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Abstract 

 

_____________________________________________________________________________ 

 

Title:  Maximum net power output from an integrated design of a small-scale 

open and direct solar thermal Brayton cycle 

Author: WG le Roux 

Student number: 25105991 

Supervisors:  Dr T Bello-Ochende and Prof JP Meyer 

 
The geometry of the receiver and recuperator in a small-scale open and direct recuperative solar 

thermal Brayton cycle can be optimised in such a way that the system produces maximum net 

power output. The purpose of this work was to apply the second law of thermodynamics and 

entropy generation minimisation to optimise these geometries using an optimisation method. The 

dynamic trajectory optimisation method was used and off-the-shelf micro-turbines and a range of 

parabolic dish concentrator diameters were considered. A modified cavity receiver was used in 

the analysis with an assumed cavity wall construction method of either a circular tube or a 

rectangular channel. A maximum temperature constraint of 1 200 K was set for the receiver 

surface temperature. A counterflow plate-type recuperator was considered and the recuperator 

length was constrained to the length of the radius of the concentrator. Systems producing a 

steady-state net power output of 2 – 100 kW were analysed. The effect of various conditions, 

such as wind, receiver inclination and concentrator rim angle on the maximum net power output, 

and optimum geometry of the system were investigated. Forty-five different micro-turbines and 

seven concentrator diameters between 6 and 18 metres were considered. Results show the 

optimum geometries, optimum operating conditions and minimum entropy generation as a 

function of the system mass flow rate. The optimum receiver tube diameter was relatively large 

when compared with the receiver size. The optimum counterflow plate-type recuperator channel 

aspect ratio is a linear function of the optimum system mass flow rate for a constant recuperator 

height. The optimum recuperator length and optimum NTU  are small at small system mass flow 

rates but increase as the system mass flow rate increases until the length constraint is reached. 

For the optimised systems with maximum net power output, the solar receiver is the main 

contributor to the total rate of minimum entropy generation. The contributions from the 

recuperator, compressor and turbine are next in line. Results show that the irreversibilities were 

spread throughout the system in such a way that the minimum internal irreversibility rate was 

almost three times the minimum external irreversibility rate for all optimum system geometries 

and for different concentrator diameters. For a specific environment and parameters, there exists 
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an optimum receiver and recuperator geometry so that the system can produce maximum net 

power output. 
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Chapter 1 

Introduction 

 

_____________________________________________________________________________ 

 

1.1 Historical background 

“The optimists say solar power could become as economical and efficient as fossil fuels. The 

pessimists say they’ve heard all this before” (Johnson, 2009). 

 

 

Figure 1.1 A parabolic collector powering a printing press at the 

1878 Paris Exposition (Kreith and Kreider, 1978). 

 

The interest and research in solar power have come a long way. Cheremisinoff and Regino 

(1978) acknowledge the history of solar energy and solar energy availability from the years before 

Christ up to the 1970s. According to Kreith and Kreider (1978), a diamond was melted for the first 

time in 1695 in Florence by an early solar practitioner. They also mention that solar combustion 

experiments were done by the French chemist, Lavoisier, and the English scientist, Joseph 

Priestley, in 1774. In 1878, a solar steam engine, using a parabolic reflector reflected onto a 

steam boiler, was exhibited at the World Fair in Paris. This engine, shown in Figure 1.1, was 

utilised to run a printing press.  

 

In 1901, a 7.5 kW solar steam engine was operated by AG Eneas in Pasadena, California. The 

focusing collector is shown in Figure 1.2. Between 1907 and 1913, the American engineer F 

Shuman, developed solar-driven hydraulic pumps. There was very little activity in the field of solar 

power between 1915 and 1950. The interest was revived in 1949 and in the 1960s, as the 

objective of NASA’s research and development programme was to build a solar electric power 
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system capable of supplying electricity for the US space programme. Research funds became 

available and widespread interest grew for the development of earth-bound solar electric power, 

which increased after the oil crisis in 1973 (Kreith and Kreider, 1978). 

 

 

Figure 1.2 A solar-powered steam engine in Arizona in the early 1900s (Kreith and Kreider, 1978). 

 

 

Figure 1.3 Commercially produced point focus concentrators (Howell et al., 1982). 

 

Figure 1.3 shows the Shenandoah solar total energy project at Shenandoah, Georgia, which was 

installed before 1983. It was designed for application to a solar thermal co-generation project and 

was commercially procured (Howell et al. 1982; Stine and Harrigan, 1985). The national crisis in 

1973 and soaring oil prices in 1979, created a great sense of urgency and called for research into 
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renewable energy in the US. In 1977, President Jimmy Carter called for a federal push for 

renewable energy. Nine large solar thermal plants were installed before oil prices plummeted and 

President Carter left office, leaving solar energy as a minor factor in the energy equation 

(Johnson, 2009).  

 

Today is a new dawn for solar power. A call for clean and efficient energy can be heard all over 

the world to ensure a safe and stable environment. 

 

1.2 Problem 

South Africa, like southern Africa, has much potential to generate large amounts of its power from 

solar technologies. Kreith and Kreider (1978) state that there are technological and natural types 

of solar radiation collections. Natural collection includes phenomena such as wind and ocean 

temperature differences. There are two main research fields concerning the harnessing of the 

sun’s power: concentrated solar power (or solar thermal power) and photovoltaic panels, which 

are respectively ±24% and 10-20% efficient in converting the sun’s energy into electricity 

(Johnson, 2009). Concentrated solar power systems use the concentrated power of the sun as a 

heat source to generate mechanical power.  

 

Fluri (2009) shows that the total potential generation capacity of large-scale concentrated solar 

power in South Africa is more than 500 GW, when using the best suitable locations for large-

scale power plants in the country. These locations, as identified by Fluri (2009), are areas which 

have sufficient sunshine, are close enough to transmission lines, are flat enough, where the 

respective vegetation is not under threat and which have suitable land-use profiles. According to 

Fluri (2009), the solar irradiation in the northern parts of the Northern Cape Province, South 

Africa, is more than 8 kWh/m
2
 in December and 6 kWh/m

2
 in June. Most areas in South Africa, 

however, receive an average of more than 2 500 hours of sunshine per year, with average solar-

radiation levels ranging between 4.5 and 6.5 kWh/m
2
 per day (DME, 2010), which makes small-

scale concentrated solar power applications equally attractive.  

 

Thus far, the world’s solar leaders are not necessarily the sunniest countries, but rather the ones 

that can afford to pay extra for solar power (Johnson, 2009). It is therefore very important to 

understand the costs involved in solar power and to be able to get the best efficiency from these 

solar power systems.  

 

Different types of solar thermal power systems exist. According to Chen et al. (2007), the Brayton 

cycle is definitely worth studying when comparing its efficiency with those of other power cycles. 

Mills (2004) argues that emphasis may shortly shift to solarised Brayton micro-turbines from Dish-
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Stirling technology due to high Stirling engine costs. The highest-efficiency Brayton cycles are 

regenerative cycles with low pressure ratios (Stine and Harrigan, 1985). The fact that the Brayton 

cycle can be an open cycle (which means air can be used as working fluid), makes this cycle very 

attractive for use in the water-scarce southern Africa. The small-scale open and direct solar 

thermal Brayton cycle with recuperator has several advantages, including lower cost, low 

operation and maintenance costs and it is highly recommended. The main disadvantages of this 

cycle are the pressure losses in the recuperator and receiver, turbomachine efficiencies and 

recuperator effectiveness (Stine and Harrigan, 1985), which limit the net power output of such a 

system. Maximum net power output is required for a small-scale solar thermal Brayton cycle with 

recuperator. The net power output can for example be used to drive an electrical generator and 

the higher the net power output the more electricity can be produced. To obtain this maximum net 

power output, a combined effort of heat transfer, fluid mechanics and thermodynamic thought is 

required. Bejan (1982) suggests that the method of entropy generation minimisation combines 

these thoughts. 

 

The irreversibilities of the recuperative solar thermal Brayton cycle are mainly due to heat transfer 

across a finite temperature difference and fluid friction. Various studies have emphasised the 

importance of the optimisation of the global performance of a system, by minimising the sum of 

the irreversibilities from all the different components or processes of the system (spreading the 

entropy generation rate through the system by optimally sizing the hardware, in stead of 

optimising components individually). This emphasis is made by Bejan (1996; 1997), Bejan et al. 

(1996), Ordόñez and Bejan (2000), Shiba and Bejan (2001) and Zimparov et al. (2006a; 2006c). 

For the open and direct solar thermal Brayton cycle, an optimisation of this kind is not available 

from the literature. The geometries of the receiver and recuperator can be optimised in such a 

way that the total entropy generation rate is minimised to allow maximum net power output. 

 

1.3 Purpose of the study 

The objective of this study is to apply the second law of thermodynamics and entropy generation 

minimisation to optimise the components in a solar thermal power system such that the system 

produces maximum net power output at steady-state. An analysis is done by looking at the solar 

thermal power system as a whole and by minimising the total entropy generation rate in the 

system, instead of optimising components individually. In a solar thermal Brayton cycle with a 

micro-turbine operating at its highest compressor efficiency, geometric variables of a modified 

cavity receiver, proposed by Reddy and Sendhil Kumar (2009), and a plate-type counterflow 

recuperator (Shah, 2005) are optimised. The surface temperature of the receiver should stay 

below 1 200 K due to material constraints. The dynamic trajectory optimisation method for 

constrained optimisation (Snyman, 2000) is used. Off-the-shelf micro-turbines (Garrett, 2009) 
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chosen for low cost, high availability and reliability and a range of parabolic dish concentrator 

diameters are considered. The technical data of these micro-turbines are also available. A 

valuable understanding of the optimal distribution of the total entropy generation rate (or 

irreversibility rate) throughout the open and direct recuperative solar thermal Brayton cycle should 

be obtained. The effect of various environmental conditions and constraints on the optimum 

geometries is investigated.  

 

In this study, the open and direct solar thermal Brayton cycle with recuperation is analysed at 

different steady-state conditions and parameters. The geometries of a modified cavity receiver 

and counterflow plate-type recuperator are optimised so that the system produces maximum net 

power output. The net power output of the system is described in terms of the total entropy 

generation rate within the system. The net power output of the system is maximised, the total 

entropy generation rate is minimised and the geometries of the receiver and recuperator are 

optimised. 

 

1.4 Layout of dissertation 

At the outset, a literature survey is conducted in Chapter 2. Solar thermal power systems are 

investigated and compared. Solar collectors and recuperators are explored as well as the second 

law of thermodynamics and its application to these components. From the literature survey, the 

problem is formulated in Chapter 3 and the model is described in Chapter 4. An objective function 

is constructed and the numerical optimisation method is given. In Chapter 5, the results and a 

validation are presented. Optimum geometries and operating conditions are given for different 

environmental conditions. The possibilities for future work are examined and in Chapter 6, the 

concluding remarks are made. 

 

 
 
 



 6 

Chapter 2 

Literature survey 

 

___________________________________________________________________ 

 

2.1 Introduction 

In this chapter, a literature survey is conducted. Different solar thermal power systems are 

considered and compared. The solar thermal Brayton cycle is chosen for further investigation. 

Solar collectors and recuperators are explored as well as the second law of thermodynamics and 

its application to these components. An overview of concepts such as the second law of 

thermodynamics, exergy and entropy is given. Entropy generation and its minimisation are 

introduced and its application to the solar thermal Brayton cycle is identified. Solar radiation and 

the exergy of solar radiation are explored. Lastly, the concluding remarks are made. 

 

2.2 Solar thermal power systems 

 

2.2.1 Background 

Duffie and Beckman (1991) describe solar thermal power systems as the conversion of solar to 

mechanical and electrical energy. Much of the early solar thermal power systems were for small-

scale applications of up to 100 kW (mostly used for water pumping), while after 1975 many large-

scale power systems were built in the megawatt range. Three power cycles are mainly 

considered for solar applications or solar thermal power systems: the Rankine, Stirling and 

Brayton cycles (Bejan, 1997; Stine and Harrigan, 1985). Brayton and Stirling engines provide 

high engine efficiencies, but are limited by low gas heat transfer coefficients, which would require 

large receivers and cavity receivers. The Rankine cycle allows for smaller receivers, which can 

use fluids with high heat transfer coefficients (Duffie and Beckman, 1991). According to Mills 

(2004), the Rankine cycle appears to be the best option with trough plants because of 

temperature limitations in the latter, and Brayton cycle micro-turbines appear to be moving quickly 

to displace Stirling engines in the two-axis tracking market because of much lower cost. The 

efficiency of a solar thermal receiver diminishes as its operating temperature rises, while the 

efficiency of the cycle rises as the operating temperature rises (Duffie and Beckman, 1991; Stine 

and Harrigan, 1985). It is clear that an optimum operating temperature must exist. For example, 

Stine and Harrigan (1985) give an operating temperature of 780°C as the optimum for a 

concentrator when combined with a Carnot-engine. 
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2.2.2 Power cycles available for solar thermal application 

 

2.2.2.1 The Rankine cycle 

According to Stine and Harrigan (1985), the most common cycle used in solar power systems is 

the Rankine cycle with water, organic liquids or liquid metals as the working fluid. The Rankine 

cycle is shown in Figure 2.1. Reheating and regeneration can also be used. Stine and Harrigan 

(1985) also claim that most solar power cycles in operation or under development are Rankine 

cycles.  

 

 

Figure 2.1 The Rankine cycle (Kreith and Kreider, 1978). 

 

The most common condenser for the Rankine cycle is considered to be a shell-and-tube heat 

exchanger, requiring a supply of cooling water.  The radial-flow and axial-flow turbines are 

considered to be the most common turbines used with the Rankine cycle. The radial-flow turbine 

is considered to be more efficient for small power output applications (Stine and Harrigan, 1985). 

An interesting example of a solar Rankine cycle delivering between 10 – 100 kW is a cycle 

designed for the US Department of Energy’s Small Communities Project by Barber-Nichols 

Engineering (Stine and Harrigan, 1985). It is designed to produce 26 kW of shaft power with a 

peak operating temperature of 400°C, with toluene as working fluid. The turbine rotates at 

60 000 rpm and has a mean blade diameter of 12.5 cm. The engine has a thermal efficiency of 

24%. STG International (2010) uses an organic Rankine cycle for its solar concentrator module. 

The module produces 3 kW of electrical power with parabolic trough concentrators. 

 

2.2.2.2 Stirling engines 

According to Stine and Harrigan (1985), the Stirling engine placed at the focus of a parabolic dish 

concentrator is being proposed for many small (10 – 100 kW) solar power applications because 
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of its high cycle efficiency potential (a Stirling engine can be designed to have the same efficiency 

as the ideal Carnot cycle). Three major causes of inefficiencies in the Stirling engine exist: 

sinusoidal motion of the pistons, imperfect regeneration and dead volume (Stine and Harrigan, 

1985). Figures 2.2 and 2.3 respectively show an example of a Stirling engine and the T-s diagram 

of the ideal Stirling cycle. 

 

 

Figure 2.2 The United Stirling Model 4-95 solar Stirling engine (Stine and Harrigan, 1985). 

 

 

Figure 2.3 The four processes of an ideal Stirling engine cycle. 

 

An example of a Stirling engine is the Solar 4-95 engine, which produces 22 kW of shaft power at 

a thermal efficiency of 38%. The heater operates at 720°C (Stine and Harrigan, 1985). One 

should take note of the free-piston Stirling engine (Stine and Harrigan, 1985). This engine was 

developed in an attempt to get around the problem of sealing the engines from gas leakage and 
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to eliminate mechanical friction associated with bearings, crossheads and seals. In this design, a 

power piston and a displacer bounce back and forth in a harmonic motion with mechanical or gas 

springs causing reversal of the motion. The engine has a diameter of 3.35 cm and a stroke of 

2 cm and produces 100 W of alternating current electrical power with a frequency of 30 Hz when 

heated to 650°C. 

 

2.2.2.3 The Brayton cycle 

Chen et al. (2007) show that the Brayton cycle is definitely worth studying when comparing its 

efficiency with that of other power cycles. Mills (2004) predicts that emphasis may shortly shift 

from Dish-Stirling technology to solarised Brayton micro-turbines due to high Stirling engine 

costs. The lower Brayton costs are due to high production quantities in the current market. Mills 

(2004) argues that the efficiency of the Brayton cycle is 25 - 33%, while the efficiency of the 

Stirling engine is 42%. However, according to Mills (2004), it is possible for Brayton cycles to 

reach peak efficiencies close to 40%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 The Brayton cycle (Weston, 2000). 
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A flow diagram of the Brayton cycle, showing the requirement of a heat source, is given in Figure 

2.4. This heat source is usually provided by fuel combustion. However, it can also be provided by 

solar energy. The Brayton cycle is considered for both small-scale and large-scale power 

applications, with its potential for low operation and maintenance cost as its major advantage. 

These engines are proposed to be placed at the focus of a parabolic dish concentrator. Operating 

at relatively low pressure, the Brayton cycle requires large, hot gas receivers. Its major drawback 

is the high receiver operating temperatures required to get reasonable efficiencies. Most Brayton 

cycles are not self-sustaining at operating temperatures below 480°C (Stine and Harrigan, 1985). 

 

 

Figure 2.5 The thermal efficiency of a two-shaft gas turbine cycle with and without regeneration, as plotted from 

an example spreadsheet for different pressure ratios (with recuperator efficiency < 1)  (Weston, 2000). 

 

A recuperator (heat exchanger) can be used in the Brayton cycle to extract the heat from the 

turbine outlet and transfer it to the cold stream before it is heated by the heat source. The effect 

of regeneration on the thermal efficiency of a Brayton cycle is shown in Figure 2.5. From Figure 

2.6, it is concluded that the highest-efficiency Brayton cycles are regenerative cycles with low 

compressor pressure ratios. If regeneration is not used, high compressor pressure ratios are 

required to provide high efficiency.  
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Figure 2.6 The regenerative Brayton cycle efficiency compared with the simple cycle efficiency. These curves are 

for a recuperator efficiency of 100% (Stine and Harrigan, 1985). Temperature values correspond to the values in 

Figure 2.4b and k = cp / cv. 

 

 

Figure 2.7 A closed Brayton cycle power plant for use in space (Bejan et al., 1996). 

 

An extra heat exchanger can be used to extract heat from the fluid system in direct contact with 

solar radiation (making the system an indirect system). A radiator might also be used in a closed 

Brayton cycle. Figure 2.7 gives an example of a closed Brayton cycle for use in space. Bejan et 

al. (1996) imply that the solar heat source is more suitable than the isotope and nuclear heat 
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sources when the power plant size is in the range of 2 – 100 kW. Helium has been proposed for 

closed solar Brayton cycles because of its efficiency advantage plus its high heat transfer 

capability and because it is inert. For open Brayton cycles, it is essential to have natural air 

movement past the site to prohibit reinjection of the warm exhaust (Stine and Harrigan, 1985). 

 

Heat exchangers can also be used for intercooling and reheating in a solar thermal Brayton cycle. 

The major advantage of multistaging (combining a number of compression and expansion stages 

in series with coolers and heaters respectively) is that the cycle can have the high efficiency 

associated with low-pressure ratio regenerative cycles, without the extremely large recuperator 

required for a single-stage cycle of the same power output (Stine and Harrigan, 1985). Maximum 

efficiency is attained when equal pressure ratios are maintained across each compressor and 

each turbine stage. The Ericsson cycle has the potential of attaining Carnot efficiency when 

regeneration is used (Stine and Harrigan, 1985). 

 

 

Figure 2.8 A solar sub-atmospheric gas turbine engine for parabolic dish application (Stine and Harrigan, 1985). 

 

According to Stine and Harrigan (1985), there are three major losses in actual Brayton cycle 

engines: duct pressure losses, turbomachine efficiencies and recuperator effectiveness. Figure 

2.8 shows the sub-atmospheric Brayton cycle, an example of the closed Brayton cycle where 

heat is added to the receiver at atmospheric pressure and rejected at a lower pressure. The 

receiver design is greatly simplified, which allows for large blade heights in the turbine and 

compressor. This results in higher efficiencies. According to Stine and Harrigan (1985), such a 

system’s shaft would operate at 71 000 rpm, while air is heated to 871°C and 11 kW of electric 

power is produced at a cycle efficiency of 27%. The SAGT (a solar version of the Garrett Turbine 

Engine Company’s automotive gas turbine engine), shown in Figure 2.9, is another example. It is 
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an open cycle with regeneration provided by a rotary porous ceramic wheel regenerator. It 

operates at 87 000 rpm, a peak pressure and temperature of 0.5 MPa and 1371°C and at a cycle 

efficiency of 47% while it produces 75 kW of power (Stine and Harrigan, 1985).  

 

 

Figure 2.9 A solar version of the Garrett Turbine Company’s Brayton cycle automotive gas turbine engine  

(Stine and Harrigan, 1985). 

 

2.2.2.3.1 Compressors, turbines and the Brayton cycle: micro-turbines 

Tsai (2004) explains the design and performance of a gas turbine engine using an automobile 

turbocharger. The net power output available from this specific system is close to 22 kW. 

Honeywell Garrett micro-turbines are widely available in South Africa, thanks to the motor 

industry. Shah (2005) regards the Honeywell turbomachinery as worth mentioning when it comes 

to the company’s development expertise in micro-turbines in recent history. The Garrett range is 

very attractive from a cost, availability and reliability perspective. Very useful data are also made 

available at no cost. For each of its micro-turbines, data are available, including compressor and 

turbine maps. This could not be found as convincingly from other leading micro-turbine 

manufacturers. These compressor maps show that for each pressure ratio of the compressor, a 

specific mass flow rate exists for a specific compressor efficiency. Figure 2.10 shows a micro-

turbine from the Garrett range.  

 

It is important to know what the maximum operating temperatures of the turbines in the Garrett 

range are. According to Tsai (2004) and Shah (2005), a maximum operating temperature exists 

for micro-turbines. According to Garrett (2009) and Shah (2005), it seems that this maximum is 

more or less 950°C for the inlet temperature of the turbine and 1050°C intermittently. The air 

leaving the solar receiver is thus restricted to this maximum temperature. Thus, the solar 

receiver’s surface temperature would have to be higher than 950°C to produce these air 

temperatures at the turbine. 
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Figure 2.10 A section view of a micro-turbine from the Garrett range (Garrett, 2009). 

 

2.2.2.3.2 Storage for the Brayton cycle 

Some disadvantages of the solar thermal Brayton cycle using air as working fluid are that it has 

few storage options and the receiver and recuperator have to be large. This section shows 

possibilities for storage in the Brayton cycle, for interest’s sake. Bejan (1997) suggests the use of 

two different working fluids and a melting element for storage. The one fluid transports the heat 

from the collector to the melting element while the other would be the working fluid in the Brayton 

cycle, which uses the temperature of the melting element as its heat source. This is called an 

indirect Brayton cycle and is useful when storage is necessary. An air-rock thermal energy 

storage system, presented by Stine and Harrigan (1985), is another heat storage option that 

would be compatible with a Brayton cycle. Magnesium oxide bricks are used together with a hot 

gas (air or helium) to store heat when extra energy is available, and to extract heat when the 

solar energy input is low. 

 

2.2.3 Comparison of solar thermal power cycles 

In this section, the different solar thermal power cycles are compared. It is important to keep in 

mind that these cycles are compared for use in South Africa in the range of 2 – 100 kW. Table 2.1 

shows the advantages and disadvantages, summarised from the aforementioned text, for the 

Rankine, Stirling and Brayton solar thermal power cycles.  
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Table 2.1 Solar thermal power cycles compared (Stine and Harrigan, 1985). 

 Advantages Disadvantages 

Rankine • High heat transfer coefficients - smaller 

receivers  

• Most common and most systems in 

operation or under development  

• Low operating temperature  

• Condenser required (shell-and-

tube most common)   

Stirling • High efficiency (can approach ideal 

Carnot)   

• Proposed for small applications  

• Free-piston Stirling engine 

• Low gas heat transfer 

coefficients - large receivers  

• Inefficiencies: Sinusoidal 

motion of the pistons, imperfect 

regeneration, dead volume and 

not all the gas in the engine 

participates in the cycle 

• Seal the engines from gas 

leakage and eliminate 

mechanical friction associated 

with bearings, crossheads and 

seals 

Brayton 

 

• High efficiency, Ericsson cycle – 

multistaging 

• Use of recuperator allows highest 

thermal efficiency at low pressure ratios  

• Both large- and small-scale application  

• Low operation cost, low maintenance 

cost  

• Open cycle, air – cheap 

• Solar heat source is more suitable than 

the isotope and nuclear heat sources 

when the power plant size is in the 

range of 2 – 100 kW  

• Low gas heat transfer 

coefficients - large hot gas 

receivers required  

• Most Brayton engines are not 

self-sustaining at operating 

temperatures below 480°C 

• Large recuperators required 

• Major losses in actual Brayton 

cycle engines: duct pressure 

losses, turbomachine 

efficiencies and recuperator 

effectiveness 

 

The Brayton cycle (Figure 2.4) looks very attractive since its low operation and maintenance 

costs are valuable. It can also be noted that recuperation in the Brayton cycle not only increases 

the thermal efficiency, but also allows for lower pressure ratios, which is very beneficial from a 

design perspective. The fact that the Brayton cycle can be an open cycle and that it uses air, 

which can be modelled as an ideal gas, makes this cycle very attractive for use in the water-
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scarce southern Africa. The Brayton cycle definitely has its disadvantages as well. One of the 

most important disadvantages is that it is not sustainable at temperatures below 480°C (Stine and 

Harrigan, 1985). According to Duffie and Beckman (1991), the energy lost from ducts and pipes 

leading to and returning from the solar receiver can be significant. Other important disadvantages 

are the pressure losses in the ducts, recuperator and receiver, turbomachine efficiencies and 

recuperator effectiveness. The method of entropy generation minimisation can be used to tackle 

these disadvantages to optimise the receiver and recuperator and to maximise the net power 

output of the system. 

 

2.2.4 Comparison of working fluids and intermediate fluids  

Heat transfer fluids used in central receivers, which are used on centrally located towers, are 

compared with the information given by Stine and Harrigan (1985) in Table 2.2. 

 

Table 2.2 Comparison of fluids used in solar thermal power cycles (Stine and Harrigan, 1985). 

 Max. temp. (°C) Cost Freeze (°C) Positive Negative 

Heat 

transfer oils 

425 High -10 Low vapour 

pressure – 

thermal storage 

Flammable 

Steam 540 Low 0  De-ionised water 

Nitrate-salt 

mixtures 

565 Medium 

low 

140 - 220 Good for 

storage 

 

Liquid 

sodium 

600 Very 

high 

98 Storage, low 

vapour 

pressure 

 

Air or 

helium 

850 Free or 

very 

low 

N.A. Free Few and difficult 

storage methods, 

large diameter 

piping required 

 

A question might come to mind: would the efficiency of the overall system be more when the 

heat-extracting fluid in the receiver is also the working fluid (a direct system)? Would this 

efficiency be higher than when a specifically chosen optimal fluid extracts heat from the receiver, 

separately from an optimally chosen working fluid in the power cycle (where heat is exchanged 

from one to another in the heat exchanger)? It might be better to have the same fluid to perform 

both functions at once, while at the same time less irreversibilities are generated. According to 

Duffie and Beckman (1991), there is a penalty involved when such a heat exchanger is included 

in the system (indirect system). The system would require a larger collector concentrator to 
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operate at the same temperature as it would have done without the heat exchanger. Stine and 

Harrigan (1985) and Duffie and Beckman (1991) compared the abovementioned sides of the 

argument. The advantages and disadvantages of having a direct or indirect cycle/working fluid 

are given in Table 2.3. 

 

Table 2.3 Advantages and disadvantages of having a direct or indirect cycle/working fluid (Stine and Harrigan, 

1985). 

 Direct working fluid Intermediate fluid 

Advantages � Concept is simple  

� Engine can operate at 

higher temperature  

� Fewer components and no 

extra heat loss 

� Reduces size and weight 

of receiver 

� Reduction of heat loss 

from the otherwise large 

ducting 

Disadvantages � High-pressure field piping 

� Large ducting required 

� System is difficult to 

control during insolation 

transients (especially 

Rankine) 

� Extreme care must be 

taken in the design to 

prevent tube burnout 

� Adds complexity and 

another fluid 

� Extra heat exchanger 

 

A direct or indirect system can be used in a solar thermal power cycle. For the Brayton cycle, a 

direct system seems attractive, especially when considering costs. Air can be used as the 

working fluid in the power cycle and as the fluid which extracts heat from the heat source (solar 

receiver).  

 

2.2.5 Conclusion 

The solar thermal Brayton cycle is recommended over the other solar thermal power cycles by 

Mills (2004) and Chen et al. (2007). The power cycle uses air as working fluid and has low 

operation and maintenance costs. When a recuperator is used, the cycle operates at low 

compressor pressure ratios. Therefore, the solar thermal Brayton cycle is the foundation for the 

remainder of the literature study. 

 

 
 
 



 18 

2.3 Solar collectors (concentrators and receivers) 

 

2.3.1 Background 

It is noted from the literature that there is some confusion regarding the definitions of collectors, 

concentrators and receivers. Duffie and Beckman (1991) take away the confusion regarding 

these definitions: the collector includes the receiver and concentrator, while the receiver is the 

element of the system where the radiation is absorbed and converted into some other energy 

form. The receiver consists of the absorber, covers and insulation. The concentrator is the part of 

the collector that directs radiation onto the receiver. The concentrator area reflects or 

concentrates the sun’s rays onto the receiver (with the use of reflective material).  

 

 

Figure 2.11 Photograph of parabolic dish installed 

at Shenandoah (Stine and Harrigan, 1985). 

 

The purpose of a solar thermal receiver is to absorb the sun’s energy and to transfer the resultant 

thermal energy to a fluid which, in turn, delivers useful energy (Howell et al., 1982). The method 

of concentration can be described as the way in which a receiver receives the sun’s energy from 

the concentrator – there are quite a number of different ways in which the sun can be 

concentrated onto a receiver. The receiver geometry depends on the method of radiation 

collection. Figure 2.11 shows an example of a small-scale parabolic dish collector, including the 

concentrator and receiver. According to Duffie and Beckman (1991), many solar power studies 

showed that the solar collector represents the largest cost in the system. 

 

Literature concerning the basics of solar energy is well established. Kreith and Kreider (1978), 

Wilson (1979), Howell et al. (1982), Stine and Harrigan (1985) and Duffie and Beckman (1991) 
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paid much attention to different solar topics. This includes: the sun, history, solar concentrators, 

flat-plate collectors, energy storage, radiation, sizing, case studies and economics, to name a 

few. Many of these sources are more focused on solar thermal heating systems than on solar 

thermal power systems. Stine and Harrigan (1985) paid specific attention to collector 

performance, basic concentrator optics, parabolic concentrating collectors, central receivers, 

different types of concentrators and power cycles for solar applications.  

 

2.3.2 Concentration ratio and different types of concentrations  

“The higher the temperature at which energy is to be delivered, the higher must be the 

concentration ratio and the more precise must be the optics of both the concentrator and the 

orientation system” according to Duffie and Beckman (1991).  

 

Solar collectors can be divided into different classes. Flat plates, which operate without 

concentration, are regarded as thermal-conversion devices operating over a range of 

temperatures of up to 380 K (107°C). These collectors are used mainly for service water and 

space heating (Kreith and Kreider, 1978). Duffie and Beckman (1991) claim that it might be 

possible to use flat plate collectors to supply energy to heat engines. 

 

 

Figure 2.12 Different methods of concentration (dish, trough and tower). 

 

Another group of solar collectors produces very high energy fluxes by accurately tracking the sun 

(but not always) and by using focusing devices. This is done by using focusing devices connected 

to a basic absorber-receiver. According to Kreith and Kreider (1978), the highest operating 

temperatures for concentrated solar power can be as high as 4 000 K. Kreith and Kreider (1978) 

estimate that the cost of concentrated solar power in the right locations will not be more than that 

of nuclear power. Figure 2.12 shows the different methods of concentration as dish, trough and 
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tower. Some other interesting collectors also exist. The hot-line collector uses a wedge-shaped 

absorber channel and has efficiencies of around 90%. A curved Fresnel lens collector was 

developed by the Northrup plant in Texas. The compound parabolic concentrator is similar to the 

natural structure of the eye of the horseshoe crab – one of the most efficient light-gathering 

structures known (Cheremisinoff and Regino, 1978). Duffie and Beckman (1991) regard 

honeycombs, compound parabolic concentrators, concentrating collectors and evacuated tubular 

collectors as recent developments in collector heat loss control or collector efficiency. 

 

Thermodynamic limits to concentration exist. Kreith and Kreider (1978) and Duffie and Beckman 

(1991) give the theoretical upper limit of concentration for 2D (linear concentration) and 3D 

concentrators: the maximum linear concentration ratio is in the order of 200, while the maximum 

3D concentration ratio is in the order of 40 000. According to Kreith and Kreider (1978), the 

concentration ratio of single-curvature concentrators (troughs), is usually less than 50, with 

delivery temperatures of 300°C, while the concentration ratio is higher than 30 and up to several 

hundreds for double-curvature units. Kreith and Kreider (1978), Stine and Harrigan (1985) and 

Duffie and Beckman (1991) refer to a concentration ratio as the ratio of the net collecting aperture 

area to the area of the receiver or absorber. Data obtained for solar tower plants by Schwarzbözl 

et al. (2006) show that the total reflective area divided by the total receiver aperture (or 

concentration ratio, CR ) is on average more or less 700. According to Figure 2.13, a parabolic 

dish collector should be used when receiver temperatures of between 500 and 1 000°C are 

required. The shaded area shows the probable range of operation. Figure 2.14 also shows the 

typical temperatures achievable by concentrating solar collectors.  

 

The high temperatures required for the Brayton cycle would not allow it to be used with troughs. 

Trough technology cannot reach the high temperatures required. Double-curvature units should 

be used with a point cavity receiver (Stine and Harrigan, 1985). Figure 2.15 roughly indicates the 

optimum operating ranges of the different power cycles. A similar figure (Figure 2.16) is given by 

Wilson (1979) for different concentration optics without a specification of the working fluid used or 

its mass flow rate. 

 

Figure 2.17 provides another representation of the relationship between fluid temperature and 

concentration ratio. This figure gives a general guideline of the concentration ratio to be used for 

a given temperature. The thermal efficiency of the receiver shown in the figure is defined by the 

ratio of the useful heat to the incoming solar radiation in the receiver aperture. Pitz-Paal (2007) 

concludes the following from this figure: higher fluid temperatures lead to lower receiver 

efficiencies, higher concentration factors lead to higher efficiencies and convection and 

conduction losses are of minor importance at high concentration factors. 
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Figure 2.13 Relationship between concentration ratio (area of concentrator divided by the area of receiver) 

 and temperature of receiver operation. The shaded range represents a probable range of operation  

(Duffie and Beckman, 1991). 

 

 

Figure 2.14 Typical temperatures achievable by concentrating solar collectors (Kreith and Kreider, 1978). 
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Figure 2.15 Optimum operating temperature change with geometric concentration ratio  

(Stine and Harrigan 1985). 

 

 

Figure 2.16 Temperature reached by solar absorbers using concentration optics  

(Wilson, 1979). 
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Figure 2.17 The thermal efficiency of a receiver as a function of the fluid  

temperature and the concentration factor (Pitz-Paal, 2007). 

 
Figures 2.18 and 2.19 conclude that selective absorber properties significantly increase a 

receiver’s performance, specifically in the case of low concentrating systems and high 

temperatures. In practice, however, selective coatings are only available up to a temperature of 

about 800 K, so that selective coatings are irrelevant for high-temperature solar concentrators. 

Pitz-Paal (2007) suggests that a possible solution is the use of a cavity receiver. The 

concentrated radiation enters through a small aperture in a thermally insulated cavity. The actual 

absorbers are distributed on the inner-cavity walls (Pitz-Paal, 2007). 

 

 

Figure 2.18 The thermal efficiency of a receiver as a function of the absorber  

temperature and the concentration factor. The use of a selective absorber and  

a blackbody absorber is considered. Convection heat losses are neglected  

(Pitz-Paal, 2007). 
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Figure 2.19 Expected stagnation temperatures of evacuated solar collectors with concentrators,  

where α and ε describe the properties of the selective absorber (Wilson, 1979). 

 

Bejan (1997) found that the optimisation of a collector and engine arrangement can consist of 

selecting not only the collector temperature but also the cut-off frequency. Omnicolour series of 

ideal concentrators were evaluated and it was found that it improved only slightly on the 

maximum work per area ratio (Bejan, 1997). 

 

2.3.3 Rim angle, tracking and solar irradiation 

 

Figure 2.20 Variation of geometric concentration ratio with rim angle (Stine and Harrigan, 1985). 

 

According to Stine and Harrigan (1985), a rim angle of 45° (Figure A.2 in Appendix A, 

schematically shows the definition of the parabolic dish concentrator rim angle) gives the 
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maximum concentration ratio for a parabolic dish collector. This is shown in Figure 2.20. This 

figure also includes the curve for the omnidirectional receiver. Only the trends of these curves are 

shown and their magnitude relative to each other is not correct. 

 

Concentrated solar thermal power systems usually require tracking of the sun. Two different 

tracking levels exist: intermittent tilt change or completely fixed and continuously tracking, which 

is used for high concentration ratios (Duffie and Beckman, 1991). The acceptance angle of 

focusing collectors decreases with increasing concentration ratio. Stine and Harrigan’s (1985) 

research shows that two-axis tracking can be regarded as the best available tracking method, as 

shown in Figures 2.21 and 2.22. Focusing collectors must track the sun with a degree of precision 

that increases with the concentration ratio. If a solar collector moves with two degrees of freedom, 

it can track the sun at zero incidence angle throughout the day to intercept the maximum amount 

of beam radiation (Kreith and Kreider, 1978). For the solar thermal Brayton cycle, two-axis 

tracking will be required.  

 

 

Figure 2.21 Aperture irradiance for different fixed and tracking aperture configurations for Albuquerque,  

on June 22 (Stine and Harrigan, 1985). 

 

Direct, diffuse and reflected radiations are mentioned as the three different components of solar 

radiation (Cheremisinoff and Regino, 1978). According to Stine and Harrigan (1985), the radiation 

falling directly on the earth is 451 – 1 135 W/m
2
. The irradiance of Albuquerque (New Mexico, 

US) can be as high as 1 000 W/m
2
 and as low as 500 W/m

2
 at noon through summer and winter 

for different types of tracking methods. Kreith and Kreider (1978) give a value of 300 W/m
2
 (in the 

Red Sea area) as the highest annual mean irradiance (amount of solar radiant energy falling on a 
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surface per unit area and per unit time). According to Fluri (2009), the solar irradiation in the 

northern parts of the Northern Cape Province, South Africa, is more than 8 kWh/m
2
 in December 

and 6 kWh/m
2
 in June. Most areas in South Africa, however, receive an average of more than 

2 500 hours of sunshine per year, with average solar-radiation levels ranging between 4.5 and 

6.5 kWh/m
2
 per day (DME, 2010). For a steady-state analysis, 1 000 W/m

2
 would be an 

acceptable value for a high irradiance location in South Africa, at noon. 

 

 

Figure 2.22 Aperture irradiance for different fixed and tracking aperture configurations for Albuquerque,  

on December 22 (Stine and Harrigan, 1985). 

 

2.3.4 Losses and efficiency 

From the literature, it is clear that there are many different collector efficiencies available, each 

defined differently. According to Howell et al. (1982), there exists a solar collector efficiency (due 

to inefficiencies in the reflective process). According to Stine and Harrigan (1985), losses 

associated with reflection typically range from about 5 to 25% and other optical losses that occur 

in a concentrating collector are transmittance and receiver absorptance. They also mention that a 

glass cover, which can be used to reduce the convective losses from the receiver, can absorb 

about 5% of the light energy passing through it. Figure 2.23 shows the specular reflectance of 

aluminium, silver and gold. Stine and Harrigan (1985) emphasise the importance of good thermal 

contact between receiver and working fluid, evacuated annulus between glass cover and 

receiver, a receiver mounted in a cavity (to reduce convection losses) and selective coating for 

reducing the thermal losses due to radiation. High-absorptance paint has an absorptance of 0.95. 
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If the absorbing surface is inside a cavity, the effective absorptance increases to about 0.98 

(Stine and Harrigan, 1985).  

 

It is clear that collector efficiencies are defined differently. There has yet been no mention of 

entropy generation in collectors and solar thermal power systems, or the second law of 

thermodynamics, which would be the focus of this study. A comprehensive section on the second 

law and the solar thermal Brayton cycle is given in Section 2.6. 

 

 

Figure 2.23 Specular reflectance of selected materials: silver, aluminium and gold 

(Stine and Harrigan, 1985). 

 

2.3.5 Solar receivers 

According to Stine and Harrigan (1985), if a black receiver is mounted at the focus of a parabolic 

dish reflector, the reflected light will be absorbed and converted into heat. According to Bejan 

(1997), the solar receiver can be viewed as a blackbody that is exposed to blackbody radiation of 

a higher temperature (as a first-cut model). For the Brayton cycle, large receivers are required 

due to the low gas heat transfer coefficients (Duffie and Beckman, 1991). Parabolic concentrators 

reflect light either to a point or a line. The solar receiver intercepts the energy available at this 

point or line. There are only two widely used receivers: the linear omnidirectional receiver and the 

point cavity receiver or focal plane receiver. The point cavity receiver can also be used with a 

parabolic trough when the cavity is linear, but it is commonly used with parabolic dishes (Stine 

and Harrigan, 1985). The convection and radiation losses are drastically reduced when a receiver 

is mounted in a cavity with a selective coating. Other types of solar receivers are also found. 
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Bertocchi et al. (2004) describe the heating of air temperatures to far more than 1 000°C, using a 

high-temperature solar particle receiver. Heller et al. (2006) demonstrate that volumetric 

pressurised receivers are able to produce air of 1 000°C to drive a gas turbine. These receivers 

are more complex and expensive. 

 

The performance of different cavity receivers was investigated by Shuai et al. (2008), Prakash et 

al. (2009) and Sendhil Kumar and Reddy (2008). Figure 2.24 shows a typical cavity receiver. 

According to Pitz-Paal (2007) the inherent characteristic of a cavity receiver aperture is that a 

blackbody is approximated. 

 

 

Figure 2.24 A typical cavity receiver (Stine and Harrigan, 1985). 

 

The thermal losses of a cavity receiver include convective and radiative losses to the air in the 

cavity, as well as conductive heat loss through the insulation used behind the helical tube 

surface. Shuai et al. (2008) investigated different classical cavity geometries and found that cavity 

geometry has a significant effect on overall distribution of radiation flux in the cavity receiver. 

According to Shuai et al. (2008), an upside-down pear cavity might be a desirable shape. 

Prakash et al. (2009) investigated heat losses from a solar cavity receiver at different inclination 

angles, with head-on and side-on winds. According to Prakash et al. (2009), the thermal and 

optical losses occurring from an open-cavity solar receiver are less when compared with other 

types of receivers and, hence, such receivers are preferred.  

 

Reddy and Sendhil Kumar (2008) compared different types of cavity receivers numerically and 

found that their modified cavity receiver experienced lower convection heat losses than those of 

the other receivers and suggested that it may be preferred in a solar dish collector system. A 

numerical investigation of natural convection heat loss (Sendhil Kumar and Reddy, 2007), an 
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investigation of the contribution of radiation losses (Reddy and Sendhil Kumar, 2008) and an 

improved model for natural convection heat loss were presented for the modified cavity (Reddy 

and Sendhil Kumar, 2009). Figure 2.25 shows the modified cavity receiver. 

 

 

Figure 2.25 Modified cavity receiver (Reddy and Sendhil Kumar, 2009). 

 

Sendhil Kumar and Reddy (2008) suggest the use of their modified cavity receiver with an area 

ratio of 

 

 aw AA  = 8               (2.1) 

 

where wA  is the inner-surface area of the cavity and aA  the aperture area. This area ratio gives 

the minimum heat loss. Figure 2.26 shows this cavity receiver.  

 

 

Figure 2.26 Modified cavity receiver (Reddy and Sendhil Kumar, 2008). 

 

The areas of the aperture and the inner wall can be calculated with the following equations 

respectively: 
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              (2.3) 

 

For a specific concentrator diameter (with constant focal length and rim angle), the net rate of 

heat absorbed by the working fluid in the receiver depends on the receiver aperture diameter. 

The sun’s rays are not truly parallel and concentrator errors exist, which means that the reflected 

rays form an image of finite size centred around the focus, instead of a focal point.  

 

Thus, the geometry of a cavity receiver can determine the amount of heat available to be 

transferred to the working fluid. A receiver can be optimally sized, since the aperture area of the 

solar receiver will determine the amount of heat intercepted, but also the amount of heat lost due 

to convection and radiation. The larger the cavity aperture, the more heat can be intercepted, but 

also the more heat can be lost due to convection and radiation (Stine and Harrigan, 1985). For a 

fixed dish concentrator area, the amount of heat available for the working fluid, which is the 

intercepted heat absorbed minus the heat lost due to radiation and convection, is a function of the 

cavity aperture diameter.  

 

 

Figure 2.27 Sizing of a collector receiver (Stine and Harrigan, 1985). 
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Figure 2.27 shows the sizing of receivers in general. There exists a cavity aperture area which 

allows the maximum net absorbed heat. Steinfeld and Schubnell (1993) present a semi-empirical 

method to determine the optimum aperture size and optimum operating temperature of a solar 

cavity receiver, which has a maximum energy conversion efficiency. Figure A.1 in Appendix A, 

shows the logical flow for a receiver sizing algorithm of Stine and Harrigan (1985) which can be 

used with a fixed dish concentrator area to get the amount of energy available (intercepted) for a 

specific cavity aperture area. Appendix A explains the method in which the algorithm is used.  

 

Narendra et al. (2000) believe it is important that extensive work is carried out in the field of 

material constraints to make solar thermal power a real success because the material constraints 

of the solar receiver play an important role in exergy loss. This is because the high quality solar 

energy is used to heat the fluid at a much lower temperature due to the temperature constraint. It 

is thus important to know what the maximum or melting surface temperature of the receiver could 

be. This depends on the material used. The melting temperature of copper is 1 084°C / 1 357 K. 

According to the Copper Tube Handbook (Copper Development Association, 2006), standard 

brazing fluxes can protect up to temperatures of 871°C / 1 144 K and special brazing fluxes up to 

1038°C / 1 311 K.  

 

Thus, a cavity receiver (which can withstand high temperatures) should be used for the solar 

thermal Brayton cycle. A receiver aperture sizing algorithm should be used to determine the 

available heat for the power cycle. A heat loss model for the modified cavity receiver is available 

(Reddy and Sendhil Kumar, 2009). 

 

2.4 Heat exchangers in general and the recuperator 

Heat exchangers are required to be efficient, economical, safe, simple and convenient (Yilmaz et 

al., 2001). Heat transfer and pressure losses as well as the optimisation of size, weight and price 

should be taken into consideration while the heat exchanger is being designed (Oğulata et al., 

2000). According to Bejan (1982), heat exchanger irreversibilities can be reduced by slowing 

down the movement of fluid through the heat exchanger which is synonymous with employing 

larger heat exchangers. The irreversibility of a fixed-area heat exchanger can be reduced by 

properly distributing or arranging the area (Bejan, 1982). 

 

A recuperator (heat exchanger) can be used in the Brayton cycle (Figure 2.4) to extract the heat 

from the turbine outlet and transfer it to the cold stream before it is heated by the heat source. 

Kreith and Kreider (1978) suggest that counterflow heat exchangers should be used in solar 

thermal power systems and parallel-flow heat exchangers should be avoided. They suggest the 
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use of a heat exchanger penalty, which decreases as heat exchanger effectiveness increases. 

According to data given by Çengel (2006), it is concluded that the most effective heat exchanger 

is a counterflow heat exchanger. Bejan (1982) mentions that counterflow heat exchangers find 

numerous applications in recuperative heating associated with the Brayton cycle. The definitions 

used for the terms recuperator efficiency, according to Çengel (2006), and effectiveness, 

according to Stine and Harrigan (1985), are the same.  

 

Shah (2005) suggests that counterflow plate-type heat exchangers can be used as compact 

recuperators with micro-turbines. Shah (2005) gives design criteria for micro-turbine recuperators. 

Some of these criteria are high performance with minimum cost, high exchanger effectiveness, 

compactness, 40 000 hour operation life without maintenance, low pressure loss (< 5%). 

According to Shah (2005), the abovementioned criteria translate into a thin foil primary surface 

recuperator (same surface on both fluid sides) with stamping, folding and welding side edges by 

an automated operation to form flow passages. 

 

2.5 Summary of literature in Sections 2.2 to 2.4 

With the aid of the preceding literature, a few observations were made regarding the solar 

thermal Brayton cycle, its collector and its recuperator. The open and direct solar thermal Brayton 

cycle with recuperator, cavity receiver and micro-turbines from Garrett will be used in the 

analysis. A counterflow plate-type recuperator will be beneficial. A maximum receiver temperature 

should be specified due to material constraints. The following collector scheme was identified for 

the power cycle: a parabolic dish concentrator with 45° rim angle, modified cavity receiver, two-

axis tracking, concentrator reflectance > 90% and an average irradiance of 1 000 W/m
2
. 

 

2.6 The second law of thermodynamics 

 

2.6.1 Background 

The second law of thermodynamics is the set of rules which governs all changes occurring in 

nature. It is an unfortunate case that it is not used enough in design (Sama, 1995). “The first law 

of thermodynamics states that a certain energy balance will hold when a system undergoes a 

change of state or a thermodynamic process, but it does not give any information on whether that 

change of state or the process is at all feasible or not” according to Oğulata et al. (2000). An 

analysis based on the second law of thermodynamics is necessary for determining the maximum 

net power output of a solar thermal Brayton cycle. 

 

Shiba and Bejan (2001) regard exergy analysis, irreversibility minimisation, entropy generation 

minimisation or thermodynamic optimisation and thermoeconomics as the most established 
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changes in methodology experienced in engineering thermodynamics during the 1980s to 2000. 

Bejan et al. (1996) present the current status of exergy analysis, EGM (entropy generation 

minimisation) and thermoeconomics. According to Shiba and Bejan (2001), at the beginning of 

the 21
st
 century, the focus of engineering thermodynamics was on identifying the mechanisms 

and system components responsible for thermodynamic losses, as well as the minimisation of 

these losses subject to global constraints on the system. This includes the minimisation of costs 

associated with building and operating the energy system. 

 

Bejan (1982) states that the long-term answers to energy questions must rest on a solid 

thermodynamic foundation and the second law, in particular, should occupy a central place in 

heat transfer thought. Entropy generation minimisation, according to Bejan (1982), should bridge 

the gap between three cornerstone subjects: heat transfer, thermodynamics and fluid mechanics. 

The topic of irreversibility and availability is well covered by Sonntag et al. (2003). In an ideal 

system, there would be no entropy generation (no irreversibilities). Optimisation studies were 

carried out for such solar thermal power plants (reversible systems) where the irreversibilities are 

neglegted. Bejan (1997), for example, optimised a reversible extraterrestrial solar power plant, 

which was purely focused on radiation heat transfer only. It was found that the receiver area 

should be about half the size of the radiator area. 

 

Effects which cause irreversibilities, according to Bejan et al. (1996) and Sonntag et al. (2003), 

are heat transfer through a finite temperature difference, unrestrained expansion of a gas or liquid 

to a lower pressure, spontaneous chemical reaction, mixing of matter at different compositions or 

states, friction such as sliding friction as well as friction in the flow of fluids, electric current flow 

through a resistance, magnetisation or polarisation with hysteresis, and inelastic deformation.  

 

These irreversibilities can be divided into two classes: internal (occurring within a system) and 

external (occurring within the surroundings). Irreversibilities related to friction, unrestrained 

expansion and mixing can be regarded as secondary in importance to those of combustion and 

heat transfer. The irreversibilities of convective heat transfer are due to heat transfer across a 

non-zero temperature difference and fluid friction (Bejan, 1982; Bejan et al., 1996).  

 

Zimparov et al. (2006a) state that to improve the global thermodynamic performance of a system, 

“the irreversibilities (entropy generation or exergy destruction) that characterises all the 

components and processes of the system, must be decreased”. This is done “by spreading the 

entropy generation rate through the system in an optimal way, by properly sizing, shaping and 

positioning components” according to Zimparov et al. (2006c). 
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2.6.2 Exergy  

Exergy, or availability, has become an increasingly important tool for the design and analysis of 

thermal systems since it correctly reveals the principle sites of thermodynamic inefficiencies, 

owing to irreversibilities. Exergy is defined as the maximum theoretical useful work obtainable, as 

two systems at different states interact to equilibrium (when one of the systems is the 

environment), with heat transfer occurring with the environment only. Natural resources can be 

seen as availability reserves (oil, coal, uranium, etc.). The more irreversibilities one has when 

using these reserves, the greater will be the decrease in availability and the greater the decease 

in natural reserves (Sonntag et al., 2003). Exergy can thus be destroyed and it can never be 

negative (Bejan et al., 1996).  

 

2.6.2.1 Closed-system exergy balance 

Equation 2.4 shows a closed-system exergy balance (Bejan et al., 1996). From this equation, the 

following can be concluded: the total number of exergy transfers (into a system) is split up into 

two parts - the making of an actual exergy change in the closed system between two states and 

the destruction of exergy (which is a direct function of entropy generation, as shown in the Gouy-

Stodola theorem, equation 2.5). Exergy destruction is also known as availability destruction, the 

irreversibility and the lost work:  
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It can be concluded that:  

Exergy Change = Exergy Transfers - Exergy Destruction.  

 

The exergy transfers in the closed-system exergy balance are split into the exergy transfers 

associated with the transfer of energies by heat transfer and by work. From equation 2.4 it follows 

that the work into a system will be regarded as a positive exergy transfer into the system, since 

the work into a system is regarded as negative. This makes sense since exergy, or available 

work, should increase when work is put into the system, as opposed to work input, which is 

regarded as negative, from an energy perspective. 
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Exergy can also be divided into four components (equation 2.6): physical (function of pressure 

and temperature), kinetic (function of velocity), potential (function of height) and chemical exergy 

(not shown in equation 2.6): 

 

( ) ( ) ( ) ( ) ( )
12121201201212

PEPEKEKESSTVVpUUEE −+−+−−−+−=−       (2.6) 

 

The equation for internal energy change (equation 2.7), can be compared with the equation for 

exergy change (equation 2.6) to show the difference between energy and exergy: 
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2.6.2.2 Exergy balance for control volumes 

Equation 2.8 shows the exergy balance concept extended to a control volume (Bejan et al., 1996; 

Sonntag et al., 2003), which is more practical. The definitions for specific exergy transfers at 

inlets and outlets are given in equation 2.9 (Bejan et al., 1996): 
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where 

 

( ) ( ) CH
egzVssThhe +++−−−= 2

000 2
1            (2.9) 

 

against 

 

gzVue ++= 2

2
1ˆ             (2.10) 

 

The difference between the specific exergy and specific energy can be identified by comparing 

equations 2.9 and 2.10 respectively (Bejan et al., 1996). Exergy is concerned with giving values 

from differences between a certain point and the environment while energy is not concerned with 

its magnitude relative to the environment. The other two terms (concerning velocity and height) 

stay the same, since velocity’s reference point is already zero and height can simply be seen as a 

distance, regardless of the reference point (although a practical reference point for height in the 

exergy equation could be sea level). This seems to be the intrinsic difference between energy 

and exergy: the fact that exergy, unlike energy, uses the environment as its reference point for all 
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of its components. The exergetic approach seems to be more practical since humans are situated 

in this environment and one would like to know what the optimal possibilities are for inhabitants of 

this environment instead of inhabitants of infinite space. 

 

2.6.2.3 Exergetic efficiency 

According to Bejan et al. (1996), exergetic efficiency (second law efficiency, effectiveness or 

rational efficiency) is a parameter for evaluating thermodynamic performance. It provides a true 

measure of the performance of an energy system from a thermodynamic viewpoint. It is 

necessary to identify both a product and a fuel for the thermodynamic system being analysed 

(equation 2.11). Bejan et al. (1996) identify these exergy rates associated with a fuel and product 

for the compressor, turbine, heat exchanger, mixing unit, combustion chamber and boiler at 

steady-state. Sonntag et al. (2003) have a similar approach to the efficiency of a heat exchanger, 

as will be shown later in equation 2.15.  
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According to Bejan et al. (1996), the exergetic efficiency is generally more meaningful and useful 

than any other efficiency based on the first or second laws of thermodynamics, including the 

thermal efficiency of a power plant, isentropic efficiency of a compressor or turbine and 

effectiveness of a heat exchanger. Yilmaz et al. (2001) summarise the interrelations of 

performance criteria for both exergy and entropy analysis. The exergetic efficiency or second law 

efficiency, which gives an indication of the degree of thermodynamic perfection, is regarded as of 

little use for individual plants and units such as heat exchangers and it is stated that it may even 

lead to false conclusions. 

 

2.6.3 Entropy 

Equation 2.12 (second law of thermodynamics) expresses the change of entropy for an 

irreversible process. According to Sonntag et al. (2003), entropy increase is the change from a 

less probable to a more probable state and the entropy of a system can be increased in two 

ways: by transferring heat to it and by having an irreversible process. For the entropy change of 

an ideal gas, equation 2.13 (Sonntag et al., 2003) can be used with constant specific heat. 

Consider the design of lifting a weight with a rope. Entropy generation is proportional to additional 

work wasted for a bad lifting design (Bejan, 1982). Entropy generation can be minimised: 

 

∫ +
∂

=−
2

1
12 genS

T

Q
SS            (2.12) 

 
 
 



 37 

 

1

2

1

2

012
lnln

P

P
R

T

T
css p −=−            (2.13) 

 

From the second law (equation 2.12) follows that only the heat transfer, not work transfer 

interactions, is accompanied by entropy transfer (Bejan, 1982). Entropy generation is path-

dependent and not a thermodynamic property and should not be confused with the 

thermodynamic property entropy change (
12

SS − ). According to Bejan et al. (1996), the direction 

of the entropy transfer is the same as that of the heat transfer. Equation 2.14 (Sonntag et al., 

2003) gives the expression for the balance of entropy for a control volume: 
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The Gouy-Stodola theorem (equation 2.5) states that the lost available work is directly 

proportional to the entropy generation in a system (Bejan, 1982; Bejan, 1997; Bejan et al., 1996). 

Lost available work is a relative quantity that depends on the choice of reference heat reservoir 

(Bejan, 1982). 

 

Bejan (1982) provides a number of features most guilty of entropy generation (similar to the 

features guilty of irreversibilities): heat transfer across a non-zero temperature difference, flow 

with friction, mixing, filling and discharge, compression, expansion and combustion. The overall 

irreversibility of compression and expansion (in compressors and turbines), is described by the 

compressor and turbine efficiencies (Bejan, 1982). The definition of these efficiencies is available 

from Dixon (2005). Bejan et al. (1996) considered the simultaneous effect of heat transfer and 

fluid friction on entropy generation and showed that they tend to compete with one another when 

a thermodynamic optimum is needed.  

 

2.6.4 Second law optimisation and examples of entropy generation minimisation 

(EGM) for individual components and elemental features 

The method of entropy generation minimisation is based on equations used to describe entropy 

generation mechanisms. Appendix B summarises the relevant entropy generation equations 

available from the literature. A summary of the following literature and its relevance for the solar 

thermal Brayton cycle is given in Section 2.6.7. 
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2.6.4.1 Background 

In the field of heat transfer, optimisation is mostly carried out at two levels of complexity: 

optimisation of complete components like heat exchangers and elemental features like fins and 

ducts. Heat transfer design objectives can be categorised into two large categories: heat transfer 

augmentation (conductance) problems and thermal insulation problems. In both cases, EGM is 

the hidden consequence of good engineering thinking applied to both problems. EGM should 

close the gap between heat transfer and thermodynamics. EGM has shown that optima exist 

when the thermodynamic optimisation is subjected to finite-size and finite-time constraints (Bejan, 

1982; Bejan, 1996). 

 

The following synonyms can be given for EGM: thermodynamic optimisation, finite-time 

thermodynamics, second law analysis, thermodynamic design, endoreversible thermodynamics 

and exoirreversible thermodynamics. The field of EGM experienced astonishing growth during the 

1980s and 1990s in both engineering and physics. The EGM method relies on the simultaneous 

application of heat transfer and engineering thermodynamics principles in the pursuit of realistic 

models, which account for the inherent thermodynamics irreversibility of the heat, mass and fluid 

flow processes for heat transfer processes, devices and installations (Bejan, 1996). 

 

The first power generation area to use EGM models regularly was that of solar-driven power 

plants. It was found that, for a solar receiver with convective heat loss, an optimum coupling 

between the receiver and the power cycle exists, so that the power output is a maximum. The 

thermodynamic trade-offs can be of two kinds: when an overall size constraint exists, there is an 

optimal way of allocating the hardware between the different components, while, for a known 

daily variation of solar heat input, an optimal time-dependent strategy of plant operation exists 

(Bejan, 1996; Bejan, 1997). 

 

Yilmaz et al. (2001) imply that engineering thermodynamics includes three important types of 

approaches based on the second law: EGM, exergy analysis and thermoeconomics. Losses due 

to process irreversibility can be calculated using a second law analysis. According to Yilmaz et al. 

(2001), the selection of entropy measure as evaluation parameter, rather than exergy measure, 

has several advantages. Different entropy evaluation parameters are available from Yilmaz et al. 

(2001): the entropy generation number, augmentation entropy generation number, heat exchange 

irreversibility norm, Witte-Shamsundar efficiency and the local entropy generation number. These 

entropy evaluation parameters are mostly used in the literature to perform optimisation with. It 

works well for EGM of specific individual components. 
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In the literature, there are many differently defined entropy generation numbers. Yilmaz et al. 

(2001) present all the different non-dimensional entropy generation numbers, of which the most 

frequently used number is the number obtained when the entropy generation rate is divided by 

the capacity flow rate. Very useful references are available from Yilmaz et al. (2001) for 

optimisation based on entropy generation numbers, for the following heat exchangers: balanced 

and unbalanced counterflow heat exchangers, cross-flow heat exchangers, external flow heat 

exchange (like fins), two-phase flow heat exchangers, regenerative heat exchangers, plate-type 

heat exchangers and shell-and-tube heat exchangers. The entropy generation numbers, or non-

dimensionalised entropy generation equations, are used widely in the literature to minimise 

entropy generation for individual components or elemental features. These equations are based 

on entropy generation equations, which are available in Appendix B. 

 

2.6.4.2 Applications 

 

2.6.4.2.1 Internal flow 

EGM has been applied for internal flow for constant heat flux or constant wall temperature and 

different cross-sectional shapes. Bejan (1982) and Bejan et al. (1996) determined the optimum 

tube diameter or Reynolds number for a tube with internal flow using EGM. Ratts and Raut (2004) 

also determined the optimal Reynolds number for single-phase, fully developed, laminar and 

turbulent flow with constant heat flux using EGM. They also compared optimal Reynolds numbers 

and minimum entropy generation for different cross-sections (circular, square, rectangle and 

equilateral triangle). Ratts and Raut (2004) found that, for the same deviation from optimal 

Reynolds number in laminar and turbulent flow, the increase in entropy generation is smaller for 

heat dissipation than for viscous dissipation. A rectangle with an aspect ratio of eight gives the 

minimum entropy generation in laminar flow and turbulent flow (Ratts and Raut, 2004). Zimparov 

et al. (2006a; 2006b; 2006c) did the optimisation of various flow geometries using the entropy 

generation method and assumptions of constant wall temperature or constant heat flux.  

 

2.6.4.2.2 External flow 

The length of a plate is the only design variable capable of inducing changes in the rate of 

entropy generation in external flow. An optimum plate length exists so that the entropy generation 

rate reaches a minimum, according to Bejan (1982). This result is important in the local 

optimisation of plate-finned surfaces in heat exchangers. There is competition between heat 

transfer and fluid mechanics terms to get an optimal body size with minimum entropy generation 

(Bejan, 1996; Bejan, 1982; Bejan et al., 1996). 
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2.6.4.2.3 Augmentation techniques 

Various authors investigated heat transfer augmentation techniques using an entropy generation 

analysis. Roughened surfaces, promoters of swirl flow and fins were considered by Bejan (1982). 

It was found that the use of twisted tape inserts can lead to savings in exergy and that an 

optimum fin geometry exists, for which the balance between thermal contact irreversibility and 

fluid drag irreversibility leads to an overall minimum rate of entropy generation. Zimparov (2001) 

investigated heat transfer enhancements in tubes using a second law analysis, to display 

inappropriate enhanced surfaces and assist the engineer in designing better heat transfer 

equipment. Yilmaz et al. (2001) presented various methods which evaluate heat transfer 

enhancement techniques. 

 

2.6.4.2.4 Local entropy generation 

According to Bejan (1996), several authors recommended that commercial computational fluid 

dynamics packages should have a built-in capacity of displaying local entropy generation rate in 

both the laminar and turbulent flow regimes. Bejan (1982) presents the entropy generation rate 

per unit volume and the entropy generation profile or map for Poiseuille flow through a round 

smooth tube. According to Bejan (1982), the fluid friction irreversibility term is usually neglected in 

the first law but it is not necessarily negligible in the entropy generation equation.  

 

There are several advantages to evaluating entropy generation in a local sense. In order to 

determine the entropy generation rates, the coupled momentum and energy equations should be 

solved. The corresponding entropy generation, using the volumetric rate of entropy generation, 

can be computed by using the resulting velocity and temperature fields. This would involve the 

skills of numerical thermoflow. The volumetric entropy generation rate formula may be used to 

derive irreversibility profiles or maps for convective heat transfer arrangements in which the 

temperature and velocity gradients are known at each point in the medium (Yilmaz et al., 2001). 

 

Hesselgreaves (2000) performed optimisation of heat exchanger surfaces using local entropy 

generation. Lerou et al. (2005) did heat exchanger optimisation based on a model which divided 

the counterflow heat exchanger into a number of elements, each sub-divided into three sub-

elements: high-pressure gas-element, material element and low-pressure gas-element. For each 

sub-element, a heat balance equation for the different heat flows was formulated.  

 

2.6.4.2.5 Heat exchangers 

Thermodynamic optimisation can be used for many different heat exchangers in different 

applications. The irreversibility in a heat exchanger is the sum of the associated irreversibilities of 

each of the two surfaces of the heat exchanger (Bejan, 1982; Bejan et al., 1996). Work was done 
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on second law aspects of heat exchanger performance (Bejan, 1982) and ways of reducing 

irreversibility production were proposed. Two factors, temperature difference and frictional 

pressure drop, are to blame for irreversibilities in heat exchangers (Bejan, 1982; Oğulata et al., 

2000; Yilmaz et al., 2001). Yilmaz et al. (2001) imply that the greatest source of dissipative action 

comes from fluid friction in the form of pressure drop and they also group evaluation techniques 

for heat exchangers into two classes: techniques using entropy and techniques using exergy as 

evaluation parameter. Yilmaz et al (2001) emphasise a second law analysis. Bejan (1982) 

suggests that an efficient heat exchanger has to be large, which requires large amounts of exergy 

for consumption during the manufacturing process, exergy loss or capital invested in the 

hardware. He suggests that a comprehensive optimisation programme, which includes this 

capital, should be undertaken in the field, in cases of specific units for specific jobs. The exergetic 

efficiency for a heat exchanger (Figure 2.28) with hot stream (1 - 2) and cold stream (3 - 4) is 

given by equation 2.15 (Bejan et al., 1996): 
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Figure 2.28 Heat exchanger with hot stream (1 – 2) and cold stream (3 – 4). 

 

Sarangi and Chowdhury (1982) expressed the entropy generation in a counterflow heat 

exchanger and a nearly ideal heat exchanger. The contribution of fluid friction to the entropy 

generation was neglected. Adiabatic ends were also assumed for the heat exchanger with no 

heat loss to the surroundings. 

 

Exergetic optimisation was done for tubular heat exchangers. Cornelissen and Hirs (1997) did an 

exergetic optimisation of a heat exchanger by taking into account the irreversibilities due to 

frictional pressure drop, the temperature difference between the hot and cold stream and also the 

irreversibilities due to the production of the materials and the construction of the heat exchanger. 

Cornelissen and Hirs (1997) mention the LCA method (life cycle analysis), which includes the 

exergetic effects of all the phases of production, use and recycling, on the environment. A 

balanced water-to-water counterflow heat exchanger was optimised, neglecting heat loss to the 
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Hot stream 

Heat exchanger 

2 1 
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environment from the heat exchanger and heat resistance of the tube walls. Zimparov (2001) 

included the effect of fluid temperature variation along the length of a tubular heat exchanger. 

 

Second law analysis and optimisation were done for heat exchangers with ideal gas flow. 

Hesselgreaves (2000) considered heat exchangers with zero and finite pressure drop. When 

looking at zero pressure drop, Hesselgreaves (2000) included balanced counterflow, flow 

imbalance, unbalanced counterflow, parallel flow, condensing on one side and evaporation on 

one side. The optima for these cases were given. Hesselgreaves (2000) found that, for zero 

pressure drop, flow imbalance increases entropy generation. Also, it is advantageous to let the 

highest capacity rate stream be the hot stream. Hesselgreaves (2000) suggests that counterflow 

should be used, rather than parallel flow, if the heat capacity ratio is small.  

 

Oğulata et al. (2000) did an analysis for a cross-flow plate-type heat exchanger with unmixed 

fluids and balanced cross-flow. A recuperative plate-type heat exchanger generally used in air or 

gas applications was examined. Thermodynamic analyses for the balanced cross-flow 

recuperative plate-type heat exchanger with unmixed fluids were done by Oğulata et al. (2000). 

Ordόñez and Bejan (2000) did an in-depth numerical optimisation for the parallel-plate heat 

exchanger with two-fluid ideal gasses, fully developed flow and laminar or turbulent flow. This 

was done by determining the heat exchanger’s architecture using EGM and by constraining the 

size of the hardware (volume constraint and constraint on the mass of the heat exchanger). All of 

the lengths which defined the geometry of the heat exchanger were non-dimensionalised.  

 

Ordόñez and Bejan (2000) also included the effect of discharge on entropy generation in a 

separate analysis of the heat exchanger. Hesselgreaves (2000), Oğulata et al. (2000) and 

Ordόñez and Bejan (2000) suggest that the NTU−ε  (effectiveness – number of transfer units) 

method, based on the second law of thermodynamics, can be used to get the outlet temperatures 

and the total heat transfer from the hot fluid to the cold fluid.  

 

EGM has been utilised in various other applications. Shiba and Bejan (2001) optimised a 

counterflow heat exchanger that served as a condenser in a vapour-compression-cycle 

refrigeration system for environmental control of aircrafts with three degrees of freedom and 

which was subject to two global constraints. It was shown that the minimisation of the total power 

requirement was completely equivalent to the minimisation of entropy generation rate in the entire 

installation.  

 

Ishikawa and Hobson (1996) established a thermodynamic optimum surface area for a heat 

exchanger in an acoustic standing wave (thermoacoustic engine) by minimising entropy 
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generation due to fluid flow and heat transfer losses. Lerou et al. (2005) optimised a counterflow 

heat exchanger geometry through minimisation of entropy generation for a cooling cycle in 

cryogenics. They showed that the width, height and length of the flow channels can be optimised 

by minimising the entropy. In many counterflow heat exchangers, the heat flow through the 

material in the longitudinal direction is neglected in determining the temperature profile over the 

heat exchanger. Equation 2.16 (Bahnke and Howard, 1964, cited in Lerou et al., 2005) is a 

dimensionless parameter that can be used to see if longitudinal conduction can be neglected or 

not. k  is the thermal conductivity of the heat exchanger material and cA  the cross-sectional 

area. The longitudinal conduction cannot be neglected if BHλ >10
-2

. 

 

min,p

c

BH
cmL

kA

&
=λ             (2.16) 

 

For heat exchangers used in cryogenics, this parameter might be in the order of 0.01, while for 

heat exchangers used in solar thermal applications, the parameter is in the order of 10
-5

, which 

means that longitudinal conduction through the material can be neglected in determining the 

temperature profile over the heat exchanger in these systems. 

 

2.6.5 Solar radiation and the second law of thermodynamics 

 

2.6.5.1 Background 

Bejan (1982) presents the topic of exergy waste in solar receivers. He mentions three main 

features that cause thermodynamic irreversibilities in the operation of any solar receiver: heat 

exchange between the sun and receiver, receiver-ambient heat loss and the internal irreversibility 

in the receiver (that is upstream, downstream and inside the receiver). Bejan (1982) applied the 

concept of irreversibility minimisation to a number of simple solar receiver systems: isothermal 

receivers, non-isothermal receivers (where a stream of single-phase fluid is circulated through the 

receiver) and time-varying conditions. These relevant equations for the total rate of entropy 

generation and entropy generation numbers are given in Appendix B. 

 

Narendra et al. (2000) present an exergetic analysis of a solar thermal power system using the 

Rankine cycle. The energy analysis showed that losses took place at the condenser of the heat 

engine part, while the exergetic analysis showed that the collector-receiver assembly was the part 

where the maximum losses occurred.  
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2.6.5.2 The exergy of sunlight 

When deriving the entropy generation rate at the solar receiver, one firstly needs to better 

understand the exergy of sunlight. Çengel (2006) presents the topics of thermal radiation and 

radiation heat transfer from a heat transfer view. According to Çengel (2006), the electromagnetic 

radiation emitted by the sun is known as solar radiation and nearly all of it falls in the wavelength 

band of 0.3 – 3 µm. Almost half of the solar radiation is light (visible) and the remaining part is 

ultraviolet and infrared. 

 

The exact exergy of solar radiation depends on direct and diluted radiation components, the time 

of day, season of the year, geographic location, and local weather and landscape. It could be 

determined with spectral measurement and calculation according to Petela (2010). The concept 

of solar exergy maps was also developed (Joshi et al., 2009).  

 

The solar exergy field was covered extensively by Bejan (1982), who regarded the mission of 

harvesting solar energy as the placing of exergy at the disposal of humanity for consumption. The 

sun is regarded as an exergy-rich source and qualifies as a high-temperature fuel. Bejan (1997) 

presents the thermodynamic properties of thermal radiation in detail. A shift from the heat transfer 

view of thermal radiation to the thermodynamic view is presented. Bejan (1982; 1997) presents 

the entropy and exergy (emitted per unit area and per unit time) of blackbody radiation 

respectively. The entropy of blackbody radiation was found to be a function of temperature only. 

A collection and interrelation of the fundamental concepts about the second law analysis of 

thermal radiation are available (Agudelo et al., 2010). 

 

Bejan (1997) gave the entropy generation involved with the transformation of solar radiation into 

mechanical power (see Appendix B). These include adiabatic free expansion, the transformation 

of monochromatic radiation into blackbody radiation, scattering and net radiative heat transfer. In 

the Brayton cycle, adiabatic free expansion and net radiative heat transfer can be excluded. 

When considering the Gouy-Stodola theorem extended to solar collectors, as described in the 

literature, Bejan (1982), states that “the task of maximising the exergy delivered by a collector of 

fixed cross-section cA , is equivalent to minimising the rate of entropy generation in the ‘column’ 

of cross-section cA , extending from the environment temperature 
0

T , to the apparent sun 

temperature as an exergy source *T .” Thus, when the maximum exergy that can be delivered 

by a collector is considered, the minimisation of the entropy generation rate involved with the 

transformation of monochromatic radiation into blackbody radiation and the minimisation of the 

entropy generation rate involved with scattering should be included. 
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The entropy generation rate due to the transformation of monochromatic/spectral radiation into 

blackbody radiation, which typically happens at a receiver that is modelled as a blackbody, will be 

considered first. 

 

2.6.5.2.1 The entropy generation rate involved with the transformation of monochromatic 

radiation into blackbody radiation 

Figure 2.29 gives the entropy increase associated with the constant-energy transformation of 

monochromatic radiation into blackbody radiation as a function of a dimensionless frequency: 

kThv / . It can be shown that  

 

TkThv λ/439.1/ = ,            (2.17) 

 

since it is given that kThv / = 3.921 (the minimum) can be written in terms of the wavelength as: 

367.0=Tλ  cmK. This minimum is close to the maximum of the spectral energy distribution 

located at Tλ = 0.29 cmK (Çengel, 2006). Thus, for solar radiation falling in the wavelength band 

of 0.3 – 3 µm, this is equivalent to 68.1168.0 << Tλ cmK, where the lowest entropy generation 

rate is located at Tλ = 0.367 cmK. This range is also equivalent to: 565.8/8565.0 << kThv . 

From Figure 2.29, follows that, for this solar radiation range, the entropy increase associated with 

the transformation of monochromatic radiation into blackbody radiation is close to the minimum. 

 

 

Figure 2.29 The entropy increase associated with the constant-energy transformation of monochromatic 

radiation into blackbody radiation (Bejan, 1997). 
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2.6.5.2.2 The entropy generation rate involved with scattering 

“In a concentrating device, the maximum theoretical temperature that might be realized at the 

focal point of a parabolic mirror is that of the radiation beam itself” according to Bejan (1997). 

When a mirror is assumed to be a specular reflector, this maximum temperature would be the 

temperature of the sun. One would like to understand the effect of a diffusely reflecting surface on 

the beam temperature and the entropy generation involved. According to Bejan (1997), scattering 

from a concentrator decreases the temperature of the original radiation. The decrease in 

temperature is shown in Figure 2.30 as a function of the dimensionless frequency, kThv / . From 

Section 2.6.5.2.1, it is clear that solar radiation falls in the range of 565.8/8565.0 << kThv . 

Hence, the temperature ratio from Figure 2.30 will be in the range of 0.07 < 
2

T  / 
1

T  < 0.7 due to 

scattering. With reference to the detail in the top left of Figure 2.30, a solar radiation beam is 

scattered over a solid angle, π2
2

=Ω  (diffuse reflection by an opaque non-absorbing surface), 

which is greater than the original angle, 
1

Ω . 
1

T  and 
2

T  represent the monochromatic radiation 

temperatures before and after scattering.  

 

 

Figure 2.30 The temperature decrease induced by scattering as a  

function of the dimensionless frequency (Bejan, 1997). 
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This means that if the sun’s temperature is 5 600 K, the monochromatic radiation temperature 

after scattering would be 393 K – 3 930 K. This temperature decrease causes entropy generation 

as depicted from the equation given in the entropy generation table (Appendix B, equation 26). 

 

Bejan (1982) gave the exergy of sunlight as: 

 


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T

T
QE             (2.18) 

 

where *T  is the equivalent temperature of the sun as an exergy source.  

 

The selection of the control volume around the solar thermal Brayton cycle is very important. If 

the concentrator is included in the control volume, it has to be kept in mind that entropy is 

generated at the concentrator due to scattering. The selection of *Q  for this control volume is 

also very important. *Q  can be chosen to be the heat available at the cavity receiver after the 

irreversibilities due to scattering and the transformation of monochromatic into blackbody 

radiation has been deducted.  

 

In this work, the aim is not to determine the precise amount of power available for utilisation at the 

receiver - methods for determining the exact exergy of solar radiation are available (Petela, 2010; 

Joshi et al., 2009; Agudelo et al., 2010). The aim is to determine the optimum utilisation of the 

typical available power at the receiver, with an optimum design. 

 

The available power from the sun varies throughout days, months and environmental conditions. 

For a steady-state analysis, the power available from the sun is a constant. When assuming a 

concentrator efficiency, and using a receiver-sizing algorithm (Appendix A) to determine the total 

intercepted power and heat loss rate at the cavity aperture, the amount of power available for the 

working fluid in the receiver can be calculated. The aim would then be to determine the optimum 

utilisation of this available power at the receiver, with an optimum design. 

 

For a control volume around the solar thermal Brayton cycle, the concentrator can be excluded 

and it can be assumed that *T  = 2 470 K (which is in the range of 393 K – 3 930 K), half of the 

sun’s temperature, since the equivalent temperature of the sun as an exergy source is only 7 -

 70% of the sun’s temperature after scattering. Bejan (1982) also mentions that Bosjnakovic 

showed in 1979 that the absolute temperature achievable in a collector is about half of the sun’s 

temperature due to optic limitations. 
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For the analysis in this work, *T  will be assumed to be 2 470 K at a point between the 

concentrator and receiver. By doing this, the solar concentrator is not regarded as an entropy-

generating mechanism in the analysis. Also, *Q  crossing the boundary of the control volume is 

the intercepted heat flux at the cavity receiver after the irreversibilities due to scattering and the 

transformation of monochromatic into blackbody radiation have been deducted.  

 

2.6.6 Exergy analysis for a system as a whole 

Narendra et al. (2000) did an exergetic analysis of a solar thermal Rankine heat engine. This 

analysis was done for the whole system to show the irreversibilities at each part in the system. 

The collector-receiver assembly was found to be the part where the losses were a maximum. 

Jubeh (2005) did an exergy analysis for a regenerative Brayton cycle with isothermal heat 

addition and an isentropic compressor and turbine. 

 

2.6.7 Entropy generation rate equations useful in solar thermal power cycles 

Table 2.4 gives a summary of the different entropy generation research fields discussed up to 

now. This might be a useful starting point for solar thermal power research, where a system with 

many individual components should be optimised as a whole. This table is useful for identifying 

entropy generation mechanisms in the solar thermal Brayton cycle. The entropy generation 

equations from each of these research fields are summarised in the entropy generation table 

(Appendix B). 

 

The entropy generation rate per unit tube length of circular tube (equation 3, Appendix B) with 

single-phase fluid and constant heat flux is shown as an example in equation 2.19 (Bejan, 1996). 

In this equation, D  is the tube diameter. This equation shows how thermodynamics is combined 

with heat transfer and fluid mechanics. An optimum tube diameter, for fixed mass flow rate and 

heat transfer rate, can be obtained with this equation. When this optimum is available, the entropy 

generation number can be derived, showing the performance of any design relative to the optimal 

design. In the literature there are many different ways of non-dimensionalising the entropy 

generation equations and, therefore, the entropy generation equations are given in Appendix B 

and not the entropy generation numbers. Appendix B shows all the entropy generation rate 

equations mentioned in the preceding sections.  
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Table 2.4 A summary of entropy generation literature. 

  Entropy generation research field References 

Internal duct flow (for constant heat flux) Bejan (1982); Bejan et al. (1996); Hesselgraeves 
(2000); Yilmaz et al. (2001); Zimparov (2001); 
Ratts and Raut (2004); Zimparov et al. (2006c) 

Internal duct flow (for constant wall 
temperature) 

Zimparov et al. (2006a) 

Internal duct flow for circular tube (for 
constant heat flux) 

Bejan (1982; 1996); Bejan et al. (1996); 
Hesselgreaves (2000); Zimparov (2001) 

Internal duct flow for circular tube (for 
constant wall temperature) 

Yilmaz et al. (2001) 

1 Internal flow 

Internal duct flow channel in heat exchanger Bejan (1982); Bejan et al. (1996); Lerou et al. 
(2005) 

        
2 External flow External flow Bejan (1982; 1996); Bejan et al. (1996) 

        
3 Fins For a single fin Bejan (1982); Bejan et al. (1996) 

        
4 Local entropy 

generation 
Local rate of entropy generation (volumetric / 
2D) 

Bejan (1982); Bejan et al. (1996); Yilmaz et al. 
(2001); Hesselgreaves (2000) 

        

Counterflow heat exchanger with zero 
pressure drop 

Bejan (1982); Hesselgreaves (2000) 

Counterflow heat exchanger (balanced / 
unbalanced flow / constant heat flux / ideal 
gas, etc.) 

Bejan (1982; 1997); Sarangi and Chowdhury 
(1982); Bejan et al. (1996); Cornelissen and Hirs 
(1997); Ordóñez and Bejan (2000); Yilmaz et al. 
(2001); Hesselgreaves (2000); Lerou et al. 
(2005); Zimparov (2001); Ordόñez and Bejan 
(2000) 

5 Heat exchangers 

Cross-flow plate-type heat exchanger Oğulata et al. (2000) 

        
6 Solar receiver Solar receiver (exergy of sunlight, 

transformation of monochromatic radiation 
into blackbody radiation, scattering) 

Bejan (1982; 1997); Narendra et al. (2000) 

        

Exergy analysis for a solar thermal Rankine 
heat engine 

Narendra et al. (2000) 7 Whole system 

Exergy analysis of a regenerative Brayton 
cycle 

Jubeh (2005) 

 

2.7 Useful information, guidelines and points to ponder 

� Useful design guidelines, according to Bejan et al. (1996): 

o Keep it simple 

o Consider standard equipment 

o Avoid processes requiring excessively large or small thermodynamic driving 

forces (differences in temperature, pressure) 

o Maximise the use of co-generation of power 

o Use efficient compressors and turbines 

o Avoid heat transfer at high temperatures directly to the ambient 
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� Bejan et al. (1996) gave guidelines for evaluating and improving thermodynamic 

effectiveness:  

o Maximise the use of cogeneration when feasible 

o Minimise the use of combustion 

o Centre efforts on exergy destruction that can actually be avoided 

o Pay more attention to the design of the lower temperature stages of turbines and 

compressors 

o The lower the temperature level, the greater the need to minimise friction 

 

� Sama (1995) gave very useful guidelines for optimisation using second law insight. 

Summarised and of most relevance are: 

o Do not use excessively large or small thermodynamic driving forces 

o Do not discard heat at high temperatures to the ambient or to cooling water 

o Try to match heat exchange streams so that final temperature of one is close to 

initial temperature of the other 

o Choose similar flow heat capacities for the heat-exchanging streams 

o Minimise the use of intermediate heat transfer fluids when exchanging heat 

between two streams 

o Do not concentrate on the second law inefficiencies which cannot be avoided 

 

� In thermal design and optimisation, two types of independent variables are identified: 

decision variables (varied in optimisation studies) and parameters (remain fixed). All 

other variables are dependent variables (Bejan et al., 1996). 

 

� Three problems are encountered in the engineering of solar energy utilisation: low flux 

density (large surfaces necessary), most solar energy falling on remote areas (transport 

would be required) and intermittency (little or no power available during bad weather and 

at night creates a storage need) (Kreith and Kreider, 1978). 

 

� The importance of complying with governmental and environmental regulations 

throughout the design process as well as the importance of safety, reliability, 

maintainability and availability (Occupational Safety and Health Acts, published codes 

and standards, and the Thomas Register) is emphasised by Bejan et al. (1996).  

 

� Shiba and Bejan (2001) argue that the thermodynamic optimisation of the entire system 

can be pursued on two routes: by either minimising the total power requirement (in the 

refrigeration case) or by minimising the total rate of entropy generation. 
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� The internal geometric configuration of a component can be derived by optimising the 

global performance of the installation that uses the component (Shiba and Bejan, 2001). 

It is suggested that thermodynamic optimisation by itself (without cost minimisation) may 

be used in the preliminary stages of design to identify trends and the existence of 

optimisation opportunities. In the end, the most realistic model is optimised from the start 

based on cost optimisation. This is also suggested by Ordόñez and Bejan (2000), who 

furthermore suggest that an entire system can be conceived from the beginning as a 

system designed to perform certain global objectives optimally, not as an ensemble of 

already existing parts. According to Bejan et al. (1996), “when a system consists of 

several components, the overall system should be optimised, since the optimisation of 

components individually, usually does not guarantee an optimum for the overall system.” 

 

2.8 Comments and literature review 

The open and direct solar thermal Brayton cycle with counterflow plate-type recuperator, modified 

cavity receiver and micro-turbines from Garrett will be used in the analysis. A maximum receiver 

temperature will be specified due to material constraints. A parabolic dish concentrator with 45° 

rim angle, two-axis tracking and concentrator reflectance larger than 90% will be used.  

 

The second law of thermodynamics and its application in various research fields were shown. 

EGM was applied in various applications. From the literature, the following general observations 

and statements can be made: 

• Many EGM studies have been done for individual components, but little work has been 

done on total EGM of overall systems, 

• Bejan et al. (1996), Shiba and Bejan (2001) and Ordόñez and Bejan (2000) emphasise 

that when a system consists of several components, the overall system should be 

optimised, instead of the optimisation of components individually. 

 

Throughout the literature it is suggested that the overall system should be optimised, since the 

optimisation of components individually usually does not guarantee an optimum for the overall 

system. Therefore, the analysis will be done by looking at the solar thermal power system as a 

whole. Entropy-generating mechanisms can now be identified in the solar thermal Brayton cycle 

and the total entropy generation can be minimised by optimising the geometry of the components. 

The apparent temperature of the sun as an exergy source will be assumed to be 2 470 K and at a 

position between the concentrator and the receiver. An average irradiance of 1 000 W/m
2
 will be 

assumed. 
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Chapter 3 

Problem formulation 

 

_____________________________________________________________________________ 

 

3.1 Introduction 

This chapter shows how the objective function is formulated and the physical model to be 

analysed is described. The open and direct solar thermal Brayton cycle will be used in the 

analysis.  

 

Firstly, the different possibilities of arrangements of components in the solar thermal Brayton 

cycle are identified to show the uniqueness of the open and direct solar thermal Brayton cycle. 

The entropy generation rate in each of the heat exchangers and components in the system is 

identified. The total entropy generation rate for the whole system can be found when adding the 

entropy generation rates of each component in the system. The net power output of the system 

can be linked with the total entropy generation rate by doing an exergy analysis for the whole 

system. 

 

In this chapter, the geometries of the components to be optimised are shown. The objective 

function is written in terms of the geometry variables. For the objective function, the constraints 

and assumptions are also listed. The assumption of steady-state is used as was mentioned in 

Chapter 1. 

 

3.2 Different cases 

When a heat source, netQ& , is available (with the use of solar concentration), mechanical power 

can be generated by means of the solar thermal Brayton cycle. In the following figures, netQ&  

represents the net absorbed heat rate by the working fluid in the receiver, or the intercepted 

power minus the heat loss rate.  

 

For the solar thermal Brayton cycle, there are a few different arrangements of the components to 

establish a working system. Four cases are shown here, so that the uniqueness of the open and 

direct solar thermal Brayton cycle can be clear. From the literature, it is concluded that the 

Brayton cycle has high thermal efficiencies and low compressor pressure ratios when a 

recuperator is used. A recuperator is used in each of the considered cases. Multistaging is 
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disregarded, but can be considered for further studies. The benefits and disadvantages of using a 

direct or indirect system are available in the literature (Stine and Harrigan, 1985).  

 

Case 2 will be used for the analysis. It is the simplest case and has the least components, which 

means it might also be the cheapest. Minimisation of the entropy generation rate for maximum 

net power output in the other three cases is recommended for further study to be compared with 

this work. 

 

3.2.1 Case 1 

Figure 3.1 shows a direct system with a closed cycle. The power cycle is closed, meaning that 

the working fluid cycles through the system and does not exit the system. The radiator cools 

down the working fluid before it is compressed. The system is also direct – there is no secondary 

loop which captures the sun’s heat and also no heat exchanger to transfer heat between two 

different working fluids. The solar collector uses the concentrated power of the sun to heat up the 

working fluid directly. 
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Figure 3.1 Case 1: Direct system, closed cycle. 

 

3.2.2 Case 2 

Figure 3.2 shows a direct system with an open cycle (the cycle to be used for this study). The 

system is open, which means that the working fluid (air) can enter and exit the cycle from and to 

the surroundings. There is no radiator required, since the air coming in from the surroundings is 

at the surrounding temperature. It is important that there is a natural flow of air through the 

system, so that the warm air from the exhaust does not go into the inlet. The system is also direct 

– there is no secondary loop which captures the sun’s heat and also no heat exchanger to 
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transfer heat between two different working fluids. The solar collector heats up the air directly, 

using the sun’s concentrated power. 

 

3.2.3 Case 3 

Figure 3.3 shows an indirect system with a closed cycle. The system is closed, meaning that the 

working fluid cycles through the system and does not exit the system. The radiator cools down 

the working fluid before it is compressed. The system is indirect – a secondary loop captures the 

sun’s heat and a heat exchanger transfers heat between the two different fluids.  
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Figure 3.2 Case 2: Direct system, open cycle. 
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Figure 3.3 Case 3: Indirect system, closed cycle. 
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3.2.4 Case 4 

Figure 3.4 shows an indirect system with an open cycle. The system is open, which means that 

the air can enter and exit the cycle from and to the surroundings. There is no radiator required, 

since the air coming in from the surroundings is at the surrounding temperature. It is important 

that there is a natural flow of air through the system, so that the warm air from the exhaust does 

not go into the inlet. The system is indirect – there is a secondary loop which captures the sun’s 

heat, and a heat exchanger which transfers heat between the two different fluids. 

 

Compressor Turbine 

Recuperator 

Load 

1 

2 
3 

4 e 

netQ&

 

c 

Receiver 

Solar Heat 

Exchanger 

Air in 

Air out 

 
Figure 3.4 Case 4: Indirect system, open cycle. 

 

3.3 Entropy generation in the solar thermal Brayton cycle components 

Six different components were identified in the previous section. Not all of them are present in the 

open and direct solar thermal Brayton cycle. However, it is useful to show the entropy generation 

rate equations which can be used for each of these six components:  

• Solar collector (receiver) 

• Recuperator 

• Solar heat exchanger (only in indirect systems) 

• Radiator (only for closed cycles) 

• Compressor 

• Turbine 

 

For each of these components, the entropy generation rate is derived using equations 2.12 – 

2.14. These equations are then compared with the equations found from the literature in 

Appendix B. 
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3.3.1 Solar collector (receiver) 

The entropy generation rate in the receiver is given in equation 3.1 for an ideal gas working fluid. 

Equations 2.13 and 2.14 are employed in the derivation of this equation. *Q&  is the rate of heat 

transfer from the apparent sun’s temperature as an exergy source, *T . The rate of heat loss due 

to convection and radiation is shown in equation 3.2. Equation 3.1 is similar to equations 16, 17, 

19 and 24 in the entropy generation table (Appendix B): 
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3.3.2 Recuperator 

The entropy generation rate in the recuperator is shown in equation 3.3. Again, equations 2.13 

and 2.14 are required for its derivation. 
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The fluid going from 1T  to 2T  is the hot stream and the fluid going from 3T  to 4T  is the cold 

stream in the heat exchanger as shown in Figure 2.28. This equation is similar to equations 16, 

17, 19 and 28 found in the entropy generation table (Appendix B). According to Ordóñez and 

Bejan (2000) (equation 29 in Appendix B), entropy is also generated due to the discharge at the 

recuperator in an open cycle - hence equation 3.4. The equation to be used in an analysis 

depends on the definition of the boundaries of the control volumes of the recuperator and the 

system. 

 

0

,

0

02

)1(

31

42

31

42
0 ln

T

Q

T

TT

PP

PP

TT

TT
cmS

regloss
k

k

pgen

&

&& +
















−

+






















=

−

         (3.4) 

 

 
 
 



 57 

3.3.3 Compressor and turbine 

Equations 3.5 and 3.6 show the equations for the entropy generation rates for the compressor 

and turbine. Equations 2.13 and 2.14 were employed to derive these equations. These equations 

are formulated in terms of the pressures and temperatures, which could be described by the 

isentropic efficiencies. These equations compare with equation 27 in the entropy generation table 

(Appendix B). 
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3.3.4 Solar heat exchanger (for indirect systems) 

The solar heat exchanger will not be used in this study but its entropy generation rate is shown in 

equation 3.7. This equation is identical to the equation for entropy generation rate in the 

recuperator (equation 3.3) with reference to Figure 2.28. 
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3.3.5 Radiator (used in a closed system) 

The radiator is not used in this study but its entropy generation is given for interest’s sake. The 

entropy generation rate depends on the type of heat exchanger used for the radiator. Equation 

3.8 is derived for the radiator if fins are used to cool down the working fluid (being an ideal gas) 

with a natural external flow (being air): 
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where the subscript, B , refers to the base where the fins are attached (see Appendix B, 

equations 10 - 12). According to Bejan (1982), equation 3.8 can also be written as: 
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where it is assumed that snglBB QNQ ,
&& =  and N  = number of fins.  

 

3.4 Exergy analysis for the system 

Consider Case 2 (Section 3.2.2). Taking a control volume around the system and assuming 

steady-state, it can be determined where exergy is crossing the boundary. This is shown in 

Figure 3.5.  
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Figure 3.5 Control volume around the open and direct solar thermal Brayton cycle to perform an exergy analysis. 

 

An exergy analysis is performed for the system and it is assumed that 111 VV =  and 111 zz = . 

Take note that the inlet and outlet temperatures of the system are not the same, but the 

pressures are. Also note that 1110 TT =  as it is assumed that the control volume boundary is very 

close to the hot stream exit of the recuperator. The following equation arises: 
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or 
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Furthermore, the total internal entropy generation rate of the system can be written in terms of the 

sum of the entropy generation rate of each component and duct in the system. Thus, we have the 

total internal entropy generation rate from Section 3.3 as: 
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Equation 3.12 can then be substituted into equation 3.11 to get the net power output for the open 

and direct solar thermal Brayton cycle. The net power output is then written in terms of the total 

entropy generation rate of each of the components and ducts in the system. This equation for the 
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net power output is the objective function, which should be maximised by optimising the geometry 

that describes the temperatures and pressures at each point in the system.    

 

3.5 Description of the physical model 

An equation is now available describing the net power output of the open and direct solar thermal 

Brayton cycle in terms of temperatures, pressures, mass flow rate and other constants. The 

physical models used to describe the geometry of the solar receiver and recuperator will now be 

shown. Variables also exist, which can be treated as parameters. The objective function can then 

be formulated in terms of geometry variables and system parameters. 

 

3.5.1 Geometry variables 

 

3.5.1.1 Geometry of the receiver 

From the literature, it is concluded that a cavity receiver should be used when an efficient solar 

thermal Brayton cycle is required. Shuai et al. (2008), Prakash et al. (2009) and Sendhil Kumar 

and Reddy (2008) investigated the optimisation and performance of different cavity receivers. 

Sendhil Kumar and Reddy (2007) compared different types of cavity receivers numerically and 

found that the modified cavity receiver, as shown in Figures 2.25 and 2.26, experiences lower 

convection heat losses than those of the other receivers and suggested that it may be preferred 

in a solar dish collector system. In the numerical modelling, wA  is the inner-heat transfer area, 

which includes the inner-curved and bottom plane areas. Its size depends on the bottom aperture 

opening area, aA . The size of the aperture opening is determined by the flux distribution (focal 

image characteristics of the fuzzy focal solar dish). The receiver inner surface is made up of 

closely wound copper tubing – these tubes are placed very closely to touch each other to form a 

continuous hemispherical surface. The convection heat loss takes place through the receiver 

aperture. It is suggested that an area ratio of aw AA  = 8 is used when minimum heat loss is 

required (Reddy and Sendhil Kumar, 2009).  

 

Reddy and Sendhil Kumar (2008) investigated the modified cavity further by including the 

contribution of radiation losses and found that, for aw AA  = 8 and a 0° tilt angle (vertical 

aperture plane), the ratio of the contribution of radiation to convection loss is 47:52. This ratio 

shifts to 57:43 when the tilt angle is 90°. This means that the ratio of radiation heat loss to 

convection heat loss is a function of receiver inclination and varies between approximately 0.9 

and 1.33. From this data, it is assumed that convlossradloss QQ −− ≈ &&  or convlossQQ −≈ && 20  for this 

modified cavity receiver. From Reddy and Sendhil Kumar (2009), for aw AA  = 8 at a vertical 
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position (cavity aperture in vertical plane), Nu  = 27. This number becomes almost half the value 

when the cavity receiver is in the horizontal plane. The most heat loss would thus take place 

when the cavity receiver is placed vertically (when the sun is on the horizon and the collector 

faces the sun). This would seldom be the case. An average of Nu  = 20 would be more accurate 

since the cavity receiver would be between 0° and 90° most of the time. The most accurate 

Nusselt number would be the one given by Reddy and Sendhil Kumar (2009), for their three-

dimensional model in terms of receiver inclination, and will be used for this analysis: 
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The convection heat transfer coefficient can be calculated with 
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The rate of heat loss from the modified cavity receiver due to convection and radiation can be 

approximated with  
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According to Reddy and Sendhil Kumar (2009), the minimum heat loss occurs when aw AA  = 8. 

From equation 2.3, the modified cavity receiver diameter for minimum heat loss can be calculated 

with: 
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Equation 3.17 gives the modified cavity receiver diameter as a function of the receiver aperture, 

d , for minimum heat loss: 
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Figure 3.6 Geometry of the cavity receiver constructed with a circular tube. 

 

 

Figure 3.7 Cavity constructed with the use of a rectangular channel (plate) and its dimensions. 

 

The receiver inner surface is made up of closely wound copper tubing with diameter, recD  – 

these tubes are placed very closely to touch each other to form a continuous hemispherical 

surface. The working fluid is pumped concentrically through the tube, as is shown in Figure 3.6. 

The tube with diameter, recD , and length, recL , constructs the cavity receiver and its aperture. 

Another method would be to use flat plate to construct a rectangular channel (Figure 3.7). The 

receiver channel with hydraulic diameter, rechD , , length, recL , and aspect ratio, 
rec

ba , constructs 
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the cavity receiver and its aperture. Both of these models will be used in the analysis and the 

results will be compared. 

 

Using the definition of hydraulic diameter for a rectangular channel (the hydraulic diameter is four 

times the cross-sectional area divided by the wetted perimeter), the longer side, a , can be 

described with 
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since  
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Also, the aperture diameter is derived as: 
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since  

 

recw aLA =              (3.21) 

 

When the receiver walls are constructed by winding a circular tube, the aperture diameter, d , 

can be calculated using 
rec

ba  = 1, in equation 3.20. 

 

3.5.1.2 Geometry of the recuperator 

On recommendation of Shah (2005), the counterflow plate-type heat exchanger is considered for 

the recuperator. In this work, only one recuperator is considered for the system, even though it 

might seem that the splitting up of the mass flow rate into separate heat exchangers is more 
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attractive. It was decided to rather keep it simple and also avoid the extra cost and piping due to 

an extra heat exchanger(s). 

 

The design and assembly will be as illustrated in Figure 3.8. This means that the mass flow rate 

is divided. Also sA  = iA  = oA  and sA  = regaL2  (where a  is the long side of the rectangle 

forming the channel). The recuperator is formed by stacking plates and creating counterflow 

channels. Also note that in Figure 3.8, only a few plates are stacked to show the effect. The 

number of flow channels, n , in the recuperator depends on the recuperator height, H , channel 

height, b , and thickness of the channel-separating surface, t . This is shown in equation 3.22.  
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Figure 3.8 Counterflow plate-type recuperator.  

 

The mass flow rate per channel is calculated with: 
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The surface area, sA , for a channel is given by: 
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and the Reynolds number for a rectangular channel is: 
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The average velocity is calculated as: 
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The recuperator efficiency can be calculated using the NTU−ε  (effectiveness – number of 

transfer units) method, as suggested from the literature. The Gnielinski equation (Gnielinski, 

1976) can be used to calculate the Nusselt number since small Reynolds numbers are most likely 

to be present in a single channel of the recuperator. The first Petukhov equation (Petukhov, 1970) 

is used to calculate the friction factor: 
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Using the Gnielinski and Petukhov equations with the Reynolds number above gives: 
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With equation 3.29, the convection heat transfer coefficients for the hot and cold stream ( ch  and 

hh ) can be calculated. When these are available, the overall heat transfer coefficient is 

calculated: 
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where the fouling factor fR  = 0.004 for air, according to Çengel (2006). The number of transfer 

units ( NTU ) is calculated: 
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The recuperator effectiveness can be calculated with equation 3.33. 
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According to Stine and Harrigan (1985), Weston (2000) and Çengel (2006), the heat exchanger 

efficiency and heat exchanger effectiveness are defined the same way for the recuperator in this 

analysis (with reference to Figure 3.5): 
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This efficiency will help to produce the temperatures and pressures necessary to describe the 

objective function. The importance of the recuperator efficiency is shown in Chapter 2.  
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With the use of the definitions of the Reynolds number (equation 3.25) and the friction factor 

(equation 3.27) and the definition of the pressure drop (Çengel, 2006), the pressure drop through 

the recuperator is derived in terms of the geometry variables as: 
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3.5.2 Parameters 

According to Snyman (2009), the pressure ratio, r , of the compressor should be chosen to be a 

parameter. The objective function can be maximised and the optimum geometry can be found for 

each pressure ratio in the compressor’s range. When considering the mass flow rate through the 

system, it depends on the compressor, which, in turn, depends on the turbine. There are, 

unfortunately, many different compressor and turbine designs available. The task and cost of 

designing one’s own turbine and compressor configuration for a specific system, by shaping its 

geometry using the method of entropy generation minimisation, is in itself a mammoth task and 

can be considered or recommended for further study. In this work, however, the compressor and 

turbine configuration comes from an existing source chosen for its low cost, availability and 

reliability.  

 

From the literature, the advantages of using the micro-turbines from the Garrett range are evident 

and they will be used in the analysis. The Garrett micro-turbines (Appendix D) as well as their 

turbine and compressor maps (Garrett, 2009) are freely available in South Africa. For the 

compressor of a specific micro-turbine, the compressor efficiency, mass flow rate and pressure 

ratio are intrinsically coupled to each other. Garrett (2009) also gives the turbine efficiencies for 

each of its micro-turbines. Thanks to these existing micro-turbines from Garrett, the compressor 

pressure ratio as a parameter would fix the mass flow rate and compressor efficiency as 

parameters as well. Figure 3.9 shows the compressor map of a micro-turbine (GT2259) with 

micro-turbine model number 9 (MT = 9 in Appendix D). In the compressor map, the coupling of 

compressor efficiency, mass flow rate and pressure ratio are shown. The rotational speed in 

revolutions per minute is also shown. Note that the highest compressor efficiency is on the island 

in the middle of the compressor map (between two mass flow rate values: lowm&  and highm&  and 

between two pressure ratio values: lowr  and highr ). These pressure ratio and mass flow rate 

ranges are shown for each micro-turbine in Appendix D. When only considering the highest 

compressor efficiency for the analysis, the pressure ratio ( r ) – mass flow rate ( m& ) relation can 
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be described with a straight line. Hence the equation to find the mass flow rate when the pressure 

ratio is fixed: 
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=           (3.36) 

 

An optimum pressure ratio (or operating condition) should exist for a specific micro-turbine, which 

would (with its optimised geometry) give the maximum net power output. 

 

 

Figure 3.9 Compressor map for a micro-turbine from Garrett (Garrett, 2009). 
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3.6 Temperatures and pressures in terms of geometry variables 

For the objective function, the temperatures and pressures at each point in the system (Figure 

3.5) can be determined in terms of the geometry variables. The six geometry variables are: 

rechD ,  - Hydraulic diameter of the cavity receiver channel (or tube diameter, recD ) 

recL  - Tube or channel length of the cavity receiver  

rec
ba  - Aspect ratio of the receiver channel (negligible when the receiver walls are made from 

circular tube) 

reghD ,  - Hydraulic diameter of the recuperator channels  

regL  - Length of the recuperator channels 

reg
ba  - Aspect ratio of the recuperator channels 

 

The temperatures and pressures at each point in the system (Figure 3.5) can be determined as is 

explained below. The process of finding the pressures and temperatures can be divided into five 

phases. Each phase has a number of steps. 

 

Phase 1 (Pre-receiver): 

The inlet temperature of the system is: 

 

1T  = 300 K             (3.37) 

 

2T  is calculated using the compressor isentropic efficiency, cη , and the compressor pressure 

ratio, r , as parameters. 3T  can then be calculated: 
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where 
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2323 TTT ∆−=              (3.40) 
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A constant is assumed for 23T∆  and also for all the other temperature drops in the ducting 

between components. It is important to note that the temperature in the ducting between 

components actually depends on the size of the duct and that the size of the ducting might also 

play a role in the shadow effect of the collector. 

 

Phase 2 (Receiver): 

Guess 5T  = 800 K, and then calculate 6T  with: 

 

56 T
cm

Q
T

p

net +=
&

&

             (3.41) 

 

The net rate of absorbed heat in the cavity receiver, netQ& , is a function of the receiver aperture 

diameter, d . This function can be determined with the use of a sizing algorithm. In this analysis, 

the sizing algorithm by Stine and Harrigan (1985) is used, as explained in Appendix A. The 

function determined by the sizing algorithm can be approximated with the discrete least-squares 

approximation method (Burden and Faires, 2005) ( ∑ =
=

10

0i

i

inet dxQ& ). netQ&  can be written in 

terms of rechD , , recL  and 
rec

ba  (the geometric variables for the cavity receiver) 

since recrecaw LadAA === 4/88 2π . In equation 3.20, d  is written in terms of the receiver 

geometry variables. The net absorbed heat rate can be written in terms of the receiver geometry 

variables: 
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Note that when a circular tube constructs the cavity receiver, 
rec

ba  = 1. With the use of equation 

3.42, 6T  can be written in terms of the geometry variables (equation 3.43). For a receiver 

constructed with circular tube, equation 3.43 can be used with 
rec

ba  = 1. 7T  is calculated with 

an assumed value for 67T∆ . 
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6767 TTT ∆−=              (3.44) 

 

Phase 3 (Pressure field): 

The inlet pressure of the system, 1P  and the exit pressure of the compressor, 2P  can be 

calculated using the following equations: 

 

atmPP =1              (3.45) 

 

12 rPP =              (3.46) 

 

( )2323 1 PPP ∆−=             (3.47) 

 

3P , 5P , 7P  and 8P  are calculated with an assumed pressure drop in the ducts. 4P  and 9P  can 

be calculated with equations 3.48 and 3.53 respectively. These equations are written in terms of 

the geometry variables of the recuperator and are derived using equation 3.35.  
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( )4545 1 PPP ∆−=             (3.49) 

 

6P  is calculated with equation 3.50, which is written in terms of the receiver geometry variables 

and derived using equation 3.35. Equation 3.50a is for a receiver constructed with a rectangular 

channel (plate) and equation 3.50b is for a receiver constructed with a circular tube. 
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Plate: 
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Tube: 
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( )6767 1 PPP ∆−=             (3.51) 

 

The system exit pressure, 11P , is the same as the system inlet pressure, 1P , as shown in 

equation 3.52. Also note that 10P  = 11P . 9P  can be calculated using the system exit pressure: 

 

111 PP =              (3.52) 
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( )8998 1 PPP ∆+=             (3.54) 

 

Phase 4 (Post-turbine): 

8T  is calculated with equation 3.55 with the use of the turbine isentropic efficiency, tη , and the 

turbine pressure ratio. 10T  is calculated with the recuperator efficiency, regη  (equation 3.33). Also 

note that 11T  = 10T . 
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8989 TTT ∆−=              (3.56) 
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( )29910 TTTT reg −−= η            (3.57) 

 

Phase 5 (Iteration): 

4T  is calculated with the recuperator efficiency. 5T  can then be calculated and is used as the 

new approximation for 5T  in Phase 1. The iteration continues until the error is smaller than 

3101 −× . When the iteration is done, the temperatures and pressures are established and can be 

used in the objective function.
 

 

( )3934 TTTT reg −+= η            (3.58) 

 

4545 TTT ∆−=              (3.59) 

 

3.7 The objective function 

The objective function (equations 3.11 and 3.12) can be written in terms of geometry variables, 

parameters and constants. When looking at the previous section, it should be clear that the 

objective function, in terms of all the variables, parameters and constants, is very complex and is 

not shown. Note, however, the cancelling out of the following terms (from equation 3.12 in 

equation 3.11) so that: 
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The final objective function can be written as:  
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Keep in mind that each temperature and pressure in equation 3.61 is defined in terms of 

parameters and geometry variables, as shown in Section 3.6. 

 

3.8 Constraints 

 

Constraint 1: 

The maximum cavity receiver aperture diameter is constrained. The minimum concentration ratio, 

minCR , will determine the maximum size of the cavity aperture relative to the concentrator area. 

 
 
 



 75 

From the literature, the concentration ratio seems to be more than 100 for receiver temperatures 

of more than 1 000 K (see Section 2.3.2). For this work, 100≥CR , hence we have: 
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The constraint above is for a receiver constructed with a rectangular channel. For a receiver 

constructed with a circular tube, the same constraint can be used, but with ( ) 1/ =
rec

ba  

 

Constraint 2: 

The receiver aperture diameter, d , has a minimum constraint to keep the aperture size from 

going too small or negative. )2(Wn  is the second term in the vector Wn  (used in the function 

‘collector’ – see Appendix C). 
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Similarly, for a receiver constructed with circular tube, ( ) 1/ =
rec

ba  

 

Constraint 3: 

The width of the rectangular channel, a , in the receiver cannot be larger than the distance 

between the aperture and the edge of the receiver. With the use of equation 3.17 from Section 

3.5.1.1, this distance can be described with equation 3.64. 
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With equation 3.18 from Section 3.5.1.1, this constraint is written in terms of the geometry 

variables using equation 3.65. 
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When a receiver constructed with a circular tube is used, at least two tube diameters should fit in 

the distance between the aperture edge and the edge of the receiver. Otherwise, the receiver 

would lose its cavity shape. This is shown in equation 3.66. 
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Constraint 4: 

The surface temperature of the receiver (of copper) should stay well below its melting 

temperature and below the maximum inlet temperature of the micro-turbines (more or less 

1 220 K or 1 320 K intermittently according to Garrett (2009) and Shah (2005) - see Section 2.3.5 

and Section 2.2.2.3.1). A maximum temperature of 1 200 K is chosen. The surface area of the 

rectangular receiver channel can be defined as: 
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Since turbulent flow is expected in the receiver tube or channel, the Nusselt number is defined as 

(Dittus and Boelter, 1930): 

 

4.08.0
PrRe023.0 DNu =            (3.68) 

 

For a receiver constructed with a rectangular channel (plate), the maximum surface temperature 

can be defined as: 

 

 
 
 



 77 

( )( )

( )( ) ( )( ) ( )
( )( )

8.0

2

,

4.01

,10

0

6max,

1/

/4
Pr/11/023.0

4

1/

:















+
++













 +

+=

−

=∑

recrech

rec

recrecrec

i

recrecrech

i i

s

baD

bam
kbabaL

baLD
x

TT

Plate

µ

π

&

    (3.69) 

 

Note that equation 3.42 is used in the construction of equation 3.69, since netQ&  is required to 

calculate the maximum surface temperature. When the receiver is constructed with the use of a 

circular tube, the maximum surface temperature can be defined as: 
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Constraints 5 and 6: 

The hydraulic diameter and length of the receiver is always positive: 

 

0, ≤− rechD              (3.71) 

 

0≤− recL              (3.72) 

 

Constraint 7: 

The longer the recuperator, the more beneficial it is to the system from a heat transfer point. 

However, there needs to be a constraint on its length to make sure the system stays compact. 

The recuperator’s length should not exceed the length of the radius of the dish concentrator. 

Since there is already a large concentrator, there is no sense in keeping the recuperator many 

times smaller than the dish to save space. A recuperator can perhaps fit underneath the space 

occupied by the dish concentrator with relative ease. Therefore: 
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Constraint 8: 

This constraint is only necessary when the receiver walls are constructed using a rectangular 

channel. The channel should have an aspect ratio equal to or larger than 2.5 to ensure that the 

shape of the cavity receiver is maintained. Hence: 
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3.9 Constants / assumptions 

The objective function relies on a number of constants. These constants would depend on the 

location and available space for the solar thermal power system and are therefore very location- 

and situation-specific. The most important constants are shown below. For each specific location 

and situation, a different optimum receiver and recuperator geometry would exist. 

 

Environmental conditions: 

� 0T   Surrounding average temperature (K) 

� I   Irradiance (W/m
2
) 

� w  Non-dimensionalised wind factor (1 – 10) multiplied with convection heat 

transfer coefficient 

� atmP   Atmospheric pressure (Pa) 

 

Available space at location: 

� concsA ,   Parabolic dish concentrator area (m
2
) 

� H   Available space for height of recuperator (m) 

� L   Available space for length of recuperator (m) 

 

Concentrator and receiver: 

� pe   Concentrator error 

� rimϕ   Rim angle of parabolic dish concentrator 

� refl   Specular reflectivity of the concentrator 

� max,sT   Maximum allowable surface temperature of receiver 

� β   Inclination of receiver (90° for receiver aperture facing down) 

� 
minCR   Minimum concentration ratio 
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Recuperator: 

� t  Heat exchanger wall thickness between hot and cold streams  

� k   Recuperator material conductivity 

 

3.10 Summary 

In this chapter, the objective function to be optimised was formulated and the physical model to 

be analysed was described. The different possibilities of arrangements of components in the solar 

thermal Brayton cycle were identified and the uniqueness of the open and direct solar thermal 

Brayton cycle was shown. The rate of entropy generation in each of the system’s components 

was identified. The total rate of entropy generation was obtained for the system by adding the 

entropy generation rates of each system component. The net power output of the system was 

linked with the total entropy generation rate by doing an exergy analysis for the whole system. 

The construction of the objective function in terms of the geometry variables of the receiver and 

recuperator was shown. The recuperator and receiver models were described in terms of the 

geometry variables to be optimised. For the objective function, the parameters were described 

and the constraints and assumptions were listed. 
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Chapter 4 

Numerical Method 

 

_____________________________________________________________________________ 

 

4.1 Introduction 

In this chapter, the numerical optimisation method is discussed. The settings used in the 

algorithm are shown. The method of calculating the derivatives of the objective function in each of 

its geometry variables is given. Different parameters are considered in the optimisation algorithm. 

The way in which these parameters are incorporated in the analysis is shown. 

 

4.2 Optimisation algorithm 

The maximum net power output for the open and direct solar thermal Brayton cycle can be found 

by maximising the objective function. The optimisation algorithm finds the optimum geometry for 

the solar receiver and recuperator at a specific operating condition in the pressure ratio range of a 

specific micro-turbine so that the net power output of the system can be a maximum. The six 

geometric variables to be optimised are listed in Table 4.1. 

 

Table 4.1 Geometric variables used in numerical optimisation with description. 

Variable Description Numerical variable 

rechD ,   Hydraulic diameter of the cavity receiver 

channel / tube (m)  

100)1(X  

recL  Channel / tube length of the cavity 

receiver (m)  

)2(X  

regba   Aspect ratio of the recuperator channels 

   

)3(X  

reghD ,   Hydraulic diameter of the recuperator 

channels (m) 

1000)4(X  

regL   Length of the recuperator (m)  )5(X  

rec
ba  Aspect ratio of the cavity receiver 

channel / tube   

)6(X  

 

The vector X  will be optimised by the optimisation algorithm. Also take note that some of these 

variables are scaled to ensure that the variables in the variable vector are more or less of the 

same order. The objective function (net power output of the system), in terms of the geometry 
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variables, parameters and constants, is maximised using the dynamic trajectory optimisation 

method by Snyman (2009). Take note that the optimisation algorithm used (LFOPC by Snyman 

(2000) or the leapfrog method) requires a function input to be minimised. The objective function 

(equation 3.61) is multiplied with -1, since the objective function should be maximised (see the 

function ‘fun’ in Appendix C). The minimum of the negative function would then be negative, but 

when multiplied again with -1, it would give the positive maximum of the objective function 

(Snyman, 2009). Note that, in Appendix C, the leapfrog method is called using the MATLAB 

function lfopc([starting vector]) by Snyman (2000). The following settings in Table 4.2 (mostly the 

default settings) were used for the dynamic trajectory optimisation algorithm by Snyman (2000). 

 

Table 4.2 Settings used for the optimisation algorithm (LFOPC). 

Setting Definition Chosen Value 

x0    Starting point: this depends on 

the specific micro-turbine  

The starting point for small 

micro-turbines is [5 5 5 5 5 

5], while the starting point 

for large micro-turbines is 

[10 10 10 10 10 10] 

delt Maximum step size  1 (default) 

xtol Convergence tolerance ex on the 

step movement  

1e-7 (the default is 1e-8) 

eg Convergence tolerance eg on the 

norm of the gradient  

1e-5 (default) 

xmu Initial penalty value  100 (default) 

xmumax Maximum penalty value  10 000 (default) 

kmax Maximum number of steps per 

phase  

1 000 (default) 

 

The results from two other optimisation algorithms from Snyman (2009) were compared with the 

dynamic trajectory optimisation method: the spherical quadratic steepest descent (SQSD) method 

for unconstrained minimisation with no explicit line searches and the gradient-only conjugate 

gradient method for constrained minimisation with no explicit line searches. These optimisation 

algorithms were not able to find a solution as sound as the dynamic trajectory optimisation 

method for constrained optimisation. 

 
4.3 Gradients 

The optimisation algorithm by Snyman (2000) requires the gradient of the objective function in 

each variable. As can be understood, to get the gradient of the objective function for each 
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variable (in this work) is difficult. As a first attempt, the variables of the objective function were 

written in symbol form so that the ‘grad’ function in MATLAB could be used to give the equations 

for these gradients. Such an equation was, unfortunately, pages long and made its handling and 

copying very difficult. Keep in mind that there is an iteration involved in the objective function (see 

Section 3.6), which makes the calculation of its slope in a certain variable a very difficult process. 

 

The solution was to go back to the definition of the gradient of a function (Stewart, 2003). The 

gradient of the function for each of the variables in vector X  can be obtained by taking a small 

increment h  positive and negative of the variable value, to get two function values (derivative 

functions). The slope can then be calculated at the specific point in space. Note that in the 

following equations, X  is the vector containing the variables that should be optimised in the 

optimisation algorithm. In the function ‘gradf’ (Appendix C), the following was done to obtain the 

gradient of the function in a certain variable at a specific point of the vector X : 

 

Let h  be very small: h  = 
8101 −× . The gradient 

)1(dX

dfun
 can then be calculated as: 

 

( ) ( )
h

XfunXfun
GF

2
)1(

−−+
=           (4.1) 

 

where ‘fun’ is the objective function (see Appendix C) and 

 

XX =+ + [ h  0 0 0 0 0]           (4.2) 

 

XX =− - [ h  0 0 0 0 0]            (4.3) 

  

The gradient of the function in the other five variables is calculated similarly. The same method is 

used for calculating the slopes of inequality constraints as required from the optimisation 

algorithm. The functions used in the optimisation algorithm are added in Appendix C. The 

inequality constraints are shown in the function ‘conin’ and their gradients in each variable are 

given in the function ‘gradc’. 

 

4.4 Structure of the program 

Different parameters (D, MT and r ) are used in the objective function and different combinations 

of parameters are considered. A range of parabolic concentrator diameters (D = 6 – 18 m) is 

used in increments of two metres. For each concentrator diameter, 45 different standard micro-
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turbines are considered and for each micro-turbine, the objective function (equation 3.61) is 

maximised at each of the micro-turbines’ operating conditions (from lowr  to highr  in increments of 

0.1). The function ‘once’ (see Appendix C) is used to do the abovementioned. It is applied in the 

following summarised structure. 

 

� Get location-specific constants 

� For D = 6 : 2 : 18 

o Get netQ&  from the function ‘collector’ (Appendix C), as a function of the receiver 

geometry variables (or d ) according to the receiver sizing algorithm in Appendix 

A (see Figure A.4). The function ‘collector’ calculates the rate of intercepted heat 

and rate of heat loss for a range of cavity aperture diameters. The receiver sizing 

algorithm in Appendix A establishes the link between the concentrator size, 

cavity aperture size and net absorbed heat rate.  

o For all the compressor and turbine pairs from Garrett in Appendix D (MT = 1 : 45) 

� For r  = lowr  : 0.1 : highr  (along the line of highest compressor efficiency 

on the compressor map) 

• Get maximum net power output using the optimisation algorithm 

and objective function (equation 3.61) 

• Get optimum geometry variables: )1(X , )2(X , )3(X , )4(X , 

)5(X  and )6(X  

� end 

o end 

� end 

 

Figure 4.1 shows how different combinations of concentrator diameters and micro-turbines are 

considered in the analysis. 

 

Also note that, in the objective function ‘fun’, an iteration is performed to establish the 

temperatures and pressures as discussed in Section 3.6. This iteration continues until the error of 

the iterations is smaller than 1x10
-3

. The same method is used in the function ‘Tsfunc’ (Appendix 

C), which calculates the receiver surface temperature. In this function, again, an iteration is 

performed to determine the temperature, and pressure values to determine the output value of 

the function.  
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MT = 1 : 45 

D = 6 : 18 

Figure 4.1 The open and direct solar thermal Brayton cycle with a range of concentrator diameters (D) 

 and a range of micro-turbines (MT). 

 

4.5 Summary 

The optimisation algorithm used in the analysis is the leapfrog method (LFOPC) by Snyman 

(2000). The settings used in the analysis for this algorithm were shown in this chapter. The 

calculation of the derivatives of the objective function was shown. The structure of the analysis 

and the incorporation of the parameters were highlighted. The results found with the optimisation 

algorithm (using different parameters) are shown in Chapter 5. 
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Chapter 5 

Results 

 

_____________________________________________________________________________ 

 

5.1 Introduction 

The results of the analysis, as described thus far, are shown in this chapter. The optimum 

geometry and optimum operating conditions for a system with maximum net power output are 

shown and discussed. Before these results are shown, a validation is done. The validation is 

done to better understand the effect of the compressor, turbine and recuperator efficiencies on 

the thermal efficiency of the system. The validation confirms that an optimum operating condition 

exists for the recuperative open and direct solar thermal Brayton cycle. The first validation shows 

that the thermal efficiency of the system can be derived in terms of the compressor pressure 

ratio, compressor efficiency, turbine efficiency, recuperator efficiency and the inlet temperatures 

of the compressor and turbine as constants. The derivations are compared with equations from 

the literature.  

 

As a second validation, the net power output is calculated using equation 3.61. In this validation, 

the temperatures and pressures required to calculate the net power output are calculated using 

assumptions of pressure and temperature drops across the components. Again, it is evident that 

an optimum operating condition exists. The pressure and temperature losses should, however, be 

described in terms of the geometry variables of the system, but in the second validation they are 

assumed to be constant. The net power output (equation 3.61) as a function of compressor 

pressure ratio is compared with the net power output as calculated from the first law of 

thermodynamics. 

  

For the full analysis, the numerical and geometrical model and temperatures and pressures, as 

discussed in the previous sections, are used. The temperatures and pressures used in the 

objective function are calculated as shown in Section 3.6. The geometries are thermodynamically 

optimised and the optimum operating conditions are shown. 
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5.2 Validation 

 
5.2.1 First validation 

One would like to have the thermal efficiency of the system in terms of the efficiency of the 

recuperator and the isentropic efficiencies of the turbine and compressor. This thermal efficiency 

curve should give a hint of whether or not a maximum exists in terms of the pressure ratio of the 

cycle. In this first part of the validation, it is assumed that 4312 // PPPPr ==  as is shown in 

Figure 5.1. The thermal efficiency is also written as a function of 1T  and 3T . This section starts 

off with a derivation of the thermal efficiency of the cycle, without any recuperation and excluding 

the isentropic efficiencies of the compressor and turbine. The section ends with an equation for 

the thermal efficiency, which includes the efficiency of the recuperator and the isentropic 

efficiencies of the compressor and turbine. 

 

5.2.1.1 Thermal efficiency - no recuperator ( cη and tη = 1) 

Compressor Turbine Load 

1 

2 
3 

4 

netQ&

Receiver 

Air out Air in 

netW&  

 

Figure 5.1 The open and direct solar thermal Brayton cycle with no recuperator (Stine and Harrigan, 1985). 

 

Figure 5.1 shows the open solar thermal Brayton cycle without recuperation. The thermal 

efficiency is defined as: 

 

cnet

ct

net

net

th
wq

ww

q

w

/

1/ −
==η              (5.1) 

 

where netq  is the net accepted specific heat in the receiver. It can be shown that, for no 

recuperation and 100% compressor and turbine efficiencies, the thermal efficiency is: 
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since  K
T

T

w

w

c

t /
1

3









=   (Weston, 2000), 

k
k

P

P
K

1

1

2

−









= and ctnet www −= . Also note that 

equation 5.2 is derived by writing cw  and netq  in terms of the temperatures. Equation 5.2 is 

confirmed with Weston (2000) and Stine and Harrigan (1985). 

 

5.2.1.2 Thermal efficiency - with recuperator ( regη  < 1 and cη and tη = 1)  

 

Compressor Turbine 

Recuperator 

Load 

1 

2 
3 

4 e 

netQ&

Receiver 

c 

Air out 

Air in 
 

Figure 5.2 The open and direct solar thermal Brayton cycle with recuperator (Weston, 2000). 

 

The inclusion of the recuperator is shown in Figure 5.2. According to Weston (2000), the 

efficiency of the recuperator can be defined with equation 5.3. 

 

)(

)(

24

2

TT

TTc

reg
−

−
=η                 (5.3) 

 

The addition of the recuperator efficiency and 100% compressor and turbine efficiencies results in 

the following thermal efficiency equation: 
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When regη  = 0, equation 5.4 becomes equation 5.2. When regη  = 1, equation 5.4 becomes 

 

K
T

T
th 








−=

3

11η               (5.5) 

 

Equation 5.5 is also given by Stine and Harrigan (1985) and is shown in Figure 2.6. In this figure, 

the thermal efficiency curves of regη  = 0 and regη  = 1 are compared. Equation 5.4 is plotted in 

Figure 5.3 for 3T  = 1 200 K, 1T  = 300 K and regη  = 0.77. Also plotted are the curves where 

regη  = 0 (equation 5.2) and regη  = 1 (equation 5.5). Figure 2.5 from the literature study gives a 

similarly shaped curve for 0 < regη  < 1. 
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Figure 5.3 Comparison of the thermal efficiency of the Brayton cycle for different cases of recuperation. 
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Figure 5.3 shows that an optimum thermal efficiency exists when a recuperator is used. Also, this 

optimum is at a much lower pressure ratio than if the recuperator is not used. The advantages of 

recuperation are clearly shown. The thermal efficiency curve is bounded by the two curves 

representing no recuperator and 100% recuperator efficiency respectively. 

 

5.2.1.3 Thermal efficiency - with recuperator and isentropic efficiencies ( regη , cη , tη  < 1)  

The next step would be to include the isentropic efficiency of the turbine and the compressor to 

see what effect it would have on the thermal efficiency curves. It can be shown that  

 

[ ]cKTT η/)1(112 −+=              (5.6) 

 

and 
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For this case: 
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Equation 5.9 shows the thermal efficiency in terms of the recuperator, compressor and turbine 

efficiencies. 
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When regη  = 0, equation 5.9 becomes 
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When regη  = 1, equation 5.9 becomes  
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Figure 5.4 shows equations 5.9 - 5.11 together with the results of Figure 5.3 (where the isentropic 

efficiencies were assumed to be 100%). 
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Figure 5.4 The thermal efficiency as a function of pressure ratio for different recuperation situations. 

 

The same shape is generated in Figure 5.4 than in Figure 5.3, except that the curve has shifted 

lower, due to the isentropic efficiencies of the turbine and compressor being smaller than one. In 
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this figure, 3T  = 1 200 K, 1T  = 300 K, regη  = 0.77, 0 or 1 and cη  and tη  = 1 or 0.77. It is also 

shown in Figure 5.4 that a shallow optimum exists. This optimum depends on the temperatures, 

1T  and 3T , and the efficiencies of the recuperator, compressor and turbine, as shown in equation 

5.9. The thermal efficiency curve is again bounded by two curves from above and below. 

 

5.2.2 Second validation 

The net power output is the only reason for interest in the Brayton cycle, or any solar thermal 

power system for that matter. In equation 3.61, the net power output was defined in terms of the 

entropy generation rate at each component and duct in the system. By having a similar approach 

than for the thermal efficiencies in the previous section, equation 3.61 can be plotted as a 

function of the pressure ratio ( 12 / PPr = ) only. For this analysis, all the pressure drops and 

temperature losses in the system are assumed to be constant. 43 / PP  will not be assumed equal 

to r  and 3T  will be a function of r  and not a constant. The system mass flow rate is assumed to 

be a linear function of r . Note that the geometry variables are not yet included. There are also no 

material constraints for any of the temperatures. All the temperatures and pressures for Figure 

3.5 were calculated in a spreadsheet at each pressure ratio, r , by performing an iteration (similar 

to Section 3.6). The constants used are given in Table 5.1.  

 

The net power output can be plotted in terms of the pressure ratio. Since equation 3.61 was used, 

the net power output was calculated using the second law of thermodynamics. When plotting the 

net power output in terms of the first law of thermodynamics with the following equation: 

)( 2187, TTTTcmW pFirstLawnet −+−= && , the first and second law curves can be compared. 

Equation 3.61 is plotted in Figure 5.5, together with the net power output calculated from the first 

law of thermodynamics.  

 

Note that these functions were calculated using the temperatures and pressures found with the 

iteration process and using the constants in Table 5.1. The curves in Figure 5.5 are of the same 

shape as the thermal efficiencies in Section 5.2.1. For both curves (from the first and second laws 

of thermodynamics) in Figure 5.5, an optimum exists at a pressure ratio of approximately 1.6. For 

the second law, the contribution from the ducts to the total entropy generation was assumed 

negligible and might be the reason for the small difference between these curves. The close 

comparison of the curves in Figure 5.5 shows that the net power output from equation 3.61 is 

correctly described in terms of the total entropy generation rate in the system.  
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Table 5.1 Assumptions for second validation. 

Definition Value Units 

regη  
0.8 

- 

cη  0.73 
- 

tη  0.73 
- 

R  287 J/kgK 

pc  
1004 

J/kgK 

1T  300 
K 

23T∆  2 
K 

45T∆  2 
K 

67T∆  2 
K 

89T∆  2 
K 

1P  80  
kPa 

23P∆  0.1 
% 

34P∆  1 
% 

45P∆  0.4 
% 

56P∆  0.8 
% 

67P∆  0.4 
% 

89P∆  0.1 
% 

910P∆  1 
% 

23,lossQ&   
2 

W 

45,lossQ&   
2 

W 

67,lossQ&   2 
W 

89,lossQ&   2 
W 

reglossQ ,
&  2 

W 

recQ& *  64 000 
W 

reclossQ ,
&   6 400 

W 

 

At higher pressure ratios, the net power output becomes negative, which means that the power 

output of the turbine is smaller than the power required from the compressor. Such a system 

would not be possible. However, these data points show the rate of decrease in net power output 

as the pressure ratio increases, at higher pressure ratios. 
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Figure 5.5 Net power output calculated with the first and second laws of thermodynamics 

as a function of the pressure ratio. 

 

The thermal efficiencies are plotted in Figure 5.6, for different assumptions for the compressor, 

turbine and recuperator efficiencies (similar to Section 5.2.1.3). The thermal efficiency curve is 

bounded by two curves. When comparing this figure with Figure 5.4, it seems that the thermal 

efficiency drops quicker in Figure 5.6. It is as if the curves are ‘pulled’ downwards. This can be 

because 3T  is no longer a constant (as in Section 5.2.1), but is now also a function of the 

compressor pressure ratio. This is a much more realistic curve than the curve shown in Figure 

5.3. Also note that the curve, where no recuperator is used and the isentropic efficiencies are 

included, is not shown. This curve did not appear in the positive region (making a working system 

with no recuperator and real compressor and turbine efficiencies impossible). The method of 

entropy generation can be used to get the optimum receiver and recuperator geometries which 

could ‘lift’ the thermal efficiency curve to higher values.  

 

Figure 5.7 shows the contribution of the turbine, compressor, recuperator and solar receiver to 

the total entropy generation rate, based on the assumptions in Table 5.1. The entropy generation 

rate in the ducts was very small compared with the other components and was neglected. The 

entropy generation rate in a duct would be very small if the duct is well-insulated and if it has a 

large hydraulic diameter. 
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Figure 5.6 Thermal efficiency as a function of the pressure ratio. 
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Figure 5.7 Contribution of the compressor, turbine, recuperator and receiver to the total entropy generation rate. 

 

5.2.3 Conclusion of the validation 

From the validation, it can be concluded that an optimum pressure ratio exists for a system with a 

set of constants describing the losses in the system. The net power output of the system is 
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accurately described in terms of the total entropy generation of the system when comparing the 

first and second laws of thermodynamics. In the next section, the results are shown from the 

analysis as described in Chapters 3 and 4. In this full analysis, the pressure ratio was treated as a 

parameter, the mass flow rate and compressor and turbine efficiencies depended on the micro-

turbine used while the pressure losses, temperature losses and recuperator efficiency depended 

on the geometry of the receiver and recuperator. 

 

5.3 Results of the full analysis 

 

5.3.1 Introduction 

 

Table 5.2 Constants used for the analysis. 

Surroundings at location Value Unit 

0T  300  K 

I  1 000 W/m
2
 

w  1 (no wind)  

1P  or atmP  80 kPa 

Concentrator and receiver   

pe  6.7 (0.38°) mrad 

rimϕ  45 degrees 

refl  0.93  

max,sT  1 200 K 

β  90 degrees 

minCR  100 - 

Recuperator   

t  0.001 m 

k  401 W/mK 

H  1 m 

maxL  radius of dish concentrator m 

 

In this section, the results of the optimum recuperator and solar receiver geometry variables are 

shown. The results also show the optimum operating conditions of the micro-turbines (or points of 

highest maximum net power output). The results are shown for different concentrator sizes of 
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D = 6, 8, 10, 12, 14, 16 and 18 m. For each concentrator diameter, each micro-turbine and each 

of its operating conditions, the maximum net power output was found. Two cavity receiver models 

were analysed and results showed no major difference between the maximum net power outputs 

and optimum recuperator geometry of the two models. However, each receiver construction 

method had its own optimum geometry. In the remaining sections, the results shown are relevant 

for the receiver constructed using a circular tube or rectangular channel, except where the cavity 

construction method is specifically mentioned. The maximum net power output obtained using 

entropy generation minimisation, is compared with the maximum net power output calculated with 

the first law of thermodynamics. The results were obtained using the constants in Table 5.2, as 

explained in Section 3.9. 

 

The constants in Table 5.2 were also changed to see what their effect would be on the maximum 

net power output and optimum geometry of the system. This means that the effect of surrounding 

and parameter changes on the maximum net power output and its optimum system geometry 

required was investigated. These results are also shown. Recommendations for further work are 

also given. 

 

5.3.2 Optimum geometry for maximum net power output  
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Figure 5.8 Data points for maximum net power output with an optimum geometry for concentrator with D = 6 m. 
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The analysis found the optimum geometry variables, which produce maximum net power output 

for the system, at the different parameters. These parameters are the concentrator diameter, 

micro-turbine used and the operating condition (pressure ratio or mass flow rate) in the range of 

the specific micro-turbine’s optimum compressor efficiency (as shown in Section 3.5.2). Figure 

5.8 shows the maximum net power output as a function of the pressure ratio for a collector with a 

concentrator diameter of D = 6 m as an example.  It is very important to note that each data point 

is a result of the optimisation algorithm and shows a maximum net power output because of its 

optimised geometry. One should also note that each micro-turbine has an optimum operating 

point, which produces the highest maximum net power output for the system. The details of the 

different micro-turbine models are shown in Appendix D. The micro-turbine model number (MT) is 

used to describe a micro-turbine. 

 

Table 5.3 Results showing optimised geometry variables and maximum net power output for MT = 4 and D = 6 m 

using a circular tube as receiver construction method, all geometry units in metre, except for the ratios.  

r  m& (kg/s) ( )
optrechD ,  ( )

optrecL  ( )
optrecba /  ( )

optreghD ,  ( )
optregL  ( )

optregba /  ( )
maxnetW& (W) 

1.4 0.083 0.1098 20.61 - 0.008039 3 5.452 3265 

1.5 0.089 0.1098 20.60 - 0.006389 3 6.396 3776 

1.6 0.096 0.1098 20.60 - 0.005365 3 7.379 4019 

1.7 0.102 0.1008 18.91 - 0.005085 3 8.127 4070 

1.8 0.109 0.0995 18.67 - 0.004872 3 8.871 3961 

1.9 0.115 0.0981 18.40 - 0.004715 3 9.592 3715 

2 0.122 0.0956 17.94 - 0.004600 3 10.30 3343 

2.1 0.128 0.0901 16.91 - 0.004525 3 10.99 2858 

2.2 0.134 0.0877 16.45 - 0.004487 3 11.64 2269 

 

Table 5.4 Results showing optimised geometry variables and maximum net power output for MT = 4 and D = 6 m 

using a rectangular channel as receiver construction method, all geometry units in metre, except for ratios.  

r  m& (kg/s) ( )
optrechD ,  ( )

optrecL  ( )
optrecba /  ( )

optreghD ,  ( )
optregL  ( )

optregba /  ( )
maxnetW& (W) 

1.4 0.083 0.0741 12.03 4.071 0.008198 3 5.418 3235 

1.5 0.089 0.0916 14.11 2.5 0.006581 3 6.331 3770 

1.6 0.096 0.0842 9.892 2.5 0.005782 3 7.186 4085 

1.7 0.102 0.0825 7.039 2.5 0.005255 3 8.025 4209 

1.8 0.109 0.0743 6.100 2.5 0.004851 3 8.883 4120 

1.9 0.115 0.0719 5.897 2.5 0.004693 3 9.610 3881 

2 0.122 0.0698 5.731 2.5 0.004578 3 10.32 3514 

2.1 0.128 0.0683 5.605 2.5 0.004501 3 11.01 3033 

2.2 0.134 0.0671 5.506 2.5 0.004462 3 11.67 2447 
 

The data points (as shown in Figure 5.8) of micro-turbine 4 with D = 6 m and circular tube 

receiver construction method are shown in Table 5.3. Table 5.4 shows the same data points but a 

rectangular flow channel (plate) is used as receiver construction method. Take note that the 
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highest maximum net power output (or optimum operating condition of the micro-turbine) is 

highlighted for each of these cases. 

 

No significant difference was found between the maximum net power outputs of the different 

receiver construction methods. However, each receiver construction method had its own optimum 

geometry. The optimum geometries shown in the tables will be explained in the following section. 

The remaining results are for both receiver cavity construction methods, except where a specific 

one is mentioned. Figure 5.9 shows the same results as in Figure 5.8, but as a function of the 

mass flow rate.  

 

Data points were found for all the concentrator diameters (D = 6 – 18 m) with all the micro-

turbines (1 – 45), which gave a reasonable net power output. Figure 5.10 shows the results for 

D = 10 m and Figure 5.11 shows the results for D = 14 m as a function of the system mass flow 

rate. When comparing Figures 5.9, 5.10 and 5.11, it can be concluded that the larger micro-

turbines performed better at larger concentrator diameters and vice versa. Figure 5.12 shows all 

the data points found in the analysis for each of the different concentrator diameters, micro-

turbines and micro-turbine operating conditions.  
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Figure 5.9 Maximum net power output at an optimum geometry for a concentrator with D = 6 m. 
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Figure 5.10 Maximum net power output at an optimum geometry for a concentrator with D = 10 m. 
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Figure 5.11 Maximum net power output for different micro-turbines and their operating ranges for D = 14 m. 
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Figure 5.12 All the data points for the range of concentrator diameters and micro-turbines. 
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Figure 5.13 Thermal efficiencies of the optimised systems as a function of concentrator diameter and micro-

turbine choice. 
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In some cases, a single micro-turbine had an optimum operating condition (or highest maximum 

net power output) at a number of different concentrator diameters. This is shown in Figure 5.13, 

where the maximum thermal efficiencies for each of these optimum points are compared. The 

thermal efficiency is a function of the concentrator diameter and micro-turbine used. A higher 

thermal efficiency can be expected when using a larger concentrator, although an even higher 

thermal efficiency can result when using the correct micro-turbine.  

 

Consider again the data points which give the highest maximum net power output. The optimum 

recuperator channel aspect ratio of these data points, ( ) optregba ,/ , as a function of the mass flow 

rate, is shown in Figure 5.14. The relationship between the optimum aspect ratio as a function of 

the mass flow rate is a linear relationship. This line can be approximated with equation 5.12. 

Furthermore, when plotting the optimum recuperator channel width as a function of the mass flow 

rate, a linear relationship is found again.  

 

( ) optoptreg mba &3.83/ , ≈             (5.12) 

 

0

10

20

30

40

50

60

70

80

90

0 0.2 0.4 0.6 0.8 1

 (kg/s)

D = 6 m

D = 8 m

D = 10 m

D = 12 m

D = 14 m

D = 16 m

D = 18 m

Concentrator 

diameter, D

 

Figure 5.14 Optimum aspect ratio of the recuperator channels at  

optimum operating conditions of various micro-turbines. 
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Take note that these data points are the points of the optimum operating conditions for different 

micro-turbines and different concentrator diameters. When including all of the data points from 

the analysis, this linear relationship disappears underneath a scattering of data. The linear 

relationship is thus only valid for an optimised geometry at the optimum operating conditions (with 

highest maximum net power output) of different micro-turbines. Other studies have found that, for 

a rectangular channel, an aspect ratio of eight should be used for minimum entropy generation in 

the channel (Ratts and Raut, 2004). In this work, however, results show that an aspect ratio of 

eight is not necessarily the optimum aspect ratio for the receiver and recuperator channels in a 

system which should produce maximum net power output. This is because EGM was done for the 

whole system, instead of for the components individually. 

 

Figure 5.15 shows that, for a specific micro-turbine (number 27 in this example), there exists a 

line of maximum net power output as a function of mass flow rate. This is shown more clearly in 

Figure 5.16 for micro-turbine 41. The larger the concentrator, the more the net power output 

tends towards this line. The smaller the concentrator diameter and the higher the mass flow rate, 

the lower maximum net power output can be expected. 
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Figure 5.15 Roofline for the maximum net power output for micro-turbine number 27. 
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Figure 5.16 Roofline for the maximum net power output for micro-turbine number 41  

with different concentrator diameters. 

 

All the data points (where a plate cavity receiver construction method was used) which were 

geometrically optimised in this analysis, converged to one of two constraint limits. Results 

showed that a large cavity aperture or small aspect ratio but not necessarily both, is beneficial for 

the rectangular receiver channel. The two constraints were 100≥CR  and 5.2≥
rec

ba . When 

considering the circular tube receiver construction method, it is interesting to note that most of 

these optima also lie on an aperture size constraint of 100min == CRCR . One can come to the 

conclusion that it is beneficial for the system’s net power output, that the receiver aperture is 

relatively large in comparison with the concentrator. This can be expected since the effect of wind 

was neglected. 

 

The optimum recuperator length, optregL , , mostly converged on its constraint, as was set in 

Section 3.8. This is shown in Figure 5.17, where all the data points are shown, and in Figure 5.18, 

where the optimum recuperator length is shown for micro-turbine 41 at D = 16 m. The optimum 

recuperator length increased as the mass flow rate increased until the constraint was reached. It 

is therefore more beneficial for a system with small mass flow rate to have a short recuperator. 

Systems with short recuperator lengths (relative to the concentrator radius), however, usually do 

not have high maximum net power outputs. 
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Figure 5.17 Convergence of the optimum recuperator length to its maximum constraint. 
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Figure 5.18 Convergence of the optimum recuperator length for D = 16 m with micro-turbine 41. 

 

In Figure 5.19, the optimum hydraulic diameter of the recuperator channels is shown as a 

function of system mass flow rate. At small mass flow rates, the optimum hydraulic diameter 

increases as system mass flow rate increases, until the recuperator length constraint is reached. 

For increasing mass flow rate, the optimum hydraulic diameter decreases until a minimum 

diameter is reached where the maximum pressure drop exists. The optimum hydraulic diameter 

increases slightly as the mass flow rate increases. 
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Figure 5.19 Optimum hydraulic diameter of recuperator channels as  

a function of system mass flow rate for D = 10, 14 and 18 m. 
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Figure 5.20 Optimum number of rectangular tubes between the receiver edge and the receiver aperture 

as a function of the optimum receiver channel aspect ratio. 
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It was also found that the receiver of the optimised system would not necessarily have the 

aperture diameter that intercepts the maximum solar heat input, as shown in Figure A.4. 

According to the results, a larger aperture diameter, which absorbs less solar heat (see Appendix 

A) can produce a larger net power output in some systems. From each of the optimised data 

points in the analysis, it was found that there exists an optimum number of tube diameters, DN , 

or rectangular channels, RN , which fit in between the receiver aperture edge and the receiver 

edge (in Figure 3.6, for example, DN   = 4). The definition of DN  is shown in equation 5.13. 

 

( )( ) ( )rechD DdN ,213 −=            (5.13) 

 

For a specific concentrator diameter, DN  decreases as the mass flow rate increases until it 

reaches its constraint of two, except for systems using large concentrators with a plate-type 

receiver. The optimum receiver tube diameter was found to be relatively large compared with the 

receiver. It was found that, for all the data points in the analysis, 42 ≤≤ DN . This means that 

the optimum receiver tube diameter is mostly relatively large. For the rectangular channel 

receiver, rechD ,  in equation 5.12 can be replaced with a  – the longest side of the rectangular 

channel. For all the optimised plate-type receiver geometries in the analysis, it was found that 

3.21 ≤≤ RN . For the rectangular channel receiver at large concentrators, RN  did not decrease 

as the mass flow rate increased, but for small concentrators, it behaved similarly to the circular 

tube receiver. Figure 5.20 shows that, for an optimum receiver channel geometry in all of the 

cases, a large aspect ratio is accompanied with a small RN  and a large RN  is accompanied with 

a small aspect ratio. Note that all the data points are shown in Figure 5.20. 

 

Another interesting observation for the circular tube receiver is the relationship between the 

optimum receiver diameter, optrecD ,  and the optimum receiver length, optrecL , . This is shown in 

Figure 5.21. It is optimum for a long receiver tube to have a small tube diameter and vice versa, 

except at very small receiver tube lengths where the tube diameter is also small. For the 

rectangular channel receiver, however, there is no established pattern between the hydraulic 

diameter and channel length. This can be expected because the hydraulic diameter of a 

rectangular channel is a function of the channel aspect ratio. 
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Figure 5.21 Relationship between the optimum tube diameter and the optimum length for  

the circular tube receiver.  

 

This section showed the optimum recuperator and receiver geometries for a recuperative open 

and direct solar thermal Brayton system, which produces its maximum net power output, as 

calculated with the method of entropy generation minimisation. 

 

5.3.3 Maximum net power output with optimum operating conditions and system 

properties 

Consider again the constants given in Table 5.2. For all the optimised data points (all D, and all 

operating points of all the micro-turbines), the optimum recuperator channel mass flow rate 

behaved in a specific way relative to the mass flow rate of the system. This is shown in Figure 

5.22. The optimum NTU  (see equation 3.31) also behaved in a very specific manner as a 

function of the system mass flow rate, as shown in Figure 5.23. 
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Figure 5.22 Optimum recuperator channel mass flow rate for all data points. 

 

The behaviour of the optimum mass flow rate of the recuperator is shown more clearly in Figure 

5.24 (showing only D = 8, 12 and 16 m). Note the similarity between Figures 5.24 and 5.19. Take 

note that each data point in Figure 5.24 has an optimum geometry and gives maximum net power 

output at its specific mass flow rate. When inspecting Figure 5.25 (again, D = 6, 10, 14 and 18 m 

are not shown, but behaved similarly), it can be concluded that, for all the data points, the 

optimum NTU  increases as the system mass flow rate increases until it reaches its maximum. 

This means that it is most beneficial for a system with a small mass flow rate to have a small 

NTU . The following paragraph explains why. 

 

Micro-turbine 41 is considered because it has a very large operating range at its maximum 

compressor efficiency. Understanding the behaviour of this micro-turbine is very helpful in 

understanding Figures 5.24 and 5.25. The optimum distribution of the minimum entropy 

generation is shown for D = 16 m with micro-turbine 41 in Figure 5.26. This distribution was found 

to be similar for all the combinations of concentrator diameters and micro-turbines optimised in 

this analysis. Note that for the optimised system, the entropy generation in the receiver is the 

largest (Figure 5.26a).  
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Figure 5.23 Optimum NTU for all data points. 
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Figure 5.24 Optimum recuperator channel mass flow rate (D = 8, 12 and 16 m). 
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Figure 5.25 Optimum NTU for all data points (D = 8, 12 and 16 m). 

 

Consider the point where the minimum external irreversibility rate, min,extI& , is at its highest (Figure 

5.26d). min,extI&  seems to be at a maximum when the mass flow rate is small.  

 

( ) 







−−=

11

1

001110 ln
T

T
cTmTTcmI ppext

&&&          (5.14) 

 

From equation 5.14 it follows that, for high external irreversibilities, 11T  must be high, which 

means that regη  should be small (see equation 3.57). This is why the optimum NTU  is small at 

small mass flow rates, as shown in Figure 5.25. The optimum NTU  increases as the mass flow 

rate increases. The optimised data shows that a small NTU  is established with the use of a 

small surface area, large hydraulic diameter (Figure 5.19) and large recuperator channel mass 

flow rate, which increase respectively until the maximum recuperator length constraint is reached 

(around 0.45 kg/s in Figure 5.24). A large hydraulic diameter also keeps the pressure drop and 

minimum entropy generation rate due to fluid friction, PgenS ∆min,int,,
&  , low for the recuperator 

(Figure 5.26c). After the length constraint is reached (Figures 5.17 and 5.18), the recuperator 

mass flow rate and hydraulic diameter decrease (Figure 5.19) as the mass flow rate increases to 
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ensure an increase in NTU  as the system mass flow rate increases. Note that PgenS ∆min,int,,
&  

grows quite big at these mass flow rates because the hydraulic diameter decreases. At these 

mass flow rates, the high pressure drops can be considered as most beneficial for the net power 

output of the system.  
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Figure 5.26 Geometry optimised system data points (MT = 41, D = 16 m) : (a) – Minimum total internal entropy 

generation rate; (b) – Contribution to total minimum internal 
genS&  due to temperature difference; (c) – 

Contribution to minimum internal 
genS&  due to frictional pressure drop; (d) – Minimum irreversibilities and 

maximum power. 

 

In Figure 5.27 it is shown that the maximum receiver surface temperature of the optimised data 

stays constant as a function of mass flow rate at small mass flow rates. This is due to the 

temperature constraint of 1 200 K, as shown in Section 3.8. At higher mass flow rates, the 

maximum surface temperature of the optimised data decreases as a function of mass flow rate. 

The larger the concentrator diameter, the larger the mass flow rate at which the maximum surface 
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temperature would start decreasing. When comparing Figure 5.27 with Figures 2.13 – 2.17, it can 

be concluded that the operating temperature range of a solar thermal power cycle depends also 

on the mass flow rate through the receiver and the receiver melting temperature. 
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Figure 5.27 Maximum receiver surface temperature of all the optimised data points 

(all micro-turbines and each of its operating conditions). 

 

When considering the minimum entropy generation rate in the solar receiver (Figure 5.26a - c), it 

follows that the receiver performs optimally when PgenS ∆min,int,,
&  is as small as possible. The largest 

component of the minimum receiver entropy generation rate should be the temperature difference 

component, ( )56 /ln TTcm p
& . The downward minimum entropy generation slope for the receiver 

at small mass flow rates (Figure 5.26a) is due to an increase in the NTU , which increases 5T  

(see equations 3.58 and 3.59). In the receiver, at small mass flow rates, the optimum max,sT  stays 

constant as a function of mass flow rate (Figure 5.27), which means that TgenS ∆min,int,,
& , due to 

temperature difference ( 56 /TT ), decreases as the mass flow rate increases (Figure 5.26b). 

Eventually, the optimum NTU  reaches its maximum at a high mass flow rate (Figure 5.25). For 

increasing mass flow rate, TgenS ∆min,int,,
&  increases as a function of mass flow rate (Figure 5.26b) 

and the maximum receiver surface temperature of the optimised data decreases (Figure 5.27).  
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Consider the point where min,extI&  is at a minimum (Figure 5.26d). 11T  will be at a minimum and 

the recuperator efficiency will be at a maximum. As min,extI&  increases slightly with mass flow rate, 

the optimum NTU  decreases slightly as shown in Figure 5.25. At the highest optimum NTU  

point, the recuperator channel mass flow rate is again utilised to be increased as the system 

mass flow rate increases in order to keep the optimum NTU  at its maximum. In most of the 

cases (but not all cases), the highest maximum net power output in the operating range of the 

micro-turbine was found at a mass flow rate close to the point of highest optimum NTU  or at 

higher mass flow rates. To keep the optimum NTU  constant, the hydraulic diameter is also kept 

constant, but increases slightly (Figure 5.19) as the system mass flow rate increases to keep 

PgenS ∆min,int,,
&  in the recuperator small. This, in turn, forces the recuperator mass flow rate to also 

increase slightly as the system mass flow rate increases, as shown in Figure 5.24.  

 

It seems to be more beneficial for the system when TgenS ∆min,int,,
&  in the receiver is higher at higher 

mass flow rates. For this reason, there is a decrease in the optimum NTU  (and 5T ) at high 

mass flow rates. 

 

Consider Figure 5.26d in more detail and note how the maximum net power output increases as 

the minimum entropy generation decreases as a function of mass flow rate. The highest 

maximum net power output is at the point where the minimum entropy generation rate or 

minimum irreversibility rate ( min,extI& + minint,I& ) is the lowest. 

 

Figure 5.28 shows the optimum performance of the system in terms of the optimum pressure 

drop in the receiver and recuperator, as a function of mass flow rate, for micro-turbine 41 with 

D = 16 m. It is interesting to note that, for optimum systems, the pressure drop of the receiver is 

larger than the pressure drop in the recuperator when the mass flow rate is small. This changes 

at a specific mass flow rate, whereafter it is optimal for the recuperator pressure drop to be larger 

than the receiver pressure drop. This change is due to a decreased hydraulic diameter, as was 

found from Figure 5.26. Note how Figure 5.28 relates to PgenS ∆min,int,,
&  in Figure 5.26c. Exactly the 

same behaviour was found for the other micro-turbines with D = 16 m. 
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Figure 5.28 Optimum pressure drop in receiver and recuperator channel for micro-turbine 41 and D = 16 m. 
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Figure 5.29 Optimum friction factor in receiver and recuperator for D = 16 m. 

 

The optimum friction factor of the receiver and recuperator channels, as a function of Reynolds 

number, is shown in Figure 5.29 for systems with different micro-turbines and operating mass 

flow rates with D = 16 m. It is optimum for the recuperator to operate in the laminar flow regime 

while the receiver operates in the turbulent flow regime. From Figure 5.30, this can also be 

concluded for all systems analysed in this study. Figure 5.30 shows the optimum range of friction 

factors as a function of mass flow rate for all the data points. The optimum receiver friction factor 

decreases as a function of system mass flow rate or Reynolds number. For the large concentrator 
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diameters, the optimum recuperator friction factor increases with system mass flow rate until it 

reaches a maximum whereafter it slowly decreases with system mass flow rate. It is more 

beneficial for recuperators in systems with large concentrators to have a smaller friction factor 

when the system mass flow rate is small. 
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Figure 5.30 Optimum friction factor for all data points. 

 

Figure 5.31 reveals that there exist linear relationships between the optimum recuperator 

efficiency and the optimum recuperator channel hydraulic diameter. Note that only the data points 

which gave the highest maximum net power output of a micro-turbine are shown. For small 

concentrator diameters, the optimum recuperator efficiency is smaller compared with the optimum 

recuperator efficiency required for larger concentrator diameters. When the optimum recuperator 

channel hydraulic diameter is large, it is more beneficial for the system that the recuperator 

efficiency is smaller. This can be compared with the results shown in Figures 5.25 and 5.26c 

where a high optimum NTU  is accompanied with a large pressure drop or small hydraulic 

diameter.  

 

Figure 5.32 shows that there exists an optimum ratio of system mass flow rate to recuperator 

channel mass flow rate. Again, only the data points with highest maximum net power output are 

shown. When comparing these results with the results from Figure 5.24, one finds that this line 

(Figure 5.32) falls on the third section of optimum system behaviour (or close to the mass flow 

rate with the highest NTU  or at higher mass flow rates). This optimum linear ratio seems to 

have a slope close to 0.01. The result is shown in equation 5.15.  
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Figure 5.31 Linear relationship between optimum recuperator efficiency and channel hydraulic diameter. 
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Figure 5.32 Linear relationship between optimum recuperator channel mass flow rate  

and optimum system mass flow rate. 
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optregopt mm ,115 && ≈          (5.15) 

 

Figure 5.33 shows that there exists a relationship between the minimum internal and external 

irreversibilities of the system, when the data points with highest maximum net power output are 

considered. 
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Figure 5.33 Minimum internal system irreversibility rate as a function of minimum external 

system irreversibility rate for maximum system net power output. 

 

From Figure 5.33, it follows that the largest maximum net power output for a system (or optimum 

operating point) is at a point where the internal irreversibility rate is approximately three times 

larger than the external irreversibility rate. This result can be approximated with equation 5.16 for 

all optimisation results in this analysis (with different concentrators and micro-turbines) where an 

optimum operating condition was found:  

 

[ ] ( ) ( )[ ]
min,111001110minint,0 /ln

extppWgen TTcTmTTcmCST &&& −−≈−       (5.16) 

 

where 3/ min,minint, ≈= extW IIC && . 
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Figure 5.34 shows that WC  mostly increases as the system mass flow rate increases. The rate of 

increase decreases as the concentrator diameter increases. Figure 5.34 shows that 

2.4 ≤ WC  ≤ 4, depending on the mass flow rate and concentrator diameter. Other data points 

which are not at an optimum operating point (or highest maximum net power output), or close to 

one, do not fall in this range. 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1

 (kg/s)

D = 6 m D = 8 m

D = 10 m D = 12 m

D = 14 m D = 16 m

D = 18 m

Concentrator diameter, D

 

Figure 5.34 CW as a function of the system mass flow rate. 

 

The results shown in the previous two sections can be considered in the preliminary stages of the 

design of an open and direct solar thermal Brayton cycle. 

 

5.3.4. Comparison of second and first law results 

The net power output for the solar thermal Brayton cycle can also be calculated with the first law 

of thermodynamics together with the temperatures and pressures of the system, as described in 

Section 3.6. Equation 5.17 can be used to compare the net power output in terms of the first law 

with the net power output described in terms of the second law, i.e. in terms of the total entropy 

generation rate of the components in the system (equation 3.61 – the objective function). 

 

( ) ( )1221,8787,)( TTcmTTcmW ppFirstLawnet −−−= −−
&&&         (5.17) 

 

These maximum net power output curves are compared in Figure 5.35. The curves show the 

results for a system using a concentrator diameter of 8 m with micro-turbine 13 and a 
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concentrator with 12 m diameter using micro-turbine 32. The first and second law curves 

compare very well. This means that the second law net power output was accurately modelled in 

terms of the total entropy generation rate of the system. The small difference can be due to the 

entropy generation rate in the ducting of the system, which was not accurately modelled. 
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Figure 5.35 Comparison of net power output calculated for two optimised systems using the first and second 

laws of thermodynamics. The one system uses MT = 13 with D = 8 m and the other uses MT = 32 with D = 12 m. 

 

5.3.5 The effect of the changing of a constant on the maximum net power output, 

optimum geometry and optimum operating conditions of the system 

Consider again the constants from Table 5.2. In this section, these constants are considered as 

the default settings. The results shown in this section are for systems where one of these 

constants was changed. Table 5.5 shows the values that were changed one at a time for two 

specific micro-turbine and concentrator diameter combinations to see what effect it would have on 

the optimum geometry and operating conditions of the system.  

 

Figures 5.36 and 5.37 show the maximum net power output for micro-turbine 13 with D = 8 m and 

micro-turbine 32 with D = 12 m, where the results using the default settings and changed 

constants are compared. It is concluded that a temperature decrease and pressure increase of 

the surroundings increase the maximum net power output. The decrease in maximum net power 

output due to wind, decreased specular reflectivity, concentrator error, recuperator material 
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conductivity and increased concentration ratio minimum are shown. A higher concentration ratio 

decreases the maximum net power output because the size of the receiver decreases as the 

concentration ratio increases. The results shown in Figures 5.36 and 5.37 are expected to be 

similar for all the other configurations of concentrator diameter and micro-turbine. 

 

Table 5.5 Each constant is changed to a new value to see the effect of the changing of one constant. 

 D = 8 m,  MT = 13 D = 12 m, MT = 32  Unit 

0T  308 288 K 

1P  100 100 kPa 

I  1 200 800 W/m
2
 

w  10 10 - 

rimϕ  60 30 degrees 

β  30 60 degrees 

pe  0.035 0.035 mrad 

max,sT  1 100 1 100 K 

refl  0.98 0.8 - 

k  237 237 W/mK  

H  0.5 2 m 

max,regL  
8 12 m 

minCR  
500 1 000 - 

 

A decrease in rim angle and receiver inclination makes no difference to the maximum net power 

output. It does, however, make a big change in the optimum receiver geometry variables. For a 

higher maximum allowable receiver temperature, the maximum net power output is higher. The 

increase of recuperator length and irradiance results in an increase in maximum net power 

output. The change in recuperator height makes no difference to the maximum net power output, 

but it changed the optimum dimensions of the recuperator. Take note how the receiver and 

recuperator geometry variables are altered due to wind, the doubling of recuperator height and 

minimum concentration ratio, in Figures 5.38 and 5.39 (for D = 12 m and MT = 32). For heavy 

wind, high concentration ratio, changed inclination and rim angles, it is more beneficial for the 

system to have a smaller receiver tube diameter (Figure 5.38). In Figure 5.39, it is shown that a 

doubled recuperator height decreases the optimum recuperator channel aspect ratio 

tremendously.  
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Figure 5.36 Change in maximum net power output for system using MT = 13 and D = 8 m. 
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Figure 5.37 Change in maximum net power output for system using MT = 32 and D = 12 m.  
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Figure 5.38 Change in optimum receiver tube diameter due  to changes in constants for D = 12 m  and MT = 32. 
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Figure 5.39 Change in optimum recuperator channel aspect ratio due to changes  

in constants for D = 12 m with MT = 32. 

 

Consider Figures 5.40 and 5.41. The effect of a few selected constants on the mass flow rate of a 

recuperator channel is shown for both the configurations. A lowest optimum recuperator mass 
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flow rate exists. Also note how these figures compare with Figure 5.22. Note how this minimum is 

shifted due to the constants. It was found that the operating point at this minimum does not 

necessarily provide the highest maximum net power output. A doubled recuperator length, halved 

recuperator height, high minimum concentration ratio and higher irradiance shift the maximum 

recuperator mass flow rate to a higher value and a different system mass flow rate (compare with 

Section 5.3.3). 
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Figure 5.40 Optimum recuperator channel mass flow rate with changes in constants for D = 8 m with MT = 13. 

 

Now consider Figures 5.42 and 5.43. Here the optimum recuperator NTU  is shown for D = 8 m, 

using micro-turbine 13 and D = 12 m with micro-turbine 32. In both of these figures, the extended 

recuperator length increases the maximum of the optimum NTU . The effect of the wind was to 

increase the optimum NTU  slightly at lower system mass flow rates. The effect of higher 

minimum concentration ratio was to decrease the optimum NTU  at smaller mass flow rates. The 

effect of irradiance at lower mass flow rates was to increase or decrease the optimum NTU  as 

the irradiance decreased and increased respectively. At higher mass flow rates, the effect was 

opposite. The other changes did not affect the optimum NTU  much. 

 

Note that the highest maximum net power output for the default settings in Figures 5.36 and 5.37 

is at a mass flow rate of 0.15 and 0.375 respectively. When looking at the optimum operating 

conditions of these mass flow rates, the net power output is not necessarily a maximum when the 
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NTU  is at its highest. This confirms that an optimum condition for an individual component in a 

system does not necessarily guarantee an optimum net power output, as was emphasised from 

the literature. 
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Figure 5.41 Optimum recuperator channel mass flow rate with changes in constants for D = 12 m with MT = 32. 

 

It is interesting to note that, in some cases, the system property curves do not differ from the 

default curves and in other cases they differ a lot. A 60° inclination (Figure 5.43) does not do 

much to the shape of the optimum NTU  but it does, however, change the shape of the optimum 

receiver tube diameter (Figure 5.38). When considering Figures 5.36 and 5.37 again, the effect 

due to receiver inclination and recuperator height is not shown. The system variables were 

altered so that the system can still provide the same maximum net power output for the system 

with inclined receiver or altered recuperator height. The devastating effect of wind on the system, 

however, is shown in these figures. The system variables were not able to ‘save’ the maximum 

net power output, even though the attempts made to do so are shown in all the figures. Note that 

if the curve for a changed constant is not shown in a figure, it means that it was found to be the 

same as the default. Some constants do not change the maximum net power output of the 

system, but the geometry of the recuperator or receiver. This change is due to the optimal 

spreading of irreversibilities in the different system components. The change of a constant or the 

change of surroundings can have positive or devastating effects. 
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Figure 5.42 The optimum recuperator NTU with specific scenarios D = 8 m  

and micro-turbine 13 for changed constants. 
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Figure 5.43 The optimum recuperator NTU with specific scenarios for D = 12 m  

and micro-turbine 32 for changed constants. 
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Figure 5.44 shows the effect of environmental conditions and changed constants on the optimum 

spreading of irreversibilities (MT = 41, D = 16 m). Figure 5.45 shows the maximum net power 

output and minimum irreversibility rates for the default settings. Note that, from above and left in 

the figures, the following data points are shown: maximum absorbed heat rate, minimum internal 

and external irreversibility rates and maximum net power output, as shown in Figure 5.26d. Most 

of the results in Figure 5.44 do not differ much from the results of the default. However, the 

optimum geometry was usually changed to accommodate for the change in environment or 

change of situation.  
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Figure 5.44 The effect of different conditions on the optimum performance of MT = 41 and D = 16 m. 

 

Note that the highest maximum net power output is at the same mass flow rate as where the 

minimum internal and external irreversibility rates are lowest. This was not the case for extreme 

wind since the wind affects the absorbed heat rate at smaller system mass flow rates. The wind 

calls for a smaller aperture diameter, which constrains the rate of heat absorbed. Note that WC  
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(see Section 5.3.3) is again approximately three, even for extreme conditions such as an 

irradiance of 1 200 W/m
2
, extreme wind and large concentration ratio.  
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Figure 5.45 Maximum net power output and minimum  

irreversibility rates for D = 16 m with MT = 41. 

 

In Figure 5.45, the data point where m&  = 0.607 kg/s (or r  = 2.4) gives the maximum net power 

output of 61.2 kW with an optimum geometry of optrecD ,  = 0.2 m, optrecL ,  = 61 m, optregba ,  = 56, 

optreghD ,,  = 6 mm and optregL ,  = 8 m. This optimum geometry was found using the optimisation 

algorithm and objective function where r  = 2.4 is a parameter. A validation is done by changing 

these variables, one at a time, from the optimum values as shown above. When one of the 

variables is changed, the other variables stayed constant at their optimum points. Figures 5.46 

and 5.47 show the net power output as a function of changing receiver tube diameter and 

receiver tube length respectively. The total irreversibility rate ( )(int,0 extgenST +
&  ) and the net rate of 

heat absorbed are also shown. In Figure 5.46, the constraints are recD  ≤ 26.37 cm, recD ≤ 32.5 
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cm and 17 ≤ recD  ≤ 21 cm, from Constraint 1, 3 and 4 respectively (see Section 3.8). In Figure 

5.47 the constraints are recL  ≤ 78 m, recL  ≥ 39 m and recL  ≥ 61 m, from Constraints 1, 3 and 4 

respectively. These graphs show that the maximum net power output is at the point where the 

total irreversibility rate is a minimum. The maximum net power output in each of these graphs, 

however, depends on the constraints. 
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Figure 5.46 Validation of the optimum receiver tube diameter. 
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Figure 5.47 Validation of the optimum receiver tube length. 
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Figure 5.48 Validation of the optimum recuperator channel aspect ratio. 
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Figure 5.49 Validation of the optimum recuperator channel hydraulic diameter. 

 

Figures 5.48, 5.49 and 5.50 show the net power output, total irreversibility rate and net absorbed 

power for changing recuperator geometry variables. Once again the net power output and total 

irreversibility rate mirror each other. In Figure 5.48, the constraint is regba  ≥ 56 as was set from 

Constraint 4. In Figure 5.49, the constraint is reghD ,  ≥ 6.2 mm from Constraint 4. Figure 5.50 has 
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the constraint of regL  ≤ 8 m from Constraints 4 and 7. The optimum geometry for maximum net 

power output, in each of these graphs, also depends on the constraints. 
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Figure 5.50 Validation of the optimum recuperator length. 

 

These figures confirm that the optimum geometry variables found with the optimisation algorithm 

are indeed the optimum variables which give maximum net power output of the system. It is also 

confirmed that the net power output as a function of each of the geometry variables has a 

maximum at the same position as where the total irreversibility rate is a minimum. 

 

5.3.6 Future work 

There are many possibilities regarding future work. This work only focused on the open and direct 

solar thermal Brayton cycle. Similar work can be done on a closed and direct solar thermal 

Brayton cycle with different working fluids. Similarly, work can be done on indirect cycles. More 

heat exchangers can be included in the model (multistaging) and their geometries could also be 

optimised for maximum system net power output using the method of entropy generation 

minimisation.  

 

Another interesting possibility would be to not only look at a steady-state process, but to include 

the transient, since the sun’s irradiance changes throughout the day. An optimum geometry must 

exist for the components in the open and direct solar thermal Brayton cycle at a specific location, 

so that the yearly and daily average net power output of the system is a maximum. 

 

 
 
 



 131 

In this work, the compressor and turbine efficiencies were chosen to be at their maximum by 

selecting a specific range of operating conditions. Since it was found that an individual 

component in a system should not necessarily operate at its optimum, other operating ranges, 

which give lower compressor and turbine efficiencies, should also be investigated. 

 

In this study, only standard (off-the-shelf) micro-turbines were used. The geometries of the 

compressor and turbine can also be included for optimisation to produce maximum net power 

output of a system at a specific location. 

 

The entropy generation rate in the ducts can be more accurately modelled by adding the duct 

diameters and lengths as variables in the objective function. One would expect to find that some 

ducts would be required to be larger or longer than others so that the net power output of the 

system can be a maximum. 

 

Further constraints can be added to the optimisation algorithm, especially cost constraints. 

Further size constraints and different receiver and recuperator designs can be incorporated to 

establish an exceptionally compact solar thermal power system. 

 

This work and the future work that might sprout from it, have the potential of a user-friendly 

software which asks the user for the properties of the specific location where a solar thermal 

power system is to be installed. The software would then calculate the optimum geometry of the 

components required for the system. The groundwork for such software was done in this study 

(Appendix C) without the user-friendliness. 

 

The results found in this work (the analytical approach) should be compared with experimental 

work. 
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Chapter 6 

Conclusion 

 

_____________________________________________________________________________ 

 

Southern Africa has a lot of potential to generate large amounts of its power from small-scale and 

large-scale solar power. The small-scale open and direct solar thermal Brayton cycle with 

recuperator has several advantages, including lower cost, low operation and maintenance costs 

and high recommendation. The main disadvantages of this cycle are the pressure losses in the 

recuperator and receiver, turbomachine efficiencies and recuperator effectiveness, which limit the 

net power output of such a system. The method of entropy generation minimisation can be used 

to tackle these disadvantages to optimise the receiver and recuperator and to maximise the net 

power output of the system. 

 

In this work, a modified cavity receiver and a counterflow plate-type recuperator were optimally 

sized so that the solar thermal power system can have maximum net power output at steady-

state. Two construction methods were considered for this receiver: a circular tube and a 

rectangular channel. A sizing algorithm was used to establish the net absorbed heat rate of the 

cavity receiver as a function of the cavity aperture diameter for a specific concentrator diameter 

with fixed focal length and rim angle. As a result, a specific geometry of the cavity receiver would 

fix the amount of power absorbed. 

 

Off-the-shelf micro-turbines, operating in their range of maximum compressor efficiency, were 

considered in the analysis. These micro-turbines and its technical data are freely available in 

South Africa. The operating point in the range of maximum compressor efficiency, specific micro-

turbine and concentrator diameter were used as parameters in the analysis. Forty-five different 

micro-turbines and seven concentrator diameters between 6 and 18 metres were considered. For 

each set of parameters an objective function, the net power output, was maximised by optimising 

geometry variables of the modified cavity receiver and counterflow plate-type recuperator. This 

optimisation was done with limiting constraints. The dynamic trajectory optimisation method for 

constrained optimisation was used. 

 

An exergy analysis of the solar thermal power system, identification of total entropy generation 

within the system and an iteration to determine the temperatures and pressures at each point in 

the system in terms of geometry variables, were used to establish the objective function. The net 

power output of the system was described in terms of the total entropy generation within the 
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system. The constraints on the objective function included constraints on maximum recuperator 

length and minimum concentration ratio between receiver aperture area and concentrator area. A 

maximum receiver surface temperature of 1 200 K was set. An average irradiance of 1 000 W/m
2
 

was assumed. Systems with a 45° concentrator rim angle and a receiver aperture in the 

horizontal plane, were analysed. 

 

The optimum recuperator channel aspect ratio for the counterflow plate-type recuperator with a 

constant recuperator height was found to be a linear function of the system mass flow rate. Other 

studies have found that, for a rectangular channel, an aspect ratio of eight should be used for 

minimum entropy generation in the channel. In this work, however, results showed that an aspect 

ratio of eight is not necessarily the optimum aspect ratio for the receiver and recuperator 

channels in a system which should produce maximum net power output. This is the result of 

minimising total entropy generation for the whole system, instead of for components individually. 

 

Results showed that the optimum recuperator length increased as a function of mass flow rate 

until the length constraint was reached. The same result was found for optimum NTU . It was 

concluded that for maximum system net power output at lower system mass flow rates, it is more 

beneficial to have a low recuperator efficiency (or a bypassed recuperator). This result validated 

that a high efficiency for an individual component in a system does not necessarily provide 

optimum results for the system as a whole. When maximum net power output is required, it is in 

some cases better for the system to have a component with low efficiency. 

 

No major differences could be found in the maximum net power output between cavity receivers 

constructed with a rectangular channel and cavity receivers constructed with a circular tube 

respectively. It was found that a large solar cavity receiver aperture or a small rectangular 

channel aspect ratio, but not necessarily both, is most beneficial. It was also found that the 

receiver tube diameter should be relatively large. For the circular tube and rectangular channel 

receiver, the optimum number of tube diameters or rectangular channels that should fit in 

between the aperture edge and the receiver edge was found.  

 

Optimum system operating conditions were established in the analysis. The results showed how 

the irreversibilities should be spread throughout the system optimally in order for the system to 

produce maximum net power output. The optimum recuperator channel mass flow rate, receiver 

hydraulic diameter and optimum NTU  behaved very specifically with the system mass flow rate. 

It was found that it is best for the receiver to operate in the turbulent flow regime, and for the 

recuperator channels to operate in the laminar flow regime. Results showed that at higher mass 

flow rates, the maximum receiver surface temperature decreased as a function of mass flow rate. 
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It was noted that the minimum rate of internal irreversibility of the optimised systems was always 

more than the minimum rate of external irreversibility. It was found that the solar receiver is the 

main contributor to the total rate of internal entropy generation for the optimised systems with 

maximum net power output. Results showed that the irreversibilities were spread throughout the 

system in such a way that the minimum internal irreversibility rate was almost three times the 

minimum external irreversibility rate for all data points, which gave the highest maximum net 

power output of a micro-turbine. A constant was given for this optimum ratio of minimum internal 

irreversibility rate to minimum external irreversibility rate ( WC ), where the maximum net power 

output in a micro-turbine’s operating range is the largest (at optimum operating point of a micro-

turbine). Results showed that WC  increases as the mass flow rate increases for a specific 

concentrator diameter. The highest maximum thermal efficiency of these optimised systems was 

found to be a function of the solar concentrator diameter and choice of micro-turbine. 

 

The effect of various conditions such as wind, receiver inclination, concentrator rim angle and 

irradiance on the maximum net power output and optimum geometries of the system components 

was investigated. The maximum net power output was found to stay constant in certain cases 

while the optimum geometry was shifted around to accommodate for the change. This was 

observed in changes in recuperator height, receiver inclination and concentrator rim angle. In 

other cases, the maximum net power output could be changed by changing a constant such as 

the effect of wind, irradiance, minimum concentration ratio, recuperator length, surrounding 

pressure, recuperator material and maximum surface temperature. Results showed that, for a 

specific environment and parameters, an optimum receiver and recuperator geometry exists so 

that the system can produce maximum net power output. 

 

It was found that the second law of thermodynamics is a valuable contribution to the optimisation 

of solar thermal power systems. The geometry of components in a solar thermal power system 

should be optimised by minimising the total rate of entropy generation in the system in such a 

way that the system produces maximum net power output. The results of this study give insight 

into the optimal behaviour and component geometries of the recuperative solar thermal Brayton 

cycle limited to challenging constraints. These results can be considered in the preliminary stages 

of design. The results found in this work (the analytical approach) should be compared with 

experimental work. The small-scale open and direct solar thermal Brayton cycle with optimised 

geometry for maximum net power output, using the method of entropy generation minimisation, 

can be regarded as a good local power generation method for the near future.  
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A.1 

Appendix A 

COLLECTOR 

 

This section describes the methodology behind the MATLAB function: ‘collector’ (see Appendix 

C). This function follows the receiver-sizing algorithm of Stine and Harrigan (1985) shown in 

Figure A.1. A better understanding of the concentrator and its geometry is also given. 

 

 

Figure A.1 Receiver-sizing algorithm (Stine and Harrigan, 1985). 

 
 
 



A.2 

 

The method of Figure A.1 is applied to establish the net absorbed heat rate of the cavity receiver 

as a function of the cavity receiver aperture, similar to Figure 2.27 in the literature. This is done in 

the function ‘collector’ (Appendix C). The function starts of by asking the user to give the dish 

concentrator area and its rim angle. Figure A.2 shows the definition of the rim angle (Stine and 

Harrigan, 1985). The aperture area of a paraboloid (parabolic dish concentrator) is defined by 
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in terms of the focal length ( cf ) and the rim angle, rimψ  (Stine and Harrigan, 1985).  

 

 

 

Figure A.2 Definition of the rim angle (Stine and Harrigan, 1985). 

 

The focal length can be calculated when the rim angle and concentrator area are specified. Stine 

and Harrigan’s algorithm requires one to compute the total parabolic concentrator error. 

According to Stine and Harrigan (1985), a typical parabolic concentrator error is 6.7 mrad. This 

error could be regarded as a user-specified constant since this error depends on the collector 

design, structure, tracking, alignment, mirror specular reflectance, etc. After these steps, the 

 
 
 



A.3 

function goes to a while loop, starting at a rim angle of 0° through to an angle of rimψ  in 

increments of 1° and computes the amount of intercepted solar energy per segment of 

concentrator area. The projection of the image width onto the focal plane (see Figure A.3) can be 

written as  

 

ψcos

r
d

∆
=                (A.2) 

 

where ψ  is the specific rim angle at the segment of the concentrator. 

  

 
 

Figure A.3  Reflection of non-parallel rays from a parabolic mirror (Stine and Harrigan, 1985). 

 

For a specific cavity receiver aperture diameter, d , r∆ can be calculated. The parabolic radius at 

that segment can be calculated using equation A.3 (Stine and Harrigan, 1985). 
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The number of standard deviations, n , being considered can be calculated using equation A.4 

(Stine and Harrigan, 1985), 
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where totσ  is the total parabolic concentrator error. According to Stine and Harrigan (1985), a 

typical parabolic concentrator error is 6.7 mrad. The next step is to find Γ . According to Stine 

and Harrigan (1985), the flux capture fraction is the ratio of the flux reflected from a parabolic 

surface in a shaft of light having width of n  standard deviations of the total angular error. For the 

normally distributed reflected flux, the flux capture fraction is simply the area under the normal 

distribution function integrated from – n /2 to + n /2. A polynomial approximation to this normal 

integral, from Abramowitz and Stegun (1970, cited in Stine and Harrigan, 1985), can be written 

as: 

 

Γ  = 1 - 2*Q               (A.5) 

 

where: 

 

r  = 0.2316419 

b1  = 0.319381530 

b2  = -0.356563782 

b3  = 1.781477937 

b4  = -1.821255978 
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The next step in Stine and Harrigan’s algorithm is to compute the slope: 
Ψ

Φ

d

d
 where, according to 

Stine and Harrigan (1985), for a parabolic dish: 
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PDdΦ  is the total radiant flux reflected from the differential area (assuming no reflectance loss) to 

the point of focus. The following equation (Stine and Harrigan, 1985) is used to compute the rate 

of energy reflected from a strip (the parabolic mirror dish is divided into incremental rings) and 

intercepted by the receiver with aperture diameter, d . 
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All of these intercepted energy rates for all the rings are then added to give the total rate of 

intercepted energy, iQ& , for the collector with d  as receiver aperture diameter. The next step is to 

calculate 
0

Q& . According to Stine and Harrigan (1985), ideally, in a well-insulated cavity, the 

cavity temperature is reasonably uniform and heat loss occurs primarily by convection and 

radiation from the cavity aperture. The heat loss rate from the cavity is described in Section 

3.5.1.1. Once the heat loss rate is available, netQ&  can be calculated as: 

 

0
QQQ inet
&&& −=                (A.8) 

 

It is clear that the amount of absorbed heat rate, netQ& , can be described in terms of the cavity 

aperture diameter, d . The function ‘collector’ determines the net heat rate absorbed by the 

receiver for different cavity aperture sizes. The result is the curve shown in Figure A.4. This is for 

pe = 0.0067 and rimψ = 45°, as suggested by Stine and Harrigan (1985). From these curves, one 

can see that there exists an aperture diameter that allows the maximum amount of solar power to 

be absorbed by the working fluid. Such a curve can be numerically approximated with the 

discrete least squares approximation method (Burden and Faires, 2005) or by using the function 

‘curvefit’ in MATLAB ( ∑ =
=

10

0i

i

inet dxQ& ). 
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Figure A.4 Relation between net absorbed heat rate and the aperture diameter for a range of concentrator 

diameters according to the function ‘collector’. 

 

The specific aperture diameter is coupled to the receiver’s channel dimensions (its length, 

hydraulic diameter and aspect ratio – only for a plated receiver, see equation 3.20). The method 

of entropy generation minimisation can now be used to show whether or not it is better to have an 

aperture size at the optimum d , as suggested from the curve. The literature suggests that the 

optimum geometry for a component in a system is not necessarily the optimum geometry when 

considering the whole system. For this reason, d  will not be chosen to be at its optimum, since 

this optimum is not necessarily the optimum for the whole system. Rather, the aperture diameter 

is written in terms of the geometry variables so that the net rate of heat absorbsion can be written 

as a function of the receiver geometry and can be included in the objective function (equation 

3.61). The optimum aperture diameter can be found when the optimum geometry variables are 

found. In the function ‘collector’, the shadow of the receiver and its insulation are also accounted 

for when calculating the available power at the receiver. Heat loss through conduction at the 

cavity receiver through the insulation is usually small and omitted. In the function ‘collector’, 

however, it was assumed that the conduction heat loss rate is 10% of the sum of the radiation 

and convection heat loss rates. 
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Nomenclature 

 

A   Area            m
2
 

d   Aperture diameter of cavity receiver (or nW )       m  

D   Diameter           m 

pe   Parabolic concentrator error         rad 

f   Focal length           m 

F   Focal point           - 

I   Irradiance           W/m
2
 

n   Number of standard deviations in receiver-sizing algorithm     - 

p   Parabolic radius           m 

Q&   Heat transfer rate          W 

r∆   Diameter of sun’s disc at the focal point        m 

R   Radius of parabolic dish concentrator        m 

Wn  Aperture diameter of cavity receiver (or d )       m 

x   Discrete least-squares approximation constant       - 

 

α   Receiver absorptance          - 

α   Defining angle at receiver aperture        rad 

β   Defining angle at receiver aperture        rad 

Γ   Flux capture fraction          - 

∆ψ   Incremental parabola angle defining ring        - 

ε   Angular diameter of sun’s disc         - 

sρ   Mirror surface specular reflectance        - 

σ   Parabolic concentrator error          rad 

Φ   Radiant flux           W  
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Φd    Total radiant flux reflected from differential concentrator area to focus point - 

ψ   Specific concentrator rim angle         - 

rimψ   Concentrator rim angle          - 

 

Subscripts: 
 

0   Loss due to convection and radiation 

b   Beam 

c   Concentrator 

conc   Concentrator 

i   Intercepted total 

inter  Intercepted 

last  Last 

loss  Loss 

net , net Net available for receiver fluid 

PD   Parabolic dish 

rim , rim Rim / to the rim 

s   Surface 

tot  Total 
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Appendix B 

ENTROPY GENERATION RATE TABLE 
 

Table B.1 Entropy generation rate equations from the literature. 

Eq. Entropy generation 
research field 

Entropy generation rate equation Comments/ 
Symbols 

References 

1 A. Internal 
flow 

Per unit tube length, 
constant heat flux, for 
all ducts (one-
dimensional heat 
transfer duct) 
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=T  bulk temperature of 
the stream 

Bejan (1982); 
Bejan et al. (1996) 

3   Constant heat flux, 
per unit tube length, 
for a circular tube, 
single-phase fluid 522
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=T  bulk temperature of 
the stream 
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4   Constant heat flux, 
incompressible 
viscous fluid, laminar, 
fully developed 
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iT  = inlet temperature and 
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Zimparov et al. 
(2006c) 

5   Constant and uniform 
heat flux, per unit 
length of tube, for all 
tubes, single-phase, 
fully developed 
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=T  bulk fluid 
temperature, 

=P perimeter 

Ratts and Raut 
(2004) 

6   Constant and uniform 
heat flux, for all tubes 

with tube length L , 
fluid properties 
assumed to be 
constant, single-
phase, fully 
developed 
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7   Constant heat flux, 
including the fluid 
temperature variation 
along tube length of 
heat exchanger, for 
ideal gas or 
incompressible flow, 
circular 
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8   Per unit tube length, 
constant channel wall 
temperature for all 
ducts (one-
dimensional heat 
transfer duct) 
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9   Convective heat 
transfer in a duct with 
constant wall 
temperature, circular 
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Yilmaz et al. (2001) 

10 B. External 
flow 

Heat transfer and 
drag on an immersed 
body 
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  Bejan (1996) 

11   Heat transfer and 
drag on an immersed 
body 
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Bejan et al. (1996) 

12 C. 
Augmentation 
techniques 
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13 D. Local 
entropy 
generation 
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14   The volumetric rate of 
entropy generation 
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(2001); Bejan et al. 
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15 E. Heat 
Exchangers 

For tubular, full size 
heat exchanger with 
constant heat flux, 
assume ideal gas or 
incompressible fluid 
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16   Counterflow and 
cross-flow heat 
exchangers, where 
the working fluid is an 
ideal gas with 
constant specific heat, 
for all tubes 
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1 represents the cold 
stream and 2 represents 
the hot stream 

Yilmaz et al. 
(2001); 
Hesselgreaves 
(2000); Bejan 
(1982); Bejan et al. 
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17   Gas-to-gas 
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18   Balanced counterflow 
heat exchanger, 
water, with perfect 
insulation 
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1 represents the cold 
stream and 2 represents 
the hot stream 

Cornelissen and 
Hirs (1997) 

19   Parallel plates 
counterflow, single-
phase ideal gas fluids, 
fully developed, 
laminar or turbulent, 
adiabatic boundary 
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1 - cold stream in,              
2 - cold stream out,          
3 - hot stream in,                
4 - hot stream out 

Ordόñez and Bejan 
(2000) 

20   Counterflow heat 
exchanger (with zero 
pressure drop) 
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1 represents the cold 
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(2000) 
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21   Balanced counterflow 
with zero pressure 
drop 
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22   Balanced counterflow 
with finite pressure 
drop, constant heat 
flux, fully developed, 
perfect gas, 1 - cold 
stream 
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23 F. Solar 
Receiver 

Isothermal collector 
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24   Non-isothermal 
collector receiver - 
where a stream of 
single-phase fluid 
circulated through 
receiver 
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25   Entropy generation 
due to transformation 
of monochromatic 
radiation into 
blackbody radiation 
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26   Entropy generation 
due to scattering 
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27 G. 
Components 
for whole 
system 
analysis 

Compressor or 
turbine for ideal gas ( ) ( )
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29   Open cycle ideal gas 
regenerator 
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Nomenclature 
 

A   Cross-sectional area       m
2
 

c   Specific heat        J/kgK 

D   Diameter        m 

f   Friction factor        - 

DF   External drag force       N 

G   Mass velocity        kg/sm
2
 

h   Planck’s constant (solar radiation)     - 

k   Boltzmann’s constant (solar radiation)     - 

k   Gas constant ( vp cc / )       - 

k   Thermal conductivity of a fluid      W/mK 

vbi   Number of watts arriving per unit area     W 

I&   Irreversibility rate       W 

L   Length         m 

m&   Mass flow rate        kg/s 

NTU   Number of transfer units       - 

Nu   Nusselt number        -  

P   Perimeter        m 

pP,   Pressure        Pa 

q   Heat transfer rate       W 

q ′′&   Heat transfer flux       W/m
2
 

Q&   Heat transfer rate       W 

R   Gas constant        J/kgK 

s   Specific entropy        J/kgK 

S   Entropy         J/K 

S&   Entropy rate        W/K 
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genS ′′′&   Entropy generation rate per unit volume     W/m
3
K 

St   Stanton number        - 

T   Temperature        K 

0
T   Fluid flow temperature or environment temperature   K 

T *
  Apparent temperature of the sun as an exergy source   K 

U   Total energy inventory of the blackbody radiation    J 

∞U   Free-stream velocity       m/s 

v   Frequency (solar radiation)      Hz 

v   Kinematic viscosity        m
2
/s 

v   Velocity         m/s 

x   Distance in x -direction       m 

y   Distance in y -direction       m 

 

ε   Heat transfer effectiveness      - 

µ   Dynamic viscosity       kg/ms 

ρ   Density         kg/m
3

 

φ   Dimensionless viscous dissipation     - 

 

Subscripts: 

0   Surrounding/Loss 

0   Zero pressure (ideal gas) for pc   

a   Cold stream 

ave   Average 

B   Base 

c   Collector 

D   Based on diameter 

e   Hot stream 

gen   Generation 

h   Hydraulic 

i   Channel rank 

i   Inlet 

in   Inlet 

loss   Loss 
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m   Mean 

o   Out 

out   Outlet 

p   For constant pressure 

v   For constant volume 

w   Wall 

x   In x -direction          

y   In y -direction          

∞   Surrounding area 

 

Superscripts: 

*  Solar 

‘  Per unit length 

.  Time rate of change 

_  Average 

in   Inlet 

P∆   Due to pressure difference 

T∆   Due to temperature difference 
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Appendix C 

MATLAB CODE 

M-File - collector 
 

clc; 

format long; 

  

global Gyes  

global a0  

global a1 

global a2 

global a3 

global a4 

global a5 

global a6 

global a7 

global a8 

global a9 

global a10 

global tel 

global Wn 

global As 

global r 

global choice 

global change 

global T0g 

global Ig 

global wg 

global P1g 

global hightg 

global lengthg 

global eg 

global Tsg 

global specreflg 

global kg 

global tg 

global ksolidg 

global betag 

global alphag 

  

%assumptions: 

Ts          = 1050; 

  

  

Tsurr       = 300; 

if change ==1 & T0g>0 

    Tsurr = T0g; 

end 

  

  

%Nu          = 14; 

%air at 750K 

k           = 0.05; 

  

  

specrefl    = 0.93; 

%Duffie & Beckman, 1991, p212 

if change ==1 & specreflg>0 

    specrefl = specreflg; 

end 

  

  

alpha       = 0.98; 

if change ==1 & alphag>0 

    alpha = alphag; 

end 
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beta        = 90; 

if change ==1 & betag>0 

    beta = betag; 

end 

  

  

%average irradiance: 

I           = 1000; 

if change ==1 & Ig>0 

    I = Ig; 

end 

  

  

%concentrator error: 

e           = 0.0067; 

if change==1 & eg~=[] 

    e = eg; 

end 

  

  

%wind factor: 1-10 times natural 

w           = 1; 

if change==1 & wg>0 

    w = wg; 

end 

  

  

t = 1; 

  

disp('THE RELATIONSHIP BETWEEN THE INTERCEPTED ENERGY AND CAVITY APERTURE DIAMETER,') 

disp('WILL NOW BE CALCULATED FOR THE CAVITY RECEIVER') 

disp(' ') 

As = input('Collector area (m^2): ') 

%might want to include a optical efficiency here? 

  

  

rim = input('Rim angle of collector (in degrees): ') 

  

f = sqrt(As/(4*pi*(sind(rim))^2/(1+cosd(rim))^2)) 

  

  

%This is only a starting guess - a small guess such that it increases 

Wn(t) = sqrt(4*(As/50000)/pi); 

  

%According to Reddy & Senhil Kumar (2008 & 2009) for Aw/A1 = 8 

  

WnAs(t) = 8*pi*Wn(t)^2/4; 

  

rsphere(t) = sqrt((WnAs(t) + pi*Wn(t)^2/4)/3/pi); 

  

  

  

Qnetfirst = 0.001; 

  

increment = 0.01; 

  

%first calculation 

  

  

%assume total error 

  

  

  

angle = 0; 

  

dangle = 1; 

  

sum = 0; 
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while angle < rim 

     

    dr = Wn(t)*cosd(angle) 

    p = 2*f/(1+cosd(angle)) 

    n = 2*atan(dr/2/p)/e 

    

    %from appendix G 

    r = 0.2316419; 

    b1 = 0.319381530; 

    b2 = -0.356563782; 

    b3 = 1.781477937; 

    b4 = -1.821255978; 

    b5 = 1.330274429; 

     

    x = n/2; 

    f1 = 1/sqrt(2*pi)*exp(-(x^2)/2); 

    t1 = 1/(1+r*x); 

    Q = f1*(b1*t1 + b2*t1^2 + b3*t1^3 + b4*t1^4 + b5*t1^5); 

    F = 1 - 2*Q; 

     

    

     

     

    slope = 8*pi*I*f^2*sind(angle)/(1+cosd(angle))^2; 

     

    %Global Pressure ratio should be global variable 

     

    %insulation thickness 

    Gr = 9.81*(Wn(t)*sqrt(3))^3/(4.765*10^-5/0.8)^2 

    Nu = 0.698*Gr^0.209*(1+cosd(beta))^0.968*(3.5)^-0.317*(1/sqrt(3))^0.425 

     

    h = w*Nu*k/2/rsphere(t); 

    Qloss(t) = 2*h*pi/4*Wn(t)^2*(Ts-Tsurr); 

    kins = 0.05; 

     

    thick(t) = kins*4*pi*rsphere(t)^2*(Ts-Tsurr)/Qloss(t)*10; 

     

        

    dQinter = specrefl*alpha*F*slope*pi/180*dangle; 

     

     

     

     

    if pi*(rsphere(t)+thick(t))^2 < 4*pi*f^2*(sind(rim))^2/(1+cosd(rim))^2 

    sum = sum + dQinter; 

    end 

     

    angle = angle + dangle; 

     

end 

  

  

  

  

  

%aperture used to determine h 

Gr = 9.81*(Wn(t)*sqrt(3))^3/(4.765*10^-5/0.8)^2 

    Nu = 0.698*Gr^0.209*(1+cosd(beta))^0.968*(3.5)^-0.317*(1/sqrt(3))^0.425 

h = w*Nu*k/2/rsphere(t) 

  

  

  

Qloss(t) = 2*h*pi/4*Wn(t)^2*(Ts-Tsurr); 

%include conduction heat loss 

Qloss(t) = Qloss(t) + Qloss(t)/10; 

  

  

  

Qnet(t) = sum - Qloss(t) 
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iteration = 0; 

  

while pi/4*Wn(t)^2 < As/100 

    %this is to make sure the concentration ratio ratio is larger than 100 

    %according to Solar (Robert Pitz-Paal) 

     

    iteration = iteration +1; 

    t = t+1; 

  

Wn(t) = Wn(t-1) + increment 

     

  

  

  

%According to Reddy & Senhil Kumar (2008 & 2009) for Aw/A1 = 8 

  

WnAs(t) = 8*pi*Wn(t)^2/4; 

  

rsphere(t) = sqrt((WnAs(t) + pi*Wn(t)^2/4)/3/pi); 

  

  

  

  

angle = 0; 

  

dangle = 1; 

  

sum = 0; 

  

while angle < rim 

     

    dr = Wn(t)*cosd(angle); 

    p = 2*f/(1+cosd(angle)); 

    n = 2*atan(dr/2/p)/e 

    

    %from appendix G 

    r = 0.2316419; 

    b1 = 0.319381530; 

    b2 = -0.356563782; 

    b3 = 1.781477937; 

    b4 = -1.821255978; 

    b5 = 1.330274429; 

     

    x = n/2; 

    f1 = 1/sqrt(2*pi)*exp(-(x^2)/2); 

    t1 = 1/(1+r*x); 

    Q = f1*(b1*t1 + b2*t1^2 + b3*t1^3 + b4*t1^4 + b5*t1^5); 

    F = 1 - 2*Q; 

     

    

     

  

    slope = 8*pi*I*f^2*sind(angle)/(1+cosd(angle))^2; 

     

    %insulation thickness 

    Gr = 9.81*(Wn(t)*sqrt(3))^3/(4.765*10^-5/0.8)^2 

    Nu = 0.698*Gr^0.209*(1+cosd(beta))^0.968*(3.5)^-0.317*(1/sqrt(3))^0.425 

    h = w*Nu*k/2/rsphere(t); 

    Qloss(t) = 2*h*pi/4*Wn(t)^2*(Ts-Tsurr); 

    kins = 0.05; 

     

    thick(t) = kins*4*pi*rsphere(t)^2*(Ts-Tsurr)/Qloss(t)*10; 

     

    dQinter = specrefl*alpha*F*slope*pi/180*dangle; 

     

     

     

    if pi*(rsphere(t)+thick(t))^2 < 4*pi*f^2*(sind(rim))^2/(1+cosd(rim))^2 
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    sum = sum + dQinter; 

    end 

     

    angle = angle + dangle; 

     

end 

  

  

  

  

  

Gr = 9.81*(Wn(t)*sqrt(3))^3/(4.765*10^-5/0.8)^2 

    Nu = 0.698*Gr^0.209*(1+cosd(beta))^0.968*(3.5)^-0.317*(1/sqrt(3))^0.425 

  

h = w*Nu*k/2/rsphere(t) 

  

  

Qloss(t) = 2*h*pi/4*Wn(t)^2*(Ts-Tsurr); 

%include conduction heat loss 

Qloss(t) = Qloss(t) + Qloss(t)/10; 

  

  

  

  

Qnet(t) = sum - Qloss(t); 

  

end 

  

plot(Wn,Qnet) 

  

  

p = polyfit(Wn,Qnet,10) 

  

for z = 1:length(Wn) 

         

        PQnet(z) = p(11) + p(10)*Wn(z) + p(9)*Wn(z)^2 + p(8)*Wn(z)^3 + p(7)*Wn(z)^4 + 

p(6)*Wn(z)^5 + p(5)*Wn(z)^6 + p(4)*Wn(z)^7 + p(3)*Wn(z)^8 + p(2)*Wn(z)^9 + p(1)*Wn(z)^10; 

         

end 

         

 fid = fopen('gauss.txt','w'); 

   

        fprintf(fid,'%6.10f   ',c); 

        fclose(fid); 

         

        %it seems that the ALG061 is very sensitive for digits, therefor 

        %'%6.10f: meaning 10 digits. 

         

        ALG061 

         

        a0 = p(11); 

        a1 = p(10); 

        a2 = p(9); 

        a3 = p(8); 

        a4 = p(7); 

        a5 = p(6); 

        a6 = p(5); 

        a7 = p(4); 

        a8 = p(3); 

        a9 = p(2); 

        a10 = p(1); 

         

         

         

        for z = 1:length(Wn) 

         

        FQnet(z) = X(1) + X(2)*Wn(z) + X(3)*Wn(z)^2 + X(4)*Wn(z)^3 + X(5)*Wn(z)^4; 

         

        end 

         

        Figure(1) 
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        plot(Wn,FQnet) 

        hold on 

        plot(Wn,PQnet) 

        hold off 

         

        Figure(2) 

        plot(Wn,PQnet) 

        xlabel('Wn: Aperture diameter (m)'); 

        ylabel('Qnet intercepted (W)'); 

         

        clear X 

        clear r 

        clear k 

         

%so now, FQnet is a function of Wn, which is a function of D and L of the 

%receiver 

  

% thus, if Wn = Dap = sqrt(D*L/2/pi) 

  

%Q* - Qloss = a0 + a1*sqrt(D*L/2/pi) + a2*(D*L/2/pi) + a3*(sqrt(D*L/2/pi))^3 + 

a4*(sqrt(D*L/2/pi))^4; 

%also, accompanying this equation, are two constraints for the smallest and  

%largest diameter 
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function [F]=fun(X); 

 

% fun 

% 

% Function evaluation for optimisation. This function should yield 

% the objective function value. 

%    

%   synopsis: 

% 

%     [F] = fun(X) 

% 

%   where: 

%        

%       F = objective function value 

%       X = variable vector 

%    

global Gyes  

global a0  

global a1 

global a2 

global a3 

global a4 

global a5 

global a6 

global a7 

global a8 

global a9 

global a10 

global tel 

global Wn 

global As 

global r 

global choice 

global change 

global T0g 

global Ig 

global wg 

global P1g 

global hightg 

global lengthg 

global eg 

global Tsg 

global specreflg 

global kg 

global tg 

global ksolidg 

global betag 

global alphag 

  

  

%parameters: 

ec = Gyes(tel,2)/100; 

et = Gyes(tel,5)/100; 

  

  

  

  

rlow = Gyes(tel,3); 

rhigh = Gyes(tel,4); 

mlow = Gyes(tel,8); 

mhigh = Gyes(tel,9); 

  

%for r = rlow:0.05:rhigh 

  

  

m = (mhigh - mlow)/(rhigh-rlow)*(r-rlow)+mlow; 

  

  

  

%Recuperator: 

hight = 1; 
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%if hightg>0 

 %   hight=hightg; 

%end 

  

  

t = 0.001; 

%if tg>0 

 %  t = tg; 

%end 

  

ksolid = 401; 

%if ksolidg>0 

 %   ksolid=ksolidg; 

%end 

  

  

P1 = 80000; 

%if P1g>0 

 %   P1=P1g; 

%end 

  

T1 = 300; 

%if T0g>0 

 %   T1=T0g; 

%end 

  

T0=T1; 

  

  

%X(4) = X4/1000 for scaling 

  

%Cold side point3-4: 

%assume mu,cold and Pr,c at +-350C 

muc = 3.101*10^-5; 

Prc = 0.6937; 

kc = 0.04721; 

cpc = 1056; 

rhoc = 0.5664*(r*P1)/100000; 

  

mplate = 2*m/hight*(t+X(4)/1000/X(3)/2*(X(3)+1)); 

  

  

Rec = 4*X(3)*mplate/muc/X(4)*1000/(X(3)+1)^2; 

  

fc = (0.79*log(Rec)-1.64)^-2; 

  

Nuc = fc/8*Prc*(Rec-1000)/(1+12.7*(fc/8)^0.5*(Prc^(2/3)-1)); 

  

hc = kc/X(4)*1000*Nuc; 

  

  

%Hot side point9-10: 

%assume mu,hot and Pr,h at +-450C 

muh = 3.415*10^-5; 

Prh = 0.6965; 

kh = 0.05298; 

cph = 1081; 

rhoh = 0.488*(r*P1)/100000; 

  

  

Reh = 4*X(3)*mplate/muh/X(4)*1000/(X(3)+1)^2; 

  

fh = (0.79*log(Reh)-1.64)^-2; 

  

Nuh = fh/8*Prh*(Reh-1000)/(1+12.7*(fh/8)^0.5*(Prh^(2/3)-1)); 

  

hh = kh/X(4)*1000*Nuh; 

  

  

Rf = 0.0004; 

Asplate = X(5)*X(4)/1000*(X(3)+1)*(1+1/X(3)); 
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U = (1/hc + 2*Rf + X(5)/ksolid + 1/hh)^-1; 

  

NTU = U*Asplate/mplate/cpc; 

  

c = cpc/cph; 

  

er = (1-exp(-NTU*(1-c)))/(1-c*exp(-NTU*(1-c))); 

  

  

  

%constants 

  

  

R = 287; 

cp = 1004; 

dT23 = 2; 

dT45 = 2; 

dT67 = 2; 

dT89 = 2; 

  

  

  

dP23 = 0.001; 

  

  

  

dP34 = (fc*X(5)/(X(4)/1000)^5*8*mplate^2*X(3)^2/(X(3)+1)^4/rhoc)/(P1*r*(1-dP23)) 

  

  

%the pipes going up to the receiver should be smaller in diameter to 

%maximize solar availability (according to Shah the pipe losses are 1%) 

dP45 = 0.004; 

dP56 = 0.04; 

dP67 = 0.004; 

dP89 = 0.001; 

  

  

  

dP910 = (fh*X(5)/(X(4)/1000)^5*8*mplate^2*X(3)^2/(X(3)+1)^4/rhoh)/P1 

  

  

  

Qloss23 = 2; 

Qloss45 = 2; 

Qloss67 = 2; 

Qloss89 = 2; 

Qlossr = 2; 

  

  

k = 1.4; 

  

clear i 

clear D 

clear E 

  

  

%phase1: 

  

   

    T2 = (T1*(1+(r^((k-1)/k)-1)/ec)); 

    T3 = (T2 - dT23); 

    

%phase2: 

  

    %initial guess 

     

    T5 = 800; 

     

     %choice 2 = pipe 

    if choice == 2 
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        X(6)=1; 

    end 

     

    %round/plate - X(6) =1 

    Q = a0 + a1*sqrt((X(1)/100)*X(2)/4/pi*(X(6)+1)) + a2*((X(1)/100)*X(2)/4/pi*(X(6)+1)) 

+ a3*((X(1)/100)*X(2)/4/pi*(X(6)+1))^(3/2) + a4*((X(1)/100)*X(2)/4/pi*(X(6)+1))^2 +  

a5*((X(1)/100)*X(2)/4/pi*(X(6)+1))^(5/2) + a6*((X(1)/100)*X(2)/4/pi*(X(6)+1))^3 + 

a7*((X(1)/100)*X(2)/4/pi*(X(6)+1))^(7/2) + a8*((X(1)/100)*X(2)/4/pi*(X(6)+1))^4 + 

a9*((X(1)/100)*X(2)/4/pi*(X(6)+1))^(9/2) + a10*((X(1)/100)*X(2)/4/pi*(X(6)+1))^5; 

     

   

    T6 = Q/m/1145 + T5; 

    T7 = T6 - dT67; 

     

%phase3: 

     

  

    P2 = P1*r; 

    P3 = P2*(1-dP23); 

         

     

    P4 = P3*(1-dP34); 

    P5 = P4*(1-dP45) 

     

    mu = 4.2*10^-5; 

    rho = 0.34*(r*P1)/100000; 

    %round/plate: 

    if choice==1 

        P6 = P5 - ((0.79*log(4*m*X(6)/mu/(X(6)+1)^2/(X(1)/100))-1.64)^-

2)*(X(2)/(X(1)/100)^5)*(8*m^2*X(6)^2/rho/(X(6)+1)^4) 

    end 

     

    if choice == 2 

        P6 = P5 - ((0.79*log(4*m/mu/pi/(X(1)/100))-1.64)^-

2)*(X(2)/(X(1)/100)^5)*(8*m^2/rho/pi^2); 

    end 

     

    P7 = P6*(1-dP67); 

    P10 = P1; 

     

         

    P9 = P10*(1+dP910); 

    P8 = P9*(1+dP89); 

     

%phase4: 

  

    T8 = T7*(1-et*(1-1/((P7/P8)^((k-1)/k)))); 

    T9 = T8 - dT89; 

    T10 = T9 - er*(T9-T2); 

     

%phase5: 

  

    T4 = er*(T9-T3)+T3; 

    T5 = T4 - dT45; 

  

 D(1) = 800; 

 D(2) = T5; 

    

     

  

 %___________________________________________________________________ 

    %repeat: 

   

  i=2; 

 while (abs(D(i)-D(i-1))  > 0.001) & (i < 100) 

 i = i+1; 

  

 %phase2: 

  

    %initial guess 
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    %choice 2 = pipe 

    if choice == 2 

        X(6)=1; 

    end 

     

    %round/plate - X(6) =1 

        Q = a0 + a1*sqrt((X(1)/100)*X(2)/4/pi*(X(6)+1)) + 

a2*((X(1)/100)*X(2)/4/pi*(X(6)+1)) + a3*((X(1)/100)*X(2)/4/pi*(X(6)+1))^(3/2) + 

a4*((X(1)/100)*X(2)/4/pi*(X(6)+1))^2 +  a5*((X(1)/100)*X(2)/4/pi*(X(6)+1))^(5/2) + 

a6*((X(1)/100)*X(2)/4/pi*(X(6)+1))^3 + a7*((X(1)/100)*X(2)/4/pi*(X(6)+1))^(7/2) + 

a8*((X(1)/100)*X(2)/4/pi*(X(6)+1))^4 + a9*((X(1)/100)*X(2)/4/pi*(X(6)+1))^(9/2) + 

a10*((X(1)/100)*X(2)/4/pi*(X(6)+1))^5; 

     

   

    T6 = Q/m/1145 + T5; 

    T7 = T6 - dT67; 

     

%phase3: 

     

  

    P2 = P1*r; 

    P3 = P2*(1-dP23); 

         

     

    P4 = P3*(1-dP34); 

    P5 = P4*(1-dP45); 

     

    mu = 4.2*10^-5; 

    rho = 0.34*(r*P1)/100000; 

    if choice==1 

        P6 = P5 - ((0.79*log(4*m*X(6)/mu/(X(6)+1)^2/(X(1)/100))-1.64)^-

2)*(X(2)/(X(1)/100)^5)*(8*m^2*X(6)^2/rho/(X(6)+1)^4); 

    end 

     

    if choice == 2 

        P6 = P5 - ((0.79*log(4*m/mu/pi/(X(1)/100))-1.64)^-

2)*(X(2)/(X(1)/100)^5)*(8*m^2/rho/pi^2); 

    end 

     

    P7 = P6*(1-dP67); 

    P10 = P1; 

     

         

    P9 = P10*(1+dP910); 

    P8 = P9*(1+dP89); 

     

%phase4: 

  

    T8 = T7*(1-et*(1-1/((P7/P8)^((k-1)/k)))); 

    T9 = T8 - dT89; 

    T10 = T9 - er*(T9-T2); 

     

%phase5: 

  

  T4 = er*(T9-T3)+T3; 

  T5 = T4 - dT45; 

   

  D(i) = T5; 

   

 end 

  

       

  

Sgen1 = m*1007*log(T2/T1) - m*R*log(P2/P1)  

Sgen2 = m*1007*log(T3/T2) - m*R*log(P3/P2) + Qloss23/T0 

Sgen3 = m*1145*log(T5/T4) - m*R*log(P5/P4) + Qloss45/T0 

Sgen4 = m*1070*(log((T4*T10/T3/T9)*(P4*P1/P3/P9)^((1-k)/k)) + (T10-T1)/T0) + Qlossr/T0 

Sgen4a = m*1070*(log((T4*T10/T3/T9))+(T10-T1)/T0)-m*R*log((P4*P1/P3/P9))+Qlossr/T0 

Sgen5 = m*1145*log(T6/T5) - m*R*log(P6/P5)  

Sgen6 = m*1145*log(T7/T6) - m*R*log(P7/P6) + Qloss67/T0 

Sgen7 = m*1070*log(T9/T8) - m*R*log(P9/P8) + Qloss89/T0 
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Sgen8 = m*1145*log(T8/T7) - m*R*log(P8/P7) 

  

Sgen = Sgen1+Sgen2+Sgen3+Sgen4+Sgen5+Sgen6+Sgen7+Sgen8 

  

%syms Wnet 

  

-Q; 

-T0*Sgen; 

%objective function 

  

%Wnet = -T0*Sgen + Q + m*1007*(T1-T10) - m*T1*1007*log(T1/T10); 

Wnet = -T0*Sgen + Q - m*T1*1007*log(T1/T10); 

%Note: The term m*1070*(T10-T1)/T0) at the recuperator entropy generation 

% Sgen4, should actually be added here, but as it is it is fine 

  

F1 = m*1145*(T7-T8)-m*1007*(T2-T1); 

%T1 

%T2 

%T3 

%T4 

%T5 

%T6 

%T7 

%T8 

%T9 

%T10 

%m 

  

%m*1007*(T1-T10)-m*T1*1007*log(T1/T10) 

  

F=-Wnet 

F1 
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function [GF]=gradf(X); 

% gradf 

% 

% Gradient evaluation for optimisation. This function should yield 

% the gradient vector of the objective function. 

%    

%   synopsis: 

% 

%    [GF] = gradf(X) 

% 

%   where: 

%        

%      GF = gradient vector of the objective function 

%       X = variable vector 

%                

  

h = 0.00000001; 

  

clear Xgradientp 

clear Xgradientn 

  

Xgradientp = X + [h 0 0 0 0 0]; 

Xgradientn = X - [h 0 0 0 0 0]; 

  

GF(1) = (fun(Xgradientp) - fun(Xgradientn))/(h*2); 

  

clear Xgradientp 

clear Xgradientn 

  

Xgradientp = X + [0 h 0 0 0 0]; 

Xgradientn = X - [0 h 0 0 0 0]; 

  

GF(2) = (fun(Xgradientp) - fun(Xgradientn))/(h*2); 

  

clear Xgradientp 

clear Xgradientn 

  

Xgradientp = X + [0 0 h 0 0 0]; 

Xgradientn = X - [0 0 h 0 0 0]; 

  

GF(3) = (fun(Xgradientp) - fun(Xgradientn))/(h*2); 

  

clear Xgradientp 

clear Xgradientn 

  

Xgradientp = X + [0 0 0 h 0 0]; 

Xgradientn = X - [0 0 0 h 0 0]; 

  

GF(4) = (fun(Xgradientp) - fun(Xgradientn))/(h*2); 

  

clear Xgradientp 

clear Xgradientn 

  

Xgradientp = X + [0 0 0 0 h 0]; 

Xgradientn = X - [0 0 0 0 h 0]; 

  

GF(5) = (fun(Xgradientp) - fun(Xgradientn))/(h*2); 

  

clear Xgradientp 

clear Xgradientn 

  

Xgradientp = X + [0 0 0 0 0 h]; 

Xgradientn = X - [0 0 0 0 0 h]; 

  

GF(6) = (fun(Xgradientp) - fun(Xgradientn))/(h*2); 
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function [C]=conin(X); 

% conin 

% 

% Inequality constraint function evaluation for optimisation. This 

% function should yield the inequality constraint function values. 

%    

%   synopsis: 

%     [C] = conin(X) 

% 

%   where: 

%        

%       C = inequality constraint function values 

%       X = variable vector 

global Gyes  

global a0  

global a1 

global a2 

global a3 

global a4 

global a5 

global a6 

global a7 

global a8 

global a9 

global a10 

global tel 

global Wn 

global As 

global r 

global choice 

global change 

global T0g 

global Ig 

global wg 

global P1g 

global hightg 

global lengthg 

global eg 

global Tsg 

global specreflg 

global kg 

global tg 

global ksolidg 

global betag 

global alphag 

  

  if choice == 2 

    X(6)=1; 

end 

  

C(1) = (X(1)/100)*X(2)*(X(6)+1)/16-As/100; 

C(2) = Wn(2) -sqrt((X(1)/100)*X(2)*(X(6)+1)/4/pi); 

  

%pipe/plate 

if choice==1 

    C3 = X(1)/100/2*(X(6)+1)-(sqrt(3)-1)/2*sqrt(X(1)/100*X(2)/4/pi*(X(6)+1)); 

end 

if choice == 2 

    C3 = 2*X(1)/100 - (sqrt(3)-1)/2*sqrt(X(1)/100*X(2)/2/pi); 

end 

  

C(3) = C3; 

C(4) = Tsfunc(X) - 1200; 

C(5) = -(X(1)/100); 

C(6) = -X(2); 

C7 = sqrt(As/pi) 

C(7) = X(5) - C7; 

 

if choice==1 

C(8) = 2.5-X(6); 

end 
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function [GC]=gradc(X); 

% gradc 

% 

% Gradient evaluation for optimisation. This function should yield 

% the gradient vectors of the inequality constraint functions. 

%    

%   synopsis: 

% 

%    [GC] = gradc(X) 

% 

%   where: 

%        

%      GC = gradient vectors for inequality constraints 

%       X = variable vector 

%                

global Gyes  

global a0  

global a1 

global a2 

global a3 

global a4 

global a5 

global a6 

global a7 

global a8 

global a9 

global a10 

global tel 

global Wn 

global As 

global r 

global choice 

global change 

global T0g 

global Ig 

global wg 

global P1g 

global hightg 

global lengthg 

global eg 

global Tsg 

global specreflg 

global kg 

global tg 

global ksolidg 

global betag 

global alphag 

  

  

GC(1,1) = X(2)/100*(X(6)+1)/16; 

GC(1,2) = (X(1)/100)*(X(6)+1)/16; 

GC(1,3) = 0; 

GC(1,4) = 0; 

GC(1,5) = 0; 

if choice==1 

    GC(1,6) = (X(1)/100)*X(2)/16; 

end 

  

if choice==2 

    GC(1,6) = 0; 

end 

  

  

GC(2,1) = -X(2)/100*(X(6)+1)/4/pi*0.5*((X(1)/100)*X(2)*(X(6)+1)/4/pi)^-0.5; 

GC(2,2) = -(X(1)/100)*(X(6)+1)/4/pi*0.5*((X(1)/100)*X(2)*(X(6)+1)/4/pi)^-0.5; 

GC(2,3) = 0; 

GC(2,4) = 0; 

GC(2,5) = 0; 

if choice==1 

     GC(2,6) = -(X(1)/100)*X(2)/4/pi*0.5*((X(1)/100)*X(2)*(X(6)+1)/4/pi)^-0.5; 

end 
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if choice ==2 

   GC(2,6)=0; 

end 

  

  

  

if choice ==1 

    GC(3,1) = 1/200*X(6)+1/200-

1648431872091733/180143985094819840/(X(1)*X(2)/pi*(X(6)+1))^(1/2)*X(2)/pi*(X(6)+1); 

    GC(3,2) = -

1648431872091733/180143985094819840/(X(1)*X(2)/pi*(X(6)+1))^(1/2)*X(1)/pi*(X(6)+1); 

    GC(3,3) = 0; 

    GC(3,4) = 0; 

    GC(3,5) = 0; 

    GC(3,6) = 1/200*X(1)-

1648431872091733/180143985094819840/(X(1)*X(2)/pi*(X(6)+1))^(1/2)*X(1)*X(2)/pi; 

end 

  

if choice == 2 

    GC(3,1) = 1/50-

1648431872091733/180143985094819840*2^(1/2)/(X(1)*X(2)/pi)^(1/2)*X(2)/pi; 

    GC(3,2) = -1648431872091733/180143985094819840*2^(1/2)/(X(1)*X(2)/pi)^(1/2)*X(1)/pi; 

    GC(3,3) = 0; 

    GC(3,4) = 0; 

    GC(3,5) = 0; 

    GC(3,6) = 0; 

end 

     

  

  

h = 0.00001; 

GC(4,1) = (Tsfunc(X+[h 0 0 0 0 0])-Tsfunc(X-[h 0 0 0 0 0]))/(2*h); 

GC(4,2) = (Tsfunc(X+[0 h 0 0 0 0])-Tsfunc(X-[0 h 0 0 0 0]))/(2*h); 

GC(4,3) = (Tsfunc(X+[0 0 h 0 0 0])-Tsfunc(X-[0 0 h 0 0 0]))/(2*h); 

GC(4,4) = (Tsfunc(X+[0 0 0 h 0 0])-Tsfunc(X-[0 0 0 h 0 0]))/(2*h); 

GC(4,5) = (Tsfunc(X+[0 0 0 0 h 0])-Tsfunc(X-[0 0 0 0 h 0]))/(2*h); 

GC(4,6) = (Tsfunc(X+[0 0 0 0 0 h])-Tsfunc(X-[0 0 0 0 0 h]))/(2*h); 

  

GC(5,1) = -1/100; 

GC(5,2) = 0; 

GC(5,3) = 0; 

GC(5,4) = 0; 

GC(5,5) = 0; 

GC(5,6) = 0; 

  

GC(6,1) = 0; 

GC(6,2) = -1; 

GC(6,3) = 0; 

GC(6,4) = 0; 

GC(6,5) = 0; 

GC(6,6) = 0; 

  

GC(7,1) = 0; 

GC(7,2) = 0; 

GC(7,3) = 0; 

GC(7,4) = 0; 

GC(7,5) = 1; 

GC(7,6) = 0; 

  

if choice==1 

    GC(8,1) = 0; 

    GC(8,2) = 0; 

    GC(8,3) = 0; 

    GC(8,4) = 0; 

    GC(8,5) = 0; 

  

    GC(8,6) = -1; 

end 
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function [Tsout]=Tsfunc(X); 

  

global Gyes  

global a0  

global a1 

global a2 

global a3 

global a4 

global a5 

global a6 

global a7 

global a8 

global a9 

global a10 

global tel 

global Wn 

global As 

global r 

global choice 

global change 

global T0g 

global Ig 

global wg 

global P1g 

global hightg 

global lengthg 

global eg 

global Tsg 

global specreflg 

global kg 

global tg 

global ksolidg 

global betag 

global alphag 

  

%parameters: 

ec = Gyes(tel,2)/100; 

et = Gyes(tel,5)/100; 

  

  

 rlow = Gyes(tel,3); 

rhigh = Gyes(tel,4); 

mlow = Gyes(tel,8); 

mhigh = Gyes(tel,9); 

  

%for r = rlow:0.05:rhigh 

  

  

m = (mhigh - mlow)/(rhigh-rlow)*(r-rlow)+mlow; 

  

  

  

%Recuperator: 

hight = 1; 

%if hightg>0 

 %   hight=hightg; 

%end 

  

  

t = 0.001; 

%if tg>0 

 %  t = tg; 

%end 

  

ksolid = 401; 

%if ksolidg>0 

 %   ksolid=ksolidg; 

%end 

  

  

P1 = 80000; 
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%if P1g>0 

 %   P1=P1g; 

%end 

  

T1 = 300; 

%if T0g>0 

 %   T1=T0g; 

%end 

  

T0=T1; 

  

  

%X(4) = X4/1000 for scaling 

  

%Cold side: 

%assume mu,cold and Pr,c at +-350C 

muc = 3.101*10^-5; 

Prc = 0.6937; 

kc = 0.04721; 

cpc = 1056; 

rhoc = 0.5664*(r*P1)/100000; 

  

mplate = 2*m/hight*(t+X(4)/1000/X(3)/2*(X(3)+1)); 

  

  

Rec = 4*X(3)*mplate/muc/X(4)*1000/(X(3)+1)^2; 

  

fc = (0.79*log(Rec)-1.64)^-2; 

  

Nuc = fc/8*Prc*(Rec-1000)/(1+12.7*(fc/8)^0.5*(Prc^(2/3)-1)); 

  

hc = kc/X(4)*1000*Nuc; 

  

  

%Hot side: 

%assume mu,hot and Pr,h at +-450C 

muh = 3.415*10^-5; 

Prh = 0.6965; 

kh = 0.05298; 

cph = 1081; 

rhoh = 0.488*(r*P1)/100000; 

  

  

Reh = 4*X(3)*mplate/muh/X(4)*1000/(X(3)+1)^2; 

  

fh = (0.79*log(Reh)-1.64)^-2; 

  

Nuh = fh/8*Prh*(Reh-1000)/(1+12.7*(fh/8)^0.5*(Prh^(2/3)-1)); 

  

hh = kh/X(4)*1000*Nuh; 

  

  

Rf = 0.0004; 

Asplate = X(5)*X(4)/1000*(X(3)+1)*(1+1/X(3)); 

  

U = (1/hc + 2*Rf + X(5)/ksolid + 1/hh)^-1; 

  

NTU = U*Asplate/mplate/cpc; 

  

c = cpc/cph; 

  

er = (1-exp(-NTU*(1-c)))/(1-c*exp(-NTU*(1-c))); 

  

  

  

%constants 

  

  

R = 287; 

cp = 1004; 

dT23 = 2; 
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dT45 = 2; 

dT67 = 2; 

dT89 = 2; 

  

dP23 = 0.001; 

  

  

 dP34 = (fc*X(5)/(X(4)/1000)^5*8*mplate^2*X(3)^2/(X(3)+1)^4/rhoc)/(P1*r*(1-dP23)); 

  

  

  

dP45 = 0.004; 

dP56 = 0.04; 

dP67 = 0.004; 

dP89 = 0.001; 

  

  

  

dP910 = (fh*X(5)/(X(4)/1000)^5*8*mplate^2*X(3)^2/(X(3)+1)^4/rhoh)/P1; 

  

   

Qloss23 = 2; 

Qloss45 = 2; 

Qloss67 = 2; 

Qloss89 = 2; 

Qlossr = 2; 

  

  

k = 1.4; 

  

clear i 

clear D 

clear E 

  

  

%phase1: 

  

  

    T2 = (T1*(1+(r^((k-1)/k)-1)/ec)); 

    T3 = (T2 - dT23); 

    

%phase2: 

  

    %initial guess 

     

    T5 = 800; 

     

    if choice == 2 

        X(6)=1; 

    end 

    %round/plate - X(6) =1 

     

    Q = a0 + a1*sqrt((X(1)/100)*X(2)/4/pi*(X(6)+1)) + a2*((X(1)/100)*X(2)/4/pi*(X(6)+1)) 

+ a3*((X(1)/100)*X(2)/4/pi*(X(6)+1))^(3/2) + a4*((X(1)/100)*X(2)/4/pi*(X(6)+1))^2 +  

a5*((X(1)/100)*X(2)/4/pi*(X(6)+1))^(5/2) + a6*((X(1)/100)*X(2)/4/pi*(X(6)+1))^3 + 

a7*((X(1)/100)*X(2)/4/pi*(X(6)+1))^(7/2) + a8*((X(1)/100)*X(2)/4/pi*(X(6)+1))^4 + 

a9*((X(1)/100)*X(2)/4/pi*(X(6)+1))^(9/2) + a10*((X(1)/100)*X(2)/4/pi*(X(6)+1))^5; 

     

   

    T6 = Q/m/1145 + T5; 

    T7 = T6 - dT67; 

     

%phase3: 

  

    P2 = P1*r; 

    P3 = P2*(1-dP23); 

         

     

    P4 = P3*(1-dP34); 

    P5 = P4*(1-dP45); 
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    mu = 4.2*10^-5; 

    rho = 0.34*(r*P1)/100000; 

    if choice==1 

        P6 = P5 - ((0.79*log(4*m*X(6)/mu/(X(6)+1)^2/(X(1)/100))-1.64)^-

2)*(X(2)/(X(1)/100)^5)*(8*m^2*X(6)^2/rho/(X(6)+1)^4); 

    end 

     

    if choice == 2 

        P6 = P5 - ((0.79*log(4*m/mu/pi/(X(1)/100))-1.64)^-

2)*(X(2)/(X(1)/100)^5)*(8*m^2/rho/pi^2); 

    end 

     

    P7 = P6*(1-dP67); 

    P10 = P1; 

     

         

    P9 = P10*(1+dP910); 

    P8 = P9*(1+dP89); 

     

%phase4: 

  

    T8 = T7*(1-et*(1-1/((P7/P8)^((k-1)/k)))); 

    T9 = T8 - dT89; 

    T10 = T9 - er*(T9-T2); 

     

%phase5: 

  

    T4 = er*(T9-T3)+T3; 

    T5 = T4 - dT45; 

  

 D(1) = 800; 

 D(2) = T5; 

    

     

  

 %___________________________________________________________________ 

    %repeat: 

   

  i=2; 

 while (abs(D(i)-D(i-1))  > 0.001) & (i < 100) 

 i = i+1; 

  

 %phase2: 

  

    %initial guess 

     

     

    %round/plate - X(6) =1 

      

    if choice == 2 

        X(6)=1; 

    end 

    Q = a0 + a1*sqrt((X(1)/100)*X(2)/4/pi*(X(6)+1)) + a2*((X(1)/100)*X(2)/4/pi*(X(6)+1)) 

+ a3*((X(1)/100)*X(2)/4/pi*(X(6)+1))^(3/2) + a4*((X(1)/100)*X(2)/4/pi*(X(6)+1))^2 +  

a5*((X(1)/100)*X(2)/4/pi*(X(6)+1))^(5/2) + a6*((X(1)/100)*X(2)/4/pi*(X(6)+1))^3 + 

a7*((X(1)/100)*X(2)/4/pi*(X(6)+1))^(7/2) + a8*((X(1)/100)*X(2)/4/pi*(X(6)+1))^4 + 

a9*((X(1)/100)*X(2)/4/pi*(X(6)+1))^(9/2) + a10*((X(1)/100)*X(2)/4/pi*(X(6)+1))^5; 

     

   

    T6 = Q/m/1145 + T5; 

    T7 = T6 - dT67; 

     

%phase3: 

     

  

    P2 = P1*r; 

    P3 = P2*(1-dP23); 

         

     

    P4 = P3*(1-dP34); 

    P5 = P4*(1-dP45); 
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    mu = 4.2*10^-5; 

    rho = 0.34*(r*P1)/100000; 

    if choice==1 

        P6 = P5 - ((0.79*log(4*m*X(6)/mu/(X(6)+1)^2/(X(1)/100))-1.64)^-

2)*(X(2)/(X(1)/100)^5)*(8*m^2*X(6)^2/rho/(X(6)+1)^4); 

    end 

     

   if choice == 2 

        P6 = P5 - ((0.79*log(4*m/mu/pi/(X(1)/100))-1.64)^-

2)*(X(2)/(X(1)/100)^5)*(8*m^2/rho/pi^2); 

    end 

     

    P7 = P6*(1-dP67); 

    P10 = P1; 

     

         

    P9 = P10*(1+dP910); 

    P8 = P9*(1+dP89); 

     

%phase4: 

  

    T8 = T7*(1-et*(1-1/((P7/P8)^((k-1)/k)))); 

    T9 = T8 - dT89; 

    T10 = T9 - er*(T9-T2); 

     

%phase5: 

  

  T4 = er*(T9-T3)+T3; 

  T5 = T4 - dT45; 

   

  D(i) = T5; 

   

 end 

  

mu = 4.2*10^-5; 

  

  

 

  if choice==1 

      Tsout = 

T6+Q/(X(1)/100)/X(2)/(X(6)+1)/(1+1/X(6))/(0.068/(X(1)/100))/0.023/0.71^0.4/(4*m*X(6)/mu/(

X(1)/100)/(X(6)+1)^2)^0.8; 

  end 

  

if choice == 2 

    Tsout = 

T6+(Q/(X(1)/100)/X(2)/pi)/(0.068/(X(1)/100)*0.023*0.71^0.4*(4*m/mu/pi/(X(1)/100))^0.8); 

end 
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M-File - getdata 
 
 
%uses 'Garrett.txt' 

  

global Gyes  

global a0  

global a1 

global a2 

global a3 

global a4 

global tel 

global choice 

  

G = textread('Garrett.txt') 

  

 

tel =0; 

  

for i = 1:45 

     

 %   if (G(i,10) < Qlow & G(i,11) > Qlow)|(G(i,10) < Qhigh & G(i,11) > Qhigh)|(G(i,10) < 

Qmid & G(i,11) > Qmid) 

        tel = tel+1; 

        for j = 1:11 

           Gyes(tel,j) = G(i,j); 

       end 

   end 

%end 

  

  

Gyes' 

  

  

%number of turbochargers to be considered 

tel 

  

maxQ = max(Qnet) 

  

%get the horsepower range 

  

Qhigh = (maxQ + 0.3*maxQ)/750/0.3*0.4; 

Qlow = (maxQ - 0.3*maxQ)/750/0.3*0.4; 

Qmid = maxQ/750/0.3*0.4; 

  

tel =0; 

  

for i = 1:45 

     

    if (G(i,10) < Qlow & G(i,11) > Qlow)|(G(i,10) < Qhigh & G(i,11) > Qhigh)|(G(i,10) < 

Qmid & G(i,11) > Qmid) 

        tel = tel+1; 

        for j = 1:11 

           Gyes2(tel,j) = G(i,j); 

       end 

   end 

end 

  

if tel>0 

    Gyes2' 

end 
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M-File - once 
 
clear all; 

clc; 

  

disp('DEFAULT SETTINGS '); 

disp(' ') 

disp(' ') 

  

disp('Surroundings:') 

disp('I         =   1000') 

disp('w         =   1') 

disp('P1        =   80000') 

disp('Tsurr     =   300') 

disp(' ') 

  

disp('Available space for recuperator:') 

disp('height    =   1;') 

disp('length    =   Diameter of dish') 

disp(' ') 

  

disp('Collector:') 

disp('Ts        =   1050') 

disp('e         =   0.0067') 

disp('k         =   0.05') 

disp('specrefl  =   0.93') 

disp('alpha     =   0.98') 

disp('beta      =   90') 

disp(' ') 

  

disp('Recuperator: ') 

disp('t         =   0.001') 

disp('ksolid    =   401') 

disp(' ') 

  

  

ask = input('Change default? Y/N ','s'); 

  

global change 

global T0g 

global Ig 

global wg 

global P1g 

global hightg 

global lengthg 

global eg 

global Tsg 

global specreflg 

global kg 

global tg 

global ksolidg 

global betag 

global alphag 

  

if ask == 'Y' | ask == 'y' 

     

    change = 1 

     

     

    ask2 = input('Change default settings for surroundings? Y/N ','s'); 

    if ask2 == 'Y' | ask2 == 'y' 

            T0g = input('Surrounding temperature (K): '); 

            Ig = input('Average irradiance (W/m^2): '); 

            wg = input('Wind factor (1-10): '); 

            P1g = input('Atmospheric pressure (Pa): '); 

    end 

     

    ask2 = input('Change default settings for available space for recuperator? Y/N 

','s'); 

    if ask2 == 'Y' | ask2 == 'y' 

            hightg = input('Height of recuperator (m): '); 
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            lengthg = input('Maximum length of recuperator (m): '); 

           

    end 

  

    ask2 = input('Change default settings for the collector? Y/N ','s'); 

    if ask2 == 'Y' | ask2 == 'y' 

            eg = input('Concentrator error (rad): '); 

  %             Tsg = input('Maximum material surface temperature of receiver (K): (Note 

that if this changes, the properties of air should be revised)' ); 

            specreflg =input('Reflectivity of the collector (<1): '); 

  %         kg = input('Material conductivity of receiver: '); 

            betag = input('Inclination of receiver in degrees (90degrees for system at 

noon/horisontal receiver) '); 

            alphag = input('Absorbtivity of receiver: ') 

             

    end 

    

       ask2 = input('Change default settings for the recuperator? Y/N ','s'); 

    if ask2 == 'Y' | ask2 == 'y' 

            tg = input('Recuperator heat exchanger wall thickness between hot and cold 

streams (m): '); 

            ksolidg = input('Recuperator material conductivity: '); 

        

    end  

         

    end     

    

collector; 

ask = input('Run for all (type 52) or just 1 (type 1) ?','s') 

  

    if ask=='1' 

        getdata; 

         

         

       tel=input('Choose number: (0 to stop)') 

        while tel~=0 

         

  

        rlow = Gyes(tel,3) 

        rhigh = Gyes(tel,4) 

  

        global r 

  

         

         

     

  

        while r~=1 

             r = input('Choose pressure ratio: ') 

            choice = input('Should the receiver use plate or pipe: 1=plate, 2=pipe? ') 

        %1=plate 

        %2=pipe 

             

            if tel>4 & tel<20 

            lfopc([7 8 7 8 7 8],1,1e-7) 

            end 

            if tel<5 

              lfopc([5 5 5 5 5 5],1,1e-7) 

            end 

            if tel>19 

                lfopc([20 20 20 20 20 20],1,1e-7) 

            end 

              r=input('Select r (type 1 to end): ') 

               

                

        end 

         tel=input('Choose number: (0 to stop)') 

        end 

    end 

     

    if ask =='52' 
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    ask2=input('What is the range of micro-turbines to be looked at? First type the 

lowest number: ') 

    ask3 = input('Now type the highest number: ') 

     choice = input('Should the receiver use plate or pipe: 1=plate, 2=pipe? ') 

     

    global r 

    getdata 

  

    clear Willem 

    clear Willem2 

    qqq=1 

  

        

            if tel>4 & tel<20 

            start = [7 8 7 8 7 8] 

            end 

            if tel<5 

              start = [5 5 5 5 5 5] 

            end 

            if tel>19 

                start = [20 20 20 20 20 20] 

            end 

             

         

        for tel=ask2:1:ask3 

    

            if tel>4 & tel<20 

            start = [7 8 7 8 7 8] 

            end 

            if tel<5 

              start = [10 10 10 10 10 10] 

            end 

            if tel>19 

                start = [20 20 20 20 20 20] 

            end 

             

             

            rlow = Gyes(tel,3)+0.001; 

            rhigh = Gyes(tel,4)+0.001; 

  

        for r = rlow:0.1:rhigh 

            Willem(qqq,1)=r; 

            lfopc(start,1,1e-7) 

            result = ans; 

            for www = 2:1:7 

                Willem(qqq,www) = result(www-1); 

                start(www-1) =result(www-1) 

            end 

        Willem2(qqq) = fun(result); 

        qqq=qqq+1; 

        end 

     

            qqq=qqq+1; 

            for www = 1:1:6 

                Willem(qqq,www) = 0; 

            end 

            Willem2(qqq) = 0;           

                 

        end 

  

  

    end 
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Appendix D 

GARRETT MICRO-TURBINES 
Table D.1 Data for the Garrett micro-turbines (Garrett, 2009). 

  Compressor Turbine 

Micro-
turbine 

description 

Micro-
turbine 
model 

number 
(MT) 

Maximum 
compressor 
efficiency 

Pressure ratio 
range for 
maximum 

compressor 
efficiency 

Mass flow 
rate range for 

maximum 
compressor 
efficiency 
(lb/min) 

Mass flow rate 
range for maximum 

compressor 
efficiency (kg/s) 

Maximum 
turbine 

efficiency 

GT1241 1 76 2 2.7 7.7 10.5 0.06087 0.08300 65 

GT1544 2 75 1.7 2.25 8 11 0.06324 0.08696 62 

GT1548 3 72 1.6 1.8 11 13 0.08696 0.1028 62 

GT2052a 4 77 1.4 2.2 10.5 17 0.08300 0.1344 70 

GT2052b 5 75 1.6 2 10 14 0.07905 0.1107 70 

GT2052c 6 74 1.4 1.7 9 13 0.07115 0.1028 70 

GT2056 7 78 1.65 2.5 16 22.5 0.1265 0.1779 65 

GT2252 8 78 1.5 2.5 12.5 23 0.09881 0.1818 68 

GT2259 9 76 1.65 2.1 13 18 0.1028 0.1423 70 

GT2554R 10 71 1.4 2 12 21 0.0949 0.1660 65 

GT2560R 11 78 1.3 2 13 26 0.1028 0.2055 65 

GT2854R 12 71 1.4 2 12 21 0.0949 0.1660 76 

GT2859R 13 75 1.5 2.6 13.5 26 0.1067 0.2055 75 

GT2860Ra 14 71 1.5 2.1 12 18 0.0949 0.1423 75 

GT2860Rb 15 77 1.5 2.4 16 30 0.1265 0.2372 68 

GT2860Rc 16 76 1.5 2.3 16.5 28 0.1304 0.2213 72 

17 76 1.6 2.6 20 36 0.1581 0.2846 60 

18 75 1.6 2.5 19 30 0.1502 0.2372 66 GT2871R 

19 75 1.6 2.6 20 35 0.1581 0.2767 66 

GT2876R 20 75 1.5 2.25 20 36 0.1581 0.2846 62 

21 77 1.7 2.8 23 37 0.1818 0.2925 72 
GT3071R 

22 77 1.7 2.8 23 37 0.1818 0.2925 64 

GT3076R 23 77 1.5 2.5 20 38 0.1581 0.3004 72 

GT3271 24 77 1.9 2.75 20.5 30 0.1621 0.2372 64 

GT3582R 25 79 1.5 2.5 26 43 0.2055 0.3399 70 

GT3776 26 77 1.9 2.6 28 37 0.2213 0.2925 68 

GT3782 27 76 1.75 2.75 27 42 0.2134 0.3320 68 

GT3788R 28 78 1.8 2.4 35 48 0.2767 0.3795 71 

GT4088 29 74 1.7 3 29 58 0.2292 0.4585 66 

GT4088R 30 78 1.8 2.4 35 48 0.2767 0.3795 70 

GT4094Ra 31 78 1.7 2.4 37 52 0.2925 0.4111 70 

GT4094Rb 32 77 1.5 2.8 30 63 0.2846 0.5138 70 

GT4294 33 78 1.8 3 36 65 0.2846 0.5138 74 

GT4294R 34 78 1.8 3.1 36 64 0.2846 0.5059 74 

GTX4294R 35 80 1.6 2.9 42 68 0.3320 0.5376 74 

GT4202 36 77 1.5 2.75 30 70 0.2371 0.5534 74 

GTX4202R 37 78 2 3.5 54 78 0.4269 0.6166 74 

GT4508R 38 79 1.7 2.8 48 85 0.3794 0.6719 92 

GT4708 49 79 1.5 2.7 40 85 0.3162 0.6719 69 

GT4718 40 78 1.6 2.8 53 99 0.4190 0.7826 69 

41 77 1.4 3.3 40 110 0.3162 0.8696 80 
GT5533 

42 77 1.5 2.7 60 116 0.4743 0.9170 80 

GT5541R 43 75 1.75 3.2 75 148 0.5929 1.170 80 

GT6041a 44 80 1.3 2.5 55 136 0.4348 1.075 78 

GT6041b 45 79 1.3 2.8 50 152 0.3953 1.202 78 

     lb/min kg/s  
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