.004983 and the 0UARL  is 67% larger than the CARL  

of 200.68; both these conditional properties are based on an observed value of V  equal to 472. 

 

Note that, with regards to the unconditional chart properties, the in-control unconditional average 

run-length ( 0UARL ) is 1.3% less than the in-control average run-length of 339.72 one would have 

obtained in Case K for 200 =c  and the unconditional false alarm rate UFAR  is 34.5% larger than the 

FAR  of 0.0029 obtainable in Case K (see e.g. Table A3.12 in Appendix 3A); we can thus expect more 

false alarms (given the Phase I data at hand) than what would be the case if it is known that  20=c .  
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3.3 Concluding remarks: Summary and recommendations 
 

 

The false alarm rate (FAR ) and the in-control average run length ( 0ARL ) of the p-chart and the c-

chart are substantially affected by the estimation of the unknown true fraction of nonconforming items 

p  and/or the unknown true average number of nonconformities in an inspection unit c . Calculations 

show that when p  and c  are estimated: 

 

(i) The unconditional FAR , unlike in Case K, is not equal (not even close) to the reciprocal of 

the unconditional 0ARL and vice versa; 

 

(ii)  The unconditional 0ARL  is, unlike in Case K, smaller than the unconditional 0SDRL ; 

 

(iii)  Unless m and/or n are rather large, the unconditional false alarm rates and the in-control 

unconditional average run-lengths can be substantially different from the nominal values of 

0.0027 and 370; 

 

(iv) Even if more Phase I data is available, neither the  0UARL  nor the UFAR will necessarily be 

exactly equal to the commonly used nominally expected values (primarily due to the 

discreteness of the underlying distributions);  

 

(v) The typical recommendation of using between 10=m  and 25 subgroups of size 5 appears to 

be inadequate and can be very problematic with attributes charts with regard to a true FAR  

or true 0ARL ; and 

 

(vi) Since one deals with a discrete (binomial or Poisson) distribution in the case of attributes 

charts, it is rather unlikely to be able to guarantee an exact false alarm rate as is typical for a 

variables control chart. 

 

 For the p-chart, in particular, even with a large amount of reference data, if m is (much) larger than 

n (as is the case in a typical variables charting situation) the false alarm rate can be too small and the 

in-control average run-length can be undefined, which are, of course, undesirable.  In practice, at least 

200≥T  reference data points are recommended, in 10 subgroups of 20 observations each; a general 

rule is 5.0/ ≥mn . To this end, Table 3.20, 3.21 and 3.22 can provide valuable guidance in the 

 
 
 



 213 

process of choosing m and n. Similarly, for the c-chart, Table 3.24 can be used as a guide to select an 

appropriate number m  of Phase I inspection units. 

 

If the necessary amount of reference data is not available in a given situation, the user can calculate 

the exact unconditional false alarm rates and the exact in-control unconditional ARL values using the 

formulas given in this chapter for the specific m and/or n values at hand and get an idea of the 

ramifications of estimating p  and/or c .  

 

Another alternative would be to adjust the control limits by finding the value of the charting 

constant 0k >  (which is equal to 3 in routine applications) so that  the unconditional FAR  equals a 

specified *FAR or the unconditional ARL  equals a particular *
0ARL , say.  This would mean either 

expanding or contracting the control limits and entails, for example, in case of the Phase II p-chart, 

solving for k  from 
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where m , n  and *1 ppp ==  for some 10 * << p  and  
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(see e.g. expression (3-30) where 3=k ).  

 

However, note that, in solving the above equation the user has to, as in the preceding examples, 

specify a value of p  - the same parameter that is unknown! This implies that the practitioner has to 

know the process that is monitored quite well because the charting constant(s) found from solving the 

above equation would only be appropriate for the particular p  that is selected.  

 

To overcome the predicament of choosing a specific value for p (denoted *p ) one can, for 

instance, make use of the idea of mixture distributions and assume a particular distribution for p , say 

);( θpf  for 10 << p   where θ  are the (known or specified) parameters of the distribution (which 
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handles our uncertainty about the parameter p  by treating it as a random variable rather than a fixed 

value) and then solve for k  from 
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Again, the exact equations given in this chapter can be helpful in this regard, but the practitioner 

still needs to select and substantiate, from a practical point of view, a distribution );( θpf  and provide 

the parameter(s) for this distribution. 

 

If the idea of mixture distributions is to be followed, we suggest that );( θpf  and its parameters be 

chosen in such a way, that best conveys the practitioner’s believe about the unknown true fraction 

nonconforming. For example, because we know that 10<< p , one possibility is to use the type I (or 

standard) Beta distribution with parameters ),(βα , which has the interval (0,1) as support, as a prior 

distribution. But which beta distribution should we use? If it is believed that p  is in the neighborhood 

of 0.25 (say) we may, for instance, choose a )3,1(Beta == βα  distribution which has a mean of 0.25 

and a variance of 0.0375. Other options are certainly also available. 

 

A third approach that one can use to obtain the appropriate Phase II control limits is a Bayesian 

procedure. As an example, we briefly outline the Bayes approach for the Phase II p-chart. According 

to Bayes’ theorem the posterior distribution, g ,  is proportional to the likelihood function, L ,  times 

the prior distribution, f .  

For the p-chart the likelihood is 
 

∑
−

∑
∝ ==

−
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i xmnx

pppL 11 )1(data) I Phase |(  

 

where the Phase I data are the observed values of iX , mi ,...,2,1=  and denoted by ix , mi ,...,2,1= . 

The Jeffreys’ prior (which is the best noninformative prior for the unknown parameterp ) is given by 

2

1
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)1()(
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−∝ pppf . 
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From the likelihood and the prior it follows that the posterior distribution of p  is a beta distribution 

i.e.  

∑
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If the process remains in-control during Phase II monitoring, the control limits for a Phase II 

sample of n  independent Bernoulli trials (units), which results in iY , ,...2,1 ++= mmi  successes 

(nonconforming units), can be derived using a predictive distribution, h . The conditional distribution 

of iY , ,...2,1 ++= mmi , given the sample size n  and p ,  is binomial ),( pn  and the unconditional 

predictive distribution of iY  is a beta-binomial distribution i.e. 
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where ,...,n,, y 210=  and  ,...2,1 ++= mmi . 

 

The Phase II control limits, via a Bayes approach, are then derived (using the unconditional 

predictive distribution) from the resulting rejection region of size α , that is, )(αR , which is defined as 

∑=
)(

data) I Phase |(
α

α
R

yh . 

 

 

Because there is currently no evidence to suggest that the one approach (i.e. either assuming that 

p  is deterministic and unknown and therefore specifying a value for p  or using a Bayes approach) is 

superior and none of the approaches is without any obstacles, more research is needed to find suitable 

charting constants for the Phase II attributes charts. 
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3.4 Appendix 3A: Characteristics of the p-chart and the c-chart in 

Case K 

 

 

The characteristics of the p-chart and the c-chart in Case K are important because it 

 

(i) helps us understand the operation and the performance of the charts in the simplest of cases 

(when the parameters are known), and 

 

(ii)  provide us with benchmark values that we can use to determine the effect of estimating the 

parameters on the operation and the performance of the charts in Case U (when the 

parameters are unknown). 

 

We compute and examine the characteristics of the p-chart and that of the c-chart in two different 

sections. For each chart we give an example that shows 

 

(i) the calculations that are needed to implement the chart, and 

 

(ii)  how to determine the chart’s characteristics via its run-length distribution. 

 

Each example is followed by a general discussion of the results which were obtained from an 

analysis of the chart’s in-control (IC) and out-of-control (OOC) characteristics listed in Tables 3.1 and 

3.2, respectively. 

 

To the author’s knowledge none of the standard textbooks and/or articles currently available in the 

literature give such a detailed elucidation of the p-chart’s or the c-chart’s characteristics as is done 

here. 
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3.4.1 The p-chart in Case K: An example 
 
 

We first look at an example of a p-chart in Case K in order to illustrate the typical application of 

the chart. In other words, we investigate the properties of the chart for a specific combination of 0p  

(the specified value of p ) and n  while varying 10 << p  (the true fraction nonconforming). In later 

sections the performance of the chart is then further studied by considering multiple (various) 

combinations of 0p  and n . 

 

 

Example A1: A Case K p-chart 
 

Assume that the sample size 50=n  and suppose that the true fraction nonconforming p  is known 

or specified to be 2.00 =p . The upper control limit, the centerline and the lower control limit are then 

set at 

     3697.050/)8.0(2.032.0 =+=pUCL       20.0=pCL        0303.050/)8.0(2.032.0 =−=pLCL . 

 

Twelve iX  values (or counts) that were simulated from a )2.0,50(Bin  distribution are shown in 

Table A3.1. Without any loss of generality these counts may be regarded as the number of 

nonconforming items in twelve independent random samples each of size 50 from a process with a true 

fraction nonconforming of 0.2.  The corresponding sample fraction nonconforming 50/ii Xp =  for 

each sample is also shown; these are the charting statistics of our p-chart. 

 

The p-chart is shown in Figure A3.1. The chart displays the two control limits (UCL and LCL ), 

the centerline (CL ), and the sample fraction nonconforming ip  from each sample. Because none of 

the points plot outside the limits we continue to monitor the process. Once a point does plot outside the 

limits the charting procedure will stop and a search for assignable causes (i.e. additional and/or 

unwanted sources of variation) will begin.  

 

Table A3.1: Data for the p-chart in Case K 

Sample number / Time:  i  1 2 3 4 5 6 7 8 9 10 11 12 

Counts:  iX  12 8 6 14 8 12 9 7 13 16 11 8 

Sample fraction 
nonconforming:  50/ii Xp =  0.24 0.16 0.12 0.28 0.16 0.24 0.18 0.14 0.26 0.32 0.22 0.16 
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Figure A3.1: A p-chart in Case K 
 

 

Given the operation of the chart it is natural to ask ‘How long before the chart signals?’ or ‘What is 

the probability for a point to plot between or outside the control limits?’ etc. These performance based 

questions are relevant while the process remains in-control and even more so when a shift occurs. 

 

To answer these questions we study the run-length distribution of the chart. The run-length 

distribution, as mentioned earlier in section  3.1.1, is characterized entirely by the probability of a no-

signal ),,( 0 nppβ  or, equivalently, the probability of a signal ),,(1 0 nppβ−  (see e.g. Table 3.1). 

 

Our starting point when analyzing the performance of the chart is therefore to find the probability 

of a no-signal. Once we have the probability of a no-signal both the in-control and the out-of-control 

properties of the p-chart in Case K are easily found. 
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Performance of the p-chart 
 

For our particular combination of the parameters i.e. 50=n  and 2.00 =p , the control limits are set 

at 3697.0=pUCL  and 0303.0=pLCL , so that we  proceed as follows to find the probability of a no-

signal: 

 

First, we calculate the two charting constants a  and b  defined in (3-5), which gives 

1]52.1[)]0303.0)(50[(][ ==== pnLCLa      and     18}50],49.18min{[}],min{[ === nnUCLb p . 

 

Using (3-4) shows that the probability of a no-signal is 

)31,18()48,1()50,2.0,( 0 pp IIpp −==β       for      10 << p  

so that substituting values for p  allow us to study the in-control (when 2.0=p ) and the out-of-

control (when 2.0≠p ) properties and performance of the chart. 

 

 

In-control properties 
 

While the true fraction nonconforming p  remains constant and equal to 2.00 =p  we have the in-

control scenario. The probability of a no-signal is then 

9973.0)31,18()48,1()50,2.0,2.0( 2.02.0 =−== IIpβ  

and the probability of a signal, or the false alarm rate, is 

0027.0)50,2.0,2.0(1)50,2.0( =−= βFAR . 

The in-control run-length distribution is therefore geometric with probability of success 0.0027, which 

we write as )0027.0(~0 GeoN . 

Expressions (3-15) and (3-16) in Table 3.1 show that the in-control ARL  and the in-control SDRL  

can be calculated as 

4.370)0027.0/(10 ==ARL        and       9.369)0027.0/(9973.00 ==SDRL  

respectively. 

An in-control ARL of 370.4 means that while the process remains in-control we could expect the 

chart to issue a false alarm or an erroneous signal (on average) every 370th sample. However, with the 

large standard deviation of 369.9 we could expect a phase (or cycle) during which the chart signals 

frequently i.e. many false signals occurring one after the other within a relatively short period of time, 

which is then followed by a phase where the chart hardly ever signals.  
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Out-of-control properties 
 

When the true fraction nonconforming changes it implies that p  is no longer equal to its specified 

value of 2.00 =p  and then we deal with the out-of-control case. Since p  can increase or decrease we 

consider both situations. 

 

 

Increase in p : Upward shift 
 

Suppose that p  increases by 12.5% from 0.2 to 225.0 . The probability of a no-signal of 0.9973 

then becomes 

0097.0)31,18()48,1()50,2.0,225.0( 225.0225.0 =−== IIpβ  

so that the probability of a signal becomes 9903.0)50,2.0,225.0(1 =− β . 

 

Assuming that the change in p  is permanent so that all future samples that we collect come from a 

process with a fraction nonconforming equal to 225.0=p , the out-of-control run-length distribution 

of the p-chart is )9903.0(~1 GeoN . The out-of-control average run-length is then calculated using 

(3-15) as 

01.1)9903.0/(11 ==ARL  

and implies that (on average) we could expect the chart to signal on approximately the 1st sample 

following an increase from 0.2 to 0.225. The out-of-control SDRL of the run-length distribution is 

01.0)9903.0/(0097.01 ==SDRL  

and is calculated using (3-16). 

 

 

Decrease in p : Downward shift 
 

Suppose that the true fraction nonconforming permanently decreased by 25% from 0.2 to 15.0 . 

The probability of a no-signal then changes from its in-control value of 0.9973 to 

003.0)31,18()48,1()50,2.0,15.0( 15.015.0 =−== IIpβ  

so that the out-of-control run-length distribution is geometric with probability of success equal to the 

probability of a signal 997.0)50,2.0,15.0(1 =− β . We could thus expect the chart to signal (on 

average) on the 1st sample following the change (decrease) inp . 
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The OC-curve 
 

The OC-curve is the probability of a no-signal ),,(0 nppβ  plotted as a function of p  for a known 

(specified) value of 0p  and a given (selected) sample size n. 

 

The OC-curve for 50=n  and 2.00 =p , that is, )50,2.0,( 0 == nppβ  for 55.00 ≤< p  is 

displayed in Figure A3.2. The probability of a signal )50,2.0,(1 0 ==− nppβ  as a function of p  is 

also shown. These two probabilities are plotted on the vertical axis for a given value of p  on the 

horizontal axis. Table A3.2 displays values of the OC and the probability of a signal for selected 

values of 550.0)025.0(025.0=p ; it also shows the average run-length and the standard deviation of 

the run-length associated with each value of p . 

 

Examining Figure A3.2 we begin at the in-control value of 2.0=p  where the probability of a no-

signal is 9973.0)50,2.0,2.0( =β  and the probability of a signal is equal to 0027.0)50,2.0,2.0(1 =− β ; 

these two points are indicated on the graphs. We observe that: 

 
 

(i) As we move in either direction away from 2.0=p  (i.e. either to the left or to the right) the 

probability of a no-signal, in general, decreases whereas the probability of a signal, in 

general, increases. 

 

This indicates that as p  changes (moves away) from the known or specified value of 0.2 

the likelihood of a signal that the process is out-of-control increases. We can therefore 

expect the chart to signal more often (sooner) when the process is out-of-control than when 

the process is in-control; which is good and confirms that using a control chart is an 

effective tool in detecting changes in a process. 

 

(ii) The values of )50,2.0,(pβ  and )50,2.0,(1 pβ−  vary between zero and one, and happens 

since both functions compute a probability.  

 

In particular, as the process moves further out-of-control the probability of a no-signal 

approaches zero whereas the probability of a signal approaches one. 
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(iii) Neither the probability of a no-signal nor the probability of a signal is symmetric 

about 2.0=p . 

 

This implies, for example, that the rate at which )50,2.0,(pβ  changes as p  decreases or 

increases (i.e. moves to the left or to the right away from 0.2) is not the same. A decrease 

and an increase of 10% (say) in p  from 0.2 to 0.18 and 0.22 (respectively) would therefore 

not result in the same decrease in )50,2.0,(pβ . The same is true for the probability of a 

signal and happens since the binomial (50,0.2) distribution is not symmetric. 

 

(iv) As p  decreases from 0.2 the probability of a no-signal increases slightly until it reaches a 

maximum and then decreases (as mentioned in (i)). Similarly, the probability of a signal 

first decreases a little as p  decreases until it reaches a minimum and then it increases 

again. 

 

This tendency is also seen in Table A3.2. For instance, at 2.0=p  we have 

9973.0)50,2.0,2.0( ==pβ  which is less than the probability of a no-signal at 175.0=p  

of 9988.0)50,2.0,175.0( ==pβ . For a detailed discussion on this phenomenon see e.g. 

Acosta-Mejia (1999). 
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Figure A3.2: The OC-curve and the probability of a signal as a function of p  when 200 .=p  and 
50=n  
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Table A3.2: The Probability of a no-signal, the Probability of a signal, the ARL and the SDRL for 
550002500250 .).(.=p  when 200 .=p  and 50=n  

 

p Pr(No Signal | process OOC) Pr(Signal | process OOC) ARL SDRL 

0.025 0.3565 0.6435 1.55 0.93 

0.050 0.7206 0.2794 3.58 3.04 

0.075 0.8975 0.1025 9.76 9.24 
0.100 0.9662 0.0338 29.60 29.09 
0.125 0.9897 0.0103 97.42 96.92 
0.150 0.9970 0.0030 337.26 336.76 
0.175 0.9988 0.0012 802.13 801.63 
0.200 0.9973 0.0027 369.84 369.34 
0.225 0.9903 0.0097 103.13 102.63 
0.250 0.9713 0.0287 34.79 34.29 
0.275 0.9306 0.0694 14.42 13.91 
0.300 0.8594 0.1406 7.11 6.60 
0.325 0.7544 0.2456 4.07 3.54 
0.350 0.6216 0.3784 2.64 2.08 
0.375 0.4758 0.5242 1.91 1.32 
0.400 0.3356 0.6644 1.51 0.87 
0.425 0.2167 0.7833 1.28 0.59 
0.450 0.1273 0.8727 1.15 0.41 
0.475 0.0678 0.9322 1.07 0.28 
0.500 0.0325 0.9675 1.03 0.19 
0.525 0.0139 0.9861 1.01 0.12 
0.550 0.0053 0.9947 1.01 0.07 
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Average run-length 
 

The average run-length is the expected number of samples that must be collected before the chart 

signals. 

 

To quickly detect changes in a process it is desirable that the average run-length 

 )),,(1/(1),,( 00 nppnppARL β−=  

is at its maximum when the process is in-control i.e. when 0pp = . This is not always the case for the 

p-chart. For a p-chart based on a charting statistic that has a (positively) skewed distribution such as 

the 2.0,50(Bin ) distribution the value of )50,2.0,( 0 == nppARL  increases initially as p  decreases; 

this causes the p-chart to have poor performance in detecting small to moderate decreases in p . 

 

Figure A3.3 displays the average run-length )50,2.0,(pARL  as a function of p  for 3.005.0 ≤≤ p .  

The value of )50,2.0,(pARL  is plotted on the vertical axis for a specific value of p  on the horizontal 

axis. The average run-length is much higher for values of p  slightly less than 0.2 than at 0.2 i.e. the 

point that indicates the in-control average run-length of 84.369 . In particular, at 175.0=p  the 

average run-length is 802.13 (see e.g. Table A3.2). 

 

This phenomenon, as mentioned before, is caused by the skewness of the binomial distribution and 

the smaller the value of p  the greater the skewness and the larger the problem. For a detailed 

discussion on this phenomenon see e.g. Acosta-Mejia (1999).  
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Figure A3.3: The average run-length (ARL) as a function of p  when 50=n  and 200 .=p  
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Run-length distributions 
 

In Case K the in-control and the out-of-control run-length distributions are both geometric (see e.g. 

Table 3.1). 

 

A graphical display of the in-control and the out-of-control run-length distributions is useful since 

it helps us (better) see the effect of a change in the process parameter on the entire run-length 

distribution. 

 

We consider two types of displays: Boxplot-like graphs and probability mass functions (p.m.f’s). 

The former (visually) reveals more about the change in the run-length distribution than do the p.m.f’s.  

 

 

Boxplot-like graphs 
 

Figure A3.4 shows boxplot-like graphs (i.e. the minimum value is replaced by the 1st percentile of 

the run-length distribution and the maximum value is replaced by the 99th percentile of the run-length 

distribution) of the in-control as well as the out-of-control run-length distributions. Figure A3.4 is 

accompanied by Table A3.3 which summarizes some of the properties of the in-control and the out-of-

control run-length distributions. 

 

Studying Figure A3.4 and Table A3.3 we note that: 

 

 

(i) The run-length distributions are severely positively skewed i.e. the spread (variation) in the 

upper 25% of the distribution between the 75th percentile (or 3Q ) and the 99th percentile, is 

much larger than the spread in the lower 25% of the distribution between the 1st percentile 

and the 25th percentile (or 1Q ).  

 

The skewness of the run-length distribution is confirmed by the fact that the average run-

length (indicated by the diamond symbol) is larger than the median run-length (indicated by 

the circle) in all three the distributions. The exact numerical values of the average run-

lengths and the median run-lengths are also indicated. The skewness follows from the fact 

that the run-length distributions are geometric. 
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(ii) The run-length distribution is considerably altered following a process change. 

 

Compare, for example, the boxplot-like graph associated with the run-length distribution of 

the out-of-control process (when 225.0=p ) to the boxplot-like graph of the in-control run-

length distribution (when 2.0=p ). In particular we see that both the average run-length of 

103.1 and the median run-length of 72 of the out-of-control run-length distribution is far 

less than the average run-length of 369.8 and the median run-length of 257 associated with 

the in-control run-length distribution. A comparison of the percentiles and the standard 

deviation of the run-length leads to the same conclusion. 
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       Figure A3.4: Boxplot-like graphs of the in-control and the 

out-of-control run-length distributions of the p-chart in Case K 

Table A3.3: Summary measures of the in-control 
(IC) and the out-of-control (OOC) run-length 
distributions of the p-chart when 50=n  and 

200 .=p  in Case K 
 

 IC OOC 
(increase in p) 

OOC 
(decrease in p) 

p 0.2 0.225 0.15 
Pr(No Signal) 0.9973 0.9903 0.997 

Pr(Signal) 0.0027 0.0097 0.003 
ARL 369.84 103.13 337.26 

SDRL 369.34 102.63 336.76 
1st percentile 4 2 4 
5th  percentile 19 6 18 

10th  percentile 39 11 36 
25th (Q1) 107 30 97 

50th (MDRL) 257 72 234 
75th (Q3) 513 143 467 

90th  percentile 851 237 776 
95th  percentile 1107 308 1009 

99th  percentile 1701 473 1551 
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Probability mass functions 
 

Studying the p.m.f’s of the run-length distributions is another way to look at  the effect of a change in 

the process on the performance of the chart. 

 

Figure A3.5 displays the p.m.f’s of the in-control and the out-of-control run-length distributions, that 

is, 

0027.09973.0)50,2.0,2.0;Pr( 1
0

−== jjN        and       997.0003.0)50,2.0,15.0;Pr( 1
1

−== jjN  

for ,....2,1=j . The former is the in-control p.m.f and the latter the out-of-control p.m.f which corresponds 

to a decrease by 25% in the fraction of nonconforming p from 0.2 to 0.15. 

 

For values of j  less than approximately 370 the likelihood of obtaining these shorter run-lengths is 

larger following a decrease in the fraction non-conforming. We can write this as )Pr()Pr( 01 jNjN =>=  

for 370<j . The converse also holds, that is, for values of j  larger than approximately 370 we see that 

)Pr()Pr( 01 jNjN =<= . This means that the p-chart will signal sooner when the process moves out-of-

control than when it is in-control; which is good. 
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Figure A3.5: The probability distributions of 0N  (when 200 .== pp ) and 1N  (when 20.=p  

with 1500 .=p )1  

                                                 
1 Note: Instead of displaying the usual histograms, the tops of the bars of the histograms have been joined to better display the 
shapes of these distributions, and the bars of the histograms have been deleted. 
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3.4.2 The p-chart in Case K: Characteristics of the in-control run-length 

distribution  
 

The preceding example focused on only one particular combination of n  and 0p  i.e. 50=n  and 

2.00 =p . Other combinations of n  and 0p  are also of interest and gives us an idea of the p-chart’s 

performance over a wider range of the parameters. 

 

The false alarm rate and the average run-length are two well-known characteristics of the run-length 

distribution and most often used to measure a chart’s performance. More recently other characteristics of 

the run-length distribution, such as the standard deviation and the percentiles (quartiles), have also been 

used and supplemented the false alarm rate and the average run-length. 

 

We study all the abovementioned performance measures for the p-chart. 

 

 

3.4.2.1 False alarm rate 
 

The false alarm rate (FAR ) is the probability of a signal when the process is truly in-control and is 

given by ),,(1 00 nppp =− β  where ),,( 00 nppp =β  is found from (3-4). We can calculate the FAR  by 

substituting different combinations of values for n  and 0p  into ),,(1 00 nppp =− β . 

 

Table A3.4 lists the FAR -values (rounded to 4 decimal places) for =0p 0.01, 0.025, 0.05, 0.10, 0.15, 

0.20, 0.25, 0.30, 0.40 and 0.50 when the sample size =n  1(1)10, 12, 15(5)30, 40, 50, 75, 100, 125, 

150(50)300, 375, 500, 750, 1000 and 1500. 

 

For some combinations of n  and 0p  (especially for small values of  n  and large values of 0p ) we 

observe that the false alarm rate is zero. Although we typically expect (desire) a small false alarm rate, 

zero is not practical since all moments (such as the average and the standard deviation) of the run-length 

distribution will be undefined (see e.g. Tables A3.5 and A3.6). 
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Table A3.4: The false alarm rate (FAR) of the p -chart as a function of the sample size n  and the 
known or the specified true fraction nonconforming 0p  in Case K 

 

The known or the specified true fraction nonconforming 0p  Sample size 
n  0.01 0.025 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 
1 0.0100 0.0250 0.0500 0.1000 0.0 0.0 0.0 0.0 0. 0 0.0 
2 0.0199 0.0494 0.0025 0.0100 0.0225 0.0 0.0 0.0 0.0 0.0 
3 0.0297 0.0731 0.0073 0.0280 0.0034 0.0080 0.0156 0.0 0.0 0.0 
4 0.0394 0.0036 0.0140 0.0037 0.0120 0.0016 0.0039 0.0081 0.0 0.0 
5 0.0490 0.0059 0.0226 0.0086 0.0022 0.0067 0.0010 0.0024 0.0 0.0 
6 0.0585 0.0088 0.0328 0.0158 0.0059 0.0016 0.0046 0.0007 0.0041 0.0 
7 0.0679 0.0121 0.0038 0.0027 0.0121 0.0047 0.0013 0.0038 0.0016 0.0 
8 0.0773 0.0158 0.0058 0.0050 0.0029 0.0104 0.0042 0.0013 0.0007 0.0 
9 0.0865 0.0200 0.0084 0.0083 0.0056 0.0031 0.0013 0.0043 0.0003 0.0039 

10 0.0043 0.0246 0.0115 0.0128 0.0099 0.0064 0.0035 0.0016 0.0017 0.0020 
12 0.0062 0.0349 0.0196 0.0043 0.0046 0.0039 0.0028 0.0017 0.0028 0.0005 
15 0.0096 0.0057 0.0055 0.0127 0.0036 0.0042 0.0042 0.0037 0.0024 0.0010 
20 0.0169 0.0130 0.0159 0.0024 0.0059 0.0026 0.0039 0.0013 0.0021 0.0026 
25 0.0258 0.0238 0.0072 0.0095 0.0021 0.0056 0.0034 0.0019 0.0016 0.0041 
30 0.0361 0.0064 0.0033 0.0078 0.0029 0.0031 0.0029 0.0024 0.0012 0.0014 
40 0.0075 0.0174 0.0034 0.0051 0.0043 0.0031 0.0019 0.0030 0.0018 0.0022 
50 0.0138 0.0081 0.0032 0.0032 0.0019 0.0027 0.0031 0.0031 0.0021 0.0026 
60 0.0224 0.0039 0.0028 0.0057 0.0024 0.0022 0.0017 0.0029 0.0022 0.0027 
75 0.0069 0.0113 0.0041 0.0027 0.0028 0.0025 0.0036 0.0024 0.0030 0.0024 

100 0.0184 0.0037 0.0043 0.0049 0.0034 0.0040 0.0038 0.0031 0.0029 0.0035 
125 0.0087 0.0043 0.0040 0.0032 0.0031 0.0026 0.0029 0.0033 0.0025 0.0022 
150 0.0042 0.0047 0.0036 0.0020 0.0030 0.0031 0.0025 0.0032 0.0034 0.0024 
200 0.0043 0.0048 0.0027 0.0034 0.0022 0.0035 0.0025 0.0026 0.0030 0.0023 
250 0.0040 0.0046 0.0042 0.0024 0.0027 0.0034 0.0021 0.0030 0.0024 0.0029 
300 0.0036 0.0041 0.0027 0.0030 0.0028 0.0031 0.0027 0.0030 0.0026 0.0032 
375 0.0051 0.0034 0.0031 0.0035 0.0032 0.0024 0.0029 0.0023 0.0026 0.0027 
500 0.0052 0.0047 0.0032 0.0023 0.0033 0.0030 0.0023 0.0029 0.0030 0.0027 
750 0.0044 0.0031 0.0027 0.0029 0.0030 0.0030 0.0024 0.0028 0.0025 0.0024 

1000 0.0033 0.0036 0.0030 0.0027 0.0030 0.0030 0.0024 0.0027 0.0027 0.0026 
1500 0.0034 0.0031 0.0026 0.0030 0.0027 0.0027 0.0026 0.0026 0.0029 0.0025 

 
 

Figure A3.6 displays the  FAR-values for 50 and 25 ,10=n  on the vertical axis for selected values of 

0p  on the horizontal axis. Also shown is the nominal FAR  of 0.0027, which is the FAR  on a 3-sigma 

Shewhart X-bar control chart when the charting statistics follow a normal distribution. 

 

Figure A3.6 shows that for small values of 0p  the FAR  of the p-chart is considerably larger than the 

nominal value of 0.0027. For larger values of 0p  (or, values nearer to 0.5) the FAR  is closer to the 

nominal of 0.0027 but still not equal. This illustrates that even for known values of the true fraction 

nonconforming there is no guarantee that the FAR  of the p-chart will be equal to the nominal 0.0027.  
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There are two reasons for these discrepancies: 

 

(i) when p  is small the normal approximation to the binomial distribution is poor so both the 

charting constant 3=k  and the charting formula (mean ±  3 standard deviations) may be 

inaccurate, and 

 

(ii) due to the discrete nature of the binomial distribution only certain FAR values can be attained.  
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Figure A3.6: The false alarm rate (FAR) of the p-chart  for 50 and 25 10,=n  when 
 0.5 and 40 30 250 20 150 10 050 0250 0100 .,.,.,.,.,.,.,.,.=p in Case K compared to the nominal FAR of 

0.0027 
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3.4.2.2 Average run-length and standard deviation of the run-length 
 

The average run-length (ARL ) is the expected value or the mean of the run-length distribution and is 

equal to the reciprocal of the probability of a signal, that is, 

)),,(1/(1),,( 00 nppnppARL β−= . 

The in-control ARL  is found by replacing p  with 0p  in ),,( 0 nppARL  and is the reciprocal of the 

false alarm rate, that is, 

FARnppnppARLARL /1)),,(1/(1),,( 00000 =−== β . 

The ARL  is a measure of how fast (or slow) the control chart signals and is therefore typically used 

for out-of-control performance comparisons of the charts. 

 

Since the geometric distribution is (severely) positively skewed the ARL  becomes questionable as the 

sole metric for a chart’s performance and we therefore need to look at the standard deviation of the run-

length (SDRL ) too. 

 

The SDRL  measures the variation or the spread in the run-length distribution and is given by 

)),,(1/(),,(),,( 000 nppnppnppSDRL ββ −= . 

The in-control SDRL  is found by substituting 0p  for p  in ),,( 0 nppSDRL  which gives 

FARFARnppnppnppSDRLSDRL /1)),,(1/(),,(),,( 0000000 −=−== ββ ; 

this shows that the 0SDRL  is (like the 0ARL ) a function of the FAR . 

 

The values of the 0ARL  and the 0SDRL  that correspond to the FAR -values of Table A3.4 are shown 

in Tables A3.5 and A3.6 (rounded to 2 decimal places), respectively. We can also calculate the 0ARL  and 

the 0SDRL   for different combinations of n  and 0p  not shown in Tables A3.5 and Table A3.6 and is 

carried out by direct evaluation of expressions (3-15) and (3-16). 

 

For example, to find the in-control ARL  and the in-control SDRL   when 25.0=p , 25.00 =p , and  

11=n  we proceed as follow: 

We first calculate the control limits. These are given by (3-1)  as 

6417.011/)75.0(25.0325.0 =+=pUCL      and     1417.011/)75.0(25.0325.0 −=−=pLCL . 
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Then (3-5) shows that 7}11],0584.7min{[ ==b . The constant a  need not be calculated since the 

lower control limits is negative, that is, 0<pLCL . Using (3-4) we find that the probability of a no-signal 

is 9988.0)3,7(1)11,25.0,25.0( 25.0 =−= Iβ  so that the false alarm rate is 

0012.0)3,7()11,25.0,25.0(1)7,25.0,25.0( 25.0 ==−= IFAR β . 

The in-control ARL  is therefore 6.841)9988.01( 1
0 =−= −ARL  and the in-control standard deviation 

is 1.846)0012.0/(9988.00 ==SDRL . 

The calculations for the out-of-control ARL  and the out-of-control SDRL  are similar; we simply 

replace p  in )3,7(1)11,25.0,( pIp −=β  with a value other than 25.00 =p  and proceed along the same 

lines. 

 

Table A3.5: The in-control average run-length (ARL0) of the p -chart as a function of the sample 
size n  and the known or the specified true fraction nonconforming 0p  in Case K 

 

The known  (specified) true fraction nonconforming 0p  Sample size 
n  0.01 0.025 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 
1 100.00 40.00 20.00 10.00 ∞  ∞  ∞  ∞  ∞  ∞  
2 50.25 20.25 400.00 100.00 44.44 ∞  ∞  ∞  ∞  ∞  
3 33.67 13.67 137.93 35.71 296.30 125.00 64.00 ∞  ∞  ∞  
4 25.38 275.77 71.33 270.27 83.46 625.00 256.00 123.46 ∞  ∞  
5 20.40 168.26 44.26 116.82 448.93 148.81 1024.00 411.52 ∞  ∞  
6 17.09 114.06 30.51 63.09 169.92 625.00 215.58 1371.74 244.14 ∞  
7 14.72 82.84 266.17 366.57 82.62 214.04 744.73 263.80 610.35 ∞  
8 12.94 63.17 172.76 199.03 350.40 96.09 236.59 775.00 1525.88 ∞  
9 11.56 49.96 119.60 120.03 177.66 326.12 744.73 233.05 3814.70 256.00 

10 234.40 40.63 86.93 78.15 101.28 157.00 285.25 628.78 596.05 512.00 
12 161.96 28.63 51.10 230.98 215.44 256.20 359.52 591.14 355.85 2048.00 
15 103.84 176.24 182.91 78.61 277.35 235.86 238.49 273.78 417.02 1024.00 
20 59.31 77.19 62.89 419.10 168.89 385.38 253.67 781.93 468.26 388.07 
25 38.82 41.96 139.57 105.53 467.01 180.02 296.70 522.87 611.72 245.26 
30 27.66 157.04 304.65 128.47 339.86 321.44 341.52 410.34 854.91 698.86 
40 133.38 57.31 294.82 197.51 231.84 325.83 539.81 331.42 550.59 450.16 
50 72.37 122.96 313.64 310.57 512.93 369.84 320.92 323.37 469.25 384.29 
60 44.60 259.52 351.05 176.03 411.27 446.91 585.24 347.13 457.45 374.47 
75 144.51 88.38 242.82 368.47 351.24 404.72 280.73 424.38 336.52 409.13 

100 54.42 270.11 233.96 203.98 294.90 250.93 265.00 324.31 344.84 284.28 
125 114.61 230.59 248.37 312.50 322.82 392.14 349.00 303.11 405.93 449.14 
150 237.46 212.87 277.54 488.03 329.49 325.75 398.29 313.45 293.42 415.71 
200 232.80 206.23 370.42 294.04 449.57 284.28 401.99 389.85 333.58 438.70 
250 248.43 219.07 240.23 415.64 376.32 291.56 467.00 338.68 424.89 347.38 
300 277.57 244.39 365.86 335.28 354.65 324.53 373.71 330.57 384.63 315.53 
375 197.63 296.17 325.93 284.05 314.43 413.51 343.76 431.32 381.72 370.96 
500 192.01 213.20 316.36 429.94 306.11 328.38 434.37 345.98 336.29 370.81 
750 227.35 323.23 367.35 343.32 329.48 332.59 418.21 358.28 397.20 413.68 

1000 300.16 279.22 327.92 370.18 331.16 330.18 410.94 374.21 374.59 378.00 
1500 297.89 323.23 384.88 332.36 370.33 372.32 385.02 389.48 345.82 398.62 
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It is straightforward to show using (3-15) and (3-16) that )1( −= ARLARLSDRL  and implies that 

the standard deviation is always less than the average run-length i.e. ARLSDRL < , and holds whether the 

process is in-control or out-of-control. 

 

This relationship between the SDRL and the ARL  is clearly visible from Tables A3.5 and A3.6. For 

example, for 5=n  and 025.00 =p  the in-control ARL  equals 168.26 whereas the in-control SDRL  

equals 167.67. We also looked at this relationship between the SDRL  and the ARL  of the run-length 

distribution in Case U when the process parameters are unknown. 

 

Note that, as mentioned before, the in-control average run-length in Table A3.5 and the in-control 

standard deviation of the run-length in Table A3.6 are undefined for the same combinations of n  and 0p  

for which the false alarm rate in Table A3.4 is zero. This is undesirable and shows that for some 

combinations of n  and 0p  the p-chart would not perform satisfactorily in practice. 
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Table A3.6: The in-control standard deviation of the run-length (SDRL0) of the p -chart as a 
function of the sample size n  and the known or the specified fraction nonconforming 0p  in Case K 

 

The known or the specified fraction nonconforming 0p  Sample size 
n  0.01 0.025 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 
1 99.50 39.50 19.49 9.49 ∞  ∞  ∞  ∞  ∞  ∞  
2 49.75 19.75 399.50 99.50 43.94 ∞  ∞  ∞  ∞  ∞  
3 33.17 13.16 137.43 35.21 295.80 124.50 63.50 ∞  ∞  ∞  
4 24.87 275.27 70.83 269.77 82.96 624.50 255.50 122.96 ∞  ∞  
5 19.90 167.76 43.76 116.32 448.43 148.31 1023.50 411.02 ∞  ∞  
6 16.58 113.56 30.01 62.59 169.42 624.50 215.08 1371.24 243.64 ∞  
7 14.21 82.34 265.67 366.07 82.12 213.54 744.23 263.30 609.85 ∞  
8 12.43 62.67 172.26 198.53 349.90 95.59 236.09 774.50 1525.38 ∞  
9 11.05 49.45 119.10 119.53 177.16 325.62 744.23 232.55 3814.20 255.50 

10 233.90 40.13 86.43 77.65 100.77 156.50 284.75 628.28 595.55 511.50 
12 161.45 28.13 50.60 230.48 214.94 255.70 359.02 590.64 355.35 2047.50 
15 103.34 175.74 182.41 78.11 276.85 235.36 237.99 273.28 416.52 1023.50 
20 58.81 76.69 62.39 418.60 168.39 384.88 253.17 781.43 467.76 387.57 
25 38.32 41.45 139.07 105.02 466.51 179.52 296.20 522.37 611.22 244.76 
30 27.16 156.53 304.15 127.97 339.36 320.93 341.02 409.84 854.41 698.36 
40 132.88 56.81 294.32 197.01 231.34 325.33 539.31 330.92 550.09 449.66 
50 71.87 122.46 313.14 310.07 512.43 369.34 320.42 322.87 468.75 383.79 
60 44.10 259.02 350.55 175.52 410.77 446.41 584.74 346.63 456.95 373.97 
75 144.01 87.88 242.32 367.97 350.74 404.22 280.23 423.88 336.02 408.63 

100 53.92 269.61 233.46 203.48 294.40 250.43 264.50 323.81 344.34 283.78 
125 114.11 230.09 247.87 312.00 322.32 391.64 348.50 302.61 405.43 448.64 
150 236.96 212.37 277.03 487.53 328.99 325.25 397.79 312.95 292.92 415.21 
200 232.30 205.73 369.92 293.54 449.07 283.78 401.49 389.35 333.08 438.20 
250 247.93 218.57 239.72 415.14 375.82 291.06 466.50 338.18 424.39 346.88 
300 277.07 243.89 365.36 334.78 354.15 324.03 373.21 330.07 384.13 315.03 
375 197.13 295.67 325.43 283.55 313.92 413.01 343.26 430.82 381.22 370.46 
500 191.51 212.70 315.86 429.44 305.61 327.88 433.87 345.48 335.79 370.31 
750 226.85 322.73 366.85 342.82 328.98 332.09 417.71 357.78 396.70 413.18 

1000 299.66 278.72 327.42 369.68 330.66 329.68 410.44 373.71 374.09 377.50 
1500 297.39 322.73 384.38 331.86 369.83 371.82 384.52 388.98 345.32 398.12 
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3.4.2.3 Run-length distribution 
 

Figure A3.6 showed the discrepancy between the false alarm rate (FAR ) of the p-chart in Case K and 

the nominal FAR  of 0.0027 i.e. the FAR  associated with a 3-sigma X-bar chart for a normal process. 

Because the run-length distribution holds more information than the FAR it is instructive to also look at 

graphs of the run-length distribution of the p-chart in Case K compared to the run-length distribution of 

the 3-sigma Shewhart X-bar chart. 

 

Figure A3.7 displays boxplot-like graphs of the run-length distributions of the p-chart in Case K for 

50 and 25 ,10=n  when  0.5 and 3.0 ,2.0 ,1.0 ,05.00 =p . Also shown in Figure A3.7 is the boxplot-like 

graph of the 3-sigma Shewhart X-bar chart, which has a FAR  of 0.0027, an in-control ARL  of 370.4 and 

an in-control SDRL  of 369.9. 

 

The properties of the 3-sigma Shewhart X-bar chart are the nominally expected values for a 3-sigma 

chart such as the p-chart. We therefore typically use the performance characteristics of the X-bar chart as 

benchmark values for that of the p-chart (or any other Shewhart-type chart) in Case K. 

 

Table A3.7 accompanies Figure A3.7 and shows the false alarm rate (FAR ), the average run-length 

( ARL ), the standard deviation of the run-length (SDRL ) as well as the 1st, the 5th, the 10th, the 25th, the 

50th, the 75th, the 95th and the 99th percentiles of all the run-length distributions displayed in Figure A3.7. 

The 25th percentile is the 1st quartile (typically denoted by 1Q ), the 50th percentile is the 2nd quartile (also 

denoted by 2Q  and called the median run-length, or simply the MDRL ), whereas the 75th percentile is the 

3rd quartile (in some cases denoted by 3Q ). These percentiles are all important descriptive statistics. For 

example, the inter-quartile range (IQR ) is calculated as the difference between the 3rd and 1st quartiles, 

that is, 13 QQIQR −= . The IQR  measures the spread of the middle 50% in the run-length distribution. 

The median run-length (MDRL ) is a robust measure of the central tendency (location) of the run-length 

distribution and sometimes preferred instead of the average run-length. 

 

All the abovementioned characteristics of the p-chart were computed using expressions (3-12) 

through (3-17) in Table 3.1. The properties of the 3-sigma Shewhart X-bar chart were calculated using 

expressions available in the literature (see e.g. Chakraborti, (2000)). 

 

We assume that the 1st percentile is the minimum possible run-length and that the 99th percentile is the 

maximum achievable run-length and therefore compute the range (R ) of the run-length distribution as the 
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difference between the 99th percentile and the 1st percentile, that is, =−= minmaxR   99th percentile – 1st 

percentile. 

 

Figure A3.7 shows that for 10=n  and 25=n  the run-length distribution of the p-chart is much 

different from that of the X-bar chart. For example, for 05.00 =p , 0.1 and 0.2 the ARL  and the SDRL  

are both far less than the ARL  of 370.4 and the SDRL  of 369.9 of the X-bar chart (see e.g. Table A3.7). 

The range of the run-length distributions are also less. For 3.00 =p  and 0.5 the converse holds. In other 

words, the ARL , the SDRL  and the range of the run-length distribution of the p-chart are all larger than 

what we would nominally expect from a 3-sigma Shewhart-type control chart. 

 

For 50=n , the run-length distribution is more like that of the X-bar chart in that the ARL  is 

approximately equal to 370.4, the SDRL  is almost 369.9 and the range of the run-length distribution is 

close to being between 4 (the 1st percentile of the X-bar chart) and 1704 (the 99th percentile of the X-bar 

chart). However, the run-length distribution is still not exactly the same. This shows that even if the true 

fraction nonconforming is specified (known) and n  is large, the p-chart still does not perform as 

(nominally) expected.  

 

Table A3.7: Properties of the in-control (IC) run-length distribution of the  p-chart  for 
50 and 25 10,=n  when  0.5 and 30 20 10 0500 .,.,.,.=p in Case K, and that of the 3-sigma Shewhart 

X-bar chart 

 
     Percentiles / Quartiles 

n p0 FAR ARL SDRL 1st 5th 10th 25th 

(Q1) 
50th 

(MDRL) 
75th 
(Q3) 

90th 95th 99th 

0.05 0.0115 86.9 86.4 1 5 10 25 60 120 200 259 399 
0.10 0.0128 78.2 77.7 1 4 9 23 54 108 179 233 358 

0.20 0.0064 157.0 156.5 2 9 17 46 109 217 361 469 721 
0.30 0.0016 628.8 628.3 7 33 67 181 436 871 1447 1883 2894 

n = 10 

0.50 0.0020 512.0 511.5 6 27 54 148 355 710 1178 1533 2356 

0.05 0.0072 139.6 139.1 2 8 15 41 97 193 321 417 641 

0.10 0.0095 105.5 105.0 2 6 12 31 73 146 242 315 484 
0.20 0.0056 180.0 179.5 2 10 19 52 125 249 414 538 827 
0.30 0.0019 522.9 522.4 6 27 56 151 363 725 1203 1565 2406 

n = 25 

0.50 0.0041 245.3 244.8 3 13 26 71 170 340 564 734 1128 

0.05 0.0032 313.6 313.1 4 17 33 91 218 435 722 939 1443 
0.10 0.0032 310.6 310.1 4 16 33 90 215 430 714 929 1428 

0.20 0.0027 369.8 369.3 4 19 39 107 257 513 851 1107 1701 

0.30 0.0031 323.4 322.9 4 17 35 93 224 448 744 968 1487 
n = 50 

0.50 0.0026 384.3 383.8 4 20 41 111 267 533 884 1150 1768 

3-sigma X-bar 0.0027 370.4 369.9 4 19 39 107 257 513 852 1109 1704 
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Figure A3.7: Boxplot-like graphs of the in-control (IC) run-length distribution of the  p-chart  for 
50 and 25 10,=n  when  0.5 and 30 20 10 0500 .,.,.,.=p in Case K compared to the run-length 

distribution of the 3-sigma Shewhart X-bar chart 
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The foregoing discussion focused on the performance of the p-chart as measured by the false alarm 

rate, the average run-length, the standard deviation of the run-length and the percentiles of the run-length 

distribution and compared the p-chart’s performance to that of the well-known 3-sigma Shewhart X-bar 

chart. It is also useful and important to know how to design a p-chart. The design of the p-chart in Case K 

is therefore looked at next. 

 

 

3.4.2.4 The OC-curves and ARL curves 
 

When designing a p-chart in Case K we need to choose a sample size n  and while doing so keep in 

mind the size of the shift we are interested in detecting i.e. by how much the true fraction nonconforming 

p  will differ from its specified value 0p  once a shift occurs. 

 

Choosing the appropriate sample size is typically carried out by looking at a family of OC-curves or a 

family of ARL-curves, which are obtained by plotting multiple (at least two) OC-curves or multiple ARL-

curves on the same set of axis. 

 

Recall that an OC-curve is a graph (plot) of the probability of a no-signal ),,(0 nppβ  on the vertical 

axis for some values of 10 << p  on the horizontal axis. Hence, a family of two OC-curves is obtained by 

plotting ),,( 10 nnpp =β  and ),,( 20 nnpp =β , where 1n  and 2n  denote two different sample sizes, on 

the same set of axes; hence, each OC-curve corresponds to a specific sample size (in this case 1n  or 2n ) 

but the value of 0p  is the same for each curve. Similarly, an ARL-curve is a graph (plot) of the average 

run-length ),,( 0 nppARL  on the vertical axis for some values of 10 << p  on the horizontal axis so that 

family of two ARL-curves is obtained by plotting ),,( 10 nnppARL =  and ),,( 20 nnppARL = on the same 

set of axes. 

 

Suppose that we would like to compare and decide between two control charting plans to monitor the 

specified fraction nonconforming of 5.00 =p . Further, assume that both plans use a p-chart with 

3-sigmacontrol limits; the first plan uses 25=n  items per sample whereas the second plan uses double 

that i.e. 50=n ; the question is then what the effect of sampling twice as many items is. 

 

To assist us with our choice between the two control charting plans Figure A3.8 shows the OC-curve 

of each of the control charting plans. In other words, Figure A3.8 shows a family of two OC-curves where 

)25,5.0,( 0 == nppβ  and )50,5.0,( 0 == nppβ  are plotted on the vertical axis versus 10 << p  on the 
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horizontal axis. In addition, Table A3.8 lists some values of )25,5.0,(pβ  and )50,5.0,(pβ  for values 

of 95.0)05.0(05.0=p . 

 

Figure A3.8 shows that the plan that uses 50=n  items per sample has a consistently lower -riskβ  or 

OC. Thus, if the objective is to detect a shift in the fraction nonconforming as soon as possible and we 

can afford the extra cost of sampling, this plan will be preferred.  In the language of hypothesis testing, 

this shows that with all other things being equal, the power of test to detect a shift is higher for a larger 

sample size. 

 

Figure A3.9 displays a family of two ARL-curves which corresponds to the OC-curves of Figure A3.8, 

that is, Figure A3.9 shows the average run-lengths )25,5.0,( 0 == nppARL  and 

)50,5.0,( 0 == nppARL  as functions of 10 << p . A decision based on the OC-curves of Figure A3.8 

and a decision based on the ARL-curves of Figure A3.9 will therefore be exactly the same; this is so since 

the relationship between the average run-length and the probability of a no-signal is one-to-one and given 

by 1
00 )),,(1(),,( −−= nppnppARL β . Table A3.8 also shows the exact numerical values of 

),5.0,( npARL  for 50=n  and 25 at 95.0)05.0(05.0=p . 
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Figure A3.8: Family of Operating Characteristic (OC) Curves for the p-chart for a specified 
fraction nonconforming of 500 .=p  when 50=n  and 25 
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Figure A3.9: Family of Average Run-Length (ARL) Curves for the p-chart for a specified fraction 
nonconforming of 500 .=p  when 50=n  and 25 

 

Table A3.8: The values of the OC and the ARL of a p-chart n Case K when 500 .=p  and 50=n  
and  25  

 Probability of a no-signal /  
Operating Characteristic (OC) 

Average Run-Length (ARL) 

p  ),.,( 5050 =npββββ  ),.,( 2550 =npββββ  ),.,( 5050 =npARL  ),.,( 2550 =npARL  

0.05 0.0000 0.0012 1.00 1.00 
0.10 0.0001 0.0334 1.00 1.03 
0.15 0.0053 0.1615 1.01 1.19 
0.20 0.0607 0.3833 1.06 1.62 
0.25 0.2519 0.6217 1.34 2.64 
0.30 0.5532 0.8065 2.24 5.17 
0.35 0.8122 0.9174 5.33 12.10 
0.40 0.9460 0.9706 18.53 34.05 
0.45 0.9895 0.9913 95.37 115.35 
0.50 0.9974 0.9975 384.29 400.98 
0.55 0.9895 0.9973 95.37 371.83 
0.60 0.9460 0.9905 18.53 104.99 
0.65 0.8122 0.9679 5.33 31.20 
0.70 0.5532 0.9095 2.24 11.05 
0.75 0.2519 0.7863 1.34 4.68 
0.80 0.0607 0.5793 1.06 2.38 
0.85 0.0053 0.3179 1.01 1.47 
0.90 0.0001 0.0980 1.00 1.11 
0.95 0.0000 0.0072 1.00 1.01 
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Summary 
 

The p-chart is well-known, easy to use and its’ applications is based on the implicit assumption that 

the binomial distribution is well approximated by the normal distribution, which, as one might expect, is 

not always the case. For example, as the preceding discussion shows, in some cases (especially for small 

values of n ) the FAR  is zero which implies that the ARL , the SDRL  and other moments are undefined. 

Moreover, the performance of the p-chart with a known or given or specified value for p  might not be 

anything like that of the 3-sigma X-bar chart. 

 

The p-chart is used to monitor the fraction nonconforming in a sample. The c-chart on the other hand 

is used to monitor the number of nonconformities in an inspection unit and is based on the Poisson 

distribution. We study the Case K c-chart in the next sections. 
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3.4.3 The c-chart in Case K: An example 
 

We first look at an example of a c-chart in Case K to illustrate the typical application of the chart and 

investigate the characteristics of the chart for a specific value of 0c  (the specified value of c ) while 

varying 0>c  (true average number of nonconformities in an inspection). The performance of chart is 

then further studied in subsequent sections by considering multiple (various) values of 0c . 

 

 

Example A2: A Case K c-chart 
 

Suppose that the true average number of nonconformities in an inspection unit c  is known or 

specified to be 140 =c .  The 3-sigma control limits for the c-chart are  

22.2514314 =+=cUCL          14=cCL           78.214314 =−=cLCL  

and are calculated using (3-2). 

 

Table A3.9 shows ten values simulated from a )14(Poi  distribution. We can assume without loss of 

generality that the values (counts) are the charting statistics of the c-chart; we therefore denote them by iY  

for 10,...,2,1=i . The c-chart is shown in Figure A3.10. The chart displays the upper control limit (UCL), 

the center line (CL), the lower control (LCL) and the iY ’s from each inspection unit plotted on the vertical 

axis versus the inspection unit number (time) on the horizontal axis. We see from Figure A3.10 that none 

of the 10 points plot out-of-control. 

 

As long as no point plots outside the control limits we continue to monitor the process; this involves 

obtaining independent successive inspection units, calculating the charting statistic (i.e. the number of 

nonconformities) for each new inspection unit, and then plotting these one at a time on the chart. Once a 

point plots outside the limits it is taken as evidence that c  is no longer equal to its specified value of 

140 =c . A search for assignable causes is then started. 

 

Table A3.9: Data for the c-chart in Case K 

Inspection unit number / Time: i  1 2 3 4 5 6 7 8 9 10 

Counts: iY  17 9 17 12 16 16 9 21 15 11 
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Figure A3.10: A c-chart in Case K 
 

 

Performance of the c-chart 
 

To study the performance of the aforementioned c-chart we analyze its in-control and out-of-control 

properties for which we need the probability of a no-signal, or equivalently, the probability of a signal.  

The probability of a no-signal completely characterizes the run-length distribution of the chart. 

 

For 140 =c  it was shown that the upper control limit is 22.25=cUCL  and the lower control limit 

is 78.2=cLCL . Expression (3-8) shows that 2]78.2[ ==d  and 25]22.25[ ==f ; these constants are 

needed to calculate the probability of a no-signal. We can study the in-control and the out-of-control  

performance of the chart by substituting values for c  in the probability of a no-signal which is 

)()()14,( 326 ccc Γ−Γ=β  and is found using (3-7).  
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In-control properties 
 

As long as the true average number of nonconformities c  remains unchanged and equal to its 

specified value of 140 =c  we deal with an in-control process. The probability of a no signal is then 

9973.0)14()14()14,14( 326 =Γ−Γ==cβ  

so that the false alarm rate is 1 (14,14) 0.0027FAR β= − = . 

The in-control run-length distribution is therefore geometric with probability of success equal to 

0.0027, which we write as )0027.0(~0 GeoN .  

 

 

Out-of-control properties 
 

When the true average number of nonconformities in an inspection unit changes, c  is no longer equal 

to 140 =c  and implies that we have the out-of-control scenario. We look at the scenario when c  

increases; a decrease in c  can be handled in a similar fashion.  

 

Increase in c : Upward shift 
 

Suppose c  increases from 14 to 15; this is approximately a 7.14% increase in c . The probability of a 

no-signal decreases from 0.9973 (when the process was in-control) to 

 9938.0)15()15()14,15( 326 =Γ−Γ==cβ  

whereas the probability of a signal increases from 0.0027 to 0062.0)14,15(1 ==− cβ . The increase in 

the probability of a signal is good since the likelihood of detecting the shift increases. 

 

The out-of-control run-length distribution is geometric with probability of success equal to 0.0062. 

Expression (3-21) shows that the out-of-control average run-length is 66.1600062.0/11 ==ARL . So, if it 

happens that c  increases from 14 to 15 (and stays fixed at 15) one would expect the chart to detect such a 

shift (and signal) on approximately the 161st  sample following the shift. 
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The OC-curve 
 

The OC-curve and the probability of a signal as functions of c  for 420 ≤< c  are shown in Figure 

A3.11. In addition, Table A3.10 shows values of the probability of a no-signal )()()14,( 326 ccc Γ−Γ=β  

and the probability of a signal )()(1)14,(1 326 ccc Γ+Γ−=− β  for values of 42)2(2=c . 

 

Studying the OC-curve and the probability of a signal as function of c  helps us see what the 

performance of our c-chart would be when a shift occurs. For example, if c  was to decrease from 14=c  

to 8=c  (which may be interpreted as an improvement in the process as approximately 42.9% less 

nonconformities (on average) in an inspection unit will in future be observed) we see from Table A3.10 

that 0138.0)14,8(1 0 ===− ccβ  so that the 70.72=ARL  and the 20.72=SDRL . 

 

Note that, the two curves of Figure A3.11 are very similar to that of the p-chart considered earlier (see 

e.g. Figure A3.2); this is so because the values of n  and  0p  (for the p-chart) and 0c  (in case of the c-

chart) is such that the false alarm rate (FAR) of both the charts are 0.0027, and so, the IC run-length 

distributions of these charts and all other performance measures (including the OOC performance 

measures) are roughly the same.  
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Figure A3.11: The OC-curve and the probability of a signal as a function of c  when 140 =c   
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Table A3.10: The Probability of a no-signal and the Probability of a signal for 4222 )(=c  when 
140 =c  

c P(No Signal | process OOC) P(Signal | process OOC) ARL SDRL 
2 0.3233 0.6767 1.48 0.84 
4 0.7619 0.2381 4.20 3.67 
6 0.9380 0.0620 16.14 15.63 
8 0.9862 0.0138 72.70 72.20 

10 0.9972 0.0028 358.80 358.30 
12 0.9992 0.0008 1204.80 1204.30 
14 0.9973 0.0027 370.16 369.66 
16 0.9869 0.0131 76.13 75.63 
18 0.9554 0.0446 22.42 21.91 
20 0.8878 0.1122 8.91 8.40 
22 0.7771 0.2229 4.49 3.95 
24 0.6319 0.3681 2.72 2.16 
26 0.4739 0.5261 1.90 1.31 
28 0.3272 0.6728 1.49 0.85 
30 0.2084 0.7916 1.26 0.58 
32 0.1228 0.8772 1.14 0.40 
34 0.0674 0.9326 1.07 0.28 
36 0.0345 0.9655 1.04 0.19 
38 0.0166 0.9834 1.02 0.13 
40 0.0076 0.9924 1.01 0.09 
42 0.0033 0.9967 1.00 0.06 

 

 

 

 

 

Run-length distributions 
 

Figure A3.12 displays boxplot-like graphs of the in-control and the out-of-control run-length 

distributions of the c-chart with the average run-lengths (ARL’s) and the median run-lengths (MDRL’s) 

indicated (the former by diamond symbols and the latter by circles). The exact numerical values of the 

ARL’s and the MDRL’s are also shown in Figure A3.12 and listed in Table A3.11 together with the 

probability of a no-signal, the probability of a signal and some percentiles (quartiles) of the in-control and 

the out-of-control run-length distributions. 

 

The ARL and the MDRL measures the central tendency (location) of the run-length distribution. The 

MDRL however is more robust and outlier resistant than the ARL. In both the in-control and the out-of-

control run-length distributions the ARL is larger than the MDRL and indicates that the in-control and the 

out-of-control run-length distributions are non-normal and positively skewed. The skewness of the run-

length distributions is also observed by comparing the upper and the lower tails of each of the 
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distributions, that is, the distance between the 99th percentile and the 75th percentile to the distance 

between the 25th percentile and the 1st percentile; this comparison between the upper and lower tails is 

done separately for each distribution. 

 

For example, for the in-control run-length distribution (when 140 == cc ) Table A3.11 shows that the 

distance between the 99th percentile and the 75th percentile is 11905131703 =−  whereas the distance 

between the 25th and the 1st percentiles of the in-control run-length distribution is 1034107=− . The latter 

is much larger (approximately 1190/103 = 11.5 times) than the former and shows, as mentioned before, 

that the in-control run-length distribution is positively skewed. 

 

Most importantly however Figure A3.12 shows the overall difference between the in-control ( 14=c ) 

and the out-of-control ( 15=c ) run-length distributions. For example, the out-of-control average run-

length is 160.7 compared to the in-control average run-length of 370.2. Similarly, the out-of-control 

median run-length is 112 versus the in-control median run-length of 257. Furthermore, the range (R) and 

the inter-quartile range (IQR) of the in-control and the out-of-control run-length distributions differ 

somewhat. Both the range and the inter-quartile range measure the spread (variation) in the run-length 

distributions. The range measures the overall spread and is the distance between the 99th percentile 

(maximum) and the 1st percentile (minimum). The IQR, on the other hand, is the distance between the 3rd 

and the 1st quartile, that is, 13 QQIQR −=  and measures the variation in the middle 50% of the 

distribution. For the in-control run-length distribution Table A3.11 shows that the range of the in-control 

run-length distribution is 1699417030 =−=R  and that the inter-quartile range of the in-control run-

length distribution is 4061075130 =−=IQR . The values of 0R  and 0IQR  are both larger than that of the 

out-of-control run-length distribution. For the out-of-control run-length distribution we have that 

73627381 =−=R  and 176472231 =−=IQR . This big discrepancy between the range and the inter-

quartile range of the in-control and the out-of-control run-length distributions emphasizes that once a shift 

occurs, the run-length distribution is severely altered in that we can expect the chart to signal (detect the 

shift) sooner, which is of course good. 
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Figure A3.12: Boxplot-like graphs of the in-control (IC) 

           and the out-of-control (OOC) run-length 

             distributions of the c-chart in Case K 

 

 

The preceding discussion focused on the properties of the c-chart for one particular value of c  

i.e. 140 =c . Other values of 0c  are also of interest in order to get an idea of the overall performance of the 

c-chart and can only be obtained by studying the characteristics of the c-chart for a wider range of values 

for 0c . 

Table A3.11: Summary measures of the 
in-control (IC) and the out-of-control 

(OOC) run-length distributions of the c-
chart when 140 =c  in Case K 

  IC OOC (increase in c ) 
c 14 15 

Pr(No Signal) 0.9973 0.9938 
Pr(Signal) 0.0027 0.0062 

ARL 370.16 160.66 
SDRL 369.66 160.16 

1st percentile 4 2 
5th  percentile 19 9 

10th  percentile 39 17 
25th (Q1) 107 47 

50th (MDRL) 257 112 
75th (Q3) 513 223 

90th  percentile 852 369 
95th  percentile 1108 480 

99th  percentile 1703 738 
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3.4.4 The c-chart in Case K: Characteristics of the in-control run-length 

distribution 
 

 

To get a better idea of the overall performance of the c-chart in Case K we look at the run-length 

distribution and its characteristics for a range of values for 0c . We consider both small and large values of 

0c . 

 

To this end, Table A3.12 shows the control limits ( cLCL  and cUCL ), the charting constants d  and 

f , the probability of a no signal when the process is in-control, the false alarm rate (FAR), the in-control 

average run-length ( 0ARL ), and the in-control standard deviation of the run-length ( 0SDRL ) when 

50)5(10)1(10 =c , 75 and 100, respectively. 

 

Table A3.12 is accompanied by Table A3.13 which shows the percentiles of the run-length 

distributions of the c-chart for the same values of 0c . The values in columns (2) through (9) of Table 

A3.12 were computed using expressions (3-2), (3-7), (3-8) and the expressions in Table 3.2. The 

percentiles were calculated using expression (3-23) in Table 3.2. 

  

For illustration purposes, consider the c-chart with 350 =c . Table A3.12 shows that 

25.1735335 =−=cLCL      and      75.5235335 =+=cUCL  

so that 17]25.17[ ==d  and 52]75.52[ ==f . It thus follows that 9967.0)35,35( 0 === ccβ , 

42.301)35,35( 00 === ccARL  and 92.300)35,35( 00 === ccSDRL . In addition Table A3.13 shows 

that the 2090 =MDRL  and that the 4183 =Q  and the 871 =Q  so that the 40213 =−= QQIQR . 

 

However, note that, since the FAR and the ARL are most often used in OOC performance comparisons 

we primarily focus on the FAR and the in-control ARL in our discussion on the performance of the c-chart 

in Case K. In particular, we compare the FAR and the ARL of the c-chart in Case K to that of the well-

known 3-sigma X-bar chart. 
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Table A3.12: Characteristics of the in-control run-length distribution of the c-chart for 
50510110 )()(=c , 75 and 100 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

0c  cLCL  cUCL  d  f  Pr(No Signal | IC) FAR ARL0 SDRL0 

1 -2.00 4.00 0 3 0.6131 0.3869 2.58 2.02 

2 -2.24 6.24 0 6 0.8601 0.1399 7.15 6.63 

3 -2.20 8.20 0 8 0.9464 0.0536 18.66 18.15 

4 -2.00 10.00 0 9 0.9736 0.0264 37.81 37.31 

5 -1.71 11.71 0 11 0.9878 0.0122 82.03 81.53 

6 -1.35 13.35 0 13 0.9939 0.0061 163.74 163.24 

7 -0.94 14.94 0 14 0.9934 0.0066 150.85 150.35 

8 -0.49 16.49 0 16 0.9959 0.0041 246.70 246.20 

9 0.00 18.00 0 17 0.9946 0.0054 183.72 183.22 

10 0.51 19.49 0 19 0.9965 0.0035 285.74 285.23 

15 3.38 26.62 3 26 0.9965 0.0035 283.83 283.33 

20 6.58 33.42 6 33 0.9971 0.0029 339.72 339.22 

25 10.00 40.00 10 39 0.9960 0.0040 248.14 247.64 

30 13.57 46.43 13 46 0.9971 0.0029 349.94 349.44 

35 17.25 52.75 17 52 0.9967 0.0033 301.42 300.92 

40 21.03 58.97 21 58 0.9964 0.0036 275.36 274.86 

45 24.88 65.12 24 65 0.9976 0.0024 413.04 412.54 

50 28.79 71.21 28 71 0.9975 0.0025 396.70 396.20 

75 49.02 100.98 49 100 0.9967 0.0033 299.77 299.27 

100 70.00 130.00 70 129 0.9967 0.0033 307.36 306.86 

 

Table A3.13: Percentiles of the in-control run-length distribution of the c-chart for 
50510110 )()(=c , 75 and 100 

 Percentiles of the run-length distribution 

0c  1st 5th 10th 
25th 
(Q1) 

50th 

(MDRL) 
75th 

(Q3) 
90th 95th 99th 

1 2 2 2 2 2 3 5 7 10 
2 2 2 2 2 5 10 16 20 31 
3 2 2 2 6 13 26 42 55 84 
4 2 2 4 11 26 52 86 112 172 
5 5 5 9 24 57 114 188 245 376 
6 2 9 18 47 114 227 376 490 752 
7 2 8 16 44 105 209 347 451 693 
8 3 13 26 71 171 342 567 738 1134 
9 2 10 20 53 128 255 422 549 844 

10 3 15 31 83 198 396 657 855 1314 
15 3 15 30 82 197 393 653 849 1305 

20 4 18 36 98 236 471 782 1017 1563 
25 3 13 27 72 172 344 571 742 1141 
30 4 18 37 101 243 485 805 1047 1610 
35 4 16 32 87 209 418 693 902 1386 
40 3 15 29 80 191 382 633 824 1266 
45 5 22 44 119 286 572 950 1236 1900 
50 4 21 42 114 275 550 913 1187 1825 
75 4 16 32 87 208 415 690 897 1379 

100 4 16 33 89 213 426 707 920 1414 
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3.4.4.1 False alarm rate and average run-length 
 

Figure A3.13 shows the percentage difference between the false alarm rate (FAR) of the c-chart in 

Case K and the nominal FAR of 0.0027 i.e. the FAR of a 3-sigma Shewhart X-bar chart. The percentage 

difference is seen to be mostly positive; only for 450 =c  and 50 is the percentage difference negative. It 

is also clear that, in general, the FAR is far from 0.0027; especially for small values of 0c  i.e. less than or 

equal to 10, say.  

 

In particular, Figure A3.13 shows, in general, that (i) the FAR is hundreds of percents larger than 

0.0027, and (ii) as 0c  increases the percentage difference gets smaller. A c-chart based on 60 =c , for 

instance, has a FAR of 0.0061, which is 126% larger than 0.0027 whereas a c-chart based on 100 =c  has 

a FAR of 0.0035 (which is 30% larger than 0.0027) and a c-chart based on 350=c  has a  FAR equal to 

0.0033 (which is only 23% larger).  
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Figure A3.13: Percentage difference between the false alarm rate (FAR) of the c-chart and the 
nominal FAR of 0.0027 for 50510160 )()(=c , 75 and 100 

 

Figure A3.14 shows the percentage difference between the average run-length (ARL) of the c-chart in 

Case K and that of the nominal ARL of 370.4, which is the ARL of a 3-sigma Shewhart X-bar chart. The 

percentage difference is seen to be mostly negative and implies shorter in-control ARL’s than nominally 

expected from a 3-sigma chart like the c-chart. Thus, we can deduce that, unless the specified value 0c  of 

c  is reasonably large, the c-chart will erroneously signal more often than what is nominally expected 

from a 3-sigma chart. 

 
 
 



 252 

-98%-95%
-90%

-78%

-56%-59%

-33%

-50%

-23%-23%

-8%

-33%

-6%

-19%
-26%

12% 7%

-19%-17%

-99%

-120%

-100%

-80%

-60%

-40%

-20%

0%

20%

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 75 100

c0

P
er

ce
nt

ag
e 

di
ff

er
en

ce

 

Figure A3.14: Percentage difference between the average run-length (ARL) of the c-chart and the 
nominal ARL of 370.4 for 50510110 )()(=c , 75 and 100. 

 

 

 

3.4.4.2 The run-length distribution 
 

 

It is good to make a visual comparison of the run-length distributions since it gives us an overall idea 

of just how different (or similar) the run-length distribution of the c-chart is to that of the 3-sigma X-bar 

chart. Figure A3.15 displays boxplot-like graphs of the run-length distribution of the c-chart when 

50)5(10)1(60 =c  and also shows a boxplot-like graph of the run-length distribution of the 3-sigma X-bar 

chart. 

 

We  see that, in general, for small values of 0c  the run-length distribution of the c -chart differs 

substantially from that of the 3-sigma X-bar chart in that the 0ARL  and the 0MDRL  are considerably 

smaller and the spread (as measured by the range R) in the run-length distribution of the c-chart is 

noticeably less than that of the X-bar chart. Only for larger values of 0c  does the run-length distribution 

of the c -chart become more like that of the 3-sigma X-bar chart. 
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Figure A3.15: Boxplot-like graphs of the in-control (IC) run-length distribution of the c-chart for 
100 and  75 50, 45, 40, 35, 30, 25, 20, 15, 10, 9, 8, 7, 6, =0c  in Case K compared to the run-length 

distribution of the 3-sigma Shewhart X-bar chart 

 

 

 

Summary 
 

Like the p-chart, the c-chart is well-known and easy to apply but, even in Case K, the c-chart does not 

perform anything like the 3-sigma Shewhart X-bar chart. The discrepancy is due to the facts that 

 

(i) when c is small the normal approximation to the Poisson distribution is poor so both the 

charting constant 3=k  and the charting formula (mean ±  3 standard deviations) may be 

inaccurate, and 

 

(ii) due to the discrete nature of the Poisson distribution only certain FAR values can be attained. 
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Chapter 4 

 

Nonparametric Shewhart-type control charts 

with runs-type signaling rules: Case K and Case 

U 
 

 

4.0    Chapter overview 
 

 

Introduction 
 

The commonly used control charts in the statistical process control (SPC) environment with data 

that can be measured on a continuous numerical scale are generally designed and used with a specific 

parametric distribution, such as the normal distribution, in mind. It is well-known that if the underlying 

process is not as assumed, the performance of the parametric charts can be significantly degraded. In 

this context, one key problem is the lack of in-control robustness of some of the well-known 

parametric charts; this, for example, implies that there can be too many false alarms than what is 

typically expected and obviously this could mean considerable loss of time and resources (see e.g. 

Chakraborti et al., (2004)). Thus it is desirable, from a practical point of view, to develop and apply a 

set of control charts that are not designed under the assumption of normality (or any other parametric 

distribution). Such charts can expected to be more flexible in that they require no or little assumption 

regarding the underlying process distribution and would be useful in some applications. 

 

To this end, nonparametric control charts are helpful. Nonparametric control charts have received 

considerable attention over the last few years. See, for example, Bakir (2004), Albers and Kallenberg 

(2004), Chakraborti et al. (2004) and Albers et al. (2006), where various nonparametric alternatives to 

the classical Shewhart-type charts are proposed, by adapting (for example) the corresponding 

nonparametric test for the process parameter, and have been shown to outperform the Shewhart X  

chart (and some other well-known charts) in terms of in-control robustness and efficiency, particularly 
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for heavy-tailed distributions.  A thorough review of the literature on nonparametric charts can be 

found in Chakraborti et al. (2001, 2007). 

 

The main advantage of the nonparametric charts is that they have known in-control properties that 

remain unchanged for all continuous distributions.  Thus, for example, while the false alarm rate 

( FAR ) of a Shewhart or Cumulative Sum (CUSUM) or Exponentially Weighted Moving Average 

(EWMA) chart for the mean will fluctuate depending on the underlying distribution, the FAR  of a 

nonparametric chart can be calculated exactly and will remain the same (for in-control conditions) no 

matter what the distribution; this is a very useful feature for the practitioner. 

 

A formal definition of a nonparametric or distribution-free control chart is given in terms of its run-

length distribution.  The number of samples that needs to be collected before the first out-of-control 

signal is given by a chart is a random variable called the run-length; the probability distribution of the 

run-length is referred to as the run-length distribution.  If the in-control run-length distribution is the 

same for every continuous probability distribution the chart is called distribution-free or nonparametric 

(see e.g. Chakraborti et al., (2004)). 

 

Note that, the term nonparametric is not intended to imply that there are no parameters involved, 

quite to the contrary.  While the term distribution-free seems to be a better description of what one 

expects these charts to accomplish, nonparametric is perhaps the term more often used.  In this chapter, 

both terms (distribution-free and nonparametric) are used to emphasize the fact that they mean the 

same. 

 

 

Motivation 
 

To construct a nonparametric control chart for the specified (or known or target) median of a 

distribution that is continuous and symmetric Bakir (2004) considered a Shewhart-type chart based on 

the Wilcoxon signed-rank (SR) test statistic.  This chart, referred to as the 1-of-1 SR chart, signals 

when a single charting statistic falls outside the control limits, was shown to compete well with the 

Shewhart X  chart in the case of the normal distribution and it performed better in the case of a 

heavier-tailed (than the normal) distribution such as the double exponential and the Cauchy.  However, 

the false alarm rates for the 1-of-1 SR chart were just too high (i.e. the in-control average run-lengths 

were too short) for an application in practice, unless the subgroup size n  was in the neighborhood of 

20, which is not typical in SPC.  
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Having realized the potential and yet the practical shortcoming of the 1-of-1 SR chart, Chakraborti 

and Eryilmaz (2007) extended the idea of Bakir (2004) and considered an alternative class of 

nonparametric charts using the same SR statistic as charting statistic but incorporating some signaling 

rules based on runs; these charts are called runs-rule enhanced signed-rank charts. The new SR charts 

were shown to be more appealing from a practitioner’s point of view in that they have much larger 

attainable in-control average run-lengths ( 0ARL ’s), much smaller attainable FAR ’s and have better 

out-of-control (OOC) performance than the 1-of-1 SR chart. 

 

Although the SR charts are useful, the requirement that the underlying distribution be symmetric is 

an additional assumption to be verified and may in fact not be satisfied in some situations in practice.  

If not much knowledge is available about the shape of the distribution, an alternative nonparametric 

test called the sign test can be used to make inference about any percentile including the median, 

whereas the SR test applies only to the median.  The sign test does not require the assumption of 

symmetry of the underlying continuous population distribution (see e.g. Gibbons and Chakraborti, 

(2003)) and is easy to apply.  Another advantage is that one does not require the actual measurements 

to be available to apply the sign test; all one needs to know is how many of the observations within 

each sample are larger (or smaller) than the specified value of the parameter (percentile) of interest.  

Thus the sign test can be applied with binary data, when the only information available, for each unit 

tested, is whether or not the measurement was higher (or lower) than the target value of the percentile 

of interest.  Neither the normal theory chart nor the SR charts can be applied with just the 

dichotomized data. 

 

A further requirement for applying the SR charts (and charts based on the sign test) is that the in-

control process median (or percentile) must be specified; a situation commonly referred to as Case K. 

This may not be the case in some applications and could limit the application of the charts, with or 

without signaling rules.  For example, when a new product is being developed not much information or 

expert knowledge may be initially available to specify the distribution and/or the in-control value of 

the percentile of interest.  Hence there is a need to also develop control charts when the in-control 

process percentile of interest (or, in general, the location) is unknown. This is the scenario where the 

process distribution is continuous and unknown (no symmetry necessary) and the in-control percentile 

(or the location parameter) is unknown or unspecified (unlike in Case K); this situation is referred to as 

Case U. 

 

Our objective is to overcome the drawbacks of the SR charts by studying and developing a new 

class of nonparametric control charts with runs-type signaling rules for the scenario where the 
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percentile (or location parameter) of interest of the process distribution is known and then, second, 

when it is unknown, without having to assume symmetry of the underlying process distribution. In the 

former situation (or Case K) the control charts are based on the well-known sign test statistic while in 

the latter scenario (or Case U) the charts are based on the two-sample median test statistic.  

It will be seen that the charts we consider provide a new class of flexible, yet powerful, 

nonparametric charts to be used in practice. 

 

Although one can consider other types of nonparametric charts such as the CUSUM and the 

EWMA (see e.g. the reviews by Chakraborti et al. (2001, 2007)), in this chapter, we keep the 

discussion focused on the Shewhart-type charts because of their inherent practical appeal and global 

effectiveness (see e.g. Montgomery, (2005) p. 385). The development of nonparametric CUSUM and 

EWMA charts will be a topic for future research. 

 

 

Methodology 
 

We use a Markov chain approach (see e.g. Fu and Lou, (2003)) to derive the necessary results 

(such as the run-length distributions, average run-lengths etc.) for our runs-rule enhanced charts 

because this approach provides a more compact and unified view of the derivations, and as stated by 

Balakrishnan and Koutras (2002), p.14, “The Markov techniques possess a great advantage (over the 

classical combinatory methods) as they are easily adjustable to many run-related problems; they often 

simplify the solutions to specific problems they are applied on and remain valid even for cases 

involving non-identical or dependent trials”. In some cases, however, we draw on the results of the 

geometric distribution of order k  (see e.g. Balakrishnan and Koutras, (2002), Chapter 2) to obtain 

closed form and explicit expressions for the run-length distributions and/or their associated 

performance characteristics. 

 

In Case U, like in Chapter 3, we use a two-step approach to derive the run-length distributions 

which involve the method of conditioning (see e.g. Chakraborti, (2000)). First we derive the 

conditional run-length distributions i.e. conditioned on two order statistics (control limits), which lets 

one focus on specific values of the control limits. Second we derive the unconditional (or marginal) 

run-length distributions by averaging over the joint distribution of the two order statistics. The 

unconditional run-length distributions reflect the bigger picture and reveal the overall performance of 

the charts taking into account that the control limits are estimated.  
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Layout of Chapter 4 
 

In Section 4.1 we define and describe in detail (using graphs) the runs-type signaling rules for the 

one-sided and two-sided charts. In Section 4.2 we derive the run-length distributions of our new 

nonparametric control charts with signaling rules for Case K and then, in Section 4.3, we derive the 

run-length distributions of the charts for Case U. Section 4.4 gives a summary and some concluding 

remarks.
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4.1    Runs-type signaling rules 
 

 

Introduction 
 

We consider a class of nonparametric Shewhart-type control charts for monitoring the percentile 

(or location parameter) of a process of which the distribution is assumed to be continuous but not 

necessarily symmetric. First we study the scenario where the π th percentile of the process distribution 

is known and then, second, when it is unknown. In the former situation (or Case K), studied in Section 

4.2, the control charts are based on the well-known sign test statistic while in the latter scenario (or 

Case U), which is looked at in Section 4.3, the charts are based on the two-sample median test statistic. 

 

 

Signaling rules 
 

 The new control charts are “runs-rule enhanced” charts in which a process is declared out-of-

control (OOC) when either 

(i)   A single charting statistic plots outside the control limits (1-of-1 chart), or 

(ii)  k  consecutive charting statistics all plot outside the control limits (k-of-k chart), or 

(iii) exactly k  of the last w  charting statistics plot outside the control limits (k-of-w chart). 

 

It is clear that rules (i) and (ii) are special cases of rule (iii). Rule (i) is the simplest and most 

frequently used whilst rules (ii) and (iii) have been used in the context of the parametric Shewhart-type 

charts such as the well-known X  chart (see e.g. Derman and Ross, (1997) and Klein, (2000)).  

 

 

One-sided and two-sided charts 
 

We consider one-sided and two-sided control charts. Amongst the one-sided charts two situations 

can arise: (i) when just upward shifts are of interest so that an upper control limit is adequate, and (ii) 

when only detecting downward shifts are of interest so that a lower control limit is sufficient. The 

former is called the positive-sided (or upper one-sided) chart whereas the latter is labeled the negative-

sided (or lower one-sided) chart. We study both the upper and the lower one-sided charts. 

 

When a shift in any direction (up or down) is of concern a two-sided chart is used which has an 

upper and a lower control limit. 
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Charting statistic and control limits 
 

We denote the charting statistic for the ith subgroup, in general, by iQ  for ,...3,2,1=i  and the upper 

and the lower control limits by UCL  and LCL , respectively; this allows us to simultaneously deal 

with Case K and Case U when we define and describe the runs-type signaling rules. Later, when we 

individually discuss the control charts of Case K and Case U we define and replace iQ , UCL  and 

LCL  by their appropriate and representative counterparts. 

 

 

Signaling indicators 

   

Let  
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for ,...3,2,1=i  denote the indicator functions for the one-sided charts corresponding to the events 

}{ UCLQi ≥  and }{ LCLQi ≤ , respectively. In other words, +iξ  ( −
iξ ) denotes the signaling indicator 

for the event when iQ  plots on or above (below) the upper (lower) control limit of the positive-sided 

(negative-sided) chart. Likewise, we let 
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denote the signaling indicator for the two-sided chart so that iξ  indicates whether iQ  plots on or 

above the UCL  (in which case 1=iξ ),  between the LCL  and the UCL  (so that 0=iξ ), or on or 

below the LCL  ( 2=iξ ). 
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Remark 1 

 

Not only do the signaling indicators in (4-1), (4-2) and (4-3) allow us to clearly define and 

describe signaling rules (i), (ii) and (iii), but their statistical properties (e.g. whether they 

are independent, their “success” probabilities such as )1Pr(=+
iξ , )1Pr( =−

iξ  and 

)1Pr( =±
iξ  etc.) are also important since they play a key role in deriving the run-length 

distributions of the new class of proposed runs-rule enhanced charts. 
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4.1.1   The 1-of-1 charts 
 

The 1-of-1 charts are the least complicated and most frequently used charts. The signaling rules for 

the 1-of-1 charts, as defined by the signaling indicators in (4-1), (4-2) and (4-3), are given by: 

 

The 1-of-1 upper one-sided chart signals when event 1A  occurs where: 

}1{}{:1 =⇔≥ +
ii UCLQA ξ *, 

The 1-of-1 lower one-sided chart signals when event 2A  occurs where: 

}1{}{:2 =⇔≤ −
ii LCLQA ξ , and 

The 1-of-1 two-sided chart signals when event A  occurs where: 

}2or    1{}1or    1{}or  {}or    {: 21 ==⇔==⇔⇔≤≥ −+
iiiiii AALCLQUCLQA ξξξξ . 

           * The symbol “⇔ ” in an expression such as QP ⇔  is read as ‘P  is true if and only if Q  is true’. 

 

 For illustration, panels (a) and (b) of Figure 4.1 show examples of the 1-of-1 upper and lower one-

sided charts whilst Figure 4.2 displays examples of the 1-of-1 two-sided chart. 

 

The 1-of-1 upper (lower) one-sided charts signals, for illustration only, at time 7=i  when 7Q  

plots above (below) the UCL  ( LCL ). The process is therefore declared OOC with the conclusion of 

an upward (downward) shift in the process location.  Similarly, both of the 1-of-1 two-sided charts 

signal at time 7=i ; the first chart signals when 7Q  plots above the upper control limit (indicative of 

an upward shift) whereas the second chart signals when 7Q  plots below theLCL (indicative of a 

downward shift). 
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(a)   The 1-of-1 rule for the upper one-sided chart 

(upward shift detected) 
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(b)   The 1-of-1 rule for the lower one-sided chart 

(downward shift detected) 

Figure 4.1: The 1-of-1 rule for the upper and the lower one-sided charts 
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Figure 4.2: The 1-of-1 rule for the two-sided chart 
 

 

Because the 1-of-1 charts are based on signaling rule (i) which uses only the information from the 

most recent (last) sample to make a decision whether or not the process is in-control (IC), one feels 

these charts can be improved upon by using rules (ii) and (iii); this idea is discussed in the next section. 
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4.1.2  The k-of-k and k-of-w charts 
 

 

The runs-rule Shewhart-type charts we consider adopt a sequential approach and use the 

information from multiple samples including the most recent one to signal. Unlike the CUSUM and 

EWMA charts, the sequential approach we study is carried out by considering runs of the charting 

statistic outside the control limit(s) which includes the charting statistic from the current sample and 

one or more charting statistics from past samples. The resulting charts are easy to use and it will be 

seen that they offer the user greater practical flexibility in designing a chart so that more (practically) 

attractive, attainable, false alarm rates are available.  Moreover, it will be shown that the new charts 

have higher efficiency (i.e. smaller OOC ARL ’s) compared to the 1-of-1 charts. 

 

According to the k-of-k )2( ≥k  chart the control chart signals at any point in time when k  

consecutive charting statistics (from k  consecutive samples), of which the last one is the most recent 

one, all plot outside the control limit(s).  A generalization of the k-of-k chart is the k-of-w chart which 

signals when exactly k  of the last w  charting statistics all plot outside the limit(s), of which the last 

one plots outside the control limits. 

 

It is clear that we can consider charts for any pair of positive integers k  and w  where  wk ≤≤1  

and 2≥w . Although various values of k  and w  can be considered in theory, from a practical point of 

view, it is important that the resulting charts are easy to apply; so we focus on the 2-of-2 ( 2== wk ) 

and the 2-of-3 )3,2( == wk  charts. A user is therefore required to keep track of only the last two or 

three of the most recent charting statistics. 
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4.1.2.1 One-sided k-of-k and k-of-w charts 
 

 

As noted earlier, the upper (lower) one-sided chart has only an upper (lower) control limit and is 

typically used when only an upward (downward) shift is of concern. We first describe the 2-of-2 upper 

(lower) one-sided chart and then the 2-of-3 upper (lower) one-sided chart. 

 

 

One-sided 2-of-2 charts 
 

The 2-of-2 chart requires the user to keep track of only the last two charting statistics 1−iQ  and iQ  

at any given point in time, .2≥i  The upper one-sided 2-of-2 chart signals (declares the process OOC) 

if both 1−iQ  and iQ  plot on or outside the upper control limit; otherwise no signal is given and we 

declare the process IC. Likewise, the lower one-sided 2-of-2 chart signals if both 1−iQ  and iQ  plot on 

or outside the lower control limit.  Thus the 2-of-2 one-sided charts are: 

 

 

The 2-of-2 upper one-sided chart signals when the event 1B  occurs 

where }1 {: 11 == ++
− iiB ξξ , and  

The 2-of-2 lower one-sided chart signals when the event 2B  occurs 

where }1 {: 12 == −−
− iiB ξξ . 

 

 

For illustration, panels (a) and (b) of Figure 4.3 show examples of the 2-of-2 upper and the 2-of-2 

lower one-sided charts.  Both of the charts signal, again for illustration only, at time 7=i  i.e. on the 

first occurrence of a run of length two of the charting statistic above (below) the UCL  ( )LCL  at time 

or sample number 7.  Hence, the process is declared OOC with the conclusion of an upward 

(downward) shift in the process location. 
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(a)   The 2-of-2 rule for the upper one-sided chart 
(upward shift detected) 
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(b)   The 2-of-2 rule for the lower one-sided chart 
(downward shift detected) 

Figure 4.3: The 2-of-2 rule for the upper and the lower one-sided charts 
 

 

 

Remark 2 
 

The 2-of-2 one-sided charts can be alternatively defined in terms of the minimum and/or 

the maximum of the statistics 1−iQ  and iQ .  For example, the 2-of-2 upper one-sided chart 

signals if ),min( 1 ii QQ −  plots on or above the UCL .  Similarly the 2-of-2 lower one-sided 

chart signals if ),max( 1 ii QQ −   plots on or below the LCL .  We next consider a 

generalization of the 2-of-2 chart. 

 

 

One-sided 2-of-3 charts 
 

The 2-of-2 charts utilize moving (over time) blocks of only two charting statistics.   It is therefore 

natural to investigate if there can be any sizeable gain in efficiency when moving blocks of three 

charting statistics are utilized.  Thus we consider 2-of-3 charts for which at any time point 3≥i  we 

need to keep track of 2−iQ , 1−iQ  and iQ ; the upper (lower) one-sided 2-of-3 chart signals if two of 

these three statistics plot on or above (below) the upper (lower) control limit. 

 

A similar chart was considered by Klein (2000) for the Shewhart X  chart.  However, note that 

although there are three ways for exactly two of the last three charting statistics to plot on or above 

(below) the upper (lower) control limit, we take only two of the three ways, namely where the last 

charting statistic plots on or above (below) the upper (lower) control limit to define a signal.   

 UCL   LCL 
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This is unlike the chart of Klein (2000) which can signal in any of the three ways; our charts 

eliminate the possibility that the process is declared OOC when both the first and the second charting 

statistics plot outside the control limits but the third (last) one plots between the control limits (see e.g. 

Figure 4.5), which we feel is somewhat undesirable in practice.   Thus our 2-of-3 one-sided charts are: 

 

 

The 2-of-3 upper one-sided chart signals when the event }or     {)( 21 CCC =+  occurs 

where }1,1,0{}  and    and  {: 12121 ===⇔≥≥< ++
−

+
−−− iiiiii UCLQUCLQUCLQC ξξξ  

           }1,0,1{}  and    and  {: 12122 ===⇔≥<≥ ++
−

+
−−− iiiiii UCLQUCLQUCLQC ξξξ . 

The 2-of-3 lower one-sided chart signals when the event }or    {)( 43  CCC =− occurs 

where }1,1,0{}  and    and  {: 12123 ===⇔≤≤> −−
−

−
−−− iiiiii LCLQLCLQLCLQC ξξξ  

           }1,0,1{}  and    and  {: 12124 ===⇔≤>≤ −−
−

−
−−− iiiiii LCLQLCLQLCLQC ξξξ . 

 

 

 

Panels (a) and (b) of Figure 4.4 show examples of what the signaling events 1C , 2C , 3C  and 4C  

might look like in case of the 2-of-3 upper and lower one-sided charts. For example, both of the 2-of-3 

upper one-sided charts, shown in panel (a), signal at time 7=i  and the signals are interpreted to be 

indicative of an upward shift since both the charting statistics fall above the upper control limit. 
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(a)   The 2-of-3 rule for the upper one-sided chart (upward shift detected) 
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(b)   The 2-of-3 rule for the lower one-sided chart (downward shift detected) 

Figure 4.4: The 2-of-3 rule for the upper and the lower one-sided charts 
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Figure 4.5: The 2-of-3 events excluded as signaling events for the upper and the lower one-sided 
charts 
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4.1.2.2 Two-sided k-of-k and k-of-w charts 
 

 

Two-sided charts are typically used to detect either an upward or a downward shift and thus have 

both an upper and a lower control limit. 

 

 

Two-sided 2-of-2 charts 
 

Like the 2-of-2 one-sided charts, we also need to keep track of both 1−iQ  and iQ  at any time point 

2≥i , but for the two-sided chart there are two control limits and so there are four ways for  1−iQ  and 

iQ  to plot outside the limits. Any one (or more) of the four scenarios may be used to define a signal. 

We consider two 2-of-2 two-sided charts; both capable of detecting an upward or a downward shift in 

the location parameter. 

 

The first 2-of-2 two-sided chart signals when any two successive charting statistics both plot on or 

outside the control limits. In other words, a signal is given when: 

 

(i) both charting statistics plot on or above the UCL , or 

(ii)  both charting statistics plot on or below the LCL , or 

(iii)  the first charting statistic plots on or above the UCL  and the second charting statistic plots 

on or below the LCL , or 

(iv) the first charting statistic plots on or below the LCL  and the second charting statistic plots 

on or above the UCL . 

 

This signaling rule was proposed by Derman and Ross (1997) in the context of the Shewhart X  

chart; we refer to this chart as the 2-of-2 DR two-sided chart. 

 

The second 2-of-2 two-sided chart signals when two successive charting statistics: 

 

(i) both plot on or above the UCL , or 

(ii)  both plot on or below the LCL . 

 

This signaling rule was considered by Klein (2000) in the context of the Shewhart X  chart; we 

refer to this chart as the 2-of-2 KL  two-sided chart. 

 
 
 



 270 

More specifically, the 2-of-2 two-sided charts are: 

 

 

The 2-of-2 DR two-sided  chart signals when the event }or   or  or  {:)( 4321 DDDDDRD  

occurs, and 

The 2-of-2 KL two-sided chart signals when the event }or  {)( 21 DDKLD =  occurs 

where                        }1,1{}  and   {: 111 ==⇔≥≥ −− iiii UCLQUCLQD ξξ , 

                       }2,2{}  and  {: 112 ==⇔≤≤ −− iiii LCLQLCLQD ξξ , 

   }2,1{}  and   {: 113 ==⇔≤≥ −− iiii LCLQUCLQD ξξ , and 

                      }1,2{}  and  {: 114 ==⇔≥≤ −− iiii UCLQLCLQD ξξ . 

 

 

Figure 4.6 shows some examples of the events iD , 4,3,2,1=i .  It is clear that the 2-of-2 DR chart 

signals on the seventh sample in each of the four panels of Figure 4.6 whereas the 2-of-2 KL chart 

signals only in panels (a) and (b). Thus, whenever the 2-of-2 KL chart signals so does the 2-of-2 DR 

chart, but the converse may not always happen. Furthermore, it seems that the 2-of-2 DR and KL 

charts are both suitable for detecting an upward or a downward shift, but the 2-of-2 DR chart can also 

detect a possible swing; this is when an upward shift is immediately followed by a downward shift or 

vice versa (Chakraborti and Eryilmaz, (2007)). 
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(a)   (signal above / upward shift detected) 
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(b)   (signal below / downward shift detected) 
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(c)   (signal above followed by a signal below /  

possible swing detected) 
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(d)   (signal below followed by a signal above /  

possible swing detected) 

Figure 4.6: The 2-of-2 rule for the two-sided charts 
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Two-sided 2-of-3 chart 
 

Analogous to the 2-of-3 one-sided charts the 2-of-3 two-sided chart signals when:  

 

(i) exactly two of the last three charting statistics both plot on or above the UCL , or  

(ii)  exactly two of the last three charting statistics both plot on or below the LCL . 

 

Hence, the 2-of-3 two-sided chart defined in terms of the signaling indicator iξ  is given by:  

 

 

The 2-of-3 two-sided chart signals when event }or   or  or  { 4321 EEEEE =  occurs 

where 

}1,1,0{}  and    and  {: 12121 ===⇔≥≥<< −−−− iiiiii UCLQUCLQUCLQLCLE ξξξ , 

}1,0,1{}  and    and  {: 12122 ===⇔≥<<≥ −−−− iiiiii UCLQUCLQLCLUCLQE ξξξ , 

}2,2,0{}  and    and  {: 12123 ===⇔≤≤<< −−−− iiiiii LCLQLCLQUCLQLCLE ξξξ , and 

}2,0,2{}  and    and  {: 12124 ===⇔≤<<≤ −−−− iiiiii LCLQUCLQLCLLCLQE ξξξ . 

 

 

Figure 4.7 displays examples of events iE  for 4,3,2,1=i  and shows that when there is a signal, the 

proposed 2-of-3 two-sided chart offers a practical interpretation for the signal. For example, when 

either event 1E  or 2E  occurs (shown in panels (a) and (b)) the signal is interpreted as an upward shift.  

Similarly, if either event 3E  or 4E  occurs (displayed in panels (c) and (d)) a downward shift is 

inferred.  

 

 

Remark 3 
 
 

Apart from events 1E , 2E , 3E  and 4E   there are a further eight scenarios in case of the 2-

of-3 two-sided chart where exactly two of the last three charting statistics can plot outside 

the control limits. We, however, exclude these events as signaling events when we 

calculate the statistical characteristics or properties of the 2-of-3 two-sided control charts; 

even though four of the events may possibly be linked to genuine or tangible changes in 

the process. 
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Figure 4.8 shows the eight events together with the practical interpretations (if any). For 

example, panels (a) and (b) show events 5E  and 6E  that could be considered a swing in 

the process, whereas panels (c) and (d) show events 7E  and 8E  that could be interpreted as 

trends (up or down) in the process. The events in panels (e), (f), (g) and (h) are excluded as 

signaling events because, as mentioned earlier, the last point plots between the control 

limits. 

 

 

Most importantly, by excluding events 5E , 6E , …, 12E  we are left with events 1E , 2E , 3E  

and 4E , which makes the signaling events of the 2-of-3 one-sided charts and that of the 2-

of-3 two-sided chart more alike (compare, for example, the signaling events shown in 

Figure 4.4 with that of Figure 4.7). 
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(a)    (signal above / upward shift detected) 
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(b)    (signal above / upward shift detected) 
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(c)    (signal below / downward shift detected) 
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(d)    (signal below / downward shift detected) 

Figure 4.7: The 2-of-3 rule for the two-sided chart 
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(a)    (possible swing detected) 
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(b)    (possible swing detected) 
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(c)    (downward trend detected) 
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(d)    (upward trend detected) 
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(e)   (last point plots between LCL and UCL) 
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(f)   (last point plots between LCL and UCL) 
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(g)   (last point plots between LCL and UCL) 

0

1

2

3

1 2 3 4 5 6 7

Sample number / Time (i )

P
lo

tti
ng

 S
ta

tis
tic

 
}0,2,2{: 1212 === −− iiiE ξξξ  

(h)   (last point plots between LCL and UCL) 

Figure 4.8: The 2-of-3 events excluded as signaling events for the two-sided charts 
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Section 4.1 outlined, in general, the operation of the runs-rule enhanced charts. However, we are 

yet to define (choose) the charting statistic iQ  and the control limits (UCL  and LCL ). In Sections 4.2 

and 4.3 we do just this and show, in particular, how to obtain the run-length distributions and how to 

design and implement the runs-rule enhanced charts in case the π th percentile of the process 

distribution is known (Case K) and unknown (Case U). The performance of the charts is then further 

examined via properties of their run-length distributions such as the average run-length (ARL ), the 

false alarm rate (FAR ), the standard deviation of the run-length (SDRL ) and some of the percentiles  

of the run-length distributions. 
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4.2   Sign charts for the known ππππ th quantile (Case K) 
 

 

Introduction 
 

Case K refers to the situation when the π th quantile (or percentile) of the process distribution is 

known or specified. The new control charts we design for Case K are based on the well-known sign 

(test) statistic. 

 

 

Assumptions 
 

Let ),...,,( 21 inii XXX  denote a random sample of size 1>n  taken at sampling stage (time) 

,...3,2,1=i . Assume that the samples are independent and the observations come from a continuous 

distribution with cumulative distribution function (c.d.f) )(xFX  with the unique π100 th percentile 

denoted by )(1 πθ −= XF , 10 << π . 

 

In many cases the percentile of interest is the median because it is a robust measure of central 

tendency so that 5.0=π  and )5.0(1−= XFθ , however this is not necessary for our developments as the 

new sign charts can be applied for any percentile of interest. 

 

 

Charting statistics 
 

Amin et al. (1995) considered a 1-of-1 Shewhart-type sign chart for monitoring the median of a 

distribution based on the charting statistic 

 

∑
=

−=
n

j
iji XsignSN

1
0)( θ    for   ,...2,1=i   (4-4) 

 

where =)(xsign 1 if x > 0, 0 if x = 0 and -1 if x < 0 and 0θ  denotes the specified value of the median. 

 

We consider any percentile )(1 πθ −= XF  for 10 << π  and the charting statistic for our sign charts 

is the classical sign statistic 

 

∑
=

>=
n

j
iji XIT

1
0)( θ    for   ,...2,1=i    (4-5) 
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where 0θ  denotes the known (or the specified or the target) value of the percentile of interest and 

)( 0θ>ijXI  denotes the indicator function for the event }{ 0θ>ijX .  Thus iT  denotes the number of 

observations larger than 0θ  in the ith sample and it is easily seen that iT  follows a binomial distribution 

with parameters n  and probability of success )Pr( 0θ>= ijXp .  When 0θθ =  the percentile of interest 

is equal to its specified value, the process is said to be in-control (IC)  and then p  is denoted by 0p  

and equals 

 

πθ −=>= 1)|Pr( 00 ICXp ij .   (4-6) 

 

Thus, for example, when the percentile of interest is the median ( 5.0=π ), the process is IC when 

0θθ =  (the specified value of the median) and then 5.00 == pp ; similarly when θ  is the first 

quartile ( 25.0=π ), the process is IC when 0θθ =  (the specified value of the first quartile) and 

75.00 == pp  and so on. 

 

 

Control limits 
 

The upper and lower control limits of our sign charts are  

 

bnUCL −=  and aLCL =    (4-7) 

 

where the charting constants a  and b  are integers between (and including) zero and n , that is, 

},...,2,1,0{, nba ∈ , and selected so that the UCL  is greater than the LCL ; determination of a and b will 

be discussed later. Note that, the new sign charts do not have a centerline. 
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4.2.1    Run-length distributions of the sign charts 
 

 

The run-length distribution and its associated characteristics (such as the mean, the standard 

deviation, the median etc.) reveal important information regarding the performance of a control chart 

(see e.g. Human and Graham, (2007)). 

 

There are various approaches to finding the run-length distribution.  We use (for the most part) a 

Markov chain approach (see e.g. Fu and Lou, (2003)) to derive the necessary results for our runs-rule 

enhanced charts because this approach provides a more compact and unified view of the derivations, 

and as stated by Balakrishnan and Koutras (2002), p.14, “The Markov techniques possess a great 

advantage (over the classical combinatory methods) as they are easily adjustable to many run-related 

problems; they often simplify the solutions to specific problems they are applied on and remain valid 

even for cases involving non-identical or dependent trials”. 

 

The Markov chain approach entails that we: 

 

(a) classify each charting statistic iT  (based on its value) into one of two categories (for a one-

sided chart) or into one of three categories (for a two-sided chart) depending on whether iT  

plots on or above the UCL , on or below the LCL  and/or between the LCL  and UCL ,  

(b) define a new sequence of random variables ,...,,321 YYY  (say) that keeps track of the 

classification of the sTi ' , and then 

(c) construct a Markov Chain }0:{ ≥iZ i  to find the run-length distribution. 

 

For example, consider the upper one-sided sign chart.  Each iT  can be either on or above the UCL  

or below.  Let 1=iY  (a success) in the former case and 0=iY  (a failure) in the latter case.  Thus, 

corresponding to a sequence of sTi '  we get a sequence of sYi '  that are all binary; for example, if 

)7 , 8 , 3 , 4(),,,( 4321 =TTTT  and 5=UCL ,  we get )1 , 1 , 0 , 0(),,,( 4321 =YYYY . 

 

Thus, the run-length of the 1-of-1 upper one-sided chart i.e. the time when for the first time a iT  

plots on or above the UCL , is “3” for our example and can be equivalently expressed as the time when 

for the first time we obtain a “1” (a success) among the four sYi ' .  
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Similarly,  the run-length of the 2-of-2 upper one-sided chart i.e. the time when for the first time 

two consecutive sTi '  plot out-of-control, which equals “4” in our example, can be equivalently viewed 

as the time when for the first time we obtain two successive “1’s” (or successes) among the four sYi ' .    

Hence the run-length for the sTi ' can be equivalently defined as the waiting time for the first 

success (or, more generally, the first particular run or pattern of successes) among the sYi ' ;  it is this 

correspondence that makes the study of the statistical properties of the run-length random variable 

more amenable using results about the waiting time distributions in a sequence of Bernoulli (binary or 

two-state) and other types (three or more states) of random variables. 

 

There is a rather vast literature on waiting time distributions.  A detailed discussion about general 

results on the distribution theory of runs and patterns with various applications can be found in 

Balakrishnan and Koutras (2002) and Fu and Lou (2003).  Some of these results pertain to the exact 

probability distribution of the waiting time for the first occurrence of a simple or a compound pattern 

in a sequence of i.i.d. (or homogeneous Markov dependent) 2-state (binary) or 3 or more-state trials 

(see e.g. Fu and Lou, (2003); Chapters 3, 4 and 5).  The approach is to “properly imbed” (see e.g. Fu 

and Lou (2003), page 64; Definition 2.6) the random variable of interest (the run-length in our case) 

into a finite Markov chain which means constructing a “proper” Markov chain so that the probability 

that the run-length random variable N  takes on some specific value is expressed in terms of the 

probability that the imbedded Markov chain }0:{ ≥iZ i resides in a specific subset S  of the state space 

Ω . 
 

The latter probability can be more easily computed using results about the transition probability 

matrix of the Markov chain.  For example, given the mm ×  transition probability matrix of the Markov 

chain 
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−××
×
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(written in a partitioned form), the probability mass function (p.m.f), the expected value (ARL ) and 

the variance (VARL ) of the run-length random variable N  can be directly obtained, using Theorems 

5.2 and 7.4 of Fu and Lou (2003), as 

 

      1QIξQ )(),,,| ( 1 −== −jbanjNP θ      for  ,...3,2,1=j   (4-8) 

 

     1QIξ 1)(),,,|( −−=θbanNE      (4-9) 

and 

22 ))(())((),,,|var( NEbanN −−+= − 1QIQIξθ    (4-10) 
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where the sub-matrix matrix hh×= QQ   is called the essential transition probability sub-matrix, 

hh×= II  (used in (4-8) and (4-10)) and )()( hmhm −×−I (used in the definition of mm×M ) are identity 

matrices, )0 ,...,0 ,0 ,1(1 =×hξ  is the initial distribution, T1 )1,...,1 ,1(1 =×h  is the unit vector, m  denotes 

the number of states in the state space Ω  and hm −  is the number of unique simple patterns that 

defines a signal; the (non-essential) matrix )( hmh −×C  will be illustrated later. 

 

The point is that we only need to construct the state space Ω  and the essential transition 

probability sub-matrix hh×Q  of the Markov chain in order to be capable to calculate the entire run-

length distribution. 

 

 

Signaling probabilities 
 

Whilst the key to construct the state space Ω  depends on the particular signaling rule and whether 

a one-sided or two-sided chart is looked at, the building blocks of the transition probability matrix are 

the one-step transition probabilities (i.e. the elements of the transition probability matrix). 

 

The one-step transition probabilities are denoted by 

)|Pr( 1, kZjZp iijk === −  

and interpreted as the conditional probability given that at any specific time 1−i  the system was in 

state k , the system will be in state j  at time i  for 1≥i  and Ω∈kj, .  The transition probabilities 

jkp ,  are all functions of and depend on the signaling probabilities i.e. the probability for a single 

charting statistic to plot outside the control limit(s), and therefore play a key role in the derivation of 

the run-length distributions of the runs-rules enhanced charts. In case of the upper and lower one-sided 

charts the signaling probabilities are 

 

)1,()1Pr()Pr()Pr(),,( +−===−≥=≥= ++ bbnIbnTUCLTbnp piii ξθ  (4-11) 

and 

),1(1)1Pr()Pr()Pr(),,( anaIaTLCLTanp piii −+−===≤=≤= −− ξθ , (4-12) 

 

respectively; for the two-sided chart the probability for any of the charting statistics to plot outside 

either the UCL  or the LCL  is 

 

)1,(),1(1)Pr(1),,,( +−+−+−=<<−=± bbnIanaIUCLTLCLbanp ppiθ  (4-13) 
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where ∫
−−− −=

p vu
p dwwwvuvuI

0

111 )1()],([),( β  with 1)Pr(0 0 <>=< θijXp , is the c.d.f of the 

),( vuBeta distribution, also known as the incomplete beta function, which helps us write various 

expressions in a more compact form. 

 

Note that, for notational simplicity and brevity we denote the probabilities ),,(θbnp + , ),,( θanp − , 

and ),,,( θbanp ±  simply by +p , −p  and ±p  , respectively.  

 

 

 

Remark 4 
 

 

(i) If 0θθ =  the signaling probabilities (and hence the distribution of iT  and the in-control run-

length distributions and their associated characteristics) depend only on 

a. the sample size n , 

b. the charting constants a  and/or b , and 

c. the percentile of interest )(1
0 πθ −= XF  where π  is specified. 

 

Any decision rule (signaling rule) based on the iT ’s will therefore be distribution-free as 

long as the underlying distributions (at each point in time) are continuous and identical. It 

follows that the in-control run-length distributions of the runs-rules enhanced sign charts 

are distribution-free and therefore charts based on the iT ’s will be distribution-free. 

 

 

(ii)  To obtain the in-control run-length distribution and its mean and variance one substitutes 

0θθ =  in expressions (4-8), (4-9) and (4-10); by substituting 0θθ ≠  one obtains the 

corresponding results for the out-of-control situation which depends on the underlying 

process distribution. 
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4.2.2   Transition probability matrices of the sign charts 
 

 

To illustrate the derivation of the transition probability matrices and the run-length distributions, 

we begin with the one-sided upper (lower) control charts and then proceed to study the two-sided 

charts. 

 

In case of the one-sided and the two-sided charts, we first look at the run-length distribution of the 

1-of-1 chart (which uses the least complicated signaling rule) before we study the run-length 

distributions of the run rules enhanced charts, that is, the k-of-k ( 2≥k ) and the k-of-w ( wk ≤≤1  and 

2≥w ) sign charts. 

 

For each chart the key is to imbed the run-length into a proper homogenous Markov chain and 

obtain the essential transition probability sub-matrix hh×Q  associated with the particular Markov chain. 

 

Note that, we discuss the derivation of the transition probability matrices of the one-sided and the 

two-sided sign charts in detail so that later, in Case U, we can merely make use of these results. 

 

 

4.2.2.1 One-sided sign charts 
 

For the upper one-sided sign chart we view the series of signaling indicators ,...,,321
+++ ξξξ  

associated with the charting statistics ,...,,321 TTT  and the UCL  as a series of independent binary 

random variables, each being either “a success or 1” (iT  plotting on or above the UCL ) or “a failure or 

0” ( iT  plotting below the UCL ) with probabilities +p  and +− p1 , respectively (see e.g. Figure 4.9). 

 

 

Figure 4.9: The two regions on the upper one-sided control chart  (‘0’ and ‘1’) and their 
associated probabilities used to classify the charting statistic  

 

 UCL 
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Upper one-sided 1-of-1 sign chart 
 

The run-length +
11ofN  of the 1-of-1 upper one-sided chart is the waiting time until event 1A  (see 

panel (a) of Figure 4.1) occurs, which can be viewed as the waiting time for the first occurrence of a 

“1” (success) in the series of si '+ξ  (i.e. of  0’s and 1’s). 

 

The imbedded Markov chain associated with +
11ofN  is a homogeneous Markov chain defined on the 

finite state space } 1 , 0 , {φ=Ω with 3=m  states, where 

 

(a) the state 1}{  is called the “absorbing” state (when the process is declared out-of-control), 

 

(b) the state }0{  is called the “transient” state (i.e. the process can remain in state {0}, which 

means that the process is IC and the charting procedure continues, or the process can move 

from state {0} into state {1}, which implies that the process goes OOC and the charting 

procedure stops), and 

 

(c) the state φ  is the “dummy” state introduced for convenience. The dummy state φ  is in fact 

added to the state space Ω  so that with probability one the process is assumed to begin in-

control with the intention that the corresponding initial probability distribution is taken as 

)0 ,1(21 =×ξ .  

 

The 33×  transition probability matrix of }0:{ ≥iZ i  associated with +
11ofN  is given by 
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where, for example, 1,0p  (the  entry in the 2nd row and the 3rd column of 33×M ) is the probability that 

the system goes from state {0} (that is where 1−iT  plots IC) at time 1−i , to state {1} (that is where iT  

plot OOC) at time i ; this probability is simply the probability that iT  plots at or above the UCL  at 

time i, which is ),,()1Pr( θξ bnppi
+++ === . The rest of the elements of 33×M  in (4-14) can be 

calculated in a similar way. 
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Upper one-sided 2-of-2 sign chart 
 

The run-length +
22ofN  of the 2-of-2 upper one-sided chart is the waiting time until event 1B  (see 

panel (a) of Figure 4.3) occurs, which can be viewed as the waiting time for the first occurrence of two 

consecutive  1’s (i.e. successes) in the series of si '+ξ  (i.e. 0’s and 1’s). 

 

The imbedded Markov chain associated with +
22ofN  is a homogeneous Markov chain defined on 

the finite state space } 11 , 1 , 0 , {φ=Ω  with 4=m  states, where 

 

(a) the last state 11}{  is the absorbing state, 

 

(b) the two states }0{  and {1} are the transient (non-absorbent) states, 

 

(c)  and φ  is the dummy state, which is again added to Ω  so that (with probability one) the 

process is assumed to begin in-control and with the intention that the corresponding initial 

probability distribution is taken as )0 ,0 ,1(31 =×ξ .  

  

The transition probability matrix of }0:{ ≥iZ i  associated with +
22ofN  is given by 
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where, for example, the probability that the system goes from state {1} (where 1−iT  plots OOC) at time 

1−i , to state {11} (where both 1−iT  and iT  plot OOC) at time i , denoted by 11,1p , is  the  entry in the 

3rd row and the 4th column of 44×M ; this is simply the probability that iT  plots at or above the UCL  at 

time i, which is, as earlier, ),,()1Pr( θξ bnppi
+++ === .  
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Remark 5 
 

 

Because 

 

(i) the signaling indicators +
iξ ’s are a sequence of i.i.d. Bernoulli random variables 

each with probability of success +p , and 

 

(ii)  the run-length random variable+
11ofN  ( +

22ofN ) is the waiting time for the first success 

(the first occurrence of two consecutive successes), 

 

one can equivalently obtain the distribution (i.e. the p.m.f, the mean, the variance etc.) of +
11ofN  

( +
22ofN ) from the distribution of the variable kT   where 1=k (or 2). 

 

The stopping time variable kT  ( 1≥k ) is, in general, the waiting time to observe a sequence of 

k  consecutive successes for the first time in a sequence of i.i.d. Bernoulli random variables 

with success probability α  and should not be confused with the plotting statistic iT  defined in 

(4-5). 

 

The distribution of kT  is known to be the geometric distribution of order k  (see e.g. Chapter 2 

of Balakrishnan and Koutras, (2002)) with p.m.f, expected value and variance given by 
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respectively. 
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The equivalence between the distribution of kT  (i.e. the geometric distribution of order k ) and 

the distribution of +
kofkN  (i.e. the waiting until for the first time k  consecutive iT 's plot on or 

above the UCL ) can be verified by substituting the essential transition probability sub-matrix 

hh×Q  of }0:{ ≥iZ i  associated with +
kofkN  in expressions (4-8), (4-9) and (4-10), and then 

simplifying symbolically (using, for example, computer software with matrix manipulations 

capabilities such as Scientific Workplace®); upon doing so one obtains explicit and closed form 

expressions, via the Markov chain approach, for the p.m.f, the ARL  and the VARL  of the run-

length random variable +
kofkN . 

 

 

For the upper one-sided 1-of-1 sign chart, for example, we substitute 

 










−
−= +

+

× p
p

10
10

22Q  

 

 in expressions (4-8), (4-9) and (4-10) so that upon simplifying we obtain 

 

+−++ −== ppbnjN j
of

1
11 )1(),,| Pr( θ      for     ,...3,2,1=j    (4-18) 

 

++ = pbnNE of /1),,|( 11 θ       and 2
11 )/()1(),,|var( +++ −= ppbnN of θ .  (4-19) 

 

 

Expressions (4-18) and (4-19) are identical to expressions (4-16) and (4-17) with 1=k  and 

+= pα , respectively. 
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Upper one-sided 2-of-3 sign chart 
 

Like the upper one-sided 1-of-1 and 2-of-2 charts we can find the run-length distribution of the 2-

of-3 upper one-sided chart using a Markov chain. 

 

The run-length +
32ofN  of the 2-of-3 upper one-sided chart is the waiting time until event 1C  or 2C  

(see panel (a) of Figure 4.4) occurs, which can be viewed as the waiting time for the first occurrence of 

the pattern }101or    011{=Λ  in the series of si '+ξ  (i.e. of 0’s and 1’s).   The pattern Λ  is called a 

“compound pattern” and written as: 21 Λ∪Λ=Λ  where 0111 =Λ  and 1012 =Λ  are two so-called 

distinct “simple patterns”. 

  

The imbedded Markov chain associated with +
32ofN  is a homogeneous Markov chain defined on the 

state space } , , 01,10 , 1 , 0 , { 21 ααφ=Ω with 7=m  states, where 

 

(a) the two states } 011{1 =α and 101}{2 =α  are the absorbing states (when the process is 

declared OOC), 

 

(b) the four states }10 ,01 ,1 ,0{  are the transient states (i.e. the process can move from one of 

these states to another, which means that the charting procedure continues), and 

 

(c) φ  is the dummy state introduced for convenience. 

 

The transient states are the sequential sub-patterns of 0111 =Λ  and 1012 =Λ , respectively.   For 

example, the state {0} is the sub-pattern of the state {01}, whereas the two states {0} and {01} are the 

sub-patterns of 0111 =Λ , and the states {1} and {10} are the sub-patterns of 1012 =Λ .  

 

As earlier, the dummy state φ  is again added to Ω  so that (with probability one) the process is 

assumed to begin in-control, and the corresponding initial probability distribution is taken as 

)0 ,0,0 ,0 ,1(51 =×ξ .  
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The transition probability matrix of }0,{ ≥+ iiξ  associated with +
32ofN  is given by 
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where, for example, the probability that the system goes from state {01} (that is where 2−iT  plots IC 

and 1−iT  plots OOC) at time 1−i , to state {011}1 =α  (that is where 2−iT  plots IC  and both 1−iT  and iT  

plot OOC) at time i  is  the  entry in the 4th row and the 6th column of 77×M . 
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Remark 6 
 

A few comments concerning the application and the implementation of the upper one-sided 2-of-3 

sign chart are in order: 

 

(i) To declare a process out-of-control (OOC) we need at least three charting statistics (2−iT , 1−iT  

and iT , say) of which exactly one should plot in-control (IC) i.e. either 2−iT  plots below the 

UCL  with 1−iT  and iT  plotting on or above the UCL  or,  1−iT  plots below the UCL  with 2−iT  

and iT  plotting on or above the UCL  (see e.g. events 1C  and 2C  in panel (a) of Figure 4.4). 

Thus, we can only declare the process OOC beginning from time 3≥i  and, we need at least 

one charting statistic to plot below the upper control limit before we can declare the process 

OOC. 

 

(ii)  Because of these two build-in conditions of the upper one-sided 2-of-3 sign chart, the chart has 

a hitch at start-up: If UCLTi ≥  for ri ,...,3,2,1= , that is, if all the charting statistics plot on or 

above the upper control limit from the time that the chart is implemented until time r , the chart 

would not immediately signal that the process is OOC even though the pattern of the points on 

the chart suggests otherwise. The chart would most likely give a “delayed” or a “late” OOC 

signal instead. 

 

While this glitch is possible, we need to stress an important assumption: 

 

The design and the implementation of all the charts that are proposed in this chapter are 

based on an IC process at start-up as well as the trade-off between minimizing the 

probability that a charting statistic plots on or outside the control limit(s) when the process 

is actually IC and quickly detecting an OOC process.  

 

This assumption means two things: 

 

a. The process is IC at start-up; hence, we must ensure (to the extent that it is possible) that 

the process is IC before we start monitoring it. 

 

b. We typically choose the UCL  such that the probability that a iT  plots on or above the UCL  

when the process is IC i.e. )|Pr(0 ICUCLTp i ≥=+ , is small, which automatically implies 

that the probability that a iT  plots below the UCL  when the process is IC i.e. 

)|Pr(1 0 ICUCLTp i <=− + , is large.  
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The latter implies that the probability that all the charting statistics up to and including the 

r th one plot on or above the UCL  when the process is IC i.e. rp )( 0
+ , would decrease 

rapidly as r  increases. But, most importantly, it also implies that as we continue to monitor 

the process, the probability that the r th charting statistic plots below the UCL  when the 

process is IC stays constant and equal to +− 01 p ; this is so because we assume that 

successive samples (or charting statistics) are independent. 

 

Hence, what is of importance to the practitioner is to know what the risk is that this hitch 

occurs. This risk can be measured by calculating and studying the odds that a iT  plots 

below  the UCL  when the process is IC i.e. )/()1( 00
++− pp , at any time ,...3,2,1=i .  

 

To investigate the effect of +
0p  on the above odds, Table 4.1 shows values of )/()1( 00

++− pp  for 

values of 005.0)001.0(001.00 =+p  and 20.0)01.0(01.0 . The values of +
0p  that we use to construct 

Table 4.1 are representative of the typical values that one would consider when designing the proposed 

upper one-sided 2-of-3 chart (see e.g. Tables 4.6. and 4.7).  

 

From Table 4.1 we observe that: 

 

(i) The ratio )/()1( 00
++− pp  is larger than or equal to 4.0 for all values of +

0p  that we consider. This 

implies that, for a process that is IC at start-up (which is a fundamental assumption of our 

earlier theoretical developments and the reason for adding the dummy state, φ ,  to the state 

spaces off all the proposed charts) it is at least four times more likely for any new incoming iT  

to plot below the UCL  than for any new incoming iT  to plot on or above the UCL . 

 

(ii)  For 01.00 =+p , which is a very reasonable choice considering all the values of +
0p  in Tables 

4.6 and 4.7, the ratio )/()1( 00
++− pp  is equal to 99.0; this is relatively large. 

 

(iii)  The largest value for )/()1( 00
++− pp  is 999.0 (when 001.00 =+p ) and will increase even further 

as +
0p  decreases; this is good because smaller values of +

0p  are typically preferred and also 

recommended in practice. 
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The above-mentioned observations are all relevant for the practitioner because, for a process that is 

IC at start-up, (which is a key assumption when implementing any of the charts that are proposed in 

this chapter) they show that the risk associated with the proposed 2-of-3 sign chart at start-up is: (a) 

almost negligible, and (b) decreases rapidly as we continue to monitor the process because the 

probability that all the charting statistics up to and including the r th one plot on or above the UCL  

when the process is IC i.e. rp )( 0
+ , would decrease towards zero quickly as r  increases. This should be 

reassuring for the practitioner. 

 

Table 4.1: The ratio )/()1( 00
++++++++−−−− pp  as a function of ++++

0p  

++++
0p  )/()1( 00

++++++++−−−− pp  ++++
0p  )/()1( 00

++++++++−−−− pp  

0.001 999.0 0.09 10.1 
0.002 499.0 0.10 9.0 
0.003 332.3 0.11 8.1 
0.004 249.0 0.12 7.3 
0.005 199.0 0.13 6.7 
0.01 99.0 0.14 6.1 
0.02 49.0 0.15 5.7 
0.03 32.3 0.16 5.3 
0.04 24.0 0.17 4.9 
0.05 19.0 0.18 4.6 
0.06 15.7 0.19 4.3 
0.07 13.3 0.20 4.0 
0.08 11.5  

 

 

To overcome the imperfection of the upper one-sided 2-of-3 sign chart at start-up, we could use the 

event }1 , 1{} , { 21217 ==⇔≥≥= ++ ξξUCLTUCLTC , in addition to the events 1C  and 2C  shown in 

panel (a) of Figure 4.4, as a third signaling event. The event 7C  is special in two ways: (a) it prevents 

the hitch at start-up by enabling the chart to signal at time 2=i , and (b) it occurs if and only if the first 

two charting statistics, 1T  and 2T ,  both plot on or above the upper control limit; hence, event 7C  can 

not occur from time 3≥i . 

 

The resultant chart is an augmented upper one-sided 2-of-3 sign chart. Adding the extra event leads 

to an augmented state space i.e. 101} , 011 , 11 , 10 , 01 , 1 , 0 ,{φ=Ω , where the three states }11{ , }011{  

and }101{  are the absorbent states and implies that the transition probability matrix in (4-20) be altered 

slightly to become 
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To investigate the impact (i.e. gain or loss) of augmenting the transition probability matrix on the 

in-control performance of the chart, we calculated the in-control average run-lengths and the false 

alarm rates of the proposed upper one-sided 2-of-3 sign chart and that of the augmented upper one-

sided 2-of-3 sign chart (when it is of interest to monitor the median of the process) for different 

combinations of the sample size, n , and the upper control limit, UCL . 

 

The values of the in-control average run-lengths (denoted by + 32ofARL  and +A
ofARL 32 , respectively) 

were calculated according to expression (4-9) using the transition probability matrix in (4-20) and the 

augmented transition probability matrix given above, respectively. 

 

The false alarm rate of the proposed upper one-sided 2-of-3 sign chart (denoted +
32ofFAR ) and that 

of the augmented upper one-sided 2-of-3 sign chart (denoted +A
ofFAR 32 ) can be easily obtained from the 

definitions of the signaling events that are used by each chart and are given by 
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respectively. 

 

There is only a slight modification of the expression for +
32ofFAR  to obtain +A

ofFAR 32 ; this leads to 

the following similarities and/or differences in the false alarm rates of the charts: 

(i) At time 1=i : 03232 == ++ A
ofof FARFAR , 

(ii)  At time 2=i : 032 =+
ofFAR  but 2

032 )( ++ = pFAR A
of , and 

(iii)  At time 3≥i : 2
003232 ))(1(2 ++++ −== ppFARFAR A

ofof . 
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These similarities and/or differences are a direct consequence of the signaling events used by each 

chart i.e. 

 

(i) Neither one of the charts can signal at time 1=i  because, the proposed upper one-sided 2-

of-3 sign chart needs at least three charting statistics to signal whereas the augmented upper 

one-sided 2-of-3 sign chart needs at least two charting statistics to signal. 

 

(ii)  It is only the augmented upper one-sided 2-of-3 sign chart that can give a false alarm at 

time 2=i  and, it can do so if and only if event 7C  occurs. 

 

(iii)  From time 3≥i , both the charts can signal if and only if event 1C  or event 2C  occurs. The 

event 7C , as mentioned earlier, can only occur at time 2=i  and therefore does not 

influence the false alarm rate of the augmented upper one-sided 2-of-3 sign chart at or 

beyond time 3=i . 

 

Based on our calculations, we found that: 

 

(i) The in-control average run-lengths of the two charts were almost identical;  +
32ofARL  is only 

slightly larger than +A
ofARL 32 . 

 

(ii)  Depending on the combination of n  and UCL , the 2
032 )( ++ = pFAR A

of  at time 2=i can be 

reasonably large, which might be a concern for the practitioner. 

 

 

To further compare the impact of augmenting the proposed upper one-sided 2-of-3 sign chart, 

Table 4.2 shows values of the in-control probability mass functions (p.m.f’s) and the in-control 

cumulative distribution functions (c.d.f’s) of the run-length random variables, +
32ofN  and +A

ofN 32 , 

associated with the proposed and the augmented charts; these values are denoted by )|Pr( 32 ICiN of =+ ,  

)|Pr( 32 ICiN A
of =+ , )|Pr( 32 ICiN of ≤+  and )|Pr( 32 ICiN A

of ≤+ , respectively and are calculated for values 

of 15,...,2,1=i . 

 
 
 



 294 

 

The calculations in Table 4.2 assume that we monitor the process median using samples of size 

5=n  (which is a very popular choice in practice) and that the upper control limit is 5=UCL . For this 

particular combination of n  and UCL , it is calculated that 03125.0)|5Pr(0 =≥=+ ICTp i  where 

)5.0 , 5(~BinTi , and it was found that ( 65.55232 =+
ofARL  ; 00189.032 =+

ofFAR  for 3≥i )  while 

( 13.55232 =+A
ofARL  ; 00098.032 =+A

ofFAR  at 2=i  and 00189.032 =+A
ofFAR for 3≥i ). 

 

 

From Table 4.2 we see that there are two key differences with respect to the in-control 

characteristics and the in-control performance of the charts: 

 

 

(i) The augmented upper one-sided 2-of-3 sign chart can signal incorrectly (with probability 

0.00098) after having observed only two charting statistics whereas the proposed upper one-

sided 2-of-3 sign chart cannot.  

 

 

(ii)  The ratio )|Pr(/)|Pr( 3232 ICiNICiN of
A
of ≤≤ ++ , decreases to 1 as i  increases; this observation is 

supported by the fact that +A
ofARL 32  is only slightly less than +

32ofARL  i.e. 1/ 3232 ≈++
of

A
of ARLARL . 

These observations imply that, from start-up (when the process is IC) the augmented upper 

one-sided 2-of-3 sign chart always has a higher cumulative probability for a shorter run-length 

than the proposed upper one-sided 2-of-3 sign chart.. 
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Table 4.2: The in-control probability mass functions (p.m.f’s) and the in-control cumulative 

distribution functions (c.d.f’s) of the proposed 2-of-3 and the augmented 2-of-3 sign charts when 

5====n  and 5====UCL  

 

 2-of-3 sign chart Augmented 2-of-3 sign chart 

i )|Pr( 32 ICiN of ====++++  )|Pr( 32 ICiN of ≤≤≤≤++++  )|Pr( 32 ICiN A
of ====++++  )|Pr( 32 ICiN A

of ≤≤≤≤++++  

1 0 0 0 0 

2 0 0 0.00098 0.00098 

3 0.00189 0.00189 0.00189 0.00287 

4 0.00186 0.00375 0.00183 0.00470 

5 0.00181 0.00556 0.00180 0.00651 

6 0.00180 0.00736 0.00180 0.00831 

7 0.00180 0.00917 0.00180 0.01011 

8 0.00180 0.01097 0.00180 0.01191 

9 0.00180 0.01276 0.00179 0.01370 

10 0.00179 0.01455 0.00179 0.01549 

11 0.00179 0.01634 0.00179 0.01728 

12 0.00179 0.01813 0.00178 0.01906 

13 0.00178 0.01991 0.00178 0.02085 

14 0.00178 0.02169 0.00178 0.02262 

15 0.00178 0.02347 0.00177 0.02440 

 

 

To summarize the above discussion and our findings based on the analysis, we can state that: 

 

(i) The proposed upper one-sided 2-of-3 sign chart has a hitch at start-up but, the odds that this 

problem occurs are typically small; this should be reassuring for the practitioner. 

 

(ii)  It is possible to fix the imperfection of the proposed upper one-sided 2-of-3 sign chart by 

adding a third signaling event but, even this modification has a drawback: the performance of 

the augmented chart is degraded at start-up i.e. its false alarm rate is nonzero at time 2=i  

(unlike the proposed chart) and the cumulative probability for a shorter run-length is higher 

than that of the proposed chart.  

 

(iii)  Neither the proposed nor the augmented upper one-sided 2-of-3 sign chart can be implemented 

without taking a risk i.e. there is a trade-off between having a hitch at start-up and the 

possibility of a false alarm at time 2=i .  
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(iv) The inherent risk of each chart cannot be completely eliminated but, these risks can be 

minimized (or at least reduced) by ensuring that the process is IC at start-up and/or by choosing 

+
0p  to be small. 

 

(v) The in-control performance of the charts are almost identical: there is only a bit of a difference 

in their in-control ARL ’s and, at time 2=i  we have that 2
032 )( ++ = pFAR A

of  whereas 

032 =+
ofFAR .  

 

(vi) If a shift/change in the process occurs after start-up i.e. from time 3≥i , both the charts can 

signal only on the occurrence of events 1C   or 2C . So, the OOC performance of these two 

charts would be the same. 

 

We recommend that practitioners use either the proposed or the augmented upper one-sided 2-of-3 

sign chart but, we suggest that they familiarize themselves with the inherent risk associated with the 

selected chart. If the practitioner is not willing to accept the risk(s) associated with the 2-of-3 charts, 

he/she should use another chart e.g. the new proposed upper one-sided 2-of-2 sign chart or the original 

upper one-sided 1-of-1 sign chart. 

 

 

Based on the above analysis and the fact that the augmented chart can signal after having observed 

only two charting statistics instead of the proposed three charting statistics (which implies that the 

augmented chart is not a “true” 2-of-3 chart), it was decided to focus on the proposed upper one-sided 

2-of-3 sign chart and not to investigate the statistical properties of the augmented upper one-sided 2-of-

3 sign chart any further in this thesis. 

 

 

Furthermore, although the above discussion focussed specifically on the upper one-sided 2-of-3 

sign chart, these comments also apply to the lower one-sided 2-of-3 chart and the  two-sided 2-of-3 

chart. In fact, these comments are relevant for any one-sided or two-sided k-of-w chart whenever 

wk < . This is so, because we need at least w  charting statistics before we can declare the process 

OOC and we need at least kw −  charting statistics to plot IC (i.e. below the UCL  or, above the LCL  

or, between the LCL  and UCL , depending on the chart that is used). 
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Remark 7 
 

 

If the upper one-sided 2-of-3 sign chart were to signal upon any one of the three events in 

which two of the last three charting statistics can plot on or above the UCL  i.e. the 

occurrence of either event 1C  or 2C  or 5C  (see e.g. panel (a) of Figure 4.4 and panel (a) of 

Figure 4.5), the p.m.f as well as the mean (ARL ) and the variance (VARL )  of  +
32ofN  

would be obtainable from the distribution and the associated characteristics of the random 

variable  )(w
kT . 

 

The random variable  )(w
kT   is the waiting time for the first occurrence of a scan or run of 

type wk / , where the term scan or generalized run of type wk /  refers to sub sequences 

+
−+

+
+

+
11,...,, jiii ξξξ  of length wj ≤  such that the number of successes contained therein is at 

least k , that is, ∑
−+

=

+ ≥
1ji

is
s kξ  (see e.g. Chapter 9 of Balakrishnan and Koutras, (2002)); the 

probability distribution of )(w
kT  is known as the geometric distribution of order wk /  and 

derived via combinatorial methods. 

 

 

Because we exclude event 5C  as a signaling event in case of the upper one-sided 2-of-3 

chart (because the possibility of declaring a process out-of-control when the first and 

second charting statistic plot OOC but the third one plots IC is undesirable in practice), we 

cannot make use of the p.m.f or the associated properties of the geometric distribution of 

order wk /  , that is, )(w
kT  ; this supports the statement in the beginning of section 4.2.1 that 

the Markov chain technique has a great advantage over the classical combinatory 

techniques for finding the distribution(s) of run-related problems. 
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Example 1 
 

Consider the upper one-sided 2-of-3 sign chart for monitoring the median )5.0(1 == − πθ XF  and 

suppose that the subgroup size 5=n , the charting constant 0=b  (so that )5=UCL  and 0θ  denotes 

the target (IC) value for the median. 

 

As noted earlier, when the process is in-control 5.0)|Pr( 00 =>= ICXp ij θ  and therefore 

 03125.0)1,5(),0,5( 5.0000 0
====== =

++
pIbnpp θθ . 

Substituting 03125.00 =+p  for +p  in (4-20) and using (4-9) we get 

65.552),0,5|( 00,320 ===== + θθbnNEARL of . 

Similarly, using (4-10), the 218.5500 =SDRL .  

 

The in-control c.d.f of +
32ofN  can be obtained using the p.m.f in (4-8) and is given by 

 ∑
=

×
−
×

+ −=≤
j

i

i
of jN

1
0,55

1
0,550,32 )()Pr( 1QIξQ  

where +
0,32ofN  denotes the in-control run-length random variable and 0,55×Q  is found from (4-20) by 

substituting +
0p  for +p .  For illustration, we calculate and show the in-control p.m.f and the in-control 

c.d.f values for 6,5,4,3,2,1=j  in Table 4.3. 

 

 

Table 4.3: The in-control probability mass function (p.m.f) and the in-control cumulative 
distribution function (c.d.f) for the upper one-sided 2-of-3 sign chart 

 
j  1 2 3 4 5 6 

)Pr( 0,32 jN of =+  0 0 0.00189 0.00186 0.00181 0.00180 

)Pr( 0,32 jN of ≤+  0 0 0.00189 0.00375 0.00556 0.00736 
 

 

 

Given the c.d.f we can find the π100 th percentile of the run-length distribution, which is the 

smallest integer j  so that π≥≤+ )Pr( 0,32 jN of . For example, the second quartile (the median run-

length, denoted MDRL ) is found to be 3842 =Q .   The percentiles provide useful information 

regarding the efficacy of the control chart in addition to the moments such as the 0ARL  and the 

0SDRL . 
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Lower one-sided 1-of-1, 2-of-2 and 2-of-3 sign charts 
 

By substituting ),,( θanpp −− = , which is defined in (4-12),  for ),,( θbnpp ++ = , which is defined 

in (4-11), in the transition probability matrices of (4-14), (4-15) and (4-20), the distributions of the run-

length random variables −
11ofN , −

22ofN  and −
32ofN  of the lower (negative) one-sided 1-of-1, 2-of-2 and 2-

of-3 charts, respectively can be straightforwardly obtained. This is so because each lower one-sided 

chart is a mirror image of the corresponding upper one-sided chart.  

 

Also, note that, when we monitor the median, the in-control distribution of the plotting statistic is 

symmetric i.e. )5.0 , (~ nBinTi . In this case, it makes practical sense to use symmetrically placed 

control limits and set ab =   so that anUCL −=  and aLCL = ; this implies that the control limits are 

equidistant from both ends. For this specific choice of the control limits we have that −+ = i

d

i ξξ  i.e. the 

signaling indicators used to define the upper one-sided charts have the same distribution as the 

signaling indicators used to define the lower one-sided charts, and implies that the in-control 

performance of the lower and the upper one-sided sign charts, for monitoring the median, are identical. 

The performance of the upper and the lower one-sided sign charts will be further discussed in section 

4.2.4 when we study their design. 

 

Lastly, note that, the distributions of − 11ofN  and −
22ofN  can also be obtained from those of kT  (see 

Remark 5) by setting −= pα  and substituting 1=k  or 2=k  in (4-16) and (4-17), respectively.  
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Two-sided sign charts 
 

 

The derivation of the transition probability matrices and the run-length distributions of the two-

sided charts (via the Markov chain approach) parallel those of the one-sided charts. 

 

 

For the two-sided charts, the signaling indicators si 'ξ  are defined by a series of values 0, 1 or 2, 

depending on whether the corresponding charting statistic iT  plots between the two control limits, on 

or above the UCL, or on or below the LCL, respectively; the probabilities for these three events are 

−+± −−=− ppp 11 , +p  and −p , respectively (see e.g. Figure 4.10 below). 

 

 

 

Figure 4.10: The three regions on the two-sided control chart (‘0’ , ‘1’ and ‘2’) and their 
associated probabilities used to classify the charting statistic  

 
 
UCL 

 
LCL 
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Two-sided 1-of-1 sign chart 
 

For the 1-of-1 two-sided chart the run-length 11ofN  is the waiting time for the first occurrence of 

the event 21 AAA ∪=  (see e.g. Figure 4.2), which is the first occurrence of the compound pattern 

21 Λ∪Λ=Λ   in the series of si 'ξ  (i.e. among the 0’s, 1’s and 2’s) where 11 =Λ  and  22 =Λ  are two 

distinct simple patterns in this situation. 

 

The state space for the imbedded Markov chain associated with the variable 11ofN  is 

}2 ,1 ,0 ,{φ=Ω , which has 4=m  states. The absorbing states are {1} and {2} whereas {0} is the 

transient state and } {φ  is the dummy state. 

 

The transition probability matrix  44×M  is given by 

 





















−−
−−

=





















=







=

−+−+

−+−+

××

××
×

1000

0100

10

10

2,21,20,2,2

2,11,10,1,1

2,01,00,0,0

2,1,0,,

2222

2222
44

pppp

pppp

pppp

pppp

pppp

pppp

φ

φ

φ

φφφφφ

I0

CQ
M      (4-21) 

 

where, for example, the entry in the 2nd row and 2nd column of 44×M , denoted by 0,0p , is the 

probability that the system remains in state {0}, that is, where 1−iT  plots IC at time 1−i  and iT  plots 

IC at time i . 
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Two-sided 2-of-2 DR sign chart 
 

The run-length DR
ofN 22  of the 2-of-2 DR two-sided chart is the waiting time for the first occurrence 

of the event 1D  or 2D  or 3D  or 4D  (see e.g. Figure 4.6), which is the first occurrence of the 

compound pattern U
4

1=

Λ=Λ
i

i  in the series of si 'ξ , where 111 =Λ , 222 =Λ , 123 =Λ  and 214 =Λ  

are the four distinct simple patterns.  

 

The imbedded Markov chain, in this case, is defined on the state space 

}21 , 12 , 22 , 11 2, , 1 , 0 , {φ=Ω , where φ  is the dummy state, the three states {0}, {1} and {2} are the 

transient states and the four states 11}{ , 22}{ , 12}{  and 21}{  are the absorbing states. 

 

The transition probability matrix  88×M  is given by 

 

































−−
−−
−−
−−

=







=

+−−+

−+−+

−+−+

−+−+

××

××
×

10000000

01000000

00100000

00010000

000010

000010

000010

000010

4444

4444
88

pppp

pppp

pppp

pppp

I0

CQ
M .           (4-22) 
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Remark 8 
 

If we let 





∈
∉=∉=±

),(if0
),(if1

)),((
UCLLCLT
UCLLCLT

UCLLCLTI
i

i
iiξ  

where )),(( UCLLCLTI i ∉ denotes the indicator function for the event )},({ UCLLCLTi ∉  

then 

}1{ =±
iξ  if and only if }2{}1{ =∪= ii ξξ   (4-23) 

so that 

)2Pr()1Pr()1Pr( =+===±
iii ξξξ   (4-24) 

 

where the ±
iξ ’s is a sequence of i.i.d. Bernoulli random variables each with probability of 

success −+±± +==∉== pppUCLLCLTii )),(Pr()1Pr(ξ  and the iξ ’s is a sequence of  

i.i.d tri-variate random variables with probabilities +== pi )1Pr(ξ , 

−+± −−=−== pppi 11)0Pr(ξ  and −== pi )2Pr(ξ , respectively. 

 

 

Expressions (4-23) and (4-24) permit us to define the signaling events and obtain the run-

length distributions of the two-sided 1-of-1 and the two-sided 2-of-2 DR sign charts using 

the ±
iξ ’s instead of using the iξ ’s.  This means that, instead of using the Markov chain 

approach, we can find the distributions of 11ofN  and DR
ofN 22  using the results (or properties) 

of the geometric distribution of order k . 

 

 

In particular, it follows from (4-23) and (4-24) that the run-length 11ofN  of the two-sided 1-

of-1 chart, which is the waiting time for the first occurrence of the event 

}2{}1{21 =∪==∪= iiAAA ξξ ,  is equivalent to the waiting time for the first success 

(i.e. 1) among the ±
iξ ’s, that is, }1{ == ±

iA ξ . Likewise, the run-length DR
ofN 22  of the two-

sided 2-of-2 chart, which is the waiting time for the first occurrence of the event  1D  or 2D  

or 3D  or 4D  (see e.g. Figure 4.6), is the same as the waiting time for the first occurrence 

of two consecutive successes (two successive 1’s) among the ±
iξ ’s, that is, 

}1{)( 1 === ±±
− iiDRD ξξ  so that 

2
14321 )(})1Pr({)Pr())(Pr( ±±±

− ====∪∪∪= pDDDDDRD ii ξξ . 

 
 
 



 304 

The distributions of 11ofN  and DR
ofN 22  are therefore both geometric distributions of order k  

so that closed form expressions for the p.m.f’s of 11ofN  and DR
ofN 22  can be conveniently 

obtained from (4-16) by setting 

1=k    with   ±== pA)Pr(α  

and 

2=k    with   2)())(Pr( ±== pDRDα  

instead of symbolically simplifying expression (4-8). 

 

 

For example, upon substituting the essential transition probability sub-matrix of the two-

sided 1-of-1 sign chart 

 










−
−=









−−
−−= ±

±

−+

−+

× p
p

pp
pp

10
10

10
10

22Q  

 

into (4-8) and simplifying symbolically, we get an explicit formula for the p.m.f of 11ofN  

(via the Markov chain approach) that corresponds to the already available p.m.f one 

obtains  after substituting ±p  and 1=k  into (4-16) i.e. 

 

          ±−±
= −==== ppbanjTbanjN j

kof
1

111 )1(),,,|Pr(),,,| Pr( θθ   for  ,...3,2,1=j .     (4-25) 
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Two-sided 2-of-2 KL sign chart 
 

The run-length KL
ofN 22  of the 2-of-2 KL two-sided chart is the waiting time for the first occurrence 

of the event 1D  or 2D  (see e.g. panels (a) and (b) of Figure 4.6), which is the first occurrence of the 

compound pattern 21 Λ∪Λ=Λ  in the series of si 'ξ , where 111 =Λ  and 222 =Λ  are the two distinct 

simple patterns in this case. 

 

The imbedded Markov chain associated with the run-length variable KL
ofN 22  is defined on the state 

space } 22 , 11 2, , 1 , 0 , {φ=Ω , which has 6=m  states, where 11}{  and 22}{ are the two absorbing 

states. 

 

The transition probability matrix  66×M  of the Markov chain is given by  

 



























−−
−−
−−
−−

=







= −+−+

+−−+

−+−+

−+−+

××

××
×
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pppp

pppp

pppp

pppp

I0

CQ
M .  (4-26) 
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Two-sided 2-of-3 sign chart 
 

The run-length 32ofN  of the 2-of-3 two-sided chart is the waiting time for the first occurrence of 

the event 1E  or 2E  or 3E  or 4E  (see e.g. Figure 4.7), which is the first occurrence of the compound 

pattern U
4

1=

Λ=Λ
i

i  in the series of si 'ξ  (i.e. among the 0’s, 1’s and 2’s), where 0111 =Λ , 1012 =Λ , 

0223 =Λ  and 2024 =Λ  are the four distinct simple patterns. 

 

The imbedded Markov chain, in this case, is defined on the finite state space 

}, , , , 20 , 02 , ,10 01 2, , 1 , 0 , { 4321 ααααφ=Ω  with 12=m  states, where the four states 

011}{1 =α , 101}{2 =α , 022}{3 =α  and 202}{4 =α  are the absorbing states, φ  is the dummy state, 

and the eight transient states are all the sequential sub-patterns of 0111 =Λ , 1012 =Λ , 0223 =Λ  and 

2024 =Λ , respectively. In this case, the essential transition probability sub-matrix 88×Q  of the 

transition probability matrix 

 









=

××

××
×

4484

4888
1212 I0

CQ
M  

 

is given by 
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−−
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Q   (4-27) 

 

whilst the non-essential transition probability sub-matrix 48×C  is given by  

 

T

p

p

p
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Remark 9 
 

 

In general, if rFFF ,...,, 21 , 1≥r  are the set of all possible events in which (a) k  

consecutive charting statistics, or (b) exactly k  of the last w  charting statistics) can plot 

OOC, one can design a chart that signals on the first occurrence of the event U
r

i
iFF

1=

= . 

The run-length of such a chart would be (a) geometric of order k , or (b) geometric of order 

wk / .  

 

 

However, we prefer, due to practical considerations, to exclude some of the iF ’s ; in doing 

so the distribution of the run-length is not necessarily geometric of order k  or geometric of 

order wk /  and we then use the Markov chain approach to find the run-length distribution. 

 

 

For example, as mentioned earlier, because the two-sided 2-of-2 KL chart signals only if 

event 1D  or 2D  occurs for the first time and does not signal (unlike the two-sided 2-of-2 

DR chart) in case event 3D  or event 4D  occurs (see Figure 4.6), the distribution of KL
ofN 22 , 

in general, is not a geometric distribution of order 2=k . 

 

 

Likewise, because the two-sided 2-of-3 sign chart signals only on the first occurrence of  

event 1E  or 2E  or 3E  or 4E  (see e.g. Figure 4.7) and excludes the remaining eight events 

in which exactly two of the last three charting statistics can plot on or outside the control 

limits i.e. events 5E , 6E , 7E , 8E , 9E , 10E , 11E  and 12E  (see e.g. Figure 4.8), as signaling 

events the distribution of 32ofN , in general, is not a geometric distribution of order 3/2 . 

 

 

If, however, we were to design a two-sided 2-of-3 sign chart that signals on the first 

occurrence of either one of the events iE  for 12,...,2,1=i  the distribution of the run-length 

random variable associated with such a chart would be a geometric distribution of order 

3/2  with probability of success −+± +==∉ pppUCLLCLTi )),(Pr(  (also see Remark 7). 
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4.2.3   The in-control run-length characteristics of the one-sided and two-sided sign   

charts  
 

 

The characteristics of the in-control (IC) run-length distributions are essential in the design of a 

control chart.   Furthermore, for out-of-control (OOC) performance comparisons their in-control 

average run-length ( 0ARL ) and/or false alarm rate (FAR ) should be equal or, at least, approximately 

so.  

 

Tables 4.4 and 4.5 summarize the expressions for the ARL  and the FAR  of the various sign charts.  

The ARL  expressions, in general, follow from having written the corresponding essential transition 

probability sub-matrix hh×Q , substituting it in (4-9) and simplifying symbolically.  

 

For example, for the 1-of-1 two-sided chart with state space }2 ,1 ,0 ,{φ=Ω , it was shown that 










−−
−−= −+

−+

× pp
pp
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22Q  

so that  upon substitution in (4-9) and simplifying we get an explicit formula for the ARL given by 
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1

1111 . 

 

Alternatively, in some cases (such as the upper and the lower one-sided 1-of-1 and 2-of-2 charts as 

well as the two-sided 1-of-1 and 2-of-2 DR charts) one can obtain closed form expressions by using 

available results of the geometric distribution of order k . For example, for the two-sided 2-of-2 DR 

chart, one obtains the ARL  upon substituting −+± += ppp  for α   in (4-17); this gives 

 

22

2

22222 )(

1

))(1(

)(1
)()( −+

−+

−+−+

−+

+
++=

+−−
+−===

pp

pp

pppp

pp
TENEARL DR

of
DR

of . 

 

Note that, for the in-control average run-length 

)1,(),,(
0000 +−=== ++ bbnIbnpp pθθ  

and 

),1(1),,(
0000 anaIanpp p −+−=== −− θθ  

where 0p  is defined in (4-6), are to be substituted for +p  and −p , respectively, in the ARL  

expressions of Tables 4.4 and 4.5.  
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The expressions for the FAR  can be obtained from the definitions of the charts in a straightforward 

manner.   For example, for the 2-of-2 upper one-sided chart, the false alarm rate is 

 2
01122 )()|Pr()|Pr()|Pr( +

−
+ =≥×≥== pICUCLTICUCLTICBFAR iiof  

where 1B  is defined in panel (a) of Figure 4.3, whereas the false alarm rate for the 2-of-2 KL chart is 

2
0

2
0

11

2122

)()(
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where 1D  and 2D  are defined in panels (a) and (b) of Figure 4.6. 

 

Table 4.4: Average run-lengths (ARL’s) and false alarm rates (FAR’s) of the upper one-sided 
sign charts 
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Table 4.5: Average run-lengths (ARL’s) and false alarm rates (FAR’s) of the two-sided sign 
charts 
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Remark 10 
 

 

As mentioned earlier, the FAR  and the 0ARL  of all the sign charts depend only on the 

probabilities +
0p  and/or −

0p , which in turn depend only on the sample size n  and the 

charting constants a  and/or b  and not on the underlying process distribution. The in-

control run-length distributions therefore remain the same for all continuous process 

distributions, and hence the proposed sign charts are nonparametric or distribution-free. 
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4.2.4   Design of the upper (lower) one-sided 1-of-1, 2-of-2 and 2-of-3 sign charts 
 

 

In order to design the proposed charts and assess their in-control performance the design 

parameters need to be chosen. The design parameters include 

(i) the sample size n ,  

(ii)  the charting constants a  and b , and 

(iii)  the target value 0θ .  

 

Because rational subgroups in SPC are small, we focus on 15)1(4=n , 20 and 25.  

 

To monitor the center of a process, one typically chooses θ  to be the process median and this is the 

case we study here; hence 5.0=π  so that )5.0(1−= XFθ  and 5.0)|Pr( 00 =>== ICXpp ij θ .  

However, other choices of θ  might be desirable in some situations.  For example, to monitor the 25th 

percentile of a processes’ distribution we would set 25.0=π  so that )25.0(1−= XFθ  and then 

75.0)|Pr( 00 =>= ICXp ij θ .  The sign charts are flexible enough to allow one to do that. 

 

The charting constants a  and b  can be any integer between and including 0 and n .  However, a  

and/or b  are typically chosen so that the 0ARL  is reasonably large. 

 

 

Tables 4.6 and 4.7 display the in-control characteristics of the 1-of-1 sign chart of Amin et al. 

(1995) and the new proposed runs-rule enhanced 2-of-2 and 2-of-3 one-sided sign charts. 

 

Note that, Tables 4.6 and 4.7 apply to both the lower and the upper one-sided sign charts because 

in case of the median we have that 5.00 == pp  when the process is in-control, which implies that the 

charting statistic iT  has a binomial (n, 0.5) distribution which is symmetric.  Hence, when ab =  (as in 

Tables 4.6 and 4.7), the in-control performance of the lower and the upper one-sided sign charts are 

identical. 

 

For example, if 6=n  and the LCL  of the lower one-sided chart is 1=a , the UCL  for the upper 

one-sided chart is simply 516 =−=− bn , and both of these charts have an in-control ARL  of 9.14 

and a FAR  of 0.10938.  
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An examination of the ARL  and FAR  values in Tables 4.6 and 4.7 reveal the advantages of the 

new sign charts 

 

(i) They offer more practically attractive 0ARL ’s and FAR ’s in that, for any particular 

combination of  n  and a , the  attained  0ARL  values of the 2-of-2 and the 2-of-3 charts are 

much higher than those of the 1-of-1 chart with a corresponding decrease in the FAR . 

 

For example, for 5=n  and 0=a  the 0ARL  of the 1-of-1 chart is 32.00 with a fairly large 

FAR  of 0.03125, but for the 2-of-3 chart the 0ARL  increases to a more reasonable 552.65 

and the FAR  decreases to 0.00189, whereas for the 2-of-2 chart, the 0ARL equals 1056.00 

with a FAR  of 0.00098. 

 

(ii)  Most importantly, when using the 1-of-1 chart the industry standard 0ARL  value of 370 and 

FAR  of 0.0027 is far from being attainable, but with the proposed 2-of-2 chart, for 

example, when 10=n  and 2=a , we can be almost on target e.g. the  0ARL  and FAR  

values are 352.65 and 0.00299, respectively. 

 

Thus, by carefully choosing the sample size n , the charting constants a  and/or b, and the 

values of k  and w , we can attain more familiar and recommended values for the  0ARL  

and the FAR  for the proposed nonparametric sign charts. Even for a sample size as small 

as 4=n , an  0ARL  of 272.00 with a FAR  of 0.00391 is possible when the 2-of-2 chart is 

used with 0=a .  

 

Amin et al. (1995) noted that the largest possible 0ARL  of their 1-of-1 one-sided sign chart 

for the median is n2 .   However, our runs-rules based sign charts provide a wider range of 

attainable 0ARL  values and false alarm rates.   For instance, for 15=n  the sign charts can 

attain an 0ARL  ( FAR ) as low (high) as 6.00 (0.25) and an 0ARL  ( FAR ) as high (low) as 

3293.23 (0.00031) with the 2-of-2 chart. 
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Table 4.6:  The in-control characteristics (ARL and FAR) of the one-sided 1-of-1, 2-of-2 and 

2-of-3 sign charts for the median (for samples of size 11)1(4====n )* 

 
Sample size LCL UCL 1-of-1 2-of-2 2-of-3 

n a n-b=n-a ARL0 FAR ARL0 FAR ARL0 FAR 

0 4 16.00 0.06250 272.00 0.00391 148.68 0.00732 
4 

1 3   13.44 0.09766 10.13 0.13428 

0 5 32.00 0.03125 1056.00 0.00098 552.65 0.00189 
1 4 5.33 0.18750 33.78 0.03516 21.71 0.05713 5 
2 3   6.00 0.25000   

0 6 64.00 0.01563 4160.00 0.00024 2128.64 0.00048 
1 5 9.14 0.10938 92.73 0.01196 53.95 0.02131 6 
2 4   11.37 0.11816 8.94 0.15509 

0 7 128.00 0.00781   8352.63 0.00012 
1 6 16.00 0.06250 272.00 0.00391 148.68 0.00732 
2 5   23.90 0.05133 16.13 0.07940 

7 

3 4   6.00 0.25000   

0 8 256.00 0.00391     
1 7 28.44 0.03516 837.53 0.00124 440.75 0.00239 
2 6 6.92 0.14453 54.79 0.02089 33.35 0.03574 

8 

3 5   10.33 0.13197 8.34 0.16806 

0 9 512.00 0.00195     
1 8 51.20 0.01953 2672.64 0.00038 1375.36 0.00075 
2 7 11.13 0.08984 135.02 0.00807 76.56 0.01469 
3 6   19.45 0.06447 13.59 0.09620 

9 

4 5   6.00 0.25000   

0 10 1024.00 0.00098     
1 9 93.09 0.01074 8759.01 0.00012 4449.96 0.00023 
2 8 18.29 0.05469 352.65 0.00299 190.71 0.00565 
3 7 5.82 0.17188 39.67 0.02954 25.00 0.04893 

10 

4 6   9.69 0.14209 7.98 0.17706 

0 11 2048.00 0.00049     
1 10 170.67 0.00586     
2 9 30.57 0.03271 964.92 0.00107 506.04 0.00207 
3 8 8.83 0.11328 86.75 0.01283 50.73 0.02276 
4 7   16.92 0.07530 12.14 0.10928 

11 

5 6   6.00 0.25000   
*Note: Only ARL0 values greater than 5 and less than 10 000 are shown. 
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Table 4.7:  The in-control characteristics (ARL and FAR) of the one-sided 1-of-1, 2-of-2 and 
2-of-3 sign charts for the median (for samples of size 25)5(15)1(12====n )* 

 
Sample size LCL UCL 1-of-1 2-of-2 2-of-3 

n a n-b=n-a ARL0 FAR ARL0 FAR ARL0 FAR 

0 12 4096.00 0.00024     

1 11 315.08 0.00317     

2 10 51.85 0.01929 2740.07 0.00037 1409.56 0.00073 

3 9 13.70 0.07300 201.36 0.00533 111.64 0.00988 

4 8 5.16 0.19385 31.77 0.03758 20.58 0.06059 

12 

5 7   9.25 0.14993 7.73 0.18375 

0 13 8192.00 0.00012     
1 12 585.14 0.00171     
2 11 89.04 0.01123 8017.78 0.00013 4076.31 0.00025 
3 10 21.67 0.04614 491.35 0.00213 262.59 0.00406 
4 9 7.49 0.13342 63.67 0.01780 38.21 0.03085 
5 8   15.29 0.08441 11.20 0.11977 

13 

6 7   6.00 0.25000   

1 13 1092.27 0.00092     
2 12 154.57 0.00647     
3 11 34.86 0.02869 1250.05 0.00082 651.82 0.00160 
4 10 11.14 0.08978 135.19 0.00806 76.66 0.01467 
5 9   26.97 0.04493 17.87 0.07082 

14 

6 8   8.93 0.15623 7.55 0.18896 

1 14 2048.00 0.00049     
2 13 270.81 0.00369     
3 12 56.89 0.01758 3293.23 0.00031 1689.92 0.00061 
4 11 16.88 0.05923 301.88 0.00351 164.28 0.00660 
5 10 6.63 0.15088 50.56 0.02276 31.02 0.03866 
6 9   14.14 0.09218 10.53 0.12839 

15 

7 8   6.00 0.25000   

2 18 4969.55 0.00020     
3 17 776.15 0.00129     
4 16 169.23 0.00591     
5 15 48.32 0.02069 2383.29 0.00043 1228.53 0.00084 
6 14 17.34 0.05766 318.13 0.00332 172.75 0.00627 
7 13 7.60 0.13159 65.35 0.01732 39.13 0.03007 
8 12   19.75 0.06336 13.76 0.09483 

20 

9 11   8.32 0.16966 7.21 0.19956 

4 21 2196.55 0.00046     
5 20 490.52 0.00204     
6 19 136.67 0.00732   9511.45 0.00011 
7 18 46.21 0.02164 2181.12 0.00047 1125.86 0.00092 
8 17 18.56 0.05388 363.08 0.00290 196.13 0.00549 
9 16 8.71 0.11476 84.64 0.01317 49.59 0.02332 
10 15   26.93 0.04502 17.85 0.07094 
11 14   11.30 0.11904 8.90 0.15594 

25 

12 13   6.00 0.25000   
*Note: Only ARL0 values greater than 5 and less than 10 000 are shown. 
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4.2.5   Performance comparison of the one-sided sign charts 
 

 

We compare the performance of the 1-of-1, the 2-of-2 and the 2-of-3 sign charts to that of the 

competing 1-of-1 SR chart of Bakir (2004) and the 2-of-2 SR charts of Chakraborti and Eryilmaz 

(2007) under the normal, the double exponential (or Laplace) and the Cauchy distributions; for 

completeness, we also include the well-known Shewhart X  chart. 

 

The double exponential and the Cauchy distributions are normal like with different tail behavior 

(see e.g. Figure 4.11). For the double exponential distribution the scale parameter was set equal to 

2/1  for a standard deviation of 1; for the Cauchy distribution the scale parameter was set equal 

to 2605.0  in order to achieve a tail probability of 0.05 above 645.10 +θ  - the same as for a )1,(0θN  

distribution. 

 

Without loss of generality, we take the in-control median to be 00 =θ .  All three distributions are 

symmetric and a shift refers to a shift in the mean (median).   The amount of shift in the median was 

taken over the range 2.1)2.0(0=δ . 

 

 

 

Figure 4.11: Probability distributions used for the performance comparison of the sign control 
charts 
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For comparison purposes the control charts are designed so that the 0ARL  values are high and are 

approximately equal.  However, because the nonparametric charts are based on charting statistics that 

have discrete distributions, it is not possible to straightforwardly design the charts such that their 

0ARL  values are all equal, and equal to some desired value such as 370 for a given sample size n  (see 

e.g. Tables 4.6 and 4.7) .  

 

Randomization was therefore used to ensure that the charts all have the same 0ARL  for a selected 

sample size.  The technique is mainly used in the testing literature to compare the power of tests based 

on discrete test statistics so that they have identical nominal Type I error probability such as 0.05 (see 

e.g. Gibbons and Chakraborti, (2003)).  We provide an example for illustration with the 1-of-1 sign 

chart; randomization for the other nonparametric charts can be handled in a similar way. 

 

 

Example 2 
 

Consider constructing a 1-of-1 upper one-sided sign chart with 0ARL  of 370  when samples of size 

10=n  are used. From Table 4.6 we see that for this chart, exact in-control ARL  values of 1024 (when 

10=UCL ) and 93.09 (when 9=UCL ) are attainable that trap the target value 370. 

 

The following randomized decision rule has an exact 0ARL  of 370 : 

 

“Declare the process OOC if 10=≥ UCLTi  (with probability 1) and with probability q  if 

91=−= UCLTi , where 10 << q  is chosen such that 370/1)|9Pr(.)|10Pr( ==+≥ ICTqICT ii ”.  

 

Assuming that the median is the parameter of interest and the process is IC, )5.0,10(~BinTi  and 

therefore 

 

18.01768.0)|9Pr(/)]|10Pr(370/1[ ≈==≥−= ICTICTq ii . 

 

Hence, if we declare the process OOC every time the charting statistic is greater than or equal to 10 

and declare the process OOC in 17.68% of the cases the charting statistic equals 9, we would have a 1-

of-1 upper one-sided sign chart with an in-control ARL  of 370. 

 

In practice, we could use a random number generator to make a decision; for example, if the 

charting statistic equals 9, we could draw a random number between 1 and 100; if the drawn number is 

between 1 and 18, the process is declared OOC, otherwise it is not. 
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Note that, randomization is used to ensure that the in-control ARL  values of the competing charts 

are equal so that their OOC performance can be fairly compared.  The implementation and application 

of the charts remain as defined earlier and require no randomization.   

 

The in-control (when )0=δ and the out-of-control (when )0≠δ characteristics of the various 

charts for samples of size 10=n  are shown in Tables 4.8, 4.9 and 4.10 under the normal, the double 

exponential and the Cauchy distribution, respectively. The characteristics include the ARL , the SDRL  

as well as the 5th, the 25th (the first quartile, 1Q ), the 50th (the median run-length, MDRL ), the 75th (the 

third quartile, 3Q ) and the 95th percentiles of the run-length distribution.  

 

Note that, since randomization was used and the out-of-control distribution for the SR statistic is 

unavailable for most distributions, we used simulations (100 000 samples each of 10=n ) to estimate 

these characteristics in SAS®9.1; these programs can be found in Appendix 4A. 

 

Table 4.8: In-control and out-of-control characteristics of the run-length distributions of the one-
sided 1-of-1 sign, the 2-of-2 sign, the 2-of-3 sign, the 1-of-1 SR and the 2-of-2 SR chart for the 

median under the normal distribution 
 

 1-of-1 sign (UCL=10) 1-of-1 SR (UCL=53) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 370.4 19 107 259 514 1107 370 369.7 19 106 255 509 1099 
0.2 104 103.7 6 30 72 144 310 88.7 88.2 5 26 62 123 265 
0.4 35.6 35.2 2 11 25 49 106 27.3 26.8 2 8 19 38 81 
0.6 14.7 14.2 1 5 10 20 43 10.6 10.1 1 3 7 14 31 
0.8 7.3 6.8 1 2 5 10 21 5 4.5 1 2 4 7 14 
1.0 4.2 3.7 1 2 3 6 12 2.9 2.3 1 1 2 4 7 

1.2 2.8 2.2 1 1 2 4 7 1.9 1.3 1 1 1 2 5 

 2-of-2 sign (UCL=9) 2-of-2 SR (UCL=33) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 368.9 20 108 258 509 1107 370 371.9 21 108 256 514 1122 
0.2 64 62.6 5 19 45 88 189 50.9 49.4 4 16 36 70 150 
0.4 17.5 16.2 2 6 13 24 50 12.7 11.4 2 5 9 17 35 
0.6 7.2 5.9 2 3 5 10 19 5.2 3.9 2 2 4 7 13 
0.8 4 2.7 2 2 3 5 9 3.1 1.7 2 2 2 4 7 
1.0 2.9 1.5 2 2 2 3 6 2.4 0.9 2 2 2 2 4 

1.2 2.4 0.8 2 2 2 2 4 2.1 0.4 2 2 2 2 3 

 2-of-3 sign (UCL=9) X-bar (UCL = 0.8797) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 362.8 21 108 255 510 1094 370 370.3 20 107 257 513 1109 
0.2 62.2 60.3 5 19 44 86 183 63.4 62.5 4 19 44 88 187 
0.4 17.2 15.5 3 6 12 23 48 15.5 14.9 1 5 11 21 45 
0.6 7.2 5.6 2 3 5 9 18 5.3 4.8 1 2 4 7 15 
0.8 4.1 2.6 2 2 3 5 9 2.5 1.9 1 1 2 3 6 
1.0 3 1.4 2 2 3 3 6 1.5 0.9 1 1 1 2 3 
1.2 2.5 0.8 2 2 2 3 4 1.2 0.5 1 1 1 1 2 
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Table 4.9: In-control and out-of-control characteristics of the run-length distributions of the one-
sided 1-of-1 sign, the 2-of-2 sign, the 2-of-3 sign, the 1-of-1 SR and the 2-of-2 SR chart for the 

median under the double exponential distribution 
 

 1-of-1 sign (UCL=10) 1-of-1 SR (UCL=53) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 371.2 19 107 257 514 1110 370 370.4 19 106 256 511 1111 
0.2 54.6 53.8 3 16 38 75 162 48.7 48.2 3 14 34 68 145 
0.4 16.6 16.1 1 5 12 23 49 13.3 12.8 1 4 9 18 39 
0.6 7.5 7 1 3 5 10 21 5.7 5.1 1 2 4 8 16 
0.8 4.3 3.8 1 2 3 6 12 3.2 2.6 1 1 2 4 8 
1.0 3 2.4 1 1 2 4 8 2.2 1.6 1 1 2 3 5 

1.2 2.2 1.7 1 1 2 3 6 1.7 1 1 1 1 2 4 

 2-of-2 sign (UCL=9) 2-of-2 SR (UCL=33) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 368.5 21 107 256 512 1099 370 369 21 107 255 511 1102 
0.2 29 27.5 3 9 20 40 84 31.8 30.4 3 10 22 44 92 
0.4 8 6.7 2 3 6 11 21 8.1 6.8 2 3 6 11 22 
0.6 4.1 2.8 2 2 3 5 10 4 2.7 2 2 3 5 9 
0.8 2.9 1.5 2 2 2 4 6 2.8 1.4 2 2 2 3 6 
1.0 2.4 0.9 2 2 2 2 4 2.3 0.8 2 2 2 2 4 
1.2 2.2 0.6 2 2 2 2 4 2.1 0.5 2 2 2 2 3 

 2-of-3 sign (UCL=9) X-bar (UCL=0.9267) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 361 20 105 251 505 1089 370 368.1 20 107 257 510 1103 
0.2 28.2 26.4 3 9 20 38 81 80.1 79.9 5 23 56 111 240 
0.4 8 6.4 2 3 6 10 21 20.9 20.3 2 6 15 29 61 
0.6 4.2 2.6 2 2 3 5 10 6.9 6.4 1 2 5 9 20 
0.8 3 1.4 2 2 3 3 6 3 2.4 1 1 2 4 8 
1.0 2.5 0.9 2 2 2 3 4 1.7 1.1 1 1 1 2 4 
1.2 2.3 0.6 2 2 2 2 3 1.2 0.5 1 1 1 1 2 
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Table 4.10: In-control and out-of-control characteristics of the run-length distributions of the 
one-sided 1-of-1 sign, the 2-of-2 sign, the 2-of-3 sign, the 1-of-1 SR and the 2-of-2 SR chart for 

the median under the Cauchy distribution 
 

 1-of-1 sign (UCL=10) 1-of-1 SR (UCL=53) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 370.9 19 106 259 516 1113 370 367.7 19 105 255 511 1101 
0.2 18.2 17.7 1 6 13 25 53 15.6 15.1 1 5 11 21 46 
0.4 5.4 4.9 1 2 4 7 15 4.5 4 1 2 3 6 12 
0.6 3.2 2.6 1 1 2 4 8 2.7 2.1 1 1 2 4 7 
0.8 2.4 1.8 1 1 2 3 6 2.1 1.5 1 1 2 3 5 
1.0 2 1.4 1 1 2 3 5 1.7 1.1 1 1 1 2 4 

1.2 1.8 1.2 1 1 1 2 4 1.6 1 1 1 1 2 3 

 2-of-2 sign (UCL=9) 2-of-2 SR (UCL=33) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 368.4 21 107 257 511 1103 370 370.4 20 108 258 512 1111 
0.2 8.8 7.4 2 3 6 12 24 11.4 10.1 2 4 8 15 31 
0.4 3.3 1.9 2 2 2 4 7 4.1 2.8 2 2 3 5 10 
0.6 2.5 1 2 2 2 3 5 2.9 1.5 2 2 2 4 6 
0.8 2.2 0.7 2 2 2 2 4 2.5 1 2 2 2 3 5 
1.0 2.1 0.5 2 2 2 2 3 2.3 0.8 2 2 2 2 4 
1.2 2.1 0.4 2 2 2 2 3 2.2 0.6 2 2 2 2 4 

 2-of-3 sign (UCL=9) X-bar (UCL = 30.6802) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 360.5 21 106 252 503 1085 370 368 19 107 258 513 1101 
0.2 8.7 7.1 2 4 7 11 23 367 366.5 19 106 255 507 1096 
0.4 3.4 1.8 2 2 3 4 7 367 367.2 19 106 254 507 1097 
0.6 2.6 1 2 2 2 3 5 364 365.5 19 105 251 504 1090 
0.8 2.3 0.7 2 2 2 3 4 361 361.7 19 104 248 500 1084 
1.0 2.2 0.5 2 2 2 2 3 360 360 19 104 249 499 1077 
1.2 2.2 0.4 2 2 2 2 3 355 353.8 19 103 247 492 1066 
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Table 4.11 summarizes our findings from Tables 4.8, 4.9 and 4.10 and ranks the charts (from the 

most to the least favorable) under each of the three distributions. The ranking was based primarily on 

their ARL  (the current norm in the SPC literature), but since the run-length distributions are right 

(positive) skewed, we also looked at the median run-length (MDRL ), the first and third quartiles (i.e. 

1Q  and 3Q ), as well as the 5th and the 95th percentiles.  

 
 

Table 4.11: Ranking (from most to least favorable) of the one-sided nonparametric charts for 
the median under the normal, the double exponential and the Cauchy distributions based on out-

of-control ARL and run-length percentiles.  The ARL0 = 370 
 

Normal Double Exponential   Cauchy 

2-of-2 SR 2-of-2 sign / 2-of-3 sign 2-of-2 sign / 2-of-3 sign 

2-of-2 sign / 2-of-3 sign 2-of-2 SR 2-of-2 SR 

1-of-1 X  1-of-1 SR 1-of-1 SR 

1-of-1 SR 1-of-1 sign 1-of-1 sign 

1-of-1 sign 1-of-1 X  1-of-1 X  
 

 

 

Overall, it is concluded that the proposed sign charts 

 

(i) have substantially better out-of-control performance (i.e. shorter ARL  values) than the 1-

of-1 sign chart of Amin et al. (1995), 

 

(ii)  compete well with the SR charts of Bakir (2004) and Chakraborti and Eryilmaz (2007), and 

 

(iii)  outperform the Shewhart X  chart in case of the heavier tailed distributions. 
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4.2.6   Design of the two-sided 2-of-2 DR, the 2-of-2 KL and the 2-of-3 sign charts 
 

 

The characteristics of the in-control run-length distribution are typically used in the design and/or 

the implementation of a chart.  As noted before, the 0ARL  should be high so that the time and/or effort 

spent on searching for nonexistent out-of-control conditions is not wasted. 

 

Tables 4.12 and 4.13 display the 0ARL  and the FAR  values of the two-sided 1-of-1,  2-of-2 DR, 

2-of-2 KL and 2-of-3 sign charts, respectively.   For simplicity we only consider symmetrically placed 

control limits for the median i.e. aLCL =  and anUCL −= , so that 

−+ =≤=≥= 00 )|Pr()|Pr( pICLCLTICUCLTp ii . Asymmetric control limits may of course be used 

when necessary, say for monitoring percentiles other than the median. 

 

To attain the desired 0ARL  and/or FAR  (for any one of the four charting procedures) the 

practitioner may use Tables 4.12 and 4.13 to select the suitable charting constant a  (hence the control 

limits) for the sample size n  at hand.   Note that, as pointed out by Amin et al. (1995), the largest 

possible in-control ARL  for the two-sided 1-of-1 sign chart is 12 −n  when 5.0=p , and thus unless n  is 

sufficiently large, it is not possible to get close (even approximately) to an 0ARL  such as 370; this 

makes the 1-of-1 charts somewhat unattractive from a practical point of view. 

 

 However, for any combination of n  and a  values the 0ARL  (or FAR ) values of the 2-of-2 DR, 

the 2-of-2 KL and the 2-of-3 sign charts are higher (or smaller) than that of the 1-of-1 sign chart.  

 

For example, if 5=n  and 0=a  the 0=LCL  and the 5=UCL ; the 1-of-1 sign chart has an 0ARL  

of 16.00 (with a FAR  of 0.06250), whereas both the 2-of-2 DR and the 2-of-2 KL charts have much 

higher 0ARL  values, 272.00 and 528.00, respectively (and much smaller FAR  values, 0.00391 and 

0.00195, respectively).  Therefore, the new two-sided sign charts with signaling rules are more useful 

to the practitioner. 
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Table 4.12: The in-control characteristics (ARL and FAR) of the two-sided 1-of-1, the 2-of-2 
DR, the 2-of-2 KL and the 2-of-3 sign charts for the median (for samples of size 14)1(4====n )* 

 

Sample size LCL UCL 1-of-1 2-of-2 DR 2-of-2 KL 2-of-3 
n a n-a ARL0 FAR ARL0 FAR ARL0 FAR ARL0 FAR 

0 4 8.00 0.12500 72.00 0.01563 136.00 0.00781 79.37 0.01367 
4 

1 3     6.72 0.19531 8.74 0.14648 

0 5 16.00 0.06250 272.00 0.00391 528.00 0.00195 285.27 0.00366 
5 

1 4   9.78 0.14063 16.89 0.07031 13.75 0.08789 

0 6 32.00 0.03125 1056.00 0.00098 2080.00 0.00049 1081.23 0.00095 
1 5   25.47 0.04785 46.37 0.02393 30.45 0.03738 6 
2 4     5.69 0.23633 8.75 0.14771 

0 7 64.00 0.01563 4160.00 0.00024 8256.00 0.00012 4209.21 0.00024 
1 6 8.00 0.12500 72.00 0.01563 136.00 0.00781 79.37 0.01367 7 
2 5   7.08 0.20532 11.95 0.10266 11.01 0.11229 

0 8 128.00 0.00781       
1 7 14.22 0.07031 216.49 0.00494 418.77 0.00247 228.45 0.00460 
2 6   15.43 0.08356 27.40 0.04178 19.74 0.05940 

8 

3 5     5.16 0.26395 9.00 0.14435 

0 9 256.00 0.00391       
1 8 25.60 0.03906 680.96 0.00153 1336.32 0.00076 701.4 0.00147 
2 7 5.57 0.17969 36.54 0.03229 67.51 0.01614 42.18 0.02649 

9 

3 6   5.85 0.25787 9.72 0.12894 9.87 0.12692 

0 10 512.00 0.00195       
1 9 46.55 0.02148 2213.02 0.00046 4379.50 0.00023 2249.15 0.00045 
2 8 9.14 0.10938 92.73 0.01196 176.33 0.00598 100.94 0.01065 

3 7   11.37 0.11816 19.83 0.05908 15.43 0.07755 
10 

4 6       9.32 0.13987 

0 11 1024.00 0.00098       
1 10 85.33 0.01172 7367.11 0.00014   7432.31 0.00014 
2 9 15.28 0.06543 248.87 0.00428 482.46 0.00214 261.61 0.00400 
3 8 4.41 0.22656 23.90 0.05133 43.38 0.02567 28.78 0.03970 

11 

4 7   5.14 0.30121 8.46 0.15061 9.29 0.13590 

0 12 2048.00 0.00049       
1 11 157.54 0.00635       
2 10 25.92 0.03857 697.98 0.00149 1370.04 0.00074 718.66 0.00143 
3 9 6.85 0.14600 53.77 0.02131 100.68 0.01066 60.31 0.01820 
4 8   9.23 0.15031 15.89 0.07515 13.18 0.09203 

12 

        9.66 0.13529 

0 13 4096.00 0.00024       
1 12 292.57 0.00342       
2 11 44.52 0.02246 2026.71 0.00050 4008.89 0.00025 2061.32 0.00049 
3 10 10.84 0.09229 128.25 0.00852 245.67 0.00426 137.7 0.00773 
4 9   17.79 0.07121 31.83 0.03560 22.26 0.05221 

13 

5 8     7.64 0.16881 8.99 0.14145 

0 14 8192.00 0.00012       
1 13 546.13 0.00183       
2 12 77.28 0.01294 6049.95 0.00017   6109.11 0.00017 
3 11 17.43 0.05737 321.23 0.00329 625.02 0.00165 335.57 0.00310 
4 10 5.57 0.17957 36.58 0.03224 67.60 0.01612 42.23 0.02645 
5 9   7.92 0.17973 13.49 0.08987 11.84 0.10354 

14 

6 8       10.00 0.13091 
*Note: Only ARL0 values greater than 5 and less than 10 000 are shown. 
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Table 4.13: The in-control characteristics (ARL and FAR) of the two-sided 1-of-1, the 2-of-2 DR, 
the 2-of-2 KL and the 2-of-3 sign charts for the median (for samples of size 25)5(15====n )* 

 
Sample size LCL UCL 1-of-1 2-of-2 DR 2-of-2 KL 2-of-3 

n a n-a ARL0 FAR ARL0 FAR ARL0 FAR ARL0 FAR 

1 14 1024.00 0.00098       
2 13 135.40 0.00739       
3 12 28.44 0.03516 837.53 0.00124 1646.62 0.00062 860.1 0.00119 
4 11 8.44 0.11847 79.69 0.01403 150.94 0.00702 87.38 0.01237 
5 10   14.30 0.09106 25.28 0.04553 18.53 0.06358 

15 

6 9     7.07 0.18437 8.82 0.14483 

2 18 2484.78 0.00040       
3 17 388.07 0.00258       
4 16 84.62 0.01182 7244.68 0.00014   7309.35 0.00014 
5 15 24.16 0.04139 607.90 0.00171 1191.64 0.00086 627.27 0.00164 
6 14 8.67 0.11532 83.87 0.01330 159.07 0.00665 91.73 0.01176 
7 13   18.24 0.06926 32.68 0.03463 22.74 0.05103 

20 

8 12   5.93 0.25346 9.88 0.12673 9.94 0.12586 

3 22 6388.89 0.00016       
4 21 1098.27 0.00091       
5 20 245.26 0.00408       
6 19 68.34 0.01463 4738.32 0.00021 9408.31 0.00011 4790.78 0.00021 
7 18 23.10 0.04329 556.83 0.00187 1090.56 0.00094 575.4 0.00179 
8 17 9.28 0.10775 95.41 0.01161 181.54 0.00581 103.71 0.01036 
9 16   23.34 0.05268 42.32 0.02634 28.18 0.04059 
10 15   7.91 0.18008 13.46 0.09004 11.83 0.10366 

25 

11 14     5.65 0.23808 8.76 0.14759 
*Note: Only ARL0 values greater than 5 and less than 10 000 are shown. 
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4.2.7   Performance comparison of the two-sided sign charts 
 

The out-of-control performance of the two-sided sign control charts were compared amongst one 

another and with that of the two-sided SR charts under the normal, the double exponential and the 

Cauchy distributions; again we included the Shewhart X  chart for completeness. The design 

parameters of the charts were chosen (coupled with randomization) so that the in-control ARL  values 

were all equal to 370.  As for the one-sided charts various characteristics of the run-length distributions 

were obtained using simulations and shown in Tables 4.14, 4.15 and 4.16, respectively with a 

summary of our findings given in Table 4.17. 

Table 4.14: In-control and out-of-control properties of the run-length distributions of the two-sided 
1-of-1 sign, the 2-of-2 DR sign, the 2-of-2 KL sign, the 2-of-3 sign, the 1-of-1 SR, 2-of-2 DR SR, 2-of-2 

KL SR and the 1-of-1 X-bar charts under the Normal distribution 

 1-of-1 sign (LCL=0 , UCL = 10) 1-of-1 SR (LCL = -UCL = -55) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 369.78 19 106 255 507 1106 370 377.3 20 110 264 528 1138 
0.2 175.00 173.96 10 51 122 242 523 170.00 169.03 9 49 118 237 506 
0.4 56.42 55.87 3 17 39 78 167 51.81 51.31 3 15 36 72 154 
0.6 21.57 21.14 2 7 15 30 64 19.15 18.55 1 6 14 26 56 
0.8 9.82 9.33 1 3 7 13 29 8.60 8.14 1 3 6 12 25 
1.0 5.23 4.71 1 2 4 7 15 4.61 4.09 1 2 3 6 13 

1.2 3.24 2.70 1 1 2 4 9 2.85 2.29 1 1 2 4 7 

 2-of-2 sign DR (LCL=1 , UCL=9) 2-of-2 SR DR (LCL = -UCL = -39) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 363.53 20 106 253 501 1086 370 367.32 21 108 257 508 1103 
0.2 166.30 164.54 10 49 116 230 496 129.10 127.36 8 38 90 179 385 
0.4 43.75 42.3 4 14 31 60 128 27.42 26.04 3 9 19 38 80 
0.6 14.68 13.25 2 5 11 20 41 8.77 7.42 2 3 6 12 24 
0.8 6.83 5.47 2 3 5 9 18 4.25 2.92 2 2 3 5 10 
1.0 4.08 2.71 2 2 3 5 10 2.82 1.40 2 2 2 3 6 
1.2 2.97 1.54 2 2 2 4 6 2.29 0.74 2 2 2 2 4 

 2-of-2 sign KL (LCL=1, UCL = 9) 2-of-2 SR KL (LCL = -UCL = -37) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 364.24 21 107 256 512 1099 370 368.73 21 108 256 514 1102 

0.2 113.10 111.56 7 34 79 156 337 86.09 85.13 6 26 60 119 257 

0.4 28.28 26.81 3 9 20 39 82 18.69 17.48 2 6 13 25 53 

0.6 10.42 9.09 2 4 8 14 29 6.68 5.34 2 3 5 9 17 

0.8 5.29 3.92 2 2 4 7 13 3.60 2.23 2 2 3 4 8 

1.0 3.44 2.06 2 2 3 4 8 2.57 1.11 2 2 2 3 5 

1.2 2.65 1.17 2 2 2 3 5 2.18 0.58 2 2 2 2 4 

 2-of-3 sign (LCL=1 , UCL=9) 1-of-1 X-bar (LCL = -UCL = -0.94858) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 363.37 20 106 252 504 1088 370 368.45 19 106 256 510 1105 

0.2 108.50 106.69 7 33 76 150 318 110.50 109.73 6 32 77 153 329 

0.4 26.72 25.04 3 9 19 36 77 24.04 23.46 2 7 17 33 71 

0.6 9.94 8.33 2 4 7 13 27 7.39 6.87 1 2 5 10 21 

0.8 5.18 3.58 2 3 4 7 12 3.12 2.58 1 1 2 4 8 

1.0 3.43 1.84 2 2 3 4 7 1.77 1.17 1 1 1 2 4 

1.2 2.68 1.07 2 2 2 3 5 1.27 0.59 1 1 1 1 2 
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Table 4.15: In-control and out-of-control properties of the run-length distributions of the two-
sided 1-of-1 sign, the 2-of-2 DR sign, the 2-of-2 KL sign, the 2-of-3 sign, the 1-of-1 SR, 2-of-2 DR 

SR, 2-of-2 KL SR and the 1-of-1 X-bar charts under the double exponential distribution 

 1-of-1 sign (LCL=0 , UCL = 10) 1-of-1 SR (LCL = -UCL = -55) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 369.58 20 107 255 515 1106 370 377.57 21 113 263 528 1132 
0.2 91.20 90.31 5 27 63 126 272 88.55 88.69 5 25 61 123 263 
0.4 24.44 23.92 2 7 17 34 72 22.9 22.20 2 7 16 32 67.5 
0.6 10.04 9.49 1 3 7 14 29 9.19 8.73 1 3 6 13 27 
0.8 5.41 4.88 1 2 4 7 15 4.85 4.26 1 2 3 7 13 
1.0 3.47 2.92 1 1 3 5 9 3.06 2.48 1 1 2 4 8 

1.2 2.52 1.95 1 1 2 3 6 2.29 1.73 1 1 2 3 6 

 2-of-2 sign DR (LCL=1 , UCL=9) 2-of-2 SR DR (LCL = -UCL = -39) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 361.71 20 106 253 503 1086 370 370.37 20 107 257 511 1106 
0.2 77.17 75.93 5 23 54 106 229 78.94 77.11 5 24 55 109 233 
0.4 16.89 15.57 2 6 12 23 48 15.76 14.52 2 5 11 21 45 
0.6 6.93 5.56 2 3 5 9 18 6.17 4.85 2 3 5 8 16 
0.8 4.17 2.79 2 2 3 5 10 3.65 2.30 2 2 3 4 8 
1.0 3.09 1.67 2 2 2 4 6 2.76 1.33 2 2 2 3 6 
1.2 2.59 1.11 2 2 2 3 5 2.36 0.85 2 2 2 2 4 

 2-of-2 sign KL (LCL=1, UCL = 9) 2-of-2 SR KL (LCL = -UCL = -37) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 372.82 20 108 260 512 1114 370 368.05 21 107 257 513 1103 
0.2 48.75 47.51 4 15 34 66 143 51.43 49.96 4 16 36 71 151 
0.4 11.73 10.26 2 4 9 16 32 11.18 9.82 2 4 8 15 31 
0.6 5.45 4.01 2 2 4 7 13.5 4.89 3.56 2 2 4 6 12 
0.8 3.55 2.16 2 2 3 4 8 3.13 1.76 2 2 2 4 7 
1.0 2.76 1.28 2 2 2 3 5 2.49 1.02 2 2 2 3 5 
1.2 2.40 0.86 2 2 2 2 4 2.22 0.63 2 2 2 2 4 

 2-of-3 sign (LCL=1 , UCL=9) 1-of-1 X-bar (LCL = -UCL = -1.011335) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 

0 370 363.27 20 106 253 504 1089 370 342.30 23 141 258 504 1058 
0.2 46.66 44.73 4 15 33 64 136 159.80 180.02 5.5 46 107 210 416 
0.4 11.21 9.55 2 4 8 15 30 42.08 36.77 2.5 13 29 64.5 115 
0.6 5.26 3.68 2 3 4 7 13 10.44 8.83 1 3 8 16 24.5 
0.8 3.49 1.9 2 2 3 4 7 4.02 3.65 1 2 3 6 9.5 
1.0 2.77 1.16 2 2 2 3 5 2.01 1.59 1 1 1 2 5.5 
1.2 2.42 0.77 2 2 2 3 4 1.44 0.74 1 1 1 2 3 
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Table 4.16: In-control and out-of-control properties of the run-length distributions of the two-
sided 1-of-1 sign, the 2-of-2 DR sign, the 2-of-2 KL sign, the 2-of-3 sign, the 1-of-1 SR, 2-of-2 DR 

SR, 2-of-2 KL SR and the 1-of-1 X-bar charts under the Cauchy distribution 
 

 1-of-1 sign (LCL=0 , UCL = 10) 1-of-1 SR (LCL = -UCL = -55) 

Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 

0.0 370 369.19 19 107 255 513 1111 370 381.92 20 113 268 525 1143 
0.2 27.06 26.62 2 8 19 37 80 25.38 24.72 2 8 18 35 75 
0.4 7.00 6.43 1 2 5 10 20 6.55 6.06 1 2 5 9 18 
0.6 3.83 3.31 1 1 3 5 10 3.61 3.08 1 1 3 5 10 
0.8 2.76 2.21 1 1 2 4 7 2.59 1.99 1 1 2 3 7 
1.0 2.25 1.68 1 1 2 3 6 2.13 1.54 1 1 2 3 5 

1.2 1.97 1.38 1 1 1 2 5 1.88 1.30 1 1 1 2 5 

 2-of-2 sign DR (LCL=1 , UCL=9) 2-of-2 SR DR (LCL = -UCL = -39) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 361.28 20 106 252 504 1089 370 368.00 20 107 257 512 1099 
0.2 18.92 17.59 2 6 14 26 54 24.99 23.54 3 8 18 34 72 
0.4 5.08 3.70 2 2 4 7 12 7.28 5.98 2 3 5 10 19 
0.6 3.29 1.87 2 2 2 4 7 4.66 3.34 2 2 4 6 11 
0.8 2.71 1.25 2 2 2 3 5 3.77 2.42 2 2 3 5 9 
1.0 2.46 0.95 2 2 2 3 4 3.33 1.97 2 2 2 4 7 

1.2 2.32 0.76 2 2 2 2 4 3.07 1.69 2 2 2 4 6 

 2-of-2 sign KL (LCL=1, UCL = 9) 2-of-2 SR KL (LCL = -UCL = -37) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 363.78 21 108 257 500 1085 370 369.31 20 107 257 511 1099 
0.2 13.04 11.65 2 5 9 18 36 16.61 15.22 2 6 12 22 47 
0.4 4.14 2.79 2 2 3 5 10 5.34 4.00 2 2 4 7 13 
0.6 2.88 1.45 2 2 2 3 6 3.55 2.20 2 2 3 4 8 
0.8 2.46 0.94 2 2 2 3 4 2.96 1.54 2 2 2 4 6 
1.0 2.30 0.72 2 2 2 2 4 2.69 1.24 2 2 2 3 5 
1.2 2.21 0.58 2 2 2 2 4 2.53 1.04 2 2 2 3 5 

 2-of-3 sign (LCL=1 , UCL=9) 1-of-1 X-bar (LCL = -UCL = -61.36038) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 361.35 20 106 253 507 1084 370 368.97 19 106 257 510 1103 
0.2 12.34 10.65 2 5 9 16 34 371.00 371.53 20 107 257 515 1109 
0.4 4.09 2.51 2 2 3 5 9 369.2 368.89 20 107 257 510 1103 
0.6 2.90 1.30 2 2 2 3 6 373.1 372.22 19 107 259 517 1116 
0.8 2.50 0.86 2 2 2 3 4 369.8 368.44 20 107 258 513 1103 
1.0 2.33 0.66 2 2 2 3 4 370.3 371.86 19 106 256 514 1110 
1.2 2.23 0.53 2 2 2 2 3 372.7 371.80 20 107 258 517 1114 

 

Table 4.17: Ranking (from most to least favorable) of the two-sided nonparametric charts under 
the normal, the double exponential and the Cauchy distributions based on out-of-control ARL 

and run-length percentiles.  The ARL0 = 370 
 

Normal Double Exponential Cauchy 
2-of-2 KL SR 2-of-2 KL sign / 2-of-3 sign 2-of-2 KL sign / 2-of-3 sign 

2-of-2 KL sign / 2-of-3 sign 2-of-2 KL SR 2-of-2 KL SR 

1-of-1 X  2-of-2 DR sign 2-of-2 DR sign 
2-of-2 DR SR 2-of-2 DR SR 2-of-2 DR SR 
2-of-2 DR sign 1-of-1 SR 1-of-1 SR 

1-of-1 SR 1-of-1 sign 1-of-1 sign 
1-of-1 sign 1-of-1 X  1-of-1 X  
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In general, we observe that:  

 

(i) the 2-of-2 DR sign, the 2-of-2 KL sign and the 2-of-3 sign charts all outperform the original 

1-of-1 sign chart under all three the distributions, and 

 

(ii)  the 2-of-2 KL sign chart and the 2-of-3 sign chart are best overall; only outperformed by the 

2-of-2 KL SR chart in case of the normal distribution. (Note: the 2-of-2 KL charts generally 

outperform the 2-of-2 DR charts; whether the chart is based on the sign test or the SR test). 

 

More specifically, we note that: 

 

(i) under the normal distribution, the two-sided 2-of-2 KL SR chart performs the best (this was 

also the case for the one-sided charts), but the 2-of-2 KL sign and the 2-of-3 sign charts are 

good/close competitors, whereas 

 

(ii)   under the double exponential distribution and the Cauchy distribution: 

 

(a)  the 2-of-2 KL sign and the 2-of-3 sign charts are the top performers, 

 

(b)  the sign charts generally perform better than the SR charts except in case of the 1-of-1  

chart (i.e. the 1-of-1 SR chart is better than the 1-of-1 sign chart), 

 

(c) the 2-of-2 KL sign and the 2-of-3 sign charts are both better than the 2-of-2 KL SR 

chart, and  

 

(d) the 2-of-2 DR sign chart is better than the 2-of-2 DR SR chart. 
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4.3    Precedence charts for the unknown ππππ th quantile (Case U)  
 

 

Introduction 
 

Case U is the scenario when the π th percentile of the process distribution is unknown or 

unspecified; this is unlike Case K and as a consequence the control limits are unknown. 

 

To estimate the control limits a reference sample is obtained; this reference sample is also called 

the preliminary sample or the calibration sample or the Phase I sample. Once the control limits are 

estimated, Phase II starts. In Phase II the estimated control limits are used for future monitoring of the 

process using new incoming samples taken sequentially from the process; this is the prospective 

monitoring phase. 

 

The new control charts we consider here, in Case U, are based on the median test, which is 

essentially a modified sign test for two independent samples and is a member of a more general class 

of nonparametric two-sample tests referred to as precedence tests or precedence statistics (see e.g. 

Gibbons and Chakraborti, (2003)). We therefore refer to the charts of Case U as precedence charts. 

 

 

Assumptions 
 

We assume that 

 

(i) the reference sample ),...,,( 21 mXXX is a random  sample of size m  available from an in-

control (IC) distribution with an unknown continuous cumulative distribution function 

(c.d.f) )()( θ−= xFxFX  where θ  is the location parameter and F  is some continuous c.d.f 

with median zero, 

 

(ii)  each Phase II test sample ),...,,( 21 inii YYY  taken at sampling stage (time) ,...3,2,1=i  is a 

random sample (rational subgroup) of size 1>n  from an unknown continuous distribution 

with c.d.f )()( iY yFyG θ−= where iθ  is the location parameter of the ith test sample, and 

 

(iii)  the Phase II test samples are drawn sequentially and independently of one another and of 

the reference sample. 
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Charting statistics and control limits 
 

The control limits, as mentioned before, are estimated from the Phase I reference sample and then 

used for prospective monitoring of the process. In Phase II, one charting statistic is calculated from 

each new incoming sample and then compared to the estimated control limits. 

 

 The estimated control limits are found by arranging the Phase I observations in ascending order, 

that is, 

mmmm XXX ::2:1 ...<<<  

 

where mjX :  denotes the j th order statistic of the reference sample of size m , and selecting two order 

statistics maX :  and mbX :  (for a given mba ≤<≤1 ) so that the estimated control limits for the two-

sided precedence charts are given by 

 

maXLCL :
ˆ =    and       mbXLCU :

ˆ =   (4-28) 

 

respectively, where a  and b  are labeled the charting constants; determination of the charting 

constants will be discussed later. Note that, like the sign charts of Case K, the precedence charts do not 

have a centerline. 

 

The charting statistic at time ,...3,2,1=i  is an order statistic i
njY :  for nj ≤<1  from each of the 

Phase II test samples. 

 

 

The operation and the signaling rules (i.e. when a process is declared OOC) of the runs-rule 

enhanced precedence charts is similar to that of the sign charts; however, instead of comparing iT  (the 

sign statistic) with the known control limits UCL  andLCL  of (4-7) we now compare i
njY :  with the 

estimated control limits LCU ˆ  and LCL ˆ  of (4-28) at each sampling stage ,...3,2,1=i . 
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Remark 11 
 

 

(i) The median is a robust and flexible estimator of location in the sense that it is 

preferred in situations where large measurement errors are expected and is 

applicable in more diverse situations (unlike the mean). Thus, although we develop 

and discuss the theory of the 1-of-1 and the runs-rule enhanced precedence charts so 

that any order statistic can be used as charting statistic, the median is a popular 

choice in practice and we therefore focus mainly on the median chart, that is, the 

case where the charting statistic is taken as the test sample median. 

 

Furthermore, to simplify matters we assume that the sample size 12+= sn  is odd 

so that the median of the test sample i
njY :  is uniquely defined with 1+= sj . Thus, 

for example, when the subgroup size n is equal to 5, as is fairly common in SPC 

applications, the charting statistic is the 3rd smallest value in the test sample. 

 

 

(ii)  Only two-sided precedence charts are studied. The required modifications for the 

one-sided precedence charts are simple and briefly indicated in section 4.3.3. 

 

 

(iii)  The proposed precedence charts do not signal unless the charting statistic i
njY :  is less 

than or equal to the estimated lower control limit maX : or is greater than or equal to  

the estimated upper control limit mbX : . Although this is theoretically negligible as 

the underling process distributions are assumed to be continuous, in practice, one 

needs to apply the charts in a correct manner as ties might occur when it is found 

that the Y order statistic (i.e. charting statistic) is equal to one of the control limits. 

 

 

(iv) The precedence charts can be applied as soon as the necessary order statistic is 

available and can be a practical advantage in some applications.  We comment more 

on this point later. 
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4.3.1   Run-length distributions of the two-sided precedence charts 
 

 

The run-length distributions and the statistical characteristics of the precedence charts (such as the 

ARL , VARL  etc.) are required to design the charts and reveal important information regarding their 

performance. 

 

We again use a Markov chain approach to derive the run-length distributions and in some cases 

draw on the results of the geometric distribution of order k  to obtain closed form expressions. 

 

Even though the operation (i.e. the signaling events, when a process is declared OOC etc.) of the 

runs-rule enhanced precedence charts of Case U are similar to that of the runs-rule enhanced sign 

charts of Case K, there is a fundamental difference in deriving the run-length distributions of the 

precedence charts compared to that of the sign charts. 

 

In particular, because the control limits are estimated they are random variables (as indicated by 

the ^ - notation in (4-28)) and, consequently, the signaling indicators of the (two-sided) precedence 

charts i.e. 
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and 
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for ,...3,2,1=i  are dependent tri-variate (or binary) random variables. 

 

The design, analysis and performance of the charts must therefore take account of the additional 

variability introduced as a result of estimating the control limits; this is the main stumbling block in 

calculating the run-length distributions, here, in Case U, particularly for the charts that use signaling 

rules (ii) and (iii) defined in the beginning of section 4.1 on page 258. Like in Chapter 3 we use a two-

step approach to derive the run-length distribution which involves the method of conditioning (see e.g. 

Chakraborti, (2000)). 
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First we derive the conditional run-length distributions i.e. conditioned on the two order statistics 

(control limits), which lets us focus on specific values of the control limits. The performance of the 

charts as measured by their conditional run-length distributions are therefore different for each user as 

each user has his/her own control limits based on his/her own Phase I data (sample). 

 

Second we derive the unconditional (or marginal) run-length distributions by averaging over the 

joint distribution of the two order statistics. The unconditional run-length distributions reflect the 

bigger picture or the overall performance of the charts and take into account that the control limits are 

estimated. The performance of the charts as measured by their unconditional run-length distributions 

are therefore the same for each user.  
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Signaling probabilities 
 

The key ingredients to the conditional run-length distributions are 

(i) the one-step transition probabilities kip ,  and 

(ii)  the success probability α . 

 

The one-step transition probabilities are the elements of the transition probability matrix and are 

required in case one uses the Markov chain approach. The success probability, on the other hand, is a 

prerequisite if one wishes  to use the properties of the geometric distribution of order k  as it is a 

parameter of the distribution (see e.g. expressions (4-16) and (4-17)). 

 

The one-step transition probabilities and the success probability all depend on and are functions of 

the conditional probability of a signal i.e. the probability for a charting statistic to plot OOC given that 

(or conditionally on having observed) mama xX :: =  and mbmb xX :: = , which is given by  

 

)()(1

),|Pr(1

)ˆ,ˆ|1ˆPr(),,,(

::

:::::::

::::

majmbj

mbmbmamamb
i
njma

mbmaimbmaC

XGXG

xXxXXYX

xLCUxLCLGFXXp

+−=

==<<−=

==== ±± ξ
  (4-31) 

 

where jG  denotes the c.d.f of the jth  order statistic in a sample of size n  from a distribution with c.d.f 

G  and the subscript “C” in ),,,( :: GFXXp mbmaC
±  indicates that (4-31) is a conditional probability. 

 

Using the probability integral transformation (PIT) and the fact that the jth order statistic from a 

)1,0(uniform  distribution follows a beta distribution with parameters j and 1+− jn  (see e.g. Gibbons 

and Chakraborti, (2003)) it follows, for example, that 

 

)1,())(Pr(

)|)()(Pr(

)|Pr()(

)(::

::::

:::::

:
+−=≤=

=≤=

=≤=

jnjIXGU

xXXGYG

xXXYXG

maXGma
i

nj

mamama
i
nj

mamama
i
njmaj

 

 

where i
njU :  is the jth order statistic from a )1,0(uniform  distribution and 

∫
−−− −=

p vu
p dwwwvuvuI

0

111 )1()],([),( β     for    0, >vu  

is the c.d.f of the ),( vuBeta distribution, also known as the incomplete beta function. 

 
 
 



 334 

Thus, the conditional probability of a signal in (4-31) can be expressed as 

 

)1,()1,(1),,,( )()(:: ::
+−++−−=± jnjIjnjIGFXXp

mamb XGXGmbmaC .  (4-32) 

 

 

With the conditional probability of a signal in (4-32) we can without difficulty find the conditional 

run-length distributions of the two-sided 1-of-1, the 2-of-2 DR, the 2-of-2 KL and the 2-of-3 

precedence charts. The unconditional run-length distributions, in general, follow straightforwardly 

from the conditional run-length distributions. 
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Remark 12 
 

 

(i) We denote, without loss of generality, the two order statistics ),( :: mbma XX  by ),( YX=Z  

and their observed values ),( :: mbma xx  by ),( yx=z . Thus when writing zZ =  it means 

),(),( :::: mbmambma xxXX =  or ),(),( yxYX = . 

 

In particular, this notation permits us to write (4-32) as 

  

)1,()1,(1),,,( )()( +−++−−=± jnjIjnjIGFYXp XGYGC .  (4-33) 

 

 

(ii)  It is instructive to compare the signaling probability of the two-sided sign chart of Case K 

with that of the two-sided precedence chart of Case U. 

 

Specifically, we note that by substituting )(XG  and )(YG  for p , replacing a  with 1−j  

and swapping b  for jn −  in (4-13) we obtain (4-33). 

 

 

(iii)  Because }1ˆ{ =±
iξ  if and only if }2ˆ{}1ˆ{ =∪= ii ξξ  we can re-express the conditional 

probability of a signal of the two-sided precedence chart in terms of that of the upper and 

the lower one-sided charts i.e.  

),,(),,(),,,( GFYpGFXpGFYXp CCC
+−± +=    (4-34) 

where  

)1,()|2ˆPr(),,( )(:: +−====− jnjIxXGFXp XGmamaiC ξ   (4-35) 

and 

)1,(1)|1ˆPr(),,( )(:: +−−====+ jnjIxXGFYp YGmbmbiC ξ . (4-36) 

 

 

Expression (4-34) will be particularly useful when deriving the run-length distributions of 

the two-sided precedence charts via the Markov chain approach. 

 

 

(iv) For notational simplicity and brevity we denote ),,,( GFYXpC
± , ),,( GFXpC

−  and 

),,( GFYpC
+  simply by ±

Cp , −
Cp  and +

Cp , respectively.  
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4.3.1.1  Distribution of 11ofN : Run-length distribution for the 1-of-1 precedence chart 

 

 

The two-sided 1-of-1 precedence chart was studied in detail by Chakraborti et al. (2004); this chart 

is called the “basic” precedence chart.  The authors derived explicit formulae for both the conditional 

and the unconditional run-length distributions and their associated statistical characteristics (such as 

the ARL , VARL , FAR  etc.) by applying, amongst numerous other techniques, results of the geometric 

distribution of order 1=k  coupled with the method of conditioning (expectation by conditioning); 

doing so they have taken proper account of the dependency between the Phase II signaling events. In 

the paragraphs that follow, we simply review the most important statistical characteristics of the 1-of-1 

precedence chart; for complete details on the derivations of the results, see the original article by 

Chakraborti et al. (2004). 

 

 

Conditional run-length distribution 
 

In particular, Chakraborti et al. (2004) showed that given zZ =  the conditional distribution of the 

run-length 11ofN   is geometric with parameter (success probability) ),,,( GFYXpp CC
±± = . 

Accordingly, all properties and characteristics of the conditional run-length distribution follow 

conveniently from the properties of the geometric distribution of order 1=k . 

 

For example, the conditional p.m.f of 11ofN  is 

 

±−±−=== C
t

Cof pptN 1
11 )1()|Pr( zZ    for  ,...3,2,1=t  

 

whereas the conditional average run-length (CARL ) and the conditional variance of the run-length 

(CVARL ) are given by 

 

±=== Cofof pNECARL /1)|( 1111 zZ     and 2
1111 )/()1()|var( ±±−=== CCofof ppNCVARL zZ  

respectively. 

 

The conditional false alarm rate also follows straightforwardly as it is found by substituting GF =  

in ±
Cp , that is, 

)1,()1,(1),,,( )()(11 +−++−−== ± jnjIjnjIFFYXpCFAR XFYFCof . 
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Unconditional run-length distribution 
 

Most importantly Chakraborti et al. (2004) showed that by averaging over the joint distribution of 

Z one obtains the unconditional or marginal run-length distribution and its associated characteristics.  

 

 

The unconditional p.m.f of 11ofN , in particular, is given by 

 

( ) )()1()1()( ))|(Pr()Pr( 1
1111 tDtDqqEtNEtN C

t
Cofof

∗∗±−± −−=−==== ZZ Z  (4-37) 

 

for  ,...3,2,1=t   and 1)0( =∗D  where 
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with ±± −= CC pq 1  and where ),(, yxf ba  denotes the joint p.d.f of the ath and the bth order statistics in a 

reference sample of size m  from the )1,0(uniform distribution, given by 

 

10        )1()(
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Likewise, by writing the conditional ARL  as 
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the unconditional average run-length ( )11ofUARL  follows by averaging over the joint distribution of Z  

and then simplifying i.e. 
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(4-38) 
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The unconditional probability of a signal follows in the same manner and is given by 

 

∫ ∫ +−++−−=

=====

−−

±±±±

1

0 0

,)()(
.),( ))1,()1,(1(

)),,,(())|1ˆ(Pr()1ˆPr(),(

11

y

baxGFyGF

Cii

dxdyyxfjnjIjnjI

GFyxpEEGFp ZZ Zξξ

  (4-39) 

For complete details on the derivation of expressions (4-37), (4-38) and (4-39) see Chakraborti et al. 

(2004).  

 

 

Remark 13 
 

Chakraborti et al. (2004) noted that, from equations (4-37), (4-38) and (4-39), “… it is 

evident that in general the run length distribution depends on the distribution functions F  

and G  through the composite function 1−= GFψ . For example, when GF = , the process 

is in control, so uu =)(ψ , and the in-control run length distribution follows …”. 

 

In particular, the in-control unconditional p.m.f is given by 

 

)()1()(Pr)Pr( 110,11 tDtDtNtN ofGFof −−==== =    for   ,...3,2,1=t   and  1)0( =D  

 

where 0,11ofN  denotes the in-control run-length random variable and 
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whereas the unconditional in-control average run-length ( 0,11ofUARL ) and the unconditional 

false alarm rate ( 11ofUFAR ) follows from (4-38) and (4-39) and given by 
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and 

 

( )∫ ∫ +−++−−== ±
1

0 0

,11 ),( )1,()1,(1),(
y

baxyof dxdyyxfjnjIjnjIFFpUFAR , 

 

respectively. 
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4.3.1.2  Distribution of DR
ofN 22 : Run-length distribution for the 2-of-2 DR precedence chart 

 

 

As pointed out in section 4.3.1.1, in Chakraborti et al. (2004) the idea of conditioning on the 

reference sample order statistics Z  was effectively used to derive the distribution of the run-length 

11ofN  of the two-sided 1-of-1 precedence chart and to study various properties of their chart in a 

convenient way.  Using the same conditioning idea we derive the conditional and the unconditional 

run-length distributions of the two-sided 2-of-2 DR chart. 

 

 

Conditional run-length distribution 
 

Given that zZ =  the sequence of signaling indicators ,...ˆ,ˆ,ˆ
321
±±± ξξξ  in (4-30) are i.i.d. Bernoulli 

random variables with success probability )|1))ˆ,ˆ((Pr( : zZ ==∉=± LCULCLYIp i
njC . Thus, 

conditionally on the order statistics Z  the run-length  DR
ofN 22  of the two-sided 2-of-2 DR chart follows 

a geometric distribution of order two. 

 

The conditional p.m.f of DR
ofN 22  is therefore given by (4-16) with ±= Cpα  and 2=k  i.e. 
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whereas the conditional average run-length (expected value or mean) and the conditional variance of 

the run-length can be found from (4-17) and given by  
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ppp
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respectively (see e.g. Remark 5). 
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Unconditional run-length distribution 
 

The complexity of the conditional distribution in (4-40), particularly for 3≥t , makes a direct 

application of conditioning to derive a closed form expression for the unconditional distribution 

of DR
ofN 22  unattractive.  Instead, we find the unconditional distribution of DR

ofN 22  by first conditioning on 

the total number of successes ∑
=

±=
n

i
inS

1

ξ̂  in the sequence of n random variables ±±±
nξξξ ˆ,...,ˆ,ˆ

21  . (Note 

that, here, n  is the number of random variables and not the sample size.) 

 

To this end, note that, although ±±±
nξξξ ˆ,...,ˆ,ˆ

21  is a sequence of dependent binary random variables 

they are exchangeable or symmetrically dependent; this means that any permutation of any subset of 

these random variables has the same distribution; this can be written as 

 

)1ˆ,...,1ˆPr()1ˆ,...,1ˆPr( 1)()1( ===== ±±±±
uu ξξξξ ππ    (4-43) 

 

for any permutation )(),...,1( uππ  of nu ≤,...,2,1 . Using (4-43) we can derive an exact closed form 

expression for the unconditional p.m.f of DR
ofN 22 . 

 

 

George and Bowman (1995) derived the distribution of the total number of successes nS   in a 

sequence of n  exchangeable binary trials.  According to their result 
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where 

)1ˆ,...,1ˆPr( 1 === ±±
uu ξξλ      for     ,n,, u ...21= .  (4-45) 

 

Using (4-44) the unconditional distribution of DR
ofN 22  is given by 
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The proof of (4-46) is straightforward for 2≤t  i.e 

 

22122 )1ˆ,1ˆPr()2Pr( λξξ ===== ±±DR
ofN  

 

where 2λ  is defined in (4-45). 

 

For ,3≥t  we write the unconditional distribution of DR
ofN 22  as 
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and then first consider the conditional probability )|Pr( 22 ytStN t
DR
of −== . 

 

 

By de Finetti’s theorem a sequence of exchangeable random variables is conditionally i.i.d.. Hence, 

the conditional distribution of DR
ofN 22  given the number of successes in exchangeable binary random 

variables is the same as that for a sequence of i.i.d. binary variables; this latter distribution has been 

worked out in the literature (see e.g. Balakrishnan and Koutras (2002), p 56; note a typo) and is given 

by 
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Now, using (4-44) we have 
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so that (4-46) follows by substituting )Pr( ytSt −=  and (4-48) in (4-47). 

 
 
 



 342 

Remark 14 
 

 

(i) Conditionally on the reference sample order statistics that define the Phase II control limits we 

have that 

u
C

u

i
iu

C
u p )()|1ˆPr()|1ˆ,...,1ˆPr(

1
1

±

=

±±± ======== ∏ zZzZ ξξξλ  

so that the unconditional probability uλ  in  (4-45) equals 
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xGFyGF
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C
uuu

dxdyyxfjnjIjnjI

pEE ZZ λξξλ
 (4-49) 

 

 

(ii)  The run-length distribution of the two-sided 2-of-2 DR chart depends on the distribution 

functions F  and G  through the composite function 1−= GFψ  present in uλ  (see expression 

(4-49)). Thus, the in-control run-length distribution is obtained by substituting 0,uλ  in (4-46a) 

and (4-46b)  where 

 

( )∫ ∫ +−++−−=
1

0 0

,0, ),( )1,()1,(1
y

ba
u

xyu dxdyyxfjnjIjnjIλ  (4-50) 

 

and is found from (4-49) by substituting GF = . It is evident from (4-50) that the in-control 

run-length distribution of the two-sided 2-of-2 DR (like that of the 1-of-1 chart) is free from 

either F or G and that the 2-of-2 DR chart is thus distribution-free. 

 

 

(iii)    The unconditional false alarm rate, the unconditional average run-length etc of the two-sided 

2-of-2 DR chart is calculated later in section 4.3.2. 
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4.3.1.3 Distribution of KL
ofN 22  and 32ofN : Run-length distribution for the two-sided 2-of-2 KL  and  

2-of-3 precedence charts 
 

 

In sections 4.3.1.1 and 4.3.1.2 we illustrated how to find the conditional and unconditional 

distributions of 11ofN  and DR
ofN 22  via the geometric distribution of order k ( = 1 or 2). Here, in section 

4.3.1.3, we illustrate how to find the conditional and unconditional distributions of KL
ofN 22  and 32ofN  

via the Markov chain approach. The conditional and unconditional distributions of 11ofN  and DR
ofN 22 , 

via the Markov chain approach, can be found in a similar manner and is not shown here. 

 

 

The Markov chain approach for finding the conditional run-length distributions of the (two-sided) 

precedence charts in Case U is similar to those of the sign charts in Case K. In particular, the state 

spaces are identical so that we merely substitute: 

 

(i) ),,( GFYpC
+  (defined in (4-36)) for ),,( θbnp+ , and 

 

(ii)  ),,( GFXpC
−  (defined in (4-35)) for ),,( θanp −  

 

in any one of the essential transition probability matrices of the two-sided sign charts (i.e. the hh×Q ’s 

given in (4-21), (4-22), (4-26) etc.) to obtain the conditional essential transition probability matrices 

C
hh×Q  (say) of the precedence charts. Note that, here, in Case U, the superscript “C” in C

hh×Q  indicates 

that we work with a conditional essential transition probability matrix i.e. conditioned on the order 

statistics Z . 

 

Upon substituting C
hh×Q  into (4-8), (4-9) and (4-10) we obtain the conditional p.m.f, the conditional 

ARL  (CARL ) and the conditional VARL  (CVARL ), respectively. The unconditional run-length 

distributions and the associated unconditional characteristics of the precedence chart is then found by 

averaging over the distribution of Z . 
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Conditional distributions of KL
ofN 22  and 32ofN  

 

Conditional on Z  the sequence of signaling indicators ,...ˆ,ˆ,ˆ
321 ξξξ in (4-29) are i.i.d. tri-variate 

random variables with: 

(i) −=== Ci p)|2ˆPr( zZξ , 

(ii)  +=== Ci p)|1ˆPr( zZξ   and 

(iii)  +− −−=== CCi pp1)|0ˆPr( zZξ  

respectively. 

 

 

Thus, conditional on Z  the run-length distribution of the two-sided 2-of-2 KL precedence chart is 

 

1QIQξzZ )()()|Pr( 44
1

4422
CtCKL

of tN ×
−

× −===       for    ,...3,2,1=t   (4-51) 

 

with the conditional average run-length and the conditional variance of the run-length given by 
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denotes the conditional essential transition probability matrix of the 2-of-2 KL chart and follows from 

(4-26) having substituted the conditional probabilities−
Cp  and +

Cp  (defined in (4-35) and (4-36)) for 

−p  and +p , respectively. 
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Likewise, the conditional p.m.f, the conditional average run-length and the conditional variance of the 

two-sided 2-of-3 precedence chart are 
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respectively, where the conditional essential transition probability matrix of the 2-of-3 chart is given 

by  
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and follows from (4-27). In particular, expressions (4-55), (4-56) and (4-57) follow from having 

substituted C
88×Q  in (4-8), (4-9) and (4-10), respectively. 

 

 

 

Remark 15 
 

The conditional ARL  expressions in (4-52) and (4-56) have been symbolically simplified 

and closed form expressions are given in Table 4.5; however, here, in Case U, we 

substitute +
Cp   for +p  and −

Cp   for −p , respectively. Closed form expressions of the 

conditional VARL ’s in (4-53) and (4-57) can be obtained in a similar manner (i.e. 

simplifying the expressions symbolically). 
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Unconditional distributions of KL
ofN 22  and 32ofN  

 

The unconditional distributions of KL
ofN 22   and  32ofN  are obtained by averaging the conditional 

distributions given in (4-51) and (4-55) over the distribution of Z  i.e. 
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and 
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for ,...3,2,1=t . 
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Remark 16 
 

 

The unconditional or marginal distributions of KL
ofN 22   and 32ofN  in (4-59) and (4-60) 

depend on the distribution functions F  and G  through the composite function 1−= GFψ  

present in both  

)1,(
)(1 +−= −

− jnjIp
XGFC     and    )1,(1

)(1 +−−= −
+ jnjIp

YGFC , 

which form part of the conditional essential transition probability matrices in (4-54) and 

(4-58). 

 

 

The in-control unconditional run-length distributions follow by substituting GF =  in −
Cp  

and +
Cp  so that uuGF =− )(1 .  

 

For example, the in-control marginal (or unconditional) run-length distribution of the two-

sided 2-of-2 KL chart is 

          

∫ ∫

∫ ∫

×
−

×

==

−=

=====

1

0 0

,0,44
1

0,44

1

0 0

,22220,22

),()()(                                                       

),()|(Pr)(Pr)Pr(

y

ba
CtC

y

ba
KL
ofGF

KL
ofGF

KL
of

dxdyyxf

dxdyyxftNtNtN

1QIQξ

Z

 

for ,...3,2,1=t . with  
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Once again, the in-control run-length distribution is seen to be free from both  F and G, 

and thus the 2-of-2 KL chart is distribution-free; the same being true for 2-of-3 precedence 

chart. 
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4.3.2   Unconditional ARL, VARL and FAR calculations 
 

 

In order to design and study the performance of a Phase II control chart one typically examines the 

average and the variance of the unconditional run-length distribution (UARL  & UVARL ) along with 

the unconditional false alarm rate (UFAR ). 

 

For the proposed nonparametric runs-rule enhanced precedence charts, expressions for the average 

and the variance of the unconditional run-length distribution can be obtained exactly and most 

conveniently derived by using the characteristics of the conditional run-length distributions coupled 

with conditional expectation. 

 

To this end, note that, 

 

))|(()( ZZ NEENE =  and ))|((var))|(var()var( ZZ ZZ NENEN +=  (4-61) 

 

where  )(NE  and )var(N  denote the unconditional characteristics whilst )|( ZNE  and )|var( ZN  

denote the conditional characteristics (i.e. conditioned on Z ). The unconditional false alarm rate 

(UFAR ) can be obtained in a similar manner and is shown below.  
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4.3.2.1 Unconditional ARL, VARL and FAR of the 2-of-2 DR chart 

 

 

Unconditional ARL 
 

The unconditional ARL  for the 2-of-2 DR chart is computed by averaging expression (4-41) over 

the joint distribution of the order statistics. 

 

Thus 
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The in-control unconditional average run-length ( DR
ofUARL 0,22 ) is obtained by substituting GF =  in  

(4-62) and given by 
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Unconditional VARL 
 

The unconditional variance of the 2-of-2 DR chart is obtained by noting that, in general, the 

unconditional variance in (4-61) can be re-written as 
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+=
  (4-64) 

 

For the 2-of-2 DR chart, in particular, we have that )|( 22 ZDR
ofNE  and )|var( 22 ZDR

ofN  are given by  

(4-41) and (4-42), respectively so that the unconditional variance of the run-length of the 2-of-2 DR 

chart is given by  
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The in-control variance of the unconditional run-length distribution of the 2-of-2 DR chart is found by 

substituting )1,()1,(1 +−++−− jnjIjnjI XY  for ±
Cp  in expression (4-65), where ±Cp  is defined in 

(4-33). 

 

 

Unconditional FAR 
 

The conditional false alarm rate of the 2-of-2 DR chart follows from Table 4.5 by substituting 

),,( GFYpp CC
++ =  (with GF = ) for +

0p and ),,( GFXpp CC
−− =  (with GF = ) for −

0p and is given by 
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By averaging over the joint distribution of the order statistics we obtain the unconditional false alarm 

rate of the 2-of-2 DR chart i.e. 
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 (4-66) 

 

where )(xf a  and )(xfb denotes the marginal p.d.f’s of the ath and the bth order statistics in a random 

sample (the reference or Phase I sample) of size m  from a )1,0(uniform distribution, which are known 

to be a )1,( +− amaBeta  distribution and a )1,( +− bmbBeta distribution, respectively. 
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4.3.2.2  Unconditional ARL, VARL and FAR of the 2-of-2 KL chart 
 

 

Unconditional ARL 
 

The conditional ARL  (or the conditional expected value) of the 2-of-2 KL chart follows from (4-

52), with a symbolically simplified version given in Table 4.5, i.e. 
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so that by averaging over Z , the unconditional ARL  of the 2-of-2 KL chart  is found to be 
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 (4-67) 

 

The in-control unconditional average run-length is again obtained by substituting GF =  in (4-67) 
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which is distribution-free. 

 

 

Unconditional VARL 
 

Substituting )|var( 22 ZKL
ofN  (given in (4-53)) and )|( 22 ZKL

ofNE  (given in (4-52)) in (4-64) we find 

that the unconditional variance of KL
ofN 22  is given by 
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Unconditional FAR 
 

 

The conditional false alarm rate of the 2-of-2 KL chart follows from Table 4.5 by substituting 

),,( GFYpp CC
++ =  (with GF = ) for +

0p and ),,( GFXpp CC
−− =  (with GF = ) for −

0p  and is given by 
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By averaging over the joint distribution of the order statistics the unconditional false alarm rate is 

obtain as 
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which is again distribution-free. 
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4.3.2.3  Unconditional ARL, VARL and FAR of the 2-of-3 chart 
 

 

Unconditional ARL and VARL 
 

The unconditional ARL and unconditional VARL  of the 2-of-3 chart are obtained in the same 

manner as that of the 2-of-2 KL chart; that is, we use the conditional counterparts derived via the 

Markov chain approach and find that 
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respectively. 

 

 

Unconditional FAR 
 

The conditional FAR  of the 2-of-3 chart is found (like that of the 2-of-2 DR chart and the 2-of-2 

KL chart) from Table 4.5 by substituting the conditional probabilities−
Cp  and +

Cp  (defined in (4-35) 

and (4-36) with GF = ) for −p  and +p , respectively and is given by 
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The unconditional FAR is thus given by 
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4.3.3  Run-length distributions of the one-sided precedence charts 
 

 

If detecting higher (lower) values is of interest, that is, whether the parameter or percentile of 

interest has shifted to the right (left), we can use a one-sided upper (lower) control chart with an 

estimated upper (lower) control limit mbXLCU :
ˆ =  ( maXLCL :

ˆ = ) only. 

 

The operation of the one-sided upper and lower runs-rules enhanced precedence charts of Case U 

is similar to that of the one-sided upper and lower runs-rules enhanced sign charts of Case K. For 

example, the 2-of-2 one-sided upper (lower) precedence chart signals on the first occurrence of a run 

of length two of the charting statistic i njY :  on or above (below) the estimated upper (lower) control 

limit. 

 

The derivation of the run-length distributions of the one-sided runs-rules enhanced precedence 

charts parallels that of the two-sided precedence charts. In particular, we let 
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for ,...3,2,1=i denote the indicator functions for the one-sided precedence charts corresponding to the 

events }ˆ{ : LCUY i
nj ≥  and }ˆ{ : LCLY i

nj ≤ , respectively. Then, we can again use a two-step approach to 

derive the run-length distribution. In other words, we first derive the conditional run-length 

distribution i.e. conditioned on the particular order statistic (control limit) and then, second, we derive 

the unconditional or marginal run-length distribution by “averaging over” the distribution of the order 

statistic that constitutes the Phase II control limit. 

 

In particular, given mbmb xX :: =  the sequence of signaling indicators ,...ˆ,ˆ,ˆ
321
+++ ξξξ  are i.i.d. 

Bernoulli random variables with success probability 
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so that the conditional distribution of the run-length variable +
22ofN  of the 2-of-2 upper one-sided 

precedence chart, for example,   is geometric of order 2=k  with parameter (success probability) 

),,( GFyppC
++ = . Consequently, all the properties and the characteristics of the conditional run-

length distribution follow conveniently from the properties of the geometric distribution of order 2=k  

by substituting += Cpα  and 2=k  in expressions (4-16) and (4-17). 

 

Alternatively, we can use a Markov chain approach; doing so we find that  
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with the conditional average run-length and the conditional variance of the run-length given by 
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denotes the conditional essential transition probability matrix of the 2-of-2 upper one-sided precedence 

chart and follows from (4-15) having substituted +
Cp  for +p . 

 

The unconditional p.m.f of +
22ofN , for example, is obtained by averaging the conditional run-length 

distribution over the distribution of mbX :  i.e. 
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To obtain a closed form expression of the unconditional p.m.f of +
22ofN  requires the same steps as 

carried out in case of the 2-of-2 DR precedence chart of section 4.3.1.2 and therefore not shown here. 
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4.3.4   Design and implementation of the two-sided precedence charts 
 

 

In order to implement the proposed precedence charts in practice we need the upper and the lower 

control limits. This means that we need to find the indices (charting constants) a  and b  that specify 

the reference sample order statistics, which constitute the lower and the upper control limit, 

respectively. 

 

 

Determination of charting constants 
 

In Phase II applications one typically determines the charting constants a  and b  so that a specified 

in-control unconditional average run-length (say, ∗
0UARL  equal to 370 or 500) is obtained.  This means 

that we have to solve 
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for the 1-of-1 chart, 
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for the 2-of-2 DR chart, 
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for the 2-of-2 KL chart and 
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for the 2-of-3 chart where C
0,88×Q  follows from (4-58) by substituting )1,(1 +−− jnjIY  for +

Cp  and 

)1,( +− jnjIY  for −
Cp . 
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4.3.4.1 Charting constants of the 1-of-1 chart 
 

Chakraborti et al. (2004) provided values for the charting constants a  and b  for the two-sided 1-

of-1 precedence chart for a number of different choices (combinations) of the size m  of the Phase I 

reference sample, the size n  of  Phase II samples and j  (the selected order statistic) so that the  in-

control unconditional average run-length (i.e. 0,11ofUARL ) is close to  370 , 500 and 1000, respectively. 

 

 

4.3.4.2 Charting constants of the 2-of-2 DR, 2-of-2 KL and 2-of-3 charts 
 

Tables 4.18, 4.19 and 4.20 display various choices (combinations) of the charting constants a  and 

b  for the two-sided 2-of-2 DR, the two-sided 2-of-2 KL and the two-sided 2-of-3 charts, for a given or 

specified in-control unconditional ARL  in the neighborhood of 300 and 500, when reference samples 

of size =m 50, 100, 200 and 500 are used to estimate the control limits in Phase I and these limits are 

used to monitor the location (center) of a process using the medians of Phase II (test) samples of size 

5=n , 7, or 9, respectively. Thus, j  equals 3, 4, and 5, respectively in the tables.  

 

Note that for each combination of values of n, j and m the tables display (in each cell) the 0UARL , 

the UFAR  and ),( ba  values, where the 0UARL  values are in the neighborhood of 300 to 500. 

 

Since the Phase II (test) sample median is used as the charting statistic and the Phase II sample size 

n  is odd, it seems reasonable to use symmetric control limits, and thus we take 1+−= amb , so that 

only a  needs to be determined.  However, this needs not be the case when the chart constants are to be 

determined for a charting statistic other than the median that might be of interest.  

 

In addition, note that, in general, it is rare to achieve an 0UARL  (or an UFAR ) exactly as specified 

(i.e. 300 or 500) with the nonparametric charts because the in-control distribution of the run-length 

distribution is discrete.  However, as can be seen, one can get reasonably close to the values typically 

used in practice.  

For example, from Table 4.18 for 500=m ,  5=n  and 3=j , one set of constants for the 2-of-2 

DR chart are given by 72=a  and 429172500 =+−=b  so that  500:72
ˆ XLCL =  and 500:429

ˆ XLCU = . 

In this case the achieved (or attained) 0UARL  and the attained unconditional FAR  of the chart are 

496.90 and 0.0025, respectively.  Moreover, these are the exact values and remain the same for all 

continuous distributions.  If instead we took 71=a  and 430171500 =+−=b , so that 500:71
ˆ XLCL =  
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and 500:430
ˆ XLCU = , the achieved 0UARL  increases to 536.72 and the attained FAR  decreases to 

0.0023.   For a more moderate reference sample size, such as 50=m , Table 4.18 shows that it is 

possible to obtain 0UARL  values such as 275.30 or 605.44; the latter which may be deemed reasonably 

large in practice.  Obviously as m and/or n increase, the available choices for the 0UARL  values also 

increase.  

 

Similar behavior is observed in the case of the two-sided 2-of-2 KL and the 2-of-3 charts shown in 

Tables 4.19 and 4.20, respectively. For instance, in case of the 2-of-2 KL chart,  when 500=m  and 

one uses 80=a  and 421180500 =+−=b , so that 500:80
ˆ XLCL =  and 500:421

ˆ XLCU = , the 0ARL  of the 

2-of-2 KL chart (when 5=n  and 3=j )  is 524.39, whereas the FAR  is 0.0023.  However, if instead 

one chooses to use 81=a  and 420181500 =+−=b , so that 500:81
ˆ XLCL =  and 500:420

ˆ XLCU = , the 

0UARL  decreases to 490.21,  whereas the UFAR  slightly increases to 0.0024. Although for 500=m , 

5=n  and 3=j  a specified 0UARL  such as 500 cannot be obtained exactly, by increasing the size of 

the reference sample m  and/or the test sample size n, the range of possible 0UARL  and UFAR  values 

that can be attained increases.  

 

All equations (i.e. (4-73), (4-74) and (4-75)) are solved using the software package Mathcad®14.0. 
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Table 4.18: Unconditional in-control average run-length (UARL0), unconditional false alarm rate 
(UFAR) and chart constants ),( ba 1 for the 2-of-2 DR nonparametric chart for  

m = 50,100,200,500 and )5 ,9( ),4 ,7( ),3 ,5(),( ====jn  
 

n=5 , j=3 n=7 , j=4 n=9 , j=5 

m=50 100 200 500 m=50 100 200 500 m=50 100 200 500 

605.44 548.99 537.62 536.72 597.80 509.54 597.72 526.08 976.53 739.47 558.51 528.95 

0.0072 0.0040 0.0029 0.0023 0.0090 0.0048 0.0027 0.0024 0.0084 0.0040 0.0031 0.0024 

(8,43) (15,86) (29,172) (71,430) (10,41) (19,82) (36,165) (90,411) (11,40) (21,80) (42,159) (104,397) 

275.30 373.31 443.56 496.90 264.91 345.93 490.44 487.01 383.92 481.18 456.18 488.41 

0.0121 0.0055 0.0034 0.0025 0.0150 0.0065 0.0033 0.0026 0.0144 0.0056 0.0037 0.0026 

(9,42) (16,85) (30,171) (72,429) (11,40) (20,81) (37,164) (91,410) (12,39) (22,79) (43,158) (105,396) 

 261.69 368.80 460.60  241.21 405.20 451.33 172.47 322.26 375.04 451.43 

 0.0074 0.0040 0.0026  0.0088 0.0039 0.0028 0.0236 0.0077 0.0044 0.0028 

 (17,84) (31,170) (73,428)  (21,80) (38,163) (92,409) (13,38) (23,78) (44,157) (106,395) 

  308.82 427.48   336.97 418.70  221.57 310.28 417.68 

  0.0047 0.0028   0.0046 0.0030  0.0104 0.0053 0.0030 

  (32,169) (74,427)   (39,162) (93,408)  (24,77) (45,156) (107,394) 

  260.37 397.20   281.98 388.83   258.24 386.83 

  0.0056 0.0031   0.0054 0.0032   0.0062 0.0033 

  (33,168) (75,426)   (40,161) (94,407)   (46,155) (108,393) 

   369.50    361.45    358.60 

   0.0033    0.0034    0.0035 

   (76,425)    (95,406)    (109,392) 

   344.12    336.33    332.75 

   0.0035    0.0037    0.0038 

   (77,424)    (96,405)    (110,391) 

   320.83    313.25    309.06 

   0.0037    0.0039    0.0041 

   (78,423)    (97,404)    (111,390) 

   299.44    292.03    287.31 

   0.0040    0.0042    0.0044 

   (79,422)    (98,403)    (112,389) 
1The three rows of each cell shows the achieved (attained) UARL0, the UFAR and the charting constants (a , b), respectively 
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Table 4.19:  Unconditional in-control average run-length (UARL0), unconditional false alarm 

rate (UFAR) and chart constants ),( ba 1 for the 2-of-2 KL nonparametric chart for  
m = 50,100,200,500 and )5 ,9( ),4 ,7( ),3 ,5(),( ====jn  

 
n=5 , j=3 n=7 , j=4 n=9 , j=5 

m=50 100 200 500 m=50 100 200 500 m=50 100 200 500 
1010.37 650.75 559.01 524.39 985.39 594.56 504.01 506.61 1591.68 547.12 548.41 530.19 

0.0048 0.0033 0.0026 0.0023 0.0063 0.0041 0.0031 0.0024 0.0062 0.0049 0.0031 0.0023 

(8,43) (16,85) (32,169) (80,421) (10,41) (20,81) (40,161) (99,402) (11,40) (23,78) (45,156) (112,389) 

460.89 456.52 471.18 490.21 437.32 414.67 424.10 472.95 626.67 376.11 456.29 493.12 

0.0079 0.0044 0.0031 0.0024 0.0102 0.0054 0.0036 0.0026 0.0103 0.0066 0.0036 0.0025 

(9,42) (17,84) (33,168) (81,420) (11,40) (21,80) (41,160) (100,401) (12,39) (24,77) (46,155) (113,388) 

237.00 328.69 399.60 458.70 217.33 296.08 358.81 441.90 281.29 264.69 381.78 459.05 

0.0123 0.0057 0.0036 0.0026 0.0160 0.0070 0.0042 0.0027 0.0165 0.0086 0.0042 0.0027 

(10,41) (18,83) (34,167) (82,419) (12,39) (22,79) (42,159) (101,400) (13,38) (25,76) (47,154) (114,387) 

 242.15 340.87 429.62   305.16 413.24   321.15 427.69 

 0.0074 0.0041 0.0027   0.0048 0.0029   0.0049 0.0029 

 (19,82) (35,166) (83,418)   (43,158) (102,399)   (48,153) (115,386) 

  292.37 402.76   260.82 386.77   271.54 398.81 

  0.0047 0.0029   0.0056 0.0031   0.0057 0.0031 

  (36,165) (84,417)   (44,157) (103,398)   (49,152) (116,385) 

   377.91    362.28    372.18 

   0.0031    0.0033    0.0033 

   (85,416)    (104,397)    (117,384) 

   354.91    339.62    347.61 

   0.0033    0.0035    0.0035 

   (86,415)    (105,396)    (118,383) 

   333.60    318.62    324.92 

   0.0035    0.0037    0.0038 

   (87,414)    (106,395)    (119,382) 

   313.83    299.16    303.95 

   0.0037    0.0040    0.0040 

   (88,413)    (107,394)    (120,381) 

   295.48        284.55 

   0.0039        0.0043 

   (89,412)        (121,380) 
1The three rows of each cell shows the achieved (attained) UARL0, the UFAR and the charting constants (a , b), respectively 
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Table 4.20:  Unconditional in-control average run-length (UARL0), unconditional false alarm 
rate (UFAR) and chart constants ),( ba 1 for the 2-of-3 nonparametric chart for  

m = 50,100,200,500 and )5 ,9( ),4 ,7( ),3 ,5(),( ====jn  
 

n=5 , j=3 n=7 , j=4 n=9 , j=5 

m=50 100 200 500 m=50 100 200 500 m=50 100 200 500 

1336.27 755.74 623.35 672.76 1313.99 690.80 685.53 653.58 2423.24 1025.16 786.51 712.63 

0.0049 0.0033 0.0025 0.0018 0.0065 0.0040 0.0025 0.0019 0.0062 0.0035 0.0024 0.0018 

(7,44) (14,87) (28,73) (68,433) (9,42) (18,83) (35,166) (87,414) (10,41) (20,81) (40,161) (100,401) 

527.33 502.46 513.03 621.56 513.55 460.68 561.53 604.19 819.75 653.26 636.94 656.49 

0.0084 0.0045 0.0030 0.0020 0.0107 0.0055 0.0030 0.0021 0.0105 0.0049 0.0029 0.0020 

(8,43) (15,86) (29,172) (69,432) (10,41) (19,82) (36,165) (88,413) (11,40) (21,80) (41,160) (101,400) 

246.51 346.18 425.78 575.05 233.72 316.82 463.41 559.19 329.94 430.22 519.65 605.46 

0.0134 0.0060 0.0035 0.0021 0.0169 0.0073 0.0035 0.0022 0.0169 0.0066 0.0034 0.0021 

(9,42) (16,85) (30,171) (70,431) (11,40) (20,81) (37,164) (89,412) (12,39) (22,79) (42,159) (102,399) 

130.77 246.05 356.16 532.74 120.09 224.02 385.16 518.13 152.81 291.98 426.99 559.02 

0.0201 0.0078 0.0042 0.0023 0.0252 0.0095 0.0041 0.0024 0.0257 0.0087 0.0041 0.0023 

(10,41) (17,84) (31,170) (71,430) (12,39) (21,80) (38,163) (90,411) (13,38) (23,78) (43,158) (103,398) 

  179.74 300.11 494.18   162.45 322.29 480.62 79.60 203.71 353.24 516.70 

  0.0101 0.0048 0.0024   0.0122 0.0048 0.0026 0.0374 0.0114 0.0048 0.0025 

  (18,83) (32,169) (72,429)   (22,79) (39,162) (91,410) (14,37) (24,77) (44,157) (104,397) 

    254.64 459.00     271.43 446.32   145.81 294.15 478.10 

    0.0056 0.0026     0.0056 0.0028   0.0147 0.0056 0.0027 

    (33,168) (73,428)     (40,161) (92,409)   (25,76) (45,156) (105,396) 

    217.47 426.85     230.00 414.91     246.49 442.85 

    0.0065 0.0028     0.0065 0.0030     0.0065 0.0029 

    (34,167) (74,427)     (41,160) (93,408)     (46,155) (106,395) 

      397.43       386.11     207.81 410.63 

      0.0030       0.0032     0.0076 0.0031 

      (75,426)       (94,407)     (47,154) (107,394) 

      370.48       359.69       381.14 

      0.0031       0.0034       0.0033 

      (76,425)       (95,406)       (108,393) 

      345.75       335.41       354.12 

      0.0034       0.0030       0.0035 

      (77,424)       (96,405)       (109,392) 

      323.04       313.09       329.35 

      0.0037       0.0039       0.0038 

      (78,423)       (97,404)       (110,391) 

      302.15       292.53       306.61 

      0.0039       0.0042       0.0041 

      (79,422)       (98,403)       (111,390) 

      282.91       273.59       285.71 

      0.0042       0.0044       0.0044 

      (80,421)       (99,402)       (112,389) 

      265.18       256.12       266.50 

      0.0045       0.0047       0.0047 

      (81,420)       (100,401)       (113,388) 
1The three rows of each cell shows the achieved (attained) UARL0, the UFAR and the charting constants (a , b), respectively 
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Example 3 
 

In order to illustrate the runs-rule enhanced nonparametric precedence charts we use the data given 

in Table 5.1 on p. 213 and Table 5.2 on p. 219 of Montgomery (2001). 

 

The goal of this study was to establish statistical control of the inside diameter of the piston rings 

for an automotive engine manufactured in a forging process.  Twenty-five retrospective or Phase I 

samples, each of size five, were collected when the process was thought to be in-control.  As shown in 

Example 5.1 on p. 213 of Montgomery (2001), the traditional Shewhart X and R  charts provide no 

indication of an out-of-control condition, so these data are considered to be Phase I reference data and 

these “trial” limits were adopted for use in on-line process control. 

 

In order to implement the nonparametric control charts the charting constants are needed.  Possible 

symmetric control limits ( 1+−= amb ) for the four charts are shown in Table 4.21, for 125=m , 

5=n  and 3=j , along with the corresponding 0UARL  and UFAR  values. 

 
 

Table 4.21:  Unconditional in-control average run-length (UARL0), unconditional false alarm 
rate (UFAR) and chart constants ),( ba  for the two-sided 1-of-1, 2-of-2 DR, 2-of-2 KL and 2-of-3 

precedence charts when 125====m , 5====n  and 3====j  
 

1-of-1 2-of-2 DR 2-of-2 KL 2-of-3 

a b UARL0 UFAR a b UARL0 UFAR a b UARL0 UFAR a b UARL0 UFAR 

5 121 1315.98 0.0019 17 109 898.74 0.0023 18 108 1125.44 0.0018 17 109 822.40 0.0026 

6 120 695.09 0.0029 18 108 638.60 0.0031 19 107 819.47 0.0024 18 108 590.03 0.0034 

7 119 413.80 0.0044 19 107 464.38 0.0040 20 106 608.81 0.0030 19 107 433.39 0.0043 

8 118 267.40 0.0062 20 106 344.73 0.0052 21 105 460.54 0.0038 20 106 325.09 0.0055 

9 117 183.47 0.0084 21 105 260.69 0.0066 22 104 354.09 0.0048 21 105 248.51 0.0069 

    22 104 200.46 0.0084 23 103 276.28 0.0059 22 104 193.27 0.0086 
 
 

 

Using Table 4.21, for an 0UARL  of 500, one can take 7=a  so that 119=b , and therefore the 

control limits for the 1-of-1 precedence chart are the 7th and the 119th ordered values of the reference 

sample.  Thus 984.73ˆ
125:7 == XLCL  and 017.74ˆ

125:119 == XLCU , which yield an in-control 

unconditional ARL  of 413.80 and an unconditional FAR  of 0.0044. 

 

A plot of the medians for the 1-of-1 chart is shown in Figure 4.12 for all forty samples, the first 

twenty five of which are from Phase I.   It is seen that the 37th median is outside the control limits and 

so the 1-of-1 precedence chart signals on the 12th ( i.e. 37th – 25th) sample in the prospective phase. 
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Figure 4.12: The 1-of-1 Phase II Precedence chart for the Montgomery (2001) piston-ring data 

 
 

 

For the 2-of-2 DR chart, we take 19=a  so that 107119125 =+−=b  and the resulting limits, 

990.73ˆ
125:19 == XLCL  and 012.74ˆ

125:107 == XLCU , yield an 0UARL  and UFAR  of 464.38 and 

0.0040, respectively. Note, however, that if one chooses 20=a  so that 106=b , the control limits 

become 125:20
ˆ XLCL =  and 125:106

ˆ XLCU =  and the corresponding 0UARL  decreases to 344.73, whereas 

the UFAR  slightly increases to 0.0052.  The 2-of-2 DR chart is shown in Figure 4.13. 
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Figure 4.13: The 2-of-2 Phase II DR chart for the Montgomery (2001) piston-ring data 
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For the 2-of-2 KL chart we take 21=a  so that 105121125 =+−=b  and thus 

992.73ˆ
125:21 == XLCL  and 011.74ˆ

125:105 == XLCU ;  this yields an 0UARL  of 460.54 and an UFAR  

of 0.0038, respectively.  The 2-of-2 KL chart is shown in Figure 4.14. 
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Figure 4.14: The 2-of-2 Phase II KL chart for the Montgomery (2001) piston ring data 

 

 

Finally, for the 2-of-3 chart we take 19=a  so that 107119125 =+−=b  and thus 

990.73ˆ
125:19 == XLCL  and 012.74ˆ

125:107 == XLCU  which yields an 0UARL of 433.39 and an UFAR  

of 0.0043, respectively.  The 2-of-3 chart is identical to the 2-of-2 DR chart shown in Figure 4.14 and 

is thus omitted; this is so because the control limits (in this example) of the 2-of-3 chart are exactly the 

same as that of the 2-of-2 DR chart. 

 

The 2-of-2 DR charts signals on the 3rd sample whereas both the 2-of-2 KL and the 2-of-3 charts 

signal on the 10th sample in the prospective phase.  Note, however, that the achieved UFAR  values for 

the four charts are much larger (63%, 48%, 41% and 59%, respectively) than the nominal FAR of 

0.0027. 
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4.3.5  Performance comparison of the two-sided precedence charts 
 

 

The performance of Phase II control charts is typically compared by first designing each control 

chart to (roughly) have the same in-control unconditional average run-length ( 0UARL ) and then 

examining their out-of-control unconditional average run-length ( 1UARL ) values at some out-of-

control value(s) of the parameter of interest. The control chart with the shorter (or smaller) out-of-

control average run-length is usually preferred.  Since the proposed run rules enhanced Phase II charts 

are nonparametric Shewhart-type charts applicable in Case U, their main competitor is the basic 1-of-1 

precedence control chart of Chakraborti et al. (2004). 
 

To study robustness, three different underlying process distributions i.e. the normal distribution, 

the t-distribution and the gamma distribution, were used in a simulation study with 100 000 repetitions 

for each distribution investigated.  Because the shape of the t-distribution is very similar to that of the 

normal distribution (it is symmetric, but with more probability in the tails) it was used to study the 

effect of heavier tails. The gamma distribution was used to study the effect of skewness (see e.g. 

Figure 4.15). In order for the results of the three distributions to be comparable, the t  and gamma 

distributions were scaled so that they also had a mean of zero and a variance of one. Thus, the )1,0(n , 

the )4(
2

1 t  and the 1)1, 1( −Gamma  distributions were used. 

The parametric Shewhart X   chart was included in the comparison for the normal distribution but 

not for the t and the gamma distribution since the X chart is well-known to be non-robust under non-

normality (see e.g. Chakraborti et al. (2004)). 
 

 

Figure 4.15: Probability distributions used for the performance comparison of the two-sided 
precedence control charts 
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Tables 4.22, 4.23 and 4.24 display the performance comparison results when a reference sample of 

size 500=m  is used to estimate the control limits to monitor location in Phase II (future or test) 

samples of size 5=n and using 5:3Y , the median, as the charting statistic.  The charts were designed so 

that an 0UARL  value close to 500 was achieved. 

 

Instead of using randomization to get an 0UARL  exactly equal to 500, two combinations of chart 

constants are used for each nonparametric chart for which the 0UARL  was the nearest below and the 

nearest above the target *
0UARL  of 500.  The tables show the unconditional average run-length 

( 0UARL ) along with the unconditional standard deviation of the run-length ( 0SDRL ).  The shift refers 

to a shift in the mean of the distribution. 

 

From Table 4.22 it is seen that even under the normal distribution, the nonparametric charts can be 

quite efficient i.e. good at detecting shifts.  The 2-of-2 KL and the 2-of-3 charts are both almost as 

efficient as the X  chart, with shorter ARL ’s but a slightly higher SDRL ’s when the process is OOC, 

especially for small shifts.  

When the distribution is )4(t , that is symmetric yet with heavier tails than the normal, Table 4.23 

shows that the 2-of-2 DR, the 2-of-2 KL and the 2-of-3 schemes perform better than the basic 

precedence 1-of-1 chart in  detecting small shifts, with the 2-of-2 KL chart being the best and is closely 

followed by the 2-of-3 chart. Thus, the three new nonparametric Shewhart-type charts with signaling 

rules provide better alternatives than the basic precedence 1-of-1 chart and the X  chart, especially for 

smaller shifts. The same observation applies in the case of a right-skewed distribution such as the 

)1,1(Gamma  as shown in Table 4.24 but with the 2-of-2 KL chart doing the best.  So the runs-type 

signaling rules enhance the nonparametric chart’s sensitivity to a location shift. 

Moreover, the gain in efficiency (relative to the 1-of-1 chart) can be substantial; for example, for 

the t(4) distribution for a shift of 0.5, the OOC ARL  values of the 1-of-1, 2-of-2 DR, 2-of-3 and the 2-

of-2 KL  charts are 117.63, 40.98, 26.64 and 26.28, respectively when the corresponding 0ARL  values 

are very comparable, 520.27, 536.72, 532.74 and 524.39, respectively.  Note that in Table 4.24 for the 

)1,1(Gamma distribution the basic precedence chart display somewhat of a strange behavior in that 

both the ARL  and SDRL  values first increase from their corresponding values for the in-control case 

for a shift of 0.25; thereafter the ARL  and SDRL  values decrease for increasing shifts as it might be 

expected.  We have not been able to explain this phenomenon.  A repeat of the simulations produced 

similar results.   
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Table 4.22:  Unconditional ARL and SDRL values for the normal distribution for the 2-of-2 DR, 
2-of-2 KL,  2-of-3, Basic (1-of-1) Precedence chart and the Shewhart X-bar chart when  

m = 500, n = 5, j = 3 
 

  2-of-2 DR 2-of-2 KL 2-of-3 
Shift ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 496.90 573.05 536.72 621.20 490.21 554.18 524.39 594.55 494.18 569.01 532.74 615.81 
0.25 233.82 278.56 250.23 299.59 170.07 203.00 180.06 215.88 161.67 196.04 171.95 209.89 
0.50 58.22 66.10 61.33 69.99 39.37 43.17 41.11 45.28 36.62 39.34 38.26 41.33 
0.75 17.55 17.85 18.23 18.64 12.99 12.60 13.39 13.06 12.75 11.06 13.15 11.58 
1.00 7.36 6.41 7.56 6.63 5.99 4.90 6.12 5.04 6.54 4.23 6.64 4.36 
1.25 4.12 2.90 4.19 2.97 3.62 2.34 3.67 2.39 4.43 1.98 4.47 2.03 
1.50 2.88 1.52 2.91 1.55 2.67 1.26 2.69 1.29 3.60 1.04 3.62 1.06 
1.75 2.36 0.86 2.37 0.87 2.27 0.72 2.28 0.74 3.24 0.58 3.25 0.58 
2.00 2.13 0.49 2.14 0.50 2.10 0.41 2.10 0.42 3.09 0.32 3.09 0.33 
2.25 2.04 0.28 2.05 0.28 2.03 0.23 2.03 0.23 3.03 0.18 3.03 0.18 
2.50 2.01 0.14 2.01 0.15 2.01 0.12 2.01 0.12 3.01 0.09 3.01 0.09 
2.75 2.00 0.07 2.00 0.07 2.00 0.06 2.00 0.06 3.00 0.05 3.00 0.05 
3.00 2.00 0.03 2.00 0.03 2.00 0.02 2.00 0.02 3.00 0.02 3.00 0.02 

  (a=72,b=429)  (a=71,b=430) (a=81,b=420) (a=80,b=421) (a=72,b=429) (a=71,b=430) 
  1-of-1 X-bar       

Shift ARL SDRL ARL SDRL ARL SDRL       
0.00 460.22 538.61 520.27 613.67 500.00 571.14       
0.25 233.27 290.26 261.60 329.17 184.12 216.66       
0.50 70.42 85.43 77.73 95.38 43.38 48.51       
0.75 23.74 27.01 25.79 29.64 13.12 13.71       
1.00 9.58 10.11 10.26 10.93 5.19 4.93       
1.25 4.63 4.43 4.88 4.72 2.63 2.15       
1.50 2.66 2.21 2.76 2.34 1.67 1.08       
1.75 1.78 1.22 1.83 1.28 1.26 0.58       
2.00 1.36 0.72 1.39 0.75 1.09 0.32       
2.25 1.16 0.44 1.17 0.45 1.03 0.17       
2.50 1.06 0.26 1.07 0.27 1.01 0.08       
2.75 1.02 0.15 1.02 0.16 1.00 0.03       
3.00 1.01 0.08 1.01 0.09 1.00 0.01       

  (a=25,b=476) (a=24,b=477) 3.084500892       
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Table 4.23: Unconditional ARL and SDRL values for the 2-of-2 DR, 2-of-2 KL,  2-of-3 and 
    the Basic (1-of-1) Precedence chart for the t(4) distribution when  m = 500, n = 5, j = 3 

 
  2-of-2 DR 2-of-2 KL 

Shift ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 496.90 573.05 536.72 621.20 490.21 554.18 524.39 594.55 
0.25 200.92 248.00 215.95 268.18 138.19 170.25 146.90 182.03 
0.50 38.68 45.31 40.98 48.41 25.09 27.66 26.28 29.19 
0.75 10.01 9.77 10.41 10.26 7.43 6.66 7.65 6.92 
1.00 4.26 3.11 4.35 3.22 3.61 2.36 3.67 2.43 
1.25 2.72 1.33 2.75 1.37 2.52 1.08 2.54 1.10 
1.50 2.23 0.67 2.24 0.68 2.17 0.55 2.17 0.56 
1.75 2.07 0.36 2.08 0.36 2.05 0.30 2.05 0.30 
2.00 2.02 0.19 2.02 0.20 2.02 0.16 2.02 0.16 
2.25 2.01 0.11 2.01 0.11 2.00 0.09 2.00 0.09 
2.50 2.00 0.06 2.00 0.06 2.00 0.05 2.00 0.05 
2.75 2.00 0.03 2.00 0.03 2.00 0.03 2.00 0.03 
3.00 2.00 0.02 2.00 0.02 2.00 0.02 2.00 0.02 

  (a=72,b=429)  (a=71,b=430) (a=81,b=420) (a=80,b=421) 
  2-of-3 1-of-1 

Shift ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 494.18 569.01 532.74 615.81 460.22 538.61 520.27 613.67 
0.25 138.65 175.16 147.99 189.23 288.43 370.47 328.18 426.13 
0.50 25.36 27.21 26.64 28.92 102.82 143.88 117.63 167.75 
0.75 8.19 6.28 8.43 6.57 32.84 45.71 37.43 53.44 
1.00 4.53 2.14 4.59 2.20 11.19 14.51 12.58 16.84 
1.25 3.49 0.92 3.51 0.94 4.47 5.01 4.91 5.71 
1.50 3.16 0.53 3.16 0.46 2.25 1.97 2.40 2.20 
1.75 3.05 0.35 3.05 0.38 1.46 0.90 1.51 0.98 
2.00 3.02 0.18 3.01 0.13 1.16 0.46 1.18 0.49 
2.25 3.01 0.60 3.00 0.07 1.05 0.24 1.06 0.26 
2.50 3.00 0.04 3.00 0.05 1.02 0.13 1.02 0.14 
2.75 3.00 0.02 3.00 0.02 1.01 0.07 1.01 0.08 
3.00 3.00 0.01 3.00 0.01 1.00 0.04 1.00 0.04 

  (a=72,b=429) (a=71,b=430) (a=25,b=476) (a=24,b=477) 
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Table 4.24:  Unconditional ARL and SDRL values for the 2-of-2 DR, 2-of-2 KL 2-of-3and the        
     Basic (1-of-1) Precedence chart for the gamma(1,1) distribution when m = 500, n = 5, j = 3 

 
  2-of-2 DR 2-of-2 KL 

Shift ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 496.90 573.05 536.72 621.20 490.21 554.18 524.39 594.55 
0.25 233.82 815.92 250.23 887.98 310.12 405.49 331.64 436.02 
0.50 58.22 216.59 61.33 234.84 88.52 111.41 94.24 119.33 
0.75 17.55 61.43 18.23 66.27 28.03 33.05 29.65 35.23 
1.00 7.36 18.96 7.56 20.33 10.26 10.74 10.75 11.39 
1.25 4.12 6.42 4.19 6.84 4.55 3.79 4.72 4.00 
1.50 2.88 2.30 2.91 2.45 2.61 1.34 2.66 1.42 
1.75 2.36 0.74 2.37 0.80 2.05 0.34 2.06 0.37 
2.00 2.13 0.13 2.14 0.15 2.00 0.03 2.00 0.04 
2.25 2.04 0.00 2.05 0.00 2.00 0.00 2.00 0.00 
2.50 2.01 0.00 2.01 0.00 2.00 0.00 2.00 0.00 
2.75 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.00 
3.00 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.00 

  (a=72,b=429)  (a=71,b=430) (a=81,b=420) (a=80,b=421) 
  2-of-3 1-of-1 

Shift ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 494.18 569.01 532.74 615.81 460.22 538.61 520.27 613.67 
0.25 314.31 425.10 336.97 459.01 527.27 730.48 600.16 844.59 
0.50 90.55 115.92 98.04 126.21 255.49 351.96 290.46 406.50 
0.75 30.22 35.15 31.84 37.14 124.76 170.53 141.61 196.68 
1.00 11.98 11.68 12.57 12.35 61.56 83.20 69.72 95.80 
1.25 6.01 4.18 6.23 4.48 30.80 40.94 34.78 47.05 
1.50 3.88 1.58 3.96 1.67 15.70 20.35 17.67 23.33 
1.75 3.15 0.51 3.17 0.54 8.22 10.23 9.20 11.69 
2.00 3.01 0.08 3.01 0.09 4.47 5.19 4.96 5.92 
2.25 3.00 0.01 3.00 0.01 2.58 2.64 2.83 3.02 
2.50 3.00 0.00 3.00 0.00 1.63 1.32 1.75 1.52 
2.75 3.00 0.00 3.00 0.00 1.19 0.61 1.24 0.72 
3.00 3.00 0.00 3.00 0.00 1.03 0.23 1.05 0.29 

  (a=72,b=429) (a=71,b=430) (a=25,b=476) (a=24,b=477) 
 

 
 
 



 370 

Because the run-length distribution is highly right-skewed, exclusive use of the ARL (and the 

SDRL ) to characterize chart performance has been criticized in the literature and some researchers 

have strongly suggested an examination of the percentiles too (see e.g. Radson and Boyd, (2005) and 

Chakraborti, (2007)). 

 

To this end, the three quartiles (1Q , 2Q  and 3Q ) along with the 5th and the 95th percentiles are 

shown in Tables 4.25, 4.26, 4.27 and 4.28, for the 2-of-2 DR, the 2-of-2 KL, the 2-of-3 and the 1-of-1 

precedence chart, for the normal, )4(t  and )1,1(Gamma  distributions, respectively for 5=n  and 

3=j . Note that (i) these values are all unconditional i.e. being averaged over the joint distribution of 

the order statistics maX :  and mbX : , and (ii) these values were obtained via simulations (200 000 

repetitions) using SAS®9.1 since exact calculations, via enumeration of the c.d.f, took too long for the 

upper percentiles.  The SAS®-programs used in the simulations are provided in Appendix 4A. 

 

A comparison of the quartiles lead to the same general observation that the newly proposed 

nonparametric charts are more efficient than the basic precedence chart, with the 2-of-2 KL and the 2-

of-3 charts having a slight edge. 

 

For example, in the in-control case and with the t-distribution, for the 2-of-2 DR chart (with 

72=a  & 429=b ) the three quartiles are 127, 313 and 658, respectively, which are very close to 

those for the 2-of-2 KL chart (with 81=a  & 420=b ) and the 2-of-3 chart (with 72=a  & 429=b ): 

126, 312 & 650 and 127, 312 & 653, respectively.  By contrast, for the 1-of-1 precedence chart (with 

25=a  & 476=b ) the three quartiles are 116, 287 and 603, respectively, which are all smaller.  Since 

we want the in-control percentiles to be larger, the new charts are better.  On the other hand, in the out-

of-control case, for a shift of 0.50 in the mean, the quartiles for the 2-of-2 KL chart (with 81=a  & 

420=b ) and 2-of-3 chart (with 72=a  & 429=b ) are all shorter: 7, 16 & 33 and 8, 17 & 32, 

respectively, compared to both the 2-of-2 DR chart (with 72=a  & 429=b ): 11, 24 and 50 and the 1-

of-1 precedence chart (with 25=a  & 476=b ):  23, 57 and 127.  This shows that the 2-of-2 KL and 

the 2-of-3 charts are superior.  
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Table 4.25: The three quartiles (Q1, Q2 and Q3) and the 5th & 95th percentiles of the run-length 
distribution of the 2-of-2 DR chart; charting constants (a=72 , b=429) 

 

 normal t(4) gamma(1,1) 
Shift 5th Q1 Q2 Q3 95th 5th Q1 Q2 Q3 95th 5th Q1 Q2 Q3 95th 
0.00 23 128 314 657 1587 23 127 313 658 1588 23 127 313 653 1586 
0.25 11 58 144 306 758 10 49 121 260 662 23 129 329 734 2002 
0.50 4 16 37 76 183 3 11 24 50 122 8 37 93 205 547 
0.75 2 6 12 23 52 2 4 7 13 29 3 12 29 61 158 
1.00 2 3 5 10 20 2 2 3 5 10 2 5 10 21 51 
1.25 2 2 3 5 10 2 2 2 3 5 2 2 4 8 18 
1.50 2 2 2 3 6 2 2 2 2 4 2 2 2 4 8 
1.75 2 2 2 2 4 2 2 2 2 2 2 2 2 2 4 
2.00 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 
2.25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2.50 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2.75 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
3.00 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

 
 
 

Table 4.26: The three quartiles (Q1, Q2 and Q3) and the 5th & 95th percentiles of the run-length 
distribution of the 2-of-2 KL chart; charting constants (a=81 , b=420) 

 

 normal t(4) gamma(1,1) 
Shift 5th Q1 Q2 Q3 95th 5th Q1 Q2 Q3 95th 5th Q1 Q2 Q3 95th 
0.00 23 128 313 652 1554 24 126 312 650 1549 24 128 314 655 1552 
0.25 9 43 105 223 549 7 34 84 179 449 14 72 181 394 1037 
0.50 3 11 26 52 122 2 7 16 33 77 5 22 53 114 292 
0.75 2 4 9 17 38 2 3 5 10 20 2 8 17 36 88 
1.00 2 2 4 8 16 2 2 3 4 8 2 4 7 13 30 
1.25 2 2 3 4 8 2 2 2 3 5 2 2 3 6 12 
1.50 2 2 2 3 5 2 2 2 2 4 2 2 2 3 5 
1.75 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 
2.00 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 
2.25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2.50 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2.75 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
3.00 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
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Table 4.27: The three quartiles (Q1, Q2 and Q3) and the 5th & 95th percentiles of the run-length 
distribution of the 2-of-3 chart; charting constants (a=72 , b=429) 

 

 normal t(4) gamma(1,1) 
Shift 5th Q1 Q2 Q3 95th 5th Q1 Q2 Q3 95th 5th Q1 Q2 Q3 95th 
0.00 25 127 312 653 1576 24 127 312 653 1580 25 128 313 655 1582 
0.25 10 41 99 208 524 8 34 82 176 457 15 72 179 392 1051 
0.50 4 11 24 48 111 4 8 17 32 76 6 23 54 114 295 
0.75 3 5 9 16 34 3 4 6 10 20 4 9 19 38 94 
1.00 3 4 5 8 15 3 3 4 5 9 3 5 8 15 33 
1.25 3 3 4 5 8 3 3 3 4 5 3 3 4 7 14 
1.50 3 3 3 4 6 3 3 3 3 4 3 3 3 4 7 
1.75 3 3 3 3 4 3 3 3 3 3 3 3 3 3 4 
2.00 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 
2.25 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
2.50 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
2.75 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3.00 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

 

 

 

Table 4.28: The three quartiles (Q1, Q2 and Q3) and the 5th & 95th of the run-length distribution 
of the Basic (1-of-1) precedence chart; charting constants (a=25 , b=476) 

 normal t(4) gamma(1,1) 
Shift 5th Q1 Q2 Q3 95th 5th Q1 Q2 Q3 95th 5th Q1 Q2 Q3 95th 

0.00 21 116 288 608 1489 21 116 287 603 1479 21 115 287 606 1477 
0.25 10 56 140 300 765 12 66 168 368 956 20 115 294 655 1786 
0.50 3 18 43 92 228 4 23 57 127 350 10 57 144 319 864 
0.75 2 6 15 31 75 2 8 19 41 110 5 28 71 157 420 
1.00 1 3 6 13 29 1 3 7 14 36 3 14 35 77 206 
1.25 1 2 3 6 13 1 1 3 6 13 2 7 18 39 103 
1.50 1 1 2 3 7 1 1 2 3 6 1 4 9 20 51 
1.75 1 1 1 2 4 1 1 1 2 3 1 2 5 10 26 
2.00 1 1 1 2 3 1 1 1 1 2 1 1 3 5 14 
2.25 1 1 1 1 2 1 1 1 1 2 1 1 2 3 7 
2.50 1 1 1 1 2 1 1 1 1 1 1 1 1 2 4 
2.75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
3.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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4.4    Concluding remarks: Summary and recommendations 
 

 

The new class of runs-rule enhanced nonparametric sign charts of Case K and the distribution-free 

precedence charts of Case U can be useful for the quality practitioner in that they 

 

(i) enhance the in-control and the out-of-control performance of the 1-of-1 sign chart of Amin 

et al. (1995) and the basic precedence chart of Chakraborti et al. (2004), respectively, and 

 

(ii)  outperform the classical and well-known Shewhart X  chart (especially for heavy-tailed or 

skewed distributions). 

 

In particular, the charts based on the k-of-k and the k-of-w signaling rules facilitate larger 0ARL  

and smaller FAR  values which allow practitioners greater flexibility while designing charts to best suit 

their needs. 

 

The key advantage and main benefits of the nonparametric charts are: 

 

(i) their in-control run-length distributions (and all associated performance characteristics such 

as the 0ARL  and FAR , for example) are the same for all continuous distributions, and 

 

(ii)  one does not have to assume symmetry of the underlying distribution (unlike the SR 

charts). Thus, practitioners need not worry about what the underlying distribution is (and 

the serious consequences/ramifications/costs if it is not normal, for example) as far as 

implementing and understanding the charts’ properties are concerned. 

 

The sign charts have an added advantage as they can be applied in situations where the data are just 

dichotomous.  

 

A further practical advantage of the precedence charts is their potential to save time and resources 

in situations where the data are naturally collected in an ordered fashion, as is common in “life-testing” 

type situations, where one observes the “time to failure” of some item and it is costly and time 

consuming to wait for all units to fail.  Because the control limits and the charting statistic of the 

precedence charts are based on order statistics, they can be applied as soon as the required order 

statistics are observed, whereas the Shewhart or CUSUM or EWMA X  charts can not be applied 

since one needs the full dataset to calculate the average. 
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Also, the precedence charts can be adapted to and applied in the case of ordinal data.  The charting 

statistic can be chosen to be any order statistic of the Phase II sample suitable in a specific application. 

The median, used in this chapter, of course enjoys the robustness property and is therefore less affected 

by the presence of outliers (very small or large observations) than the X  chart, for example. 

 

Finally, the implementation and application of the sign and precedence charts are easy using the 

tables with the charting constants (and attained 0ARL  and FAR  values) and it is recommend that they 

be used more frequently in practice. 
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4.5   Appendix 4A: SAS® programs 
 
 
 
 

4.5.1   SAS® programs to simulate the run-length distributions of the upper one-sided  
            X-bar, sign and SR charts in Case K 
 
 
 
 

4.5.1.1 The 1-of-1 X-bar, sign and SR charts 

 
*1-of-1 upper one-sided X-bar chart; 
 

proc iml; 
ARL = 370; 
sim = 100000; 
n = 10; 
UCL = probit( 1- 1/ARL)/sqrt(n); 
simrl = j(sim, 13, .); 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
ct = 0; 
do k = 1 to 10000000 while ( ^((ct>=UCL))  ); 
x = j(n, 1, .); 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
ct = sum(x)/n; 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
create  RL1of1_Xbar from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta120}]; 
append  from simrl; 
quit; 
proc univariate data =RL1of1_Xbar; 
var  delta000 delta020 delta040 delta060 delta080 delta1 00 delta120; 
run; 
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*1-of-1 upper one-sided sign chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
a = 0; 
n = 10; 
UCL = n-a; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = ( 1/ARL - 1 + probbnml( 0.5,n,n-a- 1) ) / (probbnml( 0.5,n,n-a- 1) - probbnml( 0.5,n,n-
a- 2)) ; 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
ct = 0; 
random = 0;  
do k = 1 to 10000000 while ( ^((ct>=UCL)|((ct=UCL- 1)&(random<=q)))  ); 
x = j(n, 1, .); 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec = x > med; 
ct = sum(vec); 
random = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
*print simrl;  
create  RL1of1_sign from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta120}]; 
append  from simrl; 
quit; 
proc univariate data =RL1of1_sign; 
var  delta000 delta020 delta040 delta060 delta080 delta1 00 delta120; 
run; 
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*1-of-1 upper one-sided SR chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
n = 10; 
UCL = 53; 
UCL1 = 51; 
cdfUCL = 0.002; 
pmfUCL1 = 0.0009; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = ( 1/ARL - cdfUCL) / ( pmfUCL1 ) ; 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
random = 0; 
ct = 0;   
do k = 1 to 10000000 while ( ^(   (ct>=UCL)  |  ((ct=UCL1)&(random<=q))   )  ); 
x = j(n, 1, .); 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec   = x > med; 
wplus = (vec`)*rank(abs(x)); 
ct = 2*wplus - n*(n+ 1)/ 2; 
random = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
create  RL1of1_SR from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta120}]; 
append  from simrl; 
quit; 
proc univariate data =RL1of1_SR; 
var  delta000 delta020 delta040 delta060 delta080 delta1 00 delta120; 
run; 
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4.5.1.2 The 2-of-2 sign and SR charts 
 

*2-of-2 upper one-sided sign chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
a = 1; 
n = 10; 
UCL = n-a; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = ( (sqrt( 4*ARL+1)+ 1)/( 2*ARL) - 1 + probbnml( 0.5,n,n-a- 1) ) /  
    (probbnml( 0.5,n,n-a- 1) - probbnml( 0.5,n,n-a- 2)) ; 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
x = j(n, 1, .); 
ct1 = 0; 
ct = 0; 
random1 = 0;  
random = 0;  
do k = 1 to 10000000 while (    
^( (  (ct1>=UCL)&(ct>=UCL)  )                     |  
   (  ((ct1=UCL- 1)&(random1<=q))&(ct>=ucl)  )     |  
   (  (ct1>=UCL)&((ct=UCL- 1)&(random<=q))  )      |  
   (  ((ct1=UCL- 1)&(random1<=q))&((ct=UCL- 1)&(random<=q)))  )  ); 
ct1 = ct; 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec = x > med; 
ct = sum(vec); 
random = ranuni( 0); 
random1 = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
create  RL2of2_sign from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta120}]; 
append  from simrl; 
quit; 
proc univariate data =RL2of2_sign; 
var  delta000 delta020 delta040 delta060 delta080 delta1 00 delta120; 
run; 
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*2-of-2 upper one-sided SR chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
n = 10; 
UCL = 33; 
UCL1 = UCL - 2; 
cdfUCL = 0.0527; 
pmfUCL1 = 0.0127; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = (  (sqrt( 4*ARL+1)+ 1)/( 2*ARL) -  cdfUCL ) / ( pmfUCL1 ) ; 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
x = j(n, 1, .); 
ct1 = 0; 
ct = 0; 
random1 = 0;  
random = 0;  
do k = 1 to 10000000 while (    
^( (  (ct1>=UCL)&(ct>=UCL)  )                     |  
 (  ((ct1=UCL1)&(random1<=q))&(ct>=ucl)  )     |  
 (  (ct1>=UCL)&((ct=UCL1)&(random<=q))  )      |  
 (  ((ct1=UCL1)&(random1<=q))&((ct=UCL1)&(random<=q)))  )  ); 
ct1 = ct; 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec   = x > med; 
wplus = (vec`)*rank(abs(x)); 
ct = 2*wplus - n*(n+ 1)/ 2; 
random = ranuni( 0); 
random1 = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
create  RL2of2_SR from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta120}]; 
append  from simrl; 
quit; 
proc univariate data =RL2of2_SR; 
var  delta000 delta020 delta040 delta060 delta080 delta1 00 delta120; 
run; 

 
 
 



 380 

4.5.1.3 The 2-of-3 sign chart 
 

*2-of-3 upper-sided sign chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
a = 1; 
n = 10; 
UCL = n-a; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = 0.632202808; 
do d = 1 to 2.2 by 0.2;  
do j = 1 to sim; 
x = j(n, 1, .); 
ct2 = 0; 
ct1 = 0; 
ct = 0; 
random2 = 0; 
random1 = 0;  
random = 0;  
do k = 1 to 10000000 while (    
^(  
 ( (ct2>=UCL)                 & (ct1<UCL) &  (ct>=UCL)               )     | 
 ( ((ct2=UCL- 1)&(random2<=q)) & (ct1<UCL) &  (ct>=UCL)               )     | 
 ( (ct2>=UCL)                 & (ct1<UCL) & ((ct=UCL- 1)&(random<=q)) )     | 
 ( ((ct2=UCL- 1)&(random2<=q)) & (ct1<UCL) & ((ct=UCL- 1)&(random<=q)) )     | 
 ( (ct1>=UCL)                 & (ct2<UCL) &  (ct>=UCL)               )     | 
 ( ((ct1=UCL- 1)&(random1<=q)) & (ct2<UCL) &  (ct>=UCL)               )     | 
 ( (ct1>=UCL)                 & (ct2<UCL) & ((ct=UCL- 1)&(random<=q)) )     | 
 ( ((ct1=UCL- 1)&(random1<=q)) & (ct2<UCL) & ((ct=UCL- 1)&(random<=q)) )      )   ); 
ct2 = ct1; 
ct1 = ct; 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec = x > med; 
ct = sum(vec); 
random = ranuni( 0); 
random1 = ranuni( 0); 
random2 = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
ARL = sum(simrl)/sim; 
create  RL2of3_sign from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta120}]; 
append  from simrl; 
quit; 
proc univariate data =RL2of3_sign; 
var  delta000 delta020 delta040 delta060 delta080 delta1 00 delta120; 
run;  
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4.5.2 SAS® programs to simulate the run-length distributions of the two- 
         sided precedence charts in Case U 
 

 

 

4.5.2.1 The 1-of-1 precedence chart 
 
 

proc iml; 
m = 500; 
n = 5; 
j = (n+ 1)/ 2; 
sim = 100000; 
a = 25; 
b = 476; 
rlvec = j(sim, 13, .); 
do delta = 1 to 3 by 0.25; 
shift = 4*delta- 3; 
do k = 1 to sim;  
xref = j(m, 1, 0); 
call  randgen(xref, 'NORMAL' ); yref = xref; 
call  sort(yref, { 1}); 
lcl = yref[a, 1]; 
ucl = yref[b, 1]; 
count = 1; 
signal = 0; 
above = j( 2, 1, 0); 
below = j( 2, 1, 1); 
do while (signal = 0); 
xfut = j(n, 1, 0); 
call  randgen(xfut, 'NORMAL' ,delta- 1, 1); yfut = xfut; 
call  sort(yfut, { 1}); 
plotstat = yfut[j, 1]; 
cl=j( 2, 1, 0); 
cl[ 1, 1]=ucl; 
cl[ 2, 1]=lcl; 
plotstatvec=j( 2, 1,plotstat); 
check = plotstatvec <= cl; 
if  check = above then signal = 1; 
else  if check = below then signal = 1;  
else  count = count + 1; 
count1 = count; 
rlvec[k,shift] = count1;  
end ; 
end ; 
end ; 
create  RL1of1_Precedence_normal from rlvec[colname={delta0 00 delta025 delta050 
delta075 delta100 delta125 delta150 delta175 delta200 delta225 delta250 delta275 
delta300}]; 
append  from rlvec; 
quit; 
proc univariate data =RL1of1_Precedence_normal; 
var  delta000 delta025 delta050 delta075 delta100 delta1 25 delta150 delta175 
    delta200 delta225 delta250 delta275 delta300; 
run; 
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4.5.2.2  The 2-of-2 DR and  the 2-of-2 KL precedence charts 
 
 
proc iml; 
m = 500; n = 5; j = (n+ 1)/ 2; 
sim = 100000; 
a = 81; b = 420; 
rlvec = j(sim, 13, .); 
do delta = 1 to 3 by 0.25; 
shift = 4*delta- 3; 
do k = 1 to sim;  
xref = j(m, 1, 0); 
call  randgen(xref, 'NORMAL' ); yref = xref; 
call  sort(yref, { 1}); 
lcl = yref[a, 1]; 
ucl = yref[b, 1]; 
count = 1; 
signal = 0; 
dummy = j( 2, 1, 0); 
check = { 1, 0}; 
above = j( 2, 2, 0); 
below = j( 2, 2, 1); 
abovebelow = { 0 1 , 0 1}; 
belowabove = { 1 0 , 1 0}; 
matrix = j( 2, 2, 0); 
do while (signal = 0); 
dummy = check; 
xfut = j(n, 1, 0); 
call  randgen(xfut, 'NORMAL' ,delta- 1, 1); yfut = xfut; 
call  sort(yfut, { 1}); 
plotstat = yfut[j, 1]; 
cl=j( 2, 1, 0); 
cl[ 1, 1]=ucl; 
cl[ 2, 1]=lcl; 
plotstatvec=j( 2, 1,plotstat); 
check = plotstatvec <= cl; 
matrix = dummy||check; 
if  matrix = above then signal = 1; * DR and KL;  
else  if matrix = below then signal = 1; * DR and KL;  
else  if matrix = abovebelow then signal = 1; * DR only;  
else  if matrix = belowabove then signal = 1; * DR only;  
else  count = count + 1;     
count1 = count; 
rlvec[k,shift] = count1;  
end ; 
end ; 
end ; 
create  RL2of2_Precedence_normal from rlvec[colname={delta0 00 delta025 delta050 
delta075 delta100 delta125 delta150 delta175 delta200 delta225 delta250 delta275 
delta300}]; 
append  from rlvec; 
quit; 
proc univariate data = RL2of2_Precedence_normal; 
var  delta000 delta025 delta050 delta075 delta100 delta1 25 delta150 delta175 
    delta200 delta225 delta250 delta275 delta300; 
run; 
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4.5.2.3  The 2-of-3 precedence chart 
 

 

proc iml; 
m = 500; n = 5; j = (n+ 1)/ 2; 
sim = 100000; 
a = 72; b = 429; 
rlvec = j(sim, 13, .); 
do delta = 1 to 3 by 0.25; 
shift = 4*delta- 3; 
do k = 1 to sim;  
xref = j(m, 1, 0); 
call  randgen(xref, 'NORMAL' ); yref = xref; 
call  sort(yref, { 1}); 
lcl = yref[a, 1]; 
ucl = yref[b, 1]; 
count = 2; 
signal = 0; 
dummy1 = { 1, 0}; dummy2 = j( 2, 1, .); check = { 1, 0}; 
between_above_above = { 1 0 0, 
                       0 0 0}; 
between_below_below = { 1 1 1, 
               0 1 1}; 
below_between_below = { 1 1 1, 
              1 0 1}; 
above_between_above = { 0 1 0, 
              0 0 0}; 
matrix = j( 2, 3, .); 
do while (signal = 0); 
dummy2 = dummy1; 
dummy1 = check; 
xfut = j(n, 1, 0); 
call  randgen(xfut, 'NORMAL' ,delta- 1, 1); yfut = xfut; 
call  sort(yfut, { 1}); 
plotstat = yfut[j, 1]; 
cl=j( 2, 1, 0); 
cl[ 1, 1]=ucl; 
cl[ 2, 1]=lcl; 
plotstatvec=j( 2, 1,plotstat); 
check = plotstatvec <= cl; 
matrix = dummy2||dummy1||check; 
if  matrix = between_above_above then signal = 1; 
else  if matrix = between_below_below then signal = 1; 
else  if matrix = below_between_below then signal = 1; 
else  if matrix = above_between_above then signal = 1; 
else  count = count + 1;     
count1 = count; 
rlvec[k,shift] = count1;  
end ; 
end ; 
end ; 
create  RL2of3_Precedence_normal from rlvec[colname={delta0 00 delta025 delta050 
delta075 delta100 delta125 delta150 delta175 delta200 delta225 delta250 delta275 
delta300}]; 
append  from rlvec; 
quit; 
proc univariate data = RL2of3_Precedence_normal; 
var  delta000 delta025 delta050 delta075 delta100 delta1 25 delta150 delta175 
    delta200 delta225 delta250 delta275 delta300; 
run;  
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4.5   Appendix 4A: SAS® programs 
 
 
 
 

4.5.1   SAS® programs to simulate the run-length distributions of the upper one-sided  
            X-bar, sign and SR charts in Case K 
 
 
 
 

4.5.1.1 The 1-of-1 X-bar, sign and SR charts 

 
*1-of-1 upper one-sided X-bar chart; 
 

proc iml; 
ARL = 370; 
sim = 100000; 
n = 10; 
UCL = probit( 1- 1/ARL)/sqrt(n); 
simrl = j(sim, 13, .); 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
ct = 0; 
do k = 1 to 10000000 while ( ^((ct>=UCL))  ); 
x = j(n, 1, .); 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
ct = sum(x)/n; 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
create  RL1of1_Xbar from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta1 20}]; 
append  from simrl; 
quit; 
proc univariate data =RL1of1_Xbar; 
var  delta000 delta020 delta040 delta060 delta080 delta 100 delta120; 
run; 
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*1-of-1 upper one-sided sign chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
a = 0; 
n = 10; 
UCL = n-a; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = ( 1/ARL - 1 + probbnml( 0.5,n,n-a- 1) ) / (probbnml( 0.5,n,n-a- 1) - probbnml( 0.5,n,n-
a- 2)) ; 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
ct = 0; 
random = 0;  
do k = 1 to 10000000 while ( ^((ct>=UCL)|((ct=UCL- 1)&(random<=q)))  ); 
x = j(n, 1, .); 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec = x > med; 
ct = sum(vec); 
random = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
*print simrl;  
create  RL1of1_sign from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta1 20}]; 
append  from simrl; 
quit; 
proc univariate data =RL1of1_sign; 
var  delta000 delta020 delta040 delta060 delta080 delta 100 delta120; 
run; 
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*1-of-1 upper one-sided SR chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
n = 10; 
UCL = 53; 
UCL1 = 51; 
cdfUCL = 0.002; 
pmfUCL1 = 0.0009; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = ( 1/ARL - cdfUCL) / ( pmfUCL1 ) ; 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
random = 0; 
ct = 0;   
do k = 1 to 10000000 while ( ^(   (ct>=UCL)  |  ((ct=UCL1)&(random<=q))    )  ); 
x = j(n, 1, .); 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec   = x > med; 
wplus = (vec`)*rank(abs(x)); 
ct = 2*wplus - n*(n+ 1)/ 2; 
random = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
create  RL1of1_SR from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta1 20}]; 
append  from simrl; 
quit; 
proc univariate data =RL1of1_SR; 
var  delta000 delta020 delta040 delta060 delta080 delta 100 delta120; 
run; 
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4.5.1.2 The 2-of-2 sign and SR charts 
 

*2-of-2 upper one-sided sign chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
a = 1; 
n = 10; 
UCL = n-a; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = ( (sqrt( 4*ARL+1)+ 1)/( 2*ARL) - 1 + probbnml( 0.5,n,n-a- 1) ) /  
    (probbnml( 0.5,n,n-a- 1) - probbnml( 0.5,n,n-a- 2)) ; 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
x = j(n, 1, .); 
ct1 = 0; 
ct = 0; 
random1 = 0;  
random = 0;  
do k = 1 to 10000000 while (    
^( (  (ct1>=UCL)&(ct>=UCL)  )                     |   
   (  ((ct1=UCL- 1)&(random1<=q))&(ct>=ucl)  )     |  
   (  (ct1>=UCL)&((ct=UCL- 1)&(random<=q))  )      |  
   (  ((ct1=UCL- 1)&(random1<=q))&((ct=UCL- 1)&(random<=q)))  )  ); 
ct1 = ct; 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec = x > med; 
ct = sum(vec); 
random = ranuni( 0); 
random1 = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
create  RL2of2_sign from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta1 20}]; 
append  from simrl; 
quit; 
proc univariate data =RL2of2_sign; 
var  delta000 delta020 delta040 delta060 delta080 delta 100 delta120; 
run; 
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*2-of-2 upper one-sided SR chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
n = 10; 
UCL = 33; 
UCL1 = UCL - 2; 
cdfUCL = 0.0527; 
pmfUCL1 = 0.0127; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = (  (sqrt( 4*ARL+1)+ 1)/( 2*ARL) -  cdfUCL ) / ( pmfUCL1 ) ; 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
x = j(n, 1, .); 
ct1 = 0; 
ct = 0; 
random1 = 0;  
random = 0;  
do k = 1 to 10000000 while (    
^( (  (ct1>=UCL)&(ct>=UCL)  )                     |   
 (  ((ct1=UCL1)&(random1<=q))&(ct>=ucl)  )     |  
 (  (ct1>=UCL)&((ct=UCL1)&(random<=q))  )      |  
 (  ((ct1=UCL1)&(random1<=q))&((ct=UCL1)&(random<=q )))  )  ); 
ct1 = ct; 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec   = x > med; 
wplus = (vec`)*rank(abs(x)); 
ct = 2*wplus - n*(n+ 1)/ 2; 
random = ranuni( 0); 
random1 = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
create  RL2of2_SR from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta1 20}]; 
append  from simrl; 
quit; 
proc univariate data =RL2of2_SR; 
var  delta000 delta020 delta040 delta060 delta080 delta 100 delta120; 
run; 
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4.5.1.3 The 2-of-3 sign chart 
 

*2-of-3 upper-sided sign chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
a = 1; 
n = 10; 
UCL = n-a; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = 0.632202808; 
do d = 1 to 2.2 by 0.2;  
do j = 1 to sim; 
x = j(n, 1, .); 
ct2 = 0; 
ct1 = 0; 
ct = 0; 
random2 = 0; 
random1 = 0;  
random = 0;  
do k = 1 to 10000000 while (    
^(  
 ( (ct2>=UCL)                 & (ct1<UCL) &  (ct>=U CL)               )     | 
 ( ((ct2=UCL- 1)&(random2<=q)) & (ct1<UCL) &  (ct>=UCL)               )     | 
 ( (ct2>=UCL)                 & (ct1<UCL) & ((ct=UC L- 1)&(random<=q)) )     | 
 ( ((ct2=UCL- 1)&(random2<=q)) & (ct1<UCL) & ((ct=UCL- 1)&(random<=q)) )     | 
 ( (ct1>=UCL)                 & (ct2<UCL) &  (ct>=U CL)               )     | 
 ( ((ct1=UCL- 1)&(random1<=q)) & (ct2<UCL) &  (ct>=UCL)               )     | 
 ( (ct1>=UCL)                 & (ct2<UCL) & ((ct=UC L- 1)&(random<=q)) )     | 
 ( ((ct1=UCL- 1)&(random1<=q)) & (ct2<UCL) & ((ct=UCL- 1)&(random<=q)) )      )   ); 
ct2 = ct1; 
ct1 = ct; 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec = x > med; 
ct = sum(vec); 
random = ranuni( 0); 
random1 = ranuni( 0); 
random2 = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
ARL = sum(simrl)/sim; 
create  RL2of3_sign from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta1 20}]; 
append  from simrl; 
quit; 
proc univariate data =RL2of3_sign; 
var  delta000 delta020 delta040 delta060 delta080 delta 100 delta120; 
run;  
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4.5.2 SAS® programs to simulate the run-length distributions of the two- 
         sided precedence charts in Case U 
 

 

 

4.5.2.1 The 1-of-1 precedence chart 
 
 

proc iml; 
m = 500; 
n = 5; 
j = (n+ 1)/ 2; 
sim = 100000; 
a = 25; 
b = 476; 
rlvec = j(sim, 13, .); 
do delta = 1 to 3 by 0.25; 
shift = 4*delta- 3; 
do k = 1 to sim;  
xref = j(m, 1, 0); 
call  randgen(xref, 'NORMAL' ); yref = xref; 
call  sort(yref, { 1}); 
lcl = yref[a, 1]; 
ucl = yref[b, 1]; 
count = 1; 
signal = 0; 
above = j( 2, 1, 0); 
below = j( 2, 1, 1); 
do while (signal = 0); 
xfut = j(n, 1, 0); 
call  randgen(xfut, 'NORMAL' ,delta- 1, 1); yfut = xfut; 
call  sort(yfut, { 1}); 
plotstat = yfut[j, 1]; 
cl=j( 2, 1, 0); 
cl[ 1, 1]=ucl; 
cl[ 2, 1]=lcl; 
plotstatvec=j( 2, 1,plotstat); 
check = plotstatvec <= cl; 
if  check = above then signal = 1; 
else  if check = below then signal = 1;  
else  count = count + 1; 
count1 = count; 
rlvec[k,shift] = count1;  
end ; 
end ; 
end ; 
create  RL1of1_Precedence_normal from rlvec[colname={delta 000 delta025 delta050 
delta075 delta100 delta125 delta150 delta175 delta2 00 delta225 delta250 delta275 
delta300}]; 
append  from rlvec; 
quit; 
proc univariate data =RL1of1_Precedence_normal; 
var  delta000 delta025 delta050 delta075 delta100 delta 125 delta150 delta175 
    delta200 delta225 delta250 delta275 delta300; 
run; 



 382 

4.5.2.2  The 2-of-2 DR and  the 2-of-2 KL precedence charts 
 
 
proc iml; 
m = 500; n = 5; j = (n+ 1)/ 2; 
sim = 100000; 
a = 81; b = 420; 
rlvec = j(sim, 13, .); 
do delta = 1 to 3 by 0.25; 
shift = 4*delta- 3; 
do k = 1 to sim;  
xref = j(m, 1, 0); 
call  randgen(xref, 'NORMAL' ); yref = xref; 
call  sort(yref, { 1}); 
lcl = yref[a, 1]; 
ucl = yref[b, 1]; 
count = 1; 
signal = 0; 
dummy = j( 2, 1, 0); 
check = { 1, 0}; 
above = j( 2, 2, 0); 
below = j( 2, 2, 1); 
abovebelow = { 0 1 , 0 1}; 
belowabove = { 1 0 , 1 0}; 
matrix = j( 2, 2, 0); 
do while (signal = 0); 
dummy = check; 
xfut = j(n, 1, 0); 
call  randgen(xfut, 'NORMAL' ,delta- 1, 1); yfut = xfut; 
call  sort(yfut, { 1}); 
plotstat = yfut[j, 1]; 
cl=j( 2, 1, 0); 
cl[ 1, 1]=ucl; 
cl[ 2, 1]=lcl; 
plotstatvec=j( 2, 1,plotstat); 
check = plotstatvec <= cl; 
matrix = dummy||check; 
if  matrix = above then signal = 1; * DR and KL;  
else  if matrix = below then signal = 1; * DR and KL;  
else  if matrix = abovebelow then signal = 1; * DR only;  
else  if matrix = belowabove then signal = 1; * DR only;  
else  count = count + 1;     
count1 = count; 
rlvec[k,shift] = count1;  
end ; 
end ; 
end ; 
create  RL2of2_Precedence_normal from rlvec[colname={delta 000 delta025 delta050 
delta075 delta100 delta125 delta150 delta175 delta2 00 delta225 delta250 delta275 
delta300}]; 
append  from rlvec; 
quit; 
proc univariate data = RL2of2_Precedence_normal; 
var  delta000 delta025 delta050 delta075 delta100 delta 125 delta150 delta175 
    delta200 delta225 delta250 delta275 delta300; 
run; 
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4.5.2.3  The 2-of-3 precedence chart 
 

 

proc iml; 
m = 500; n = 5; j = (n+ 1)/ 2; 
sim = 100000; 
a = 72; b = 429; 
rlvec = j(sim, 13, .); 
do delta = 1 to 3 by 0.25; 
shift = 4*delta- 3; 
do k = 1 to sim;  
xref = j(m, 1, 0); 
call  randgen(xref, 'NORMAL' ); yref = xref; 
call  sort(yref, { 1}); 
lcl = yref[a, 1]; 
ucl = yref[b, 1]; 
count = 2; 
signal = 0; 
dummy1 = { 1, 0}; dummy2 = j( 2, 1, .); check = { 1, 0}; 
between_above_above = { 1 0 0, 
                       0 0 0}; 
between_below_below = { 1 1 1, 
               0 1 1}; 
below_between_below = { 1 1 1, 
              1 0 1}; 
above_between_above = { 0 1 0, 
              0 0 0}; 
matrix = j( 2, 3, .); 
do while (signal = 0); 
dummy2 = dummy1; 
dummy1 = check; 
xfut = j(n, 1, 0); 
call  randgen(xfut, 'NORMAL' ,delta- 1, 1); yfut = xfut; 
call  sort(yfut, { 1}); 
plotstat = yfut[j, 1]; 
cl=j( 2, 1, 0); 
cl[ 1, 1]=ucl; 
cl[ 2, 1]=lcl; 
plotstatvec=j( 2, 1,plotstat); 
check = plotstatvec <= cl; 
matrix = dummy2||dummy1||check; 
if  matrix = between_above_above then signal = 1; 
else  if matrix = between_below_below then signal = 1; 
else  if matrix = below_between_below then signal = 1; 
else  if matrix = above_between_above then signal = 1; 
else  count = count + 1;     
count1 = count; 
rlvec[k,shift] = count1;  
end ; 
end ; 
end ; 
create  RL2of3_Precedence_normal from rlvec[colname={delta 000 delta025 delta050 
delta075 delta100 delta125 delta150 delta175 delta2 00 delta225 delta250 delta275 
delta300}]; 
append  from rlvec; 
quit; 
proc univariate data = RL2of3_Precedence_normal; 
var  delta000 delta025 delta050 delta075 delta100 delta 125 delta150 delta175 
    delta200 delta225 delta250 delta275 delta300; 
run;  
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Chapter 5 
 

Concluding remarks: Summary and 

recommendations for future research 
 

 

To finish-off this thesis, we give here a brief summary of the research conducted in the thesis and 

offer concluding remarks concerning unanswered questions and/or future research opportunities. 

 

In this thesis, in general, we focused on a variety of aspects related to the basic (yet powerful) 

statistical tool often used in quality improvement efforts within the realm of statistical quality control, 

that is, the Shewhart-type of control chart. First, we looked at Shewhart-type Phase I variables charts 

for the variance, the standard deviation and the range; this was followed by an overview of the 

literature on Shewhart-type Phase I variables charts for the location and the spread of a process. 

Second, we studied the Shewhart-type Phase II p-chart and the Shewhart-type Phase II c-chart in Case 

U (when the parameters are unknown) and assessed the influence when the parameters are estimated 

from a Phase I sample on the performance of these charts; both these charts are attributes charts and 

are widely used in practice. Lastly, we developed a new class of  nonparametric Shewhart-type Phase I 

and Phase II control charts, for monitoring or controlling a certain quantile of the underlying 

probability distribution of a process, based on runs-type signaling rules using the well-known sign test 

and the two-sample median test statistic as plotting statistics. In the next few paragraphs we point out 

the highlights of the research carried out in this thesis and state some research ideas to be pursued in 

the near future. We also list the research outputs related to this thesis; this includes a list of technical 

reports and peer-reviewed articles that were published in international journals, contributions to local 

and international conferences where the author of this thesis presented papers and some draft articles 

that were submitted and are currently under review.  

 

 

Variables control charts 
 

Assuming that the underlying process distribution follows a normal distribution with an unknown 

mean and an unknown variance, in Chapter 2 we studied the design of the well-known Shewhart-type 
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2S , S  and R  charts for Phase I applications based on the availability of m  independent rational 

subgroups each of size 1>n . We showed that, because multiple plotting statistics are simultaneously 

compared to the same set of estimated control limits, the signaling events (i.e. the event when a 

plotting statistic plots outside the control limits) are mutually dependent. We further argued (with 

reference to the article of Champ and Jones, (2004)) that the correct design criterion of Shewhart-type 

Phase I charts is the false alarm probability (FAP), which is the probability of at least one false alarm, 

and not the false alarm rate (FAR), which deals with only one plotting statistic at a time and is defined 

as the probability of a signal at any particular sampling stage.  Accordingly, we found the appropriate 

charting constants for a variety of ),( nm -combinations for each of the three charts (using intensive 

computer simulation experiments) so that theFAP of each chart does not exceed 0.01, 0.05 and 0.10, 

respectively. 

 

The literature overview, in Chapter 2, regarding univariate parametric Phase I Shewhart-type charts 

for the location and the spread of a process not only presented the current state of the art of 

constructing these charts, but also brought several important points under our attention: 

 

(i) There is a lack of proper guidance to the practitioner on the correct statistical design 

and implementation of Phase I charts. In a search of the standard statistical process 

control textbooks on the market, none to very little material was found, including the 

standard book of Montgomery (2005), who discusses the topic without the necessary 

statistical theory. 

 

(ii)  Some of the authors that studied the Phase I problem (especially when the process 

parameters are estimated) ignore the dependency between the Phase I plotting statistics 

and incorrectly used the FAR (which only deals with a single plotting statistic at a 

time) to design the charts as apposed to the FAP (which takes into account that 

multiple charting statistics are simultaneously compared to the estimated control limits). 

This would certainly deteriorate the performance of these charts. Our methodology 

provides the correct control limits for the applications studied. 

 

(iii)  There seems to be no consensus on exactly how one should compare the performance of 

competing Phase I charts.  This boils down to the question of how to formulate and 

define an out-of-control situation in Phase I.  One current proposal is to adopt the 

scenario that one of the Phase I samples is out-of-control and that the remaining 1−m  

samples are in-control and then (via computer simulation) compare the empirical 
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probability that at least one point plots outside the estimated control limits. The chart 

with the highest empirical probability of detecting the out-of-control sample is then 

declared the winner; this can be investigated further. 

 

(iv) There is a genuine need to develop a Phase I control chart for the case when 1=n , that 

is, for individuals data. Admittedly there are some articles available in the literature that 

address the problem (see e.g. Nelson (1982), Roes, Does and Schurink (1993), Rigdon, 

Cruthis and Champ (1994) and Bryce, Gaudard and Joiner (1997)) but the problem has 

not yet been solved satisfactorily. The main stumbling block appears to be finding a 

suitable point estimator for the variance or the standard deviation and deriving the exact 

joint distribution of the standardized plotting statistics. Since individuals data is so 

common nowadays in many industries, this problem is important and will be studied 

using methods similar to the ones in this thesis.   

 

(v) The design of Phase I control charts for correlated data needs to be looked at. A good 

starting point is the articles by Boyles (2000) and Maragah and Woodall (1992). 

 

(vi) Except for the study by Borror and Champ (2001), there is apparently no other 

published work regarding the design of Phase I Shewhart-type attributes charts. This is 

an important aspect because the study of the Phase II p-chart and the Phase II c-chart is 

based on the availability of an in-control reference sample, which is usually obtained at 

the end of a successful Phase I study. 

 

(vii)  It would definitely be helpful and beneficial to the quality practitioner if a unified 

approach to the design and implementation of Phase I variables and attributes charts is 

available; this is a topic currently under investigation by the author of this thesis and his 

supervisors. 

 

 

Attributes control charts 
 

The Phase II Shewhart-type p-chart and c-chart were studied in detail in Chapter 3. The aim was to 

determine the effect of estimating the unknown process parameters from a Phase I reference sample on 

the performance of the charts in their Phase II application. The methodology that we used was based 

on the two-step procedure which was introduced in the statistical process control arena by Chakraborti 

(2000). The procedure entails that we first condition on a particular observed value of the point 
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estimator from Phase I (in order to obtain the conditional Phase II run-length distribution and the 

associated characteristics of the conditional run-length distribution) and then calculate the 

unconditional Phase II run-length distribution and the associated properties of the unconditional run-

length distribution by averaging over all the values of the point estimator. We numerically investigated 

the various properties of the conditional and the unconditional run-length distributions, for the in-

control and the out-of-control scenarios, and compared the results to the benchmark values of Case K 

(i.e. when the parameters are known). It was found that the widely-followed guidelines regarding the 

number of Phase I rational subgroups, m , and the sample size, n , is not adequate to control the 

average run-length and/or the false alarm rate at acceptable levels. The cause of the discrepancy 

between the attained ARL and the attainedFAR  values and the industry standards of 370 and 0.0027 

(respectively) is twofold. The discrepancy is partly due to the fact that the underlying process 

distributions are discrete and to some extent it is caused by the fact that the standard formula, i.e. mean 

±  3 ×  standard deviation, for calculating the control limits, is not 100% correct; this is so because the 

normal approximation to the binomial and the Poisson distributions is not very good for all values of 

the parameters p  and c  (especially p  close to 0 or 1 and c  close to 0). 

 

The question of how we can correctly design the Phase II Shewhart-type p-chart and c-chart 

remains, in some way, unanswered. As pointed out in an earlier section, the formulae for the 

characteristics of the unconditional run-length distribution can be helpful in this regard and there are 

two possible routes to follow: 

 

(i) The usual approach is to specify a certain attribute of the unconditional Phase II run-

length distribution (such as the unconditional average run-length, which is common in 

routine applications (see e.g. Chakraborti, (2006))) and then solve for the charting 

constant(s). 

 

Even though this approach is viable, it would only be successful insofar it is possible to 

accurately specify the unknown parameters p  and c . The reason for this drawback is 

the fact that the unconditional properties of the charts are unconditional only with 

respect to the point estimators and not with respect to the unknown parameters.  

 

(ii)  A second approach one can pursue is to also uncondition on the properties of the charts 

with respect to the parameters p  and c . This approach, which is closely linked to a 
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Bayes approach, entails that we treat p  and c  as random variables and that we choose 

appropriate (prior) distributions to model the uncertainty in the parameters. 

 

As suggested earlier, the standard beta distribution (with support on the interval (0,1)) 

and the gamma distribution (with the positive real numbers as support) would work. 

However, the dilemma in this approach is that we still require expert knowledge and 

guidance when choosing the parameters of the beta and the gamma distributions.  

 

Currently, the topic of finding and comparing suitable charting constants for the application of the 

Shewhart-type Phase II p-chart and c-chart is underway by the author of this thesis and co-workers. 

 

 

Nonparametric Shewhart-type control charts with runs-type signaling rules 
 

Lastly, in Chapter 4 we designed new nonparametric control charts based on runs-type signaling 

rules using the well-known sign test statistic and the two-sample median test statistic as plotting 

statistics. The sign test was used in the design of the charts when the percentile under investigation of 

the underlying process distribution was known (or specified) whereas the two-sample median test was 

used to construct the charts when the percentile was unknown. The main advantages of the 

nonparametric charts are: 

 

(i) The fact that the underlying distribution needs not be specified (as we only require 

continuity of the distribution); 

 

(ii)  The precise numerical measurements need not be available (because we only count the 

number of observations greater or smaller than a specified value or simply rank the 

observations within each sample).  Neither the counting nor the ranking procedure requires 

exact measurements; 

 

(iii)  The sign charts have the added advantage that they can be applied in scenarios where the 

data are just dichotomous (e.g. yes/no); and 

 

(iv) The precedence charts give us the flexibility to apply the chart in situations where the data 

is naturally collected in an ordered fashion (e.g. time to failure). 

 

We derived the run-length distributions of this new class of distribution-free control charts using a 

Markov chain approach and, where possible, we also used the results related to the geometric 
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distribution of order k . Where necessary we again used the two-step conditioning and unconditioning 

idea by Chakraborti (2000) to obtain the Phase II run-length distributions. 

 

Having derived the run-length distributions and the associated characteristics of the new charts, 

extensive tables were provided with the suitable charting constants for each chart which should help 

the practitioner in the setting up of the charts. A numerical example was also given to illustrate the 

implementation and operation of the charts. However, having pointed out the benefits of the new runs 

rules enhanced charts, there are two important aspects concerning nonparametric control charts (in 

general) that are worth mentioning: 

 

(i) There is a major shortcoming regarding the application of the nonparametric charts in 

industry because there is a lack of a proper understanding (and perhaps an appreciation) of 

the topic nonparametrics and consequently the important role these charts can play in 

practice. 

 

The main reason for this limitation seems to be that distribution-free (nonparametric) 

methods are typically only touched on in undergraduate statistics courses in most programs 

and are not necessarily taught at a post-graduate level and, in most cases, not even taught to 

the engineers and/or the operator personnel who have to deal with the monitoring of the 

processes. What is more, is the fact that none of the available (standard) textbooks on 

statistical process control covers the topic of nonparametric control charting procedures in 

any detail. 

 

(ii)  It would be a great improvement and definitely to the advantage of the quality practitioner 

if software developers were to include the nonparametric control charts that are already 

available, as standard options or procedures in their statistical computer packages. 

Currently, these nonparametric control chart procedures are not available for practitioners 

and they simply resort to the standard parametric control chart methodologies. 

 

 

Research outputs 
 

A number of research outputs related to and based on this thesis have seen the light. Below we 

provide a list with the details of the technical reports and the peer-reviewed articles that were 

published, the articles that were accepted for publication, the local and the international conferences 

where papers were presented and the draft articles that were submitted and currently under review.  
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Published articles 
 

(i) Chakraborti, S., Human, S. W. (2006). “Parameter estimation and performance of 

the p-chart for attributes data”. IEEE Transactions on Reliability, 55(3):559-566; 

 

(ii)  Chakraborti, S., Human, S. W. (2008). “Properties and performance of the c-chart 

for attributes data”. Journal of Applied Statistics, 35(1):89-100; 

 

(iii)  Chakraborti, S., Human, S.W., Graham, M.A. (2008). “Phase I statistical process 

control charts: An overview and some results”. Quality Engineering, 21(1):52-62; 

and 

 

(iv) Chakraborti, S., Eryilmaz, S., Human, S. W. (2009). “A Phase II nonparametric 

control chart based on precedence statistics with runs-type signaling rules”. 

Computational Statistics and Data Analysis, 53(1):1054-1065. 

 

 

Articles accepted for publication 
 

(i) Human, S. W., Chakraborti, S., Smit, C. F. “Nonparametric Shewhart-type sign 

control charts based on runs”. Communications in Statistics – Theory and Methods. 

 

 

Articles under review 
 

(ii)  Human, S. W., Chakraborti, S., Smit, C. F. “Control charts for variation in Phase I 

applications”, Submitted to Computational Statistics and Data Analysis.  

 

 

Technical reports 
 

(i) Human, S. W., Chakraborti, S., Smit, C. F. (2009). “Shewhart-type 2S , S  and R  

control charts for Phase I applications”. Technical Report 09/01, Department of 

Statistics, University of Pretoria, ISBN: 978-1-86854-735-7. 
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(ii)  Human, S. W., Chakraborti, S., Smit, C. F. (2009). “Nonparametric Shewhart-type 

control charts with runs-type signaling rules”. Technical Report 09/02, Department 

of Statistics, University of Pretoria, ISBN: 978-1-86854-738-8. 

 

 

International conference 

 

(i) The 7th World Congress in Probability and Statistics in Singapore jointly sponsored 

by the Bernoulli Society and the Institute of Mathematical Statistics (2008) where 

the results related to the nonparametric control charts of Chapter 4 was presented. 

 

 

Local conferences  
 

(i) The annual conference of the South African Statistical Association (SASA) hosted 

by the Department of Statistics of the Rhodes University in Grahamstown (2005) 

where the results related to the Phase II p-chart of Chapter 3 was presented; 

 

(ii)  The annual conference of the South African Statistical Association (SASA) hosted 

by the Department Statistics and Actuarial Science of the University of Stellenbosch 

(2006) where the results related to the Phase II c-chart of Chapter 3 was presented; 

 

(iii)  The annual conference of the South African Statistical Association (SASA) hosted 

by the Department of Statistics and Actuarial Science of the University of 

Witwatersrand (2007) where the results related to the Phase I 2S , S  and R  control 

charts of Chapter 2 was presented; and 

 

(iv) The annual conference of the South African Statistical Association (SASA) hosted 

by the Department of Statistics of the University of Pretoria (2008) where the 

results related to the nonparametric control charts of Chapter 4 was presented. 

 

 

 

The end. 
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