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Abstract 

 

_____________________________________________________________________________ 

 

Title:  Maximum net power output from an integrated design of a small-scale 

open and direct solar thermal Brayton cycle 

Author: WG le Roux 

Student number: 25105991 

Supervisors:  Dr T Bello-Ochende and Prof JP Meyer 

 
The geometry of the receiver and recuperator in a small-scale open and direct recuperative solar 

thermal Brayton cycle can be optimised in such a way that the system produces maximum net 

power output. The purpose of this work was to apply the second law of thermodynamics and 

entropy generation minimisation to optimise these geometries using an optimisation method. The 

dynamic trajectory optimisation method was used and off-the-shelf micro-turbines and a range of 

parabolic dish concentrator diameters were considered. A modified cavity receiver was used in 

the analysis with an assumed cavity wall construction method of either a circular tube or a 

rectangular channel. A maximum temperature constraint of 1 200 K was set for the receiver 

surface temperature. A counterflow plate-type recuperator was considered and the recuperator 

length was constrained to the length of the radius of the concentrator. Systems producing a 

steady-state net power output of 2 – 100 kW were analysed. The effect of various conditions, 

such as wind, receiver inclination and concentrator rim angle on the maximum net power output, 

and optimum geometry of the system were investigated. Forty-five different micro-turbines and 

seven concentrator diameters between 6 and 18 metres were considered. Results show the 

optimum geometries, optimum operating conditions and minimum entropy generation as a 

function of the system mass flow rate. The optimum receiver tube diameter was relatively large 

when compared with the receiver size. The optimum counterflow plate-type recuperator channel 

aspect ratio is a linear function of the optimum system mass flow rate for a constant recuperator 

height. The optimum recuperator length and optimum NTU  are small at small system mass flow 

rates but increase as the system mass flow rate increases until the length constraint is reached. 

For the optimised systems with maximum net power output, the solar receiver is the main 

contributor to the total rate of minimum entropy generation. The contributions from the 

recuperator, compressor and turbine are next in line. Results show that the irreversibilities were 

spread throughout the system in such a way that the minimum internal irreversibility rate was 

almost three times the minimum external irreversibility rate for all optimum system geometries 

and for different concentrator diameters. For a specific environment and parameters, there exists 
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an optimum receiver and recuperator geometry so that the system can produce maximum net 

power output. 
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