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Chapter 4 

 

Nonparametric Shewhart-type control charts 

with runs-type signaling rules: Case K and Case 

U 
 

 

4.0    Chapter overview 
 

 

Introduction 
 

The commonly used control charts in the statistical process control (SPC) environment with data 

that can be measured on a continuous numerical scale are generally designed and used with a specific 

parametric distribution, such as the normal distribution, in mind. It is well-known that if the underlying 

process is not as assumed, the performance of the parametric charts can be significantly degraded. In 

this context, one key problem is the lack of in-control robustness of some of the well-known 

parametric charts; this, for example, implies that there can be too many false alarms than what is 

typically expected and obviously this could mean considerable loss of time and resources (see e.g. 

Chakraborti et al., (2004)). Thus it is desirable, from a practical point of view, to develop and apply a 

set of control charts that are not designed under the assumption of normality (or any other parametric 

distribution). Such charts can expected to be more flexible in that they require no or little assumption 

regarding the underlying process distribution and would be useful in some applications. 

 

To this end, nonparametric control charts are helpful. Nonparametric control charts have received 

considerable attention over the last few years. See, for example, Bakir (2004), Albers and Kallenberg 

(2004), Chakraborti et al. (2004) and Albers et al. (2006), where various nonparametric alternatives to 

the classical Shewhart-type charts are proposed, by adapting (for example) the corresponding 

nonparametric test for the process parameter, and have been shown to outperform the Shewhart X  

chart (and some other well-known charts) in terms of in-control robustness and efficiency, particularly 
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for heavy-tailed distributions.  A thorough review of the literature on nonparametric charts can be 

found in Chakraborti et al. (2001, 2007). 

 

The main advantage of the nonparametric charts is that they have known in-control properties that 

remain unchanged for all continuous distributions.  Thus, for example, while the false alarm rate 

( FAR ) of a Shewhart or Cumulative Sum (CUSUM) or Exponentially Weighted Moving Average 

(EWMA) chart for the mean will fluctuate depending on the underlying distribution, the FAR  of a 

nonparametric chart can be calculated exactly and will remain the same (for in-control conditions) no 

matter what the distribution; this is a very useful feature for the practitioner. 

 

A formal definition of a nonparametric or distribution-free control chart is given in terms of its run-

length distribution.  The number of samples that needs to be collected before the first out-of-control 

signal is given by a chart is a random variable called the run-length; the probability distribution of the 

run-length is referred to as the run-length distribution.  If the in-control run-length distribution is the 

same for every continuous probability distribution the chart is called distribution-free or nonparametric 

(see e.g. Chakraborti et al., (2004)). 

 

Note that, the term nonparametric is not intended to imply that there are no parameters involved, 

quite to the contrary.  While the term distribution-free seems to be a better description of what one 

expects these charts to accomplish, nonparametric is perhaps the term more often used.  In this chapter, 

both terms (distribution-free and nonparametric) are used to emphasize the fact that they mean the 

same. 

 

 

Motivation 
 

To construct a nonparametric control chart for the specified (or known or target) median of a 

distribution that is continuous and symmetric Bakir (2004) considered a Shewhart-type chart based on 

the Wilcoxon signed-rank (SR) test statistic.  This chart, referred to as the 1-of-1 SR chart, signals 

when a single charting statistic falls outside the control limits, was shown to compete well with the 

Shewhart X  chart in the case of the normal distribution and it performed better in the case of a 

heavier-tailed (than the normal) distribution such as the double exponential and the Cauchy.  However, 

the false alarm rates for the 1-of-1 SR chart were just too high (i.e. the in-control average run-lengths 

were too short) for an application in practice, unless the subgroup size n  was in the neighborhood of 

20, which is not typical in SPC.  
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Having realized the potential and yet the practical shortcoming of the 1-of-1 SR chart, Chakraborti 

and Eryilmaz (2007) extended the idea of Bakir (2004) and considered an alternative class of 

nonparametric charts using the same SR statistic as charting statistic but incorporating some signaling 

rules based on runs; these charts are called runs-rule enhanced signed-rank charts. The new SR charts 

were shown to be more appealing from a practitioner’s point of view in that they have much larger 

attainable in-control average run-lengths ( 0ARL ’s), much smaller attainable FAR ’s and have better 

out-of-control (OOC) performance than the 1-of-1 SR chart. 

 

Although the SR charts are useful, the requirement that the underlying distribution be symmetric is 

an additional assumption to be verified and may in fact not be satisfied in some situations in practice.  

If not much knowledge is available about the shape of the distribution, an alternative nonparametric 

test called the sign test can be used to make inference about any percentile including the median, 

whereas the SR test applies only to the median.  The sign test does not require the assumption of 

symmetry of the underlying continuous population distribution (see e.g. Gibbons and Chakraborti, 

(2003)) and is easy to apply.  Another advantage is that one does not require the actual measurements 

to be available to apply the sign test; all one needs to know is how many of the observations within 

each sample are larger (or smaller) than the specified value of the parameter (percentile) of interest.  

Thus the sign test can be applied with binary data, when the only information available, for each unit 

tested, is whether or not the measurement was higher (or lower) than the target value of the percentile 

of interest.  Neither the normal theory chart nor the SR charts can be applied with just the 

dichotomized data. 

 

A further requirement for applying the SR charts (and charts based on the sign test) is that the in-

control process median (or percentile) must be specified; a situation commonly referred to as Case K. 

This may not be the case in some applications and could limit the application of the charts, with or 

without signaling rules.  For example, when a new product is being developed not much information or 

expert knowledge may be initially available to specify the distribution and/or the in-control value of 

the percentile of interest.  Hence there is a need to also develop control charts when the in-control 

process percentile of interest (or, in general, the location) is unknown. This is the scenario where the 

process distribution is continuous and unknown (no symmetry necessary) and the in-control percentile 

(or the location parameter) is unknown or unspecified (unlike in Case K); this situation is referred to as 

Case U. 

 

Our objective is to overcome the drawbacks of the SR charts by studying and developing a new 

class of nonparametric control charts with runs-type signaling rules for the scenario where the 

 
 
 



 257 

percentile (or location parameter) of interest of the process distribution is known and then, second, 

when it is unknown, without having to assume symmetry of the underlying process distribution. In the 

former situation (or Case K) the control charts are based on the well-known sign test statistic while in 

the latter scenario (or Case U) the charts are based on the two-sample median test statistic.  

It will be seen that the charts we consider provide a new class of flexible, yet powerful, 

nonparametric charts to be used in practice. 

 

Although one can consider other types of nonparametric charts such as the CUSUM and the 

EWMA (see e.g. the reviews by Chakraborti et al. (2001, 2007)), in this chapter, we keep the 

discussion focused on the Shewhart-type charts because of their inherent practical appeal and global 

effectiveness (see e.g. Montgomery, (2005) p. 385). The development of nonparametric CUSUM and 

EWMA charts will be a topic for future research. 

 

 

Methodology 
 

We use a Markov chain approach (see e.g. Fu and Lou, (2003)) to derive the necessary results 

(such as the run-length distributions, average run-lengths etc.) for our runs-rule enhanced charts 

because this approach provides a more compact and unified view of the derivations, and as stated by 

Balakrishnan and Koutras (2002), p.14, “The Markov techniques possess a great advantage (over the 

classical combinatory methods) as they are easily adjustable to many run-related problems; they often 

simplify the solutions to specific problems they are applied on and remain valid even for cases 

involving non-identical or dependent trials”. In some cases, however, we draw on the results of the 

geometric distribution of order k  (see e.g. Balakrishnan and Koutras, (2002), Chapter 2) to obtain 

closed form and explicit expressions for the run-length distributions and/or their associated 

performance characteristics. 

 

In Case U, like in Chapter 3, we use a two-step approach to derive the run-length distributions 

which involve the method of conditioning (see e.g. Chakraborti, (2000)). First we derive the 

conditional run-length distributions i.e. conditioned on two order statistics (control limits), which lets 

one focus on specific values of the control limits. Second we derive the unconditional (or marginal) 

run-length distributions by averaging over the joint distribution of the two order statistics. The 

unconditional run-length distributions reflect the bigger picture and reveal the overall performance of 

the charts taking into account that the control limits are estimated.  
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Layout of Chapter 4 
 

In Section 4.1 we define and describe in detail (using graphs) the runs-type signaling rules for the 

one-sided and two-sided charts. In Section 4.2 we derive the run-length distributions of our new 

nonparametric control charts with signaling rules for Case K and then, in Section 4.3, we derive the 

run-length distributions of the charts for Case U. Section 4.4 gives a summary and some concluding 

remarks.
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4.1    Runs-type signaling rules 
 

 

Introduction 
 

We consider a class of nonparametric Shewhart-type control charts for monitoring the percentile 

(or location parameter) of a process of which the distribution is assumed to be continuous but not 

necessarily symmetric. First we study the scenario where the π th percentile of the process distribution 

is known and then, second, when it is unknown. In the former situation (or Case K), studied in Section 

4.2, the control charts are based on the well-known sign test statistic while in the latter scenario (or 

Case U), which is looked at in Section 4.3, the charts are based on the two-sample median test statistic. 

 

 

Signaling rules 
 

 The new control charts are “runs-rule enhanced” charts in which a process is declared out-of-

control (OOC) when either 

(i)   A single charting statistic plots outside the control limits (1-of-1 chart), or 

(ii)  k  consecutive charting statistics all plot outside the control limits (k-of-k chart), or 

(iii) exactly k  of the last w  charting statistics plot outside the control limits (k-of-w chart). 

 

It is clear that rules (i) and (ii) are special cases of rule (iii). Rule (i) is the simplest and most 

frequently used whilst rules (ii) and (iii) have been used in the context of the parametric Shewhart-type 

charts such as the well-known X  chart (see e.g. Derman and Ross, (1997) and Klein, (2000)).  

 

 

One-sided and two-sided charts 
 

We consider one-sided and two-sided control charts. Amongst the one-sided charts two situations 

can arise: (i) when just upward shifts are of interest so that an upper control limit is adequate, and (ii) 

when only detecting downward shifts are of interest so that a lower control limit is sufficient. The 

former is called the positive-sided (or upper one-sided) chart whereas the latter is labeled the negative-

sided (or lower one-sided) chart. We study both the upper and the lower one-sided charts. 

 

When a shift in any direction (up or down) is of concern a two-sided chart is used which has an 

upper and a lower control limit. 
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Charting statistic and control limits 
 

We denote the charting statistic for the ith subgroup, in general, by iQ  for ,...3,2,1=i  and the upper 

and the lower control limits by UCL  and LCL , respectively; this allows us to simultaneously deal 

with Case K and Case U when we define and describe the runs-type signaling rules. Later, when we 

individually discuss the control charts of Case K and Case U we define and replace iQ , UCL  and 

LCL  by their appropriate and representative counterparts. 

 

 

Signaling indicators 
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for ,...3,2,1=i  denote the indicator functions for the one-sided charts corresponding to the events 

}{ UCLQi ≥  and }{ LCLQi ≤ , respectively. In other words, +iξ  ( −
iξ ) denotes the signaling indicator 

for the event when iQ  plots on or above (below) the upper (lower) control limit of the positive-sided 

(negative-sided) chart. Likewise, we let 
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denote the signaling indicator for the two-sided chart so that iξ  indicates whether iQ  plots on or 

above the UCL  (in which case 1=iξ ),  between the LCL  and the UCL  (so that 0=iξ ), or on or 

below the LCL  ( 2=iξ ). 
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Remark 1 

 

Not only do the signaling indicators in (4-1), (4-2) and (4-3) allow us to clearly define and 

describe signaling rules (i), (ii) and (iii), but their statistical properties (e.g. whether they 

are independent, their “success” probabilities such as )1Pr(=+
iξ , )1Pr( =−

iξ  and 

)1Pr( =±
iξ  etc.) are also important since they play a key role in deriving the run-length 

distributions of the new class of proposed runs-rule enhanced charts. 
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4.1.1   The 1-of-1 charts 
 

The 1-of-1 charts are the least complicated and most frequently used charts. The signaling rules for 

the 1-of-1 charts, as defined by the signaling indicators in (4-1), (4-2) and (4-3), are given by: 

 

The 1-of-1 upper one-sided chart signals when event 1A  occurs where: 

}1{}{:1 =⇔≥ +
ii UCLQA ξ *, 

The 1-of-1 lower one-sided chart signals when event 2A  occurs where: 

}1{}{:2 =⇔≤ −
ii LCLQA ξ , and 

The 1-of-1 two-sided chart signals when event A  occurs where: 

}2or    1{}1or    1{}or  {}or    {: 21 ==⇔==⇔⇔≤≥ −+
iiiiii AALCLQUCLQA ξξξξ . 

           * The symbol “⇔ ” in an expression such as QP ⇔  is read as ‘P  is true if and only if Q  is true’. 

 

 For illustration, panels (a) and (b) of Figure 4.1 show examples of the 1-of-1 upper and lower one-

sided charts whilst Figure 4.2 displays examples of the 1-of-1 two-sided chart. 

 

The 1-of-1 upper (lower) one-sided charts signals, for illustration only, at time 7=i  when 7Q  

plots above (below) the UCL  ( LCL ). The process is therefore declared OOC with the conclusion of 

an upward (downward) shift in the process location.  Similarly, both of the 1-of-1 two-sided charts 

signal at time 7=i ; the first chart signals when 7Q  plots above the upper control limit (indicative of 

an upward shift) whereas the second chart signals when 7Q  plots below theLCL (indicative of a 

downward shift). 
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(a)   The 1-of-1 rule for the upper one-sided chart 

(upward shift detected) 
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(b)   The 1-of-1 rule for the lower one-sided chart 

(downward shift detected) 

Figure 4.1: The 1-of-1 rule for the upper and the lower one-sided charts 

 UCL   LCL 

 
 
 



 263 

0

1

2

3

1 2 3 4 5 6 7

Sample number / Time (i )

P
lo

tti
n

g 
S

ta
tis

tic

 
(upward shift detected) 

0

1

2

3

1 2 3 4 5 6 7

Sample number / Time (i )

P
lo

tti
ng

 S
ta

tis
tic

 
(downward shift detected)  

}2or    1{}1or    1{}or  {: 21 ==⇔==⇔ −+
iiiiAAA ξξξξ  

Figure 4.2: The 1-of-1 rule for the two-sided chart 
 

 

Because the 1-of-1 charts are based on signaling rule (i) which uses only the information from the 

most recent (last) sample to make a decision whether or not the process is in-control (IC), one feels 

these charts can be improved upon by using rules (ii) and (iii); this idea is discussed in the next section. 
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4.1.2  The k-of-k and k-of-w charts 
 

 

The runs-rule Shewhart-type charts we consider adopt a sequential approach and use the 

information from multiple samples including the most recent one to signal. Unlike the CUSUM and 

EWMA charts, the sequential approach we study is carried out by considering runs of the charting 

statistic outside the control limit(s) which includes the charting statistic from the current sample and 

one or more charting statistics from past samples. The resulting charts are easy to use and it will be 

seen that they offer the user greater practical flexibility in designing a chart so that more (practically) 

attractive, attainable, false alarm rates are available.  Moreover, it will be shown that the new charts 

have higher efficiency (i.e. smaller OOC ARL ’s) compared to the 1-of-1 charts. 

 

According to the k-of-k )2( ≥k  chart the control chart signals at any point in time when k  

consecutive charting statistics (from k  consecutive samples), of which the last one is the most recent 

one, all plot outside the control limit(s).  A generalization of the k-of-k chart is the k-of-w chart which 

signals when exactly k  of the last w  charting statistics all plot outside the limit(s), of which the last 

one plots outside the control limits. 

 

It is clear that we can consider charts for any pair of positive integers k  and w  where  wk ≤≤1  

and 2≥w . Although various values of k  and w  can be considered in theory, from a practical point of 

view, it is important that the resulting charts are easy to apply; so we focus on the 2-of-2 ( 2== wk ) 

and the 2-of-3 )3,2( == wk  charts. A user is therefore required to keep track of only the last two or 

three of the most recent charting statistics. 
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4.1.2.1 One-sided k-of-k and k-of-w charts 
 

 

As noted earlier, the upper (lower) one-sided chart has only an upper (lower) control limit and is 

typically used when only an upward (downward) shift is of concern. We first describe the 2-of-2 upper 

(lower) one-sided chart and then the 2-of-3 upper (lower) one-sided chart. 

 

 

One-sided 2-of-2 charts 
 

The 2-of-2 chart requires the user to keep track of only the last two charting statistics 1−iQ  and iQ  

at any given point in time, .2≥i  The upper one-sided 2-of-2 chart signals (declares the process OOC) 

if both 1−iQ  and iQ  plot on or outside the upper control limit; otherwise no signal is given and we 

declare the process IC. Likewise, the lower one-sided 2-of-2 chart signals if both 1−iQ  and iQ  plot on 

or outside the lower control limit.  Thus the 2-of-2 one-sided charts are: 

 

 

The 2-of-2 upper one-sided chart signals when the event 1B  occurs 

where }1 {: 11 == ++
− iiB ξξ , and  

The 2-of-2 lower one-sided chart signals when the event 2B  occurs 

where }1 {: 12 == −−
− iiB ξξ . 

 

 

For illustration, panels (a) and (b) of Figure 4.3 show examples of the 2-of-2 upper and the 2-of-2 

lower one-sided charts.  Both of the charts signal, again for illustration only, at time 7=i  i.e. on the 

first occurrence of a run of length two of the charting statistic above (below) the UCL  ( )LCL  at time 

or sample number 7.  Hence, the process is declared OOC with the conclusion of an upward 

(downward) shift in the process location. 
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(a)   The 2-of-2 rule for the upper one-sided chart 
(upward shift detected) 
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(b)   The 2-of-2 rule for the lower one-sided chart 
(downward shift detected) 

Figure 4.3: The 2-of-2 rule for the upper and the lower one-sided charts 
 

 

 

Remark 2 
 

The 2-of-2 one-sided charts can be alternatively defined in terms of the minimum and/or 

the maximum of the statistics 1−iQ  and iQ .  For example, the 2-of-2 upper one-sided chart 

signals if ),min( 1 ii QQ −  plots on or above the UCL .  Similarly the 2-of-2 lower one-sided 

chart signals if ),max( 1 ii QQ −   plots on or below the LCL .  We next consider a 

generalization of the 2-of-2 chart. 

 

 

One-sided 2-of-3 charts 
 

The 2-of-2 charts utilize moving (over time) blocks of only two charting statistics.   It is therefore 

natural to investigate if there can be any sizeable gain in efficiency when moving blocks of three 

charting statistics are utilized.  Thus we consider 2-of-3 charts for which at any time point 3≥i  we 

need to keep track of 2−iQ , 1−iQ  and iQ ; the upper (lower) one-sided 2-of-3 chart signals if two of 

these three statistics plot on or above (below) the upper (lower) control limit. 

 

A similar chart was considered by Klein (2000) for the Shewhart X  chart.  However, note that 

although there are three ways for exactly two of the last three charting statistics to plot on or above 

(below) the upper (lower) control limit, we take only two of the three ways, namely where the last 

charting statistic plots on or above (below) the upper (lower) control limit to define a signal.   

 UCL   LCL 
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This is unlike the chart of Klein (2000) which can signal in any of the three ways; our charts 

eliminate the possibility that the process is declared OOC when both the first and the second charting 

statistics plot outside the control limits but the third (last) one plots between the control limits (see e.g. 

Figure 4.5), which we feel is somewhat undesirable in practice.   Thus our 2-of-3 one-sided charts are: 

 

 

The 2-of-3 upper one-sided chart signals when the event }or     {)( 21 CCC =+  occurs 

where }1,1,0{}  and    and  {: 12121 ===⇔≥≥< ++
−

+
−−− iiiiii UCLQUCLQUCLQC ξξξ  

           }1,0,1{}  and    and  {: 12122 ===⇔≥<≥ ++
−

+
−−− iiiiii UCLQUCLQUCLQC ξξξ . 

The 2-of-3 lower one-sided chart signals when the event }or    {)( 43  CCC =− occurs 

where }1,1,0{}  and    and  {: 12123 ===⇔≤≤> −−
−

−
−−− iiiiii LCLQLCLQLCLQC ξξξ  

           }1,0,1{}  and    and  {: 12124 ===⇔≤>≤ −−
−

−
−−− iiiiii LCLQLCLQLCLQC ξξξ . 

 

 

 

Panels (a) and (b) of Figure 4.4 show examples of what the signaling events 1C , 2C , 3C  and 4C  

might look like in case of the 2-of-3 upper and lower one-sided charts. For example, both of the 2-of-3 

upper one-sided charts, shown in panel (a), signal at time 7=i  and the signals are interpreted to be 

indicative of an upward shift since both the charting statistics fall above the upper control limit. 
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(a)   The 2-of-3 rule for the upper one-sided chart (upward shift detected) 
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(b)   The 2-of-3 rule for the lower one-sided chart (downward shift detected) 

Figure 4.4: The 2-of-3 rule for the upper and the lower one-sided charts 
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Figure 4.5: The 2-of-3 events excluded as signaling events for the upper and the lower one-sided 
charts 
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4.1.2.2 Two-sided k-of-k and k-of-w charts 
 

 

Two-sided charts are typically used to detect either an upward or a downward shift and thus have 

both an upper and a lower control limit. 

 

 

Two-sided 2-of-2 charts 
 

Like the 2-of-2 one-sided charts, we also need to keep track of both 1−iQ  and iQ  at any time point 

2≥i , but for the two-sided chart there are two control limits and so there are four ways for  1−iQ  and 

iQ  to plot outside the limits. Any one (or more) of the four scenarios may be used to define a signal. 

We consider two 2-of-2 two-sided charts; both capable of detecting an upward or a downward shift in 

the location parameter. 

 

The first 2-of-2 two-sided chart signals when any two successive charting statistics both plot on or 

outside the control limits. In other words, a signal is given when: 

 

(i) both charting statistics plot on or above the UCL , or 

(ii)  both charting statistics plot on or below the LCL , or 

(iii)  the first charting statistic plots on or above the UCL  and the second charting statistic plots 

on or below the LCL , or 

(iv) the first charting statistic plots on or below the LCL  and the second charting statistic plots 

on or above the UCL . 

 

This signaling rule was proposed by Derman and Ross (1997) in the context of the Shewhart X  

chart; we refer to this chart as the 2-of-2 DR two-sided chart. 

 

The second 2-of-2 two-sided chart signals when two successive charting statistics: 

 

(i) both plot on or above the UCL , or 

(ii)  both plot on or below the LCL . 

 

This signaling rule was considered by Klein (2000) in the context of the Shewhart X  chart; we 

refer to this chart as the 2-of-2 KL  two-sided chart. 
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More specifically, the 2-of-2 two-sided charts are: 

 

 

The 2-of-2 DR two-sided  chart signals when the event }or   or  or  {:)( 4321 DDDDDRD  

occurs, and 

The 2-of-2 KL two-sided chart signals when the event }or  {)( 21 DDKLD =  occurs 

where                        }1,1{}  and   {: 111 ==⇔≥≥ −− iiii UCLQUCLQD ξξ , 

                       }2,2{}  and  {: 112 ==⇔≤≤ −− iiii LCLQLCLQD ξξ , 

   }2,1{}  and   {: 113 ==⇔≤≥ −− iiii LCLQUCLQD ξξ , and 

                      }1,2{}  and  {: 114 ==⇔≥≤ −− iiii UCLQLCLQD ξξ . 

 

 

Figure 4.6 shows some examples of the events iD , 4,3,2,1=i .  It is clear that the 2-of-2 DR chart 

signals on the seventh sample in each of the four panels of Figure 4.6 whereas the 2-of-2 KL chart 

signals only in panels (a) and (b). Thus, whenever the 2-of-2 KL chart signals so does the 2-of-2 DR 

chart, but the converse may not always happen. Furthermore, it seems that the 2-of-2 DR and KL 

charts are both suitable for detecting an upward or a downward shift, but the 2-of-2 DR chart can also 

detect a possible swing; this is when an upward shift is immediately followed by a downward shift or 

vice versa (Chakraborti and Eryilmaz, (2007)). 
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(a)   (signal above / upward shift detected) 
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(b)   (signal below / downward shift detected) 
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(c)   (signal above followed by a signal below /  

possible swing detected) 
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(d)   (signal below followed by a signal above /  

possible swing detected) 

Figure 4.6: The 2-of-2 rule for the two-sided charts 
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Two-sided 2-of-3 chart 
 

Analogous to the 2-of-3 one-sided charts the 2-of-3 two-sided chart signals when:  

 

(i) exactly two of the last three charting statistics both plot on or above the UCL , or  

(ii)  exactly two of the last three charting statistics both plot on or below the LCL . 

 

Hence, the 2-of-3 two-sided chart defined in terms of the signaling indicator iξ  is given by:  

 

 

The 2-of-3 two-sided chart signals when event }or   or  or  { 4321 EEEEE =  occurs 

where 

}1,1,0{}  and    and  {: 12121 ===⇔≥≥<< −−−− iiiiii UCLQUCLQUCLQLCLE ξξξ , 

}1,0,1{}  and    and  {: 12122 ===⇔≥<<≥ −−−− iiiiii UCLQUCLQLCLUCLQE ξξξ , 

}2,2,0{}  and    and  {: 12123 ===⇔≤≤<< −−−− iiiiii LCLQLCLQUCLQLCLE ξξξ , and 

}2,0,2{}  and    and  {: 12124 ===⇔≤<<≤ −−−− iiiiii LCLQUCLQLCLLCLQE ξξξ . 

 

 

Figure 4.7 displays examples of events iE  for 4,3,2,1=i  and shows that when there is a signal, the 

proposed 2-of-3 two-sided chart offers a practical interpretation for the signal. For example, when 

either event 1E  or 2E  occurs (shown in panels (a) and (b)) the signal is interpreted as an upward shift.  

Similarly, if either event 3E  or 4E  occurs (displayed in panels (c) and (d)) a downward shift is 

inferred.  

 

 

Remark 3 
 
 

Apart from events 1E , 2E , 3E  and 4E   there are a further eight scenarios in case of the 2-

of-3 two-sided chart where exactly two of the last three charting statistics can plot outside 

the control limits. We, however, exclude these events as signaling events when we 

calculate the statistical characteristics or properties of the 2-of-3 two-sided control charts; 

even though four of the events may possibly be linked to genuine or tangible changes in 

the process. 
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Figure 4.8 shows the eight events together with the practical interpretations (if any). For 

example, panels (a) and (b) show events 5E  and 6E  that could be considered a swing in 

the process, whereas panels (c) and (d) show events 7E  and 8E  that could be interpreted as 

trends (up or down) in the process. The events in panels (e), (f), (g) and (h) are excluded as 

signaling events because, as mentioned earlier, the last point plots between the control 

limits. 

 

 

Most importantly, by excluding events 5E , 6E , …, 12E  we are left with events 1E , 2E , 3E  

and 4E , which makes the signaling events of the 2-of-3 one-sided charts and that of the 2-

of-3 two-sided chart more alike (compare, for example, the signaling events shown in 

Figure 4.4 with that of Figure 4.7). 
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(a)    (signal above / upward shift detected) 
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(b)    (signal above / upward shift detected) 
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(c)    (signal below / downward shift detected) 
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(d)    (signal below / downward shift detected) 

Figure 4.7: The 2-of-3 rule for the two-sided chart 
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(a)    (possible swing detected) 
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(b)    (possible swing detected) 
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(c)    (downward trend detected) 
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(d)    (upward trend detected) 
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(e)   (last point plots between LCL and UCL) 
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(f)   (last point plots between LCL and UCL) 
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(g)   (last point plots between LCL and UCL) 
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(h)   (last point plots between LCL and UCL) 

Figure 4.8: The 2-of-3 events excluded as signaling events for the two-sided charts 
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Section 4.1 outlined, in general, the operation of the runs-rule enhanced charts. However, we are 

yet to define (choose) the charting statistic iQ  and the control limits (UCL  and LCL ). In Sections 4.2 

and 4.3 we do just this and show, in particular, how to obtain the run-length distributions and how to 

design and implement the runs-rule enhanced charts in case the π th percentile of the process 

distribution is known (Case K) and unknown (Case U). The performance of the charts is then further 

examined via properties of their run-length distributions such as the average run-length (ARL ), the 

false alarm rate (FAR ), the standard deviation of the run-length (SDRL ) and some of the percentiles  

of the run-length distributions. 
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4.2   Sign charts for the known ππππ th quantile (Case K) 
 

 

Introduction 
 

Case K refers to the situation when the π th quantile (or percentile) of the process distribution is 

known or specified. The new control charts we design for Case K are based on the well-known sign 

(test) statistic. 

 

 

Assumptions 
 

Let ),...,,( 21 inii XXX  denote a random sample of size 1>n  taken at sampling stage (time) 

,...3,2,1=i . Assume that the samples are independent and the observations come from a continuous 

distribution with cumulative distribution function (c.d.f) )(xFX  with the unique π100 th percentile 

denoted by )(1 πθ −= XF , 10 << π . 

 

In many cases the percentile of interest is the median because it is a robust measure of central 

tendency so that 5.0=π  and )5.0(1−= XFθ , however this is not necessary for our developments as the 

new sign charts can be applied for any percentile of interest. 

 

 

Charting statistics 
 

Amin et al. (1995) considered a 1-of-1 Shewhart-type sign chart for monitoring the median of a 

distribution based on the charting statistic 

 

∑
=

−=
n

j
iji XsignSN

1
0)( θ    for   ,...2,1=i   (4-4) 

 

where =)(xsign 1 if x > 0, 0 if x = 0 and -1 if x < 0 and 0θ  denotes the specified value of the median. 

 

We consider any percentile )(1 πθ −= XF  for 10 << π  and the charting statistic for our sign charts 

is the classical sign statistic 

 

∑
=

>=
n

j
iji XIT

1
0)( θ    for   ,...2,1=i    (4-5) 
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where 0θ  denotes the known (or the specified or the target) value of the percentile of interest and 

)( 0θ>ijXI  denotes the indicator function for the event }{ 0θ>ijX .  Thus iT  denotes the number of 

observations larger than 0θ  in the ith sample and it is easily seen that iT  follows a binomial distribution 

with parameters n  and probability of success )Pr( 0θ>= ijXp .  When 0θθ =  the percentile of interest 

is equal to its specified value, the process is said to be in-control (IC)  and then p  is denoted by 0p  

and equals 

 

πθ −=>= 1)|Pr( 00 ICXp ij .   (4-6) 

 

Thus, for example, when the percentile of interest is the median ( 5.0=π ), the process is IC when 

0θθ =  (the specified value of the median) and then 5.00 == pp ; similarly when θ  is the first 

quartile ( 25.0=π ), the process is IC when 0θθ =  (the specified value of the first quartile) and 

75.00 == pp  and so on. 

 

 

Control limits 
 

The upper and lower control limits of our sign charts are  

 

bnUCL −=  and aLCL =    (4-7) 

 

where the charting constants a  and b  are integers between (and including) zero and n , that is, 

},...,2,1,0{, nba ∈ , and selected so that the UCL  is greater than the LCL ; determination of a and b will 

be discussed later. Note that, the new sign charts do not have a centerline. 
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4.2.1    Run-length distributions of the sign charts 
 

 

The run-length distribution and its associated characteristics (such as the mean, the standard 

deviation, the median etc.) reveal important information regarding the performance of a control chart 

(see e.g. Human and Graham, (2007)). 

 

There are various approaches to finding the run-length distribution.  We use (for the most part) a 

Markov chain approach (see e.g. Fu and Lou, (2003)) to derive the necessary results for our runs-rule 

enhanced charts because this approach provides a more compact and unified view of the derivations, 

and as stated by Balakrishnan and Koutras (2002), p.14, “The Markov techniques possess a great 

advantage (over the classical combinatory methods) as they are easily adjustable to many run-related 

problems; they often simplify the solutions to specific problems they are applied on and remain valid 

even for cases involving non-identical or dependent trials”. 

 

The Markov chain approach entails that we: 

 

(a) classify each charting statistic iT  (based on its value) into one of two categories (for a one-

sided chart) or into one of three categories (for a two-sided chart) depending on whether iT  

plots on or above the UCL , on or below the LCL  and/or between the LCL  and UCL ,  

(b) define a new sequence of random variables ,...,,321 YYY  (say) that keeps track of the 

classification of the sTi ' , and then 

(c) construct a Markov Chain }0:{ ≥iZ i  to find the run-length distribution. 

 

For example, consider the upper one-sided sign chart.  Each iT  can be either on or above the UCL  

or below.  Let 1=iY  (a success) in the former case and 0=iY  (a failure) in the latter case.  Thus, 

corresponding to a sequence of sTi '  we get a sequence of sYi '  that are all binary; for example, if 

)7 , 8 , 3 , 4(),,,( 4321 =TTTT  and 5=UCL ,  we get )1 , 1 , 0 , 0(),,,( 4321 =YYYY . 

 

Thus, the run-length of the 1-of-1 upper one-sided chart i.e. the time when for the first time a iT  

plots on or above the UCL , is “3” for our example and can be equivalently expressed as the time when 

for the first time we obtain a “1” (a success) among the four sYi ' .  
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Similarly,  the run-length of the 2-of-2 upper one-sided chart i.e. the time when for the first time 

two consecutive sTi '  plot out-of-control, which equals “4” in our example, can be equivalently viewed 

as the time when for the first time we obtain two successive “1’s” (or successes) among the four sYi ' .    

Hence the run-length for the sTi ' can be equivalently defined as the waiting time for the first 

success (or, more generally, the first particular run or pattern of successes) among the sYi ' ;  it is this 

correspondence that makes the study of the statistical properties of the run-length random variable 

more amenable using results about the waiting time distributions in a sequence of Bernoulli (binary or 

two-state) and other types (three or more states) of random variables. 

 

There is a rather vast literature on waiting time distributions.  A detailed discussion about general 

results on the distribution theory of runs and patterns with various applications can be found in 

Balakrishnan and Koutras (2002) and Fu and Lou (2003).  Some of these results pertain to the exact 

probability distribution of the waiting time for the first occurrence of a simple or a compound pattern 

in a sequence of i.i.d. (or homogeneous Markov dependent) 2-state (binary) or 3 or more-state trials 

(see e.g. Fu and Lou, (2003); Chapters 3, 4 and 5).  The approach is to “properly imbed” (see e.g. Fu 

and Lou (2003), page 64; Definition 2.6) the random variable of interest (the run-length in our case) 

into a finite Markov chain which means constructing a “proper” Markov chain so that the probability 

that the run-length random variable N  takes on some specific value is expressed in terms of the 

probability that the imbedded Markov chain }0:{ ≥iZ i resides in a specific subset S  of the state space 

Ω . 
 

The latter probability can be more easily computed using results about the transition probability 

matrix of the Markov chain.  For example, given the mm ×  transition probability matrix of the Markov 

chain 








=
−×−×−

−××
×

)()()(

)(

hmhmhhm

hmhhh
mm I0

CQ
M  

 

(written in a partitioned form), the probability mass function (p.m.f), the expected value (ARL ) and 

the variance (VARL ) of the run-length random variable N  can be directly obtained, using Theorems 

5.2 and 7.4 of Fu and Lou (2003), as 

 

      1QIξQ )(),,,| ( 1 −== −jbanjNP θ      for  ,...3,2,1=j   (4-8) 

 

     1QIξ 1)(),,,|( −−=θbanNE      (4-9) 

and 

22 ))(())((),,,|var( NEbanN −−+= − 1QIQIξθ    (4-10) 

 
 
 



 280 

 

where the sub-matrix matrix hh×= QQ   is called the essential transition probability sub-matrix, 

hh×= II  (used in (4-8) and (4-10)) and )()( hmhm −×−I (used in the definition of mm×M ) are identity 

matrices, )0 ,...,0 ,0 ,1(1 =×hξ  is the initial distribution, T1 )1,...,1 ,1(1 =×h  is the unit vector, m  denotes 

the number of states in the state space Ω  and hm −  is the number of unique simple patterns that 

defines a signal; the (non-essential) matrix )( hmh −×C  will be illustrated later. 

 

The point is that we only need to construct the state space Ω  and the essential transition 

probability sub-matrix hh×Q  of the Markov chain in order to be capable to calculate the entire run-

length distribution. 

 

 

Signaling probabilities 
 

Whilst the key to construct the state space Ω  depends on the particular signaling rule and whether 

a one-sided or two-sided chart is looked at, the building blocks of the transition probability matrix are 

the one-step transition probabilities (i.e. the elements of the transition probability matrix). 

 

The one-step transition probabilities are denoted by 

)|Pr( 1, kZjZp iijk === −  

and interpreted as the conditional probability given that at any specific time 1−i  the system was in 

state k , the system will be in state j  at time i  for 1≥i  and Ω∈kj, .  The transition probabilities 

jkp ,  are all functions of and depend on the signaling probabilities i.e. the probability for a single 

charting statistic to plot outside the control limit(s), and therefore play a key role in the derivation of 

the run-length distributions of the runs-rules enhanced charts. In case of the upper and lower one-sided 

charts the signaling probabilities are 

 

)1,()1Pr()Pr()Pr(),,( +−===−≥=≥= ++ bbnIbnTUCLTbnp piii ξθ  (4-11) 

and 

),1(1)1Pr()Pr()Pr(),,( anaIaTLCLTanp piii −+−===≤=≤= −− ξθ , (4-12) 

 

respectively; for the two-sided chart the probability for any of the charting statistics to plot outside 

either the UCL  or the LCL  is 

 

)1,(),1(1)Pr(1),,,( +−+−+−=<<−=± bbnIanaIUCLTLCLbanp ppiθ  (4-13) 
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where ∫
−−− −=

p vu
p dwwwvuvuI

0

111 )1()],([),( β  with 1)Pr(0 0 <>=< θijXp , is the c.d.f of the 

),( vuBeta distribution, also known as the incomplete beta function, which helps us write various 

expressions in a more compact form. 

 

Note that, for notational simplicity and brevity we denote the probabilities ),,(θbnp + , ),,( θanp − , 

and ),,,( θbanp ±  simply by +p , −p  and ±p  , respectively.  

 

 

 

Remark 4 
 

 

(i) If 0θθ =  the signaling probabilities (and hence the distribution of iT  and the in-control run-

length distributions and their associated characteristics) depend only on 

a. the sample size n , 

b. the charting constants a  and/or b , and 

c. the percentile of interest )(1
0 πθ −= XF  where π  is specified. 

 

Any decision rule (signaling rule) based on the iT ’s will therefore be distribution-free as 

long as the underlying distributions (at each point in time) are continuous and identical. It 

follows that the in-control run-length distributions of the runs-rules enhanced sign charts 

are distribution-free and therefore charts based on the iT ’s will be distribution-free. 

 

 

(ii)  To obtain the in-control run-length distribution and its mean and variance one substitutes 

0θθ =  in expressions (4-8), (4-9) and (4-10); by substituting 0θθ ≠  one obtains the 

corresponding results for the out-of-control situation which depends on the underlying 

process distribution. 
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4.2.2   Transition probability matrices of the sign charts 
 

 

To illustrate the derivation of the transition probability matrices and the run-length distributions, 

we begin with the one-sided upper (lower) control charts and then proceed to study the two-sided 

charts. 

 

In case of the one-sided and the two-sided charts, we first look at the run-length distribution of the 

1-of-1 chart (which uses the least complicated signaling rule) before we study the run-length 

distributions of the run rules enhanced charts, that is, the k-of-k ( 2≥k ) and the k-of-w ( wk ≤≤1  and 

2≥w ) sign charts. 

 

For each chart the key is to imbed the run-length into a proper homogenous Markov chain and 

obtain the essential transition probability sub-matrix hh×Q  associated with the particular Markov chain. 

 

Note that, we discuss the derivation of the transition probability matrices of the one-sided and the 

two-sided sign charts in detail so that later, in Case U, we can merely make use of these results. 

 

 

4.2.2.1 One-sided sign charts 
 

For the upper one-sided sign chart we view the series of signaling indicators ,...,,321
+++ ξξξ  

associated with the charting statistics ,...,,321 TTT  and the UCL  as a series of independent binary 

random variables, each being either “a success or 1” (iT  plotting on or above the UCL ) or “a failure or 

0” ( iT  plotting below the UCL ) with probabilities +p  and +− p1 , respectively (see e.g. Figure 4.9). 

 

 

Figure 4.9: The two regions on the upper one-sided control chart  (‘0’ and ‘1’) and their 
associated probabilities used to classify the charting statistic  

 

 UCL 
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Upper one-sided 1-of-1 sign chart 
 

The run-length +
11ofN  of the 1-of-1 upper one-sided chart is the waiting time until event 1A  (see 

panel (a) of Figure 4.1) occurs, which can be viewed as the waiting time for the first occurrence of a 

“1” (success) in the series of si '+ξ  (i.e. of  0’s and 1’s). 

 

The imbedded Markov chain associated with +
11ofN  is a homogeneous Markov chain defined on the 

finite state space } 1 , 0 , {φ=Ω with 3=m  states, where 

 

(a) the state 1}{  is called the “absorbing” state (when the process is declared out-of-control), 

 

(b) the state }0{  is called the “transient” state (i.e. the process can remain in state {0}, which 

means that the process is IC and the charting procedure continues, or the process can move 

from state {0} into state {1}, which implies that the process goes OOC and the charting 

procedure stops), and 

 

(c) the state φ  is the “dummy” state introduced for convenience. The dummy state φ  is in fact 

added to the state space Ω  so that with probability one the process is assumed to begin in-

control with the intention that the corresponding initial probability distribution is taken as 

)0 ,1(21 =×ξ .  

 

The 33×  transition probability matrix of }0:{ ≥iZ i  associated with +
11ofN  is given by 

 

















−
−

=
















=







= ++

++

××

××
×

100

10

10

1,10,1,1

1,00,0,0

1,0,,

1121

1222
33 pp

pp

ppp

ppp

ppp

φ

φ

φφφφ

I0

CQ
M   (4-14) 

 

where, for example, 1,0p  (the  entry in the 2nd row and the 3rd column of 33×M ) is the probability that 

the system goes from state {0} (that is where 1−iT  plots IC) at time 1−i , to state {1} (that is where iT  

plot OOC) at time i ; this probability is simply the probability that iT  plots at or above the UCL  at 

time i, which is ),,()1Pr( θξ bnppi
+++ === . The rest of the elements of 33×M  in (4-14) can be 

calculated in a similar way. 
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Upper one-sided 2-of-2 sign chart 
 

The run-length +
22ofN  of the 2-of-2 upper one-sided chart is the waiting time until event 1B  (see 

panel (a) of Figure 4.3) occurs, which can be viewed as the waiting time for the first occurrence of two 

consecutive  1’s (i.e. successes) in the series of si '+ξ  (i.e. 0’s and 1’s). 

 

The imbedded Markov chain associated with +
22ofN  is a homogeneous Markov chain defined on 

the finite state space } 11 , 1 , 0 , {φ=Ω  with 4=m  states, where 

 

(a) the last state 11}{  is the absorbing state, 

 

(b) the two states }0{  and {1} are the transient (non-absorbent) states, 

 

(c)  and φ  is the dummy state, which is again added to Ω  so that (with probability one) the 

process is assumed to begin in-control and with the intention that the corresponding initial 

probability distribution is taken as )0 ,0 ,1(31 =×ξ .  

  

The transition probability matrix of }0:{ ≥iZ i  associated with +
22ofN  is given by 
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where, for example, the probability that the system goes from state {1} (where 1−iT  plots OOC) at time 

1−i , to state {11} (where both 1−iT  and iT  plot OOC) at time i , denoted by 11,1p , is  the  entry in the 

3rd row and the 4th column of 44×M ; this is simply the probability that iT  plots at or above the UCL  at 

time i, which is, as earlier, ),,()1Pr( θξ bnppi
+++ === .  
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Remark 5 
 

 

Because 

 

(i) the signaling indicators +
iξ ’s are a sequence of i.i.d. Bernoulli random variables 

each with probability of success +p , and 

 

(ii)  the run-length random variable+
11ofN  ( +

22ofN ) is the waiting time for the first success 

(the first occurrence of two consecutive successes), 

 

one can equivalently obtain the distribution (i.e. the p.m.f, the mean, the variance etc.) of +
11ofN  

( +
22ofN ) from the distribution of the variable kT   where 1=k (or 2). 

 

The stopping time variable kT  ( 1≥k ) is, in general, the waiting time to observe a sequence of 

k  consecutive successes for the first time in a sequence of i.i.d. Bernoulli random variables 

with success probability α  and should not be confused with the plotting statistic iT  defined in 

(4-5). 

 

The distribution of kT  is known to be the geometric distribution of order k  (see e.g. Chapter 2 

of Balakrishnan and Koutras, (2002)) with p.m.f, expected value and variance given by 
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respectively. 
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The equivalence between the distribution of kT  (i.e. the geometric distribution of order k ) and 

the distribution of +
kofkN  (i.e. the waiting until for the first time k  consecutive iT 's plot on or 

above the UCL ) can be verified by substituting the essential transition probability sub-matrix 

hh×Q  of }0:{ ≥iZ i  associated with +
kofkN  in expressions (4-8), (4-9) and (4-10), and then 

simplifying symbolically (using, for example, computer software with matrix manipulations 

capabilities such as Scientific Workplace®); upon doing so one obtains explicit and closed form 

expressions, via the Markov chain approach, for the p.m.f, the ARL  and the VARL  of the run-

length random variable +
kofkN . 

 

 

For the upper one-sided 1-of-1 sign chart, for example, we substitute 

 










−
−= +

+

× p
p

10
10

22Q  

 

 in expressions (4-8), (4-9) and (4-10) so that upon simplifying we obtain 

 

+−++ −== ppbnjN j
of

1
11 )1(),,| Pr( θ      for     ,...3,2,1=j    (4-18) 

 

++ = pbnNE of /1),,|( 11 θ       and 2
11 )/()1(),,|var( +++ −= ppbnN of θ .  (4-19) 

 

 

Expressions (4-18) and (4-19) are identical to expressions (4-16) and (4-17) with 1=k  and 

+= pα , respectively. 
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Upper one-sided 2-of-3 sign chart 
 

Like the upper one-sided 1-of-1 and 2-of-2 charts we can find the run-length distribution of the 2-

of-3 upper one-sided chart using a Markov chain. 

 

The run-length +
32ofN  of the 2-of-3 upper one-sided chart is the waiting time until event 1C  or 2C  

(see panel (a) of Figure 4.4) occurs, which can be viewed as the waiting time for the first occurrence of 

the pattern }101or    011{=Λ  in the series of si '+ξ  (i.e. of 0’s and 1’s).   The pattern Λ  is called a 

“compound pattern” and written as: 21 Λ∪Λ=Λ  where 0111 =Λ  and 1012 =Λ  are two so-called 

distinct “simple patterns”. 

  

The imbedded Markov chain associated with +
32ofN  is a homogeneous Markov chain defined on the 

state space } , , 01,10 , 1 , 0 , { 21 ααφ=Ω with 7=m  states, where 

 

(a) the two states } 011{1 =α and 101}{2 =α  are the absorbing states (when the process is 

declared OOC), 

 

(b) the four states }10 ,01 ,1 ,0{  are the transient states (i.e. the process can move from one of 

these states to another, which means that the charting procedure continues), and 

 

(c) φ  is the dummy state introduced for convenience. 

 

The transient states are the sequential sub-patterns of 0111 =Λ  and 1012 =Λ , respectively.   For 

example, the state {0} is the sub-pattern of the state {01}, whereas the two states {0} and {01} are the 

sub-patterns of 0111 =Λ , and the states {1} and {10} are the sub-patterns of 1012 =Λ .  

 

As earlier, the dummy state φ  is again added to Ω  so that (with probability one) the process is 

assumed to begin in-control, and the corresponding initial probability distribution is taken as 

)0 ,0,0 ,0 ,1(51 =×ξ .  
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The transition probability matrix of }0,{ ≥+ iiξ  associated with +
32ofN  is given by 
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where, for example, the probability that the system goes from state {01} (that is where 2−iT  plots IC 

and 1−iT  plots OOC) at time 1−i , to state {011}1 =α  (that is where 2−iT  plots IC  and both 1−iT  and iT  

plot OOC) at time i  is  the  entry in the 4th row and the 6th column of 77×M . 
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Remark 6 
 

A few comments concerning the application and the implementation of the upper one-sided 2-of-3 

sign chart are in order: 

 

(i) To declare a process out-of-control (OOC) we need at least three charting statistics (2−iT , 1−iT  

and iT , say) of which exactly one should plot in-control (IC) i.e. either 2−iT  plots below the 

UCL  with 1−iT  and iT  plotting on or above the UCL  or,  1−iT  plots below the UCL  with 2−iT  

and iT  plotting on or above the UCL  (see e.g. events 1C  and 2C  in panel (a) of Figure 4.4). 

Thus, we can only declare the process OOC beginning from time 3≥i  and, we need at least 

one charting statistic to plot below the upper control limit before we can declare the process 

OOC. 

 

(ii)  Because of these two build-in conditions of the upper one-sided 2-of-3 sign chart, the chart has 

a hitch at start-up: If UCLTi ≥  for ri ,...,3,2,1= , that is, if all the charting statistics plot on or 

above the upper control limit from the time that the chart is implemented until time r , the chart 

would not immediately signal that the process is OOC even though the pattern of the points on 

the chart suggests otherwise. The chart would most likely give a “delayed” or a “late” OOC 

signal instead. 

 

While this glitch is possible, we need to stress an important assumption: 

 

The design and the implementation of all the charts that are proposed in this chapter are 

based on an IC process at start-up as well as the trade-off between minimizing the 

probability that a charting statistic plots on or outside the control limit(s) when the process 

is actually IC and quickly detecting an OOC process.  

 

This assumption means two things: 

 

a. The process is IC at start-up; hence, we must ensure (to the extent that it is possible) that 

the process is IC before we start monitoring it. 

 

b. We typically choose the UCL  such that the probability that a iT  plots on or above the UCL  

when the process is IC i.e. )|Pr(0 ICUCLTp i ≥=+ , is small, which automatically implies 

that the probability that a iT  plots below the UCL  when the process is IC i.e. 

)|Pr(1 0 ICUCLTp i <=− + , is large.  
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The latter implies that the probability that all the charting statistics up to and including the 

r th one plot on or above the UCL  when the process is IC i.e. rp )( 0
+ , would decrease 

rapidly as r  increases. But, most importantly, it also implies that as we continue to monitor 

the process, the probability that the r th charting statistic plots below the UCL  when the 

process is IC stays constant and equal to +− 01 p ; this is so because we assume that 

successive samples (or charting statistics) are independent. 

 

Hence, what is of importance to the practitioner is to know what the risk is that this hitch 

occurs. This risk can be measured by calculating and studying the odds that a iT  plots 

below  the UCL  when the process is IC i.e. )/()1( 00
++− pp , at any time ,...3,2,1=i .  

 

To investigate the effect of +
0p  on the above odds, Table 4.1 shows values of )/()1( 00

++− pp  for 

values of 005.0)001.0(001.00 =+p  and 20.0)01.0(01.0 . The values of +
0p  that we use to construct 

Table 4.1 are representative of the typical values that one would consider when designing the proposed 

upper one-sided 2-of-3 chart (see e.g. Tables 4.6. and 4.7).  

 

From Table 4.1 we observe that: 

 

(i) The ratio )/()1( 00
++− pp  is larger than or equal to 4.0 for all values of +

0p  that we consider. This 

implies that, for a process that is IC at start-up (which is a fundamental assumption of our 

earlier theoretical developments and the reason for adding the dummy state, φ ,  to the state 

spaces off all the proposed charts) it is at least four times more likely for any new incoming iT  

to plot below the UCL  than for any new incoming iT  to plot on or above the UCL . 

 

(ii)  For 01.00 =+p , which is a very reasonable choice considering all the values of +
0p  in Tables 

4.6 and 4.7, the ratio )/()1( 00
++− pp  is equal to 99.0; this is relatively large. 

 

(iii)  The largest value for )/()1( 00
++− pp  is 999.0 (when 001.00 =+p ) and will increase even further 

as +
0p  decreases; this is good because smaller values of +

0p  are typically preferred and also 

recommended in practice. 
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The above-mentioned observations are all relevant for the practitioner because, for a process that is 

IC at start-up, (which is a key assumption when implementing any of the charts that are proposed in 

this chapter) they show that the risk associated with the proposed 2-of-3 sign chart at start-up is: (a) 

almost negligible, and (b) decreases rapidly as we continue to monitor the process because the 

probability that all the charting statistics up to and including the r th one plot on or above the UCL  

when the process is IC i.e. rp )( 0
+ , would decrease towards zero quickly as r  increases. This should be 

reassuring for the practitioner. 

 

Table 4.1: The ratio )/()1( 00
++++++++−−−− pp  as a function of ++++

0p  

++++
0p  )/()1( 00

++++++++−−−− pp  ++++
0p  )/()1( 00

++++++++−−−− pp  

0.001 999.0 0.09 10.1 
0.002 499.0 0.10 9.0 
0.003 332.3 0.11 8.1 
0.004 249.0 0.12 7.3 
0.005 199.0 0.13 6.7 
0.01 99.0 0.14 6.1 
0.02 49.0 0.15 5.7 
0.03 32.3 0.16 5.3 
0.04 24.0 0.17 4.9 
0.05 19.0 0.18 4.6 
0.06 15.7 0.19 4.3 
0.07 13.3 0.20 4.0 
0.08 11.5  

 

 

To overcome the imperfection of the upper one-sided 2-of-3 sign chart at start-up, we could use the 

event }1 , 1{} , { 21217 ==⇔≥≥= ++ ξξUCLTUCLTC , in addition to the events 1C  and 2C  shown in 

panel (a) of Figure 4.4, as a third signaling event. The event 7C  is special in two ways: (a) it prevents 

the hitch at start-up by enabling the chart to signal at time 2=i , and (b) it occurs if and only if the first 

two charting statistics, 1T  and 2T ,  both plot on or above the upper control limit; hence, event 7C  can 

not occur from time 3≥i . 

 

The resultant chart is an augmented upper one-sided 2-of-3 sign chart. Adding the extra event leads 

to an augmented state space i.e. 101} , 011 , 11 , 10 , 01 , 1 , 0 ,{φ=Ω , where the three states }11{ , }011{  

and }101{  are the absorbent states and implies that the transition probability matrix in (4-20) be altered 

slightly to become 
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To investigate the impact (i.e. gain or loss) of augmenting the transition probability matrix on the 

in-control performance of the chart, we calculated the in-control average run-lengths and the false 

alarm rates of the proposed upper one-sided 2-of-3 sign chart and that of the augmented upper one-

sided 2-of-3 sign chart (when it is of interest to monitor the median of the process) for different 

combinations of the sample size, n , and the upper control limit, UCL . 

 

The values of the in-control average run-lengths (denoted by + 32ofARL  and +A
ofARL 32 , respectively) 

were calculated according to expression (4-9) using the transition probability matrix in (4-20) and the 

augmented transition probability matrix given above, respectively. 

 

The false alarm rate of the proposed upper one-sided 2-of-3 sign chart (denoted +
32ofFAR ) and that 

of the augmented upper one-sided 2-of-3 sign chart (denoted +A
ofFAR 32 ) can be easily obtained from the 

definitions of the signaling events that are used by each chart and are given by 
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respectively. 

 

There is only a slight modification of the expression for +
32ofFAR  to obtain +A

ofFAR 32 ; this leads to 

the following similarities and/or differences in the false alarm rates of the charts: 

(i) At time 1=i : 03232 == ++ A
ofof FARFAR , 

(ii)  At time 2=i : 032 =+
ofFAR  but 2

032 )( ++ = pFAR A
of , and 

(iii)  At time 3≥i : 2
003232 ))(1(2 ++++ −== ppFARFAR A

ofof . 
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These similarities and/or differences are a direct consequence of the signaling events used by each 

chart i.e. 

 

(i) Neither one of the charts can signal at time 1=i  because, the proposed upper one-sided 2-

of-3 sign chart needs at least three charting statistics to signal whereas the augmented upper 

one-sided 2-of-3 sign chart needs at least two charting statistics to signal. 

 

(ii)  It is only the augmented upper one-sided 2-of-3 sign chart that can give a false alarm at 

time 2=i  and, it can do so if and only if event 7C  occurs. 

 

(iii)  From time 3≥i , both the charts can signal if and only if event 1C  or event 2C  occurs. The 

event 7C , as mentioned earlier, can only occur at time 2=i  and therefore does not 

influence the false alarm rate of the augmented upper one-sided 2-of-3 sign chart at or 

beyond time 3=i . 

 

Based on our calculations, we found that: 

 

(i) The in-control average run-lengths of the two charts were almost identical;  +
32ofARL  is only 

slightly larger than +A
ofARL 32 . 

 

(ii)  Depending on the combination of n  and UCL , the 2
032 )( ++ = pFAR A

of  at time 2=i can be 

reasonably large, which might be a concern for the practitioner. 

 

 

To further compare the impact of augmenting the proposed upper one-sided 2-of-3 sign chart, 

Table 4.2 shows values of the in-control probability mass functions (p.m.f’s) and the in-control 

cumulative distribution functions (c.d.f’s) of the run-length random variables, +
32ofN  and +A

ofN 32 , 

associated with the proposed and the augmented charts; these values are denoted by )|Pr( 32 ICiN of =+ ,  

)|Pr( 32 ICiN A
of =+ , )|Pr( 32 ICiN of ≤+  and )|Pr( 32 ICiN A

of ≤+ , respectively and are calculated for values 

of 15,...,2,1=i . 
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The calculations in Table 4.2 assume that we monitor the process median using samples of size 

5=n  (which is a very popular choice in practice) and that the upper control limit is 5=UCL . For this 

particular combination of n  and UCL , it is calculated that 03125.0)|5Pr(0 =≥=+ ICTp i  where 

)5.0 , 5(~BinTi , and it was found that ( 65.55232 =+
ofARL  ; 00189.032 =+

ofFAR  for 3≥i )  while 

( 13.55232 =+A
ofARL  ; 00098.032 =+A

ofFAR  at 2=i  and 00189.032 =+A
ofFAR for 3≥i ). 

 

 

From Table 4.2 we see that there are two key differences with respect to the in-control 

characteristics and the in-control performance of the charts: 

 

 

(i) The augmented upper one-sided 2-of-3 sign chart can signal incorrectly (with probability 

0.00098) after having observed only two charting statistics whereas the proposed upper one-

sided 2-of-3 sign chart cannot.  

 

 

(ii)  The ratio )|Pr(/)|Pr( 3232 ICiNICiN of
A
of ≤≤ ++ , decreases to 1 as i  increases; this observation is 

supported by the fact that +A
ofARL 32  is only slightly less than +

32ofARL  i.e. 1/ 3232 ≈++
of

A
of ARLARL . 

These observations imply that, from start-up (when the process is IC) the augmented upper 

one-sided 2-of-3 sign chart always has a higher cumulative probability for a shorter run-length 

than the proposed upper one-sided 2-of-3 sign chart.. 
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Table 4.2: The in-control probability mass functions (p.m.f’s) and the in-control cumulative 

distribution functions (c.d.f’s) of the proposed 2-of-3 and the augmented 2-of-3 sign charts when 

5====n  and 5====UCL  

 

 2-of-3 sign chart Augmented 2-of-3 sign chart 

i )|Pr( 32 ICiN of ====++++  )|Pr( 32 ICiN of ≤≤≤≤++++  )|Pr( 32 ICiN A
of ====++++  )|Pr( 32 ICiN A

of ≤≤≤≤++++  

1 0 0 0 0 

2 0 0 0.00098 0.00098 

3 0.00189 0.00189 0.00189 0.00287 

4 0.00186 0.00375 0.00183 0.00470 

5 0.00181 0.00556 0.00180 0.00651 

6 0.00180 0.00736 0.00180 0.00831 

7 0.00180 0.00917 0.00180 0.01011 

8 0.00180 0.01097 0.00180 0.01191 

9 0.00180 0.01276 0.00179 0.01370 

10 0.00179 0.01455 0.00179 0.01549 

11 0.00179 0.01634 0.00179 0.01728 

12 0.00179 0.01813 0.00178 0.01906 

13 0.00178 0.01991 0.00178 0.02085 

14 0.00178 0.02169 0.00178 0.02262 

15 0.00178 0.02347 0.00177 0.02440 

 

 

To summarize the above discussion and our findings based on the analysis, we can state that: 

 

(i) The proposed upper one-sided 2-of-3 sign chart has a hitch at start-up but, the odds that this 

problem occurs are typically small; this should be reassuring for the practitioner. 

 

(ii)  It is possible to fix the imperfection of the proposed upper one-sided 2-of-3 sign chart by 

adding a third signaling event but, even this modification has a drawback: the performance of 

the augmented chart is degraded at start-up i.e. its false alarm rate is nonzero at time 2=i  

(unlike the proposed chart) and the cumulative probability for a shorter run-length is higher 

than that of the proposed chart.  

 

(iii)  Neither the proposed nor the augmented upper one-sided 2-of-3 sign chart can be implemented 

without taking a risk i.e. there is a trade-off between having a hitch at start-up and the 

possibility of a false alarm at time 2=i .  
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(iv) The inherent risk of each chart cannot be completely eliminated but, these risks can be 

minimized (or at least reduced) by ensuring that the process is IC at start-up and/or by choosing 

+
0p  to be small. 

 

(v) The in-control performance of the charts are almost identical: there is only a bit of a difference 

in their in-control ARL ’s and, at time 2=i  we have that 2
032 )( ++ = pFAR A

of  whereas 

032 =+
ofFAR .  

 

(vi) If a shift/change in the process occurs after start-up i.e. from time 3≥i , both the charts can 

signal only on the occurrence of events 1C   or 2C . So, the OOC performance of these two 

charts would be the same. 

 

We recommend that practitioners use either the proposed or the augmented upper one-sided 2-of-3 

sign chart but, we suggest that they familiarize themselves with the inherent risk associated with the 

selected chart. If the practitioner is not willing to accept the risk(s) associated with the 2-of-3 charts, 

he/she should use another chart e.g. the new proposed upper one-sided 2-of-2 sign chart or the original 

upper one-sided 1-of-1 sign chart. 

 

 

Based on the above analysis and the fact that the augmented chart can signal after having observed 

only two charting statistics instead of the proposed three charting statistics (which implies that the 

augmented chart is not a “true” 2-of-3 chart), it was decided to focus on the proposed upper one-sided 

2-of-3 sign chart and not to investigate the statistical properties of the augmented upper one-sided 2-of-

3 sign chart any further in this thesis. 

 

 

Furthermore, although the above discussion focussed specifically on the upper one-sided 2-of-3 

sign chart, these comments also apply to the lower one-sided 2-of-3 chart and the  two-sided 2-of-3 

chart. In fact, these comments are relevant for any one-sided or two-sided k-of-w chart whenever 

wk < . This is so, because we need at least w  charting statistics before we can declare the process 

OOC and we need at least kw −  charting statistics to plot IC (i.e. below the UCL  or, above the LCL  

or, between the LCL  and UCL , depending on the chart that is used). 
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Remark 7 
 

 

If the upper one-sided 2-of-3 sign chart were to signal upon any one of the three events in 

which two of the last three charting statistics can plot on or above the UCL  i.e. the 

occurrence of either event 1C  or 2C  or 5C  (see e.g. panel (a) of Figure 4.4 and panel (a) of 

Figure 4.5), the p.m.f as well as the mean (ARL ) and the variance (VARL )  of  +
32ofN  

would be obtainable from the distribution and the associated characteristics of the random 

variable  )(w
kT . 

 

The random variable  )(w
kT   is the waiting time for the first occurrence of a scan or run of 

type wk / , where the term scan or generalized run of type wk /  refers to sub sequences 

+
−+

+
+

+
11,...,, jiii ξξξ  of length wj ≤  such that the number of successes contained therein is at 

least k , that is, ∑
−+

=

+ ≥
1ji

is
s kξ  (see e.g. Chapter 9 of Balakrishnan and Koutras, (2002)); the 

probability distribution of )(w
kT  is known as the geometric distribution of order wk /  and 

derived via combinatorial methods. 

 

 

Because we exclude event 5C  as a signaling event in case of the upper one-sided 2-of-3 

chart (because the possibility of declaring a process out-of-control when the first and 

second charting statistic plot OOC but the third one plots IC is undesirable in practice), we 

cannot make use of the p.m.f or the associated properties of the geometric distribution of 

order wk /  , that is, )(w
kT  ; this supports the statement in the beginning of section 4.2.1 that 

the Markov chain technique has a great advantage over the classical combinatory 

techniques for finding the distribution(s) of run-related problems. 
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Example 1 
 

Consider the upper one-sided 2-of-3 sign chart for monitoring the median )5.0(1 == − πθ XF  and 

suppose that the subgroup size 5=n , the charting constant 0=b  (so that )5=UCL  and 0θ  denotes 

the target (IC) value for the median. 

 

As noted earlier, when the process is in-control 5.0)|Pr( 00 =>= ICXp ij θ  and therefore 

 03125.0)1,5(),0,5( 5.0000 0
====== =

++
pIbnpp θθ . 

Substituting 03125.00 =+p  for +p  in (4-20) and using (4-9) we get 

65.552),0,5|( 00,320 ===== + θθbnNEARL of . 

Similarly, using (4-10), the 218.5500 =SDRL .  

 

The in-control c.d.f of +
32ofN  can be obtained using the p.m.f in (4-8) and is given by 

 ∑
=

×
−
×

+ −=≤
j

i

i
of jN

1
0,55

1
0,550,32 )()Pr( 1QIξQ  

where +
0,32ofN  denotes the in-control run-length random variable and 0,55×Q  is found from (4-20) by 

substituting +
0p  for +p .  For illustration, we calculate and show the in-control p.m.f and the in-control 

c.d.f values for 6,5,4,3,2,1=j  in Table 4.3. 

 

 

Table 4.3: The in-control probability mass function (p.m.f) and the in-control cumulative 
distribution function (c.d.f) for the upper one-sided 2-of-3 sign chart 

 
j  1 2 3 4 5 6 

)Pr( 0,32 jN of =+  0 0 0.00189 0.00186 0.00181 0.00180 

)Pr( 0,32 jN of ≤+  0 0 0.00189 0.00375 0.00556 0.00736 
 

 

 

Given the c.d.f we can find the π100 th percentile of the run-length distribution, which is the 

smallest integer j  so that π≥≤+ )Pr( 0,32 jN of . For example, the second quartile (the median run-

length, denoted MDRL ) is found to be 3842 =Q .   The percentiles provide useful information 

regarding the efficacy of the control chart in addition to the moments such as the 0ARL  and the 

0SDRL . 
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Lower one-sided 1-of-1, 2-of-2 and 2-of-3 sign charts 
 

By substituting ),,( θanpp −− = , which is defined in (4-12),  for ),,( θbnpp ++ = , which is defined 

in (4-11), in the transition probability matrices of (4-14), (4-15) and (4-20), the distributions of the run-

length random variables −
11ofN , −

22ofN  and −
32ofN  of the lower (negative) one-sided 1-of-1, 2-of-2 and 2-

of-3 charts, respectively can be straightforwardly obtained. This is so because each lower one-sided 

chart is a mirror image of the corresponding upper one-sided chart.  

 

Also, note that, when we monitor the median, the in-control distribution of the plotting statistic is 

symmetric i.e. )5.0 , (~ nBinTi . In this case, it makes practical sense to use symmetrically placed 

control limits and set ab =   so that anUCL −=  and aLCL = ; this implies that the control limits are 

equidistant from both ends. For this specific choice of the control limits we have that −+ = i

d

i ξξ  i.e. the 

signaling indicators used to define the upper one-sided charts have the same distribution as the 

signaling indicators used to define the lower one-sided charts, and implies that the in-control 

performance of the lower and the upper one-sided sign charts, for monitoring the median, are identical. 

The performance of the upper and the lower one-sided sign charts will be further discussed in section 

4.2.4 when we study their design. 

 

Lastly, note that, the distributions of − 11ofN  and −
22ofN  can also be obtained from those of kT  (see 

Remark 5) by setting −= pα  and substituting 1=k  or 2=k  in (4-16) and (4-17), respectively.  

 
 
 



 300 

Two-sided sign charts 
 

 

The derivation of the transition probability matrices and the run-length distributions of the two-

sided charts (via the Markov chain approach) parallel those of the one-sided charts. 

 

 

For the two-sided charts, the signaling indicators si 'ξ  are defined by a series of values 0, 1 or 2, 

depending on whether the corresponding charting statistic iT  plots between the two control limits, on 

or above the UCL, or on or below the LCL, respectively; the probabilities for these three events are 

−+± −−=− ppp 11 , +p  and −p , respectively (see e.g. Figure 4.10 below). 

 

 

 

Figure 4.10: The three regions on the two-sided control chart (‘0’ , ‘1’ and ‘2’) and their 
associated probabilities used to classify the charting statistic  

 
 
UCL 

 
LCL 
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Two-sided 1-of-1 sign chart 
 

For the 1-of-1 two-sided chart the run-length 11ofN  is the waiting time for the first occurrence of 

the event 21 AAA ∪=  (see e.g. Figure 4.2), which is the first occurrence of the compound pattern 

21 Λ∪Λ=Λ   in the series of si 'ξ  (i.e. among the 0’s, 1’s and 2’s) where 11 =Λ  and  22 =Λ  are two 

distinct simple patterns in this situation. 

 

The state space for the imbedded Markov chain associated with the variable 11ofN  is 

}2 ,1 ,0 ,{φ=Ω , which has 4=m  states. The absorbing states are {1} and {2} whereas {0} is the 

transient state and } {φ  is the dummy state. 

 

The transition probability matrix  44×M  is given by 

 





















−−
−−
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=







=

−+−+

−+−+

××

××
×
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2222

2222
44

pppp

pppp

pppp

pppp

pppp

pppp

φ

φ

φ

φφφφφ

I0

CQ
M      (4-21) 

 

where, for example, the entry in the 2nd row and 2nd column of 44×M , denoted by 0,0p , is the 

probability that the system remains in state {0}, that is, where 1−iT  plots IC at time 1−i  and iT  plots 

IC at time i . 
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Two-sided 2-of-2 DR sign chart 
 

The run-length DR
ofN 22  of the 2-of-2 DR two-sided chart is the waiting time for the first occurrence 

of the event 1D  or 2D  or 3D  or 4D  (see e.g. Figure 4.6), which is the first occurrence of the 

compound pattern U
4

1=

Λ=Λ
i

i  in the series of si 'ξ , where 111 =Λ , 222 =Λ , 123 =Λ  and 214 =Λ  

are the four distinct simple patterns.  

 

The imbedded Markov chain, in this case, is defined on the state space 

}21 , 12 , 22 , 11 2, , 1 , 0 , {φ=Ω , where φ  is the dummy state, the three states {0}, {1} and {2} are the 

transient states and the four states 11}{ , 22}{ , 12}{  and 21}{  are the absorbing states. 

 

The transition probability matrix  88×M  is given by 
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−+−+

−+−+

××

××
×

10000000

01000000

00100000

00010000

000010

000010

000010

000010

4444

4444
88

pppp

pppp

pppp

pppp

I0

CQ
M .           (4-22) 
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Remark 8 
 

If we let 





∈
∉=∉=±

),(if0
),(if1

)),((
UCLLCLT
UCLLCLT

UCLLCLTI
i

i
iiξ  

where )),(( UCLLCLTI i ∉ denotes the indicator function for the event )},({ UCLLCLTi ∉  

then 

}1{ =±
iξ  if and only if }2{}1{ =∪= ii ξξ   (4-23) 

so that 

)2Pr()1Pr()1Pr( =+===±
iii ξξξ   (4-24) 

 

where the ±
iξ ’s is a sequence of i.i.d. Bernoulli random variables each with probability of 

success −+±± +==∉== pppUCLLCLTii )),(Pr()1Pr(ξ  and the iξ ’s is a sequence of  

i.i.d tri-variate random variables with probabilities +== pi )1Pr(ξ , 

−+± −−=−== pppi 11)0Pr(ξ  and −== pi )2Pr(ξ , respectively. 

 

 

Expressions (4-23) and (4-24) permit us to define the signaling events and obtain the run-

length distributions of the two-sided 1-of-1 and the two-sided 2-of-2 DR sign charts using 

the ±
iξ ’s instead of using the iξ ’s.  This means that, instead of using the Markov chain 

approach, we can find the distributions of 11ofN  and DR
ofN 22  using the results (or properties) 

of the geometric distribution of order k . 

 

 

In particular, it follows from (4-23) and (4-24) that the run-length 11ofN  of the two-sided 1-

of-1 chart, which is the waiting time for the first occurrence of the event 

}2{}1{21 =∪==∪= iiAAA ξξ ,  is equivalent to the waiting time for the first success 

(i.e. 1) among the ±
iξ ’s, that is, }1{ == ±

iA ξ . Likewise, the run-length DR
ofN 22  of the two-

sided 2-of-2 chart, which is the waiting time for the first occurrence of the event  1D  or 2D  

or 3D  or 4D  (see e.g. Figure 4.6), is the same as the waiting time for the first occurrence 

of two consecutive successes (two successive 1’s) among the ±
iξ ’s, that is, 

}1{)( 1 === ±±
− iiDRD ξξ  so that 

2
14321 )(})1Pr({)Pr())(Pr( ±±±

− ====∪∪∪= pDDDDDRD ii ξξ . 
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The distributions of 11ofN  and DR
ofN 22  are therefore both geometric distributions of order k  

so that closed form expressions for the p.m.f’s of 11ofN  and DR
ofN 22  can be conveniently 

obtained from (4-16) by setting 

1=k    with   ±== pA)Pr(α  

and 

2=k    with   2)())(Pr( ±== pDRDα  

instead of symbolically simplifying expression (4-8). 

 

 

For example, upon substituting the essential transition probability sub-matrix of the two-

sided 1-of-1 sign chart 

 










−
−=









−−
−−= ±

±

−+

−+

× p
p

pp
pp

10
10

10
10

22Q  

 

into (4-8) and simplifying symbolically, we get an explicit formula for the p.m.f of 11ofN  

(via the Markov chain approach) that corresponds to the already available p.m.f one 

obtains  after substituting ±p  and 1=k  into (4-16) i.e. 

 

          ±−±
= −==== ppbanjTbanjN j

kof
1

111 )1(),,,|Pr(),,,| Pr( θθ   for  ,...3,2,1=j .     (4-25) 
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Two-sided 2-of-2 KL sign chart 
 

The run-length KL
ofN 22  of the 2-of-2 KL two-sided chart is the waiting time for the first occurrence 

of the event 1D  or 2D  (see e.g. panels (a) and (b) of Figure 4.6), which is the first occurrence of the 

compound pattern 21 Λ∪Λ=Λ  in the series of si 'ξ , where 111 =Λ  and 222 =Λ  are the two distinct 

simple patterns in this case. 

 

The imbedded Markov chain associated with the run-length variable KL
ofN 22  is defined on the state 

space } 22 , 11 2, , 1 , 0 , {φ=Ω , which has 6=m  states, where 11}{  and 22}{ are the two absorbing 

states. 

 

The transition probability matrix  66×M  of the Markov chain is given by  
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M .  (4-26) 
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Two-sided 2-of-3 sign chart 
 

The run-length 32ofN  of the 2-of-3 two-sided chart is the waiting time for the first occurrence of 

the event 1E  or 2E  or 3E  or 4E  (see e.g. Figure 4.7), which is the first occurrence of the compound 

pattern U
4

1=

Λ=Λ
i

i  in the series of si 'ξ  (i.e. among the 0’s, 1’s and 2’s), where 0111 =Λ , 1012 =Λ , 

0223 =Λ  and 2024 =Λ  are the four distinct simple patterns. 

 

The imbedded Markov chain, in this case, is defined on the finite state space 

}, , , , 20 , 02 , ,10 01 2, , 1 , 0 , { 4321 ααααφ=Ω  with 12=m  states, where the four states 

011}{1 =α , 101}{2 =α , 022}{3 =α  and 202}{4 =α  are the absorbing states, φ  is the dummy state, 

and the eight transient states are all the sequential sub-patterns of 0111 =Λ , 1012 =Λ , 0223 =Λ  and 

2024 =Λ , respectively. In this case, the essential transition probability sub-matrix 88×Q  of the 

transition probability matrix 

 









=

××

××
×

4484

4888
1212 I0

CQ
M  

 

is given by 
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Q   (4-27) 

 

whilst the non-essential transition probability sub-matrix 48×C  is given by  
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Remark 9 
 

 

In general, if rFFF ,...,, 21 , 1≥r  are the set of all possible events in which (a) k  

consecutive charting statistics, or (b) exactly k  of the last w  charting statistics) can plot 

OOC, one can design a chart that signals on the first occurrence of the event U
r

i
iFF

1=

= . 

The run-length of such a chart would be (a) geometric of order k , or (b) geometric of order 

wk / .  

 

 

However, we prefer, due to practical considerations, to exclude some of the iF ’s ; in doing 

so the distribution of the run-length is not necessarily geometric of order k  or geometric of 

order wk /  and we then use the Markov chain approach to find the run-length distribution. 

 

 

For example, as mentioned earlier, because the two-sided 2-of-2 KL chart signals only if 

event 1D  or 2D  occurs for the first time and does not signal (unlike the two-sided 2-of-2 

DR chart) in case event 3D  or event 4D  occurs (see Figure 4.6), the distribution of KL
ofN 22 , 

in general, is not a geometric distribution of order 2=k . 

 

 

Likewise, because the two-sided 2-of-3 sign chart signals only on the first occurrence of  

event 1E  or 2E  or 3E  or 4E  (see e.g. Figure 4.7) and excludes the remaining eight events 

in which exactly two of the last three charting statistics can plot on or outside the control 

limits i.e. events 5E , 6E , 7E , 8E , 9E , 10E , 11E  and 12E  (see e.g. Figure 4.8), as signaling 

events the distribution of 32ofN , in general, is not a geometric distribution of order 3/2 . 

 

 

If, however, we were to design a two-sided 2-of-3 sign chart that signals on the first 

occurrence of either one of the events iE  for 12,...,2,1=i  the distribution of the run-length 

random variable associated with such a chart would be a geometric distribution of order 

3/2  with probability of success −+± +==∉ pppUCLLCLTi )),(Pr(  (also see Remark 7). 
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4.2.3   The in-control run-length characteristics of the one-sided and two-sided sign   

charts  
 

 

The characteristics of the in-control (IC) run-length distributions are essential in the design of a 

control chart.   Furthermore, for out-of-control (OOC) performance comparisons their in-control 

average run-length ( 0ARL ) and/or false alarm rate (FAR ) should be equal or, at least, approximately 

so.  

 

Tables 4.4 and 4.5 summarize the expressions for the ARL  and the FAR  of the various sign charts.  

The ARL  expressions, in general, follow from having written the corresponding essential transition 

probability sub-matrix hh×Q , substituting it in (4-9) and simplifying symbolically.  

 

For example, for the 1-of-1 two-sided chart with state space }2 ,1 ,0 ,{φ=Ω , it was shown that 










−−
−−= −+

−+

× pp
pp

10
10

22Q  

so that  upon substitution in (4-9) and simplifying we get an explicit formula for the ARL given by 
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1111 . 

 

Alternatively, in some cases (such as the upper and the lower one-sided 1-of-1 and 2-of-2 charts as 

well as the two-sided 1-of-1 and 2-of-2 DR charts) one can obtain closed form expressions by using 

available results of the geometric distribution of order k . For example, for the two-sided 2-of-2 DR 

chart, one obtains the ARL  upon substituting −+± += ppp  for α   in (4-17); this gives 

 

22

2

22222 )(

1

))(1(

)(1
)()( −+

−+

−+−+

−+

+
++=

+−−
+−===

pp

pp

pppp

pp
TENEARL DR

of
DR

of . 

 

Note that, for the in-control average run-length 

)1,(),,(
0000 +−=== ++ bbnIbnpp pθθ  

and 

),1(1),,(
0000 anaIanpp p −+−=== −− θθ  

where 0p  is defined in (4-6), are to be substituted for +p  and −p , respectively, in the ARL  

expressions of Tables 4.4 and 4.5.  
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The expressions for the FAR  can be obtained from the definitions of the charts in a straightforward 

manner.   For example, for the 2-of-2 upper one-sided chart, the false alarm rate is 

 2
01122 )()|Pr()|Pr()|Pr( +

−
+ =≥×≥== pICUCLTICUCLTICBFAR iiof  

where 1B  is defined in panel (a) of Figure 4.3, whereas the false alarm rate for the 2-of-2 KL chart is 

2
0

2
0

11

2122

)()(

)|,Pr()|,Pr(

)|Pr()|Pr(

−+

−−

+=

≤≤+≥≥=

+=

pp

ICLCLTLCLTICUCLTUCLT

ICDICDFAR

iiii

KL
of

 

where 1D  and 2D  are defined in panels (a) and (b) of Figure 4.6. 

 

Table 4.4: Average run-lengths (ARL’s) and false alarm rates (FAR’s) of the upper one-sided 
sign charts 
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Table 4.5: Average run-lengths (ARL’s) and false alarm rates (FAR’s) of the two-sided sign 
charts 
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Remark 10 
 

 

As mentioned earlier, the FAR  and the 0ARL  of all the sign charts depend only on the 

probabilities +
0p  and/or −

0p , which in turn depend only on the sample size n  and the 

charting constants a  and/or b  and not on the underlying process distribution. The in-

control run-length distributions therefore remain the same for all continuous process 

distributions, and hence the proposed sign charts are nonparametric or distribution-free. 
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4.2.4   Design of the upper (lower) one-sided 1-of-1, 2-of-2 and 2-of-3 sign charts 
 

 

In order to design the proposed charts and assess their in-control performance the design 

parameters need to be chosen. The design parameters include 

(i) the sample size n ,  

(ii)  the charting constants a  and b , and 

(iii)  the target value 0θ .  

 

Because rational subgroups in SPC are small, we focus on 15)1(4=n , 20 and 25.  

 

To monitor the center of a process, one typically chooses θ  to be the process median and this is the 

case we study here; hence 5.0=π  so that )5.0(1−= XFθ  and 5.0)|Pr( 00 =>== ICXpp ij θ .  

However, other choices of θ  might be desirable in some situations.  For example, to monitor the 25th 

percentile of a processes’ distribution we would set 25.0=π  so that )25.0(1−= XFθ  and then 

75.0)|Pr( 00 =>= ICXp ij θ .  The sign charts are flexible enough to allow one to do that. 

 

The charting constants a  and b  can be any integer between and including 0 and n .  However, a  

and/or b  are typically chosen so that the 0ARL  is reasonably large. 

 

 

Tables 4.6 and 4.7 display the in-control characteristics of the 1-of-1 sign chart of Amin et al. 

(1995) and the new proposed runs-rule enhanced 2-of-2 and 2-of-3 one-sided sign charts. 

 

Note that, Tables 4.6 and 4.7 apply to both the lower and the upper one-sided sign charts because 

in case of the median we have that 5.00 == pp  when the process is in-control, which implies that the 

charting statistic iT  has a binomial (n, 0.5) distribution which is symmetric.  Hence, when ab =  (as in 

Tables 4.6 and 4.7), the in-control performance of the lower and the upper one-sided sign charts are 

identical. 

 

For example, if 6=n  and the LCL  of the lower one-sided chart is 1=a , the UCL  for the upper 

one-sided chart is simply 516 =−=− bn , and both of these charts have an in-control ARL  of 9.14 

and a FAR  of 0.10938.  
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An examination of the ARL  and FAR  values in Tables 4.6 and 4.7 reveal the advantages of the 

new sign charts 

 

(i) They offer more practically attractive 0ARL ’s and FAR ’s in that, for any particular 

combination of  n  and a , the  attained  0ARL  values of the 2-of-2 and the 2-of-3 charts are 

much higher than those of the 1-of-1 chart with a corresponding decrease in the FAR . 

 

For example, for 5=n  and 0=a  the 0ARL  of the 1-of-1 chart is 32.00 with a fairly large 

FAR  of 0.03125, but for the 2-of-3 chart the 0ARL  increases to a more reasonable 552.65 

and the FAR  decreases to 0.00189, whereas for the 2-of-2 chart, the 0ARL equals 1056.00 

with a FAR  of 0.00098. 

 

(ii)  Most importantly, when using the 1-of-1 chart the industry standard 0ARL  value of 370 and 

FAR  of 0.0027 is far from being attainable, but with the proposed 2-of-2 chart, for 

example, when 10=n  and 2=a , we can be almost on target e.g. the  0ARL  and FAR  

values are 352.65 and 0.00299, respectively. 

 

Thus, by carefully choosing the sample size n , the charting constants a  and/or b, and the 

values of k  and w , we can attain more familiar and recommended values for the  0ARL  

and the FAR  for the proposed nonparametric sign charts. Even for a sample size as small 

as 4=n , an  0ARL  of 272.00 with a FAR  of 0.00391 is possible when the 2-of-2 chart is 

used with 0=a .  

 

Amin et al. (1995) noted that the largest possible 0ARL  of their 1-of-1 one-sided sign chart 

for the median is n2 .   However, our runs-rules based sign charts provide a wider range of 

attainable 0ARL  values and false alarm rates.   For instance, for 15=n  the sign charts can 

attain an 0ARL  ( FAR ) as low (high) as 6.00 (0.25) and an 0ARL  ( FAR ) as high (low) as 

3293.23 (0.00031) with the 2-of-2 chart. 
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Table 4.6:  The in-control characteristics (ARL and FAR) of the one-sided 1-of-1, 2-of-2 and 

2-of-3 sign charts for the median (for samples of size 11)1(4====n )* 

 
Sample size LCL UCL 1-of-1 2-of-2 2-of-3 

n a n-b=n-a ARL0 FAR ARL0 FAR ARL0 FAR 

0 4 16.00 0.06250 272.00 0.00391 148.68 0.00732 
4 

1 3   13.44 0.09766 10.13 0.13428 

0 5 32.00 0.03125 1056.00 0.00098 552.65 0.00189 
1 4 5.33 0.18750 33.78 0.03516 21.71 0.05713 5 
2 3   6.00 0.25000   

0 6 64.00 0.01563 4160.00 0.00024 2128.64 0.00048 
1 5 9.14 0.10938 92.73 0.01196 53.95 0.02131 6 
2 4   11.37 0.11816 8.94 0.15509 

0 7 128.00 0.00781   8352.63 0.00012 
1 6 16.00 0.06250 272.00 0.00391 148.68 0.00732 
2 5   23.90 0.05133 16.13 0.07940 

7 

3 4   6.00 0.25000   

0 8 256.00 0.00391     
1 7 28.44 0.03516 837.53 0.00124 440.75 0.00239 
2 6 6.92 0.14453 54.79 0.02089 33.35 0.03574 

8 

3 5   10.33 0.13197 8.34 0.16806 

0 9 512.00 0.00195     
1 8 51.20 0.01953 2672.64 0.00038 1375.36 0.00075 
2 7 11.13 0.08984 135.02 0.00807 76.56 0.01469 
3 6   19.45 0.06447 13.59 0.09620 

9 

4 5   6.00 0.25000   

0 10 1024.00 0.00098     
1 9 93.09 0.01074 8759.01 0.00012 4449.96 0.00023 
2 8 18.29 0.05469 352.65 0.00299 190.71 0.00565 
3 7 5.82 0.17188 39.67 0.02954 25.00 0.04893 

10 

4 6   9.69 0.14209 7.98 0.17706 

0 11 2048.00 0.00049     
1 10 170.67 0.00586     
2 9 30.57 0.03271 964.92 0.00107 506.04 0.00207 
3 8 8.83 0.11328 86.75 0.01283 50.73 0.02276 
4 7   16.92 0.07530 12.14 0.10928 

11 

5 6   6.00 0.25000   
*Note: Only ARL0 values greater than 5 and less than 10 000 are shown. 
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Table 4.7:  The in-control characteristics (ARL and FAR) of the one-sided 1-of-1, 2-of-2 and 
2-of-3 sign charts for the median (for samples of size 25)5(15)1(12====n )* 

 
Sample size LCL UCL 1-of-1 2-of-2 2-of-3 

n a n-b=n-a ARL0 FAR ARL0 FAR ARL0 FAR 

0 12 4096.00 0.00024     

1 11 315.08 0.00317     

2 10 51.85 0.01929 2740.07 0.00037 1409.56 0.00073 

3 9 13.70 0.07300 201.36 0.00533 111.64 0.00988 

4 8 5.16 0.19385 31.77 0.03758 20.58 0.06059 

12 

5 7   9.25 0.14993 7.73 0.18375 

0 13 8192.00 0.00012     
1 12 585.14 0.00171     
2 11 89.04 0.01123 8017.78 0.00013 4076.31 0.00025 
3 10 21.67 0.04614 491.35 0.00213 262.59 0.00406 
4 9 7.49 0.13342 63.67 0.01780 38.21 0.03085 
5 8   15.29 0.08441 11.20 0.11977 

13 

6 7   6.00 0.25000   

1 13 1092.27 0.00092     
2 12 154.57 0.00647     
3 11 34.86 0.02869 1250.05 0.00082 651.82 0.00160 
4 10 11.14 0.08978 135.19 0.00806 76.66 0.01467 
5 9   26.97 0.04493 17.87 0.07082 

14 

6 8   8.93 0.15623 7.55 0.18896 

1 14 2048.00 0.00049     
2 13 270.81 0.00369     
3 12 56.89 0.01758 3293.23 0.00031 1689.92 0.00061 
4 11 16.88 0.05923 301.88 0.00351 164.28 0.00660 
5 10 6.63 0.15088 50.56 0.02276 31.02 0.03866 
6 9   14.14 0.09218 10.53 0.12839 

15 

7 8   6.00 0.25000   

2 18 4969.55 0.00020     
3 17 776.15 0.00129     
4 16 169.23 0.00591     
5 15 48.32 0.02069 2383.29 0.00043 1228.53 0.00084 
6 14 17.34 0.05766 318.13 0.00332 172.75 0.00627 
7 13 7.60 0.13159 65.35 0.01732 39.13 0.03007 
8 12   19.75 0.06336 13.76 0.09483 

20 

9 11   8.32 0.16966 7.21 0.19956 

4 21 2196.55 0.00046     
5 20 490.52 0.00204     
6 19 136.67 0.00732   9511.45 0.00011 
7 18 46.21 0.02164 2181.12 0.00047 1125.86 0.00092 
8 17 18.56 0.05388 363.08 0.00290 196.13 0.00549 
9 16 8.71 0.11476 84.64 0.01317 49.59 0.02332 
10 15   26.93 0.04502 17.85 0.07094 
11 14   11.30 0.11904 8.90 0.15594 

25 

12 13   6.00 0.25000   
*Note: Only ARL0 values greater than 5 and less than 10 000 are shown. 
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4.2.5   Performance comparison of the one-sided sign charts 
 

 

We compare the performance of the 1-of-1, the 2-of-2 and the 2-of-3 sign charts to that of the 

competing 1-of-1 SR chart of Bakir (2004) and the 2-of-2 SR charts of Chakraborti and Eryilmaz 

(2007) under the normal, the double exponential (or Laplace) and the Cauchy distributions; for 

completeness, we also include the well-known Shewhart X  chart. 

 

The double exponential and the Cauchy distributions are normal like with different tail behavior 

(see e.g. Figure 4.11). For the double exponential distribution the scale parameter was set equal to 

2/1  for a standard deviation of 1; for the Cauchy distribution the scale parameter was set equal 

to 2605.0  in order to achieve a tail probability of 0.05 above 645.10 +θ  - the same as for a )1,(0θN  

distribution. 

 

Without loss of generality, we take the in-control median to be 00 =θ .  All three distributions are 

symmetric and a shift refers to a shift in the mean (median).   The amount of shift in the median was 

taken over the range 2.1)2.0(0=δ . 

 

 

 

Figure 4.11: Probability distributions used for the performance comparison of the sign control 
charts 
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For comparison purposes the control charts are designed so that the 0ARL  values are high and are 

approximately equal.  However, because the nonparametric charts are based on charting statistics that 

have discrete distributions, it is not possible to straightforwardly design the charts such that their 

0ARL  values are all equal, and equal to some desired value such as 370 for a given sample size n  (see 

e.g. Tables 4.6 and 4.7) .  

 

Randomization was therefore used to ensure that the charts all have the same 0ARL  for a selected 

sample size.  The technique is mainly used in the testing literature to compare the power of tests based 

on discrete test statistics so that they have identical nominal Type I error probability such as 0.05 (see 

e.g. Gibbons and Chakraborti, (2003)).  We provide an example for illustration with the 1-of-1 sign 

chart; randomization for the other nonparametric charts can be handled in a similar way. 

 

 

Example 2 
 

Consider constructing a 1-of-1 upper one-sided sign chart with 0ARL  of 370  when samples of size 

10=n  are used. From Table 4.6 we see that for this chart, exact in-control ARL  values of 1024 (when 

10=UCL ) and 93.09 (when 9=UCL ) are attainable that trap the target value 370. 

 

The following randomized decision rule has an exact 0ARL  of 370 : 

 

“Declare the process OOC if 10=≥ UCLTi  (with probability 1) and with probability q  if 

91=−= UCLTi , where 10 << q  is chosen such that 370/1)|9Pr(.)|10Pr( ==+≥ ICTqICT ii ”.  

 

Assuming that the median is the parameter of interest and the process is IC, )5.0,10(~BinTi  and 

therefore 

 

18.01768.0)|9Pr(/)]|10Pr(370/1[ ≈==≥−= ICTICTq ii . 

 

Hence, if we declare the process OOC every time the charting statistic is greater than or equal to 10 

and declare the process OOC in 17.68% of the cases the charting statistic equals 9, we would have a 1-

of-1 upper one-sided sign chart with an in-control ARL  of 370. 

 

In practice, we could use a random number generator to make a decision; for example, if the 

charting statistic equals 9, we could draw a random number between 1 and 100; if the drawn number is 

between 1 and 18, the process is declared OOC, otherwise it is not. 

 
 
 



 317 

Note that, randomization is used to ensure that the in-control ARL  values of the competing charts 

are equal so that their OOC performance can be fairly compared.  The implementation and application 

of the charts remain as defined earlier and require no randomization.   

 

The in-control (when )0=δ and the out-of-control (when )0≠δ characteristics of the various 

charts for samples of size 10=n  are shown in Tables 4.8, 4.9 and 4.10 under the normal, the double 

exponential and the Cauchy distribution, respectively. The characteristics include the ARL , the SDRL  

as well as the 5th, the 25th (the first quartile, 1Q ), the 50th (the median run-length, MDRL ), the 75th (the 

third quartile, 3Q ) and the 95th percentiles of the run-length distribution.  

 

Note that, since randomization was used and the out-of-control distribution for the SR statistic is 

unavailable for most distributions, we used simulations (100 000 samples each of 10=n ) to estimate 

these characteristics in SAS®9.1; these programs can be found in Appendix 4A. 

 

Table 4.8: In-control and out-of-control characteristics of the run-length distributions of the one-
sided 1-of-1 sign, the 2-of-2 sign, the 2-of-3 sign, the 1-of-1 SR and the 2-of-2 SR chart for the 

median under the normal distribution 
 

 1-of-1 sign (UCL=10) 1-of-1 SR (UCL=53) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 370.4 19 107 259 514 1107 370 369.7 19 106 255 509 1099 
0.2 104 103.7 6 30 72 144 310 88.7 88.2 5 26 62 123 265 
0.4 35.6 35.2 2 11 25 49 106 27.3 26.8 2 8 19 38 81 
0.6 14.7 14.2 1 5 10 20 43 10.6 10.1 1 3 7 14 31 
0.8 7.3 6.8 1 2 5 10 21 5 4.5 1 2 4 7 14 
1.0 4.2 3.7 1 2 3 6 12 2.9 2.3 1 1 2 4 7 

1.2 2.8 2.2 1 1 2 4 7 1.9 1.3 1 1 1 2 5 

 2-of-2 sign (UCL=9) 2-of-2 SR (UCL=33) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 368.9 20 108 258 509 1107 370 371.9 21 108 256 514 1122 
0.2 64 62.6 5 19 45 88 189 50.9 49.4 4 16 36 70 150 
0.4 17.5 16.2 2 6 13 24 50 12.7 11.4 2 5 9 17 35 
0.6 7.2 5.9 2 3 5 10 19 5.2 3.9 2 2 4 7 13 
0.8 4 2.7 2 2 3 5 9 3.1 1.7 2 2 2 4 7 
1.0 2.9 1.5 2 2 2 3 6 2.4 0.9 2 2 2 2 4 

1.2 2.4 0.8 2 2 2 2 4 2.1 0.4 2 2 2 2 3 

 2-of-3 sign (UCL=9) X-bar (UCL = 0.8797) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 362.8 21 108 255 510 1094 370 370.3 20 107 257 513 1109 
0.2 62.2 60.3 5 19 44 86 183 63.4 62.5 4 19 44 88 187 
0.4 17.2 15.5 3 6 12 23 48 15.5 14.9 1 5 11 21 45 
0.6 7.2 5.6 2 3 5 9 18 5.3 4.8 1 2 4 7 15 
0.8 4.1 2.6 2 2 3 5 9 2.5 1.9 1 1 2 3 6 
1.0 3 1.4 2 2 3 3 6 1.5 0.9 1 1 1 2 3 
1.2 2.5 0.8 2 2 2 3 4 1.2 0.5 1 1 1 1 2 
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Table 4.9: In-control and out-of-control characteristics of the run-length distributions of the one-
sided 1-of-1 sign, the 2-of-2 sign, the 2-of-3 sign, the 1-of-1 SR and the 2-of-2 SR chart for the 

median under the double exponential distribution 
 

 1-of-1 sign (UCL=10) 1-of-1 SR (UCL=53) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 371.2 19 107 257 514 1110 370 370.4 19 106 256 511 1111 
0.2 54.6 53.8 3 16 38 75 162 48.7 48.2 3 14 34 68 145 
0.4 16.6 16.1 1 5 12 23 49 13.3 12.8 1 4 9 18 39 
0.6 7.5 7 1 3 5 10 21 5.7 5.1 1 2 4 8 16 
0.8 4.3 3.8 1 2 3 6 12 3.2 2.6 1 1 2 4 8 
1.0 3 2.4 1 1 2 4 8 2.2 1.6 1 1 2 3 5 

1.2 2.2 1.7 1 1 2 3 6 1.7 1 1 1 1 2 4 

 2-of-2 sign (UCL=9) 2-of-2 SR (UCL=33) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 368.5 21 107 256 512 1099 370 369 21 107 255 511 1102 
0.2 29 27.5 3 9 20 40 84 31.8 30.4 3 10 22 44 92 
0.4 8 6.7 2 3 6 11 21 8.1 6.8 2 3 6 11 22 
0.6 4.1 2.8 2 2 3 5 10 4 2.7 2 2 3 5 9 
0.8 2.9 1.5 2 2 2 4 6 2.8 1.4 2 2 2 3 6 
1.0 2.4 0.9 2 2 2 2 4 2.3 0.8 2 2 2 2 4 
1.2 2.2 0.6 2 2 2 2 4 2.1 0.5 2 2 2 2 3 

 2-of-3 sign (UCL=9) X-bar (UCL=0.9267) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 361 20 105 251 505 1089 370 368.1 20 107 257 510 1103 
0.2 28.2 26.4 3 9 20 38 81 80.1 79.9 5 23 56 111 240 
0.4 8 6.4 2 3 6 10 21 20.9 20.3 2 6 15 29 61 
0.6 4.2 2.6 2 2 3 5 10 6.9 6.4 1 2 5 9 20 
0.8 3 1.4 2 2 3 3 6 3 2.4 1 1 2 4 8 
1.0 2.5 0.9 2 2 2 3 4 1.7 1.1 1 1 1 2 4 
1.2 2.3 0.6 2 2 2 2 3 1.2 0.5 1 1 1 1 2 
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Table 4.10: In-control and out-of-control characteristics of the run-length distributions of the 
one-sided 1-of-1 sign, the 2-of-2 sign, the 2-of-3 sign, the 1-of-1 SR and the 2-of-2 SR chart for 

the median under the Cauchy distribution 
 

 1-of-1 sign (UCL=10) 1-of-1 SR (UCL=53) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 370.9 19 106 259 516 1113 370 367.7 19 105 255 511 1101 
0.2 18.2 17.7 1 6 13 25 53 15.6 15.1 1 5 11 21 46 
0.4 5.4 4.9 1 2 4 7 15 4.5 4 1 2 3 6 12 
0.6 3.2 2.6 1 1 2 4 8 2.7 2.1 1 1 2 4 7 
0.8 2.4 1.8 1 1 2 3 6 2.1 1.5 1 1 2 3 5 
1.0 2 1.4 1 1 2 3 5 1.7 1.1 1 1 1 2 4 

1.2 1.8 1.2 1 1 1 2 4 1.6 1 1 1 1 2 3 

 2-of-2 sign (UCL=9) 2-of-2 SR (UCL=33) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 368.4 21 107 257 511 1103 370 370.4 20 108 258 512 1111 
0.2 8.8 7.4 2 3 6 12 24 11.4 10.1 2 4 8 15 31 
0.4 3.3 1.9 2 2 2 4 7 4.1 2.8 2 2 3 5 10 
0.6 2.5 1 2 2 2 3 5 2.9 1.5 2 2 2 4 6 
0.8 2.2 0.7 2 2 2 2 4 2.5 1 2 2 2 3 5 
1.0 2.1 0.5 2 2 2 2 3 2.3 0.8 2 2 2 2 4 
1.2 2.1 0.4 2 2 2 2 3 2.2 0.6 2 2 2 2 4 

 2-of-3 sign (UCL=9) X-bar (UCL = 30.6802) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 360.5 21 106 252 503 1085 370 368 19 107 258 513 1101 
0.2 8.7 7.1 2 4 7 11 23 367 366.5 19 106 255 507 1096 
0.4 3.4 1.8 2 2 3 4 7 367 367.2 19 106 254 507 1097 
0.6 2.6 1 2 2 2 3 5 364 365.5 19 105 251 504 1090 
0.8 2.3 0.7 2 2 2 3 4 361 361.7 19 104 248 500 1084 
1.0 2.2 0.5 2 2 2 2 3 360 360 19 104 249 499 1077 
1.2 2.2 0.4 2 2 2 2 3 355 353.8 19 103 247 492 1066 
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Table 4.11 summarizes our findings from Tables 4.8, 4.9 and 4.10 and ranks the charts (from the 

most to the least favorable) under each of the three distributions. The ranking was based primarily on 

their ARL  (the current norm in the SPC literature), but since the run-length distributions are right 

(positive) skewed, we also looked at the median run-length (MDRL ), the first and third quartiles (i.e. 

1Q  and 3Q ), as well as the 5th and the 95th percentiles.  

 
 

Table 4.11: Ranking (from most to least favorable) of the one-sided nonparametric charts for 
the median under the normal, the double exponential and the Cauchy distributions based on out-

of-control ARL and run-length percentiles.  The ARL0 = 370 
 

Normal Double Exponential   Cauchy 

2-of-2 SR 2-of-2 sign / 2-of-3 sign 2-of-2 sign / 2-of-3 sign 

2-of-2 sign / 2-of-3 sign 2-of-2 SR 2-of-2 SR 

1-of-1 X  1-of-1 SR 1-of-1 SR 

1-of-1 SR 1-of-1 sign 1-of-1 sign 

1-of-1 sign 1-of-1 X  1-of-1 X  
 

 

 

Overall, it is concluded that the proposed sign charts 

 

(i) have substantially better out-of-control performance (i.e. shorter ARL  values) than the 1-

of-1 sign chart of Amin et al. (1995), 

 

(ii)  compete well with the SR charts of Bakir (2004) and Chakraborti and Eryilmaz (2007), and 

 

(iii)  outperform the Shewhart X  chart in case of the heavier tailed distributions. 
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4.2.6   Design of the two-sided 2-of-2 DR, the 2-of-2 KL and the 2-of-3 sign charts 
 

 

The characteristics of the in-control run-length distribution are typically used in the design and/or 

the implementation of a chart.  As noted before, the 0ARL  should be high so that the time and/or effort 

spent on searching for nonexistent out-of-control conditions is not wasted. 

 

Tables 4.12 and 4.13 display the 0ARL  and the FAR  values of the two-sided 1-of-1,  2-of-2 DR, 

2-of-2 KL and 2-of-3 sign charts, respectively.   For simplicity we only consider symmetrically placed 

control limits for the median i.e. aLCL =  and anUCL −= , so that 

−+ =≤=≥= 00 )|Pr()|Pr( pICLCLTICUCLTp ii . Asymmetric control limits may of course be used 

when necessary, say for monitoring percentiles other than the median. 

 

To attain the desired 0ARL  and/or FAR  (for any one of the four charting procedures) the 

practitioner may use Tables 4.12 and 4.13 to select the suitable charting constant a  (hence the control 

limits) for the sample size n  at hand.   Note that, as pointed out by Amin et al. (1995), the largest 

possible in-control ARL  for the two-sided 1-of-1 sign chart is 12 −n  when 5.0=p , and thus unless n  is 

sufficiently large, it is not possible to get close (even approximately) to an 0ARL  such as 370; this 

makes the 1-of-1 charts somewhat unattractive from a practical point of view. 

 

 However, for any combination of n  and a  values the 0ARL  (or FAR ) values of the 2-of-2 DR, 

the 2-of-2 KL and the 2-of-3 sign charts are higher (or smaller) than that of the 1-of-1 sign chart.  

 

For example, if 5=n  and 0=a  the 0=LCL  and the 5=UCL ; the 1-of-1 sign chart has an 0ARL  

of 16.00 (with a FAR  of 0.06250), whereas both the 2-of-2 DR and the 2-of-2 KL charts have much 

higher 0ARL  values, 272.00 and 528.00, respectively (and much smaller FAR  values, 0.00391 and 

0.00195, respectively).  Therefore, the new two-sided sign charts with signaling rules are more useful 

to the practitioner. 
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Table 4.12: The in-control characteristics (ARL and FAR) of the two-sided 1-of-1, the 2-of-2 
DR, the 2-of-2 KL and the 2-of-3 sign charts for the median (for samples of size 14)1(4====n )* 

 

Sample size LCL UCL 1-of-1 2-of-2 DR 2-of-2 KL 2-of-3 
n a n-a ARL0 FAR ARL0 FAR ARL0 FAR ARL0 FAR 

0 4 8.00 0.12500 72.00 0.01563 136.00 0.00781 79.37 0.01367 
4 

1 3     6.72 0.19531 8.74 0.14648 

0 5 16.00 0.06250 272.00 0.00391 528.00 0.00195 285.27 0.00366 
5 

1 4   9.78 0.14063 16.89 0.07031 13.75 0.08789 

0 6 32.00 0.03125 1056.00 0.00098 2080.00 0.00049 1081.23 0.00095 
1 5   25.47 0.04785 46.37 0.02393 30.45 0.03738 6 
2 4     5.69 0.23633 8.75 0.14771 

0 7 64.00 0.01563 4160.00 0.00024 8256.00 0.00012 4209.21 0.00024 
1 6 8.00 0.12500 72.00 0.01563 136.00 0.00781 79.37 0.01367 7 
2 5   7.08 0.20532 11.95 0.10266 11.01 0.11229 

0 8 128.00 0.00781       
1 7 14.22 0.07031 216.49 0.00494 418.77 0.00247 228.45 0.00460 
2 6   15.43 0.08356 27.40 0.04178 19.74 0.05940 

8 

3 5     5.16 0.26395 9.00 0.14435 

0 9 256.00 0.00391       
1 8 25.60 0.03906 680.96 0.00153 1336.32 0.00076 701.4 0.00147 
2 7 5.57 0.17969 36.54 0.03229 67.51 0.01614 42.18 0.02649 

9 

3 6   5.85 0.25787 9.72 0.12894 9.87 0.12692 

0 10 512.00 0.00195       
1 9 46.55 0.02148 2213.02 0.00046 4379.50 0.00023 2249.15 0.00045 
2 8 9.14 0.10938 92.73 0.01196 176.33 0.00598 100.94 0.01065 

3 7   11.37 0.11816 19.83 0.05908 15.43 0.07755 
10 

4 6       9.32 0.13987 

0 11 1024.00 0.00098       
1 10 85.33 0.01172 7367.11 0.00014   7432.31 0.00014 
2 9 15.28 0.06543 248.87 0.00428 482.46 0.00214 261.61 0.00400 
3 8 4.41 0.22656 23.90 0.05133 43.38 0.02567 28.78 0.03970 

11 

4 7   5.14 0.30121 8.46 0.15061 9.29 0.13590 

0 12 2048.00 0.00049       
1 11 157.54 0.00635       
2 10 25.92 0.03857 697.98 0.00149 1370.04 0.00074 718.66 0.00143 
3 9 6.85 0.14600 53.77 0.02131 100.68 0.01066 60.31 0.01820 
4 8   9.23 0.15031 15.89 0.07515 13.18 0.09203 

12 

        9.66 0.13529 

0 13 4096.00 0.00024       
1 12 292.57 0.00342       
2 11 44.52 0.02246 2026.71 0.00050 4008.89 0.00025 2061.32 0.00049 
3 10 10.84 0.09229 128.25 0.00852 245.67 0.00426 137.7 0.00773 
4 9   17.79 0.07121 31.83 0.03560 22.26 0.05221 

13 

5 8     7.64 0.16881 8.99 0.14145 

0 14 8192.00 0.00012       
1 13 546.13 0.00183       
2 12 77.28 0.01294 6049.95 0.00017   6109.11 0.00017 
3 11 17.43 0.05737 321.23 0.00329 625.02 0.00165 335.57 0.00310 
4 10 5.57 0.17957 36.58 0.03224 67.60 0.01612 42.23 0.02645 
5 9   7.92 0.17973 13.49 0.08987 11.84 0.10354 

14 

6 8       10.00 0.13091 
*Note: Only ARL0 values greater than 5 and less than 10 000 are shown. 
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Table 4.13: The in-control characteristics (ARL and FAR) of the two-sided 1-of-1, the 2-of-2 DR, 
the 2-of-2 KL and the 2-of-3 sign charts for the median (for samples of size 25)5(15====n )* 

 
Sample size LCL UCL 1-of-1 2-of-2 DR 2-of-2 KL 2-of-3 

n a n-a ARL0 FAR ARL0 FAR ARL0 FAR ARL0 FAR 

1 14 1024.00 0.00098       
2 13 135.40 0.00739       
3 12 28.44 0.03516 837.53 0.00124 1646.62 0.00062 860.1 0.00119 
4 11 8.44 0.11847 79.69 0.01403 150.94 0.00702 87.38 0.01237 
5 10   14.30 0.09106 25.28 0.04553 18.53 0.06358 

15 

6 9     7.07 0.18437 8.82 0.14483 

2 18 2484.78 0.00040       
3 17 388.07 0.00258       
4 16 84.62 0.01182 7244.68 0.00014   7309.35 0.00014 
5 15 24.16 0.04139 607.90 0.00171 1191.64 0.00086 627.27 0.00164 
6 14 8.67 0.11532 83.87 0.01330 159.07 0.00665 91.73 0.01176 
7 13   18.24 0.06926 32.68 0.03463 22.74 0.05103 

20 

8 12   5.93 0.25346 9.88 0.12673 9.94 0.12586 

3 22 6388.89 0.00016       
4 21 1098.27 0.00091       
5 20 245.26 0.00408       
6 19 68.34 0.01463 4738.32 0.00021 9408.31 0.00011 4790.78 0.00021 
7 18 23.10 0.04329 556.83 0.00187 1090.56 0.00094 575.4 0.00179 
8 17 9.28 0.10775 95.41 0.01161 181.54 0.00581 103.71 0.01036 
9 16   23.34 0.05268 42.32 0.02634 28.18 0.04059 
10 15   7.91 0.18008 13.46 0.09004 11.83 0.10366 

25 

11 14     5.65 0.23808 8.76 0.14759 
*Note: Only ARL0 values greater than 5 and less than 10 000 are shown. 
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4.2.7   Performance comparison of the two-sided sign charts 
 

The out-of-control performance of the two-sided sign control charts were compared amongst one 

another and with that of the two-sided SR charts under the normal, the double exponential and the 

Cauchy distributions; again we included the Shewhart X  chart for completeness. The design 

parameters of the charts were chosen (coupled with randomization) so that the in-control ARL  values 

were all equal to 370.  As for the one-sided charts various characteristics of the run-length distributions 

were obtained using simulations and shown in Tables 4.14, 4.15 and 4.16, respectively with a 

summary of our findings given in Table 4.17. 

Table 4.14: In-control and out-of-control properties of the run-length distributions of the two-sided 
1-of-1 sign, the 2-of-2 DR sign, the 2-of-2 KL sign, the 2-of-3 sign, the 1-of-1 SR, 2-of-2 DR SR, 2-of-2 

KL SR and the 1-of-1 X-bar charts under the Normal distribution 

 1-of-1 sign (LCL=0 , UCL = 10) 1-of-1 SR (LCL = -UCL = -55) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 369.78 19 106 255 507 1106 370 377.3 20 110 264 528 1138 
0.2 175.00 173.96 10 51 122 242 523 170.00 169.03 9 49 118 237 506 
0.4 56.42 55.87 3 17 39 78 167 51.81 51.31 3 15 36 72 154 
0.6 21.57 21.14 2 7 15 30 64 19.15 18.55 1 6 14 26 56 
0.8 9.82 9.33 1 3 7 13 29 8.60 8.14 1 3 6 12 25 
1.0 5.23 4.71 1 2 4 7 15 4.61 4.09 1 2 3 6 13 

1.2 3.24 2.70 1 1 2 4 9 2.85 2.29 1 1 2 4 7 

 2-of-2 sign DR (LCL=1 , UCL=9) 2-of-2 SR DR (LCL = -UCL = -39) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 363.53 20 106 253 501 1086 370 367.32 21 108 257 508 1103 
0.2 166.30 164.54 10 49 116 230 496 129.10 127.36 8 38 90 179 385 
0.4 43.75 42.3 4 14 31 60 128 27.42 26.04 3 9 19 38 80 
0.6 14.68 13.25 2 5 11 20 41 8.77 7.42 2 3 6 12 24 
0.8 6.83 5.47 2 3 5 9 18 4.25 2.92 2 2 3 5 10 
1.0 4.08 2.71 2 2 3 5 10 2.82 1.40 2 2 2 3 6 
1.2 2.97 1.54 2 2 2 4 6 2.29 0.74 2 2 2 2 4 

 2-of-2 sign KL (LCL=1, UCL = 9) 2-of-2 SR KL (LCL = -UCL = -37) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 364.24 21 107 256 512 1099 370 368.73 21 108 256 514 1102 

0.2 113.10 111.56 7 34 79 156 337 86.09 85.13 6 26 60 119 257 

0.4 28.28 26.81 3 9 20 39 82 18.69 17.48 2 6 13 25 53 

0.6 10.42 9.09 2 4 8 14 29 6.68 5.34 2 3 5 9 17 

0.8 5.29 3.92 2 2 4 7 13 3.60 2.23 2 2 3 4 8 

1.0 3.44 2.06 2 2 3 4 8 2.57 1.11 2 2 2 3 5 

1.2 2.65 1.17 2 2 2 3 5 2.18 0.58 2 2 2 2 4 

 2-of-3 sign (LCL=1 , UCL=9) 1-of-1 X-bar (LCL = -UCL = -0.94858) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 363.37 20 106 252 504 1088 370 368.45 19 106 256 510 1105 

0.2 108.50 106.69 7 33 76 150 318 110.50 109.73 6 32 77 153 329 

0.4 26.72 25.04 3 9 19 36 77 24.04 23.46 2 7 17 33 71 

0.6 9.94 8.33 2 4 7 13 27 7.39 6.87 1 2 5 10 21 

0.8 5.18 3.58 2 3 4 7 12 3.12 2.58 1 1 2 4 8 

1.0 3.43 1.84 2 2 3 4 7 1.77 1.17 1 1 1 2 4 

1.2 2.68 1.07 2 2 2 3 5 1.27 0.59 1 1 1 1 2 
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Table 4.15: In-control and out-of-control properties of the run-length distributions of the two-
sided 1-of-1 sign, the 2-of-2 DR sign, the 2-of-2 KL sign, the 2-of-3 sign, the 1-of-1 SR, 2-of-2 DR 

SR, 2-of-2 KL SR and the 1-of-1 X-bar charts under the double exponential distribution 

 1-of-1 sign (LCL=0 , UCL = 10) 1-of-1 SR (LCL = -UCL = -55) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 369.58 20 107 255 515 1106 370 377.57 21 113 263 528 1132 
0.2 91.20 90.31 5 27 63 126 272 88.55 88.69 5 25 61 123 263 
0.4 24.44 23.92 2 7 17 34 72 22.9 22.20 2 7 16 32 67.5 
0.6 10.04 9.49 1 3 7 14 29 9.19 8.73 1 3 6 13 27 
0.8 5.41 4.88 1 2 4 7 15 4.85 4.26 1 2 3 7 13 
1.0 3.47 2.92 1 1 3 5 9 3.06 2.48 1 1 2 4 8 

1.2 2.52 1.95 1 1 2 3 6 2.29 1.73 1 1 2 3 6 

 2-of-2 sign DR (LCL=1 , UCL=9) 2-of-2 SR DR (LCL = -UCL = -39) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 361.71 20 106 253 503 1086 370 370.37 20 107 257 511 1106 
0.2 77.17 75.93 5 23 54 106 229 78.94 77.11 5 24 55 109 233 
0.4 16.89 15.57 2 6 12 23 48 15.76 14.52 2 5 11 21 45 
0.6 6.93 5.56 2 3 5 9 18 6.17 4.85 2 3 5 8 16 
0.8 4.17 2.79 2 2 3 5 10 3.65 2.30 2 2 3 4 8 
1.0 3.09 1.67 2 2 2 4 6 2.76 1.33 2 2 2 3 6 
1.2 2.59 1.11 2 2 2 3 5 2.36 0.85 2 2 2 2 4 

 2-of-2 sign KL (LCL=1, UCL = 9) 2-of-2 SR KL (LCL = -UCL = -37) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 372.82 20 108 260 512 1114 370 368.05 21 107 257 513 1103 
0.2 48.75 47.51 4 15 34 66 143 51.43 49.96 4 16 36 71 151 
0.4 11.73 10.26 2 4 9 16 32 11.18 9.82 2 4 8 15 31 
0.6 5.45 4.01 2 2 4 7 13.5 4.89 3.56 2 2 4 6 12 
0.8 3.55 2.16 2 2 3 4 8 3.13 1.76 2 2 2 4 7 
1.0 2.76 1.28 2 2 2 3 5 2.49 1.02 2 2 2 3 5 
1.2 2.40 0.86 2 2 2 2 4 2.22 0.63 2 2 2 2 4 

 2-of-3 sign (LCL=1 , UCL=9) 1-of-1 X-bar (LCL = -UCL = -1.011335) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 

0 370 363.27 20 106 253 504 1089 370 342.30 23 141 258 504 1058 
0.2 46.66 44.73 4 15 33 64 136 159.80 180.02 5.5 46 107 210 416 
0.4 11.21 9.55 2 4 8 15 30 42.08 36.77 2.5 13 29 64.5 115 
0.6 5.26 3.68 2 3 4 7 13 10.44 8.83 1 3 8 16 24.5 
0.8 3.49 1.9 2 2 3 4 7 4.02 3.65 1 2 3 6 9.5 
1.0 2.77 1.16 2 2 2 3 5 2.01 1.59 1 1 1 2 5.5 
1.2 2.42 0.77 2 2 2 3 4 1.44 0.74 1 1 1 2 3 
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Table 4.16: In-control and out-of-control properties of the run-length distributions of the two-
sided 1-of-1 sign, the 2-of-2 DR sign, the 2-of-2 KL sign, the 2-of-3 sign, the 1-of-1 SR, 2-of-2 DR 

SR, 2-of-2 KL SR and the 1-of-1 X-bar charts under the Cauchy distribution 
 

 1-of-1 sign (LCL=0 , UCL = 10) 1-of-1 SR (LCL = -UCL = -55) 

Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 

0.0 370 369.19 19 107 255 513 1111 370 381.92 20 113 268 525 1143 
0.2 27.06 26.62 2 8 19 37 80 25.38 24.72 2 8 18 35 75 
0.4 7.00 6.43 1 2 5 10 20 6.55 6.06 1 2 5 9 18 
0.6 3.83 3.31 1 1 3 5 10 3.61 3.08 1 1 3 5 10 
0.8 2.76 2.21 1 1 2 4 7 2.59 1.99 1 1 2 3 7 
1.0 2.25 1.68 1 1 2 3 6 2.13 1.54 1 1 2 3 5 

1.2 1.97 1.38 1 1 1 2 5 1.88 1.30 1 1 1 2 5 

 2-of-2 sign DR (LCL=1 , UCL=9) 2-of-2 SR DR (LCL = -UCL = -39) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 361.28 20 106 252 504 1089 370 368.00 20 107 257 512 1099 
0.2 18.92 17.59 2 6 14 26 54 24.99 23.54 3 8 18 34 72 
0.4 5.08 3.70 2 2 4 7 12 7.28 5.98 2 3 5 10 19 
0.6 3.29 1.87 2 2 2 4 7 4.66 3.34 2 2 4 6 11 
0.8 2.71 1.25 2 2 2 3 5 3.77 2.42 2 2 3 5 9 
1.0 2.46 0.95 2 2 2 3 4 3.33 1.97 2 2 2 4 7 

1.2 2.32 0.76 2 2 2 2 4 3.07 1.69 2 2 2 4 6 

 2-of-2 sign KL (LCL=1, UCL = 9) 2-of-2 SR KL (LCL = -UCL = -37) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 363.78 21 108 257 500 1085 370 369.31 20 107 257 511 1099 
0.2 13.04 11.65 2 5 9 18 36 16.61 15.22 2 6 12 22 47 
0.4 4.14 2.79 2 2 3 5 10 5.34 4.00 2 2 4 7 13 
0.6 2.88 1.45 2 2 2 3 6 3.55 2.20 2 2 3 4 8 
0.8 2.46 0.94 2 2 2 3 4 2.96 1.54 2 2 2 4 6 
1.0 2.30 0.72 2 2 2 2 4 2.69 1.24 2 2 2 3 5 
1.2 2.21 0.58 2 2 2 2 4 2.53 1.04 2 2 2 3 5 

 2-of-3 sign (LCL=1 , UCL=9) 1-of-1 X-bar (LCL = -UCL = -61.36038) 
Shift ARL SDRL 5th Q1 MDRL Q3 95th ARL SDRL 5th Q1 MDRL Q3 95th 
0.0 370 361.35 20 106 253 507 1084 370 368.97 19 106 257 510 1103 
0.2 12.34 10.65 2 5 9 16 34 371.00 371.53 20 107 257 515 1109 
0.4 4.09 2.51 2 2 3 5 9 369.2 368.89 20 107 257 510 1103 
0.6 2.90 1.30 2 2 2 3 6 373.1 372.22 19 107 259 517 1116 
0.8 2.50 0.86 2 2 2 3 4 369.8 368.44 20 107 258 513 1103 
1.0 2.33 0.66 2 2 2 3 4 370.3 371.86 19 106 256 514 1110 
1.2 2.23 0.53 2 2 2 2 3 372.7 371.80 20 107 258 517 1114 

 

Table 4.17: Ranking (from most to least favorable) of the two-sided nonparametric charts under 
the normal, the double exponential and the Cauchy distributions based on out-of-control ARL 

and run-length percentiles.  The ARL0 = 370 
 

Normal Double Exponential Cauchy 
2-of-2 KL SR 2-of-2 KL sign / 2-of-3 sign 2-of-2 KL sign / 2-of-3 sign 

2-of-2 KL sign / 2-of-3 sign 2-of-2 KL SR 2-of-2 KL SR 

1-of-1 X  2-of-2 DR sign 2-of-2 DR sign 
2-of-2 DR SR 2-of-2 DR SR 2-of-2 DR SR 
2-of-2 DR sign 1-of-1 SR 1-of-1 SR 

1-of-1 SR 1-of-1 sign 1-of-1 sign 
1-of-1 sign 1-of-1 X  1-of-1 X  
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In general, we observe that:  

 

(i) the 2-of-2 DR sign, the 2-of-2 KL sign and the 2-of-3 sign charts all outperform the original 

1-of-1 sign chart under all three the distributions, and 

 

(ii)  the 2-of-2 KL sign chart and the 2-of-3 sign chart are best overall; only outperformed by the 

2-of-2 KL SR chart in case of the normal distribution. (Note: the 2-of-2 KL charts generally 

outperform the 2-of-2 DR charts; whether the chart is based on the sign test or the SR test). 

 

More specifically, we note that: 

 

(i) under the normal distribution, the two-sided 2-of-2 KL SR chart performs the best (this was 

also the case for the one-sided charts), but the 2-of-2 KL sign and the 2-of-3 sign charts are 

good/close competitors, whereas 

 

(ii)   under the double exponential distribution and the Cauchy distribution: 

 

(a)  the 2-of-2 KL sign and the 2-of-3 sign charts are the top performers, 

 

(b)  the sign charts generally perform better than the SR charts except in case of the 1-of-1  

chart (i.e. the 1-of-1 SR chart is better than the 1-of-1 sign chart), 

 

(c) the 2-of-2 KL sign and the 2-of-3 sign charts are both better than the 2-of-2 KL SR 

chart, and  

 

(d) the 2-of-2 DR sign chart is better than the 2-of-2 DR SR chart. 
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4.3    Precedence charts for the unknown ππππ th quantile (Case U)  
 

 

Introduction 
 

Case U is the scenario when the π th percentile of the process distribution is unknown or 

unspecified; this is unlike Case K and as a consequence the control limits are unknown. 

 

To estimate the control limits a reference sample is obtained; this reference sample is also called 

the preliminary sample or the calibration sample or the Phase I sample. Once the control limits are 

estimated, Phase II starts. In Phase II the estimated control limits are used for future monitoring of the 

process using new incoming samples taken sequentially from the process; this is the prospective 

monitoring phase. 

 

The new control charts we consider here, in Case U, are based on the median test, which is 

essentially a modified sign test for two independent samples and is a member of a more general class 

of nonparametric two-sample tests referred to as precedence tests or precedence statistics (see e.g. 

Gibbons and Chakraborti, (2003)). We therefore refer to the charts of Case U as precedence charts. 

 

 

Assumptions 
 

We assume that 

 

(i) the reference sample ),...,,( 21 mXXX is a random  sample of size m  available from an in-

control (IC) distribution with an unknown continuous cumulative distribution function 

(c.d.f) )()( θ−= xFxFX  where θ  is the location parameter and F  is some continuous c.d.f 

with median zero, 

 

(ii)  each Phase II test sample ),...,,( 21 inii YYY  taken at sampling stage (time) ,...3,2,1=i  is a 

random sample (rational subgroup) of size 1>n  from an unknown continuous distribution 

with c.d.f )()( iY yFyG θ−= where iθ  is the location parameter of the ith test sample, and 

 

(iii)  the Phase II test samples are drawn sequentially and independently of one another and of 

the reference sample. 
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Charting statistics and control limits 
 

The control limits, as mentioned before, are estimated from the Phase I reference sample and then 

used for prospective monitoring of the process. In Phase II, one charting statistic is calculated from 

each new incoming sample and then compared to the estimated control limits. 

 

 The estimated control limits are found by arranging the Phase I observations in ascending order, 

that is, 

mmmm XXX ::2:1 ...<<<  

 

where mjX :  denotes the j th order statistic of the reference sample of size m , and selecting two order 

statistics maX :  and mbX :  (for a given mba ≤<≤1 ) so that the estimated control limits for the two-

sided precedence charts are given by 

 

maXLCL :
ˆ =    and       mbXLCU :

ˆ =   (4-28) 

 

respectively, where a  and b  are labeled the charting constants; determination of the charting 

constants will be discussed later. Note that, like the sign charts of Case K, the precedence charts do not 

have a centerline. 

 

The charting statistic at time ,...3,2,1=i  is an order statistic i
njY :  for nj ≤<1  from each of the 

Phase II test samples. 

 

 

The operation and the signaling rules (i.e. when a process is declared OOC) of the runs-rule 

enhanced precedence charts is similar to that of the sign charts; however, instead of comparing iT  (the 

sign statistic) with the known control limits UCL  andLCL  of (4-7) we now compare i
njY :  with the 

estimated control limits LCU ˆ  and LCL ˆ  of (4-28) at each sampling stage ,...3,2,1=i . 
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Remark 11 
 

 

(i) The median is a robust and flexible estimator of location in the sense that it is 

preferred in situations where large measurement errors are expected and is 

applicable in more diverse situations (unlike the mean). Thus, although we develop 

and discuss the theory of the 1-of-1 and the runs-rule enhanced precedence charts so 

that any order statistic can be used as charting statistic, the median is a popular 

choice in practice and we therefore focus mainly on the median chart, that is, the 

case where the charting statistic is taken as the test sample median. 

 

Furthermore, to simplify matters we assume that the sample size 12+= sn  is odd 

so that the median of the test sample i
njY :  is uniquely defined with 1+= sj . Thus, 

for example, when the subgroup size n is equal to 5, as is fairly common in SPC 

applications, the charting statistic is the 3rd smallest value in the test sample. 

 

 

(ii)  Only two-sided precedence charts are studied. The required modifications for the 

one-sided precedence charts are simple and briefly indicated in section 4.3.3. 

 

 

(iii)  The proposed precedence charts do not signal unless the charting statistic i
njY :  is less 

than or equal to the estimated lower control limit maX : or is greater than or equal to  

the estimated upper control limit mbX : . Although this is theoretically negligible as 

the underling process distributions are assumed to be continuous, in practice, one 

needs to apply the charts in a correct manner as ties might occur when it is found 

that the Y order statistic (i.e. charting statistic) is equal to one of the control limits. 

 

 

(iv) The precedence charts can be applied as soon as the necessary order statistic is 

available and can be a practical advantage in some applications.  We comment more 

on this point later. 
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4.3.1   Run-length distributions of the two-sided precedence charts 
 

 

The run-length distributions and the statistical characteristics of the precedence charts (such as the 

ARL , VARL  etc.) are required to design the charts and reveal important information regarding their 

performance. 

 

We again use a Markov chain approach to derive the run-length distributions and in some cases 

draw on the results of the geometric distribution of order k  to obtain closed form expressions. 

 

Even though the operation (i.e. the signaling events, when a process is declared OOC etc.) of the 

runs-rule enhanced precedence charts of Case U are similar to that of the runs-rule enhanced sign 

charts of Case K, there is a fundamental difference in deriving the run-length distributions of the 

precedence charts compared to that of the sign charts. 

 

In particular, because the control limits are estimated they are random variables (as indicated by 

the ^ - notation in (4-28)) and, consequently, the signaling indicators of the (two-sided) precedence 

charts i.e. 
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for ,...3,2,1=i  are dependent tri-variate (or binary) random variables. 

 

The design, analysis and performance of the charts must therefore take account of the additional 

variability introduced as a result of estimating the control limits; this is the main stumbling block in 

calculating the run-length distributions, here, in Case U, particularly for the charts that use signaling 

rules (ii) and (iii) defined in the beginning of section 4.1 on page 258. Like in Chapter 3 we use a two-

step approach to derive the run-length distribution which involves the method of conditioning (see e.g. 

Chakraborti, (2000)). 
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First we derive the conditional run-length distributions i.e. conditioned on the two order statistics 

(control limits), which lets us focus on specific values of the control limits. The performance of the 

charts as measured by their conditional run-length distributions are therefore different for each user as 

each user has his/her own control limits based on his/her own Phase I data (sample). 

 

Second we derive the unconditional (or marginal) run-length distributions by averaging over the 

joint distribution of the two order statistics. The unconditional run-length distributions reflect the 

bigger picture or the overall performance of the charts and take into account that the control limits are 

estimated. The performance of the charts as measured by their unconditional run-length distributions 

are therefore the same for each user.  
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Signaling probabilities 
 

The key ingredients to the conditional run-length distributions are 

(i) the one-step transition probabilities kip ,  and 

(ii)  the success probability α . 

 

The one-step transition probabilities are the elements of the transition probability matrix and are 

required in case one uses the Markov chain approach. The success probability, on the other hand, is a 

prerequisite if one wishes  to use the properties of the geometric distribution of order k  as it is a 

parameter of the distribution (see e.g. expressions (4-16) and (4-17)). 

 

The one-step transition probabilities and the success probability all depend on and are functions of 

the conditional probability of a signal i.e. the probability for a charting statistic to plot OOC given that 

(or conditionally on having observed) mama xX :: =  and mbmb xX :: = , which is given by  

 

)()(1

),|Pr(1

)ˆ,ˆ|1ˆPr(),,,(

::

:::::::

::::

majmbj

mbmbmamamb
i
njma

mbmaimbmaC

XGXG

xXxXXYX

xLCUxLCLGFXXp

+−=

==<<−=

==== ±± ξ
  (4-31) 

 

where jG  denotes the c.d.f of the jth  order statistic in a sample of size n  from a distribution with c.d.f 

G  and the subscript “C” in ),,,( :: GFXXp mbmaC
±  indicates that (4-31) is a conditional probability. 

 

Using the probability integral transformation (PIT) and the fact that the jth order statistic from a 

)1,0(uniform  distribution follows a beta distribution with parameters j and 1+− jn  (see e.g. Gibbons 

and Chakraborti, (2003)) it follows, for example, that 

 

)1,())(Pr(

)|)()(Pr(

)|Pr()(

)(::

::::

:::::

:
+−=≤=

=≤=

=≤=

jnjIXGU

xXXGYG

xXXYXG

maXGma
i

nj

mamama
i
nj

mamama
i
njmaj

 

 

where i
njU :  is the jth order statistic from a )1,0(uniform  distribution and 

∫
−−− −=

p vu
p dwwwvuvuI

0

111 )1()],([),( β     for    0, >vu  

is the c.d.f of the ),( vuBeta distribution, also known as the incomplete beta function. 
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Thus, the conditional probability of a signal in (4-31) can be expressed as 

 

)1,()1,(1),,,( )()(:: ::
+−++−−=± jnjIjnjIGFXXp

mamb XGXGmbmaC .  (4-32) 

 

 

With the conditional probability of a signal in (4-32) we can without difficulty find the conditional 

run-length distributions of the two-sided 1-of-1, the 2-of-2 DR, the 2-of-2 KL and the 2-of-3 

precedence charts. The unconditional run-length distributions, in general, follow straightforwardly 

from the conditional run-length distributions. 
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Remark 12 
 

 

(i) We denote, without loss of generality, the two order statistics ),( :: mbma XX  by ),( YX=Z  

and their observed values ),( :: mbma xx  by ),( yx=z . Thus when writing zZ =  it means 

),(),( :::: mbmambma xxXX =  or ),(),( yxYX = . 

 

In particular, this notation permits us to write (4-32) as 

  

)1,()1,(1),,,( )()( +−++−−=± jnjIjnjIGFYXp XGYGC .  (4-33) 

 

 

(ii)  It is instructive to compare the signaling probability of the two-sided sign chart of Case K 

with that of the two-sided precedence chart of Case U. 

 

Specifically, we note that by substituting )(XG  and )(YG  for p , replacing a  with 1−j  

and swapping b  for jn −  in (4-13) we obtain (4-33). 

 

 

(iii)  Because }1ˆ{ =±
iξ  if and only if }2ˆ{}1ˆ{ =∪= ii ξξ  we can re-express the conditional 

probability of a signal of the two-sided precedence chart in terms of that of the upper and 

the lower one-sided charts i.e.  

),,(),,(),,,( GFYpGFXpGFYXp CCC
+−± +=    (4-34) 

where  

)1,()|2ˆPr(),,( )(:: +−====− jnjIxXGFXp XGmamaiC ξ   (4-35) 

and 

)1,(1)|1ˆPr(),,( )(:: +−−====+ jnjIxXGFYp YGmbmbiC ξ . (4-36) 

 

 

Expression (4-34) will be particularly useful when deriving the run-length distributions of 

the two-sided precedence charts via the Markov chain approach. 

 

 

(iv) For notational simplicity and brevity we denote ),,,( GFYXpC
± , ),,( GFXpC

−  and 

),,( GFYpC
+  simply by ±

Cp , −
Cp  and +

Cp , respectively.  

 
 
 



 336 

4.3.1.1  Distribution of 11ofN : Run-length distribution for the 1-of-1 precedence chart 

 

 

The two-sided 1-of-1 precedence chart was studied in detail by Chakraborti et al. (2004); this chart 

is called the “basic” precedence chart.  The authors derived explicit formulae for both the conditional 

and the unconditional run-length distributions and their associated statistical characteristics (such as 

the ARL , VARL , FAR  etc.) by applying, amongst numerous other techniques, results of the geometric 

distribution of order 1=k  coupled with the method of conditioning (expectation by conditioning); 

doing so they have taken proper account of the dependency between the Phase II signaling events. In 

the paragraphs that follow, we simply review the most important statistical characteristics of the 1-of-1 

precedence chart; for complete details on the derivations of the results, see the original article by 

Chakraborti et al. (2004). 

 

 

Conditional run-length distribution 
 

In particular, Chakraborti et al. (2004) showed that given zZ =  the conditional distribution of the 

run-length 11ofN   is geometric with parameter (success probability) ),,,( GFYXpp CC
±± = . 

Accordingly, all properties and characteristics of the conditional run-length distribution follow 

conveniently from the properties of the geometric distribution of order 1=k . 

 

For example, the conditional p.m.f of 11ofN  is 

 

±−±−=== C
t

Cof pptN 1
11 )1()|Pr( zZ    for  ,...3,2,1=t  

 

whereas the conditional average run-length (CARL ) and the conditional variance of the run-length 

(CVARL ) are given by 

 

±=== Cofof pNECARL /1)|( 1111 zZ     and 2
1111 )/()1()|var( ±±−=== CCofof ppNCVARL zZ  

respectively. 

 

The conditional false alarm rate also follows straightforwardly as it is found by substituting GF =  

in ±
Cp , that is, 

)1,()1,(1),,,( )()(11 +−++−−== ± jnjIjnjIFFYXpCFAR XFYFCof . 
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Unconditional run-length distribution 
 

Most importantly Chakraborti et al. (2004) showed that by averaging over the joint distribution of 

Z one obtains the unconditional or marginal run-length distribution and its associated characteristics.  

 

 

The unconditional p.m.f of 11ofN , in particular, is given by 

 

( ) )()1()1()( ))|(Pr()Pr( 1
1111 tDtDqqEtNEtN C

t
Cofof

∗∗±−± −−=−==== ZZ Z  (4-37) 

 

for  ,...3,2,1=t   and 1)0( =∗D  where 
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with ±± −= CC pq 1  and where ),(, yxf ba  denotes the joint p.d.f of the ath and the bth order statistics in a 

reference sample of size m  from the )1,0(uniform distribution, given by 
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Likewise, by writing the conditional ARL  as 
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the unconditional average run-length ( )11ofUARL  follows by averaging over the joint distribution of Z  

and then simplifying i.e. 
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The unconditional probability of a signal follows in the same manner and is given by 

 

∫ ∫ +−++−−=

=====

−−

±±±±

1

0 0

,)()(
.),( ))1,()1,(1(

)),,,(())|1ˆ(Pr()1ˆPr(),(

11

y

baxGFyGF

Cii

dxdyyxfjnjIjnjI

GFyxpEEGFp ZZ Zξξ

  (4-39) 

For complete details on the derivation of expressions (4-37), (4-38) and (4-39) see Chakraborti et al. 

(2004).  

 

 

Remark 13 
 

Chakraborti et al. (2004) noted that, from equations (4-37), (4-38) and (4-39), “… it is 

evident that in general the run length distribution depends on the distribution functions F  

and G  through the composite function 1−= GFψ . For example, when GF = , the process 

is in control, so uu =)(ψ , and the in-control run length distribution follows …”. 

 

In particular, the in-control unconditional p.m.f is given by 

 

)()1()(Pr)Pr( 110,11 tDtDtNtN ofGFof −−==== =    for   ,...3,2,1=t   and  1)0( =D  

 

where 0,11ofN  denotes the in-control run-length random variable and 
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whereas the unconditional in-control average run-length ( 0,11ofUARL ) and the unconditional 

false alarm rate ( 11ofUFAR ) follows from (4-38) and (4-39) and given by 
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and 
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baxyof dxdyyxfjnjIjnjIFFpUFAR , 

 

respectively. 
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4.3.1.2  Distribution of DR
ofN 22 : Run-length distribution for the 2-of-2 DR precedence chart 

 

 

As pointed out in section 4.3.1.1, in Chakraborti et al. (2004) the idea of conditioning on the 

reference sample order statistics Z  was effectively used to derive the distribution of the run-length 

11ofN  of the two-sided 1-of-1 precedence chart and to study various properties of their chart in a 

convenient way.  Using the same conditioning idea we derive the conditional and the unconditional 

run-length distributions of the two-sided 2-of-2 DR chart. 

 

 

Conditional run-length distribution 
 

Given that zZ =  the sequence of signaling indicators ,...ˆ,ˆ,ˆ
321
±±± ξξξ  in (4-30) are i.i.d. Bernoulli 

random variables with success probability )|1))ˆ,ˆ((Pr( : zZ ==∉=± LCULCLYIp i
njC . Thus, 

conditionally on the order statistics Z  the run-length  DR
ofN 22  of the two-sided 2-of-2 DR chart follows 

a geometric distribution of order two. 

 

The conditional p.m.f of DR
ofN 22  is therefore given by (4-16) with ±= Cpα  and 2=k  i.e. 
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whereas the conditional average run-length (expected value or mean) and the conditional variance of 

the run-length can be found from (4-17) and given by  

 

22222 )(
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ppp
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respectively (see e.g. Remark 5). 
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Unconditional run-length distribution 
 

The complexity of the conditional distribution in (4-40), particularly for 3≥t , makes a direct 

application of conditioning to derive a closed form expression for the unconditional distribution 

of DR
ofN 22  unattractive.  Instead, we find the unconditional distribution of DR

ofN 22  by first conditioning on 

the total number of successes ∑
=

±=
n

i
inS

1

ξ̂  in the sequence of n random variables ±±±
nξξξ ˆ,...,ˆ,ˆ

21  . (Note 

that, here, n  is the number of random variables and not the sample size.) 

 

To this end, note that, although ±±±
nξξξ ˆ,...,ˆ,ˆ

21  is a sequence of dependent binary random variables 

they are exchangeable or symmetrically dependent; this means that any permutation of any subset of 

these random variables has the same distribution; this can be written as 

 

)1ˆ,...,1ˆPr()1ˆ,...,1ˆPr( 1)()1( ===== ±±±±
uu ξξξξ ππ    (4-43) 

 

for any permutation )(),...,1( uππ  of nu ≤,...,2,1 . Using (4-43) we can derive an exact closed form 

expression for the unconditional p.m.f of DR
ofN 22 . 

 

 

George and Bowman (1995) derived the distribution of the total number of successes nS   in a 

sequence of n  exchangeable binary trials.  According to their result 
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where 

)1ˆ,...,1ˆPr( 1 === ±±
uu ξξλ      for     ,n,, u ...21= .  (4-45) 

 

Using (4-44) the unconditional distribution of DR
ofN 22  is given by 
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The proof of (4-46) is straightforward for 2≤t  i.e 

 

22122 )1ˆ,1ˆPr()2Pr( λξξ ===== ±±DR
ofN  

 

where 2λ  is defined in (4-45). 

 

For ,3≥t  we write the unconditional distribution of DR
ofN 22  as 

 

)Pr()|Pr()Pr(
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  (4-47) 

 

and then first consider the conditional probability )|Pr( 22 ytStN t
DR
of −== . 

 

 

By de Finetti’s theorem a sequence of exchangeable random variables is conditionally i.i.d.. Hence, 

the conditional distribution of DR
ofN 22  given the number of successes in exchangeable binary random 

variables is the same as that for a sequence of i.i.d. binary variables; this latter distribution has been 

worked out in the literature (see e.g. Balakrishnan and Koutras (2002), p 56; note a typo) and is given 

by 
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Now, using (4-44) we have 
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so that (4-46) follows by substituting )Pr( ytSt −=  and (4-48) in (4-47). 
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Remark 14 
 

 

(i) Conditionally on the reference sample order statistics that define the Phase II control limits we 

have that 

u
C

u

i
iu

C
u p )()|1ˆPr()|1ˆ,...,1ˆPr(

1
1

±

=

±±± ======== ∏ zZzZ ξξξλ  

so that the unconditional probability uλ  in  (4-45) equals 
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±±±

1

0 0

,)()(

1

.),( )1,()1,(1

))(()()1ˆ,...,1ˆPr(

11

y

ba
u

xGFyGF

u
C

C
uuu

dxdyyxfjnjIjnjI

pEE ZZ λξξλ
 (4-49) 

 

 

(ii)  The run-length distribution of the two-sided 2-of-2 DR chart depends on the distribution 

functions F  and G  through the composite function 1−= GFψ  present in uλ  (see expression 

(4-49)). Thus, the in-control run-length distribution is obtained by substituting 0,uλ  in (4-46a) 

and (4-46b)  where 

 

( )∫ ∫ +−++−−=
1

0 0

,0, ),( )1,()1,(1
y

ba
u

xyu dxdyyxfjnjIjnjIλ  (4-50) 

 

and is found from (4-49) by substituting GF = . It is evident from (4-50) that the in-control 

run-length distribution of the two-sided 2-of-2 DR (like that of the 1-of-1 chart) is free from 

either F or G and that the 2-of-2 DR chart is thus distribution-free. 

 

 

(iii)    The unconditional false alarm rate, the unconditional average run-length etc of the two-sided 

2-of-2 DR chart is calculated later in section 4.3.2. 

 
 
 



 343 

4.3.1.3 Distribution of KL
ofN 22  and 32ofN : Run-length distribution for the two-sided 2-of-2 KL  and  

2-of-3 precedence charts 
 

 

In sections 4.3.1.1 and 4.3.1.2 we illustrated how to find the conditional and unconditional 

distributions of 11ofN  and DR
ofN 22  via the geometric distribution of order k ( = 1 or 2). Here, in section 

4.3.1.3, we illustrate how to find the conditional and unconditional distributions of KL
ofN 22  and 32ofN  

via the Markov chain approach. The conditional and unconditional distributions of 11ofN  and DR
ofN 22 , 

via the Markov chain approach, can be found in a similar manner and is not shown here. 

 

 

The Markov chain approach for finding the conditional run-length distributions of the (two-sided) 

precedence charts in Case U is similar to those of the sign charts in Case K. In particular, the state 

spaces are identical so that we merely substitute: 

 

(i) ),,( GFYpC
+  (defined in (4-36)) for ),,( θbnp+ , and 

 

(ii)  ),,( GFXpC
−  (defined in (4-35)) for ),,( θanp −  

 

in any one of the essential transition probability matrices of the two-sided sign charts (i.e. the hh×Q ’s 

given in (4-21), (4-22), (4-26) etc.) to obtain the conditional essential transition probability matrices 

C
hh×Q  (say) of the precedence charts. Note that, here, in Case U, the superscript “C” in C

hh×Q  indicates 

that we work with a conditional essential transition probability matrix i.e. conditioned on the order 

statistics Z . 

 

Upon substituting C
hh×Q  into (4-8), (4-9) and (4-10) we obtain the conditional p.m.f, the conditional 

ARL  (CARL ) and the conditional VARL  (CVARL ), respectively. The unconditional run-length 

distributions and the associated unconditional characteristics of the precedence chart is then found by 

averaging over the distribution of Z . 
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Conditional distributions of KL
ofN 22  and 32ofN  

 

Conditional on Z  the sequence of signaling indicators ,...ˆ,ˆ,ˆ
321 ξξξ in (4-29) are i.i.d. tri-variate 

random variables with: 

(i) −=== Ci p)|2ˆPr( zZξ , 

(ii)  +=== Ci p)|1ˆPr( zZξ   and 

(iii)  +− −−=== CCi pp1)|0ˆPr( zZξ  

respectively. 

 

 

Thus, conditional on Z  the run-length distribution of the two-sided 2-of-2 KL precedence chart is 

 

1QIQξzZ )()()|Pr( 44
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4422
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× −===       for    ,...3,2,1=t   (4-51) 

 

with the conditional average run-length and the conditional variance of the run-length given by 
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denotes the conditional essential transition probability matrix of the 2-of-2 KL chart and follows from 

(4-26) having substituted the conditional probabilities−
Cp  and +

Cp  (defined in (4-35) and (4-36)) for 

−p  and +p , respectively. 
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Likewise, the conditional p.m.f, the conditional average run-length and the conditional variance of the 

two-sided 2-of-3 precedence chart are 

 

1QIQξzZ )()()|Pr( 88
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respectively, where the conditional essential transition probability matrix of the 2-of-3 chart is given 

by  
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and follows from (4-27). In particular, expressions (4-55), (4-56) and (4-57) follow from having 

substituted C
88×Q  in (4-8), (4-9) and (4-10), respectively. 

 

 

 

Remark 15 
 

The conditional ARL  expressions in (4-52) and (4-56) have been symbolically simplified 

and closed form expressions are given in Table 4.5; however, here, in Case U, we 

substitute +
Cp   for +p  and −

Cp   for −p , respectively. Closed form expressions of the 

conditional VARL ’s in (4-53) and (4-57) can be obtained in a similar manner (i.e. 

simplifying the expressions symbolically). 
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Unconditional distributions of KL
ofN 22  and 32ofN  

 

The unconditional distributions of KL
ofN 22   and  32ofN  are obtained by averaging the conditional 

distributions given in (4-51) and (4-55) over the distribution of Z  i.e. 
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and 
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for ,...3,2,1=t . 
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Remark 16 
 

 

The unconditional or marginal distributions of KL
ofN 22   and 32ofN  in (4-59) and (4-60) 

depend on the distribution functions F  and G  through the composite function 1−= GFψ  

present in both  

)1,(
)(1 +−= −

− jnjIp
XGFC     and    )1,(1

)(1 +−−= −
+ jnjIp

YGFC , 

which form part of the conditional essential transition probability matrices in (4-54) and 

(4-58). 

 

 

The in-control unconditional run-length distributions follow by substituting GF =  in −
Cp  

and +
Cp  so that uuGF =− )(1 .  

 

For example, the in-control marginal (or unconditional) run-length distribution of the two-

sided 2-of-2 KL chart is 
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CQ . 

 

 

Once again, the in-control run-length distribution is seen to be free from both  F and G, 

and thus the 2-of-2 KL chart is distribution-free; the same being true for 2-of-3 precedence 

chart. 
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4.3.2   Unconditional ARL, VARL and FAR calculations 
 

 

In order to design and study the performance of a Phase II control chart one typically examines the 

average and the variance of the unconditional run-length distribution (UARL  & UVARL ) along with 

the unconditional false alarm rate (UFAR ). 

 

For the proposed nonparametric runs-rule enhanced precedence charts, expressions for the average 

and the variance of the unconditional run-length distribution can be obtained exactly and most 

conveniently derived by using the characteristics of the conditional run-length distributions coupled 

with conditional expectation. 

 

To this end, note that, 

 

))|(()( ZZ NEENE =  and ))|((var))|(var()var( ZZ ZZ NENEN +=  (4-61) 

 

where  )(NE  and )var(N  denote the unconditional characteristics whilst )|( ZNE  and )|var( ZN  

denote the conditional characteristics (i.e. conditioned on Z ). The unconditional false alarm rate 

(UFAR ) can be obtained in a similar manner and is shown below.  
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4.3.2.1 Unconditional ARL, VARL and FAR of the 2-of-2 DR chart 

 

 

Unconditional ARL 
 

The unconditional ARL  for the 2-of-2 DR chart is computed by averaging expression (4-41) over 

the joint distribution of the order statistics. 

 

Thus 
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The in-control unconditional average run-length ( DR
ofUARL 0,22 ) is obtained by substituting GF =  in  

(4-62) and given by 
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Unconditional VARL 
 

The unconditional variance of the 2-of-2 DR chart is obtained by noting that, in general, the 

unconditional variance in (4-61) can be re-written as 
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  (4-64) 

 

For the 2-of-2 DR chart, in particular, we have that )|( 22 ZDR
ofNE  and )|var( 22 ZDR

ofN  are given by  

(4-41) and (4-42), respectively so that the unconditional variance of the run-length of the 2-of-2 DR 

chart is given by  
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The in-control variance of the unconditional run-length distribution of the 2-of-2 DR chart is found by 

substituting )1,()1,(1 +−++−− jnjIjnjI XY  for ±
Cp  in expression (4-65), where ±Cp  is defined in 

(4-33). 

 

 

Unconditional FAR 
 

The conditional false alarm rate of the 2-of-2 DR chart follows from Table 4.5 by substituting 

),,( GFYpp CC
++ =  (with GF = ) for +

0p and ),,( GFXpp CC
−− =  (with GF = ) for −

0p and is given by 
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By averaging over the joint distribution of the order statistics we obtain the unconditional false alarm 

rate of the 2-of-2 DR chart i.e. 
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 (4-66) 

 

where )(xf a  and )(xfb denotes the marginal p.d.f’s of the ath and the bth order statistics in a random 

sample (the reference or Phase I sample) of size m  from a )1,0(uniform distribution, which are known 

to be a )1,( +− amaBeta  distribution and a )1,( +− bmbBeta distribution, respectively. 
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4.3.2.2  Unconditional ARL, VARL and FAR of the 2-of-2 KL chart 
 

 

Unconditional ARL 
 

The conditional ARL  (or the conditional expected value) of the 2-of-2 KL chart follows from (4-

52), with a symbolically simplified version given in Table 4.5, i.e. 
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so that by averaging over Z , the unconditional ARL  of the 2-of-2 KL chart  is found to be 
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 (4-67) 

 

The in-control unconditional average run-length is again obtained by substituting GF =  in (4-67) 
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which is distribution-free. 

 

 

Unconditional VARL 
 

Substituting )|var( 22 ZKL
ofN  (given in (4-53)) and )|( 22 ZKL

ofNE  (given in (4-52)) in (4-64) we find 

that the unconditional variance of KL
ofN 22  is given by 
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Unconditional FAR 
 

 

The conditional false alarm rate of the 2-of-2 KL chart follows from Table 4.5 by substituting 

),,( GFYpp CC
++ =  (with GF = ) for +

0p and ),,( GFXpp CC
−− =  (with GF = ) for −

0p  and is given by 
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  (4-70) 

 

By averaging over the joint distribution of the order statistics the unconditional false alarm rate is 

obtain as 
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which is again distribution-free. 
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4.3.2.3  Unconditional ARL, VARL and FAR of the 2-of-3 chart 
 

 

Unconditional ARL and VARL 
 

The unconditional ARL and unconditional VARL  of the 2-of-3 chart are obtained in the same 

manner as that of the 2-of-2 KL chart; that is, we use the conditional counterparts derived via the 

Markov chain approach and find that 
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respectively. 

 

 

Unconditional FAR 
 

The conditional FAR  of the 2-of-3 chart is found (like that of the 2-of-2 DR chart and the 2-of-2 

KL chart) from Table 4.5 by substituting the conditional probabilities−
Cp  and +

Cp  (defined in (4-35) 

and (4-36) with GF = ) for −p  and +p , respectively and is given by 
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The unconditional FAR is thus given by 
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4.3.3  Run-length distributions of the one-sided precedence charts 
 

 

If detecting higher (lower) values is of interest, that is, whether the parameter or percentile of 

interest has shifted to the right (left), we can use a one-sided upper (lower) control chart with an 

estimated upper (lower) control limit mbXLCU :
ˆ =  ( maXLCL :

ˆ = ) only. 

 

The operation of the one-sided upper and lower runs-rules enhanced precedence charts of Case U 

is similar to that of the one-sided upper and lower runs-rules enhanced sign charts of Case K. For 

example, the 2-of-2 one-sided upper (lower) precedence chart signals on the first occurrence of a run 

of length two of the charting statistic i njY :  on or above (below) the estimated upper (lower) control 

limit. 

 

The derivation of the run-length distributions of the one-sided runs-rules enhanced precedence 

charts parallels that of the two-sided precedence charts. In particular, we let 
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for ,...3,2,1=i denote the indicator functions for the one-sided precedence charts corresponding to the 

events }ˆ{ : LCUY i
nj ≥  and }ˆ{ : LCLY i

nj ≤ , respectively. Then, we can again use a two-step approach to 

derive the run-length distribution. In other words, we first derive the conditional run-length 

distribution i.e. conditioned on the particular order statistic (control limit) and then, second, we derive 

the unconditional or marginal run-length distribution by “averaging over” the distribution of the order 

statistic that constitutes the Phase II control limit. 

 

In particular, given mbmb xX :: =  the sequence of signaling indicators ,...ˆ,ˆ,ˆ
321
+++ ξξξ  are i.i.d. 

Bernoulli random variables with success probability 
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so that the conditional distribution of the run-length variable +
22ofN  of the 2-of-2 upper one-sided 

precedence chart, for example,   is geometric of order 2=k  with parameter (success probability) 

),,( GFyppC
++ = . Consequently, all the properties and the characteristics of the conditional run-

length distribution follow conveniently from the properties of the geometric distribution of order 2=k  

by substituting += Cpα  and 2=k  in expressions (4-16) and (4-17). 

 

Alternatively, we can use a Markov chain approach; doing so we find that  
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with the conditional average run-length and the conditional variance of the run-length given by 
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denotes the conditional essential transition probability matrix of the 2-of-2 upper one-sided precedence 

chart and follows from (4-15) having substituted +
Cp  for +p . 

 

The unconditional p.m.f of +
22ofN , for example, is obtained by averaging the conditional run-length 

distribution over the distribution of mbX :  i.e. 
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To obtain a closed form expression of the unconditional p.m.f of +
22ofN  requires the same steps as 

carried out in case of the 2-of-2 DR precedence chart of section 4.3.1.2 and therefore not shown here. 
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4.3.4   Design and implementation of the two-sided precedence charts 
 

 

In order to implement the proposed precedence charts in practice we need the upper and the lower 

control limits. This means that we need to find the indices (charting constants) a  and b  that specify 

the reference sample order statistics, which constitute the lower and the upper control limit, 

respectively. 

 

 

Determination of charting constants 
 

In Phase II applications one typically determines the charting constants a  and b  so that a specified 

in-control unconditional average run-length (say, ∗
0UARL  equal to 370 or 500) is obtained.  This means 

that we have to solve 
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 (4-72) 

for the 1-of-1 chart, 
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for the 2-of-2 DR chart, 
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for the 2-of-2 KL chart and 

 

 

( )∫ ∫
−

×−=
1

0 0

,
1

0,88
*

0,32 ),()(
y

ba
C

of dxdyyxfUARL 1QIξ    (4-75) 

for the 2-of-3 chart where C
0,88×Q  follows from (4-58) by substituting )1,(1 +−− jnjIY  for +

Cp  and 

)1,( +− jnjIY  for −
Cp . 
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4.3.4.1 Charting constants of the 1-of-1 chart 
 

Chakraborti et al. (2004) provided values for the charting constants a  and b  for the two-sided 1-

of-1 precedence chart for a number of different choices (combinations) of the size m  of the Phase I 

reference sample, the size n  of  Phase II samples and j  (the selected order statistic) so that the  in-

control unconditional average run-length (i.e. 0,11ofUARL ) is close to  370 , 500 and 1000, respectively. 

 

 

4.3.4.2 Charting constants of the 2-of-2 DR, 2-of-2 KL and 2-of-3 charts 
 

Tables 4.18, 4.19 and 4.20 display various choices (combinations) of the charting constants a  and 

b  for the two-sided 2-of-2 DR, the two-sided 2-of-2 KL and the two-sided 2-of-3 charts, for a given or 

specified in-control unconditional ARL  in the neighborhood of 300 and 500, when reference samples 

of size =m 50, 100, 200 and 500 are used to estimate the control limits in Phase I and these limits are 

used to monitor the location (center) of a process using the medians of Phase II (test) samples of size 

5=n , 7, or 9, respectively. Thus, j  equals 3, 4, and 5, respectively in the tables.  

 

Note that for each combination of values of n, j and m the tables display (in each cell) the 0UARL , 

the UFAR  and ),( ba  values, where the 0UARL  values are in the neighborhood of 300 to 500. 

 

Since the Phase II (test) sample median is used as the charting statistic and the Phase II sample size 

n  is odd, it seems reasonable to use symmetric control limits, and thus we take 1+−= amb , so that 

only a  needs to be determined.  However, this needs not be the case when the chart constants are to be 

determined for a charting statistic other than the median that might be of interest.  

 

In addition, note that, in general, it is rare to achieve an 0UARL  (or an UFAR ) exactly as specified 

(i.e. 300 or 500) with the nonparametric charts because the in-control distribution of the run-length 

distribution is discrete.  However, as can be seen, one can get reasonably close to the values typically 

used in practice.  

For example, from Table 4.18 for 500=m ,  5=n  and 3=j , one set of constants for the 2-of-2 

DR chart are given by 72=a  and 429172500 =+−=b  so that  500:72
ˆ XLCL =  and 500:429

ˆ XLCU = . 

In this case the achieved (or attained) 0UARL  and the attained unconditional FAR  of the chart are 

496.90 and 0.0025, respectively.  Moreover, these are the exact values and remain the same for all 

continuous distributions.  If instead we took 71=a  and 430171500 =+−=b , so that 500:71
ˆ XLCL =  
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and 500:430
ˆ XLCU = , the achieved 0UARL  increases to 536.72 and the attained FAR  decreases to 

0.0023.   For a more moderate reference sample size, such as 50=m , Table 4.18 shows that it is 

possible to obtain 0UARL  values such as 275.30 or 605.44; the latter which may be deemed reasonably 

large in practice.  Obviously as m and/or n increase, the available choices for the 0UARL  values also 

increase.  

 

Similar behavior is observed in the case of the two-sided 2-of-2 KL and the 2-of-3 charts shown in 

Tables 4.19 and 4.20, respectively. For instance, in case of the 2-of-2 KL chart,  when 500=m  and 

one uses 80=a  and 421180500 =+−=b , so that 500:80
ˆ XLCL =  and 500:421

ˆ XLCU = , the 0ARL  of the 

2-of-2 KL chart (when 5=n  and 3=j )  is 524.39, whereas the FAR  is 0.0023.  However, if instead 

one chooses to use 81=a  and 420181500 =+−=b , so that 500:81
ˆ XLCL =  and 500:420

ˆ XLCU = , the 

0UARL  decreases to 490.21,  whereas the UFAR  slightly increases to 0.0024. Although for 500=m , 

5=n  and 3=j  a specified 0UARL  such as 500 cannot be obtained exactly, by increasing the size of 

the reference sample m  and/or the test sample size n, the range of possible 0UARL  and UFAR  values 

that can be attained increases.  

 

All equations (i.e. (4-73), (4-74) and (4-75)) are solved using the software package Mathcad®14.0. 
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Table 4.18: Unconditional in-control average run-length (UARL0), unconditional false alarm rate 
(UFAR) and chart constants ),( ba 1 for the 2-of-2 DR nonparametric chart for  

m = 50,100,200,500 and )5 ,9( ),4 ,7( ),3 ,5(),( ====jn  
 

n=5 , j=3 n=7 , j=4 n=9 , j=5 

m=50 100 200 500 m=50 100 200 500 m=50 100 200 500 

605.44 548.99 537.62 536.72 597.80 509.54 597.72 526.08 976.53 739.47 558.51 528.95 

0.0072 0.0040 0.0029 0.0023 0.0090 0.0048 0.0027 0.0024 0.0084 0.0040 0.0031 0.0024 

(8,43) (15,86) (29,172) (71,430) (10,41) (19,82) (36,165) (90,411) (11,40) (21,80) (42,159) (104,397) 

275.30 373.31 443.56 496.90 264.91 345.93 490.44 487.01 383.92 481.18 456.18 488.41 

0.0121 0.0055 0.0034 0.0025 0.0150 0.0065 0.0033 0.0026 0.0144 0.0056 0.0037 0.0026 

(9,42) (16,85) (30,171) (72,429) (11,40) (20,81) (37,164) (91,410) (12,39) (22,79) (43,158) (105,396) 

 261.69 368.80 460.60  241.21 405.20 451.33 172.47 322.26 375.04 451.43 

 0.0074 0.0040 0.0026  0.0088 0.0039 0.0028 0.0236 0.0077 0.0044 0.0028 

 (17,84) (31,170) (73,428)  (21,80) (38,163) (92,409) (13,38) (23,78) (44,157) (106,395) 

  308.82 427.48   336.97 418.70  221.57 310.28 417.68 

  0.0047 0.0028   0.0046 0.0030  0.0104 0.0053 0.0030 

  (32,169) (74,427)   (39,162) (93,408)  (24,77) (45,156) (107,394) 

  260.37 397.20   281.98 388.83   258.24 386.83 

  0.0056 0.0031   0.0054 0.0032   0.0062 0.0033 

  (33,168) (75,426)   (40,161) (94,407)   (46,155) (108,393) 

   369.50    361.45    358.60 

   0.0033    0.0034    0.0035 

   (76,425)    (95,406)    (109,392) 

   344.12    336.33    332.75 

   0.0035    0.0037    0.0038 

   (77,424)    (96,405)    (110,391) 

   320.83    313.25    309.06 

   0.0037    0.0039    0.0041 

   (78,423)    (97,404)    (111,390) 

   299.44    292.03    287.31 

   0.0040    0.0042    0.0044 

   (79,422)    (98,403)    (112,389) 
1The three rows of each cell shows the achieved (attained) UARL0, the UFAR and the charting constants (a , b), respectively 
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Table 4.19:  Unconditional in-control average run-length (UARL0), unconditional false alarm 

rate (UFAR) and chart constants ),( ba 1 for the 2-of-2 KL nonparametric chart for  
m = 50,100,200,500 and )5 ,9( ),4 ,7( ),3 ,5(),( ====jn  

 
n=5 , j=3 n=7 , j=4 n=9 , j=5 

m=50 100 200 500 m=50 100 200 500 m=50 100 200 500 
1010.37 650.75 559.01 524.39 985.39 594.56 504.01 506.61 1591.68 547.12 548.41 530.19 

0.0048 0.0033 0.0026 0.0023 0.0063 0.0041 0.0031 0.0024 0.0062 0.0049 0.0031 0.0023 

(8,43) (16,85) (32,169) (80,421) (10,41) (20,81) (40,161) (99,402) (11,40) (23,78) (45,156) (112,389) 

460.89 456.52 471.18 490.21 437.32 414.67 424.10 472.95 626.67 376.11 456.29 493.12 

0.0079 0.0044 0.0031 0.0024 0.0102 0.0054 0.0036 0.0026 0.0103 0.0066 0.0036 0.0025 

(9,42) (17,84) (33,168) (81,420) (11,40) (21,80) (41,160) (100,401) (12,39) (24,77) (46,155) (113,388) 

237.00 328.69 399.60 458.70 217.33 296.08 358.81 441.90 281.29 264.69 381.78 459.05 

0.0123 0.0057 0.0036 0.0026 0.0160 0.0070 0.0042 0.0027 0.0165 0.0086 0.0042 0.0027 

(10,41) (18,83) (34,167) (82,419) (12,39) (22,79) (42,159) (101,400) (13,38) (25,76) (47,154) (114,387) 

 242.15 340.87 429.62   305.16 413.24   321.15 427.69 

 0.0074 0.0041 0.0027   0.0048 0.0029   0.0049 0.0029 

 (19,82) (35,166) (83,418)   (43,158) (102,399)   (48,153) (115,386) 

  292.37 402.76   260.82 386.77   271.54 398.81 

  0.0047 0.0029   0.0056 0.0031   0.0057 0.0031 

  (36,165) (84,417)   (44,157) (103,398)   (49,152) (116,385) 

   377.91    362.28    372.18 

   0.0031    0.0033    0.0033 

   (85,416)    (104,397)    (117,384) 

   354.91    339.62    347.61 

   0.0033    0.0035    0.0035 

   (86,415)    (105,396)    (118,383) 

   333.60    318.62    324.92 

   0.0035    0.0037    0.0038 

   (87,414)    (106,395)    (119,382) 

   313.83    299.16    303.95 

   0.0037    0.0040    0.0040 

   (88,413)    (107,394)    (120,381) 

   295.48        284.55 

   0.0039        0.0043 

   (89,412)        (121,380) 
1The three rows of each cell shows the achieved (attained) UARL0, the UFAR and the charting constants (a , b), respectively 
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Table 4.20:  Unconditional in-control average run-length (UARL0), unconditional false alarm 
rate (UFAR) and chart constants ),( ba 1 for the 2-of-3 nonparametric chart for  

m = 50,100,200,500 and )5 ,9( ),4 ,7( ),3 ,5(),( ====jn  
 

n=5 , j=3 n=7 , j=4 n=9 , j=5 

m=50 100 200 500 m=50 100 200 500 m=50 100 200 500 

1336.27 755.74 623.35 672.76 1313.99 690.80 685.53 653.58 2423.24 1025.16 786.51 712.63 

0.0049 0.0033 0.0025 0.0018 0.0065 0.0040 0.0025 0.0019 0.0062 0.0035 0.0024 0.0018 

(7,44) (14,87) (28,73) (68,433) (9,42) (18,83) (35,166) (87,414) (10,41) (20,81) (40,161) (100,401) 

527.33 502.46 513.03 621.56 513.55 460.68 561.53 604.19 819.75 653.26 636.94 656.49 

0.0084 0.0045 0.0030 0.0020 0.0107 0.0055 0.0030 0.0021 0.0105 0.0049 0.0029 0.0020 

(8,43) (15,86) (29,172) (69,432) (10,41) (19,82) (36,165) (88,413) (11,40) (21,80) (41,160) (101,400) 

246.51 346.18 425.78 575.05 233.72 316.82 463.41 559.19 329.94 430.22 519.65 605.46 

0.0134 0.0060 0.0035 0.0021 0.0169 0.0073 0.0035 0.0022 0.0169 0.0066 0.0034 0.0021 

(9,42) (16,85) (30,171) (70,431) (11,40) (20,81) (37,164) (89,412) (12,39) (22,79) (42,159) (102,399) 

130.77 246.05 356.16 532.74 120.09 224.02 385.16 518.13 152.81 291.98 426.99 559.02 

0.0201 0.0078 0.0042 0.0023 0.0252 0.0095 0.0041 0.0024 0.0257 0.0087 0.0041 0.0023 

(10,41) (17,84) (31,170) (71,430) (12,39) (21,80) (38,163) (90,411) (13,38) (23,78) (43,158) (103,398) 

  179.74 300.11 494.18   162.45 322.29 480.62 79.60 203.71 353.24 516.70 

  0.0101 0.0048 0.0024   0.0122 0.0048 0.0026 0.0374 0.0114 0.0048 0.0025 

  (18,83) (32,169) (72,429)   (22,79) (39,162) (91,410) (14,37) (24,77) (44,157) (104,397) 

    254.64 459.00     271.43 446.32   145.81 294.15 478.10 

    0.0056 0.0026     0.0056 0.0028   0.0147 0.0056 0.0027 

    (33,168) (73,428)     (40,161) (92,409)   (25,76) (45,156) (105,396) 

    217.47 426.85     230.00 414.91     246.49 442.85 

    0.0065 0.0028     0.0065 0.0030     0.0065 0.0029 

    (34,167) (74,427)     (41,160) (93,408)     (46,155) (106,395) 

      397.43       386.11     207.81 410.63 

      0.0030       0.0032     0.0076 0.0031 

      (75,426)       (94,407)     (47,154) (107,394) 

      370.48       359.69       381.14 

      0.0031       0.0034       0.0033 

      (76,425)       (95,406)       (108,393) 

      345.75       335.41       354.12 

      0.0034       0.0030       0.0035 

      (77,424)       (96,405)       (109,392) 

      323.04       313.09       329.35 

      0.0037       0.0039       0.0038 

      (78,423)       (97,404)       (110,391) 

      302.15       292.53       306.61 

      0.0039       0.0042       0.0041 

      (79,422)       (98,403)       (111,390) 

      282.91       273.59       285.71 

      0.0042       0.0044       0.0044 

      (80,421)       (99,402)       (112,389) 

      265.18       256.12       266.50 

      0.0045       0.0047       0.0047 

      (81,420)       (100,401)       (113,388) 
1The three rows of each cell shows the achieved (attained) UARL0, the UFAR and the charting constants (a , b), respectively 
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Example 3 
 

In order to illustrate the runs-rule enhanced nonparametric precedence charts we use the data given 

in Table 5.1 on p. 213 and Table 5.2 on p. 219 of Montgomery (2001). 

 

The goal of this study was to establish statistical control of the inside diameter of the piston rings 

for an automotive engine manufactured in a forging process.  Twenty-five retrospective or Phase I 

samples, each of size five, were collected when the process was thought to be in-control.  As shown in 

Example 5.1 on p. 213 of Montgomery (2001), the traditional Shewhart X and R  charts provide no 

indication of an out-of-control condition, so these data are considered to be Phase I reference data and 

these “trial” limits were adopted for use in on-line process control. 

 

In order to implement the nonparametric control charts the charting constants are needed.  Possible 

symmetric control limits ( 1+−= amb ) for the four charts are shown in Table 4.21, for 125=m , 

5=n  and 3=j , along with the corresponding 0UARL  and UFAR  values. 

 
 

Table 4.21:  Unconditional in-control average run-length (UARL0), unconditional false alarm 
rate (UFAR) and chart constants ),( ba  for the two-sided 1-of-1, 2-of-2 DR, 2-of-2 KL and 2-of-3 

precedence charts when 125====m , 5====n  and 3====j  
 

1-of-1 2-of-2 DR 2-of-2 KL 2-of-3 

a b UARL0 UFAR a b UARL0 UFAR a b UARL0 UFAR a b UARL0 UFAR 

5 121 1315.98 0.0019 17 109 898.74 0.0023 18 108 1125.44 0.0018 17 109 822.40 0.0026 

6 120 695.09 0.0029 18 108 638.60 0.0031 19 107 819.47 0.0024 18 108 590.03 0.0034 

7 119 413.80 0.0044 19 107 464.38 0.0040 20 106 608.81 0.0030 19 107 433.39 0.0043 

8 118 267.40 0.0062 20 106 344.73 0.0052 21 105 460.54 0.0038 20 106 325.09 0.0055 

9 117 183.47 0.0084 21 105 260.69 0.0066 22 104 354.09 0.0048 21 105 248.51 0.0069 

    22 104 200.46 0.0084 23 103 276.28 0.0059 22 104 193.27 0.0086 
 
 

 

Using Table 4.21, for an 0UARL  of 500, one can take 7=a  so that 119=b , and therefore the 

control limits for the 1-of-1 precedence chart are the 7th and the 119th ordered values of the reference 

sample.  Thus 984.73ˆ
125:7 == XLCL  and 017.74ˆ

125:119 == XLCU , which yield an in-control 

unconditional ARL  of 413.80 and an unconditional FAR  of 0.0044. 

 

A plot of the medians for the 1-of-1 chart is shown in Figure 4.12 for all forty samples, the first 

twenty five of which are from Phase I.   It is seen that the 37th median is outside the control limits and 

so the 1-of-1 precedence chart signals on the 12th ( i.e. 37th – 25th) sample in the prospective phase. 
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Figure 4.12: The 1-of-1 Phase II Precedence chart for the Montgomery (2001) piston-ring data 

 
 

 

For the 2-of-2 DR chart, we take 19=a  so that 107119125 =+−=b  and the resulting limits, 

990.73ˆ
125:19 == XLCL  and 012.74ˆ

125:107 == XLCU , yield an 0UARL  and UFAR  of 464.38 and 

0.0040, respectively. Note, however, that if one chooses 20=a  so that 106=b , the control limits 

become 125:20
ˆ XLCL =  and 125:106

ˆ XLCU =  and the corresponding 0UARL  decreases to 344.73, whereas 

the UFAR  slightly increases to 0.0052.  The 2-of-2 DR chart is shown in Figure 4.13. 
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Figure 4.13: The 2-of-2 Phase II DR chart for the Montgomery (2001) piston-ring data 
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For the 2-of-2 KL chart we take 21=a  so that 105121125 =+−=b  and thus 

992.73ˆ
125:21 == XLCL  and 011.74ˆ

125:105 == XLCU ;  this yields an 0UARL  of 460.54 and an UFAR  

of 0.0038, respectively.  The 2-of-2 KL chart is shown in Figure 4.14. 
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Figure 4.14: The 2-of-2 Phase II KL chart for the Montgomery (2001) piston ring data 

 

 

Finally, for the 2-of-3 chart we take 19=a  so that 107119125 =+−=b  and thus 

990.73ˆ
125:19 == XLCL  and 012.74ˆ

125:107 == XLCU  which yields an 0UARL of 433.39 and an UFAR  

of 0.0043, respectively.  The 2-of-3 chart is identical to the 2-of-2 DR chart shown in Figure 4.14 and 

is thus omitted; this is so because the control limits (in this example) of the 2-of-3 chart are exactly the 

same as that of the 2-of-2 DR chart. 

 

The 2-of-2 DR charts signals on the 3rd sample whereas both the 2-of-2 KL and the 2-of-3 charts 

signal on the 10th sample in the prospective phase.  Note, however, that the achieved UFAR  values for 

the four charts are much larger (63%, 48%, 41% and 59%, respectively) than the nominal FAR of 

0.0027. 
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4.3.5  Performance comparison of the two-sided precedence charts 
 

 

The performance of Phase II control charts is typically compared by first designing each control 

chart to (roughly) have the same in-control unconditional average run-length ( 0UARL ) and then 

examining their out-of-control unconditional average run-length ( 1UARL ) values at some out-of-

control value(s) of the parameter of interest. The control chart with the shorter (or smaller) out-of-

control average run-length is usually preferred.  Since the proposed run rules enhanced Phase II charts 

are nonparametric Shewhart-type charts applicable in Case U, their main competitor is the basic 1-of-1 

precedence control chart of Chakraborti et al. (2004). 
 

To study robustness, three different underlying process distributions i.e. the normal distribution, 

the t-distribution and the gamma distribution, were used in a simulation study with 100 000 repetitions 

for each distribution investigated.  Because the shape of the t-distribution is very similar to that of the 

normal distribution (it is symmetric, but with more probability in the tails) it was used to study the 

effect of heavier tails. The gamma distribution was used to study the effect of skewness (see e.g. 

Figure 4.15). In order for the results of the three distributions to be comparable, the t  and gamma 

distributions were scaled so that they also had a mean of zero and a variance of one. Thus, the )1,0(n , 

the )4(
2

1 t  and the 1)1, 1( −Gamma  distributions were used. 

The parametric Shewhart X   chart was included in the comparison for the normal distribution but 

not for the t and the gamma distribution since the X chart is well-known to be non-robust under non-

normality (see e.g. Chakraborti et al. (2004)). 
 

 

Figure 4.15: Probability distributions used for the performance comparison of the two-sided 
precedence control charts 
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Tables 4.22, 4.23 and 4.24 display the performance comparison results when a reference sample of 

size 500=m  is used to estimate the control limits to monitor location in Phase II (future or test) 

samples of size 5=n and using 5:3Y , the median, as the charting statistic.  The charts were designed so 

that an 0UARL  value close to 500 was achieved. 

 

Instead of using randomization to get an 0UARL  exactly equal to 500, two combinations of chart 

constants are used for each nonparametric chart for which the 0UARL  was the nearest below and the 

nearest above the target *
0UARL  of 500.  The tables show the unconditional average run-length 

( 0UARL ) along with the unconditional standard deviation of the run-length ( 0SDRL ).  The shift refers 

to a shift in the mean of the distribution. 

 

From Table 4.22 it is seen that even under the normal distribution, the nonparametric charts can be 

quite efficient i.e. good at detecting shifts.  The 2-of-2 KL and the 2-of-3 charts are both almost as 

efficient as the X  chart, with shorter ARL ’s but a slightly higher SDRL ’s when the process is OOC, 

especially for small shifts.  

When the distribution is )4(t , that is symmetric yet with heavier tails than the normal, Table 4.23 

shows that the 2-of-2 DR, the 2-of-2 KL and the 2-of-3 schemes perform better than the basic 

precedence 1-of-1 chart in  detecting small shifts, with the 2-of-2 KL chart being the best and is closely 

followed by the 2-of-3 chart. Thus, the three new nonparametric Shewhart-type charts with signaling 

rules provide better alternatives than the basic precedence 1-of-1 chart and the X  chart, especially for 

smaller shifts. The same observation applies in the case of a right-skewed distribution such as the 

)1,1(Gamma  as shown in Table 4.24 but with the 2-of-2 KL chart doing the best.  So the runs-type 

signaling rules enhance the nonparametric chart’s sensitivity to a location shift. 

Moreover, the gain in efficiency (relative to the 1-of-1 chart) can be substantial; for example, for 

the t(4) distribution for a shift of 0.5, the OOC ARL  values of the 1-of-1, 2-of-2 DR, 2-of-3 and the 2-

of-2 KL  charts are 117.63, 40.98, 26.64 and 26.28, respectively when the corresponding 0ARL  values 

are very comparable, 520.27, 536.72, 532.74 and 524.39, respectively.  Note that in Table 4.24 for the 

)1,1(Gamma distribution the basic precedence chart display somewhat of a strange behavior in that 

both the ARL  and SDRL  values first increase from their corresponding values for the in-control case 

for a shift of 0.25; thereafter the ARL  and SDRL  values decrease for increasing shifts as it might be 

expected.  We have not been able to explain this phenomenon.  A repeat of the simulations produced 

similar results.   
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Table 4.22:  Unconditional ARL and SDRL values for the normal distribution for the 2-of-2 DR, 
2-of-2 KL,  2-of-3, Basic (1-of-1) Precedence chart and the Shewhart X-bar chart when  

m = 500, n = 5, j = 3 
 

  2-of-2 DR 2-of-2 KL 2-of-3 
Shift ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 496.90 573.05 536.72 621.20 490.21 554.18 524.39 594.55 494.18 569.01 532.74 615.81 
0.25 233.82 278.56 250.23 299.59 170.07 203.00 180.06 215.88 161.67 196.04 171.95 209.89 
0.50 58.22 66.10 61.33 69.99 39.37 43.17 41.11 45.28 36.62 39.34 38.26 41.33 
0.75 17.55 17.85 18.23 18.64 12.99 12.60 13.39 13.06 12.75 11.06 13.15 11.58 
1.00 7.36 6.41 7.56 6.63 5.99 4.90 6.12 5.04 6.54 4.23 6.64 4.36 
1.25 4.12 2.90 4.19 2.97 3.62 2.34 3.67 2.39 4.43 1.98 4.47 2.03 
1.50 2.88 1.52 2.91 1.55 2.67 1.26 2.69 1.29 3.60 1.04 3.62 1.06 
1.75 2.36 0.86 2.37 0.87 2.27 0.72 2.28 0.74 3.24 0.58 3.25 0.58 
2.00 2.13 0.49 2.14 0.50 2.10 0.41 2.10 0.42 3.09 0.32 3.09 0.33 
2.25 2.04 0.28 2.05 0.28 2.03 0.23 2.03 0.23 3.03 0.18 3.03 0.18 
2.50 2.01 0.14 2.01 0.15 2.01 0.12 2.01 0.12 3.01 0.09 3.01 0.09 
2.75 2.00 0.07 2.00 0.07 2.00 0.06 2.00 0.06 3.00 0.05 3.00 0.05 
3.00 2.00 0.03 2.00 0.03 2.00 0.02 2.00 0.02 3.00 0.02 3.00 0.02 

  (a=72,b=429)  (a=71,b=430) (a=81,b=420) (a=80,b=421) (a=72,b=429) (a=71,b=430) 
  1-of-1 X-bar       

Shift ARL SDRL ARL SDRL ARL SDRL       
0.00 460.22 538.61 520.27 613.67 500.00 571.14       
0.25 233.27 290.26 261.60 329.17 184.12 216.66       
0.50 70.42 85.43 77.73 95.38 43.38 48.51       
0.75 23.74 27.01 25.79 29.64 13.12 13.71       
1.00 9.58 10.11 10.26 10.93 5.19 4.93       
1.25 4.63 4.43 4.88 4.72 2.63 2.15       
1.50 2.66 2.21 2.76 2.34 1.67 1.08       
1.75 1.78 1.22 1.83 1.28 1.26 0.58       
2.00 1.36 0.72 1.39 0.75 1.09 0.32       
2.25 1.16 0.44 1.17 0.45 1.03 0.17       
2.50 1.06 0.26 1.07 0.27 1.01 0.08       
2.75 1.02 0.15 1.02 0.16 1.00 0.03       
3.00 1.01 0.08 1.01 0.09 1.00 0.01       

  (a=25,b=476) (a=24,b=477) 3.084500892       
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Table 4.23: Unconditional ARL and SDRL values for the 2-of-2 DR, 2-of-2 KL,  2-of-3 and 
    the Basic (1-of-1) Precedence chart for the t(4) distribution when  m = 500, n = 5, j = 3 

 
  2-of-2 DR 2-of-2 KL 

Shift ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 496.90 573.05 536.72 621.20 490.21 554.18 524.39 594.55 
0.25 200.92 248.00 215.95 268.18 138.19 170.25 146.90 182.03 
0.50 38.68 45.31 40.98 48.41 25.09 27.66 26.28 29.19 
0.75 10.01 9.77 10.41 10.26 7.43 6.66 7.65 6.92 
1.00 4.26 3.11 4.35 3.22 3.61 2.36 3.67 2.43 
1.25 2.72 1.33 2.75 1.37 2.52 1.08 2.54 1.10 
1.50 2.23 0.67 2.24 0.68 2.17 0.55 2.17 0.56 
1.75 2.07 0.36 2.08 0.36 2.05 0.30 2.05 0.30 
2.00 2.02 0.19 2.02 0.20 2.02 0.16 2.02 0.16 
2.25 2.01 0.11 2.01 0.11 2.00 0.09 2.00 0.09 
2.50 2.00 0.06 2.00 0.06 2.00 0.05 2.00 0.05 
2.75 2.00 0.03 2.00 0.03 2.00 0.03 2.00 0.03 
3.00 2.00 0.02 2.00 0.02 2.00 0.02 2.00 0.02 

  (a=72,b=429)  (a=71,b=430) (a=81,b=420) (a=80,b=421) 
  2-of-3 1-of-1 

Shift ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 494.18 569.01 532.74 615.81 460.22 538.61 520.27 613.67 
0.25 138.65 175.16 147.99 189.23 288.43 370.47 328.18 426.13 
0.50 25.36 27.21 26.64 28.92 102.82 143.88 117.63 167.75 
0.75 8.19 6.28 8.43 6.57 32.84 45.71 37.43 53.44 
1.00 4.53 2.14 4.59 2.20 11.19 14.51 12.58 16.84 
1.25 3.49 0.92 3.51 0.94 4.47 5.01 4.91 5.71 
1.50 3.16 0.53 3.16 0.46 2.25 1.97 2.40 2.20 
1.75 3.05 0.35 3.05 0.38 1.46 0.90 1.51 0.98 
2.00 3.02 0.18 3.01 0.13 1.16 0.46 1.18 0.49 
2.25 3.01 0.60 3.00 0.07 1.05 0.24 1.06 0.26 
2.50 3.00 0.04 3.00 0.05 1.02 0.13 1.02 0.14 
2.75 3.00 0.02 3.00 0.02 1.01 0.07 1.01 0.08 
3.00 3.00 0.01 3.00 0.01 1.00 0.04 1.00 0.04 

  (a=72,b=429) (a=71,b=430) (a=25,b=476) (a=24,b=477) 
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Table 4.24:  Unconditional ARL and SDRL values for the 2-of-2 DR, 2-of-2 KL 2-of-3and the        
     Basic (1-of-1) Precedence chart for the gamma(1,1) distribution when m = 500, n = 5, j = 3 

 
  2-of-2 DR 2-of-2 KL 

Shift ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 496.90 573.05 536.72 621.20 490.21 554.18 524.39 594.55 
0.25 233.82 815.92 250.23 887.98 310.12 405.49 331.64 436.02 
0.50 58.22 216.59 61.33 234.84 88.52 111.41 94.24 119.33 
0.75 17.55 61.43 18.23 66.27 28.03 33.05 29.65 35.23 
1.00 7.36 18.96 7.56 20.33 10.26 10.74 10.75 11.39 
1.25 4.12 6.42 4.19 6.84 4.55 3.79 4.72 4.00 
1.50 2.88 2.30 2.91 2.45 2.61 1.34 2.66 1.42 
1.75 2.36 0.74 2.37 0.80 2.05 0.34 2.06 0.37 
2.00 2.13 0.13 2.14 0.15 2.00 0.03 2.00 0.04 
2.25 2.04 0.00 2.05 0.00 2.00 0.00 2.00 0.00 
2.50 2.01 0.00 2.01 0.00 2.00 0.00 2.00 0.00 
2.75 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.00 
3.00 2.00 0.00 2.00 0.00 2.00 0.00 2.00 0.00 

  (a=72,b=429)  (a=71,b=430) (a=81,b=420) (a=80,b=421) 
  2-of-3 1-of-1 

Shift ARL SDRL ARL SDRL ARL SDRL ARL SDRL 
0.00 494.18 569.01 532.74 615.81 460.22 538.61 520.27 613.67 
0.25 314.31 425.10 336.97 459.01 527.27 730.48 600.16 844.59 
0.50 90.55 115.92 98.04 126.21 255.49 351.96 290.46 406.50 
0.75 30.22 35.15 31.84 37.14 124.76 170.53 141.61 196.68 
1.00 11.98 11.68 12.57 12.35 61.56 83.20 69.72 95.80 
1.25 6.01 4.18 6.23 4.48 30.80 40.94 34.78 47.05 
1.50 3.88 1.58 3.96 1.67 15.70 20.35 17.67 23.33 
1.75 3.15 0.51 3.17 0.54 8.22 10.23 9.20 11.69 
2.00 3.01 0.08 3.01 0.09 4.47 5.19 4.96 5.92 
2.25 3.00 0.01 3.00 0.01 2.58 2.64 2.83 3.02 
2.50 3.00 0.00 3.00 0.00 1.63 1.32 1.75 1.52 
2.75 3.00 0.00 3.00 0.00 1.19 0.61 1.24 0.72 
3.00 3.00 0.00 3.00 0.00 1.03 0.23 1.05 0.29 

  (a=72,b=429) (a=71,b=430) (a=25,b=476) (a=24,b=477) 
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Because the run-length distribution is highly right-skewed, exclusive use of the ARL (and the 

SDRL ) to characterize chart performance has been criticized in the literature and some researchers 

have strongly suggested an examination of the percentiles too (see e.g. Radson and Boyd, (2005) and 

Chakraborti, (2007)). 

 

To this end, the three quartiles (1Q , 2Q  and 3Q ) along with the 5th and the 95th percentiles are 

shown in Tables 4.25, 4.26, 4.27 and 4.28, for the 2-of-2 DR, the 2-of-2 KL, the 2-of-3 and the 1-of-1 

precedence chart, for the normal, )4(t  and )1,1(Gamma  distributions, respectively for 5=n  and 

3=j . Note that (i) these values are all unconditional i.e. being averaged over the joint distribution of 

the order statistics maX :  and mbX : , and (ii) these values were obtained via simulations (200 000 

repetitions) using SAS®9.1 since exact calculations, via enumeration of the c.d.f, took too long for the 

upper percentiles.  The SAS®-programs used in the simulations are provided in Appendix 4A. 

 

A comparison of the quartiles lead to the same general observation that the newly proposed 

nonparametric charts are more efficient than the basic precedence chart, with the 2-of-2 KL and the 2-

of-3 charts having a slight edge. 

 

For example, in the in-control case and with the t-distribution, for the 2-of-2 DR chart (with 

72=a  & 429=b ) the three quartiles are 127, 313 and 658, respectively, which are very close to 

those for the 2-of-2 KL chart (with 81=a  & 420=b ) and the 2-of-3 chart (with 72=a  & 429=b ): 

126, 312 & 650 and 127, 312 & 653, respectively.  By contrast, for the 1-of-1 precedence chart (with 

25=a  & 476=b ) the three quartiles are 116, 287 and 603, respectively, which are all smaller.  Since 

we want the in-control percentiles to be larger, the new charts are better.  On the other hand, in the out-

of-control case, for a shift of 0.50 in the mean, the quartiles for the 2-of-2 KL chart (with 81=a  & 

420=b ) and 2-of-3 chart (with 72=a  & 429=b ) are all shorter: 7, 16 & 33 and 8, 17 & 32, 

respectively, compared to both the 2-of-2 DR chart (with 72=a  & 429=b ): 11, 24 and 50 and the 1-

of-1 precedence chart (with 25=a  & 476=b ):  23, 57 and 127.  This shows that the 2-of-2 KL and 

the 2-of-3 charts are superior.  
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Table 4.25: The three quartiles (Q1, Q2 and Q3) and the 5th & 95th percentiles of the run-length 
distribution of the 2-of-2 DR chart; charting constants (a=72 , b=429) 

 

 normal t(4) gamma(1,1) 
Shift 5th Q1 Q2 Q3 95th 5th Q1 Q2 Q3 95th 5th Q1 Q2 Q3 95th 
0.00 23 128 314 657 1587 23 127 313 658 1588 23 127 313 653 1586 
0.25 11 58 144 306 758 10 49 121 260 662 23 129 329 734 2002 
0.50 4 16 37 76 183 3 11 24 50 122 8 37 93 205 547 
0.75 2 6 12 23 52 2 4 7 13 29 3 12 29 61 158 
1.00 2 3 5 10 20 2 2 3 5 10 2 5 10 21 51 
1.25 2 2 3 5 10 2 2 2 3 5 2 2 4 8 18 
1.50 2 2 2 3 6 2 2 2 2 4 2 2 2 4 8 
1.75 2 2 2 2 4 2 2 2 2 2 2 2 2 2 4 
2.00 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 
2.25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2.50 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2.75 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
3.00 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

 
 
 

Table 4.26: The three quartiles (Q1, Q2 and Q3) and the 5th & 95th percentiles of the run-length 
distribution of the 2-of-2 KL chart; charting constants (a=81 , b=420) 

 

 normal t(4) gamma(1,1) 
Shift 5th Q1 Q2 Q3 95th 5th Q1 Q2 Q3 95th 5th Q1 Q2 Q3 95th 
0.00 23 128 313 652 1554 24 126 312 650 1549 24 128 314 655 1552 
0.25 9 43 105 223 549 7 34 84 179 449 14 72 181 394 1037 
0.50 3 11 26 52 122 2 7 16 33 77 5 22 53 114 292 
0.75 2 4 9 17 38 2 3 5 10 20 2 8 17 36 88 
1.00 2 2 4 8 16 2 2 3 4 8 2 4 7 13 30 
1.25 2 2 3 4 8 2 2 2 3 5 2 2 3 6 12 
1.50 2 2 2 3 5 2 2 2 2 4 2 2 2 3 5 
1.75 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 
2.00 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 
2.25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2.50 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
2.75 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
3.00 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
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Table 4.27: The three quartiles (Q1, Q2 and Q3) and the 5th & 95th percentiles of the run-length 
distribution of the 2-of-3 chart; charting constants (a=72 , b=429) 

 

 normal t(4) gamma(1,1) 
Shift 5th Q1 Q2 Q3 95th 5th Q1 Q2 Q3 95th 5th Q1 Q2 Q3 95th 
0.00 25 127 312 653 1576 24 127 312 653 1580 25 128 313 655 1582 
0.25 10 41 99 208 524 8 34 82 176 457 15 72 179 392 1051 
0.50 4 11 24 48 111 4 8 17 32 76 6 23 54 114 295 
0.75 3 5 9 16 34 3 4 6 10 20 4 9 19 38 94 
1.00 3 4 5 8 15 3 3 4 5 9 3 5 8 15 33 
1.25 3 3 4 5 8 3 3 3 4 5 3 3 4 7 14 
1.50 3 3 3 4 6 3 3 3 3 4 3 3 3 4 7 
1.75 3 3 3 3 4 3 3 3 3 3 3 3 3 3 4 
2.00 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 
2.25 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
2.50 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
2.75 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 
3.00 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

 

 

 

Table 4.28: The three quartiles (Q1, Q2 and Q3) and the 5th & 95th of the run-length distribution 
of the Basic (1-of-1) precedence chart; charting constants (a=25 , b=476) 

 normal t(4) gamma(1,1) 
Shift 5th Q1 Q2 Q3 95th 5th Q1 Q2 Q3 95th 5th Q1 Q2 Q3 95th 

0.00 21 116 288 608 1489 21 116 287 603 1479 21 115 287 606 1477 
0.25 10 56 140 300 765 12 66 168 368 956 20 115 294 655 1786 
0.50 3 18 43 92 228 4 23 57 127 350 10 57 144 319 864 
0.75 2 6 15 31 75 2 8 19 41 110 5 28 71 157 420 
1.00 1 3 6 13 29 1 3 7 14 36 3 14 35 77 206 
1.25 1 2 3 6 13 1 1 3 6 13 2 7 18 39 103 
1.50 1 1 2 3 7 1 1 2 3 6 1 4 9 20 51 
1.75 1 1 1 2 4 1 1 1 2 3 1 2 5 10 26 
2.00 1 1 1 2 3 1 1 1 1 2 1 1 3 5 14 
2.25 1 1 1 1 2 1 1 1 1 2 1 1 2 3 7 
2.50 1 1 1 1 2 1 1 1 1 1 1 1 1 2 4 
2.75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
3.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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4.4    Concluding remarks: Summary and recommendations 
 

 

The new class of runs-rule enhanced nonparametric sign charts of Case K and the distribution-free 

precedence charts of Case U can be useful for the quality practitioner in that they 

 

(i) enhance the in-control and the out-of-control performance of the 1-of-1 sign chart of Amin 

et al. (1995) and the basic precedence chart of Chakraborti et al. (2004), respectively, and 

 

(ii)  outperform the classical and well-known Shewhart X  chart (especially for heavy-tailed or 

skewed distributions). 

 

In particular, the charts based on the k-of-k and the k-of-w signaling rules facilitate larger 0ARL  

and smaller FAR  values which allow practitioners greater flexibility while designing charts to best suit 

their needs. 

 

The key advantage and main benefits of the nonparametric charts are: 

 

(i) their in-control run-length distributions (and all associated performance characteristics such 

as the 0ARL  and FAR , for example) are the same for all continuous distributions, and 

 

(ii)  one does not have to assume symmetry of the underlying distribution (unlike the SR 

charts). Thus, practitioners need not worry about what the underlying distribution is (and 

the serious consequences/ramifications/costs if it is not normal, for example) as far as 

implementing and understanding the charts’ properties are concerned. 

 

The sign charts have an added advantage as they can be applied in situations where the data are just 

dichotomous.  

 

A further practical advantage of the precedence charts is their potential to save time and resources 

in situations where the data are naturally collected in an ordered fashion, as is common in “life-testing” 

type situations, where one observes the “time to failure” of some item and it is costly and time 

consuming to wait for all units to fail.  Because the control limits and the charting statistic of the 

precedence charts are based on order statistics, they can be applied as soon as the required order 

statistics are observed, whereas the Shewhart or CUSUM or EWMA X  charts can not be applied 

since one needs the full dataset to calculate the average. 
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Also, the precedence charts can be adapted to and applied in the case of ordinal data.  The charting 

statistic can be chosen to be any order statistic of the Phase II sample suitable in a specific application. 

The median, used in this chapter, of course enjoys the robustness property and is therefore less affected 

by the presence of outliers (very small or large observations) than the X  chart, for example. 

 

Finally, the implementation and application of the sign and precedence charts are easy using the 

tables with the charting constants (and attained 0ARL  and FAR  values) and it is recommend that they 

be used more frequently in practice. 
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4.5   Appendix 4A: SAS® programs 
 
 
 
 

4.5.1   SAS® programs to simulate the run-length distributions of the upper one-sided  
            X-bar, sign and SR charts in Case K 
 
 
 
 

4.5.1.1 The 1-of-1 X-bar, sign and SR charts 

 
*1-of-1 upper one-sided X-bar chart; 
 

proc iml; 
ARL = 370; 
sim = 100000; 
n = 10; 
UCL = probit( 1- 1/ARL)/sqrt(n); 
simrl = j(sim, 13, .); 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
ct = 0; 
do k = 1 to 10000000 while ( ^((ct>=UCL))  ); 
x = j(n, 1, .); 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
ct = sum(x)/n; 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
create  RL1of1_Xbar from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta120}]; 
append  from simrl; 
quit; 
proc univariate data =RL1of1_Xbar; 
var  delta000 delta020 delta040 delta060 delta080 delta1 00 delta120; 
run; 
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*1-of-1 upper one-sided sign chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
a = 0; 
n = 10; 
UCL = n-a; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = ( 1/ARL - 1 + probbnml( 0.5,n,n-a- 1) ) / (probbnml( 0.5,n,n-a- 1) - probbnml( 0.5,n,n-
a- 2)) ; 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
ct = 0; 
random = 0;  
do k = 1 to 10000000 while ( ^((ct>=UCL)|((ct=UCL- 1)&(random<=q)))  ); 
x = j(n, 1, .); 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec = x > med; 
ct = sum(vec); 
random = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
*print simrl;  
create  RL1of1_sign from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta120}]; 
append  from simrl; 
quit; 
proc univariate data =RL1of1_sign; 
var  delta000 delta020 delta040 delta060 delta080 delta1 00 delta120; 
run; 
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*1-of-1 upper one-sided SR chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
n = 10; 
UCL = 53; 
UCL1 = 51; 
cdfUCL = 0.002; 
pmfUCL1 = 0.0009; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = ( 1/ARL - cdfUCL) / ( pmfUCL1 ) ; 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
random = 0; 
ct = 0;   
do k = 1 to 10000000 while ( ^(   (ct>=UCL)  |  ((ct=UCL1)&(random<=q))   )  ); 
x = j(n, 1, .); 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec   = x > med; 
wplus = (vec`)*rank(abs(x)); 
ct = 2*wplus - n*(n+ 1)/ 2; 
random = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
create  RL1of1_SR from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta120}]; 
append  from simrl; 
quit; 
proc univariate data =RL1of1_SR; 
var  delta000 delta020 delta040 delta060 delta080 delta1 00 delta120; 
run; 
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4.5.1.2 The 2-of-2 sign and SR charts 
 

*2-of-2 upper one-sided sign chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
a = 1; 
n = 10; 
UCL = n-a; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = ( (sqrt( 4*ARL+1)+ 1)/( 2*ARL) - 1 + probbnml( 0.5,n,n-a- 1) ) /  
    (probbnml( 0.5,n,n-a- 1) - probbnml( 0.5,n,n-a- 2)) ; 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
x = j(n, 1, .); 
ct1 = 0; 
ct = 0; 
random1 = 0;  
random = 0;  
do k = 1 to 10000000 while (    
^( (  (ct1>=UCL)&(ct>=UCL)  )                     |  
   (  ((ct1=UCL- 1)&(random1<=q))&(ct>=ucl)  )     |  
   (  (ct1>=UCL)&((ct=UCL- 1)&(random<=q))  )      |  
   (  ((ct1=UCL- 1)&(random1<=q))&((ct=UCL- 1)&(random<=q)))  )  ); 
ct1 = ct; 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec = x > med; 
ct = sum(vec); 
random = ranuni( 0); 
random1 = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
create  RL2of2_sign from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta120}]; 
append  from simrl; 
quit; 
proc univariate data =RL2of2_sign; 
var  delta000 delta020 delta040 delta060 delta080 delta1 00 delta120; 
run; 
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*2-of-2 upper one-sided SR chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
n = 10; 
UCL = 33; 
UCL1 = UCL - 2; 
cdfUCL = 0.0527; 
pmfUCL1 = 0.0127; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = (  (sqrt( 4*ARL+1)+ 1)/( 2*ARL) -  cdfUCL ) / ( pmfUCL1 ) ; 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
x = j(n, 1, .); 
ct1 = 0; 
ct = 0; 
random1 = 0;  
random = 0;  
do k = 1 to 10000000 while (    
^( (  (ct1>=UCL)&(ct>=UCL)  )                     |  
 (  ((ct1=UCL1)&(random1<=q))&(ct>=ucl)  )     |  
 (  (ct1>=UCL)&((ct=UCL1)&(random<=q))  )      |  
 (  ((ct1=UCL1)&(random1<=q))&((ct=UCL1)&(random<=q)))  )  ); 
ct1 = ct; 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec   = x > med; 
wplus = (vec`)*rank(abs(x)); 
ct = 2*wplus - n*(n+ 1)/ 2; 
random = ranuni( 0); 
random1 = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
create  RL2of2_SR from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta120}]; 
append  from simrl; 
quit; 
proc univariate data =RL2of2_SR; 
var  delta000 delta020 delta040 delta060 delta080 delta1 00 delta120; 
run; 
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4.5.1.3 The 2-of-3 sign chart 
 

*2-of-3 upper-sided sign chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
a = 1; 
n = 10; 
UCL = n-a; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = 0.632202808; 
do d = 1 to 2.2 by 0.2;  
do j = 1 to sim; 
x = j(n, 1, .); 
ct2 = 0; 
ct1 = 0; 
ct = 0; 
random2 = 0; 
random1 = 0;  
random = 0;  
do k = 1 to 10000000 while (    
^(  
 ( (ct2>=UCL)                 & (ct1<UCL) &  (ct>=UCL)               )     | 
 ( ((ct2=UCL- 1)&(random2<=q)) & (ct1<UCL) &  (ct>=UCL)               )     | 
 ( (ct2>=UCL)                 & (ct1<UCL) & ((ct=UCL- 1)&(random<=q)) )     | 
 ( ((ct2=UCL- 1)&(random2<=q)) & (ct1<UCL) & ((ct=UCL- 1)&(random<=q)) )     | 
 ( (ct1>=UCL)                 & (ct2<UCL) &  (ct>=UCL)               )     | 
 ( ((ct1=UCL- 1)&(random1<=q)) & (ct2<UCL) &  (ct>=UCL)               )     | 
 ( (ct1>=UCL)                 & (ct2<UCL) & ((ct=UCL- 1)&(random<=q)) )     | 
 ( ((ct1=UCL- 1)&(random1<=q)) & (ct2<UCL) & ((ct=UCL- 1)&(random<=q)) )      )   ); 
ct2 = ct1; 
ct1 = ct; 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec = x > med; 
ct = sum(vec); 
random = ranuni( 0); 
random1 = ranuni( 0); 
random2 = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
ARL = sum(simrl)/sim; 
create  RL2of3_sign from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta120}]; 
append  from simrl; 
quit; 
proc univariate data =RL2of3_sign; 
var  delta000 delta020 delta040 delta060 delta080 delta1 00 delta120; 
run;  
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4.5.2 SAS® programs to simulate the run-length distributions of the two- 
         sided precedence charts in Case U 
 

 

 

4.5.2.1 The 1-of-1 precedence chart 
 
 

proc iml; 
m = 500; 
n = 5; 
j = (n+ 1)/ 2; 
sim = 100000; 
a = 25; 
b = 476; 
rlvec = j(sim, 13, .); 
do delta = 1 to 3 by 0.25; 
shift = 4*delta- 3; 
do k = 1 to sim;  
xref = j(m, 1, 0); 
call  randgen(xref, 'NORMAL' ); yref = xref; 
call  sort(yref, { 1}); 
lcl = yref[a, 1]; 
ucl = yref[b, 1]; 
count = 1; 
signal = 0; 
above = j( 2, 1, 0); 
below = j( 2, 1, 1); 
do while (signal = 0); 
xfut = j(n, 1, 0); 
call  randgen(xfut, 'NORMAL' ,delta- 1, 1); yfut = xfut; 
call  sort(yfut, { 1}); 
plotstat = yfut[j, 1]; 
cl=j( 2, 1, 0); 
cl[ 1, 1]=ucl; 
cl[ 2, 1]=lcl; 
plotstatvec=j( 2, 1,plotstat); 
check = plotstatvec <= cl; 
if  check = above then signal = 1; 
else  if check = below then signal = 1;  
else  count = count + 1; 
count1 = count; 
rlvec[k,shift] = count1;  
end ; 
end ; 
end ; 
create  RL1of1_Precedence_normal from rlvec[colname={delta0 00 delta025 delta050 
delta075 delta100 delta125 delta150 delta175 delta200 delta225 delta250 delta275 
delta300}]; 
append  from rlvec; 
quit; 
proc univariate data =RL1of1_Precedence_normal; 
var  delta000 delta025 delta050 delta075 delta100 delta1 25 delta150 delta175 
    delta200 delta225 delta250 delta275 delta300; 
run; 
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4.5.2.2  The 2-of-2 DR and  the 2-of-2 KL precedence charts 
 
 
proc iml; 
m = 500; n = 5; j = (n+ 1)/ 2; 
sim = 100000; 
a = 81; b = 420; 
rlvec = j(sim, 13, .); 
do delta = 1 to 3 by 0.25; 
shift = 4*delta- 3; 
do k = 1 to sim;  
xref = j(m, 1, 0); 
call  randgen(xref, 'NORMAL' ); yref = xref; 
call  sort(yref, { 1}); 
lcl = yref[a, 1]; 
ucl = yref[b, 1]; 
count = 1; 
signal = 0; 
dummy = j( 2, 1, 0); 
check = { 1, 0}; 
above = j( 2, 2, 0); 
below = j( 2, 2, 1); 
abovebelow = { 0 1 , 0 1}; 
belowabove = { 1 0 , 1 0}; 
matrix = j( 2, 2, 0); 
do while (signal = 0); 
dummy = check; 
xfut = j(n, 1, 0); 
call  randgen(xfut, 'NORMAL' ,delta- 1, 1); yfut = xfut; 
call  sort(yfut, { 1}); 
plotstat = yfut[j, 1]; 
cl=j( 2, 1, 0); 
cl[ 1, 1]=ucl; 
cl[ 2, 1]=lcl; 
plotstatvec=j( 2, 1,plotstat); 
check = plotstatvec <= cl; 
matrix = dummy||check; 
if  matrix = above then signal = 1; * DR and KL;  
else  if matrix = below then signal = 1; * DR and KL;  
else  if matrix = abovebelow then signal = 1; * DR only;  
else  if matrix = belowabove then signal = 1; * DR only;  
else  count = count + 1;     
count1 = count; 
rlvec[k,shift] = count1;  
end ; 
end ; 
end ; 
create  RL2of2_Precedence_normal from rlvec[colname={delta0 00 delta025 delta050 
delta075 delta100 delta125 delta150 delta175 delta200 delta225 delta250 delta275 
delta300}]; 
append  from rlvec; 
quit; 
proc univariate data = RL2of2_Precedence_normal; 
var  delta000 delta025 delta050 delta075 delta100 delta1 25 delta150 delta175 
    delta200 delta225 delta250 delta275 delta300; 
run; 
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4.5.2.3  The 2-of-3 precedence chart 
 

 

proc iml; 
m = 500; n = 5; j = (n+ 1)/ 2; 
sim = 100000; 
a = 72; b = 429; 
rlvec = j(sim, 13, .); 
do delta = 1 to 3 by 0.25; 
shift = 4*delta- 3; 
do k = 1 to sim;  
xref = j(m, 1, 0); 
call  randgen(xref, 'NORMAL' ); yref = xref; 
call  sort(yref, { 1}); 
lcl = yref[a, 1]; 
ucl = yref[b, 1]; 
count = 2; 
signal = 0; 
dummy1 = { 1, 0}; dummy2 = j( 2, 1, .); check = { 1, 0}; 
between_above_above = { 1 0 0, 
                       0 0 0}; 
between_below_below = { 1 1 1, 
               0 1 1}; 
below_between_below = { 1 1 1, 
              1 0 1}; 
above_between_above = { 0 1 0, 
              0 0 0}; 
matrix = j( 2, 3, .); 
do while (signal = 0); 
dummy2 = dummy1; 
dummy1 = check; 
xfut = j(n, 1, 0); 
call  randgen(xfut, 'NORMAL' ,delta- 1, 1); yfut = xfut; 
call  sort(yfut, { 1}); 
plotstat = yfut[j, 1]; 
cl=j( 2, 1, 0); 
cl[ 1, 1]=ucl; 
cl[ 2, 1]=lcl; 
plotstatvec=j( 2, 1,plotstat); 
check = plotstatvec <= cl; 
matrix = dummy2||dummy1||check; 
if  matrix = between_above_above then signal = 1; 
else  if matrix = between_below_below then signal = 1; 
else  if matrix = below_between_below then signal = 1; 
else  if matrix = above_between_above then signal = 1; 
else  count = count + 1;     
count1 = count; 
rlvec[k,shift] = count1;  
end ; 
end ; 
end ; 
create  RL2of3_Precedence_normal from rlvec[colname={delta0 00 delta025 delta050 
delta075 delta100 delta125 delta150 delta175 delta200 delta225 delta250 delta275 
delta300}]; 
append  from rlvec; 
quit; 
proc univariate data = RL2of3_Precedence_normal; 
var  delta000 delta025 delta050 delta075 delta100 delta1 25 delta150 delta175 
    delta200 delta225 delta250 delta275 delta300; 
run;  
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4.5   Appendix 4A: SAS® programs 
 
 
 
 

4.5.1   SAS® programs to simulate the run-length distributions of the upper one-sided  
            X-bar, sign and SR charts in Case K 
 
 
 
 

4.5.1.1 The 1-of-1 X-bar, sign and SR charts 

 
*1-of-1 upper one-sided X-bar chart; 
 

proc iml; 
ARL = 370; 
sim = 100000; 
n = 10; 
UCL = probit( 1- 1/ARL)/sqrt(n); 
simrl = j(sim, 13, .); 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
ct = 0; 
do k = 1 to 10000000 while ( ^((ct>=UCL))  ); 
x = j(n, 1, .); 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
ct = sum(x)/n; 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
create  RL1of1_Xbar from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta1 20}]; 
append  from simrl; 
quit; 
proc univariate data =RL1of1_Xbar; 
var  delta000 delta020 delta040 delta060 delta080 delta 100 delta120; 
run; 
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*1-of-1 upper one-sided sign chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
a = 0; 
n = 10; 
UCL = n-a; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = ( 1/ARL - 1 + probbnml( 0.5,n,n-a- 1) ) / (probbnml( 0.5,n,n-a- 1) - probbnml( 0.5,n,n-
a- 2)) ; 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
ct = 0; 
random = 0;  
do k = 1 to 10000000 while ( ^((ct>=UCL)|((ct=UCL- 1)&(random<=q)))  ); 
x = j(n, 1, .); 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec = x > med; 
ct = sum(vec); 
random = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
*print simrl;  
create  RL1of1_sign from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta1 20}]; 
append  from simrl; 
quit; 
proc univariate data =RL1of1_sign; 
var  delta000 delta020 delta040 delta060 delta080 delta 100 delta120; 
run; 
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*1-of-1 upper one-sided SR chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
n = 10; 
UCL = 53; 
UCL1 = 51; 
cdfUCL = 0.002; 
pmfUCL1 = 0.0009; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = ( 1/ARL - cdfUCL) / ( pmfUCL1 ) ; 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
random = 0; 
ct = 0;   
do k = 1 to 10000000 while ( ^(   (ct>=UCL)  |  ((ct=UCL1)&(random<=q))    )  ); 
x = j(n, 1, .); 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec   = x > med; 
wplus = (vec`)*rank(abs(x)); 
ct = 2*wplus - n*(n+ 1)/ 2; 
random = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
create  RL1of1_SR from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta1 20}]; 
append  from simrl; 
quit; 
proc univariate data =RL1of1_SR; 
var  delta000 delta020 delta040 delta060 delta080 delta 100 delta120; 
run; 
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4.5.1.2 The 2-of-2 sign and SR charts 
 

*2-of-2 upper one-sided sign chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
a = 1; 
n = 10; 
UCL = n-a; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = ( (sqrt( 4*ARL+1)+ 1)/( 2*ARL) - 1 + probbnml( 0.5,n,n-a- 1) ) /  
    (probbnml( 0.5,n,n-a- 1) - probbnml( 0.5,n,n-a- 2)) ; 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
x = j(n, 1, .); 
ct1 = 0; 
ct = 0; 
random1 = 0;  
random = 0;  
do k = 1 to 10000000 while (    
^( (  (ct1>=UCL)&(ct>=UCL)  )                     |   
   (  ((ct1=UCL- 1)&(random1<=q))&(ct>=ucl)  )     |  
   (  (ct1>=UCL)&((ct=UCL- 1)&(random<=q))  )      |  
   (  ((ct1=UCL- 1)&(random1<=q))&((ct=UCL- 1)&(random<=q)))  )  ); 
ct1 = ct; 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec = x > med; 
ct = sum(vec); 
random = ranuni( 0); 
random1 = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
create  RL2of2_sign from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta1 20}]; 
append  from simrl; 
quit; 
proc univariate data =RL2of2_sign; 
var  delta000 delta020 delta040 delta060 delta080 delta 100 delta120; 
run; 
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*2-of-2 upper one-sided SR chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
n = 10; 
UCL = 33; 
UCL1 = UCL - 2; 
cdfUCL = 0.0527; 
pmfUCL1 = 0.0127; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = (  (sqrt( 4*ARL+1)+ 1)/( 2*ARL) -  cdfUCL ) / ( pmfUCL1 ) ; 
do d = 1 to 2.2 by 0.2; 
do j = 1 to sim; 
x = j(n, 1, .); 
ct1 = 0; 
ct = 0; 
random1 = 0;  
random = 0;  
do k = 1 to 10000000 while (    
^( (  (ct1>=UCL)&(ct>=UCL)  )                     |   
 (  ((ct1=UCL1)&(random1<=q))&(ct>=ucl)  )     |  
 (  (ct1>=UCL)&((ct=UCL1)&(random<=q))  )      |  
 (  ((ct1=UCL1)&(random1<=q))&((ct=UCL1)&(random<=q )))  )  ); 
ct1 = ct; 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec   = x > med; 
wplus = (vec`)*rank(abs(x)); 
ct = 2*wplus - n*(n+ 1)/ 2; 
random = ranuni( 0); 
random1 = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
create  RL2of2_SR from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta1 20}]; 
append  from simrl; 
quit; 
proc univariate data =RL2of2_SR; 
var  delta000 delta020 delta040 delta060 delta080 delta 100 delta120; 
run; 
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4.5.1.3 The 2-of-3 sign chart 
 

*2-of-3 upper-sided sign chart; 
 
proc iml; 
ARL = 370; 
sim = 100000; 
a = 1; 
n = 10; 
UCL = n-a; 
med = j(n, 1, 0); 
simrl = j(sim, 13, .); 
q = 0.632202808; 
do d = 1 to 2.2 by 0.2;  
do j = 1 to sim; 
x = j(n, 1, .); 
ct2 = 0; 
ct1 = 0; 
ct = 0; 
random2 = 0; 
random1 = 0;  
random = 0;  
do k = 1 to 10000000 while (    
^(  
 ( (ct2>=UCL)                 & (ct1<UCL) &  (ct>=U CL)               )     | 
 ( ((ct2=UCL- 1)&(random2<=q)) & (ct1<UCL) &  (ct>=UCL)               )     | 
 ( (ct2>=UCL)                 & (ct1<UCL) & ((ct=UC L- 1)&(random<=q)) )     | 
 ( ((ct2=UCL- 1)&(random2<=q)) & (ct1<UCL) & ((ct=UCL- 1)&(random<=q)) )     | 
 ( (ct1>=UCL)                 & (ct2<UCL) &  (ct>=U CL)               )     | 
 ( ((ct1=UCL- 1)&(random1<=q)) & (ct2<UCL) &  (ct>=UCL)               )     | 
 ( (ct1>=UCL)                 & (ct2<UCL) & ((ct=UC L- 1)&(random<=q)) )     | 
 ( ((ct1=UCL- 1)&(random1<=q)) & (ct2<UCL) & ((ct=UCL- 1)&(random<=q)) )      )   ); 
ct2 = ct1; 
ct1 = ct; 
call  randgen(x, 'NORMAL' ,d- 1, 1); 
vec = x > med; 
ct = sum(vec); 
random = ranuni( 0); 
random1 = ranuni( 0); 
random2 = ranuni( 0); 
rl = k; 
end ; 
simrl[j,d* 5+1]=rl; 
end ; 
end ; 
ARL = sum(simrl)/sim; 
create  RL2of3_sign from simrl[colname={delta000 
delta020 delta040 delta060 delta080 delta100 delta1 20}]; 
append  from simrl; 
quit; 
proc univariate data =RL2of3_sign; 
var  delta000 delta020 delta040 delta060 delta080 delta 100 delta120; 
run;  
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4.5.2 SAS® programs to simulate the run-length distributions of the two- 
         sided precedence charts in Case U 
 

 

 

4.5.2.1 The 1-of-1 precedence chart 
 
 

proc iml; 
m = 500; 
n = 5; 
j = (n+ 1)/ 2; 
sim = 100000; 
a = 25; 
b = 476; 
rlvec = j(sim, 13, .); 
do delta = 1 to 3 by 0.25; 
shift = 4*delta- 3; 
do k = 1 to sim;  
xref = j(m, 1, 0); 
call  randgen(xref, 'NORMAL' ); yref = xref; 
call  sort(yref, { 1}); 
lcl = yref[a, 1]; 
ucl = yref[b, 1]; 
count = 1; 
signal = 0; 
above = j( 2, 1, 0); 
below = j( 2, 1, 1); 
do while (signal = 0); 
xfut = j(n, 1, 0); 
call  randgen(xfut, 'NORMAL' ,delta- 1, 1); yfut = xfut; 
call  sort(yfut, { 1}); 
plotstat = yfut[j, 1]; 
cl=j( 2, 1, 0); 
cl[ 1, 1]=ucl; 
cl[ 2, 1]=lcl; 
plotstatvec=j( 2, 1,plotstat); 
check = plotstatvec <= cl; 
if  check = above then signal = 1; 
else  if check = below then signal = 1;  
else  count = count + 1; 
count1 = count; 
rlvec[k,shift] = count1;  
end ; 
end ; 
end ; 
create  RL1of1_Precedence_normal from rlvec[colname={delta 000 delta025 delta050 
delta075 delta100 delta125 delta150 delta175 delta2 00 delta225 delta250 delta275 
delta300}]; 
append  from rlvec; 
quit; 
proc univariate data =RL1of1_Precedence_normal; 
var  delta000 delta025 delta050 delta075 delta100 delta 125 delta150 delta175 
    delta200 delta225 delta250 delta275 delta300; 
run; 
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4.5.2.2  The 2-of-2 DR and  the 2-of-2 KL precedence charts 
 
 
proc iml; 
m = 500; n = 5; j = (n+ 1)/ 2; 
sim = 100000; 
a = 81; b = 420; 
rlvec = j(sim, 13, .); 
do delta = 1 to 3 by 0.25; 
shift = 4*delta- 3; 
do k = 1 to sim;  
xref = j(m, 1, 0); 
call  randgen(xref, 'NORMAL' ); yref = xref; 
call  sort(yref, { 1}); 
lcl = yref[a, 1]; 
ucl = yref[b, 1]; 
count = 1; 
signal = 0; 
dummy = j( 2, 1, 0); 
check = { 1, 0}; 
above = j( 2, 2, 0); 
below = j( 2, 2, 1); 
abovebelow = { 0 1 , 0 1}; 
belowabove = { 1 0 , 1 0}; 
matrix = j( 2, 2, 0); 
do while (signal = 0); 
dummy = check; 
xfut = j(n, 1, 0); 
call  randgen(xfut, 'NORMAL' ,delta- 1, 1); yfut = xfut; 
call  sort(yfut, { 1}); 
plotstat = yfut[j, 1]; 
cl=j( 2, 1, 0); 
cl[ 1, 1]=ucl; 
cl[ 2, 1]=lcl; 
plotstatvec=j( 2, 1,plotstat); 
check = plotstatvec <= cl; 
matrix = dummy||check; 
if  matrix = above then signal = 1; * DR and KL;  
else  if matrix = below then signal = 1; * DR and KL;  
else  if matrix = abovebelow then signal = 1; * DR only;  
else  if matrix = belowabove then signal = 1; * DR only;  
else  count = count + 1;     
count1 = count; 
rlvec[k,shift] = count1;  
end ; 
end ; 
end ; 
create  RL2of2_Precedence_normal from rlvec[colname={delta 000 delta025 delta050 
delta075 delta100 delta125 delta150 delta175 delta2 00 delta225 delta250 delta275 
delta300}]; 
append  from rlvec; 
quit; 
proc univariate data = RL2of2_Precedence_normal; 
var  delta000 delta025 delta050 delta075 delta100 delta 125 delta150 delta175 
    delta200 delta225 delta250 delta275 delta300; 
run; 
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4.5.2.3  The 2-of-3 precedence chart 
 

 

proc iml; 
m = 500; n = 5; j = (n+ 1)/ 2; 
sim = 100000; 
a = 72; b = 429; 
rlvec = j(sim, 13, .); 
do delta = 1 to 3 by 0.25; 
shift = 4*delta- 3; 
do k = 1 to sim;  
xref = j(m, 1, 0); 
call  randgen(xref, 'NORMAL' ); yref = xref; 
call  sort(yref, { 1}); 
lcl = yref[a, 1]; 
ucl = yref[b, 1]; 
count = 2; 
signal = 0; 
dummy1 = { 1, 0}; dummy2 = j( 2, 1, .); check = { 1, 0}; 
between_above_above = { 1 0 0, 
                       0 0 0}; 
between_below_below = { 1 1 1, 
               0 1 1}; 
below_between_below = { 1 1 1, 
              1 0 1}; 
above_between_above = { 0 1 0, 
              0 0 0}; 
matrix = j( 2, 3, .); 
do while (signal = 0); 
dummy2 = dummy1; 
dummy1 = check; 
xfut = j(n, 1, 0); 
call  randgen(xfut, 'NORMAL' ,delta- 1, 1); yfut = xfut; 
call  sort(yfut, { 1}); 
plotstat = yfut[j, 1]; 
cl=j( 2, 1, 0); 
cl[ 1, 1]=ucl; 
cl[ 2, 1]=lcl; 
plotstatvec=j( 2, 1,plotstat); 
check = plotstatvec <= cl; 
matrix = dummy2||dummy1||check; 
if  matrix = between_above_above then signal = 1; 
else  if matrix = between_below_below then signal = 1; 
else  if matrix = below_between_below then signal = 1; 
else  if matrix = above_between_above then signal = 1; 
else  count = count + 1;     
count1 = count; 
rlvec[k,shift] = count1;  
end ; 
end ; 
end ; 
create  RL2of3_Precedence_normal from rlvec[colname={delta 000 delta025 delta050 
delta075 delta100 delta125 delta150 delta175 delta2 00 delta225 delta250 delta275 
delta300}]; 
append  from rlvec; 
quit; 
proc univariate data = RL2of3_Precedence_normal; 
var  delta000 delta025 delta050 delta075 delta100 delta 125 delta150 delta175 
    delta200 delta225 delta250 delta275 delta300; 
run;  
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Chapter 5 
 

Concluding remarks: Summary and 

recommendations for future research 
 

 

To finish-off this thesis, we give here a brief summary of the research conducted in the thesis and 

offer concluding remarks concerning unanswered questions and/or future research opportunities. 

 

In this thesis, in general, we focused on a variety of aspects related to the basic (yet powerful) 

statistical tool often used in quality improvement efforts within the realm of statistical quality control, 

that is, the Shewhart-type of control chart. First, we looked at Shewhart-type Phase I variables charts 

for the variance, the standard deviation and the range; this was followed by an overview of the 

literature on Shewhart-type Phase I variables charts for the location and the spread of a process. 

Second, we studied the Shewhart-type Phase II p-chart and the Shewhart-type Phase II c-chart in Case 

U (when the parameters are unknown) and assessed the influence when the parameters are estimated 

from a Phase I sample on the performance of these charts; both these charts are attributes charts and 

are widely used in practice. Lastly, we developed a new class of  nonparametric Shewhart-type Phase I 

and Phase II control charts, for monitoring or controlling a certain quantile of the underlying 

probability distribution of a process, based on runs-type signaling rules using the well-known sign test 

and the two-sample median test statistic as plotting statistics. In the next few paragraphs we point out 

the highlights of the research carried out in this thesis and state some research ideas to be pursued in 

the near future. We also list the research outputs related to this thesis; this includes a list of technical 

reports and peer-reviewed articles that were published in international journals, contributions to local 

and international conferences where the author of this thesis presented papers and some draft articles 

that were submitted and are currently under review.  

 

 

Variables control charts 
 

Assuming that the underlying process distribution follows a normal distribution with an unknown 

mean and an unknown variance, in Chapter 2 we studied the design of the well-known Shewhart-type 
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2S , S  and R  charts for Phase I applications based on the availability of m  independent rational 

subgroups each of size 1>n . We showed that, because multiple plotting statistics are simultaneously 

compared to the same set of estimated control limits, the signaling events (i.e. the event when a 

plotting statistic plots outside the control limits) are mutually dependent. We further argued (with 

reference to the article of Champ and Jones, (2004)) that the correct design criterion of Shewhart-type 

Phase I charts is the false alarm probability (FAP), which is the probability of at least one false alarm, 

and not the false alarm rate (FAR), which deals with only one plotting statistic at a time and is defined 

as the probability of a signal at any particular sampling stage.  Accordingly, we found the appropriate 

charting constants for a variety of ),( nm -combinations for each of the three charts (using intensive 

computer simulation experiments) so that theFAP of each chart does not exceed 0.01, 0.05 and 0.10, 

respectively. 

 

The literature overview, in Chapter 2, regarding univariate parametric Phase I Shewhart-type charts 

for the location and the spread of a process not only presented the current state of the art of 

constructing these charts, but also brought several important points under our attention: 

 

(i) There is a lack of proper guidance to the practitioner on the correct statistical design 

and implementation of Phase I charts. In a search of the standard statistical process 

control textbooks on the market, none to very little material was found, including the 

standard book of Montgomery (2005), who discusses the topic without the necessary 

statistical theory. 

 

(ii)  Some of the authors that studied the Phase I problem (especially when the process 

parameters are estimated) ignore the dependency between the Phase I plotting statistics 

and incorrectly used the FAR (which only deals with a single plotting statistic at a 

time) to design the charts as apposed to the FAP (which takes into account that 

multiple charting statistics are simultaneously compared to the estimated control limits). 

This would certainly deteriorate the performance of these charts. Our methodology 

provides the correct control limits for the applications studied. 

 

(iii)  There seems to be no consensus on exactly how one should compare the performance of 

competing Phase I charts.  This boils down to the question of how to formulate and 

define an out-of-control situation in Phase I.  One current proposal is to adopt the 

scenario that one of the Phase I samples is out-of-control and that the remaining 1−m  

samples are in-control and then (via computer simulation) compare the empirical 
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probability that at least one point plots outside the estimated control limits. The chart 

with the highest empirical probability of detecting the out-of-control sample is then 

declared the winner; this can be investigated further. 

 

(iv) There is a genuine need to develop a Phase I control chart for the case when 1=n , that 

is, for individuals data. Admittedly there are some articles available in the literature that 

address the problem (see e.g. Nelson (1982), Roes, Does and Schurink (1993), Rigdon, 

Cruthis and Champ (1994) and Bryce, Gaudard and Joiner (1997)) but the problem has 

not yet been solved satisfactorily. The main stumbling block appears to be finding a 

suitable point estimator for the variance or the standard deviation and deriving the exact 

joint distribution of the standardized plotting statistics. Since individuals data is so 

common nowadays in many industries, this problem is important and will be studied 

using methods similar to the ones in this thesis.   

 

(v) The design of Phase I control charts for correlated data needs to be looked at. A good 

starting point is the articles by Boyles (2000) and Maragah and Woodall (1992). 

 

(vi) Except for the study by Borror and Champ (2001), there is apparently no other 

published work regarding the design of Phase I Shewhart-type attributes charts. This is 

an important aspect because the study of the Phase II p-chart and the Phase II c-chart is 

based on the availability of an in-control reference sample, which is usually obtained at 

the end of a successful Phase I study. 

 

(vii)  It would definitely be helpful and beneficial to the quality practitioner if a unified 

approach to the design and implementation of Phase I variables and attributes charts is 

available; this is a topic currently under investigation by the author of this thesis and his 

supervisors. 

 

 

Attributes control charts 
 

The Phase II Shewhart-type p-chart and c-chart were studied in detail in Chapter 3. The aim was to 

determine the effect of estimating the unknown process parameters from a Phase I reference sample on 

the performance of the charts in their Phase II application. The methodology that we used was based 

on the two-step procedure which was introduced in the statistical process control arena by Chakraborti 

(2000). The procedure entails that we first condition on a particular observed value of the point 
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estimator from Phase I (in order to obtain the conditional Phase II run-length distribution and the 

associated characteristics of the conditional run-length distribution) and then calculate the 

unconditional Phase II run-length distribution and the associated properties of the unconditional run-

length distribution by averaging over all the values of the point estimator. We numerically investigated 

the various properties of the conditional and the unconditional run-length distributions, for the in-

control and the out-of-control scenarios, and compared the results to the benchmark values of Case K 

(i.e. when the parameters are known). It was found that the widely-followed guidelines regarding the 

number of Phase I rational subgroups, m , and the sample size, n , is not adequate to control the 

average run-length and/or the false alarm rate at acceptable levels. The cause of the discrepancy 

between the attained ARL and the attainedFAR  values and the industry standards of 370 and 0.0027 

(respectively) is twofold. The discrepancy is partly due to the fact that the underlying process 

distributions are discrete and to some extent it is caused by the fact that the standard formula, i.e. mean 

±  3 ×  standard deviation, for calculating the control limits, is not 100% correct; this is so because the 

normal approximation to the binomial and the Poisson distributions is not very good for all values of 

the parameters p  and c  (especially p  close to 0 or 1 and c  close to 0). 

 

The question of how we can correctly design the Phase II Shewhart-type p-chart and c-chart 

remains, in some way, unanswered. As pointed out in an earlier section, the formulae for the 

characteristics of the unconditional run-length distribution can be helpful in this regard and there are 

two possible routes to follow: 

 

(i) The usual approach is to specify a certain attribute of the unconditional Phase II run-

length distribution (such as the unconditional average run-length, which is common in 

routine applications (see e.g. Chakraborti, (2006))) and then solve for the charting 

constant(s). 

 

Even though this approach is viable, it would only be successful insofar it is possible to 

accurately specify the unknown parameters p  and c . The reason for this drawback is 

the fact that the unconditional properties of the charts are unconditional only with 

respect to the point estimators and not with respect to the unknown parameters.  

 

(ii)  A second approach one can pursue is to also uncondition on the properties of the charts 

with respect to the parameters p  and c . This approach, which is closely linked to a 
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Bayes approach, entails that we treat p  and c  as random variables and that we choose 

appropriate (prior) distributions to model the uncertainty in the parameters. 

 

As suggested earlier, the standard beta distribution (with support on the interval (0,1)) 

and the gamma distribution (with the positive real numbers as support) would work. 

However, the dilemma in this approach is that we still require expert knowledge and 

guidance when choosing the parameters of the beta and the gamma distributions.  

 

Currently, the topic of finding and comparing suitable charting constants for the application of the 

Shewhart-type Phase II p-chart and c-chart is underway by the author of this thesis and co-workers. 

 

 

Nonparametric Shewhart-type control charts with runs-type signaling rules 
 

Lastly, in Chapter 4 we designed new nonparametric control charts based on runs-type signaling 

rules using the well-known sign test statistic and the two-sample median test statistic as plotting 

statistics. The sign test was used in the design of the charts when the percentile under investigation of 

the underlying process distribution was known (or specified) whereas the two-sample median test was 

used to construct the charts when the percentile was unknown. The main advantages of the 

nonparametric charts are: 

 

(i) The fact that the underlying distribution needs not be specified (as we only require 

continuity of the distribution); 

 

(ii)  The precise numerical measurements need not be available (because we only count the 

number of observations greater or smaller than a specified value or simply rank the 

observations within each sample).  Neither the counting nor the ranking procedure requires 

exact measurements; 

 

(iii)  The sign charts have the added advantage that they can be applied in scenarios where the 

data are just dichotomous (e.g. yes/no); and 

 

(iv) The precedence charts give us the flexibility to apply the chart in situations where the data 

is naturally collected in an ordered fashion (e.g. time to failure). 

 

We derived the run-length distributions of this new class of distribution-free control charts using a 

Markov chain approach and, where possible, we also used the results related to the geometric 
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distribution of order k . Where necessary we again used the two-step conditioning and unconditioning 

idea by Chakraborti (2000) to obtain the Phase II run-length distributions. 

 

Having derived the run-length distributions and the associated characteristics of the new charts, 

extensive tables were provided with the suitable charting constants for each chart which should help 

the practitioner in the setting up of the charts. A numerical example was also given to illustrate the 

implementation and operation of the charts. However, having pointed out the benefits of the new runs 

rules enhanced charts, there are two important aspects concerning nonparametric control charts (in 

general) that are worth mentioning: 

 

(i) There is a major shortcoming regarding the application of the nonparametric charts in 

industry because there is a lack of a proper understanding (and perhaps an appreciation) of 

the topic nonparametrics and consequently the important role these charts can play in 

practice. 

 

The main reason for this limitation seems to be that distribution-free (nonparametric) 

methods are typically only touched on in undergraduate statistics courses in most programs 

and are not necessarily taught at a post-graduate level and, in most cases, not even taught to 

the engineers and/or the operator personnel who have to deal with the monitoring of the 

processes. What is more, is the fact that none of the available (standard) textbooks on 

statistical process control covers the topic of nonparametric control charting procedures in 

any detail. 

 

(ii)  It would be a great improvement and definitely to the advantage of the quality practitioner 

if software developers were to include the nonparametric control charts that are already 

available, as standard options or procedures in their statistical computer packages. 

Currently, these nonparametric control chart procedures are not available for practitioners 

and they simply resort to the standard parametric control chart methodologies. 

 

 

Research outputs 
 

A number of research outputs related to and based on this thesis have seen the light. Below we 

provide a list with the details of the technical reports and the peer-reviewed articles that were 

published, the articles that were accepted for publication, the local and the international conferences 

where papers were presented and the draft articles that were submitted and currently under review.  
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Published articles 
 

(i) Chakraborti, S., Human, S. W. (2006). “Parameter estimation and performance of 

the p-chart for attributes data”. IEEE Transactions on Reliability, 55(3):559-566; 

 

(ii)  Chakraborti, S., Human, S. W. (2008). “Properties and performance of the c-chart 

for attributes data”. Journal of Applied Statistics, 35(1):89-100; 

 

(iii)  Chakraborti, S., Human, S.W., Graham, M.A. (2008). “Phase I statistical process 

control charts: An overview and some results”. Quality Engineering, 21(1):52-62; 

and 

 

(iv) Chakraborti, S., Eryilmaz, S., Human, S. W. (2009). “A Phase II nonparametric 

control chart based on precedence statistics with runs-type signaling rules”. 

Computational Statistics and Data Analysis, 53(1):1054-1065. 

 

 

Articles accepted for publication 
 

(i) Human, S. W., Chakraborti, S., Smit, C. F. “Nonparametric Shewhart-type sign 

control charts based on runs”. Communications in Statistics – Theory and Methods. 

 

 

Articles under review 
 

(ii)  Human, S. W., Chakraborti, S., Smit, C. F. “Control charts for variation in Phase I 

applications”, Submitted to Computational Statistics and Data Analysis.  

 

 

Technical reports 
 

(i) Human, S. W., Chakraborti, S., Smit, C. F. (2009). “Shewhart-type 2S , S  and R  

control charts for Phase I applications”. Technical Report 09/01, Department of 

Statistics, University of Pretoria, ISBN: 978-1-86854-735-7. 
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(ii)  Human, S. W., Chakraborti, S., Smit, C. F. (2009). “Nonparametric Shewhart-type 

control charts with runs-type signaling rules”. Technical Report 09/02, Department 

of Statistics, University of Pretoria, ISBN: 978-1-86854-738-8. 

 

 

International conference 

 

(i) The 7th World Congress in Probability and Statistics in Singapore jointly sponsored 

by the Bernoulli Society and the Institute of Mathematical Statistics (2008) where 

the results related to the nonparametric control charts of Chapter 4 was presented. 

 

 

Local conferences  
 

(i) The annual conference of the South African Statistical Association (SASA) hosted 

by the Department of Statistics of the Rhodes University in Grahamstown (2005) 

where the results related to the Phase II p-chart of Chapter 3 was presented; 

 

(ii)  The annual conference of the South African Statistical Association (SASA) hosted 

by the Department Statistics and Actuarial Science of the University of Stellenbosch 

(2006) where the results related to the Phase II c-chart of Chapter 3 was presented; 

 

(iii)  The annual conference of the South African Statistical Association (SASA) hosted 

by the Department of Statistics and Actuarial Science of the University of 

Witwatersrand (2007) where the results related to the Phase I 2S , S  and R  control 

charts of Chapter 2 was presented; and 

 

(iv) The annual conference of the South African Statistical Association (SASA) hosted 

by the Department of Statistics of the University of Pretoria (2008) where the 

results related to the nonparametric control charts of Chapter 4 was presented. 

 

 

 

The end. 
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