
A Systematic Approach to Model
Predictive Controller Constraint Handling:

Rigorous Geometric Methods

by

André Herman Campher

A dissertation submitted in partial fulfillment

of the requirements for the degree

Master of Engineering (Control Engineering)

in the

Department of Chemical Engineering
Faculty of Engineering, the Built Environment and Information

Technology

University of Pretoria
Pretoria

September 2011

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

A Systematic Approach to Model Predictive
Controller Constraint Handling: Rigorous Geometric

Methods

By: André Herman Campher

Study leader: Carl Sandrock

Department: Chemical Engineering

Degree: MEng Control Engineering

SYNOPSIS

The models used by model predictive controllers (MPCs) to predict future outcomes

are usually unconstrained forms like impulse or step responses and discrete state space

models. Certain MPC algorithms allow constraints to be imposed on the inputs or

outputs of a system; but they may be infeasible as they are not checked for consistency

via the process model. Consistent constraint handling methods – which account for

their interdependence and disambiguate the language used to specify constraints – would

therefore be an attractive aid when using any MPC package.

A rigorous and systematic approach to constraint management has been developed,

building on the work of Vinson (2000), Lima (2007) and Georgakis et al. (2003) in

interpreting constraint interactions. The method supports linear steady-state system

models, and provides routines to obtain the following information:

� effects of constraint changes on the corresponding input and output constraints,

� feasibility checks for constraints,

� specification of constraint-set size and

� optimal fitting of constraints within the desirable input and output space.

Mathematical rigour and unambiguous language for identifying constraint types were key

design criteria.

The outputs of the program provide guidance when handling constraints, as opposed

to rules of thumb and experience, and promote understanding of the system and its

constraints. The metrics presented are not specific to any commercial MPC and can be

implemented in the user interfaces of such MPCs. The method was applied to laboratory-

scale test rigs to illustrate the information obtained.

KEYWORDS: constraint handling, model predictive controllers, geometric methods,

operability index

i

ACKNOWLEDGEMENTS

I would like to thank my study leader, Carl Sandrock, for the insights shared (and for his

patience).

ii

CONTENTS

Synopsis . i

Acknowledgements . ii

List of Figures . vi

List of Tables . viii

Nomenclature . ix

1 Introduction 1

1.1 Background . 1

1.2 Problem statement . 1

1.3 Method . 2

1.4 Scope and deliverables . 2

2 Literature Overview 3

2.1 Mathematical Preliminaries . 3

2.1.1 Convex Geometry . 3

2.1.2 Process models . 5

2.2 Process Operability . 5

2.2.1 Overview . 6

2.2.2 Operability Index . 7

2.2.3 Operability Index application to MPC 10

3 Model Predictive Control 12

3.1 Model Predictive Control . 12

3.1.1 Nomenclature and notation . 12

3.1.2 Control theory . 13

3.1.3 Objective functions . 13

3.1.4 Models . 15

3.1.5 Tuning . 17

3.2 Constraints in MPC . 17

3.2.1 Constraint types . 17

iii

3.2.2 Constraint formulation . 18

3.2.3 Quadratic objective functions . 18

3.2.4 Effect on solutions . 19

3.3 Commercial MPCs . 19

3.3.1 Honeywell RMPCT . 19

3.3.2 AspenTech DMCplus . 22

4 Systematic Constraint Handling 24

4.1 Assumptions . 24

4.2 Constraint checking . 25

4.2.1 Feasibility . 25

4.2.2 Constraint changes . 25

4.3 Commercial MPC interfacing . 26

4.3.1 Constraint types . 26

4.3.2 Linear constraints . 27

4.4 Constraint set fitting . 28

4.4.1 Problem formulation . 29

4.4.2 Set reduction . 30

4.4.3 Fitting implementation . 31

5 Case Studies 32

5.1 Case studies . 32

5.1.1 Level and flow rig . 32

5.1.2 Laboratory distillation column . 33

6 Results and Discussion 36

6.1 Case studies . 36

6.1.1 Level and flow rig . 36

6.1.2 Laboratory distillation column . 39

6.1.3 MPC interfacing . 42

6.2 Constraint set fitting . 42

6.2.1 Solution times . 42

6.2.2 Accuracy . 44

6.2.3 Set fitting expansion . 45

7 Conclusions and Recommendations 47

7.1 Conclusions . 47

7.2 Recommended future research . 48

7.2.1 Systematic constraint handling 48

7.2.2 Constraint set fitting . 48

iv

7.2.3 The Operability Index . 49

A Commercial MPC Screenshots 50

Bibliography 59

v

LIST OF FIGURES

2.1 Sample Available Input Space mapping to Achievable Output Space . . . 8

2.2 Sample Desired Output Space . 8

2.3 Sample Desired Input Space . 9

3.1 General MPC working . 14

3.2 Generic input to output model . 16

3.3 RMPCT funnel implementation . 21

3.4 DMCplus ramp rate dynamic constraints 23

5.1 Level and flow rig photograph and flow diagram 32

5.2 Laboratory distillation column photograph and flow diagram 34

5.3 Column model . 34

6.1 AIS, AOS and DOS of the level and flow rig 37

6.2 Fitted high and low constraints in the AOS and DOS intersection. 38

6.3 AIS, DIS and newly fitted DIS of level and flow rig 38

6.4 Physical constraint region of level and flow rig 39

6.5 AIS, AOS and DOS of the laboratory distillation column 40

6.6 AOS and DOS intersection of the laboratory distillation column 40

6.7 Fitted constraints for the laboratory distillation column 41

6.8 SLSQP and simplex calculation time comparison 43

6.9 Accuracy of constraint set fitting for 2 variables 44

6.10 Accuracy of constraint set fitting for 3 variables 45

6.11 Equal size constraint set fits . 46

A.1 RMPCT Profit Design Studio interface . 51

A.2 RMPCT Runtime Studio interface . 52

A.3 RMPCT Profit Suite Operator Station interface 53

A.4 DMCplus Model interface . 54

A.5 DMCplus Build interface . 55

vi

A.6 DMCplus Production Control Web Interface 56

vii

LIST OF TABLES

2.1 Application of the Operability Index to MPC 11

5.1 Operating conditions of level and flow rig. 33

5.2 Operating conditions of distillation column. 35

viii

NOMENCLATURE

A Coefficient matrix for constraints (used with subscript)

b half-space offsets for constraints (used with subscript)

d System disturbance

G Process model

n Number of dimensions (variables)

u System inputs

x System states

y System outputs

Abbreviations

AIS Available Input Space

AOIS Achievable Output Interval Set

AOS Available Output Space

AOSI Interval AOS

CV Controlled variable

DIS Desired Input Space

DMCPlus Dynamic Matrix Control Plus

DOS Desired Output Space

DV Disturbance variable

EDS Expected Disturbance Space

ix

MPC Model Predictive Control(ler)

MV Manipulated variable

OI Operability Index

OOI Output Operability Index

RMPCT Robust Model Predictive Control Technology

Greek

µ Volume of a polytope

x

CHAPTER 1

INTRODUCTION

1.1 Background

Model predictive controllers (MPCs) use models to predict the future behaviour of a

process. The ability of some MPC algorithms to impose constraints on the outputs or

inputs of a system is their biggest selling point.

In the same way the process model predicts the effect of the inputs on the outputs,

the process model dictates the interdependence of the constraints imposed on the system.

At present, commercial MPC packages do not validate constraints based on the process

model. This gives rise to the following problems:

� Specified constraints on an input or output may be infeasible due to their corre-

sponding output or input requirements.

� Setpoint specification may be infeasible as the process has a limited output space

(due to the input constraints).

A systematic approach to constraint management would therefore be an attractive

addition to any MPC package. Such a method would help to avoid infeasible constraints

and further the understanding of constraint interaction in MPCs. This follows from the

use of the model to determine constraint interactions, and not rules of thumb or specific

process experience.

1.2 Problem statement

The objective is therefore to develop a systematic method of managing constraints

imposed on MPCs. Mathematical rigour and disambiguation of the language used to

specify constraints were key design criteria.

1

1.3 Method

The method builds on the work by Vinson (2000), Lima (2007) and Georgakis et al. (2003)

in interpreting constraint interactions.

The routines for this project were developed using the Python (Python Software

Foundation, 2010) programming language. Version management of the source code was

done using git (Git, 2010) and hosted on github (GitHub Inc., 2010; Campher, 2011b,a).

This allowed for continuous and collaborative development and flagging of issues.

The routines were tested for functionality on the models and operating conditions of

laboratory rigs.

1.4 Scope and deliverables

For this project, linear steady-state models are considered. The constraints imposed on

the systems are also assumed to be linear. With these assumptions made, the project can

now focus exclusively on convex sets in the input and output space.

This project does not attempt to reinvent or propose an alternative to the method of

internal constraint handling of MPC algorithms. The method aims to provide a supportive

framework in both the controller design and operation phases.

The deliverables of this project are;

� A framework for systematic constraint handling for MPCs.

� Routines to perform an analysis of constraints based on interaction via the process

model.

� Results indicating the use of the aforementioned routines on practical systems.

2

CHAPTER 2

LITERATURE OVERVIEW

A summary of the mathematical techniques used in this dissertation is given in

this chapter. Special attention is given to convex geometry and the properties of

these sets.

To place the Operability Index in context, process operability and methods to

quantify it are reviewed. Finally, the Operability Index is defined and its application

to model predictive controllers and their constraints are discussed.

2.1 Mathematical Preliminaries

2.1.1 Convex Geometry

Nomenclature

The following nomenclature is reviewed and used throughout this document (Bayer and

Lee, 1993: 487):

� polytope - the intersection of closed half-spaces in Rn. A polytope of n dimensions

will simply be referred to as an n-polytope.

� vertex - a 0-dimensional face of an n-polytope.

� facet - an (n− 1)-dimensional face of an n-polytope.

Half-space geometry

A half-space is defined as the section of an n-dimensional space lying on one side of an

(n− 1)-dimensional hyperplane (Weisstein, 2003: 1282). Linear constraints are equivalent

to half-spaces in Rn in both their mathematical description and meaning. From this we

can conclude that all polytopes generated by linear constraints (half-spaces) are convex,

as they have supporting hyperplanes at each boundary point (Mani-Levitska, 1993: 21).

3

From this it also follows that the intersection of such convex polytopes will be convex.

This is due to the resulting intersection being merely a subset of the half-spaces defining

the two intersecting polytopes.

The problem of degeneracy can occur when constructing polytopes from half-spaces.

Degeneracy is defined when objects “change their nature to belong to another, usually

simpler, class” (Weisstein, 2003: 688). The degeneracy of polytopes is important for

the purposes of this dissertation. When the number of half-spaces used to construct a

polytope is more than the final number of facets on the resulting closed polytope, the

polytope is classified as degenerate.

Convex hull and vertex enumeration

The convex hull or facet enumeration is used extensively for calculations in this project.

It is defined as the smallest convex set containing P if P is a set of points (P ⊆ Rn)

(Wenger, 2004: 74). In this project, P is generated from a set of half-spaces and the

resulting vertices are the minimum vertex description of P . For this reason the convex

hull of P and the half-spaces used to generate P are equivalent.

The opposite of facet enumeration is vertex enumeration, where a set of half-spaces

are transformed to the vertices of P . A primal-dual method can be implemented to solve

this problem. The full mathematical formulation of the primal-dual algorithm is omitted

from this document. Gritzmann and Klee (1993: 636-639) and Bremner et al. (1998) can

be consulted for the full formulation.

Linear transformations

Define X and Y as finite-dimensional sets with bases (x1, . . . , xn) and (y1, . . . , ym) respec-

tively. For the linear transformation φ : X → Y , the following holds:

φ(yi) = αi1xi + · · ·+ αinxn for i = 1, . . . ,m (2.1)

The scalars (αij)i=1,...,n; j=1,...,m can be written as
α11 · · · · · · α1n

α21 · · · · · · α2n

· · · · · · · · · · · ·
αm1 · · · · · · αmn


which is referred to as the matrix of φ (Leung, 1974: 48-49, 166).

Equation 2.1 is equivalent to the result of the following matrix multiplication

ΦX = Y (2.2)

4

where Φ is the matrix of φ. Equation 2.2 confirms that matrix multiplication is indeed a

linear transformation.

2.1.2 Process models

The mathematical description of process models and specifically the space transformations

those lead to are of importance.

Linear steady-state

The steady-state model of a linear system is the gain-matrix. This is simply a matrix of

constants in R. Models like these allow for matrix algebra when transforming between

spaces, e.g. a matrix multiplication of the input space and the process model has the

output space as result.

The transformation obtained for linear models are conformal mappings. This is defined

as a mapping that preserves local angles and has a non-zero differential at every point

(Weisstein, 2003: 514). Being conformal, the surface (or boundary) of the input space (a

polytope) maps directly to the surface of the output space. For this reason, the constraints

specifying a space can be used to generate the corresponding space with full mathematical

rigour.

Non-linear models

The mapping of spaces via non-linear models is not guaranteed to be conformal. Therefore,

the statement that boundaries map to boundaries in their corresponding spaces, cannot

be made.

A practical example of this is illustrated by Subramanian and Georgakis (2001), for a

vinyl acetate reactor where a set of inputs map to the same point in the output space. In

this case, the phenomena of input multiplicities is ascribed to a rank deficiency of the

Jacobian matrix of the process model.

2.2 Process Operability

The method of constraint handling presented in this document, is largely derived from

work done by Georgakis and colleagues, in particular Vinson (2000), Vinson and Georgakis

(2000), Lima (2007), Georgakis et al. (2003) and Subramanian and Georgakis (2001). To

place the Operability Index of Vinson (2000) (defined in section 2.2.2) in context, a short

overview of process operability and the most common process operability techniques is

presented below.

5

2.2.1 Overview

Process operability is defined as “the ease with which a process can be operated and

controlled” (Marlin, 2000: 778). Process operability is an ongoing field of study with many

of the methods available being only qualitative (Skogestad and Postlethwaite, 2005: 164).

A distinction is made between steady-state (input and output relationships at steady-state

only) and dynamic operability methods.

Steady-state operability measures

The relative gain array (RGA) is one of the most used operability measures (Luyben,

1990: 576) and relates input and output interactivity. Each element in the RGA (βij)

is defined as the ratio of the steady-state gain ratios between input, i, and output, j,

when all other inputs and outputs are constant. Stanley et al. (1985) defined the RDG,

which expanded on the RGA to include the effect of disturbances. Considering only the

magnitudes of RGA elements can be misleading (Skogestad and Postlethwaite, 2005: 87),

as seemingly favourable pairings can be unfavourable due to the phase. Therefore, both

the magnitude and the phase need to be considered or, alternatively, norms such as the

RGA-number can be used.

The Niederlinski index is another measure that only uses steady-state gains of the

process model (Luyben, 1990: 572-573). Positive values of the Niederlinski index can

correspond to unstable pairings and are therefore inconclusive. For this reason, the index

is considered necessary but not sufficient for stability (Skogestad and Postlethwaite, 2005:

445).

Singular value decomposition stems from the use of eigenvalues as an operability

measure. The use of singular values are preferred as eigenvalues are a poor measure of

gain and can often be misleading (Skogestad and Postlethwaite, 2005: 75). Maximum

and minimum singular values are mostly used to select controlled variables but can also

be used as a performance measure along with the condition number (Luyben, 1990: 596;

Skogestad and Postlethwaite, 2005: 80-82).

A competing aproach to the Operability Index (defined in the next section) is that

of flexibility and the Flexibility Index defined by (Swaney and Grossmann, 1985). This

approach comprises the definition of a feasible operating region (by way of fundamental

equations as well as operating constraints) and then determining the maximum devia-

tions on the combined process parameter set. The Flexibility Index corresponds to the

largest allowed deviation (or flexibility) of the parameter set which still ensures feasible

operation. (Grossmann and Floudas, 1987) expands on this index by reformulating the

main optimisation problem to ensure solution convergence. An active constraint strategy

is also applied to non-linear problems to reduce the computational effort required and

ensure solution convergence (with some linearising assumptions).

6

Dynamic operability measures

The RGA can be expanded to contain frequency-dependant terms and is often referred

to as the dynamic relative gain array (DRGA) (Marlin, 2000: 637). The RDG (Stanley

et al., 1985) can be expanded in a similar way to include frequency-dependant terms.

Nyquist array methods as defined by Rosenbrock, as quoted by Skogestad and Postleth-

waite (2005: 92), are an extension of the SISO Nyquist stability criteria that include

frequency dynamics. The two methods developed are the direct Nyquist array and the

inverse Nyquist array. When used in conjunction with Gershgorin bands, conditions for

overall stability can be derived (Skogestad and Postlethwaite, 2005: 440).

Vinson (2000) lists other dynamic operability measures which rely on the choice of a

controller type. Further shortcomings of the above mentioned operability measures are

also discussed in that text.

2.2.2 Operability Index

The Operability Index was defined by Vinson (2000) as a measure of steady-state process

operability. Constraint interdependence is used as the basis of this index. Further work

by Lima (2007) expanded this index to cover non-square systems and some application to

dynamic systems.

Definitions

The Operability Index focuses on input-output relationships rather the system’s dynamic

states (Vinson, 2000). Input and output values are defined by spaces (in Rn and Rm, with

n the number of inputs and m the number of outputs). These spaces are the feasible

regions which are bounded by the inequalities describing the ranges of the inputs or

outputs. The following spaces are of interest:

Available Input Space (AIS); the set of attainable values of the process inputs. The

limits on these values are based on both physical limits (e.g. valve openings) or

process design values (e.g. flow-rates or temperatures). Figure 2.1 illustrates an AIS

for two variables (u1, u2) bounded by simple high and low limits.

Achievable Output Space (AOS); this is the set of values which the process outputs

can obtain, given the AIS. The AIS maps to the AOS by means of a process model,

G. Therefore, a point u in the AIS corresponds to a point y in the AOS via y = G(u).

Examples of AOSs for linear and non-linear models are shown in figure 2.1.

Desired Output Space (DOS); this represents the desired output values of a process.

These values are typically based on operational and financial parameters. Figure 2.2

shows a sample DOS for a two output system along with a sample AOS.

7

Expected Disturbance Space (EDS); all the values of the expected disturbances to

the system. These values are translated back to the input space by means of the

disturbance model, Gd.

Desired Input Space (DIS); in the same manner that the AIS maps to the AOS,

the DIS represents combined reverse mappings of the DOS and EDS. The DIS is

calculated as the inputs, u, that satisfy the model, i.e. y = G(u, d) (with y and d

from the DOS and EDS respectively). Figure 2.3 shows this combined translation.

u2

u1

u2 max

u2 min

u1 maxu1 min

y2

y1

y2

y1

y = Gu

y = f(u)

AIS

AOS

AOS

Figure 2.1: Sample Available Input Space (AIS) mapping via a linear model (y = Gu) and a
non-linear model (y = f(u)) to the Achievable Output Space (AOS)

y2

y1

DOS
AOS

Figure 2.2: Sample Desired Output Space (DOS, with linear constraints on both outputs)
along with a linear AOS

Vinson (2000) defines the generalised Output Operability Index (OOI) as shown in

equation 2.3. From this definition it is clear that the operability of a process decreases if

the AOS does not cover the whole DOS. Servo- and regulatory operability indices are also

8

u2

u1

y2

y1

d2

d1

y = G(u,d)

DOS

EDS

AIS

DIS

Figure 2.3: Sample Desired Input Space (DIS) for a linear model and rectangular DOS and
EDS

defined in the text, but are not shown here.

OOI ,
µ(AOS ∩DOS)

µ(DOS)
(2.3)

where µ represents a function to calculate the volume of a space.

All the concepts above are directly applicable to square systems. For the case of

non-square systems (more outputs than inputs) the Operability Index formulation is

extended to interval operability. In this case, process outputs are split into two categories;

setpoint controlled variables and range controlled variables. The first being controlled

on a given setpoint, whereas the later is allowed to vary within its given maximum and

minimum limits.

Lima (2007) elaborates on the interval operability of linear non-square systems and

defines the following spaces:

The interval AOS (AOSI); which is the union of all AOS(d) where d is within the

EDS. This is typically generated by the shifting of AOS(d = 0) in the directions

determined by Gd (the disturbance model).

The Achievable Output Interval Set (AOIS); defined as a rectangle with the same

aspect ratio as the DOS, bound by the lines (or hyperplanes) that correspond to

the minimum and maximum values of d in the AOS. Since the issue of interval

operability is being addressed, the AOIS does not need to be strictly contained

within the AOSI .

Lima (2007) proceeds to define a hyper-volume ratio (HVR) as shown in equation 2.4. The

aim being here to define a measure for obtaining tighter control on CVs by reducing the

9

size of the DOS (without causing infeasibilities). The process remains interval controllable

as long as the AOIS remains a subset of the DOS (AOIS⊆DOS).

HV R =
µ(DOS)

µ(AOIS)
(2.4)

where µ represents a function to calculate the volume of a space.

To change the relative importance (tightness of control) on variables, weights are

imposed on the AOIS. This in turn affects the aspect ratio of the AOIS.

Lima (2007) proposes two methods to calculate an AOIS for higher dimensional

systems; an iterative method and a method based on linear programming (LP). In both

cases, this corresponds to the tightest set of output constraints which still render the

system controllable. Both methods are briefly discussed below:

� Iterative approach; this method relies on the use of computational geometry tools

to calculate convex hulls and intersections. An AOIS is initially estimated and

expanded until it intersects the extreme subsets of the AOS. The magnitude by

which the AOIS is increased is calculated using the Secant and bisection method.

The calculations contained in this method are computationally intensive and limit

its use to systems of 8 dimensions and lower.

� LP approach; in this approach the constraints and objective function are reformu-

lated as linear functions. The extreme subsets of the AOS are expressed as linear

inequalities and objective function set up as to determine the common intersection

point of the AOIS and a given extreme subset. The proposed LP approach over-

comes the computational intensity of the iterative method and is suitable for on-line

calculation of the AOIS.

Application

Numerous authors have illustrated the application of the Operability Index (OI). Georgakis

et al. (2003) focus on a general application of the OI, emphasising its ability to identify

inoperable processes without the need to specify a controller structure. Subramanian and

Georgakis (2001) applies the OI to the design of ideal reactors.

2.2.3 Operability Index application to MPC

Although the Operability Index can be used with square or non-square, linear or non-linear

models, its easiest application is to linear models. This is advantageous as most of the

current MPCs use linear models (Vinson, 2000). Table 2.1 highlights some properties of

MPCs which lend themselves to the application of the Operability Index.

10

Table 2.1: Application of the Operability Index to MPC (Vinson, 2000)

MPC property Operability Index property

Linear process models Calculation of the relevant spaces (AOS and DIS)
is usually fast.

Constraints on MVs and CVs In the case of fixed constraints; the input and out-
put constraints result in polytopes in both the
input and output spaces. From these descriptions
the framework of Operability Index can be directly
applied.

Solution of MV and CV steady
state targets

Where an LP solver is used, the Operability Index
can yield useful information about process charac-
teristics.

Vinson (2000) presents a list of additional issues that limit the performance of MPCs

(with specific attention to AspenTech’s DMCplus©) and proposes methods (using the

Operability Index) to solve these problems. These methods are indirectly applicable to

the proposed constraint handling method of this document and are presented here for

that reason.

Processes with considerable noise cause targets to move with each controller execution.

Typical ways to avoid this are limiting MV stepsize or filtering CVs, both of which have

a stabilizing effect but result in a more sluggish controller. These limits may also cause

the controller to not reach optimum solutions. Using the OI and the associated output

spaces, the possible outputs of a (newly) limited input space are clearly shown.

Disturbances can cause CVs to violate their constraints. In some cases, the controller

might give up on a constraint and continue (now using a subset of the CVs). Possible

solutions include; model re-identification (in the case of an inconsistency), fixing the

source of the disturbance or adding a DV to account for the disturbance. Due to the

fixed constraints on MVs and CVs the resulting AIS and DOS can be used to calculate

the controller’s ability to reject a disturbance. A measure of controller robustness can be

derived from this.

Lastly, move suppression factors for MVs and give-ups for CVs are used to tune MPCs

for dynamic performance. The choice of these factors are usually qualitative and according

to guidelines (and validated via offline simulations). The OI (and its associated spaces)

can provide guidance in determining move suppression factors and give-ups. The difficulty

in controlling a CV at a given constraint can be derived from the OI. How far a CV

constraint can be moved (given the MV constraints) can also be determined from the OI.

11

CHAPTER 3

MODEL PREDICTIVE CONTROL

With the application of the OI to MPCs shown in the previous chapter, this chapter

gives an overview of MPCs in general. Attention is given to:

� general MPC theory,

� types of process models used and

� how constraints are implemented in MPCs.

Finally, background information is presented on two popular commercial MPC

packages.

3.1 Model Predictive Control

Since its successful implementation in the petrochemical industry, model predictive control

(MPC) has gained widespread acceptance in the processing sector (Maciejowski, 2001: 1).

This has led to the development of many commercial MPC packages such as DMCplus©

(Aspentech), RMPCT© (Honeywell), Connoisseur© (Invensys) and SMOC© (Shell Global

Solutions) (Qin and Badgwell, 2003).

3.1.1 Nomenclature and notation

For the sake of coherence between sources a set nomenclature and notation scheme will

be used. The following variables are defined; x refers to the state of the system, y to the

outputs and u to the inputs. Where vectors are concerned (the MIMO case), a bold face

character is used, e.g. x for x. Matrices are distinguished by the use of capitals.

The transpose of a matrix or a vector is indicated by a prime (′), e.g. x′.

For discrete time forms, k is used to denote the sample number. For simplicity of

notation, indices are used to refer to samples, i.e. xk+1 instead of x(k + 1).

12

3.1.2 Control theory

Model predictive control differs from other model based control techniques (such as Inverse

Nyquist Array- and Internal Model Control) in its active use of predictions for future

process outcomes (Maciejowski, 1989: 137). In this context, MPC further distinguishes

itself from other predictive control techniques in its ability to accommodate constraints

on inputs and outputs.

Maciejowski (2001: 8) summarises the control scheme of MPC in four steps; Measure,

Predict, Optimise and Apply. These steps are summarized below:

1. Measure; the current outputs (y(t)) are measured and the error (deviation from the

setpoint trajectory, s(t)) is calculated.

2. Predict; using the model, future outputs (ŷk) are calculated (over the prediction

horizon, Hv).

3. Optimise (Calculate); control moves (over the control horizon, Hu) are now calculated

to minimize the predicted deviation from the setpoint trajectory.

4. Apply; only the first control move is implemented, where-after this procedure is

restarted.

Figure 3.1 illustrates the aforementioned steps along with some other responses. The

reference trajectory, rk, shows the ideal response a variable should follow to reach the

setpoint trajectory, s(t). The free response, ŷk f , shows the predicted values of the output

if no change to the current control signal is made.

3.1.3 Objective functions

Optimal control moves are defined in terms of objective functions. These functions are

often referred to as cost functions (Maciejowski, 2001: 41) as they can incorporate input

and output weighting based on economic factors.

The general formulation of the unconstrained objective function is presented in equa-

tion 3.1. Modifications to this function (due to constraints) are discussed in section 3.2.3.

From Rawlings and Mayne (2009: 17) and Maciejowski (2001: 41), the objective function

which penalizes deviations from the setpoint trajectory as well as moves in the inputs is

shown below;

V (x0,u) =
1

2

N−1∑
k=0

[x′kQxk + u′kRuk] +
1

2
x′NPfxN (3.1)

It is clear that the objective function depends on both the state sequence and the input

sequence. The current state, x0 is known (measured) and the subsequent states are

13

Time

Time

k k +Hu

k k +Hu

Hv

Output

Input

s(t)

rk

y(t)

ŷk

ŷf k

Figure 3.1: General MPC working, showing predictions on both outputs and inputs (Ma-
ciejowski, 2001: 8)

14

determined by the model and the input sequence. The optimal MPC control problem

therefore becomes;

min
u
V (x0,u) (3.2)

3.1.4 Models

The correct choice of model is one of the most important steps in the operation of MPCs

(Rossiter, 2003: 17). This is due to the active use of the model in making predictions as

the controller runs, and not serving merely as an analysis aid (Maciejowski, 2001: 37).

State space models

State space models are the most encountered type in literature. The general, linear,

time-variant, state space model is presented in equation 3.3.

dx

dt
= A(t)x +B(t)u

y = C(t)x +D(t)u (3.3)

x(0) = x0

Where A(t), B(t), C(t) and D(t) are appropriately sized matrices of the state space

model, and x0 is the initial state of the system. For the time-invariant case, these matrices

simply reduce to A, B, C and D. As MPC is mostly implemented at discrete time steps,

the model in equation 3.3 (for the time-invariant case) translates to equation 3.4.

xk+1 = Axk +Buk

yk = Cxk +Duk (3.4)

x0 (given)

Step and pulse response models

Step and pulse response models, especially finite impulse response (FIR) models, were

widely used in the original descriptions of MPC. There has, however, been a recent trend

to move to other model types, such as transfer function models (Maciejowski, 2001: 113;

Rossiter, 2003: 26).

The pulse response model can be defined using the common convolution model (Luyben,

1990: 284), as shown in equation 3.5. Where H is a matrix representing the response of

an output to a unit pulse in the corresponding input.

y(t) =
t∑

k=0

H(t− k)uk (3.5)

15

Even though FIR models are intuitive they are not without shortcomings. The most

prominent of these problems are that FIR models are only applicable to asymptotically

stable plants, and they are only adequate if the CVs are measured outputs. Maciejowski

(2001: 109) elaborates on this topic.

Transfer function models

In the Laplace domain, the input to output relationship of a generic process (as shown in

figure 3.2) is represented by;

ȳ(s) = G(s)ū(s)

where G is the process matrix, and ū and ȳ are the process inputs and outputs (with

the bars indicating deviation variables) respectively. The process matrix (G) can contain

dynamic elements or, in the case of a steady-state model, only gains. Note that state (x)

information does not appear in the transfer function formulation.

G(s)
ū(s) ȳ(s)

Figure 3.2: Generic process showing inputs (ȳ), model (G) and outputs (x̄).

With the assumption of an initial zero state (x0 = 0), the state space description

can be converted to a transfer function description. Taking the Laplace transform of

equation 3.3 (for the time-invariant case), and rearranging, results in equation 3.6.

x̄(s) = (sI − A)−1Bū(s) (3.6)

ȳ(s) = (C(sI − A)−1B +D)ū(s)

Other model types

Some other model types are also used in MPCs, most are however derived from or

reformulations of the above mentioned types. Examples include, distributed models

(Rawlings and Mayne, 2009: 4), CARIMA models and matrix fraction descriptions

(Rossiter, 2003: 24,28) – with the later two stemming from transfer function descriptions.

Even though only linear models have been presented in this section, many MPCs are

capable of using non-linear models. The use of linear models in MPC is, however, common

practice. Important reasons for this are; no assurance of convergence of solutions and

optimisation being non-trivial for non-linear models (Rossiter, 2003: 17).

16

3.1.5 Tuning

The tuning of MPCs is a complex task with many adjustable parameters, even in basic

formulations. Most tuning is, however, based on experience or rules of thumb (Maciejowski,

2001: 188).

As far as the objective function (equation 3.1) is concerned, the most prominent tuning

parameters for MPCs are the weighting matrices Q, R and Pf . These are used to enforce

the relative importance of deviations in both the inputs and outputs.

The weighting matrices are by no means the only tuning parameters. Additional

parameters include the horizons used for predictions, the reference trajectory and the

auxiliary models used (e.g. disturbance models). Chapter 7 of Maciejowski (2001) covers

the tuning of MPCs in some detail.

3.2 Constraints in MPC

The implementation of constraints is probably the most important selling point of MPCs.

When used in conjunction with a steady-state optimiser, MPCs are able to operate with

more CVs than MVs (Vinson, 2000). When this is the case, additional degrees of freedom

are obtained by controlling CVs within ranges rather than on setpoints.

3.2.1 Constraint types

Different types of constraints are present in the MPC algorithm. The following section

lists these constraints and give a short description of their function and properties.

Control constraints

Often called “hard” constraints, these constraints are used for control (as opposed to

optimisation) and are never violated when control moves are calculated. Control constraints

exist for both outputs and inputs, and typically sort into two categories:

� The constraints on inputs are typically physical constraints. Examples are valve

saturation limits and maximum heat duties. Control constraints on outputs are

usually concerned with safety and damage to equipment. Tank levels are an example

of this.

� Another class of control constraints (usually on outputs) are concerned with product

quality and are thus operational in nature.

To add robustness to the control solution, some commercial MPCs use constraints that

regulate dynamic behaviour. These are typically a changing constraint at each solution

interval. Examples of these so called “funnels” are given in section 3.3.1.

17

Optimisation constraints

The constraints implemented by the optimisers in MPC are often called “soft” constraints.

These constraints are typically determined by operational and economical factors. These

constraints are usually implemented as steady-state constraints which represent the optimal

solutions of an external cost function. The limits of these constraints are contained within

the control constraints mentioned above.

As these constraints are not determined by the control objective function, situations

exist where they are violated in an attempt to ensure feasibility of the MPC solution.

This is discussed further in section 3.2.4.

3.2.2 Constraint formulation

Constraints on the inputs, outputs or states of a system can be represented as sets of

linear inequalities. For the most general case, they can be expressed as follows:

Auuk ≤ bu

Ayyk ≤ by (3.7)

Axxk ≤ bx

where Au, Ay and Ax are coefficient matrices, and bu, by and bx the half-space offsets.

For the case where only upper and lower bounds on variables exist, Au and bu reduce to:

Au =

[
I

−I

]
bu =

[
umax
k

−umin
k

]
where umax

k and umin
k correspond to the upper and lower limits of uk respectively (Rawlings

and Mayne, 2009: 6). The coefficient matrices and offsets are reduced similarly for the

outputs and the states.

For constraints on rate of change of inputs, the formulation is similar to equation 3.7.

The change in uk during a sampling instance is now considered thus:

A∆u∆uk ≤ b∆u

with ∆uk = uk+1 − uk

3.2.3 Quadratic objective functions

When constraints are present, the general objective function (equation 3.1), now subject to

equation 3.7 can be reformulated as a quadratic programming (QP) problem. This makes

the problem convex and has favourable consequences for the solution of the optimisation.

18

The mathematical description of the QP problem is omitted from this dissertation.

Maciejowski (2001: 81-83) as well as Rawlings and Mayne (2009: 489-490) can be consulted

for the complete reformulation.

3.2.4 Effect on solutions

The reformulation of the objective function and constraints into a QP problem – and

the subsequent convexity of the optimisation – affects the solution in numerous ways.

Maciejowski (2001: 83) lists some of the solution properties obtained; namely that the

termination of the QP problem is guaranteed and that computation time can be calculated.

Constrained optimisation does however suffer from the problem of possible infeasibilities.

For commercial MPCs the solvers are usually custom built to provide a “back-up” solution

in the case of infeasibilities. This back-up solution usually consists of modifying constraints

(hence the term “constraint handling”). The most common methods of internal constraint

handling are listed below:

� Constraint softening, where constraints are prioritized and then relaxed (or removed)

until feasibility is obtained (Rossiter, 2003: 160).

� Using constraint windows which define a horizon over which constraints are enforced.

Feasibility can now be obtained by changing the start and end-time of this window

(Maciejowski, 2001: 281-282).

� Back- offs and borders can be defined, effectively changing all constraints into

“soft” constraints. Due to the conservative approach, setting the back -off amounts

therefore becomes a feasibility assurance and performance compromise (Rossiter,

2003: 161; Maciejowski, 2001: 282).

3.3 Commercial MPCs

This section gives a more detailed overview of two popular commercial MPC packages.

Appendix A contains screenshots of the interfaces mentioned in the sections that follow.

3.3.1 Honeywell RMPCT

Honeywell’s MPC controller, RMPCT (Robust Model Predictive Control Technology),

forms part of their advanced process control suite, Profit Suite. A brief overview of the

controller and optimiser is given below. Attention is given to the controller internals as

well as the interface used to build such a controller. The information presented in this

section is taken from Honeywell International Inc. (2007b), Honeywell International Inc.

(2007c) and Honeywell International Inc. (2007a) unless stated otherwise.

19

Models

For the purpose of predictions, process models usually need to be identified first – typically

via step testing. Honeywell International Inc. (2007a) lists the types of models which are

supported by their Identifier and elaborates on their specific application. These model

types include:

� FIR,

� PEM (the structure of which supports FIR, ARX, ARMA, ARMAX, ARIMA(X),

ARARMAX, BJ and OE models) and

� Laplace domain parametric models.

The final model, however, is saved in the Laplace domain. Discrete models are converted

to the s domain and has a final structure as shown in equation 3.8.

G(s) =
k(bn−1s

n−1 + · · · b1s+ 1)e−ds

s(ansn + an−1sn−1 + · · · a1s+ 1)
(3.8)

The leading s in the denominator of equation 3.8 indicates an integrator in any of the

sub-processes.

If a third-party model exists, then the model converter in Profit Suite can be used to

convert it into a suitable form.

Constraints

For MVs, the implementation of control constraints are in the form of high and low limits,

and movement limits. The high and low limits of MVs are never violated. Prioritisation

and move suppression of MVs are done by means of weighting factors. The movement

load (L∆) is spread across the MVs as per equation 3.9.

L∆ = min
∑
j

∆u2
j × w2

j (3.9)

where w is the weight and j the index of the MV.

CV control constraints are also specified as high and low limits. In the event of negative

degrees of freedom, constraints are prioritised by means of a give-up factor called the

engineering unit (EU) give up. Similar to equation 3.9 the cumulative weighted error on

the CVs (ε) is minimised as per equation 3.10 with the weight (w) defined as shown.

ε = min
∑
i

w2
i × e2

i (3.10)

w =
1

(CV scaling factor)i
√

(EU give up)i

20

where e is the error and i the CV index

The optimisation constraints are defined as being a specified amount within the high

or low control limits. These limits are not used for control.

For the constraining of dynamic response, funnels are implemented. Predefined funnel

types can be chosen from:

� Type 0, which is an automatically generated funnel,

� Type 1, defined as a third of the Type 0 funnel pinched using the feedback perfor-

mance ratio (FPR), and

� Type 2, which is similar to Type 1 but pinched with the decouple ratio (Type 2 is

therefore FPR independent).

Figure 3.3 illustrates the concept of pinching for the RMPCT funnels. The definitions of

the FPR and the decouple ratio are contained in Honeywell International Inc. (2007b)

but are omitted from this dissertation.

Time

Type 0 funnel

Pinched
Type 1 / Type 2
funnel

y(t)

Figure 3.3: RMPCT funnel implementation showing pinched funnels with dashed lines.

Interfaces

Profit Design Studio (figure A.1) is used for model identification. From this interface the

process model can be extracted. All the constraints (as discussed in the preceding section)

can be added using this interface, where after the controller is built for on-line use from

the Runtime Studio interface (figure A.2).

The operator interface, Profit Suite Operator Station (figure A.3), allows for constraint

changes during plant operation. As far as feasibility of constraints are concerned, these

constraints are only checked to be within the Engineering limits (an additional constraint

present in this interface). A gain matrix (the steady-state model) can easily be obtained

from this interface.

21

3.3.2 AspenTech DMCplus

Aspen Technologies’ MPC controller, DMCplus (Dynamic Matrix Control Plus), forms

part of their advanced process control suite, aspenONE. The overview presented in this

section is taken from Aspen Technologies Inc. (2009) unless stated otherwise.

Models

Model identification is done with DMCplus Model or with SmartStep which enables

model identification while still maintaining control of a plant. Models are stored as FIR

models and conversion to and from other model types are not supported. Extracting a

steady-state gain matrix is possible as the gains are displayed during the modelling phase.

Constraints

As with RMPCT, constraints on the CVs and MVs are specified as high and low limits. In

addition to the constraints, equal concern errors (ECEs) are used to calculate the optimal

move plan and emphasise the relative importance of CVs.

Three types of constraints are used:

� Validity limits which describe limits on measured variables and the values they can

attain. These are the outermost limits and serve only to identify faulty measurements.

� Engineering limits are the hard limits in which the process is operated and are not

violated in a solution. The engineering limits lie within the validity limits.

� Operator limits are used for optimisation, with successful solutions keeping within

these limits. These are the innermost limits, contained within the engineering limits.

For constraint handling, constraints are ranked using rank groups. Lower ranked

constraints are considered “hard” whereas higher ranking constraints are relaxed until

steady-state feasibility is achieved. Optimisation constraints are ranked at 1000 and

constraints that are ignored are ranked at 9999.

The constraint handling of integrating variables is done by utilising ramp rates.

Constraints on the variable are generated using a factor of the time to steady-state and

the upper and lower bound. This limits the rate of change of a variable. Figure 3.4 shows

the constraints generated using ramp rates. The ‘inverted funnel’ becomes sharper when

the full time to steady-state (tss) is used as opposed to a fraction thereof.

Interfaces

The DMCplus Model (figure A.4) interface is used to obtain models from data. Obtaining

a gain matrix is possible from this interface. Additions to the model matrix are also made

from this interface.

22

Time

y(t)

High limit

Low limit

New setpoint

tss

Figure 3.4: Ramp rates creating dynamic constraints on integrating variables after setpoint
change.

The controller is built using the DMCplus Build interface (figure A.5). Models obtained

in the previous step are implemented and a configuration file for the controller is generated.

The Production Control Web Interface (figure A.6) is used by operators to interact

with the process. This interface is used to change constraints on inputs and outputs

during process operation.

23

CHAPTER 4

SYSTEMATIC CONSTRAINT HANDLING

This chapter presents the proposed method of constraint handling based on the

work of Vinson (2000). The method comprises:

� constraint checking for feasibility,

� quantification of operability clamping after constraint changes,

� the implementation of linear constraint in the commercial MPC structure,

and

� constraint set fitting for reduction of the control problem.

A section is also devoted to disambiguating the language used to refer to constraints

based on their sources.

4.1 Assumptions

Certain assumptions are made about the systems investigated. This serves to define the

scope of the project and aids in the mathematical rigour of the methods.

� Steady-state models are used. These models result in real matrices and allow for

strictly linear transformations of spaces.

� Only linear constraints are considered. This allows for half-space geometry to be used

and ensures convexity of intersections (along with the assumption of steady-state

gain models).

� The convexity of all spaces is assumed. This allows the use of minimum vertex

descriptions.

Only a subset of the available model types are presented in this dissertation. It is by no

means implied that rigorous mathematical methods are only possible for this given subset.

24

Note that when reference is made to a “constraint set”, all the half-spaces comprising

that set as well as the feasible region (of the set) are implied.

Finally, it should also be noted that the concepts presented in this document apply to

higher order systems, even though only 2-dimensional examples are presented for ease

of illustration. Programatically, the number of dimensions are only constrained by the

algorithm used to calculate the convex hull (qhull). However, the design of the code

allows for qhull to be replaced by another algorithm with only minor changes.

4.2 Constraint checking

Commercial MPCs use only their set engineering limits to check the validity of constraints.

Along with the engineering constraints (which represent the ultimate bounds) the model

should also be used to validate constraints. This is due to the constraints in the input

and output space being interconnected via the process model.

4.2.1 Feasibility

Operating regions, such as the DOS, are usually specified using external requirements

on the inputs or outputs. The validity of such a space should be checked against the

attainable regions of the corresponding inputs or outputs. In this respect, determining the

Operability Index provides a good measure of how valid a specified operating region is.

The same argument for feasible constraints apply to setpoints. The specification of

setpoints should be checked to be within the attainable output space for a given available

input space.

4.2.2 Constraint changes

The operator interfaces of commercial MPCs (figures A.3 and A.6) allow operators to

change constraints during the operation of processes. The effects of constraint changes on

their corresponding spaces are, however, neglected in commercial MPCs. The reduction

or increase in size of the available input space for a change in output constraints (or vice

versa) should be checked. Ideally a measure of clamping (or relaxing) of constraints should

be supplied.

It is intuitive that constraint tightening in the output space has a corresponding

tightening effect in the input space, but to which extent isn’t immediately clear. To

quantify the tightening of the inputs, the OI of Vinson (2000) can be used, although, this

has the downside of remaining at a value of 1 when the DIS is already contained within

the AIS, regardless of the size change of the DIS. Another possibility is a ratio of the

hypervolumes of the original attainable part of the DIS and the attainable part of the

25

new DIS (DISn). This clamping factor (C) is shown in equation 4.1.

C = 1− µ(AIS ∩DISn)

µ(AIS ∩DIS)
(4.1)

where µ is a function to calculate the hypervolume of a space.

4.3 Commercial MPC interfacing

The clamping factor (C) defined in the previous section serves to guide operators when

changes to constraints are made. Implementation of this number into the user interface of

a commercial MPC would therefore be beneficial.

4.3.1 Constraint types

When constraints are considered, and specifically changes to them, the types of constraints

present are important. This is due to the direction of change allowed by each constraint

type. The following set of constraint types are proposed to disambiguate the specification

of constraints. These proposed types are based on the sources of constraints.

Physical constraints represent the physical limits of the system. Examples are tank

levels, valve saturation limits and maximum heat duties. Allowed changes to these

constraints are usually one-sided or to the inside of a range.

Quality constraints are concerned with product quality, these constraints are typically

determined by external requirements or standards. Strictly speaking, changes to

these constraints are allowed in any direction. However, due to the economic (e.g.

product purity) and safety (e.g. emission limits) consequences of changes, these

limits are only changed by those with granted access.

Operational constraints are the innermost constraint set used by the MPC controller.

These constraints are typically changed using the operator interfaces (e.g. figures A.3

and A.6) and are contained within their respective variables’ physical and quality

constraints.

Optimisation constraints are those constraints that are not critical for the control of

the plant, but rather the performance and efficiency of the plant as determined by

external cost functions. Typically these external cost functions will represent a type

of saving, e.g. energy savings or product give-away reduction.

The specification of spaces, in particular the AIS and the DOS, usually consists of

a combination of the constraint types mentioned above. Classifying constraints in this

26

unambiguous manner will further the understanding of a system and help identify which

constraints can be modified to change the size or shape of a space.

Commercial MPCs do not typically distinguish between different types of constraints.

The constraint types present in RMPCT (section 3.3.1) and DMCplus (section 3.3.2) are

listed below and their connection to the proposed constraint types discussed.

Engineering limits are typically based on a combination of physical constraints and

quality constraints. The specification of the engineering limits should ideally be a

subset of the physical constraints and the AOS and AIS of the process. One method

would be to specify high and low limits on the outputs determined by their maximum

values in the AOS. Along with a safety factor – dependant on model uncertainty –

the intersection of these spaces would provide a better set of engineering limits.

Validity limits (DMCplus) are equal to or outside of the physical constraints of a

variable.

4.3.2 Linear constraints

As discussed in section 3.3, most commercial MPC packages only allow for high and

low limits to be imposed on variables. For the case where constraints that are linear

combinations of variables are present (e.g. β1y1 + β2y2 ≤ b1), they need to be reformatted

to conform to the limited structure provided by commercial MPCs. Adding an unmeasured

variable to a system by adding rows to the process matrix is a common technique used

with commercial MPCs. This same technique can be used to impose linear constraints on

outputs or inputs. The unmeasured variables added to the process model will have gain

constants as determined by the coefficients in the linear constraint.

Considering a model G for an n ×m system (n inputs, m outputs) and the linear

constraints

αu ≤ bu

βy ≤ by

where α and β are rows of Au and Ay (equation 3.7) respectively, the following applies:

� For an input constraint a row is added to the process model and the new input,

un+1 is defined thus:

un+1 = α (4.2)

Even though un+1 represents an input constraint, it is strictly speaking an additional

output and the number of inputs to the system model remains unchanged.

27

� For an output constraint a row is added to the process model and the new output,

ym+1 is defined thus:

ym+1 = (G′ × 1m×1)′ · β (4.3)

where 1m×1 is a column vector of 1s of length m.

A high or low limit can now simply be applied to this newly added variable. For the

examples above, this is simply un+1 ≤ bu and ym+1 ≤ by

4.4 Constraint set fitting

As shown by Vinson (2000) – by means of the Operability Index – a larger operating

region is advantageous for control. The largest operating region (when considering the

output space) is represented by the AOS and DOS intersection. Ideally all the constraints

specifying that intersection (the facets of the intersection) could be implemented in an

MPC which would result in the maximum operating range for the controller.

Firstly, as the dimensions of the system increase the dimensions of the polytopes

describing the input and output spaces increase as well. This results in a high number of

facets present in the intersections of spaces. Furthermore, as the irregularity of the spaces

increase the number of facets present in the intersections will also increase. Each of these

facets represent a constraint that can be added to the controller.

To add to this, the structure available for constraints in commercial MPCs require

linear constraints to be expressed as unmeasured variables with high and low limits. As

mentioned in the preceding section, each linear constraint will add an additional variable

along with its constraints to the system.

Therefore, although ideal, implementing the full description of a highly faceted AOS

and DOS intersection will greatly increase the control problem. This will have an adverse

effect on the computational time of the controller. The description of the controller

will also suffer, as a large number of unmeasured variables (for the purpose of imposing

constraints) can make housekeeping difficult.

The fitting of a constraint set (with fewer constraints) within the AOS and DOS

intersection can be used to reduce the control problem. The operating region of the

smaller (fitted) constraint set will inevitably be less than that of the full intersection. The

fitting procedure therefore becomes a compromise between control problem size and the

available operating region for the controller.

The sections that follow formally define the fitting problem and gives attention to the

some important classes of set fitting and reduction. Although the output space (AOS and

DOS intersection) is used for examples and explanations the same applies to the input

space.

28

4.4.1 Problem formulation

In mathematical terms, the problem consists of fitting the largest volume polytope (with

a specified number of facets) within another polytope (with more facets than the fitted

polytope). Each half-space – or the facets of a shape – represents a constraint. The

constraint set can therefore be described by equation 4.4, where A is the half-plane slope

matrix and b the offsets. Although x is used in equation 4.4, substitution with u or y for

input or output constraints can be done without any loss of generality.

Ax ≤ b (4.4)

In n dimensions, the general problem now becomes:

� given a polytope, Po, having l facets,

� fit a polytope, Pi, with k facets (where n+ 1 ≤ k ≤ l) within Po, and

� maximise the volume of Pi.

With the specification of the number of facets, the dimensions of A and b for both Pi and

Po are fixed. For Po, A is an l × n matrix and b is a l × 1 vector. For Pi, A is an k × n
matrix and b is a k × 1 vector.

The fitting of an arbitrary shape can be expressed as a minimization problem, as

shown in equation 4.5.

min
A, b

-volumePi
(4.5)

s.t. Pi ⊂ Po

Pi and Po convex

This seemingly trivial optimisation problem is not covered in this form in available

literature. A similar problem is that of optimised diamond cutting (Viswambharan, 1998)

which maximises the volume of a diamond within a rough stone. This method allows for

rotation, translation and scaling, but uses a fixed shape for the diamond (i.e. all aspect

ratios of the fitted shape stays constant). Another well considered problem in literature is

the packing problem, which involves packing the maximum number of shapes in a given

shape (or container). Again, the shapes considered in this problem are of fixed dimensions

(and aspect ratios), but the largest dissimilarity is that a number of shapes are fitted, not

just a single one.

29

4.4.2 Set reduction

Implementing all the constraints of the full AOS and DOS intersection does not require

any fitting to be done. The linear constraints only need to be converted to the high and

low limit structure (section 4.3.2).

The fitting of constraint sets will decrease the operational space of the controller, but

also decrease the size of the control problem. The extent to which the control problem

will be decreased depends on the number of constraints fitted and the type of fit.

Intermediate fits

As per equation 4.5, a progressively lower number of constraints can be fitted within the

intersection as arbitrary shapes. The closer the number of constraints in fitted shape is to

that of the original intersection, the larger the operational space of the controller will be.

To reduce the number of additional variables that need to be added to implement

linear constraints, parallel sets can be used. From equations 4.2 and 4.3 it is clear that

the gains of variables added to the process model are only dependent on the half-space

slope and the process model. Therefore, parallel constraints only require one variable to

be added to the process model.

Sets of parallel constraints can therefore be fitted, which will require one additional

variable to be added to the process model per pair. As the slopes of the parallel constraints

are not fixed (for the minimisation problem) this will be referred to as free parallel fitting.

Enforcing these parallel constraints on the minimisation problem will result in a lower

operational space for the controller when compared to an arbitrary shape with the same

number of constraints.

The fitting of free parallel sets is presented as an option here, but not covered in this

project.

High and low limits

The most common method of specifying constraints for commercial MPCs is using high

and low limits. Fitting the maximal volume set of high and low constraints within an

intersection is a subset of free parallel fitting and has the following advantages: fitting

results are directly applicable to commercial MPC packages, and no additional variables

need to be defined.

The disadvantage of this method is a further decrease in the operational space of the

controller when compared to free parallel fitting.

For the fitting of a rectangular constraint set (high and low limits), equation 4.5

reduces to equation 4.6. In this description b is the only input variable (of size 2n× 1)

30

and I is an n× n identity matrix.

min
b

-volumePi
(4.6)

s.t. A =

(
I

−I

)
Pi ⊂ Po

Pi and Po convex

where n is the number of dimensions (variables) present in the initial set.

Minimal fit

A minimum value exists for the number of constraints that can be fitted into an n-polytope.

This is due to the condition that the resulting set needs to be fully bounded and have

a finite, non-zero volume. For n dimensions, n points lie in a plane and result in a zero

volume. Therefore, at least n + 1 points are needed to form a n-polytopewith a finite

volume, with the resulting polytope being a simple polytope. With the number of vertices

at n + 1, the minimum number of facets can be calculated as n + 1 (Barnette, 1971).

Therefore, the smallest number of constraints that can be fitted into a set is n+ 1, where

n is the number of dimensions (variables) of the initial set.

4.4.3 Fitting implementation

The implementation of the fitting procedure is discussed in the code manual and program

listing accompanying this document. Therein, attention is also given to different problem

formulations and the advantages and disadvantages thereof.

31

CHAPTER 5

CASE STUDIES

The case studies investigated in this project are presented in this chapter. Details

are given on design, models and operating conditions of the systems.

5.1 Case studies

To test the method of systematic constraint handling proposed in chapter 4 the following

physical systems were investigated. Both rigs are from the Process Modelling and Control

laboratory of the University of Pretoria.

5.1.1 Level and flow rig

System description

The level and flow rig consists of two control valves, a measured flow (to one control valve)

and a measured level. Figure 5.1 shows a photograph of the rig along with its process

flow diagram.

FeedF

L
x1

x2

Figure 5.1: Level and flow rig photograph (left) and process flow diagram (right).

32

Process model

This rig is modelled as a 2 × 2 system. The MVs are the milliamp signals sent to the

valves (x1 & x2) and correspond to the fractional openings of the two valves. The CVs

are the flow (F) and the level (L). The steady-state gain matrix of this process (Gfl) is

shown in equation 5.1. Note that action of valve 1 is air-to-open and valve 2 is air-to-close

valve, which explains the signs of the gains in the first column of Gfl.

Gfl =

(
−0.0476 −0.0498

0.0111 −0.0604

)
(5.1)

Operating conditions

The operating conditions for this rig are shown in table 5.1 The nominal operating point

(output space) is; 1.322 gpm (F) and 16.4048 cm (L).

Variable Operational constraints Physical constraints
Low High Low High

Inputs x1(mA) 4 20 4 20
x2(mA) 4 20 4 20

Outputs F (gpm) 1.2 1.5 0 1.9
L (cm) 15 18 6 25

Table 5.1: Operating conditions of level and flow rig.

5.1.2 Laboratory distillation column

System description

The second case study investigated is a 10-plate distillation column. The column is run

as a closed system with bottoms and distillate being mixed and fed back into the column.

Figure 5.2 shows a photograph of the column along with its process flow diagram.

System model

The process model has been reduced to a 2× 2 matrix. Reflux flowrate (R, expressed as

a milliamp value sent to the valve) and the setpoint of plate 10’s temperature (T10 sp) are

the MVs. The temperatures of plate 1 and 8 (T1 & T8) are the CVs. Figure 5.3 shows

a graphic representation of the column model and equation 5.2 gives the values for the

steady-state gain model. The nominal operating point (output space) is; 68 � (T1) and

33

T1

T10

TC

T10 sp

Q

R

T8

Figure 5.2: Laboratory distillation column photograph (left) and flow diagram (right).

78 � (T8).

Gcol =

(
−0.0575 0.96

−0.146 0.518

)
(5.2)

Column

PI
Q

Gcol

R

T10 sp

T1

T8

Figure 5.3: Column model showing internal PI controller.

The PI controller between T10 sp and Q is contained in the process’ baselayer. This

was added as a safety measure, should the advanced control layer fail.

Operating conditions

Table 5.2 shows the operating conditions of the distillation column.

34

Variable Operational constraints Physical constraints
Low High Low High

Inputs R (mA) 11 15 4 20
T10 sp (�) 78 82 0 90

Outputs T1 (�) 66 68 15 68
T8 (�) 78 82 25 90

Table 5.2: Operating conditions of distillation column.

35

CHAPTER 6

RESULTS AND DISCUSSION

The results of this project are summarized and discussed in this chapter. Implemen-

tation of the method to the case studies is illustrated. General results concerning

the constraint set fitting are also discussed. A final section is devoted to discussing

the rationale behind future expansions of constraint set fitting.

6.1 Case studies

The proposed method of systematic constraint handling is applied to the case studies. For

ease of graphical representation, only 2× 2 systems are evaluated. It should however be

noted that the proposed method also applies to higher order systems – with the current

exception of arbitrary constraint set fitting as discussed in section 6.2.2.

6.1.1 Level and flow rig

Input and Output spaces

The input and output spaces for the level and flow rig are shown in figure 6.1. These

spaces are calculated from the system’s operating conditions (column 5.1) and process

model (equation 5.1), and shifted with the nominal operating point. From the intersection

of the AOS and the DOS, the OI is calculated as 0.338.

Set fitting

It is clear that the level range expectations of this process are too ambitious. Decreasing

these limits will not affect the control adversely, as the model suggests that these upper

and lower level limits are not attainable. Figure 6.2 shows the fitting of upper and lower

operational constraints within the intersection of the AOS and the DOS. The dark box

represents the largest operating region (described only by high and low limits on the

outputs) which are within the original DOS and the AOS. Compared to the DOS as

36

5 10 15 20

5

10

15

20

x1 (mA)

x
2

(m
A

)

0.5 1 1.5 2

15

16

17

18

F (gpm)

L
(c

m
)

AOS
DOS

Figure 6.1: AIS (left), AOS and DOS (right) for the level and flow rig.

operational constraints, this procedure increases the OI to 1 and presents tighter bounds

that are all feasible.

Constraint changes

As an example of constraint tightening, the newly fitted upper and lower operational

constraints of figure 6.2 are considered and the effect of this constraint change in the

input space investigated. Figure 6.3 shows the original AIS and DIS, along with the new

DIS (the dark dashed box) that corresponds to the changed constraints. To quantify

the tightening of the inputs, the proposed equation 4.1 is used. This indicates that the

attainable movement on the inputs has effectively been tightened by 27%.

The unattainable limits of the DOS are just as clear in the input space (DIS). This

figure also serves to confirm that the newly fitted constraints on the outputs correspond

to a fully attainable region in the input space.

Constraint types

As mentioned in section 3.3, the only constraint validation done by both RMPCT and

DMCplus is checking whether the operational constraints are within the engineering

constraints. Figure 6.4 shows the AOS and the physical constraints of the system (which

are typically used to specify the engineering constraints). It is clear that with only

checking against physical constraints (and disregarding the system model), specification

of operational constraints that are completely unattainable is possible.

Figure 6.4 also shows the fitting of a revised set of engineering limits with a safety

factor of 20%. This new set of engineering limits represents the attainable region of the

process as well as the physical constraints of the system. The risk of specifying operational

constraints that are not attainable has also been reduced.

37

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

15

15.5

16

16.5

17

17.5

18

F (gpm)

L
(c

m
)

Fitted constraints
AOS
DOS

Figure 6.2: Fitted high and low constraints in the AOS and DOS intersection.

−15 −10 −5 0 5 10 15 20 25 30 35 40

−10

−5

0

5

10

15

20

25

30

35

x1 (mA)

x
2

(m
A

)

AIS
DIS
New DIS

Figure 6.3: Newly fitted constraint set shows feasible input constraints as opposed to those of
the original DOS.

38

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

6

8

10

12

14

16

18

20

22

24

26

F (gpm)

L
(c

m
)

AOS
Physical limits
Fitted Engineering limits

Figure 6.4: Physical constraint region, AOS and revised engineering limits (with a 20% safety
factor) for the level and flow rig.

6.1.2 Laboratory distillation column

Input and Output spaces

From the data in table 5.2, equation 5.2 and the column’s nominal operating point the

AIS and AOS of the laboratory distillation column can be generated as shown in figure 6.5.

The operating constraints for R are used to construct the AIS as values outside of this

range (although possible) cause the validity of the linear model to diminish. The DOS, as

described by the operating range in table 5.2, is also shown.

Figure 6.6 focuses on the intersection of the AOS and the DOS. The calculated OI is

0.006 which confirms that only a very small operating region within the DOS is attainable.

It is also clear that the upper limit of 82 � on T8 is unrealistic as the maximum value of

T8 (in the operating region) is only 78.2 �.

Set fitting

Figure 6.7 focuses even closer on the AOS and DOS intersection. The constraints

representing the intersection (dark triangle) and a fitted set of high and low limits (dark

dashed box) are also shown. The fitted limits within the intersection shows that the

operating region is essentially an operating point with temperatures only having a span of

39

11 12 13 14 15
20

40

60

80

R (mA)

T
1
0

sp
(◦

C
)

40 60 80 100

60

70

80

90

T1 (◦C)

T
8

(◦
C

)

AOS
DOS

Figure 6.5: AIS (left), AOS and DOS (right) of the laboratory distillation column.

66 66.5 67 67.5 68 68.5

78

78.5

79

79.5

80

80.5

81

81.5

82

T1 (◦C)

T
8

(◦
C

)

AOS
DOS

Figure 6.6: The AOS and DOS intersection shows a very small operating region.

40

about 0.1 �. In practice the DOS would be adjusted or the model re-evaluated, but for

the sake of illustrating the outputs of the method, the DOS will be kept as is.

67 67.2 67.4 67.6 67.8 68 68.2 68.4
77.7

77.8

77.9

78

78.1

78.2

78.3

T1 (◦C)

T
8

(◦
C

)

Full AOS/DOS intersection
Fitted constraints
AOS
DOS

Figure 6.7: Intersection of AOS and DOS with fitted high and low limits for the column tray
temperatures.

If constraints specifying the full intersection in figure 6.7 are used as operational

constraints, an additional variable needs to be added to the system (along with its

associated high and low limits). Using the fitted box constraints as operational constraints

only require the high and low limits of the existing variables to be changed. The full

intersection does, however, have the advantage of a 200% larger operating region at the

cost of a larger control problem.

Constraint reformatting

To use the constraints describing the whole intersection in figure 6.7, the set needs to be

reformatted to be compatible with commercial MPC packages, as they only accept high

and low limits.

An additional variable needs to be added to the process model and the diagonal

constraint (0.88T8 − 0.47T1 ≤ 36.56 �) needs to be expressed as a high and low limit on

this variable.

Naming the new output y3 and augmenting the process model matrix as per equa-

tion 4.3 results in equation 6.1. The diagonal (linear) constraint can now be expressed as

41

y3 ≤ 36.56 �.

Gcol−new =

−0.0575 0.96

−0.146 0.518

0.0956 1.30

 (6.1)

6.1.3 MPC interfacing

The operator interfaces for RMPCT and DMCplus will be used to enter the operational

constraints determined from the method. For RMPCT (figure A.3) the shaded columns

labeled “Low Limit” and “High Limit” are used. For DMCplus (figure A.6) the column

labeled “Lower Limit” and “Upper Limit” are used.

The revised engineering limits for the level and flow rig would be added to the controller

via the building interfaces (figures A.2 and A.5).

The modelling interfaces (figures A.1 and A.4) are used to augment the model for the

addition of unmeasured variables, as determined for the distillation column.

6.2 Constraint set fitting

The fitting of constraint sets, which form a large part of this dissertation, is discussed

separately. Observations made while studying the fitting of constraint sets, which could

lead to future research is discussed in section 6.2.3.

6.2.1 Solution times

The use of constrained, gradient-based solvers proved to be significantly faster than

unconstrained solvers. Inconsistent gradient information does, however, hamper their

implementation.

Figure 6.8 compares the solution times of the constrained, gradient based solver

(henceforth referred to as SLSQP) and the unconstrained solver (henceforth referred to as

simplex) for rectangular set fitting. Arbitrary sets with three constraints on two variables

were generated. A high and low constraint set was fitted within the attainable region of

the initial three constraints. The data in figure 6.8 is expressed as the fraction of tests

that completed successfully within the given number of function evaluations.

Fitting a constraint set of an arbitrary size was unsuccessful using constrained, gradient-

based solvers. Possible reasons for this are inconsistent gradient information regarding

the position of vertices outside the initial set and the superfluous degrees of freedom

present in the problem formulation. The sources of these problems are discussed in the

accompanying code manual and program listing.

42

0 50 100 150 200 250 300 350 400 450 500 550 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Function evaluations

F
ra

ct
io

n
of

te
st

s

SLSQP
Downhill-Simplex

Figure 6.8: Cumulative plot of function evaluations showing faster execution of SLSQP when
compared to simplex

43

6.2.2 Accuracy

The solutions for high and low constraint set fitting resulted in an optimal answer for

each test. The fitting of arbitrary sized constraint sets suffered from accuracy issues due

to the high dependence on the starting point. As mentioned in the preceding section, due

to problems with the unconstrained, gradient-based solvers, only simplex was used for the

fitting of arbitrary sets.

Two variable systems

For these tests, a 3-constraint set was fitted into a 4-constraint set. The initial set was

chosen to be rectangular (high and low limits) to enable the algebraic calculation of the

optimal fitted set. The optimal solution is 50% of the volume (area in 2 dimensions) of

the initial constraint set. Figure 6.9 shows the accuracy of this fitting test. It can be seen

that 65.8% of the solutions were within 10% of the optimal solution.

0 5 10 15 20 25 30 35 40 45 50
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Error (%)

N
u
m

b
er

of
te

st
s

(N
or

m
al

is
ed

)

2-dimensional fitting
2-dimensional fitting (multi-start)

Figure 6.9: Accuracy of fitting results for a 3-constraint set into a 4-constraint set.

To increase the accuracy, a multi-start approach was taken where 25 random starting

points are generated. The largest volume set (of the 25 generated) was then used for the

fitting. Figure 6.9 shows the improvement in accuracy with this method.

44

Three variable systems

For the three variable tests, a 4-constraint set was fitted into a 6-constraint set. The initial

constraint set was chosen to be a 3-dimensional cube – again to allow for calculation of

the optimal solution. This test (in geometric terms) results in fitting a tetrahedron into a

cube; the optimal solution being 33.33% of the volume of the cube. Figure 6.10 shows the

accuracy of this test.

0 10 20 30 40 50 60 70 80 90 100
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Error (%)

N
u
m

b
er

of
te

st
s

(N
or

m
al

is
ed

)

3-dimensional fitting (multi-start)
3-dimensional fitting

Figure 6.10: Low accuracy is obtained for higher dimensional fitting of constraint sets.

None of the tests resulted in an error below 10%. 22.8% was the lowest error obtained

from all the tests. The low accuracy (even when using a multi-start approach) can be

ascribed to the increased degrees of freedom and the ill conditioning of the problem.

6.2.3 Set fitting expansion

The graphs shown in figure 6.11 show a few optimal solutions obtained from the two

variable tests of section 6.2.2. It can be seen that even though the sets are not equal, the

output Operability Index (Vinson, 2000) calculated for all of them are equal.

From these results the following observations regarding the Operability Index of Vinson

(2000) can be made:

� the Operability Index is a measure of ‘mobility’ and emphasises the need for inputs

to have a good working range to achieve outputs.

45

0 2 4 6 8 10

0

5

10

y1

y 2
Initial set
Fitted set

0 2 4 6 8 10

0

5

10

y1

y 2

Initial set
Fitted set

Figure 6.11: Different sets fitted with an equal size and equal calculated Operability Index.

� all of the input and output space are of equal importance in the Operability Index.

It is intuitive that certain sections of the input or output space are of greater importance

when considering process economics, sensitivities, etc. It would therefore be a sensible

approach to take into consideration an additional objective function when fitting constraint

sets (or when making any changes to the input or output spaces). Fitting a set as the

volume integral of the following possible objective functions would be favourable:

� Economic objective functions would generate an operating region that maximises

profit or minimises cost.

� Sensitivity functions would identify regions that are problematic to control in and

favour them less.

� Design cost functions would aid in process design when processes are being designed

or modified – costs can be directly related to the improvement in control.

These improvements to the constraint set fitting are suggested as a topic for future

research.

46

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

This chapter summarises the conclusions drawn from this project and makes

recommendations for further study.

7.1 Conclusions

The following conclusions can be drawn based on the results of the proposed method of

systematic constraint handling:

� Specification of unrealistic constraints leads to a low Operability Index and unattain-

able expectations of both the inputs and outputs of a process.

� If constraints are checked via the process model, constraint sets that are not

attainable can be identified. Also, checking the changes made to constraints (via

the process model) allow for a measure of clamping to be determined.

� Constraints that are linear combinations of variables can be implemented in com-

mercial MPCs by adding unmeasured variables to the process and imposing high

or low constraints thereon. This procedure improves the operating region of the

controller but increases the size of the control problem.

� The results obtained by the method are readily applicable to commercial MPCs via

user interfaces or as external programs.

From the process of fitting constraint sets, these additional conclusions can be drawn:

� The size of a constraint set can be reduced by fitting a smaller set within, while

maximising the operating region of the fitted set.

� A more rigorous formulation is obtained when the optimisation problem is expressed

in terms of facets rather than vertices, but this increases the solution complexity.

47

� The constrained problem formulation resulted in faster solution times when compared

to the unconstrained case.

� The accuracy of fitting for arbitrary sets yielded the following results:

– 65.8% of fitting results were within 10% of the optimum solution for set fitting

in 2 dimensions. This increased to 100% within 3% of the optimum when using

a multi-start approach.

– 0% of fitting results were within 10% of the optimum solution for set fitting in

3 dimensions. 22.8% was the minimum error obtained for the tests. This low

accuracy is ascribed to ill conditioning of the problem and increased superfluous

degrees of freedom.

7.2 Recommended future research

The conclusions made and work presented in this dissertation opens a few avenues for

further improvement and research.

7.2.1 Systematic constraint handling

At present the proposed method of systematic constraint handling consists only of routines

to do calculations and support only a small subset of possible models. The following

would be attractive additions to the method:

� Support for more model types.

� A graphical user interface to bind all the routines into an easily accessible tool.

� An improved method of data representation for higher order systems, as graphical

representation becomes difficult in more than 3 dimensions.

7.2.2 Constraint set fitting

The process of constraint set fitting should be improved upon to increase its accuracy for

higher dimensional systems.

Also, the incorporation of additional functions into the fitting procedure would improve

the output of this process. Fitting done with respect to the volume integral of (for example)

economic or sensitivity functions would highlight regions of economic or control concern.

48

7.2.3 The Operability Index

While not strictly speaking part of this project, an extension of the Operability Index

and its associated spaces is proposed. The inclusion of dynamics in the models should

produce a transient space around the original AOS. The information obtained from this

space could be valuable in determining optimal and realistic dynamic constraints for MPC

packages, e.g. the funnels of RMPCT. This transient space could also be used to help

determine optimal move paths.

49

APPENDIX A

COMMERCIAL MPC SCREENSHOTS

Some screenshots of Honeywell’s RMPCT and AspenTech’s DMCplus are included

in this appendix. The most important figures in this appendix are the operator

interfaces of both MPCs (figures A.3 and A.6), as these interfaces are most

frequently used to make changes to constraints.

50

Figure A.1: RMPCT modelling interface – Profit Design Studio

51

Figure A.2: RMPCT controller building interface – Runtime Studio

52

Figure A.3: RMPCT operator interface – Profit Suite Operator Station

53

Figure A.4: DMCplus modelling interface – DMCplus Model

54

Figure A.5: DMCplus controller building interface – DMCplus Build

55

Figure A.6: DMCplus operator interface – Production Control Web Interface

56

BIBLIOGRAPHY

Aspen Technologies Inc. (2009), “Aspen Manufacturing Suite, Advanced Process Control,

DMCplus Reference,” DMCPlus technical documentation, Aspen Technologies Inc.,

Burlington, MA.

Barnette, DW (1971), “The minimum number of vertices of a simple polytope,” Israel

Journal of Mathematics, 10 (1), 121–125.

Bayer, MM and Lee, CW (1993), “Combinatorial aspects of convex polytopes,” in

PM Gruber and JM Wills, editors, “Handbook of Convex Geometry,” volume A, pages

485–534, Elsevier Science Publishers B.V., Amsterdam.

Bremner, D, Fukuda, K and Marzetta, A (1998), “Primal-dual methods for vertex and

facet enumeration,” Discrete and Computational Geometry, 20, 333–357.

Campher, AH (2011a), “AHCampher Thesis – GitHub,” URL https://github.com/

CR34M3/AHCampher_Thesis, [2011, 14 March].

Campher, AH (2011b), “Optimised MPC constraints Code – GitHub,” URL https:

//github.com/CR34M3/Optimised_MPC_constraints__Code, [2011, 14 March].

Georgakis, C, Uzturk, D, Subramanian, S and Vinson, DR (2003), “On the operability of

continuous processes,” Control Engineering Practice, 11, 859–869.

Git (2010), “Git – Fast Version Control System,” URL http://git-scm.com/, [2010, 29

October].

GitHub Inc. (2010), “Secure source code hosting and collaborative development – GitHub,”

URL https://github.com/, [2010, 29 October].

Gritzmann, P and Klee, V (1993), “Mathematical programming and convex geometry,” in

PM Gruber and JM Wills, editors, “Handbook of Convex Geometry,” volume A, pages

627–674, Elsevier Science Publishers B.V., Amsterdam.

57

https://github.com/CR34M3/AHCampher_Thesis
https://github.com/CR34M3/AHCampher_Thesis
https://github.com/CR34M3/Optimised_MPC_constraints__Code
https://github.com/CR34M3/Optimised_MPC_constraints__Code
http://git-scm.com/
https://github.com/

Grossmann, IE and Floudas, CA (1987), “Active constraints strategy for flexibility analysis

in chemical processes,” Computers & Chemical Engineering, 11 (6), 675–693.

Honeywell International Inc. (2007a), “Advanced Process Control, Identifier, Users Guide

(Release 310),” RMPCT technical documentation, Honeywell International Inc., Phoenix,

AZ.

Honeywell International Inc. (2007b), “Advanced Process Control, Profit Controller,

Concepts Reference Guide (Release 310),” RMPCT technical documentation, Honeywell

International Inc., Phoenix, AZ.

Honeywell International Inc. (2007c), “Advanced Process Control, Profit Controller, De-

signers Guide (Release 310),” RMPCT technical documentation, Honeywell International

Inc., Phoenix, AZ.

Leung, KT (1974), Linear Algebra and Geometry, Hong Kong University Press, Hong

Kong.

Lima, FV (2007), Interval Operability: A Tool To Design The Feasible Output Constraints

For Non-Square Model Predictive Controllers, Ph.D. thesis, Tufts University.

Luyben, WL (1990), Process Modeling, Simulation and Control for Chemical Engineers,

2nd edition, McGraw-Hill, New York.

Maciejowski, JM (1989), Multivariable feedback design, Addison-Wesley, Workingham.

Maciejowski, JM (2001), Predictive Control with Constraints, Prentice Hall, New York.

Mani-Levitska, P (1993), “Characterizations of convex sets,” in PM Gruber and JM Wills,

editors, “Handbook of Convex Geometry,” volume A, pages 19–41, Elsevier Science

Publishers B.V., Amsterdam.

Marlin, TE (2000), Process Control, Designing Processes and Control Systems for Dynamic

Performance, 2nd edition, McGraw-Hill, Boston.

Python Software Foundation (2010), “Python programming language – official website,”

URL http://www.python.org/, [2010, 29 October].

Qin, SJ and Badgwell, TA (2003), “A survey of industrial model predictive control

technology,” Control Engineering Practice, 11, 733–764.

Rawlings, JB and Mayne, DQ (2009), Model Predictive Control: Theory and Design, Nob

Hill Publishing, Madison.

Rossiter, JA (2003), Model-based Predictive Control: A Practical Approach, CRC Press,

Boca Raton.

58

http://www.python.org/

Skogestad, S and Postlethwaite, I (2005), Multivariable Feedback Control, Analysis and

Design, 2nd edition, John Wiley & Sons Ltd., West Sussex.

Stanley, G, Marino-Galarraga, M and McAvoy, TJ (1985), “Shortcut Operability Analysis.

1. The Relative Disturbance Gain,” Industrial & Engineering Chemistry Process Design

and Development, 24 (4), 1181–1188.

Subramanian, S and Georgakis, C (2001), “Steady-state operability characteristics of

idealized reactors,” Chemical Engineering Science, 56, 5111–5130.

Swaney, RE and Grossmann, IE (1985), “An index for operational flexibility in chemical

process design. part 1: Formulation and theory,” AIChE Journal, 31 (4), 621–630.

Vinson, DR (2000), A New Measure of Process Operability for Improved Steady-State

Design of Chemical Processes, Ph.D. thesis, Lehigh University.

Vinson, DR and Georgakis, C (2000), “A new measure for process output controllability,”

Journal of Process Control, 10, 185–194.

Viswambharan, A (1998), “Optimisation in diamond cutting,” Technical report, University

of Auckland, New Zealand.

Weisstein, EW (2003), The CRC Concise Encyclopedia of Mathematics, 2nd edition,

Chapman & Hall, New York.

Wenger, R (2004), “Helly-type theorems and geometric transversals,” in KH Rosen,

editor, “Handbook of Discreet and Computational Geometry,” 2nd edition, pages 71–94,

Chapman & Hall, Boca Raton.

59

Code Manual and Program Listing for a
Systematic Approach to Model Predictive
Controller Constraint Handling: Rigorous

Geometric Methods

André H. Campher

September 2011

1

Contents

1 Introduction 3

2 Installation notes 3
2.1 Operating systems . 3
2.2 Dependencies . 3

3 Programming details 4
3.1 Programming language . 4
3.2 Qhull . 4
3.3 Constraint set class . 4

3.3.1 Constructors . 4
3.3.2 Methods . 5

3.4 Constraint and vertex conversions 6
3.5 Constraint set fitting . 6

3.5.1 Facet formulation . 6
3.5.2 Vertex formulation . 7
3.5.3 Optimisation . 9
3.5.4 Objective functions . 10
3.5.5 Shape exceptions . 10
3.5.6 Starting point generation 11

4 Program Listing 12

References 34

2

1 Introduction

This document contains overviews of selected project code sections and gives
details about design and implementation. The second part of this document
gives the complete program listing for the project.

This document should accompany the project dissertation and the program
(provided on the CD).

2 Installation notes

2.1 Operating systems

The routines for this project was developed in Linux (Ubuntu 10.04) and this
is the only supported operating system. The code has been run on Apple
Mac, but instructions for this is not included in this document.

2.2 Dependencies

The code was developed using Python 2.6 and should be compatible with
subsequent versions. In addition to the base Python modles, NumPy and
SciPy are required for calculations. Subprocess calls in conjunctions with the
qhull binaries are utilised, which requires both the qhull libraries and binaries
to be installed.

Table 1 lists the packages that need to be installed on Ubuntu. These can
be installed from the command line using sudo apt-get install [package
name].

Package Package name

Python 2.6 python2.6

SciPy python-scipy

NumPy python-numpy

qhull libraries libqhull5

qhull binaries qhull-bin

Table 1: Package installations required in Ubuntu 10.04.

3

3 Programming details

3.1 Programming language

The routines developed for this project was done using the Python program-
ming language. The SciPy and NumPy modules provide the majority of the
mathematical functions used.

3.2 Qhull

Extensive use is made of the qhull algorithm (Barberand et al., 1996) for the
calculation of normals, vertices and hypervolumes. This algorithm was selected
on the basis of its multidimentional functionality and the availability of Unix
binaries. Other Python libraries were considered but deemed insufficient, the
most prominent routines being:

• The spatial module of SciPy contains a Python implementation of the
qhull algorithm but does not currently allow for volume and normal
calculation.

• The CGAL-Python project (Meskini, 2009) provides Python bindings
to the Computational Geometry Algorithms Library (CGAL) but does
not support more than 3 dimensions.

For this project, the qhull algorithm is directly implemented from its Unix
binaries. A Python subprocess call is used and communication with qhull is
done through standard input and standard output. The qhull algorithm
works with vertices and conversion between vertices and half-spaces are done
throughout the code.

3.3 Constraint set class

A Python class, ConSet, was created to handle constraint sets. Commonly
used attributes of constraint sets were added as properties of the class and
commonly used operations were added as methods.

3.3.1 Constructors

Constraint sets can be constructed from the set of constraints or from the
vertices of their feasible region. For construction from vertices, the set
is assumed to be closed and the corresponding constraints are generated
accordingly. Open sets can occur when constructing from constraints as

4

the half-spaces comprising the set are predefined. Open sets are flagged as
erroneous and construction does not proceed.

3.3.2 Methods

The methods of the ConSet class are briefly discussed below.

Volume
The qhull algorithm is used to calculate the hypervolume of the constraint
set.

Space conversion
The process model is used when converting from the input space to the output
space (or vice versa). When using a steady-state model (real matrix of gains)
this results in a matrix multiplication. Therefore, the output of this operation
is a linear transformation of the vertices of the initial constraint set.

Since the steady-state gain model of the system is used steady-state
information is lost, and the result of the matrix multiplication is a change in
outputs (e.g. ∆u). The nominal operating point (around which the model
was linearised) is therefore specified and used to translate the change in the
output space to absolute values. For the case where only sections of a space
are converted (e.g. intersections), the deviation from the nominal operating
point is transformed and added to the final translation.

Intersections
When the intersection of two constraint sets need to be calculated (as is the
case with the AOS and the DOS), a method of superfluous constraints is
used.

In an attempt to avoid the problem of degeneracy (dissertation sec-
tion 2.1.1) the constraints that define the intersection are preprocessed.
Redundant constraints are removed or retained according to the following
criteria:

• Co-planar (duplicate) constraints will appear in the final solution and
are retained.

• If all the vertices (of both intersecting sets) satisfy a given constraint,
and a duplicate thereof does not exist, then that constraint is degenerate
and excluded from the solution.

• If only a subset of the vertices violate a given constraint, then no verdict
can be made about its degeneracy.

The final retained constraints of both sets are combined into a single set, the
feasible region of this set represents the intersection of the two initial sets.

5

Constraint reformatting
The ConSet class allows for constraint sets to be expressed as a set of upper
and lower limits. The output is a reformatted A matrix and b vector along
with the corresponding transformations for the added variables.

Checks
A check to determine whether one constraint set is contained within another
was added to the class. The allinside method checks whether all vertices of
a constraint set satisfy the constraints of another set. With the enforcement
of convexity, this is a sufficient test to ensure that the set is indeed contained.

When a set is not contained within another set, a measure to quantify
the containment of the outer set is generated. For each constraint of the
outer set, the perpendicular distance of all vertices violating that constraint
is calculated and summed.

3.4 Constraint and vertex conversions

As mentioned in section 3.2, most calculations are done using the vertices of
a constraint set. Methods to convert from vertices to constraints (and vice
versa) are included in this program.

For conversion from vertices to constraints, the normals of the convex hull
of the set of vertices are calculated. These normals satisfy Ax ≤ −b (Barber,
2010) and from this the constraints can be calculated directly.

The conversion from constraints to vertices is slightly more complex.
Matlab code by Kelder (2005) was converted to Python code. This code
employs a primal-dual polytope method to calculate the resulting vertices.
This method can produce duplicate vertices; the output is therefore checked
and duplicates removed.

3.5 Constraint set fitting

3.5.1 Facet formulation

The minimization problem formulated in the dissertation is reviewed in
equation 1 below.

min
A, b

-volumePi
(1)

s.t. Pi ⊂ Po

Pi and Po convex

This formulation is based on the facets of Pi, with A and b as the input
variables for the minimization. From these two variables the vertices of Pi

are calculated and subsequently the volume.

6

The advantages of using this formulation are:

• It is a more rigorous approach, as the constraints that comprise the set
are actively changed to find the optimum.

• By fixing the sizes of A and b, the specified number of constraints to
fit is ensured.

• With the use of only linear constraints, the convexity of Pi is ensured.
This results from the feasible region of half-spaces being strictly convex.

This formulation, although rigorous, suffers from some problems in execu-
tion:

• Inconsistent gradient information is generated when checking if Pi is
inside Po. This arises from the fact that the concept of being ‘inside’
one another is not defined for two half-spaces (with the exception of
parallel half-spaces).

• Superfluous degrees of freedom are present, as the complete A matrix
and b are solved for. There is effectively 1 false degree of freedom for
each facet of Pi. The rationale for still using this formulation is simple –
full control of the A matrix allows for all orientations of hyperplanes to
be expressed without the use of infinite slopes.

• Due to A and b begin fully changeable, shape inversion can occur.
This occurs when constraints move in such a way that an open set is
generated. Figure 1 illustrates this concept.

• A scaling-type problem presents itself with the calculation of the volume
of Pi. This comes from the fact that the volume of Pi is the same for
[A, b] and [zA, zb] where z ∈ R. Very large elements in the rows
of A (and their corresponding elements in b) dramatically reduces
the sensitivity of objective functions. This problem can, however, be
overcome by adding a constraint to the solver used to keep the norm of
b at a set value.

3.5.2 Vertex formulation

Another possibility was to express the problem in terms of the vertices of the
convex hull of the constraint set. For this formulation, equation 1 needs to

7

Figure 1: Shape inversion due to the movement of constraints (half-space normals
arrows are shown with arrows).

be redefined in terms of the vertices, as shown in equation 2

min
v

-volumePi
(2)

s.t. Pi ⊂ Po

Pi and Po convex

where v is all the vertices of Pi. A and b will now only result from the final
optimised Pi.

The vertex based formulation has the following advantages:

• This approach is more intuitive as the fitting problem, conceptually,
involves moving the vertices of Pi to the facets of Po.

• Checking that Pi is inside Po is now a direct operation, as vertices don’t
need to be calculated from A and b first.

• When a measure of containment needs to be generated, consistent
gradient information can be expressed in terms of each vertex of Pi.

Most of the problems with the vertex based method stems from the
movement of vertices to the inside of the convex hull of Pi during the solution
of the problem. These internal points are now no longer vertices, but are
still considered in the optimisation. This formulation was abandoned in this
project due to the following disadvantages in its implementation:

• A clear correlation between the number of vertices and the number of
facets on a shape does not exist (unless some properties of the shape are
given). Figure 2 illustrates this concept for two 6-faceted, 3 dimensional
shapes. This is a major problem when the number of facets (constraints)
on Pi needs to be specified.

8

• A slightly different problem than the one mentioned above – the number
of facets on Pi are determined by the final optimised vertices. Internal
points and duplicate vertices in the solution will cause the number of
facets to decrease. Therefore, specification of a set number of facets
becomes nearly impossible.

• Enforcing convexity becomes a problem when vertices are used directly.
This is caused by the movement of vertices inside the convex hull of
Pi. If all points are to be vertices by definition, non-convex shapes are
generated. The use of the qhull algorithm to calculate the volume now
becomes invalid.

• Another problem with internal points occurs during the calculation of
the volume of Pi. The perturbation of internal points have no effect
on the volume (as only the convex hull is considered). This results in
decreased sensitivity of objective functions.

Figure 2: A cube and a pentagonal pyramid in 3 dimensions – both shapes have
6 facets, but differ in their number of vertices (8 and 6 respectively).

3.5.3 Optimisation

For the solution of the problem, two optimisers (solvers) were considered.
Both are contained in the SciPy optimize module:

• A sequential least squares quadratic programming (SLSQP) algorithm,
fmin slsqp, henceforth simply referred to as SLSQP. This is a gradient
based, constrained solver.

• A downhill-simplex algorithm, fmin, henceforth simply referred to as
simplex. This is an unconstrained solver.

9

3.5.4 Objective functions

For SLSQP a combination of equality and inequality constraints were used.
The constrained problem formulation for SLSQP is shown in equation 3 and
follows from equation 1. The criteria that Pi should be convex is satisfied by
using linear inequalities (Ax ≤ b) for its construction. The convexity of Po is
assumed to be a given.

min
A, b

-volumePi
(3)

s.t. norm(b) = 1

verticesPi
satisfy (Ax ≤ b)Po

The constraints as imposed on SLSQP are not possible for simplex. A
penalty formulation for the objective function is therefore used. Equation 4
shows the objective function for use with simplex. The same argument for
convexity holds as with SLSQP.

min
A, b

-volumePi
+ pA(norm(distance of verticesPi

outside Po)) + pB(|norm(b)− 1|)

(4)

where pA and pB are penalty weights.
The same objective functions (equations 3 and 4) hold for the fitting of

rectangular constraint sets. Only difference begin that b is the only input
variable and A has a fixed shape (as shown in equation 4.6 in the dissertation).

3.5.5 Shape exceptions

Two types of shape exceptions are handled during the optimisation. Shape
inversion (as shown in figure 1) is handled by applying a sign to the volume
of the shape. A sufficient criteria for an open, convex shape is when any one
of the vertices violate any one of the constraints used to generate the shape.
If a shape is open, the internal volume is calculated and given a negative sign.

The second class of shape exceptions is that of unbound shapes. These
shapes are generated when enough constraints (used to generate the shape)
are parallel, causing the shape to be unbound. The difference between these
open shapes and those resulting from shape inversion is that there are no
internal vertices. In this event, a large bounding n-cube is placed around
Po, closing the shape but generating vertices that are external to Po. This
method was chosen as opposed to returning an infinite volume.

10

3.5.6 Starting point generation

For the minimization problem, a starting point needs to be generated. A
different method for starting point generation is utilized for arbitrary shape
fitting and rectangular shape fitting respectively.

Both methods generate a starting shape around the centroid of Po. With
the assumption of convexity the centroid is simply calculated as the average
of all the vertices of Po.

For arbitrary shapes, k − 1 random Gaussian vectors are generated and
projected to points on an n-sphere (centered around Po’s centroid). A final
vector is generated to ensure a closed shape. This vector is the negative of
the resultant of the first k − 1 vectors. Tangential planes to the n-sphere
at each of the k points are generated. Finally, the sphere is scaled by a 1%
scaling factor so that the resulting k-faceted shape is within Po (to the largest
extent).

For rectangular shapes a deterministic starting point is generated. An
n-cube is generated around Po’s centroid. This cube is then scaled by a 1%
scaling factor to be within Po (to the largest extent).

11

4 Program Listing

auxfuns.py

#!/ usr / b in /env python
””” Aux i l i a r y f unc t i on s to manipulate data−t ype s and and

change data−formats . ”””
from s c ipy import mat , array , ones
import numpy
import subproces s #to use q h u l l

def sp l i tAb (inAb , nd) :
””” S p l i t input Ab array (1d) in t o separa t e A and b . ”””
tmpAb = inAb . reshape (l en (inAb) /(nd + 1) , nd + 1)
A = tmpAb [: , :−1]
b = array ([tmpAb [: , −1]]) .T
return A, b

def uniqm (A, t=1e−13) :
”””
Return input matrix wi th dup l i c a t e e n t r i e s removed .
A − [matrix] input matrix (p o s s i b l y con ta in ing

d u p l i c a t e s)
t − [f l o a t] t o l e r anc e (d e f a u l t=1e−13)

”””
Nrows = A. shape [0]
uniquerows = [r1 for r1 in range (Nrows)

i f not any (numpy . a l l (abs (A[r1 , :] − A[r2 ,
:]) < t)

for r2 in range (r1 + 1 , Nrows)
)]

return A[uniquerows , :] . copy ()

def mat2ab (Asbmat) :
”””
Transform [A s b]− form matrix to s tandard Ax<b no ta t i on

.
Asbmat − [array] i n e q u a l i t y matrix in the form Ax<b ,

matrix = [A s b]
wi th s the s i gn vec t o r [1:> , −1:<]

”””
stmp = array ([Asbmat [: , −2]])

12

b = Asbmat [: , −1]∗−stmp
A = Asbmat [: , :−2]∗−stmp .T
s = −ones (stmp . shape)
return A, s .T, b .T

def q h u l l s t r (V) :
”””
genera te s t r i n g q h u l l input format .

y i e l d s a newl ine separa ted s t r i n g o f format :
dimensions (columns o f V)
number o f po in t s (rows o f V)
one s t r i n g f o r each row of V

”””
V = numpy . array (V)
return ”%i \n%i \n” % (V. shape [1] , V. shape [0]) \

+ ”\n” . j o i n (” ” . j o i n (s t r (e) for e in row) for
row in V)

def qhu l l (V, q s t r i n g) :
”””
Use q h u l l to determine convex h u l l / volume / normals .
V − [matrix] v e r t i c e s
q s t r i n g − [s t r i n g] arguments to pass to q h u l l

”””
try :

qhu l lp = subproces s . Popen ([” qhu l l ” , q s t r i n g] ,
s td in=subproces s . PIPE , stdout

=subproces s . PIPE)
Vc = qhul lp . communicate (q h u l l s t r (V)) [0] #qhu l l

output to Vc

i f q s t r i n g == ”FS” : #ca l c area and volume
ks = Vc . s p l i t (’ \n ’) [−2]
Vol = f l o a t (ks . s p l i t (’ ’) [−2]) #ge t volume o f D
−h u l l

return Vol
e l i f q s t r i n g == ”Ft” : #ca l c v e r t i c e s and f a c e t s

ks = Vc . s p l i t (’ \n ’)
fms = i n t (ks [1] . s p l i t (’ ’) [1]) #ge t s i z e o f

f a c e t matrix
fmat = ks [−fms−1:−1]
fmat = mat(’ ; ’ . j o i n (fmat)) #genera te matrix

13

fmatv = fmat [: , 1 :] #v e r t i c e s on f a c e t s
return array (fmatv)

e l i f q s t r i n g == ”n” : #ca l c convex h u l l and ge t
normals

ks = ’ ; ’ . j o i n (Vc . s p l i t (’ \n ’) [2 :]) #remove
l e ad in g dimension output

k = mat(ks [: −1]) #conver t to martr ix wi th
v e r t i c e s

return array (k)
else :

e x i t (1)
except :

raise NameError (’ Qhul lError ’)

i f name == ” main ” :
import doc t e s t
doc t e s t . t e s t f i l e (” t e s t s / aux fun s t e s t s . txt ”)

#TODO − auxfuns
q h u l l e r ror hand l ing
f i x auxfuns t e s t s

conclasses.py

#!/ usr / b in /env python
”””
Class d e f i n i t i o n s f o r c on s t r a i n t s e t
Author : Andre Campher
”””
Dependencies : − conver t funs
− auxfuns
− SciPy

from auxfuns import qhul l , mat2ab , uniqm , sp l i tAb
from conver t funs import vert2con , con2vert
from s c ipy import empty , vstack , dot , t i l e , a l l , zeros ,

sqrt , sum , c , s i gn
from s c ipy import mat , ones , l i n a l g , array
from s c ipy import a l l as s c i a l l
import numpy

class ConSet :
”””

14

Class f o r c on s t r a i n t s e t s . Generated by e i t h e r a
con s t r a i n t s e t [A s b] or

by a s e t o f v e r t i c e s [v] .
”””
def i n i t (s e l f , ∗ i n a r g s) :

i f l en (i n a r g s) == 1 :
s e l f . ve r t = i n a r g s [0]
s e l f .A, s e l f . s , s e l f . b = vert2con (s e l f . ve r t)
s e l f . c l o s e d = True

e l i f l en (i n a r g s) == 3 :
i f a l l (s i gn (i n a r g s [1]) == −1) : # ensure an a l l

−1 s i gn vec to r
s e l f .A, s e l f . s , s e l f . b = i n a r g s

else :
s e l f .A, s e l f . s , s e l f . b = mat2ab (c [i n a r g s])

s e l f . vert , s e l f . c l o s e d = con2vert (s e l f .A, s e l f .
b)

else :
e x i t (1) # TODO: Raise excep t i on

s e l f . nd = s e l f .A. shape [1]
s e l f . c s c en t = sum(s e l f . vert , a x i s =0)/ l en (s e l f . ve r t)

def vo l (s e l f) :
”””Return ’ volume ’ o f f e a s i b l e reg ion . ”””
return qhu l l (s e l f . vert , ”FS”)

def o i (s e l f , conset2) :
”””
Return the Operab i l t y Index (Vinson , 2000) o f the

se t , where conset2
i s e q u i v a l e n t to the DOS
”””
Vint = ConSet (∗ s e l f . i n t e r s e c t (conset2)) . vo l ()
return Vint/ conset2 . vo l ()

def outcon l i n (s e l f , model , i s s , o s s) :
”””
Convert c on s t r a i n t s to another space us ing a l i n e a r

model
e . g . c a l c AOS (from G and AIS) .

i s s [v e c t o r] − nominal s t eady s t a t e o f curren t
space (” from”)

oss [v e c t o r] − nominal s t eady s t a t e o f

15

transformed space (” to ”)
”””
outverttemp = empty ([1 , s e l f . v e r t . shape [1]])
handle s h i f t i n g
i s h i f t = s e l f . c s c en t − i s s #input space dev
o s h i f t = model∗ i s h i f t .T #output space dev
f s h i f t = o s h i f t .T + oss #output space o f f s e t
cen ter ’ input ’− space around [0]
inverttemp = s e l f . ve r t − s e l f . c s c en t
for v in inverttemp :

x = model∗v . t ranspose ()
outverttemp = vstack ((outverttemp , x . t ranspose

()))
remove f i r s t l i n e o f junk data from outver t temp

and s h i f t
outverttemp = outverttemp + f s h i f t
return vert2con (outverttemp [1 : , :])

def i n t e r s e c t (s e l f , conset2) :
”””Determine i n t e r s e c t i o n between current

c on s t r a i n t s e t and another ”””
def remredcons (A, b , v e r t s) :

”””Reduce a con s t r a i n t s e t by removing
unnecessary c on s t r a i n t s . ”””

eps = 10e−9
#1 Co−p lanar c on s t r a i n t s ;
Remove as not to a f f e c t 3 rd check
Ab = c [A, b]
Abnorms = ones ((Ab. shape [0] , 1))
for i in range (Ab. shape [0]) :

Abnorms [i] = l i n a l g . norm(Ab[i , :])
Abn = Ab/Abnorms
Abkeep = ones ((0 , Ab . shape [1]))
Abtest = ones ((0 , Ab . shape [1]))
for r1 in range (Abn . shape [0]) :

noocc = ones ((1 , 0))
for r2 in range (Abn . shape [0]) :

#pr in t abs (Abn [r1 , :] − Abn [r2 , :])
i f numpy . a l l (abs (Abn [r1 , :] − Abn [r2 ,

:]) < eps) :
noocc = c [noocc , r2]

i f noocc . s i z e == 1 :
Abtest = vstack ([Abtest , Ab [r1 , :]])

16

else :
Abkeep = vstack ([Abkeep , Ab[r1 , :]])

i f Abkeep . shape [0] > 1 :
Abkeep = uniqm (Abkeep , eps)

#2 Vert su b s e t s a t i s f y i n g ; no ac t i on needed (
redundancy uncer ta in)

#3 A l l v e r t s a t i s f y i n g c on s t r a i n t s ;
A, b = sp l i tAb (array (Abtest) . r a v e l () , v e r t s .

shape [1])
keepA = ones ((0 , A. shape [1]))
keepb = ones ((0 , 1))
bt = t i l e (b , (1 , v e r t s . shape [0]))
k = mat(A) ∗mat(v e r t s .T) − bt
kk = sum(k > eps , a x i s =1)
for i in range (l en (kk)) :

i f kk [i] != 0 :
keepA = vstack ([keepA , A[i , :]])
keepb = vstack ([keepb , b [i , :]])

outAb = vstack ([c [keepA , keepb] , Abkeep])
return sp l i tAb (outAb . r a v e l () , v e r t s . shape [1])

#Combine c on s t r a i n t s and v e r t i c e s
combA = vstack ((s e l f .A, conset2 .A))
combb = vstack ((s e l f . b , conset2 . b))
combv = vstack ((s e l f . vert , conset2 . ve r t))
#Remove redundant c on s t r a i n t s
ncombA , ncombb = remredcons (combA, combb , combv)
#Calc and re turn i n t e r s e c t i o n
intcombvert = con2vert (combA, combb) [0]
return intcombvert

def a l l i n s i d e (s e l f , conset2) :
”””
Determine i f a l l v e r t i c e s o f s e l f i s w i th in conset2

. a l l v i n s i d e merely
re turns True/False whereas insidenorm re turns a

measure o f ’ in s ide−ness ’
b e t t e r s u i t e d f o r op t im i s e r s .
”””
Ins i d e check
Av = dot (conset2 .A, s e l f . v e r t .T)
bv = t i l e (conset2 . b , (1 , s e l f . v e r t . shape [0]))
eps = 1e−13
intmpvals = Av − bv

17

intmp = intmpvals <= eps
a l l v i n s i d e = s c i a l l (intmp)
Ins i d e norm
ins idenorm = ze ro s ((Av . shape [0] , 1))
for cons in range (Av . shape [0]) :

for v e r t s in range (Av . shape [1]) :
d i s t = abs (intmpvals [cons , v e r t s]) / s q r t (sum

(conset2 .A[cons , :] ∗ ∗ 2))
i f not intmp [cons , v e r t s] : # ou t s i d e

ins idenorm [cons] = ins idenorm [cons] −
d i s t

Outside volume
return a l l v i n s i d e , ins idenorm#, ou t s i d e v o l

convertfuns.py

#!/ usr / b in /env python
”””Functions to c a l c u l a t e v e r t i c e s from con s t r a i n t s and

v i c e versa . ”””
from s c ipy import ones , mat , vstack , zeros , hstack , eye ,

array , dot , t i l e , sum
from s c ipy import a l l as s c i a l l
from numpy import l i n a l g , matl ib
from auxfuns import uniqm , qhu l l

def vert2con (V) :
”””
Convert s e t s o f v e r t i c e s to a l i s t o f c on s t r a i n t s (o f

the f e a s i b l e reg ion) .
Return A, b and s o f the s e t ; Ax < b (s i s the sign−

vec t o r [to be used l a t e r])
ver t2con always c l o s e s the shape and genera t e s

i n e q u a l i t i e s a c co rd ing l y .
”””
Dependencies : ∗ q h u l l (l i b q h u l l 5 , q hu l l−b in)
∗ s c i py
k = qhu l l (V, ”n”) #conver t to martr ix wi th v e r t i c e s
k i s a (n+1)x (p) matrix in the form [A b] (from q h u l l

doc : Ax < −b i s
s a t i s f i e d) , thus ;
A = k [: , :−1]
b = array ([−k [: , −1]]) .T
s = −ones (b . shape)

18

return A, s , b

def con2vert (A, b) :
”””
Convert s e t s o f c on s t r a i n t s to a l i s t o f v e r t i c e s (o f

the f e a s i b l e reg ion) .
I f the shape i s open , con2ver t r e tu rns Fa lse f o r the

c l o s ed proper ty .
”””
Python implementat ion o f con2ver t .m by Michael Kleder

(Ju ly 2005) ,
a v a i l a b l e : h t t p ://www. mathworks . com/mat l a b cen t ra l /

f i l e e x c h an g e /7894
−con2vert−cons t ra in t s−to−v e r t i c e s
Author : Michael Kelder (Or i g ina l)
Andre Campher (Python implementat ion)
c = l i n a l g . l s t s q (mat(A) , mat(b)) [0]
btmp = mat(b)−mat(A) ∗c
D = mat(A) / matl ib . repmat (btmp , 1 , A. shape [1])

fmatv = qhu l l (D, ”Ft”) #v e r t i c e s on f a c e t s

G = zero s ((fmatv . shape [0] , D. shape [1]))
for i x in range (0 , fmatv . shape [0]) :

F = D[fmatv [ix , :] , :] . squeeze ()
G[ix , :] = l i n a l g . l s t s q (F , ones ((F . shape [0] , 1)))

[0] . t ranspose ()

V = G + matl ib . repmat (c . t ranspose () , G. shape [0] , 1)
ux = uniqm (V)

eps = 1e−13
Av = dot (A, ux .T)
bv = t i l e (b , (1 , ux . shape [0]))
c l o s e d = s c i a l l (Av − bv <= eps)

return ux , c l o s e d

def con2pscon (cset , G, type) :
”””
Convert a con s t r a i n t s e t to another con s t r a i n t wi th

on ly
h igh / low l im i t s .

19

c s e t − con s t r a i n t s e t to conver t [ConSet]
G − model o f o r i g i n a l s e t [array]
type − type o f model convers ion to be done [s t r i n g]

’ i ’ nput c on s t r a i n t s e t
’ o ’ u tpu t c on s t r a i n t s e t

”””
#Check f o r s i n g l e v a r i a b l e e n t r i e s
checkmat = sum(ze ro s (c s e t .A. shape) == c s e t .A, a x i s =1)
#Determine number o f convers ions
nconv = sum(checkmat < c s e t . nd−1)
i f nconv :

#keep o r i g i n a l h igh / low l im i t s (s remains unchanged
)

keepA = vstack ([c s e t .A[x , :] for x in range (c s e t .A.
shape [0])

i f checkmat [x]])
keepb = vstack ([c s e t . b [x , :] for x in range (c s e t . b .

shape [0])
i f checkmat [x]])

f ixA = vstack ([c s e t .A[x , :] for x in range (c s e t .A.
shape [0])

i f not checkmat [x]])
f i x b = vstack ([c s e t . b [x , :] for x in range (c s e t . b .

shape [0])
i f not checkmat [x]])

tempA = ze ro s ((keepA . shape [0]+ nconv , keepA . shape
[1]+ nconv))

tempA [: keepA . shape [0] , : keepA . shape [1]] = keepA
tempA[−nconv : , −nconv :] = eye (nconv)
tempb = vstack ((keepb , f i x b))
i f type in ” i I ” :

tempG = vstack ((G, f ixA))
e l i f type in ”oO” :

f ixG = sum(G, a x i s =0)∗ f ixA
tempG = vstack ((G, f ixG))

else :
tempG = G

return tempA , c s e t . s , tempb , tempG
else :

return c s e t .A, c s e t . s , c s e t . b , G

i f name == ” main ” :
import doc t e s t

20

doc t e s t . t e s t f i l e (” t e s t s / c o n v e r t f u n s t e s t s . txt ”)

#TODO con2ver t =====
error−check ing
− f i x volume check (f o r redundant c on s t r a i n t s)
#TODO genera l
check t ha t f l o a t i n g−po in t math i s used
f i x output o f con2pscon

fitting.py

#!/ usr / b in /env python
”””Functions to op t ima l l y f i t one ’ shape ’ i n t o another . ”””
from s c ipy import array , optimize , eye , c , r , ones , s q r t
from s c ipy import l i n a l g , sum , s i z e
import numpy
import random
from c o n c l a s s e s import ConSet
from conver t funs import con2vert
from auxfuns import qhul l , sp l i tAb

def t r y v o l (A, b , cs) :
”””
Try to determine volume o f f e a s i b l e region , o the rw i s e

impose box
con s t r a i n t .
”””
try :

V = con2vert (A, b) [0] # ge t v e r t i c e s f o r c on s t r a i n t
s e t i t e r a t i o n

except NameError : #catch unbound shapes
#crea t e l a r g e box around o r i g i n a l shape
f ixA = r [eye (cs . nd) , −eye (cs . nd)]
f i x b = r [[numpy . max(cs . ve r t [: , x]) for x in range (

cs . ve r t . shape [1])] ,
[−numpy . min (cs . ve r t [: , x]) for x in range

(cs . ve r t . shape [1])]]
f i x b = array ([f i x b]) .T
fA = r [fixA , A]
fb = 2 . ∗ r [f ixb , b] # doub le the box s i z e
V = con2vert (fA , fb) [0]

#return vo l (normal or f i x e d) and v e r t i c e s (normal or
f i x e d)

21

return qhu l l (V, ”FS”) , V
#TODO: check box f i t t i n g

def gen s ta r t (shapetype , ∗ args) :
”””
Generate a s t a r t i n g shape (f o r op t im i sa t i on) wi th g iven

number o f f a c e s .
shapetype : [s t r i n g] (r) ec tang l e , (a) r b i t r a r y
args −> (i n i t i a l c on s t r a i n t se t , number o f f a c e s)

”””
i f shapetype in ’ rR ’ : # Rectang le

cs = args [0]
ncon = cs . nd∗2

e l i f shapetype in ’aA ’ : # Arb i t rary shape
cs = args [0]
ncon = args [1]

#1. Determine cen t re o f i n i t i a l region , c scen t
c s c en t = cs . c s c ent # assuming the reg ion i s convex
def sphere fn (srad , cent , svec s) :

”””
Function to c r ea t e po in t s on a sphere (o f radius ,

srad) , conver t them to
ha l f s p a c e s and conver t the h a l f s p a c e s to a

con s t r a i n t s e t .
”””
spherept s = svec s .T∗(srad / s q r t (sum ((svec s .T) ∗∗2)))
spherept s = spherept s .T + cent # move to cen ter o f

c on s t r a i n t s e t
#4. Generate tangent p lanes on sphere at po ints ,

conver t to i n e q u a l i t i e s
A = −(spherept s − cent)
b = array ([(sum ((A∗ spherept s) .T, a x i s =0))]) .T
s = array (ones (b . shape))
return ConSet (A, s , b) # con s t r a i n t s around sphere

i f shapetype in ’ rR ’ : # Rectang le
Astart = r [eye (cs . nd) , −eye (cs . nd)]
s s t a r t = −ones ((cs . nd∗2 , 1))
b s t a r t = lambda k : array (r [c s c en t .T + k , −(c s c en t .

T − k)]) . reshape (s i z e (c s c ent) ∗2 ,1)
k s t a r t = 1 .0
i f ConSet (Astart , s s t a r t , b s t a r t (k s t a r t)) . a l l i n s i d e

22

(cs) [0] :
while ConSet (Astart , s s t a r t , b s t a r t (k s t a r t)) .

a l l i n s i d e (cs) [0] :
k s t a r t = k s t a r t ∗ 1 .01

k f i n = k s t a r t / 1 .01
e l i f not ConSet (Astart , s s t a r t , b s t a r t (k s t a r t)) .

a l l i n s i d e (cs) [0] :
while not ConSet (Astart , s s t a r t , b s t a r t (k s t a r t)

) . a l l i n s i d e (cs) [0] :
k s t a r t = k s t a r t / 1 .01

k f i n = k s t a r t
return ConSet (Astart , s s t a r t , b s t a r t (k f i n))

e l i f shapetype in ’aA ’ : # Arb i t rary shape
#2. Generate ncon−1 Gaussian v e c t o r s
spherevec s = ones ((ncon , cs . ve r t . shape [1]))
for rows in range (spherevecs . shape [0] − 1) :

for c o l s in range (spherevecs . shape [1]) :
spherevec s [rows , c o l s] = random . gauss (0 ,

0 . 3 3) # TODO: check sigma
#3. Determine r e s u l t a n t o f vec tor s , add l a s t v e c t o r

as mirror o f r e s u l t a n t
spherevec s [−1 , :] = −sum(spherevec s [:−1 , :] , a x i s

=0)
po in t s on sphere
#6. Optimise sphere−radius , r , to have a l l p o in t s

w i th in i n i t i a l shape
s t a r t r a d = cs . vo l () ∗∗ (1 . / cs . nd)
i f sphere fn (s ta r t rad , cscent , spherevecs) . a l l i n s i d e

(cs) [0] :
while sphere fn (s ta r t rad , cscent , spherevecs) .

a l l i n s i d e (cs) [0] :
s t a r t r a d = s t a r t r a d ∗ 1 .01

f i n r a d = s t a r t r a d / 1 .01
e l i f not sphere fn (s ta r t rad , cscent , spherevecs) .

a l l i n s i d e (cs) [0] :
while not sphere fn (s ta r t rad , cscent , spherevecs

) . a l l i n s i d e (cs) [0] :
s t a r t r a d = s t a r t r a d / 1 .01

f i n r a d = s t a r t r a d
return sphere fn (f in rad , cscent , spherevecs)

def f i t s h a p e (cset , spset , s o l v e r) :
”””

23

Fi t a con s t r a i n t s e t (s p e c i f i e d by the number o f
c on s t r a i n t s) w i th in an e x i s t i n g

con s t r a i n t s e t .
c s e t − [ConSet] e x i s t i n g con s t r a i n t s e t
ncon − [i n t] number o f c on s t r a i n t s to f i t

”””
Sta t e problem
ncongiven > ncon >= nD+1
Cons t ra in t s are bounding
Al l v e r t i c e s w i th in con s t r a i n t s e t
Define parameters
snorm = l i n a l g . norm(sp s e t . b)
sp = c [sp s e t .A, sp s e t . b] / snorm # s t a r t i n g po in t −

combined Ab matrix to op t imise

Obj e c t i v e fn (FMIN)
def ob j fn (Ab, ∗ args) :

”””Volume o b j e c t i v e f unc t i on f o r fmin (Simplex) . ”””
i n i t c s = args [0]
A, b = sp l i tAb (Ab, i n i t c s . nd)
vol , V = t r y v o l (A, b , i n i t c s)
Pv = 200 .
Pn = 100 .
#Pena l t i e s
l a r g e b norm
bnorm = abs (l i n a l g . norm(b) − 1)
po in t s ou t s i d e o f i n i t space
i t e r s e t = ConSet (V)
outnorm = l i n a l g . norm(i t e r s e t . a l l i n s i d e (i n i t c s) [1])
#outnorm = i t e r s e t . a l l i n s i d e (i n i t c s) [2]
open shape
c l = con2vert (A, b) [1]
i f c l :

c l o s e d = 1
else :

c l o s e d = −1
vo l = t r y v o l (A, b , i n i t c s) [0]
return (−vo l ∗ c l o s e d) + Pn∗(bnorm∗∗ i n i t c s . nd) + Pv∗(

outnorm ∗∗(i n i t c s . nd+3))

Obj e c t i v e fn (SLSQP)
def ob j fn2 (Ab, ∗ args) :

”””Volume o b j e c t i v e f unc t i on f o r SLSQP. ”””

24

i n i t c s = args [0]
A, b = sp l i tAb (Ab, i n i t c s . nd)
c l = con2vert (A, b) [1]
i f c l :

c l o s e d = 1
else :

c l o s e d = −1
vo l = t r y v o l (A, b , i n i t c s) [0]
return c l o s e d ∗ −vo l

def eqcons fn (Ab, ∗ args) :
”””Optimiser e q u a l i t y c on s t r a i n t f unc t i on . ”””
i n i t c s = args [0]
b = sp l i tAb (Ab, i n i t c s . nd) [1]
ge t v e r t i c e s
bn = l i n a l g . norm(b) − 1
return array ([bn])

def i e q c o n s f n (Ab, ∗ args) :
”””Optimiser i n e q u a l i t y c on s t r a i n t f unc t i on . ”””
i n i t c s = args [0]
A, b = sp l i tAb (Ab, i n i t c s . nd)
ge t v e r t i c e s
V = t r y v o l (A, b , i n i t c s) [1]
i t e r s e t = ConSet (V)
cons t r a i n t check ing
i f i t e r s e t . a l l i n s i d e (i n i t c s) :

return 0
else :

return −1

Maximise volume
i f s o l v e r in ’aA ’ :

optAb = opt imize . fm in s l s qp (obj fn2 , sp , f e q c o n s=
eqconsfn ,

f i e q c o n s=ieqcons fn ,
args =[c s e t] , i p r i n t
=0)

e l i f s o l v e r in ’bB ’ :
optAb = opt imize . fmin (obj fn , sp , args =[c s e t] ,

maxiter =20000 , d i sp=False)
e l i f s o l v e r in ’ cC ’ :

optAb = opt imize . fmin coby la (obj fn2 , sp , i eqcons fn ,
args =[c s e t] , i p r i n t =0)

optAb = optAb . r a v e l ()

25

tA , tb = sp l i tAb (optAb , c s e t . nd)
t s = −ones (tb . shape)
o p t s o l = ConSet (tA , ts , tb)
i f s o l v e r in ’bB ’ :

optcent = sum(o p t s o l . vert , a x i s =0)/ l en (o p t s o l . ve r t)
i t e r s o l = ConSet (o p t s o l . ve r t)
while not i t e r s o l . a l l i n s i d e (c s e t) [0] :

v i = (i t e r s o l . ve r t − optcent) ∗0.9999 + optcent
i t e r s o l = ConSet (v i)

o p t s o l = i t e r s o l
return o p t s o l

def f i t c u b e (cset , spset , s o l v e r) :
”””
Fi t a r e c t an g l e (h igh / low l im i t s on ou tpu t s) w i th in an

e x i s t i n g
con s t r a i n t s e t .
c s e t − [ConSet] e x i s t i n g con s t r a i n t s e t

”””
Sta t e problem
nvar = c s e t . nd
Cons t ra in t s are bounding
Al l v e r t i c e s w i th in con s t r a i n t s e t
Define parameters
sp = sps e t . b . r a v e l () # s t a r t i n g po in t − b matrix to

op t imise
Obj e c t i v e fn (SLSQP)
def ob j fn (Ab, ∗ args) :

”””Volume o b j e c t i v e f unc t i on f o r SLSQP. ”””
i n i t c s = args [0]
A = r [eye (i n i t c s . nd) , −eye (i n i t c s . nd)]
b = array ([Ab]) .T
c l = con2vert (A, b) [1]
i f c l :

c l o s e d = 1
else :

c l o s e d = −1
vo l = t r y v o l (A, b , i n i t c s) [0]
return c l o s e d ∗ −vo l

Cons t ra in t s
def i e q c o n s f n (Ab, ∗ args) :

”””Optimiser i n e q u a l i t y c on s t r a i n t f unc t i on . ”””
i n i t c s = args [0]

26

A = r [eye (i n i t c s . nd) , −eye (i n i t c s . nd)]
b = array ([Ab]) .T
ge t v e r t i c e s f o r c on s t r a i n t s e t i t e r a t i o n
V = t r y v o l (A, b , i n i t c s) [1]
i t e r s e t = ConSet (V)
#cons t r a i n t check ing f o r v e r t i c e s
i n eq s = i t e r s e t . a l l i n s i d e (i n i t c s) [1]
return array ([− l i n a l g . norm(ineqs)])

Obj e c t i v e fn (FMIN)
def ob j fn2 (Ab, ∗ args) :

”””Volume o b j e c t i v e f unc t i on f o r fmin (Simplex) . ”””
i n i t c s = args [0]
A = r [eye (i n i t c s . nd) , −eye (i n i t c s . nd)]
b = array ([Ab]) .T
vol , V = t r y v o l (A, b , i n i t c s)
Pv = 200 .
#Pena l t i e s
po in t s ou t s i d e o f i n i t space
i t e r s e t = ConSet (V)
outnorm = l i n a l g . norm(i t e r s e t . a l l i n s i d e (i n i t c s) [1])
open shape
c l = con2vert (A, b) [1]
i f c l :

c l o s e d = 1
else :

c l o s e d = −1
vo l = t r y v o l (A, b , i n i t c s) [0]
return (−vo l ∗ c l o s e d) + Pv∗(outnorm ∗∗3)

Maximise volume
i f s o l v e r in ’aA ’ :

optAb = opt imize . fm in s l s qp (obj fn , sp , f i e q c o n s=
ieqcons fn , args =[c s e t] ,

i p r i n t =0)
e l i f s o l v e r in ’bB ’ :

optAb = opt imize . fmin (obj fn2 , sp , args =[c s e t] ,
maxiter =50000 , d i sp=False)

i f s o l v e r in ’ cC ’ :
optAb = opt imize . fmin coby la (obj fn , sp , i eqcons fn ,

args =[c s e t] ,
i p r i n t =0)

tA = r [eye (c s e t . nd) , −eye (c s e t . nd)]

27

tb = array ([optAb]) .T
t s = −ones (tb . shape)
o p t s o l = ConSet (tA , ts , tb)
i f s o l v e r in ’bBcC ’ :

optcent = sum(o p t s o l . vert , a x i s =0)/ l en (o p t s o l . ve r t)
i t e r s o l = ConSet (o p t s o l . ve r t)
while not i t e r s o l . a l l i n s i d e (c s e t) [0] :

v i = (i t e r s o l . ve r t − optcent) ∗0.9999 + optcent
i t e r s o l = ConSet (v i)

o p t s o l = i t e r s o l
return o p t s o l

def f i t s e t (c set , ∗ args) :
”””
Return a f i t t e d con s t r a i n t s e t w i th in c s e t .

c s e t − [ConSet] to f i t w i th in
∗ args (in t h i s order) − (s t ype) [s t r i n g] ’ a ’ r b i t r a r y /

’ r ’ e c t angu l a r
− (s o l v e r) [s t r i n g] ’ a ’ SLSQP /

’ b ’ fmin / ’ c ’ Cobyla
− (ncon) [i n t e g e r] number o f

c on s t r a i n t s to f i t
c s e t . nd + 1 < ncon < c s e t .A

. shape [0]
”””
#Get args
stype = args [0]
s o l v e r = args [1]
i f stype in ’aA ’ :

ncon = args [2]
n o s t a r t s = 1

else :
ncon = 0
n o s t a r t s = 1

#Sta r t i n g po in t
r e f v o l = 0
for k in range (n o s t a r t s) :

spshape = gens ta r t (stype , c set , ncon)
i f spshape . vo l () > r e f v o l :

f i n a l s p = spshape
r e f v o l = f i n a l s p . vo l ()

#Fit s e t
i f stype in ’aA ’ :

28

o p t s o l = f i t s h a p e (cset , f i n a l s p , s o l v e r)
e l i f stype in ’ rR ’ :

o p t s o l = f i t c u b e (cset , f i n a l s p , s o l v e r)
#Return
return o p t s o l

def f itmaxbox (cset , s f) :
”””
Return h igh / low con s t r a i n t s e t around the g iven

con s t r a i n t s e t .
c s e t − [ConSet] to f i t over
s f − [i n t e g e r] s a f e t y f a c t o r (f r a c t i o n 0−1)

”””
#Get args
dev = s f ∗ ((c s e t . ve r t . max(0))−c s e t . c s c ent)
maxvals = c s e t . ve r t . max(0) + dev#−c s e t . c s cen t) + c s e t .

c s cen t
minvals = c s e t . ve r t . min (0) − dev#−c s e t . c s cen t) + c s e t .

c s cen t
Abox = r [eye (c s e t . nd) , −eye (c s e t . nd)]
bbox = c [maxvals , −minvals] . T
sbox = −ones ((Abox . shape [0] , 1))
return ConSet (Abox , sbox , bbox)

maincol.py

#!/ usr / b in /env python
”””
Main f i l e f o r M Pro jec t (Optimised MPC Cons t ra in t s) .
Tes t ing f i l e f o r d i s t i l l a t i o n column
Author : Andre Campher
”””
Dependencies : − SciPy
− conver t funs
− auxfuns
− conc l a s s e s

from c o n c l a s s e s import ConSet
from s c ipy import array , l i n a l g
from auxfuns import mat2ab
from f i t t i n g import f i t s e t
from conver t funs import con2pscon

29

#MAIN START
===

de f i n e AIS and DOS (equa t ions : Ax<b)
equa t ions in the form Ax<b , matrix = [A s b]
with s the s i gn vec to r [1:> , −1:<]
AISA , AISs , AISb = mat2ab (array ([[1 . , 0 . , 1 . , 1 1] ,

[1 . , 0 . , −1. , 1 5] ,
[0 . , 1 . , 1 . , 2 5] ,
[0 . , 1 . , −1. , 9 0 .]]))

AIS = ConSet (AISA , AISs , AISb)

DOSA, DOSs , DOSb = mat2ab (array ([[1 . , 0 . , 1 . , 6 6 .] ,
[1 . , 0 . , −1. , 6 8 .] ,
[0 . , 1 . , 1 . , 7 8 .] ,
[0 . , 1 . , −1. , 8 2 .]]))

DOS = ConSet (DOSA, DOSs , DOSb)

de f i n e G (steady−s t a t e model)
R T10sp
G = array ([[−0 .0575 , 0 . 9 6] , # T1

[−0.146 , 0 . 5 1 8]]) # T8
Gi = l i n a l g . inv (G)

ca l c AOS (from G and AIS)
l s s = array ([[6 8 . , 7 8 .]]) # nominal opera t ing po in t (used

f o r model genera t ion)
AOSA, AOSs , AOSb = AIS . ou t con l i n (G, AIS . cscent , l s s)
AOS = ConSet (AOSA, AOSs , AOSb)
#TODO: check nominal op . po in t use

Calc i n t e r s e c t i o n o f AOS |DOS
DOSi = ConSet (∗mat2ab (array ([[−0 .47486499 , 0 .88005866 , −1,

36 .55612415] ,
[1 . , 0 . , −1,

6 8 .] ,
[0 . , −1. , −1,
−78 .]])))

Calc a d d i t i o n a l spaces
DIS = ConSet (∗DOS. outcon l i n (Gi , l s s , AIS . c s c en t))

30

DOSn = f i t s e t (DOSi , ’ r ’ , ’ a ’)
DISn = ConSet (∗DOSn. out con l i n (Gi , l s s , AIS . c s c en t))
DISi = ConSet (∗DOSi . ou t con l i n (Gi , l s s , AIS . c s c en t))
DIS2 = ConSet (AIS . i n t e r s e c t (DIS))
DOS2 = ConSet (∗DIS2 . ou t con l i n (G, AIS . cscent , l s s))

Calc modi f ied c on s t r a i n t s and model f o r h igh / low l im i t s
modA, mods , modb , modG = con2pscon (DOSi , G, ’ o ’)

mainflow.py

#!/ usr / b in /env python
”””
Main f i l e f o r M Pro jec t (Optimised MPC Cons t ra in t s) .
Tes t ing f i l e f o r l e v e l and f l ow r i g
Author : Andre Campher
”””
Dependencies : − SciPy
− conver t funs
− auxfuns
− conc l a s s e s

from c o n c l a s s e s import ConSet
from s c ipy import array , l i n a l g
from auxfuns import mat2ab
from f i t t i n g import f i t s e t , f itmaxbox

#MAIN START
===

de f i n e AIS and DOS (equa t ions : Ax<b)
equa t ions in the form Ax<b , matrix = [A s b]
with s the s i gn vec to r [1:> , −1:<]
AISA , AISs , AISb = mat2ab (array ([[1 . , 0 . , 1 . , 4] ,

[1 . , 0 . , −1. , 2 0] ,
[0 . , 1 . , 1 . , 4] ,
[0 . , 1 . , −1. , 2 0 .]]))

AIS = ConSet (AISA , AISs , AISb)

DOSA, DOSs , DOSb = mat2ab (array ([[1 . , 0 . , 1 . , 1 . 2] ,
[1 . , 0 . , −1. , 1 . 5] ,
[0 . , 1 . , 1 . , 1 5 .] ,

31

[0 . , 1 . , −1. , 1 8 .]]))
DOS = ConSet (DOSA, DOSs , DOSb)

POS = ConSet (∗mat2ab (array ([[1 . , 0 . , 1 . , 0] ,
[1 . , 0 . , −1. , 1 . 9] ,
[0 . , 1 . , 1 . , 6 .] ,
[0 . , 1 . , −1. , 2 5 .]])))

de f i n e G (steady−s t a t e model)
G = array ([[−0 .0476 , −0.0498] ,

[0 . 0111 , −0 .0604]])

Gi = l i n a l g . inv (G)

ca l c AOS (from G and AIS)
l s s = array ([[1 . 3 2 2 , 1 6 . 4 0 4 8]]) # nominal opera t ing po in t (

used f o r model genera t ion)
AOS = ConSet (∗AIS . ou t con l i n (G, AIS . cscent , l s s))
mbox = ConSet (f itmaxbox (AOS, 0 . 2) . i n t e r s e c t (POS))

−− AOS/DOS i n t e r s e c t i o n
DOSi = ConSet (AOS. i n t e r s e c t (DOS))
DIS = ConSet (∗DOS. outcon l i n (Gi , l s s , AIS . c s c en t))

−− F i t t e d c on s t r a i n t s
DOSn = f i t s e t (DOSi , ’ r ’ , ’ a ’)
DISn = ConSet (∗DOSn. out con l i n (Gi , l s s , AIS . c s c en t))
DISi = ConSet (DIS . i n t e r s e c t (AIS))

print DISi

main.py

#!/ usr / b in /env python
”””
Main f i l e f o r M Pro jec t (Optimised MPC Cons t ra in t s) .
Author : Andre Campher
”””
Dependencies : − SciPy
− conver t funs
− auxfuns
− conc l a s s e s

32

from c o n c l a s s e s import ConSet
from s c ipy import array
from auxfuns import mat2ab

#MAIN START
===

de f i n e AIS and DOS (equa t ions : Ax<b)
equa t ions in the form Ax<b , matrix = [A s b]
with s the s i gn vec to r [1:> , −1:<]
AISA , AISs , AISb = mat2ab (array ([[1 . , 0 . , 1 . , −0.0525] ,

[1 . , 0 . , −1. , 0 . 1 2 5] ,
[0 . , 1 . , 1 . , −10] ,
[0 . , 1 . , −1. , 1 0 .]]))

AIS = ConSet (AISA , AISs , AISb)

DOSA, DOSs , DOSb = mat2ab (array ([[1 . , 0 . , 1 . , −1.] ,
[1 . , 0 . , −1. , 1 .] ,
[0 . , 1 . , 1 . , −1.] ,
[0 . , 1 . , −1. , 1 .]]))

DOS = ConSet (DOSA, DOSs , DOSb)

de f i n e G (steady−s t a t e model)
l s s = array ([[5 0 . , 5 0 .]]) # nominal opera t ing po in t (used

f o r model genera t ion)
G = array ([[1 , 0 . 0 0 2 5] ,

[2 , 0 . 0 0 2 5]]) # gain matrix − atm l i n e a r s t eady
s t a t e matrix

ca l c AOS (from G and AIS)
AOSA, AOSs , AOSb = AIS . ou t con l i n (G, AIS . cscent , l s s)
AOS = ConSet (AOSA, AOSs , AOSb)
print AOS. ve r t

Calc i n t e r s e c t i o n o f AOS |DOS
#pr in t AOS. i n t e r s e c t (DOS)

33

References

Barber, CB (2010), “Qhull output options,” URL http://www.qhull.org/

html/qh-opto.htm, [2010, 29 October].

Barberand, CB, Dobkin, DP and Huhdanpaa, HT (1996), “The quickhull
algorithm for convex hulls,” ACM Trans. on Mathematical Software, 22 (4),
469–483.

Kelder, M (2005), “CON2VERT - constraints to vertices,” MATLAB program,
URL http://www.mathworks.com/matlabcentral/fileexchange/7894,
[2010, 29 October].

Meskini, N (2009), “CGAL Python Bindings,” URL http://cgal-python.

gforge.inria.fr/, [2010, 28 October].

34

http://www.qhull.org/html/qh-opto.htm
http://www.qhull.org/html/qh-opto.htm
http://www.mathworks.com/matlabcentral/fileexchange/7894
http://cgal-python.gforge.inria.fr/
http://cgal-python.gforge.inria.fr/

	Front
	Title page
	Synopsis
	Acknowledgements
	Contents
	List of figures
	List of tables
	Nomenclature

	Introduction
	Background
	Problem statement
	Method
	Scope and deliverables

	Literature Overview
	Mathematical Preliminaries
	Convex Geometry
	Process models

	Process Operability
	Overview
	Operability Index
	Operability Index application to MPC

	Model Predictive Control
	Model Predictive Control
	Nomenclature and notation
	Control theory
	Objective functions
	Models
	Tuning

	Constraints in MPC
	Constraint types
	Constraint formulation
	Quadratic objective functions
	Effect on solutions

	Commercial MPCs
	Honeywell RMPCT
	AspenTech DMCplus

	Systematic Constraint Handling
	Assumptions
	Constraint checking
	Feasibility
	Constraint changes

	Commercial MPC interfacing
	Constraint types
	Linear constraints

	Constraint set fitting
	Problem formulation
	Set reduction
	Fitting implementation

	Case Studies
	Case studies
	Level and flow rig
	Laboratory distillation column

	Results and Discussion
	Case studies
	Level and flow rig
	Laboratory distillation column
	MPC interfacing

	Constraint set fitting
	Solution times
	Accuracy
	Set fitting expansion

	Conclusions and Recommendations
	Conclusions
	Recommended future research
	Systematic constraint handling
	Constraint set fitting
	The Operability Index

	Appendix A
	Bibliography
	Code Manual and Program listing for a systematic approach to model predictive controller ...
	Contents
	1 Introduction
	2 Installation notes
	3 Programming details
	4 Program Listing
	References

