

A DISAGGREGATED MARSHALLIAN MACROECONOMETRIC MODEL OF SOUTH AFRICA

by

JACQUES KIBAMBE NGOIE

Submitted in partial fulfilment of the requirement for the degree

DOCTOR OF PHILOSOPHY (ECONOMICS)

in the

Faculty of Economics and Management Sciences

Department of Economics

at the

University of Pretoria

September 2008

© University of Pretoria

SUMMARY

A DISAGGREGATED MARSHALLIAN MACROECONOMETRIC MODEL OF SOUTH AFRICA

by Jacques Kibambe Ngoie

Supervisor: Prof Charlotte B du Toit Co-supervisor: Prof Reneé van Eyden Department: Economics Degree for which the thesis is submitted: PhD (Economics)

Abstract

The thesis enticingly describes a synergetic mix of productivity related topics at macroeconomic level. It aims at whetting potential readers to understand in more insightful ways topics such as: (1) the use of human capital in sectoral growth; (2) the role played by rising public expenditures (health and education) in strengthening production activities; (3) the role played by disaggregation in improving models' forecasting ability and policy guidance; etc. The current research constitutes a valuable tool for understanding and predicting a country's overall economic behavior and the behavior of important industrial sectors.

In the present study, lack of data on important variables at sectoral level led to the use of advanced econometric estimation methods such as the implied transfer function equations system. As cited in the thesis, the literature reports a set of interesting economic investigations in this field that have been successful in describing some of the features included in this study. However, this research not only enhances the theoretical discussion on the issue but also provides empirical evidence using South African data. It is anticipated that further use and development of the outcomes of this thesis will yield additional explanatory, predictive and policy-making results that will be useful to many. In addition to the usefulness of this thesis' contribution to the body of knowledge, several suggestions for further improvement are considered.

Most predominantly, the work presented in this thesis has been reported in two interrelated papers (chapters). In the first paper, a methodical discussion is provided on the use and the size of social ingredients estimated as the level of normalized human capital per capita together with the conditional convergence process applied to South African sectoral growth. In the second paper, the parameters obtained are embodied into a full-fledged Macroeconometric (Marshallian) Model employing South African economic sectors. In fact, the second paper goes beyond the simple discussion of a Disaggregated Macroeconometric Model. It provides a comprehensive analysis of the effects that freedom (Thatcher-like) reforms may induce to the South African economy.

ACKNOWLEDGMENTS

The completion of the present thesis was made possible by an everlasting 'divine providence' that was materialised all through the support (academic and psychological) of several individuals to whom I remain mostly grateful. I extend a deep sense of gratitude toward Prof. Charlotte du Toit as well as Prof. Reneé van Eyden for their supervision that was conducted with utmost dexterity and high professionalism. I also extend words of gratitude to Professor Arnold Zellner who hosted me at the University of Chicago where most of this thesis was completed and presented.

Additionally my gratitude is extended toward my near and dear ones. Let my late parents in law find respect and honour throughout this work that received tremendous moral support from my wife, Marie. Let this thesis be considered as the crowning of my parents' (including my uncle Benjamin) support throughout my entire life. My elder son JOVIC and his brother Daniel with the entire circle of cousins (including Hellene) and friends will not be ignored as their presence always made my leisure time more inspiring.

TABLE OF CONTENTS

LIST OF FIGURES				
LIST OF TABLES				
LIST OF ABBREVIATIONS			Х	
CHAI	PTER 1:	GENERAL INTRODUCTION	1	
1. 2. 3. 4.	Introduct: Problem s Significan Outline o	ion statement and objectives of the study nee of the study f the rest of the study	1 2 3 3	
CHAI	PTER 2:	SOCIAL INGREDIENTS AND CONDITIONAL CONVERGENCE IN THE STUDY OF SECTORAL GROWTH	5	
1. 2. 3. 4. 5. 6.	Introduct Backgrou The theor The data Empirica Conclusio	ion ind retical model results on	5 6 9 17 18 27	
CHAI	PTER 3:	SOME POLICY EXPERIMENTS USING A MARSHALLIAN MACROECONOMETRIC MODEL: THE CASE OF SOUTH AFRICA	28	
1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12	Introduct Backgrou Overview The use o Model sp Estimatio Loss func Improvin Imposing Data . Results d . Conclusio	ion and of industrial sectors in South Africa of disaggregation ecification ns techniques etions for estimating the MMM-DA g predictions using shrinkage techniques restrictions iscussion on, study limitations and future research	28 30 32 34 36 52 56 57 59 60 61 68	

CHAPTER 4: GENERAL CONCLUSION	70	
1. Restating the objective of the study	70	
. Detailed outline of the study 70		
3. Basic model outline and methodology	71	
4. Summary of key findings	72	
5. Areas of future research	73	
REFERENCES	75	
APPENDIX TO CHAPTER 2	79	

APPENDICES TO CHAPTER 3

90

LIST OF FIGURES

Figure 2.1: HIV Prevalence over time	12
Figure 2.2: Actual and fitted values for Effective Labour, z	19
Figure 2.3: TFP across sectors over time	25
Figure 3.1: South African annual real output growth rates per industrial sector	35
Figure 2.4: The long-run residual (with z_2 as dependent variable)	77
Figure 2.5: Actual versus Fitted: Model z ₂	78
Figure 2.9: Long-run residual (Agriculture)	79
Figure 2.7: Actual (YAGRIC) versus Fitted (YAGRIC_F)	80
Figure 2.8: Long-run residual (Mining)	81
Figure 2.9: Actual (YMIN) versus Fitted (YMIN_F)	82
Figure 2.9: Long-run residual (Construction & Buildings)	83
Figure 2.10: Actual (YCONSTR) versus Fitted (YCONSTR_F)	84
Figure 2.11: Long-run residual (Transport & Communication)	84
Figure 2.12: Actual (YCOMTRS) versus Fitted (YCOMTRS_F)	85
Figure 2.13: Long-run residual (Manufacturing)	86
Figure 2.14: Actual (YMAN) versus Fitted (YMAN_F)	87
Figure 3.1: South African annual real output growth rates per industrial sector	36
Figure 3.2: Model Fitness: Actual versus Fitted Series per sector	92
Figure 3.3: Forecasting results: Actual versus Forecasted Series per sector	96
Figure 3.4: Model Fitness using complete shrinkage: Actual versus Fitted Series	100
Figure 3.5: Forecasting using complete shrinkage: Actual versus Fitted Series	103

LIST OF TABLES

Table 2.1a: The long-run estimate with z as dependent variable	18
Table 2.1b: Cointegration test of the long-run estimate	18
Table 2.2a: Cross-section SUR (no constant)	20
Table 2.2b: Cross-section SUR (with constant)	21
Table 2.2c: Cross-section SUR (with constant excluding Agricultural sector)	22
Table 2.3: The size of the calculated parameters of health ($\alpha\delta$) and	
schooling ($\alpha\gamma$) on sectoral output growth	23
Table 2.4: Fixed effects model	24
Table 2.5: Cointegration test (z_2 as dependent variable)	78
Table 2.6: Error correction model	79
Table 2.7: Long-run regression of LNYAGRIC (Log of agricultural output) on	
capital (LNKAGRIC) and effective labour (LNELAGRIC_SM)	79
Table 2.8: Cointegration test (Agriculture)	80
Table 2.9: Error correction model (Agriculture)	80
Table 2.10: Long-run regression of LNYMIN (Log of Mining Output) on capital	
(LNKMIN) and effective labour (LNELMIN_SM)	81
Table 2.11: Cointegration test (Mining)	82
Table 2.12: Error correction model (Mining)	82
Table 2.13: Long-run regression of LNYCONSTR (Log of Construction &	
Buildings Output) on capital (LNKCONSTR) and effective labour	
(LNELCONSTR_SM)	83
Table 2.14: Cointegration test (Construction & Buildings)	83
Table 2.15: Error correction model (Construction & Buildings)	84
Table 2.16: Long-run regression of LNYCOMTRS (Log of Transport &	
Communication Output) on capital (LNKCOMTRS) and effective labour	
(DUMELCOMTRS)	85
Table 2.17: Cointegration test (Transport & Communication)	85
Table 2.18: Error correction model (Transport & Communication)	86
Table 2.19: Long-run regression of LYMAN (Log of Manufacturing Output)	
on capital (LNKMAM) and effective labour (LNELMAM_SM)	87
Table 2.20: Cointegration test (Manufacturing)	87

 Table 2.21: Error correction model (Manufacturing)

Table 3.1: Aggregate RMSEs and MAEs obtained from sectors' RMSEs and MAEs68

ix

88

LIST OF ABBREVIATIONS

AIDS	Acquired immune deficiency syndrome
ARIMA	Autoregressive Integrated Moving Average
ARLI	Autoregressive leading indicator
ARV	Antiretroviral
CGE	Computable General Equilibrium
DMC	Direct Monte Carlo Simulations
DSGE	Dynamic Stochastic General Equilibrium
EBMF	Excel-based model for forecasting
ECA	Economic Commission for Africa
EL	Effective labour per sector
GDP	Gross Domestic Product
GLS	Generalised Least Square
HIV	Human immunodeficiency virus
IID	Identically Independently Distributed
IMF	International Monetary Fund
ISUR	Iterative Seemingly Unrelated Regressions
MAE	Mean Absolute Error
MCMC	Markov Chain Monte Carlo Simulations
MDG	Millennium Development Goal
MLE	Maximum Likelihood Estimator
MMM	Marshallian Macroeconometric Model
MMM-DA	Marshallian Macroeconometric Model (Disaggregated)
RFE-DA	Reduced-Form Equations disaggregated by sector
RMMM-DA	Restricted Marshallian Macroeconometric Model (Disaggregated)
RMSE	Root Mean Squared Error
RMSM	Revised Minimum Standard Models
SADC	South African Development Community
SARB	South African Reserve Bank
SSA	Sub-Saharan Africa
SSA	Statistics South Africa
SUR	Seemingly Unrelated Regression

- TFP Total Factor Productivity
- UN United Nations
- VAR Vector Autoregression