

ROBUST NONLINEAR MODEL PREDICTIVE CONTROL OF A CLOSED RUN-OF-MINE ORE MILLING CIRCUIT

by

Lodewicus Charl Coetzee

Submitted in partial fulfilment of the requirements for the degree

Philosophae Doctoral (Electronic Engineering)

in the

Faculty of Engineering, the Built Environment and

Information Technology

UNIVERSITY OF PRETORIA

June 16, 2009

© University of Pretoria

SUMMARY

Title:	Robust Nonlinear Model Predictive Control of a Closed Run-Of-Mine
	Ore Milling Circuit
By:	Lodewicus Charl Coetzee
Promoter:	Professor I.K. Craig
Department:	Department of Electrical, Electronic and Computer Engineering
Name of degree:	Philosophae Doctoral (Electronic Engineering)

This thesis presents a robust nonlinear model predictive controller (RNMPC), nominal nonlinear model predictive controller (NMPC) and single-loop proportional-integral-derivative (PID) controllers that are applied to a nonlinear model of a run-of-mine (ROM) ore milling circuit. The model consists of nonlinear modules for the individual process units of the milling circuit (such as the mill, sump and cyclone), which allow arbitrary milling circuit configurations to be modelled easily.

This study aims to cast a complex problem of a ROM ore milling circuit into an RNMPC framework without losing the flexibility of the modularised nonlinear model and implement the RNMPC using open-source software modules.

The three controllers are compared in a simulations study to determine the performance of the controllers subject to severe disturbances and model parameter variations. The disturbances include changes to the feed ore hardness, changes in the feed ore size distributions and spillage water being added to the sump.

The simulations show that the RNMPC and NMPC perform better than the PID controllers with regard to the economic objectives, assuming full-state feedback is available, especially when actuator constraints become active. The execution time of the RNMPC, however, is much too long for real-time implementation and would require further research to improve the efficiency of the implementation.

Keywords: Run-of-mine ore milling circuit, Robust Nonlinear Model Predictive Control, ROM, RNMPC.

OPSOMMING

Titel:	Robuuste nie-lineêre-model voorspellende beheer van 'n geslote
	maalkring wat onbehandelde erts maal
Deur:	Lodewicus Charl Coetzee
Promoter:	Professor I.K. Craig
Departement:	Departement van Elektriese, Elektroniese and Rekenaaringenieurswese
Naam van graad:	Philosophae Doctoral (Elektroniese Ingenieurswese)

Die tesis beskryf 'n robuuste nie-lineêre-model voorspellende beheerder (RNMVB), 'n nominale nie-lineêre-model voorspellende beheerder (NMVB) en proporsioneel-integraal-afgeleide (PIA)-beheerders wat toegepas word op 'n nie-nielineêre-model van 'n geslote maalkring wat onbehandelde erts maal. Die model bestaan uit nie-lineêre modules vir die individuele proses-eenhede (soos die meule, opvangbak en sikloon) wat dit moontlik maak om arbitrêre proseskonfigurasies te modelleer.

Die studie beoog om 'n komplekse probleem van 'n geslote maalkring wat onbehandelde erts maal in 'n RNMVB raamwerk te plaas sonder om die voordeel van 'n modulêre nie-lineêremodel te verloor. Die RNMVB-implimentering gebruik oop-bronkode sagtewaremodules.

Die drie beheerders word met mekaar vergelyk deur van 'n simulasiestudie gebruik te maak om die werkverrigting van die beheerders te bepaal as beduidende steurings en modelparametervariasies teenwoordig is. Die steurings sluit in veranderinge in die hardheid en groottesamestelling van die erts wat na die meule gevoer word, asook water wat in die opvangbak gestort word.

Die simulasies wys dat die RNMVB en NMVB beter werkverrigting lewer as die PIAbeheerders as hulle vergelyk word wat betref die ekonomiese doelwitte, veral as die aktueerders hulle limiete bereik. Die simulasies neem aan dat alle proses toestandsveranderlikes terugvoerbaar is. Die berekeninge van die RNMVB neem te lank om dit te kan implementeer op 'n werklike aanleg en vereis verdere navorsing om die implimentering te bespoedig.

Sleutelwoorde: Maalkring wat onbehandelde ers maal, Robuuste Nie-lineêre-model Voorspellende Beheer.

ACKNOWLEDGEMENT

I thank God for blessing me with the opportunity to study.

To my wife, Nicole, I say thank you very much! Without your love, support and understanding during this time, this study would not have been possible.

I owe my parents a debt of gratitude for their support and understanding throughout all the years of my studies.

I sincerely thank my supervisor, Prof. Craig of the University of Pretoria, for his guidance over all these years, his insight into control, helping with this research and especially for keeping me on the right track.

I thank Dr. Eric Kerrigan of Imperial College, London, for his insights into robust nonlinear model predictive control theory and taking the time to explain it to me.

I thank Dr. Hulbert of Mintek for providing the nonlinear model of the ore milling circuit used in this thesis and for his practical insight into the process and the control challenges.

TABLE OF CONTENTS

1	INT	RODU	CTION	1
	1.1	MILL	CIRCUIT DESCRIPTION	4
	1.2	OBJE	CTIVES IN MILL CONTROL	5
	1.3	AIMS	AND OBJECTIVES	6
	1.4	ORGA	NISATION	7
2	MIL	LING '	THEORY AND MODELLING	9
	2.1	INTRO	DDUCTION	9
	2.2	THEO	RY OF MILLING	9
		2.2.1	Introduction	9
			2.2.1.1 Mills	10
			2.2.1.2 Hydrocyclones	14
			2.2.1.3 Sump	15
		2.2.2	Process of breakage	15
			2.2.2.1 Size distribution	16
		2.2.3	Motion of the load	16
		2.2.4	Forces causing breakage	17
		2.2.5	Breakage mechanisms	18
	2.3	MILLI	ING MODELLING	18
		2.3.1	Discrete element method	19
		2.3.2	Population balance models	20
			2.3.2.1 Product discharge	21
			2.3.2.2 Breakage rate r_i	23
			2.3.2.3 Breakage distribution function (appearance function a_{ij}).	24

			UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA	ГS
			2.3.2.4 Power draw model	25
			2.3.2.5 Hydrocyclone models	28
		2.3.3	Other models	28
			2.3.3.1 Cumulative breakage rate model	28
			2.3.3.2 Transfer function step-test model	28
			2.3.3.3 Neural networks	29
		2.3.4	Mintek mill circuit model modules	30
			2.3.4.1 Feeder module	30
			2.3.4.2 Mill module	31
			2.3.4.3 Mixed-sump module	34
			2.3.4.4 Hydrocyclone module	35
	2.4	CONC	LUSION	36
3	MO	DEL PI	REDICTIVE CONTROL	37
	3.1	INTRO	DUCTION	37
	3.2	HISTO	RICAL BACKGROUND	40
	3.3	STAB	LITY OF MPC	42
		3.3.1	Stability conditions for model predictive controllers	43
		3.3.2	Terminal state MPC	45
		3.3.3	Terminal cost MPC	45
		3.3.4	Terminal constraint set MPC	46
		3.3.5	Terminal cost and constraint set MPC	47
	3.4	ROBU	ST MPC - STABILITY OF UNCERTAIN SYSTEMS	47
		3.4.1	Stability conditions for robust MPC	48
		3.4.2	Open-loop min-max MPC	49
		3.4.3	Feedback robust MPC	50
	3.5	ROBU	ST NONLINEAR MPC FORMULATIONS	52
		3.5.1	Lyapunov-based robust model predictive control	52
		3.5.2	Reachable set methods	53
		3.5.3	Closed-loop min-max predictive control	53
		3.5.4	Open-loop min-max predictive control	53

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

			TUNIBESIIHI TA PRETURIA	
		3.5.5	Linear embedding of nonlinear models	54
	3.6	NONL	INEAR MODEL PREDICTIVE CONTROL	55
	3.7	ROBU	ST NONLINEAR MODEL PREDICTIVE CONTROL	57
		3.7.1	Parameter uncertainty description	57
		3.7.2	Direct approximate robust counterpart formulation	58
		3.7.3	RNMPC implementation	61
	3.8	STATE	E OBSERVERS	67
	3.9	CONC	LUSION	68
4	PID	CONT	ROL	69
	4.1	INTRO	DDUCTION	69
	4.2	PI CO	NTROL WITH ANTI-WINDUP	70
	4.3	LINEA	ARISED MODELS FOR SIMC TUNING METHOD	71
		4.3.1	PSE – CFF model	72
		4.3.2	LOAD – MFS model	72
		4.3.3	SLEV – SFW model	73
	4.4	SIMC	TUNING METHOD	74
		4.4.1	Simplifying first-order transfer function models	74
	4.5	IMPLE	EMENTATION	75
		4.5.1	PI controller for the PSE-CFF loop	76
		4.5.2	PI controller for the LOAD-MFS loop	76
		4.5.3	PI controller for the SLEV-SFW loop	77
	4.6	SUMN	1ARY	77
5	MIL	LING	CIRCUIT CONTROL SIMULATION STUDY	78
	5.1	INTRO	DDUCTION	78
	5.2	PERFO	ORMANCE METRICS	79
	5.3	SIMU	LATION RESULTS	84
		5.3.1	Simulation parameters	84
		5.3.2	Constant setpoint following and disturbance rejection	85
		5.3.3	Reduced PSE setpoint to 75% and 70% < $75\mu m$	89
		5.3.4	Step change of -5% and -10% in PSE setpoint	90

				UNIVERSITEIT VAN PRETORIA TABLE OF CONTE	NTS
		5.3.5	Regulate	PSE, LOAD and Throughput	90
	5.4	DISCU	JSSION .		116
	5.5	SIMU	LATION S	SUMMARY	117
6	CON	NCLUS	IONS AN	D FURTHER WORK	123
	6.1	SUMN	IARY AN	D EVALUATION	123
		6.1.1	Strong p	oints	123
		6.1.2	Drawbac	ks	125
	6.2	FURT	HER WOF	RK	127
RI	EFER	ENCES	5		129
A	SOF	TWAR	E IMPLE	EMENTATION	142
	A.1	INTRO	DUCTIO	N	142
	A.2	IMPLE	EMENTAT	ΓΙΟΝ	143
		A.2.1	IPOPT T	NLP class methods	144
			A.2.1.1	Class constructor method MyNLP::MyNLP	144
			A.2.1.2	Method get_nlp_info	145
			A.2.1.3	Method get_bounds_info	146
			A.2.1.4	Method get_starting_point	147
			A.2.1.5	Method eval_f	148
			A.2.1.6	Method eval_grad_f	148
			A.2.1.7	Method eval_g	148
			A.2.1.8	Method eval_jac_g	149
			A.2.1.9	Method finalize_solution	151
		A.2.2	RNMPC	specific methods	151
			A.2.2.1	Method next_run	151
			A.2.2.2	Method get_u	152
			A.2.2.3	Method SundialsRun	152
			A.2.2.4	Method CppADThreadRun	157
			A.2.2.5	Method CppADNoThreadRun	157
			A.2.2.6	Method CppADInit	157
			A.2.2.7	Method CppADRun	159
		A.2.3	Main exe	ecution loop	165

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

B	AUX	XILIARY RESULTS 170			
	B .1	AUXII	LIARY SIMULATION RESULT	170	
		B.1.1	Constant setpoint following and disturbance rejection	170	
B.1.2 Reduced PSE setpoint to 75% and $70\% < 75\mu m$			Reduced PSE setpoint to 75% and 70% < $75\mu m$	170	
	B.1.3 Regulate PSE, LOAD and Throughput				
	B.2	ADDITIONAL SIMULATION SCENARIOS			
		B.2.1	Setpoints on PSE, LOAD, POWER and RHEOLOGY	180	
		B.2.2	Increase the weighting on the MVs for objective function with only PSE and LOAD setpoints	180	
		B.2.3 Increase weightings on the MVs for objective functions with PSE, LOAD and THROUGHPUT setpoints			
	B.3	SIMULATION SUMMARY 19			
С	PID	TUNIN	G WITH INTERACTIONS	197	
	C.1	INTRO	DDUCTION	197	
	C.2	SUMP	AND CYCLONE MODELS	198	
		C.2.1	PSE – SFW model	198	
		C.2.2 SLEV – CFF model		199	
		C.2.3 Interacting sump and cyclone model		199	
	C.3	FBS T	UNING METHOD	200	
	C.4	PID C	ONTROLLER DESIGN	202	
		C.4.1	Design scenario 1	202	
		C.4.2	Design scenario 2	203	
		C.4.3	Design scenario 3	206	
		C.4.4	Design scenario 4	206	
		C.4.5	Design scenario 5	208	
	C.5	CONC	LUSION	209	
D	SIM	ULATI	ON SUMMARY	211	

LIST OF ABBREVIATIONS

ADMC	Adaptive Dynamic Matrix Control
AG	Autogenous
ARX	Auto-Regressive with eXogenous input
BC	The rate of steel Ball Consumption [m ³ /hour]
CFD	Computational Fluid Dynamics
CFF	The volumetric flow-rate of slurry from the sump to the cyclone. $\ensuremath{\left[m^3/hour\right]}$
CPPAD	Software to perform automatic differentiation of software code through operator overloading.
DCS	Distributed Control System
DEM	Discrete Element Method
DMC	Dynamic Matrix Control
FBS	Frequency Based Specifications
FP	The rate of Fines Production [m ³ /hour]
GPC	Generalized Predictive Control
IDCOM	IDentification and COMmand
INA	Inverse Nyquist Array
IPOPT	Software to solve large scale nonlinear programming problems.
ISpS	Input-to-State practical Stability
ISS	Input-To-State Stability
JKMRC	Julius Kruttschnitt Mineral Research Centre

	Linear Matrix Inequality
	The total charge of the mill [%]
	Lineer Quadratia
LQ	
MFB	The feed-rate of steel balls to the circuit. [tons/hour]
MFS	The feed-rate of ore to the circuit (consists of rocks, coarse and fine ore). [tons/hour]
MHE	Moving Horizon Estimators
MHSO	Moving Horizon State Observers
MIMO	Multi-Input-Multi-Output
MIW	The volumetric flow-rate of water to the circuit. $[m^3/hour]$
MPC	Model Predictive Control
NMPC	Nonlinear Model Predictive Controller
ODEs	Ordinary Differential Equations
ORC	Override Control
PI	Proportional-Integral
PID	Proportional-Integral-Derivative
PSE	Product particle-size. [% < 75μ m]
QDMC	Quadratic Dynamic Matrix Control
QP	Quadratic Programming
RBF	Radial Basis Function
RBF-ARX	Radial Basis Function – Auto-Regressive with eXogenous input.
RC	The rate of Rock Consumption [m ³ /hour]
RHC	Receding Horizon Control
RMHSO	Robust Moving Horizon State Observer
RNMPC	Robust Nonlinear Model Predictive Control
ROM	Run-of-Mine
RPM	Revolutions Per Minute

	UNIVERSITEIT VAN PRETORIA ST OF ABBREVIATIONS
Runge-Kutta	Method to solve ordinary differential equations numerically.
SAG	Semi-Autogenous
SANE	Symbiotic Adaptive Neuro-Evolution
SDP	Semidefinite Programming
SFW	The volumetric flow-rate of extra water to the sump. $[m^3/hour]$
SID	System Identification
SIMC	Skogestad Internal Model Control
SISO	Single-Input-Single-Output
SLEV	The level of the sump. $[m^3]$
SMOC	Shell Multi-variable Optimizing Control
SPH	Smoothed Particle Hydrodynamics
THROUGHPUT	Product throughput consisting of coarse and fine solids. [tons/hour]
TITO	Two-Input-Two-Output