

家美国美国美国美国美国美国美国

Analysis of the faunal remains of Kemp's Caves and an investigation into possible computerized classification of bones.

by

Elaine Swanepoel

University of Pretoria

Department of Anatomy

MSc with specialization in Anatomy

© University of Pretoria

医美国美国美国美国美国美国美国美国

I hereby declare that the dissertation

Analysis of the faunal remains of Kemp's Caves

and an investigation into possible computerized classification of bones.

which I

Elaine Swanepoel

am submitting to the

University of Pretoria

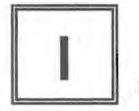
Department of Anatomy

for the degree

MSc with specialization in Anatomy

is my own work and has not been submitted by me to

any other university for degree purposes.


Elaine Swanepoel

October 2003

CONTENTS

North South South

Declaration

1:	Cont	tents		است
II:	Fore	word		vi
III:	Ackr	nowled	lgements	v ii
IV:	Abst	ract a	nd Keywords	vili
v:	List a	of Fig	ures	xii
VI:	List a	of Tab	les	xvii
Chapter I:	Intro	oducti	on	1
Chapter 2:	Liter	ature		5
	1.	Intro	duction to Kemp's Caves	5
	2.	Ecol	ogy of Kemp's Caves	13
		2.1	Geology	14
		2.2	Climate	17
		2.3	Flora	18
		2.4	Fauna	22

Contents					11
	3.	Site D	Dating	24	
	4.	Other	S.A. Caves and Sites with similar dates	26	
		4.1	Rose Cottage Cave	26	
		4.2	Sehonghong	26	
		4.3	Border Cave	27	
		4.4	Klasies River Mouth	28	
	5.	Faun	al Analysis	29	
		5.1	History	29	
		5.2	General approach	30	
	6.	Taph	onomy	32	
		6.1	History	32	
		6.2	General approach	33	
	7.	Oste	ometry	35	
		7.1	Manipulation of metric data	37	
Chapter 3:	Mat	erials a	ind Methods	39	
	1.	Stage	e 1 - Faunal Analysis	39	
		1.1	Identifiable bones	41	
			1.1.1 Observations	42	
			1.1.2 Measurements	43	
		1.2	Non-identifiable bones	44	
	2.	Stage	e 2 - Osteometry	45	
		2.1	Measurements	45	
			2.1.1 Femur	53	

Contents					1
			2.1.2 Tibia	63	
			2.1.3 Metatarsal	74	
		2.2	Data collection and statistical analysis	86	
		2.3	Development of computer programme	87	
	3.	Stage	3 - Testing	91	
Chapter 4:	Resu	lts		93	
	1,	Stage	1 - Faunal Analysis	93	
		1.1	Introduction	93	
		1.2	Identifiable bones	94	
		1.3	Non-identifiable bones	121	
	2.	Stage	2 - Osteometry	127	
		2.1	Measurements	127	
			2.1.1 Inter Bovid size class comparison	127	
			2.1.2 Regression analysis	140	
			2.1.3 Index calculation and analysis	142	
		2.2	Development of programme	147	
	3.	Stage	3 - Testing	153	
		3.1	Kemp's Cave's specimens	153	
		3.2	Modern collection specimens	168	

Chapter 5:	Disc	cussion	194
	1.	Stage 1 - Faunal Analysis	194
		1.1 Faunal assemblage	194

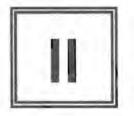
Contents

2.

3.

iv

1.2	Equus capensis	197	
1.3	Dating	200	
1.4	Ecology and environment	202	
1.5	Taphonomy and bone accumulations	205	
	1.5.1 Porcupine as accumulating agent	205	
	1.5.2 Hyaena as accumulating agent	206	
	1.5.3 Leopard as accumulating agent	210	
	1.5.4 Humans as accumulating agent	212	
	1.5.5 Conclusion	213	
1.6	Difficulties experienced in Stage 1	214	
Stage	e 2 - Osteometry	215	
2.1	Measurements	215	
	2.1.1 Femur	216	
	2.1.2 Tibia	217	
	2.1.3 Metatarsal	218	
	2.1.4 Regression analysis	219	
	2.1.5 Index calculation and analysis	219	
2.2	Development of programme	220	
2.3	Difficulties experienced in Stage 2	221	
Stage	e 3 - Testing	222	
3.1	Results	223	
3.2	Difficulties experienced in Stage 3	225	



V

Contents			
Chapter 6:	Cor	nclusion	226
	1.	Stage 1 - Faunal Analysis	226
	2.	Stage 2 - Osteometry	227
	3.	Stage 3 - Testing	227
Chapter 7:	Ref	erences	228
Chapter 8:	App	pendix	240
	1.	Appendix A - Femur	240
	2.	Appendix B - Tibia	272
	3.	Appendix C - Metatarsal	304

Foreword

FOREWORD

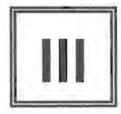
Mandangangangangangangan

"Pieces of ancient bone lack the aesthetic appeal of artefacts or the grandeur of ancient buildings, yet they have a complex fascination that arises in part from their zoological origin, as evidence of long-dead animals, and in part from what we can infer from them about past human activities, and about the involvement of people in those animals' lives"

TERRY O' CONNOR, 2000

vi

In his book, The Archaeology of Animal Bones, O' Connor mentions a hobby very few people appreciate.....collecting bones. My fascination with bones has lead to a small personal collection which will probably grow until it is not so small anymore!! Standard practice for my husband on a game farm is to stop whenever a white, sunburnt skeleton catches my expert eye. Many a times I have stood over a boiling Jik and OMO filled gallon drum, stirring the newest members to my collection.


Fascination however, only gets you halfway through, and even my undying love of bones could not keep me motivated at all times. It is only after completing this study I realized how much I still do not know, and that I might spend a lifetime learning and not possess half the knowledge of the great archaeozoologists.

However, I am still going to try.

THE BONE COLLECTOR

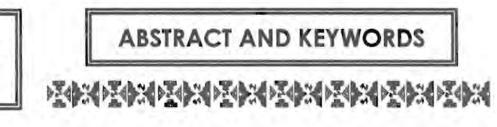
Acknowledgements

ACKNOWLEDGEMENTS

I would like to thank the University of Pretoria for financial support. I am also indebted to the Technikon Witwatersrand for day to day expenses. Without their financial aid and support this study would not have been possible.

My sincere appreciation goes to my supervisors, Prof Maryna Steyn and Mrs Detken Scheepers, whose guidance and counsel were invaluable. I also appreciate their encouragement and patience with this "do it at the last minute" student.

I am extremely grateful to Mrs Louisa Hutten whose assistance in all aspects of this study was always welcome. Not an article went by without her thinking whether my research could benefit from it.


I would like to extend my appreciation to Miss Marinda Smith for the excellent drawings, and Mr Coen Nienaber for his insight and all around help with Kemp's Caves. Thanks to Miss Madri Jansen van Rensburg for her invaluable input with the statistical aspect of this study, as well as Johan and Bokkie Briel for the technical and graphical aspects of the computer programming.

I would also like to thank the respective museums and their staff. My gratitude goes to the National Flagship Institution, specifically Mr Shaw Badenhorst, who was always available for advice. Thanks to the South African Museum, specifically Mrs Denise Drinkrow, who arranged for my every need. I am also indebted to the National Museum, specifically Dr James Brink, and the friendly staff of the Florisbad research station.

I am grateful for friends and family for their prayers and encouragement: My parents for their guidance and support, financially and emotionally, during my studies and their undying faith in my abilities; For Marlene and Coen for the time consuming task of correcting my English grammar. My love and appreciation goes to my husband for the thousands of measurement values that he took down patiently as I spoke. Last, but not least, I thank God, for He made this all possible.

vii

ABSTRACT

Kemp's Caves are situated 2 km west of Krugersdorp in the Ngonyama Game Reserve. An abundance of fossilized as well as modern specimens have been excavated from this site since 1992. The Electron Spin Resonance dates for this site range from 140 000 to 11 000 BP¹. The faunal analysis of animal remains recovered at fossil sites assists in the dating of the site, and may also give insight into the diet and behaviour of the related hominids which previously occupied the area 2,3,4. Therefore, all excavated faunal specimens of Kemp's caves were analysed by comparing them to modern skeletal material at the National Flagship Institution. The analysis did not reject the ESR dates and showed that there were no drastic climatic changes in this area during the past 100 000 years. Approximately 3% of the faunal material could be identified to species level, while 11.5 % were assigned to different faunal classes. Five individual specimens belonging to the extinct species Equus. capensis (Cape horse) included three molars and two humeral fragments. Bovidae size classes II and III were the most represented category, which may indicate that either leopards or hyaenas were responsible for the accumulation of the faunal remains. Contradicting this assumption, is the fact that 11% of the faunal material excavated have been burnt to some extent, which may indicate human activity.

Faunal analysis comprises of the correct identification of animal bone fragments. Conventionally, this is done by morphologically comparing the specimen to its modern counterpart. Identifiable fragments, if possible, are classified to species level while the rest are assigned to different size classes ^{3,4}. This is a time consuming

Viii

task and not many experts are available. The secondary aim of this study was thus to investigate the possibility of identifying animal bones through computerized methods. Osteometric data of the hind limb long bones of 30 Southern African Bovid species was obtained, using as many as possible modern specimens of adults from several South African museums. Forty-five measurements were taken on the femur, tibia and metatarsal. These 18 000 measurements were used in an attempt to develop a computerized database programme to aid in the identification of bones. Ten specimens from the Kemp's Caves collection of conventionally identified bones as well as ten modern specimens were measured to test the accuracy of the developed computer programme.

Statistically, the three long bones showed significant differences between the species in the Bov II, III and IV size classes. Bov I species, however, showed significant differences in the metatarsal measurements only. Three robusticity indices were calculated, but showed overlap in all species except the African buffalo. Only 20% of the Kemp's Caves specimens were positively identified by the programme (displayed the identified species as having the highest percentage probability). The rest showed varied percentages of possibilities. The modern specimens had a 40% accuracy rate. However, many species within the database, especially in the Bov I size class, were only represented by a few modern skeletons. This may have contributed to the Bov I class not showing significant differences. Results of this preliminary study were promising, but larger samples and further statistical evaluation may enhance the accuracy of the programme.

KEYWORDS

Archaeozoology, Kemp's Caves, Faunal analysis, Osteometric morphology, Computerized identification, Animal bones, Bovidae ix

OPSOMMING EN KERNWOORDE

x

Manananan Manananananananan kanananan kananan kananan kananan kananan kananan kananan kananan kanan kanan kanan

OPSOMMENG

Kemp's Caves is 2km vanaf Krugersdorp in die Ngonyama Natuurreservaat geleë. Sedert 1992 het opgrawings van hierdie terrein 'n rykdom gefossileerde en moderne elemente opgelewer. Resultate van die Elektron Spin Resonansie (ESR) het datums van 140 000 tot 11 000 BP opgelewer¹. Die analise van fauna wat herwin word by fossielterreine ondersteun die datering van 'n terrein. Dit is ook 'n aanwysing tot die dieët en gedrag van die verwante hominiede wat moontlik die area voorheen beset het 2.3.4. Vir hierdie rede is die fauna van Kemp's Caves geanaliseer deur hulle met die moderne versameling by die NFI (National Flagship Institution) te vergelyk. Die analise het geen getuienis gelewer om die ESR datums te verwerp nie en het ook getoon dat daar in hierdie area geen drastiese klimaatsveranderinge gedurende die laaste 100 000 jaar was nie. Ongeveer 3% van die fauna versameling kon geïdentifiseer word, terwyl 11.5% tot die verskillende fauna klasse toegedeel is. Vyf individuele been-elemente wat tot die uitgestorwe spesie Equus capensis behoort het, het drie molare en twee humerus fragmente ingesluit. Hoefdier klasse II en III was die mees verteenwoordigde katogorie wat mag aandui dat luiperds of hiënas verantwoordelik was vir dié versameling van fauna. Die feit dat 11% van die elemente tot 'n sekere mate gebrand was, mag bogenoemde bewering weerspreek aangesien gebrande beenmateriaal menslike aktiwiteit aandui.

Fauna-analise is die korrekte identifisering van dierbeenfragmente. Konvensioneel word die fragmente morfologies vergelyk met hulle moderne ewebeeld. Identifiseerbare fragmente word, indien moontlik, geklassifiseer tot 'n

spesie, terwyl die res aangedui word as 'n spesifieke grootte klas ^{3,4}. Hierdie is 'n tydrowende proses en daar is min deskundiges op die gebied. Daarom was die tweede doel van die studie om die moontlikheid van gerekenariseerde identifisering van dierbene te ondersoek. Osteometriese data van die agterbeen langbene van 30 Suider-Afrikaanse hoefdier spesies was verkry deur die meting van soveel moontlik volwasse moderne versamelings van verskeie Suid-Afrikaanse museums. Vyf-en-veertig afmetings van die femur, tibia en metatarsaal is geneem. Hierdie 18 000 afmetings is gebruik in 'n poging om 'n rekenaar databasis te ontwikkel wat hulp sal verleen tydens dierbeen identifikasie. Tien *Kemp's Caves* fragmente wat op die konvensionele metode geïdentifiseer is, sowel as tien moderne bene was gemeet om die akkuraatheid van die ontwikkelde rekenaarprogram te toets.

Die drie langbene het statisties betekenisvolle verskille tussen hoefdier II, III en IV klasse gewys. Hoefdier klas I het egter slegs betekenisvolle verskille in die metatarsaal afmetings gewys. Drie robustisiteitsindekse was bereken en het oorvleueling in alle spesies gewys behalwe vir die Buffel. Net 20% van die *Kemp's Caves* elemente was positief geïdentifiseer deur die program (vertoon die spesie as die hoogste persentasie moontlikheid). Die res van die toetselemente het 'n verskeidenheid persentasie moontlikhede gewys. Die moderne elemente het 'n 40% akkuraatheidskoers gewys. Baie spesies in die databasis, veral die hoefdier I klas, was egter slegs deur 'n paar moderne skelette verteenwoordig. Hierdie feit mag daartoe bygedra het dat hoefdier klas I nie veel betekenisvolle verskille getoon het nie. Die resultate van die studie was belowend maar groter versamelings en verdere statistiese evaluasie mag die akkuraatheid van die program verbeter.

KERNWOORDE

Argeodierkunde, Kemp's Caves, Fauna analise, Osteometriese morfologie, Gerekenariseerde identifikasie, Dierbene, Hoefdiere

List of Figures

xii

LIST OF FIGURES

CHAPTER 2

Figure 2.1:	Cave and excavation sites in South Africa	6
Figure 2.2:	Ngonyama Game Reserve	7
Figure 2.3:	Upper and Lower Kemps' Caves	8
Figure 2.4:	Entrance to Upper Kemp's Cave	9
Figure 2.5:	Entrance to Little Western Cave	10
Figure 2.6:	Entrance to Lower Kemp's Cave	10
Figure 2.7:	Juvenile Eland skeleton in Lower Kemp's Cave	11
	CHAPTER 3	
Figure 3.1:	Site map of Kemp's Caves	40
Figure 3.2:	Flow diagram of faunal analysis	41
Figure 3.3a:	Femur: Anterior view F(GL);F(GLH)	54
Figure 3.3b:	Femur: Anterior view F(SBD);F(SCD)	56
Figure 3.4:	Femur: Superior view F(GBP);F(GBH);F(GDH)	58
Figure 3.5a:	Femur: Inferior view F(GBD);F(GLDD);F(GMDD)	60
Figure 3.5b:	Femur: Inferior view F(GBT);F(GBCF);F(SBCF)	62
Figure 3.6a:	Tibia: Anterior view T(GL);T(GLL);T(GLM)	64

List of Fig	ures		xiii
Figure 3.6b:	Tibia: Anterior view T(SBD);T(SCD)	66	
Figure 3.7a:	Tibia: Superior view T(GDP);T(GBP);T(SBIE)	68	
Figure 3.7b:	Tibia: Superior view T(GDLC);T(GDMC);T(GDT);		
	T(GDTN)	71	
Figure 3.8:	Tibia: Inferior view T(GDD);T(GBD);T(SDD)	73	
Figure 3.9a:	Metatarsal: Anterior view M(GL);M(GLM);M(GLL)	75	
Figure 3.9b:	Metatarsal: Anterior view M(SCD);M(SBD)	77	
Figure 3.10a:	Metatarsal: Superior view M(GLLA);M(GBLA);		
	M(GLMA);M(GBMA)	79	
Figure 3.10b:	Metatarsal: Superior view M(GDP);M(GBP)	81	
Figure 3.11a:	Metatarsal: Inferior view M(GBDE);M(GBLC);		
	M(GBMC)	83	
Figure 3.11b:	Metatarsal: Inferior view M(GBD);M(GDD)	85	
	CHAPTER 4		
Figure 4.1:	Mammalian taxa representation (%)	95	
Figure 4.2:	Bovid size class I: Percentage skeletal part survival	118	
Figure 4.3:	Bovid size class II: Percentage skeletal part survival	118	5
Figure 4.4:	Bovid size class III: Percentage skeletal part survival	119	
Figure 4.5:	Bovid size class IV: Percentage skeletal part survival	119)
Figure 4.6:	Bovid habitat and feeding type representation (%)	121	

List of Fig	lures		xiv
Figure 4.7:	Site map of Kemp's Cave indicating excavated		
	areas	125	
Figure 4.8:	Condition of Non Identifiable bone fragments (%)	126	
Figure 4.9:	Bovid size class I - IV: Femur measurement		
	significance	137	
Figure 4.10:	Bovid size class I - IV: Tibia measurement		
	significance	138	
Figure 4.11:	Bovid size class I - IV: Metatarsal measurement		
	significance	139	
Figure 4.12:	Bovid size class I - IV: Minimum and maximum		
	index values for the femur	144	
Figure 4.13:	Bovid size class I - IV: Minimum and maximum		
	index values for the tibia	145	
Figure 4.14:	Bovid size class I - IV: Minimum and maximum		
	index values for the metatarsal	146	
Figure 4.15:	ID Chart as seen on computer programme	150	
Figure 4.16	Additional information as seen on computer		
	programme	152	
Figure 4.17:	Identification chart of LKC/94/27 (%)	158	
Figure 4.18:	Identification chart of LKC/92/38 (%)	159	
Figure 4.19:	Identification chart of LKC/93/23 (%)	160	

List of Figures

Figure 4.20	Identification chart of LKC/93/70 (%)	161	
Figure 4.21:	Identification chart of LKC/93/302 (%)	162	
Figure 4.22:	Identification chart of LKC/93/126 (%)	163	
Figure 4.23:	Identification chart of LKC/94/328 (%)	164	
Figure 4.24:	Identification chart of LKC/93/40 (%)	165	
Figure 4.25:	Identification chart of LKC/93/35 (%)	166	
Figure 4.26:	Identification chart of LKC/92/34 (%)	167	
Figure 4.27a:	Identification chart of AZ 1069 (%)	173	
Figure 4.27b:	Differences in measurement input of AZ 1069 (%)	174	
Figure 4.28a:	Identification chart of AZ 526 (%)	175	
Figure 4.28b:	Differences in measurement input of AZ 526 (%)	176	
Figure 4.29a:	Identification chart of AZ 645 (%)	177	
Figure 4.29b:	Differences in measurement input of AZ 645 (%)	178	
Figure 4.30a:	Identification chart of AZ 782 (%)	179	
Figure 4.30b:	Differences in measurement input of AZ 782 (%)	180	
Figure 4.31a:	Identification chart of AZ 1032 (%)	181	
Figure 4.31b:	Differences in measurement input of AZ 1032 (%)	182	
Figure 4.32a:	Identification chart of AZ 145 (%)	183	
Figure 4.32b:	Differences in measurement input of AZ 145 (%)	184	

xv

-

List of Figu	Ires	>	ĸ
Figure 4.33a:	Identification chart of AZ 1572 (%)	185	
Figure 4.33b:	Differences in measurement input of AZ 1572 (%)	186	
Figure 4.34a:	Identification chart of AZ 931 (%)	187	
Figure 4.34b:	Differences in measurement input of AZ 931 (%)	188	
Figure 4.35a:	Identification chart of AZ 127 (%)	189	
Figure 4.35b:	Differences in measurement input of AZ 127 (%)	190	
Figure 4.36a:	Identification chart of AZ 1457 (%)	191	
Figure 4.36b:	Differences in measurement input of AZ 1457 (%)	192	
	CHAPTER 5		
Figure 5.1:	Equus capensis as illustrated in "The Hunters or		
	the Hunted" 2	199	
Figure 5.2:	Equus capensis as illustrated in "Evolution of		
	Mammals"91	199	
Figure 5.3:	Provenance of the excavated Equus capensis		
	specimens	201	

xvi

List of Tables

xvii

LIST OF TABLES

Row Row Row Row Row Row Row Row

CHAPTER 2

Table 2.1:	Geological time scale	15
Table 2.2:	Kemp's Caves area plant species	20
Table 2.3:	Species list of past and present larger mammals	
	within the Kemp's Caves area	23
	CHAPTER 3	
Table 3.1:	Tooth eruption times and tooth wear	42
Table 3.2:	Bovid size class I	46
Table 3.3:	Bovid size class II	47
Table 3.4:	Bovid size class III	47
Table 3.5:	Bovid size class IV	48
Table 3.6:	Femur measurements	50
Table 3.7:	Tibia measurements	51
Table 3.8:	Metatarsal measurements	52
Table 3.9:	Indices used in Stage 2	87
Table 3.10:	Kemp's Caves specimens used to test computerized	
	classification	91

List of Tables	5	xviii
Table 3.11:	Modern specimens used to test computerized	
	classification	92
	CHAPTERY	
Table 4.1:	Summary of LKC faunal sample size (n)	94
Table 4.2:	Summary of species identified in LKC faunal sample	113
Table 4.3:	Skeletal part representation of LKC faunal sample	117
Table 4.4:	Non Identifiable bones recovered in LKC	122
Table 4.5:	Key to abbreviations to species	128
Table 4.6:	Bovid size class I - IV: Femur measurement	
	t-test values	131
Table 4.7:	Bovid size class I - IV: Tibia measurement	
	t-test values	133
Table 4.8:	Bovid size class I - IV: Metatarsal measurement	
	t-test values	135
Table 4.9:	Bovid size class I - IV: Measurement predictors	141
Table 4.10:	Measurements of specimen LKC/94/27	158
Table 4.11:	Measurements of specimen LKC/92/38	159
Table 4.12:	Measurements of specimen LKC/93/23	160
Table 4.13:	Measurements of specimen LKC/93/70	161
Table 4.14:	Measurements of specimen LKC/93/302	162

1:1 (TIL	
List of Tables	

Table 4.15:	Measurements of specimen LKC/93/126	163
Table 4.16:	Measurements of specimen LKC/94/328	164
Table 4.17:	Measurements of specimen LKC/93/40	165
Table 4.18:	Measurements of specimen LKC/93/35	166
Table 4.19:	Measurements of specimen LKC/92/34	167
Table 4.20:	Measurements of specimen AZ 1069	173
Table 4.21:	Measurements of specimen AZ 526	175
Table 4.22:	Measurements of specimen AZ 645	177
Table 4.23:	Measurements of specimen AZ 782	179
Table 4.24:	Measurements of specimen AZ 1032	181
Table 4.25:	Measurements of specimen AZ 145	183
Table 4.26;	Measurements of specimen AZ 1572	185
Table 4.27:	Measurements of specimen AZ 931	187
Table 4.28:	Measurements of specimen AZ 127	189
Table 4.29:	Measurements of specimen AZ 1457	191
Table 4.30:	Summary of different the measurement input results	193
	CHAPTER 5	
Table 5.1:	Plant species utilized by identified animal species of h	Kemp's

.....204

xix