

Developing biopesticides for control of citrus fruit pathogens of importance in global trade

By

Joseph Obagwu

Promoter:	Prof. Lise Korsten
Co-promoter:	Dr. Thierry Regnier
Department:	Microbiology and Plant Pathology
Faculty:	Natural and Agricultural Sciences
Degree:	Ph.D. (Plant Pathology)

RESUMÈ

Bacillus isolates originally isolated from Valencia and Shawmut oranges were screened for inhibitory activity against citrus pathogens; *Guignardia citricarpa* cause of citrus black spot, *Penicillium digitatum* and *P. italicum* the cause of green- and blue mold respectively. The potential antagonists were tested both *in vitro* and *in vivo*, and isolates were tested either on their own or in combination with sodium bicarbonate (SB). Plant extracts, which included aqueous garlic clove and *Coprosma repens* were also evaluated for antifungal activity against the fungal pathogens. In addition, *C. repens* extracts were also evaluated for their antibacterial properties against *Escherichia coli* 0157-H7 *Salmonella typhimurium*, *Staphylococcus aureus* and *Vibrio cholerae*, known food-borne pathogens of importance in food safety of fresh fruits. The study revealed the following:

- 1. Fifty percent of the *Bacillus* isolates showed *in vitro* inhibitory activities against *P*. *digitatum* and *P. italicum*. However, only three isolates: F1, L2 and L2-5 provided effective and consistent control of both pathogens in both *in vitro* and *in vivo* tests. Isolates were not effective in controlling latent infections of *G. citricarpa*.
- 2. The combination of isolates with SB (1% w/v) resulted in a synergistic reaction. Subsequently, a remarkable improvement in the biocontrol activity of the three

isolates was recorded particularly with F1. The combination of F1 with SB was as effective as the commercial fungicide treatment giving complete control of both diseases. Consistency of product performance was shown throughout the season.

- 3. Effective *in vivo* control of both *P. digitatum* and *P. italicum* was achieved with aqueous garlic clove extracts. Extracts alone (1 000 10 000 ppm) was not as effective as the commercial fungicide treatment. Combining extracts with vegetable oil improved biological activity. A combination of extracts (1 000 ppm) with oil (0.1% v/v) was as effective as the fungicide treatment which gave complete control of both diseases.
- 4. Ethanol extracts of *C. repens* were effective in preventing the development of black spot lesions, and in controlling both green- and blue mold. More effective control of CBS was achieved compared to green- and blue mold. The active compound in the plant extracts falls within the family of the hydroxycinamics.
 - 5. In addition to its antifungal activities, extracts of *C. repens* possessed antibacterial activities and were effective in controlling both the *in vitro* and *in vivo* establishment of *E. coli* 0157-H7, *S. typhimurium*, *S. aureus* and *V. cholerae*.

Code	Name	Status ^a	
	·	In vitro	In vivo
268	Bacillus subtilis	x	-
F1	Bacillus subtilis	x	x
L2-5	Bacillus subtilis	x	x
OPF1	Bacillus subtilis	x	-
OP2-5	Bacillus subtilis	x	-
L3	Bacillus subtilis	x	-
719 C	Bacillus subtilis	x	-
OPL2A	Bacillus subtilis	x	-
143	Bacillus amyloliquefasciens	x	-
T1	Bacillus subtilis	x	-
L2	Bacillus subtilis	x	x
565	Bacillus subtilis	x	- ·
T2	Bacillus subtilis	x	-
L2-2	Bacillus subtilis	x	-
LIA	Bacillus subtilis	х	-
80	Bacillus subtilis	x	-
2	Bacillus subtilis	x	-
814	Bacillus licheniformis	x	-
642	Bacillus subtilis	x	-
341	Bacillus subtilis	x	-

Appendix 1. Identity of *Bacillus* species screened and status of evaluation

^a "x" means applicable, "-" means not applicable

Appendix 2. Common poisonous plants growing in gardens and in the wild

American Juy	limsonweed
Annle	Ionquil
Apricat	Lantana
	Larksnur
Azaica Dird of Dorodise	Lioustrum
Bittersweet	Lilv-of-the-Valley
Black locust	Locoweed
Bunch Berry	Locust
Caladium	Mayapple
Calla Lily	Mistletoe
Castor Bean	Monstera
Cherry	Morning Glory
Choke Cherry	Narcissus
Colocasia	Nightshade
Convallaria Maialis	Oleander
Cowbane	Philodendron
Crowfoot	Plum
Daffodil	Poinciana
Delphinium	Poinsettia
Danhne	Poison Oak
Dieffenbachia	Pokeweed
Digitalis	Prickly Poppy
English Ivv	Privet
Foxglove	Rhubarb
Hedera Helix	Rhododendron
Hemlock	Ricinus Communis
Hens and Chickens	Skunk Cabbage
Holly	Strawberry Bush
Hyscinth	Sweet Pea
Hydrangea	Thorn Apple
Iris	Wisteria
Jack-in-the-Pulpit	Yew
Jessamine	

Reference: www.webhome.idirect.com/bom2luv/plants.htm.

Treatment	Molecular weight	Weight of chemical	Volume of water	Concentration
			-	
FeCl ₃ .6H ₂ O	27.0	23.0	27.0	1M
KH ₂ .PO ₄	126.09	13.61	0.1 L	1 M
Sucrose	302.31	30.81	0.3 L	30%
ZnSO ₄ .7H ₂ O	287.56	0.2013	1 L	0.0007 M
MnSO ₄ .4H ₂ O	169.01	0.1521	1 L	0.0009 M
Thiamine. HCl	337.27	0.02	1 L	20mg L ⁻¹
Casamino acids	-	30	0.3 L	10%
Biotin	233.31	0.001	1 L	1mg L ⁻¹
HCI	-	1ml	1 L	10nM

Appendix 3. Chemical composition of the RSM-CAS medium (Leong, 1986)

Appendix 4. Vibrio Diagnostic Agar, a medium used for the isolation of Vibrio cholerae

Ingredient	Quantity (g)
Sodium Chloride	10.0
Sucrose	20.0
Sodium Citrate	10.0
Sodium Thiosulphate	10.0
Special Peptone	10.0
Ox Bile	5.0
Yeast Extract	5.0
Sodium Taurocholate	3.0
Ferric Citrate	1.0
Bromothymol Blue	0.04
Thymol Blue	0.04
Agar	15.0

Appendix 5. Standard 1 Nutrient Agar, a medium used for the enumeration, isolation and enrichment of bacteria

Ingredient	Quantity (g)	
Special Peptone	15.6	
Yeast Extract	2.8	
Sodium Chloride	5.6	
D (+) Glucose	1.0	
Agar	12.0	

Appendix 6. Violet-Red-Bile-MUG Agar, a selective medium for the simultaneous detection and enumeration of *Escherichia coli*

Ingredient	Quantity (g)
Brain Heart Infusion	7.0
Peptone	4.0
Lactose	9.0
Bile Salt No.3	1.5
Neutral Red	0.03
Crystal Violet	0.002
MUG	0.1
Sodium Chloride	4.5
di-Sodium Phosphate	1.0
Agar	13.0

Ingredient	Quantity (g)	
Peptone	20.0	
Lactose	10.0	
Bile Salt No.3	1.5	
Sodium Chloride	5.0	
Neutral Red	0.003	
Crystal Violet	0.001	
Agar	13.5	

Appendix 7. MacConkey Agar, a selective agar for the isolation of Salmonella

Appendix 8. Identity, methodology and time of dip applications of different treatments evaluated on a semi-commercial scale

Treatment	Product	Concentration	Date
Experiments done in 20	00 (A)	· .	
Control	Water	-	June & August
Avogreen powder	Bacillus subtilis	75g/100 L water	June & August
Avogreen liquid	Bacillus subtilis	250 ml/100 L water	June & August
Biocoat	Candida saitoana	406g product/ 15 L water	June & August
Biocure	Candida saitoana	406g product/ 15 L water	June & August
Fungicide	Imazalil + guazatine	1g +1 ml product/ L water	June & August

Experiments done in 2000 (B)

Control	Water	-	September
Avogreen powder	Bacillus subtilis	75g/100 L water	September
Avogreen liquid	Bacillus subtilis	250 ml/100 L water	September
Biocoat	Candida saitoana	406g product/ 15 L	September
		water	
Biocure	Candida saitoana	406g product/ 15 L	September
		water	
Fungicide	Imazalil + guazatine	1g+1 ml product/ L	September
		water	
F1	Bacillus subtilis	10^8 cell ml ⁻¹	September
L2-2	Bacillus subtilis	10^8 cell ml ⁻¹	September
L2	Bacillus subtilis	10^8 cell ml ⁻¹	September
F1 + SB	-	-	September

Treatment	Product	Concentration	Date
L2-5 + SB	-	-	September
L2 + SB	-	-	September
SB	Sodium bicarbonate	1% w/v	September

Appendix 8 continued

Experiments done in 2001 (A)

Control	Water	-	June & August
Avogreen powder	Bacillus subtilis	75g/100 L water	June & August
Avogreen liquid	Bacillus subtilis	250 ml/100 L water	June & August
Biocoat	Candida saitoana	406g product/ 15 L	June & August
		water	
Biocure	Candida saitoana	406g product/ 15 L	June & August
		water	
Fungicide	Imazalil + guazatine	1g +1 ml product/ L	June & August
		water	
F1	Bacillus subtilis	10^8 cell ml ⁻¹	June & August
L2-2	Bacillus subtilis	10^8 cell ml ⁻¹	June & August
L2	Bacillus subtilis	10^8 cell ml ⁻¹	June & August
F1 + SB	-	-	June & August
L2-5 + SB	-	-	June & August
L2 + SB		-	June & August
SB	Sodium bicarbonate	1% w/v	June & August

Experiments done in 2001 (B)

Control	Water	-	September
Avogreen powder	Bacillus subtilis	75g/100 L water	September
Avogreen liquid	Bacillus subtilis	250 ml/100 L water	September

Treatment	Product	Concentration	Date
Biocoat	Candida saitoana	406g product/ 15 L	September
	·	water	
Biocure	Candida saitoana	406g product/ 15 L water	September
Fungicide	Imazalil + guazatine	1g +1 ml product/ L water	September
F1	Bacillus subtilis	10^8 cell ml ⁻¹	September
L2-2	Bacillus subtilis	10^8 cell ml ⁻¹	September
L2	Bacillus subtilis	10^8 cell ml ⁻¹	September
F1 + SB	-	-	September
L2-5 + SB	-	-	September
L2 + SB	-	-	September
SB	Sodium bicarbonate	1% w/v	September

Appendix 8 continued

Experiments done in 2002

Control	Water	-	August &
			September
Fungicide	Imazalil + guazatine	1g +1 ml product/ L	August &
		water	September
F1	Bacillus subtilis	10^8 cell ml ⁻¹	August &
		an a	September
L2-2	Bacillus subtilis	10^8 cell ml ⁻¹	August &
			September
L2	Bacillus subtilis	10^8 cell ml ⁻¹	August &
			September
F1 + SB	-	-	August &
			September

Appendix 8 continued

Treatment	Product	Concentration	Date
L2-5 + SB	-		August &
			September
L2 + SB		-	August & Sept