

166

Chapter 6: Implementation details

Introduction

This chapter discusses the main building blocks that are necessary to implement ARGOS such
as the life cycle information infrastructure, constraints and the design of a conceptual
ARGOS. It explores the role that ARGOS could play in structured planning and design
knowledge delivery. The relationships between the ARGOS, ActiveX design object and
typical applications software are explored.

The basis for successful implementation is the formulation of a flexible and self-describing
design language. From the previous chapters and a study of ontology it is clear that a design
language with a hierarchical structure best facilitates the processing of design knowledge
fragments. A successful design is the result of many different cognitive processes at both tacit
and explicit levels. These processes can be augmented with many different techniques from
the world of manufacturing such as Knowledge Based Design, Systems Analysis, Kansei
Engineering, QFD and TRIZ. Many other techniques could be discussed such as FMEA
(Failure Mode and Effects Analysis), but it would not contribute significantly to the problem
under consideration, the storing of artefact design knowledge over the life cycle of a building
and the secondary adaptation of designs.

Once a design is available it can be brought into the ARGOS component (container) to
facilitate the positional and shape testing of design fragments. All of this must happen in a
neutral environment to guarantee a long life of design information and make it possible for
diverse design tools to process relevant parts of the information.

6.1 Life cycle Information infrastructure

6.1.1 Introduction

Of all the possible candidates investigated Extensible Mark-up Language (XML) proved to be
most useful language to solve the stringent requirements for the problem under consideration.

XML, describes a class of data objects called XML documents and partially describes the
behaviour of computer programs which process them. XML is an application profile or
restricted form of the Standard Generalised Mark-up Language (SGML). XML documents are
made of storage units called entities, which contain either parsed or unparsed data. Parsed
data is made up of characters, some of which form character data and some, which form the
mark-up structure. Mark-up encodes a description of the document’s storage layout and
logical structure. XML also provides a mechanism to impose constraints on the storage layout
and logical structure. A software module called an XML processor is used to read XML
documents and provide access to their content and structure.

XML was developed by an XML Working Group formed under the auspices of the World
Wide Web Consortium (W3C) in 1996. It was chaired by Bosak of Sun Microsystems with
the active participation of an XML Special Interest Group also organised by the W3C.

The primary design goals for XML are:

• XML shall be straightforwardly usable over the Internet.
• XML shall support a wide variety of applications.
• XML shall be compatible with SGML.
• It shall be easy to write programs which process XML documents.

University of Pretoria etd

167

• The number of optional features in XML is to be kept to the absolute minimum, ideally
zero.

• XML documents should be in human-legible form and reasonably clear.
• The XML design should be prepared quickly.
• The design of XML shall be formal and concise.
• XML documents shall be easy to create.
• Terseness in XML mark-up is of minimal importance.

6.1.2 XML as a design language

Consider Code Fragment 1 below. This is a trivial example of how a materials library could
be structured by means of XML. This offers the immediate advantage that the information
can be used in other applications and downloaded from the Internet. This structure could be
used to implement the Materials Library as detailed in Figure 52 [E1]. In this case the
material library starts with the <MATERIAL_LIBRARY> label and ends with the
</MATERIAL_LIBRARY> label. Each separate material starts with the label
<MATERIAL keyword1=”METAL”> and ends with a </MATERIAL>. Hierarchically
nested under this is the <DESCRIPTION> label that contains a short description of the
material.
<DESCRIPTION>Aluminium (Al) 99.0% pure</DESCRIPTION>
This is followed by the list of applicable attributes. Note that the attributes are grouped
within the attribute label for example:
Density
There are no hard and fast rules when to use child elements and when to use attributes.
Generally the application developer uses whichever suits his application. A rule of thumb is
that data themselves should be stored in elements. Information about the data (meta-data)
should be stored in attributes (Harold 1999:101).

Code Fragment 1 could be generated by means of many different methods such as:

• Output from a relational database.
• Dynamic upon demand generation by a web based search engine or query builder.

Domain specific application software such as a design scenario builder could use the basic
information contained in the database or could present it in neatly formatted document for
reference purposes.

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/xsl" href="Material_fragment.xsl"?>
 <MATERIAL_LIBRARY>
 <MATERIAL keyword1="METAL">
 <NAME>ALUMINIUM</NAME>
 <DESCRIPTION>Aluminium (Al) 99.0% pure</DESCRIPTION>
 <ATTRIBUTES>
 Density
 Melting point
 Modulus of elasticity (minimum)
 Modulus of elasticity (average)
 Modulus of elasticity (maximum)
 Thermal conductivity (k)
 </ATTRIBUTES>
 </MATERIAL>
 <MATERIAL keyword1="METAL">
 <NAME>ALUMINIUM BRONZE</NAME>
 <DESCRIPTION>Aluminium-Bronze Cu 5-10%: Al</DESCRIPTION>
 <ATTRIBUTES>
 Density (minimum)
 Density (average)
 Density (maximum)

University of Pretoria etd

168

 Melting point (minimum)
 Melting point (average)
 Melting point (maximum)
 Modulus of elasticity
 Thermal conductivity (k) (minimum)
 Thermal conductivity (k) (average)
 Thermal conductivity (k) (maximum)
 </ATTRIBUTES>
 </MATERIAL>
 <MATERIAL keyword1="METAL">
 <NAME>BRASS</NAME>
 <DESCRIPTION>Brass Cu 60%: Zn 40%</DESCRIPTION>
 <ATTRIBUTES>
 Density
 Melting point
 Modulus of elasticity
 Thermal conductivity (k)
 </ATTRIBUTES>
 </MATERIAL>
 <MATERIAL keyword1="WOOD" keyword2="CONSTRUCTION">
 <NAME>PINE</NAME>
 <DESCRIPTION>British Columbia pine</DESCRIPTION>
 <ATTRIBUTES>
 Density (minimum)
 Density (average)
 Density (maximum)
 Durability (minimum)
 Durability (average)
 Durability (maximum)
 </ATTRIBUTES>
 </MATERIAL>
</MATERIAL_LIBRARY>

Code Fragment 1: Suggested XML structure for the storage of material definitions
(Author)

Code Fragment 1 could be formatted, for reporting purposes, at the most basic level by means
of Cascading Style Sheets (CSS). CSS styles only apply to XML element content not to
attributes in the elements. If CSS were applied to Code Fragment 1 in an Internet Explorer
then the attributes would be invisible rendering most of Code Fragment 1 data invisible.
However there is an alternative style sheet language that allows the user to access and display
attribute data as well. This language is Extensible Style language (XSL). XSL is divided into
two main sections:

• Transformations
• Formatting

Consider Code Fragment 2 for an example of a typical XSL that could be used to convert
Code Fragment 1 into a neatly formatted output for a web page.

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
 <xsl:template match="/">
 <html>
 <xsl:apply-templates/>
 </html>
 </xsl:template>

 <xsl:template match="/MATERIAL_LIBRARY">
 <html>
 <body>
 <h1>Example Material Library</h1>
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

University of Pretoria etd

169

 <xsl:template match="MATERIAL">
 <p>
 <h3><u><xsl:value-of select="NAME"/></u></h3>
 <xsl:apply-templates/>

<hr></hr></br>
 </p>
 </xsl:template>

 <xsl:template match="ATTRIBUTES">
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="A">

<i><xsl:value-of select="."/> = </i>
 <xsl:value-of select="@minvalue"/>
 <xsl:value-of select="@value"/>
 <xsl:value-of select="@maxvalue"/>
 <xsl:value-of select="@unit"/></br>
 </xsl:template>
</xsl:stylesheet>

Code Fragment 2: Typical style sheet to format XML data for web page display
(Author)

If the XSL in Code Fragment 2 is applied to Code Fragment 1 the output looks like Code
Fragment 3. At this stage the XML data in Code Fragment 1 can be used for two entirely
different purposes:

• The transfer of structured material attributes for design purposes
• The display of the material characteristics in a web page

University of Pretoria etd

170

Example Material Library

ALUMINIUM

Density = 2650.000 kg/m3

Melting point = 660.000 Deg C

Modulus of elasticity (minimum) = 68300.000 N/mm2

Modulus of elasticity (average) = 70350.000 N/mm2

Modulus of elasticity (maximum) = 72400.000 N/mm2

Thermal conductivity (k) = 214.000 W/m deg C

ALUMINIUM BRONZE

Density (minimum) = 7570.000 kg/m3

Density (average) = 2650.000 kg/m3

Density (maximum) = 8150.000 kg/m3

Melting point (minimum) = 1041.000 Deg C

Melting point (average) = 1052.000 Deg C

Melting point (maximum) = 1063.000 Deg C

Modulus of elasticity = 120000.000 N/mm2

Thermal conductivity (k) (minimum) = 64.000 W/m deg C

Thermal conductivity (k) (average) = 74.500 W/m deg C

Thermal conductivity (k) (maximum) = 85.500 W/m deg C

BRASS

Density = 8380.000 kg/m3

Melting point = 904.000 Deg C

Modulus of elasticity = 103000.000 N/mm2

Thermal conductivity (k) = 129.000 W/m deg C

Code Fragment 3: Output generated by Code Fragment 2 applied to Code Fragment
1 (Author)

Consider the formatted output in code fragment 3 that is achieved by means of the XSL code
in Code Fragment 2. In this case the output generated from the XML in Code Fragment 1 is
HTML format that makes it suitable for direct display in web pages.

Code Fragment 4 below is an example of how the information of a CAD system such as
MicroGDS 6.0 is expressed in XML. This system was the first to offer the ability to translate
CAD drawings into XML. The XML output is translated into Vector Mark-up Language
(VML) by means of a style file. VML is an XML application that combines vector

University of Pretoria etd

171

<?
xm

l v
er

si
on

="
1.

0"
 e

nc
od

in
g=

"U
TF

-8
"?

>
<!

D
O

C
TY

PE
 M

ic
ro

G
D

S
PU

B
LI

C
 "

+/
/ID

N
 in

fo
rm

at
ix

.c
o.

uk
//M

ic
ro

G
D

S6
00

 D
TD

//E
N

"
"f

ile
://

c:
\u

sr
\P

hD
\X

m
l\M

ic
ro

G
D

S
Ph

D
 X

M
L\

M
ic

ro
G

D
S6

00
.d

td
">

<M

ic
ro

G
D

S>

<S
ty

le
Pa

th
/>

<A

lia
se

s/
>

<S
ty

le
s>

<C

V
C

ha
rs

ty
le

 N
am

e=
"1

8"
 H

ei
gh

t=
"1

.8
"

Fo
nt

N
am

e=
"D

EF
A

U
LT

"/
>

<C
V

C
ha

rs
ty

le
 N

am
e=

"2
5"

 H
ei

gh
t=

"2
.5

"
W

id
th

="
2.

5"
 F

on
tN

am
e=

"D
EF

A
U

LT
"/

>
<C

V
C

ha
rs

ty
le

 N
am

e=
"3

5"
 H

ei
gh

t=
"3

.5
"

W
id

th
="

3.
5"

 F
on

tN
am

e=
"D

EF
A

U
LT

"/
>

<T
TC

ha
rs

ty
le

 N
am

e=
"A

R
06

"
H

ei
gh

t=
"6

E-
1"

 W
id

th
="

2.
8E

-1
" F

on
tN

am
e=

"A
ria

l"
 W

ei
gh

t=
"N

or
m

al
"

U
nd

er
lin

e=
"f

al
se

"
St

rik
eO

ut
="

fa
ls

e"
 It

al
ic

="
fa

ls
e"

 P
itc

h=
"V

ar
ia

bl
e"

Fa

m
ily

="
Sw

is
s"

/>

<T
TC

ha
rs

ty
le

 N
am

e=
"A

R
10

"
H

ei
gh

t=
"3

.5
"

W
id

th
="

1.
48

"
Fo

nt
N

am
e=

"A
ria

l"
 W

ei
gh

t=
"N

or
m

al
" U

nd
er

lin
e=

"f
al

se
"

St
rik

eO
ut

="
fa

ls
e"

 It
al

ic
="

fa
ls

e"
 P

itc
h=

"V
ar

ia
bl

e"

Fa
m

ily
="

Sw
is

s"
/>

<T

TC
ha

rs
ty

le
 N

am
e=

"A
R

12
"

H
ei

gh
t=

"2
.5

"
W

id
th

="
1"

 F
on

tN
am

e=
"A

ria
l"

 W
ei

gh
t=

"N
or

m
al

"
U

nd
er

lin
e=

"f
al

se
"

St
rik

eO
ut

="
fa

ls
e"

 It
al

ic
="

fa
ls

e"
 P

itc
h=

"V
ar

ia
bl

e"
 F

am
ily

="
Sw

is
s"

/>

...

<L
in

es
ty

le
 N

am
e=

".
00

"
Fo

nt
="

D
EF

A
U

LT
"

B
or

de
r=

"t
ru

e"
 O

pa
qu

e=
"f

al
se

" S
ym

bo
lH

ei
gh

t=
"2

.5
" P

en
="

0"
 G

ap
="

2"
/>

<L

in
es

ty
le

 N
am

e=
".

18
"

Fo
nt

="
D

EF
A

U
LT

"
B

or
de

r=
"t

ru
e"

 O
pa

qu
e=

"f
al

se
" L

ef
tO

ff
se

t=
"4

E-
2"

 R
ig

ht
O

ff
se

t=
"-

4E
-2

"
Sy

m
bo

lH
ei

gh
t=

"2
.5

"
Pe

n=
"0

" G
ap

="
2"

/>

<L
in

es
ty

le
 N

am
e=

".
25

"
Fo

nt
="

D
EF

A
U

LT
"

B
or

de
r=

"t
ru

e"
 O

pa
qu

e=
"f

al
se

" L
ef

tO
ff

se
t=

"9
E-

2"
 R

ig
ht

O
ff

se
t=

"-
9E

-2
"

Sy
m

bo
lH

ei
gh

t=
"2

.5
"

Pe
n=

"0
" G

ap
="

2"
/>

...

<L

in
es

ty
le

 N
am

e=
"C

E
N

T
1"

 F
on

t=
"S

Y
M

B
O

L
"

B
or

de
r=

"t
ru

e"
 O

pa
qu

e=
"f

al
se

"
L

ef
tO

ff
se

t=
"5

E
-2

"
R

ig
ht

O
ff

se
t=

"-
5E

-2
"

Sy
m

bo
lH

ei
gh

t=
"5

"
Ph

as
in

g=
"L

in
e"

>
<F

ix
ed

Li
ne

 L
en

gt
h=

"7
"/

>
<E

nd
O

fS
ta

rt/
>

<V
ar

ia
bl

eG
ap

 L
en

gt
h=

"1
"/

>
<V

ar
ia

bl
eL

in
e

Le
ng

th
="

2"
/>

<V

ar
ia

bl
eG

ap
 L

en
gt

h=
"1

"/
>

<V
ar

ia
bl

eL
in

e
Le

ng
th

="
2"

/>

<V
ar

ia
bl

eG
ap

 L
en

gt
h=

"1
"/

>
<V

ar
ia

bl
eL

in
e

Le
ng

th
="

8"
/>

<S

ta
rtO

fE
nd

/>

</
L

in
es

ty
le

>
...

<T

ex
tM

ne
m

on
ic

 N
am

e=
"R

G
U

I"
 P

ro
m

pt
="

A
tta

ch
 M

ic
ro

so
ft

gl
ob

al
 u

ni
qu

e
id

en
tif

ie
r"

 M
in

Li
ne

Le
ng

th
="

1"
/>

</

St
yl

es
>

...

<L
ay

er
>

<L
ay

er
 N

am
e=

"S
TR

U
C

"
La

be
l=

""
 L

in
kN

um
be

r=
"3

4"
 H

ig
he

st
O

bj
ec

tL
in

kN
um

be
r=

"2
90

">

<E
xt

en
t L

X
="

0"
 L

Y
="

-2
.0

92
75

00
24

79
55

32
2E

2"
 L

Z=
"0

"
H

X
="

1.
74

90
62

50
47

68
37

16
E2

"
H

Y
="

2.
05

43
74

99
52

31
62

84
E2

"
H

Z=
"0

"/
>

...

University of Pretoria etd

172

<O
C

D
 N

am
e=

"S
T

R
U

C
:S

T
A

IR
">

<O

bj
ec

t L
in

kN
um

be
r=

"2
81

"
H

ig
he

st
Pr

im
iti

ve
L

in
kN

um
be

r=
"4

1"
 L

ig
ht

st
yl

e=
"N

O
N

E
"

C
on

ta
in

sI
te

m
s=

"f
al

se
">

<E

xt
en

t L
X

="
1.

05
27

50
00

09
53

67
43

E2
"

LY
="

-1
.2

53
78

45
56

38
88

55
E2

"
LZ

="
0"

 H
X

="
1.

42
90

63
58

83
50

19
73

E2
" H

Y
="

-
9.

46
50

41
39

90
02

07
52

E1
"

H
Z=

"0
"/

>
<A

xe
s Y

="
-3

"
R

Z=
"-

7.
85

39
81

47
58

30
07

86
E-

1"
 S

="
5E

1"
/>

<T

ex
tP

ri
m

iti
ve

 L
in

kN
um

be
r=

"4
1"

 M
ir

ro
re

d=
"f

al
se

"
B

ox
="

fa
ls

e"
 D

im
="

fa
ls

e"
 D

at
a=

"f
al

se
"

Y
Fa

ct
or

="
1.

12
81

11
24

32
47

98
58

"
C

ha
rs

ty
le

="
T

N
R

25
"

Ju
st

ifi
ca

tio
n=

"B
C

">

<E
xt

en
t L

X
="

1.
26

59
24

99
97

13
89

77
E2

"
LY

="
-1

.2
32

75
00

00
95

36
74

3E
2"

 L
Z=

"0
" H

X
="

1.
30

83
25

00
21

93
45

09
E2

" H
Y

="
-

1.
19

47
49

99
52

26
60

84
E2

"
H

Z=
"0

"/
>

<A
xe

s X
="

1.
28

71
25

00
09

53
67

43
E2

"
Y

="
-1

.2
32

75
00

00
95

36
74

3E
2"

 S
="

8.
86

43
75

35
92

34
30

33
E-

1"
/>

<D

ef
in

iti
on

Te
xt

>U
P

</
D

ef
in

iti
on

Te
xt

>
</

T
ex

tP
ri

m
iti

ve
>

<L
in

eP
ri

m
iti

ve
 L

in
kN

um
be

r=
"4

0"
 M

ir
ro

re
d=

"f
al

se
"

L
in

es
ty

le
="

.0
0"

 S
ta

rt
M

ar
k=

"t
ru

e"
 E

nd
M

ar
k=

"t
ru

e"
>

<E
xt

en
t L

X
="

1.
15

63
85

66
49

39
88

04
E2

"
LY

="
-1

.0
82

75
00

15
25

87
89

1E
2"

 L
Z=

"0
" H

X
="

1.
16

81
67

34
31

39
64

84
E2

" H
Y

="
-

1.
06

94
84

05
26

58
08

11
E2

"
H

Z=
"0

"/
>

<P
ol

yl
in

e>

<P
oi

nt
 X

="
1.

16
81

67
34

31
39

64
84

E2
"

Y
="

-1
.0

76
43

82
55

31
00

58
6E

2"
/>

<P

oi
nt

 X
="

1.
15

76
22

49
94

65
94

24
E2

"
Y

="
-1

.0
82

75
00

15
25

87
89

1E
2"

/>

<P
oi

nt
 X

="
1.

15
63

85
66

49
39

88
04

E2
"

Y
="

-1
.0

69
48

40
52

65
80

81
1E

2"
/>

</

Po
ly

lin
e>

...

</

O
bj

ec
t>

</

O
C

D
>

</
L

ay
er

>
...

</

M
ic

ro
G

D
S>

Code Fragment 4: Structure of a MicroGDS 6.0 CAD file described with XML (Author)

information with CSS markup to describe vector graphics that can be embedded in Web pages
in stead the bitmapped GIF and JPEG images loaded by HTML’s IMG element. VML is
supported by the various components of Microsoft Office 2000 as well as by Internet Explorer
5.0.

The W3C has received four different proposals for vector graphics in XML from a wide
variety of vendors. It’s formed the Scalable Vector Graphics (SVG) working group composed
of representatives from all these vendors to develop a single specification for an XML
representation of Scalable Vector Graphics. When SVG is complete it should provide
everything VML currently provides plus a lot more including animation, interactive elements,

University of Pretoria etd

173

filters, clipping, masking and pattern fills. A full SVG specification and the software that
implements the specification are some time away.

The World Wide Web Consortium released the first working draft of SVG in February 1999
and revised the draft in April 1999. A well advanced working draft appeared 29 June 2000.
Microsoft has stated publicly that they intend to ignore any Web graphics efforts except
VML.

Code Fragment 4 contains a portion of an XML file that encodes the graphics of a CAD
drawing. The XML data starts with the <MicroGDS> label and ends with </MicroGDS>.
In this case the <StylePath/> and <Aliases/> labels are empty. The next section
between the <Styles> and </Styles> labels defines the various character and linestyles
as well as the mnemonics for the attribute data that could be attached to drawing objects
(coloured in blue). The particular CAD system under consideration supports both vector type
and true type character styles. The former is indicated in a label such as

<CV Charstyle Name=”18” Height=”1.8” FontName=”Default”/>
and the latter by
<TT Charstyle Name=”AR06” Height=”6E-1” Width=”2.8E-1”
FontName=”Arial” Weight=”Normal” Underline=”false”
Strikeout=”false” Italic=”false” Pitch=”Variable”
Family=”Swiss”/>

Linestyles could be simple or complex. A typical simple linestyle of .18 mm thickness is
described by:

<Linestyle Name=”.18” Font=”DEFAULT” Border=”true”
Opaque=”false” Leftoffset=”4E-2” RightOffset=”-4E-2”
SymbolHeight=”2.5” Pen=”0” Gap=”2”/>

A more complex linestyle that contains patterns is described by:

<Linestyle Name=”CENT1” Font=”SYMBOL” Border=”true”
Opaque=”false” LeftOffset=”5E-2” RightOffset=”-5E-2”
SymbolHeight=”5” Phasing=”Line”>
<FixedLine Length=”7”/>
<EndOfStart/>
<VariableGap Length=”1”/>
<VariableLine Length=”2”/>
<VariableGap Length=”1”/>
<VariableLine Length=”2”/>
<VariableGap Length=”1”/>
<VariableLine Length=”8”/>
<StartOfEnd/>
</Linestyle>

The <TextMnemonic> label contains the definition of attribute data templates that could be
used in this particular case to attach non-graphical information to the graphical objects. In this
example a mnemonic called RGUI has been defined. The R in RGUI indicates that the data
will apply to a specific instance (reference) of a graphical object. GUI is a mnemonic for
Global Unique Identifier. This method has been used in the precedent system AEDES to
connect alphanumeric data and graphical data. This particular aspect will have to be
developed much further to accommodate the various levels of specificity required for CBR as
well as to facilitate constraint propagation, tacit and explicit requirements of design.

University of Pretoria etd

174

The actual graphical data are contained between the <Layer> and </Layer> labels. In this
system graphical data must occur on a layer although it is not a layer-based system. In this
case the layer under consideration is “STRUC” that indicate that graphical and textual entities
related to the structure of the building should be on this layer. The first graphical object is
indicated by the <OCD Name=”STRUC:STAIR”> label. This label is closed by the
matching </OCD> label lower down. Within the bounds of the <Object> and </Object>
labels the graphical text and lines are defined. The part related to text is indicated in blue and
the part related to the graphical entities such as polylines in red. The text part is bounded by
the <TextPrimitive> and </TextPrimitive> labels. The polylines are bounded by
the <Polyline> and </Polyline> labels.

The hierarchical nature of the graphical example object conceptually follows the hierarchical
structure of:

<Layer>

<OCD>
<Object>

<TextPrimitive>
</TextPrimitive>
<Polyline>
</Polyline>

</Object>
</OCD>

</Layer>

This forms a useful basis for a design language on which the more extensive requirements of
a CBR system that supports design scenario generation and suspension of partially completed
designs can be built.

The integrity of Code Fragment 4 is supported by an extensive Document Type Definition
(DTD). A DTD provides a list of the elements, attributes, notations and entities contained in a
document as well as their relationships to one another. DTDs specify a set of rules for the
structure of a document. The DTD accomplishes this with a list of mark-up declarations for
particular elements, entities, attributes and notations.

Consider Code Fragment 5 below for a shortened example of a DTD that ensures the integrity
of the XML in Code Fragment 4. Only the entities used in Code Fragment 4 are included. The
DTD is not necessary if the output is generated by an application. If XML fragments are
obtained from other external sources then the DTD ensures conformance to the design
language.

<!-- Styles -->

<!ELEMENT Styles (
 CVCharstyle|TTCharstyle|
 Linestyle|Material|Lightstyle|
 TextMnemonic|WordMnemonic|DoubleMnemonic|SingleMnemonic|IntegerMnemonic
)*>

<!-- Character Styles
A character style is either defined as a CAD Vector font or a (Windows)
True-Type font.
-->

<!-- Attributes common to character styles -->

<!ENTITY % CharstyleAttributes '
 Name CDATA #REQUIRED
 Height CDATA #REQUIRED
 Width CDATA #IMPLIED

University of Pretoria etd

175

 Pen CDATA "1"
'>

<!-- CAD Vector Fonts. The FontName attribute is a font name. -->

<!ELEMENT CVCharstyle EMPTY>
<!ATTLIST CVCharstyle
 %CharstyleAttributes;
 FontName CDATA #REQUIRED
>

<!-- True-Type (Windows) font -->

<!ELEMENT TTCharstyle EMPTY>
<!ATTLIST TTCharstyle
 %CharstyleAttributes;
 FontName CDATA #REQUIRED
 Weight (DontCare|Thin|ExtraLight|Light|Normal|Medium|SemiBold|Bold|
 ExtraBold|Heavy)
 "DontCare"
 Underline (true|false) "false"
 StrikeOut (true|false) "false"
 Italic (true|false) "false"
 Pitch (Default|Fixed|Variable)
 "Default"
 Family (Decorative|DontCare|Modern|Roman|Script|Swiss)
 "DontCare"
 CharSet (ANSI|Baltic|ChineseBig5|Default|EastEurope|GB2312|Greek|
 Hangul|Mac|OEM|Russian|ShiftJIS|Symbol|Turkish|Hebrew|Arabic|
 Thai)
 "ANSI"
>

<!-- Line styles -->

<!ELEMENT Linestyle (
 (FixedLine|FixedGap|Symbol)*,
 EndOfStart,
 (FixedLine|FixedGap|VariableLine|VariableGap|Symbol)*,
 StartOfEnd,
 (FixedLine|FixedGap|Symbol)*
)?>
<!ATTLIST Linestyle
 Name CDATA #REQUIRED
 Font CDATA #IMPLIED
 VertexStart CDATA #IMPLIED
 VertexInternal CDATA #IMPLIED
 VertexEnd CDATA #IMPLIED
 VertexMidPoint CDATA #IMPLIED
 SegLineStart CDATA #IMPLIED
 SegLineEnd CDATA #IMPLIED
 SegSegStart CDATA #IMPLIED
 SegSegEnd CDATA #IMPLIED
 FillSymbol CDATA #IMPLIED
 Border (true|false) "true"
 Opaque (true|false) "false"
 LeftOffset CDATA "0"
 RightOffset CDATA "0"
 SymbolHeight CDATA "2.5"
 Pen CDATA "1"
 Phasing (None|Angle|Line|Grid)
 "None"
 Fill (None|HatchHorizontal|HatchVertical|HatchFDiagonal|HatchBDiagonal|
 HatchCross|HatchDiagCross|Solid0|Solid1|Solid5|Solid10|Solid15|Solid20|
 Solid25|Solid30|Solid35|Solid40|Solid45|Solid50|Solid60|Solid70|
 Solid80|Solid90|Solid100|BrushBDiagonal|BrushCross|BrushDiagCross|
 BrushFDiagonal|BrushHorizontal|BrushVertical|FillSymbol)
 "None"
 Gap CDATA #IMPLIED
 Space CDATA #IMPLIED
 Shear CDATA #IMPLIED
 Slope CDATA #IMPLIED
>

<!-- Linestyle pattern elements -->

University of Pretoria etd

176

<!ELEMENT EndOfStart EMPTY>
<!ELEMENT StartOfEnd EMPTY>

<!ELEMENT FixedLine EMPTY>

<!ATTLIST FixedLine
 Length CDATA #REQUIRED
>

<!ELEMENT FixedGap EMPTY>
<!ATTLIST FixedGap
 Length CDATA #REQUIRED
>

<!ELEMENT VariableLine EMPTY>
<!ATTLIST VariableLine
 Length CDATA #REQUIRED
>

<!ELEMENT VariableGap EMPTY>
<!ATTLIST VariableGap
 Length CDATA #REQUIRED
>

<!ELEMENT Symbol EMPTY>
<!ATTLIST Symbol
 Symbol CDATA #REQUIRED
>

<!-- Mnemonic definitions -->

<!ENTITY % MnemonicAttributes '
 Name CDATA #REQUIRED
 Prompt CDATA ""
'>

<!ELEMENT TextMnemonic EMPTY>
<!ATTLIST TextMnemonic
 %MnemonicAttributes;
 MaxLines CDATA "1"
 MinLineLength CDATA "0"
 MaxLineLength CDATA "132"
>

<!-- Layers -->

<!ELEMENT Layer (Extent?, (Attribute|OCD)*)>
<!ATTLIST Layer
 Name CDATA #REQUIRED
 Label CDATA ""
 LinkNumber CDATA #IMPLIED
 HighestObjectLinkNumber CDATA #IMPLIED
 GUID CDATA #IMPLIED
>

<!-- OCD
This is the top-level element for an Object which is a container for the object
name. OCD is short for Object Code (ie name) Definition.
-->

<!ELEMENT OCD (Attribute|Object|ObjectInstance)*>
<!ATTLIST OCD
 Name CDATA #REQUIRED
>

<!-- Objects -->

<!ELEMENT Object (Extent?, Axes,
 (Attribute|LinePrimitive|TextPrimitive|RasterPhotoPrimitive|
 WindowPhotoPrimitive|OlePhotoPrimitive|ClumpPrimitive)*
)>
<!ATTLIST Object
 LinkNumber CDATA #IMPLIED
 HighestPrimitiveLinkNumber CDATA #IMPLIED
 Lightstyle CDATA "NONE"
 ContainsItems (true|false) "false"
>

University of Pretoria etd

177

<!-- Line Primitive -->

<!ELEMENT LinePrimitive (%PrimitiveContent;, Polyline)>
<!ATTLIST LinePrimitive
 %PrimitiveAttributes;
 Linestyle CDATA "DEFAULT"
 StartMark (true|false) "true"
 EndMark (true|false) "true"
>

<!-- Text Primitive -->

<!ELEMENT DefinitionText (#PCDATA)>
<!ELEMENT ExpandedText (#PCDATA)>

<!ELEMENT TextPrimitive (
 %PrimitiveContent;, Axes,
 DefinitionText, ExpandedText?
)>

<!ATTLIST TextPrimitive
 %PrimitiveAttributes;
 Charstyle CDATA "DEFAULT"
 Linestyle CDATA #IMPLIED
 Justification (TL|TC|TR|CL|CC|CR|BL|BC|BR)
 "BL"
 Box (true|false) #IMPLIED
 Dim (true|false) #IMPLIED
 Data (true|false) #IMPLIED
 YFactor CDATA "1"
>

<!-- Points simply consist of x,y,z coordinates -->

<!ELEMENT Point EMPTY>
<!ATTLIST Point
 X CDATA "0"
 Y CDATA "0"
 Z CDATA "0"
>

<!-- As far as the DTD is concerned, a vector is equivalent to a point -->

<!ELEMENT Vector EMPTY>
<!ATTLIST Vector
 X CDATA "0"
 Y CDATA "0"
 Z CDATA "0"
>

<!-- BulgeAxis - this is a bulge factor
The B attribute represents the bulge factor, a value between 0 and 1. -->

<!ELEMENT BulgeAxis EMPTY>
<!ATTLIST BulgeAxis
 B CDATA "0"
 X CDATA "0"
 Y CDATA "0"
 Z CDATA "0"
 A CDATA #IMPLIED
>

<!-- Polyline
Start point, followed by a sequence of line segments (curved or straight). If
the first and last points are the same, the polyline is closed.
-->

<!ELEMENT Polyline (Point, (BulgeAxis?, Point)*)>

Code Fragment 5: Partial MicroGDS 6.0 XML Document Type Definition (DTD)
described with XML (Author)

University of Pretoria etd

178

At this stage it is possible to implement the conceptual design processor illustrated in Figure
46.

Figure 1: Structured Planning/ Design Knowledge Delivery (Author)

The design knowledge delivery system will conceptually work as detailed in Figure 46. A
designer that wants to design a facility or solve a specific operational problem will activate a
purpose made search engine [B] in Microsoft Internet Explorer. The search engine [B] will
enable the user to set basic constraints and search criteria in order to expedite information
retrieval. If the relevant information is found it will be packaged in the form of XML design
knowledge fragments. The user can first view the result in Internet Explorer and if he is
satisfied ask the system to download it to the desktop. The desktop planning/ design processor
[D] will retrieve the downloaded XML knowledge fragment [C]. Due to the fact that design
takes place in an open world it is expected that many different planning concepts might exist
that need to be explored. These partially completed scenarios are stored in [F] and [G] again
in XML format. Once the planner is satisfied the solution can be plugged into a live project
environment [H]. It is also possible to publish good designs back into an office web page [A]
to make them available to other designers.

[D] could be seen as working memory (WM), [F] and [G] as long term memory (LTM)
(Simina 1999:39-43). The main purpose of WM is:

• Promote synergy among design parts
• WM facilitate external and internal event detection and processing
• WM keeps a limited store of recently accessed artefacts

The purpose of LTM is:

• Main repository of past design or design fragments
• Retrieval from LTM could be based on any combination constraints or functions

University of Pretoria etd

179

The XML Fragment interchange working draft (W3C 1999) defines a way to send fragments
of an XML document to an XML user, in this case the designer using the desktop/ planning
processor. It must be emphasised that although Figure 46 is an oversimplified example the
following important principles are used:

• The designer remains in full control of the ultimate solution at all times
• Design experience is stored in a structured format (the beginning of CBR)
• Most information required in the planning and design environments are basically

hierarchical and occur at various levels of specificity
• XML supports the inclusion of non-XML data and can act as an integrator of diverse data

sources
• XML supports distribution of data as well as data hyper linking
• XML supports multi-media data sources
• The example attempts to support design as a pragmatic as well as a cognitive activity
• The solution assumes that planning and design requires a continuum of design methods

that use model based, rule based and case-based reasoning. It is ultimately up to the
designer to decide what method he prefers

• Current relational databases such as Oracle already support the generation of XML data
from a relational query

By means of a style sheet defined in XSL it is possible to display the XML such as Code
Fragment 4 in vector format in a web page (Figure 47). For a complete listing of the style
sheet please consult Appendix D. The style sheet converts the XML code into Microsoft
VML format that makes the display in a web page possible.

The display as illustrated in Figure 47 was done in the smallest possible custom developed
web browser for the following reasons:

• To test the feasability of a thin browser developed in Visual Basic by means of the

convenient Inet ActiveX control.
• To facilitate retrieval of XML code fragments in the ARGOS autonomous design objects

a small Internet Explorer is required that has the ability to interpret the XML, stylesheets
and DTDs.

The actual code required to implement the minimal browser is included in Appendix F. The
browser was tested by means of a small test web page run on a personal computer by means
of the Personal Web Server provided with Microsoft Windows 98. Only minimal
functionality is provided but enough to facilitate connection to any potential design site in the
world or design knowledge fragment on the personal machine or Intranet.

University of Pretoria etd

180

Figure 2: Display of CAD drawing in XML format by means of VML (Author)

Careful analysis of the display reveals numerous small errors such as inaccurate text display,
and problems with the interpretation of the bulge factor to display circles or arcs. Bit map
images, although saved in the XML file are not displayed at all in the web page. At this stage
the display capabilities of an AutoCAD Whip file in the web environment are superior to
what is offered by the static VML display. However the XML provides a structured and
accessible data format that can be processed further whereas the Whip1 format is closed and
proprietary.

6.2 Packaging and retrieval of design knowledge

6.2.1 Introduction

The author proposes a totally new approach to architectural design knowledge packaging that
would require the lowest possible level of platform technology, such as a spreadsheet, as the
entry level. Many ambitious attempts have been made in the past to define universal Building
Product Models. At this stage none of them are entirely satisfactory due to complexity of the
artefact creation world. All indications are that conscensus will be reached soon (Eastman
1999)

The portable nature of Microsoft ActiveX controls makes it possible to support a wide range
of platforms without being tied into particular CAD systems, databases or design software. It
also ensures a cost effective design environment. By means of ActiveX controls that are
embedded into web pages it is possible for service providers to offer a subscription service of
design tools such as lightweight cases (architectural design kits) to designers. The designer
could then use design software in his Internet explorer without even installing or buying

1 Whip is a proprietary format that facilitates the display of CAD drawings in a web page

University of Pretoria etd

181

expensive software. The user could then purchase time from the software service provider
only when required. It is proposed that the approach that has been followed in the
development of the precedent systems AEDES and PREMIS up to date be completely
changed around. The approach in the past was an application centric approach with particular
emphasis on specific database technology and CAD systems. It is proposed to use a
document-based approach (Figure 52). Designers and Architects are used to the concept of
documents. This will ensure that anybody that has Microsoft OLE, COM and DCOM
compliant software can significantly benefit from the approach. Microsoft developed these
technologies specifically to support the intelligent use of documents in a collaborative
environment.

The architectural design starter kits, developed by the Division of Building Technology, over
a long period of time provided a useful starting point for AEDES and the present research.
These starter kits have already contributed significantly towards an accelerated and more
efficient design process in the domain of health facilities. These starter kits are available in
CAD format and contains “empirical ideal” total facility layouts. The author recently wrote a
prototype web page to test the technical feasibility of the distribution of these design kits via
the Internet.

The main shortcomings of the present CSIR starter kits (cases) are:

• They contain no traceability of the design process.
• Although staffing required, fixed and loose equipment are available in supporting

design documents, it is not in a structured way that could be used in Case-Based
Reasoning.

• No distinction is made between neutral and localised information. Heidegger
described this as the “Dasein” of tools (Biemel 1976:38).

• No object naming conventions have been used that can facilitate connection with
other data sources.

• No intelligence is available to predict operational performance.
• No integration with the total life cycle information infrastructure.
• Starter kits should contain knowledge from both the tacit and explicit levels of

knowledge management to give future users an idea what the design rationale was.

The use of structured methods such as QFD, Kansei and System Engineering is explicitly
time-consuming (Cohen 1995:31). In order to achieve the best possible future use of the
design knowledge it is important that knowledge can be reused. The object technologies
presently available are already mature enough to support this need well.

The AEDES prototype software solved some of the abovementioned knowledge packaging
challenges. However a few fundamental matters are still unresolved such as support for the
Internet, complete object encapsulation and a low-level entry platform. In the prototype CAD
drawings were embedded into an OLE field into an Oracle form field in an attempt to
encapsulate the various types of knowledge required. The main disadvantages of this
approach were:

• The object data is not persistent.
• Low-level users would require a database such as Oracle, Microsoft Access or SQL

Server as a minimum to use the starter kit.
• It would be difficult to distribute the design globally.
• The response by means of Visual Basic during interrogation of the embedded CAD

objects is presently very slow. This improved significantly in Oracle 8.0i (The latest
Oracle RDBMS release).

University of Pretoria etd

182

• It is difficult and inconvenient to interface the alphanumeric and graphic contents of
the starter kit with other applications.

• It would be difficult for third party companies to build starter kits independently. This
is a prerequisite if the starter kits are to gain widespread commercial acceptance in
future.

• It is particularly difficult to profile or deliver design data to suit the specific needs of
the designer, planner or reasoner.

6.2.2 Constraints

Constraints form an important part of planning and design in general and should be supported
by ARGOS. The following different main categories of constraints can be identified that
could be supported by ARGOS:

• Formulation. This is the process of adding or creating new constraints based on decisions.

Constraints could originate from the designer, propagation of second order constraints
and by inheritance.

• Propagation. This is the process of inferring values and constraints from other values and
constraints. This is achieved by means of functions associated with the constraint type.

• Satisfaction. This is the process of finding values that satisfy a constraint set. Different
constraints can have different functions associated with the particular constraint.

The implementation of constraints in an open world is subject to several requirements:

• Sensitivity to incomplete knowledge. It is possible that constraints need to be evaluated

with some arguments missing. Hinrichs (1991:98) suggests that two evaluation functions
are used in this situation, one that is optimistic about the missing information and one that
is pessimistic.

• Ability to relax preferences. Since design problems may have satisficing solutions, the
design processor needs to be able to relax constraints. To facilitate this the importance of
a specific constraint needs to be known.

• Flexibility of propagation. The constraint poster should be able to propagate constraints
between different sets of variables in a problem.

• Protection of problem-independent constants. The flexibility of propagation necessitates
the restriction of what counts as a variable in a problem.

The constraints determine the class of problems that can be represented. Figure 48 illustrates
the taxonomy of constraint types that could be used in a design processor. The constraints fall
into five main categories:

• Logical Connectives permit recursive combinations of constraints.
• Nominal Constraints relate identities of values.
• Ordinal Constraints capture relationships between continuous valued quantities.
• Structural Constraints constrain the existence of variables rather than their values.
• Functional Constraints degenerate constraints (rules) that propagate only in one direction.
• Second-Order Constraints are constraints on other constraints.

In the descriptions below, the term variable refers to a slot in some frame and argument refers
to an actual argument to the constraint, which could be either a variable or a constant (Figure
48).

Same. Two arguments are constrained to be identical. This is typically used to connect two
variables together. It could also be used to restrict a variable to a constant.

University of Pretoria etd

183

Instance. The first argument must be a frame subtype of the second. In this case instances and
subtypes are treated equivalently.

Compatible. The arguments must be frames, in which neither is represented as being
incompatible with the other.

Inverse. The first argument must be the logical or functional inverse of the second.

Member. The first argument is a member of the set designated by the second argument.

Contains. The second argument is an ingredient or component of the first argument. This is a
transitive relationship.

Does-not-Contain. The second argument is not an ingredient or component of the first
argument. This is a transitive relationship.

Within. The first argument is in the numerical range designated by the second argument.

At-least. The first argument is greater than or equal to the second.

At-Most. The first argument is less than or equal to the second.

Max. The first argument is the maximum of all subsequent arguments.

Min. The first argument is the minimum of all subsequent arguments.

Same-Structure. The variables in the first argument are the same as the variables in the second
argument. The arguments to structural constraints of this sort are effectively quoted1 such that
variables themselves are returned, rather than the values of those variables. This permits
constraints on structure as well as on content.

Struc-Member. The variable in the first argument is a member of the variables in the second
argument.

Same-Constraints. Every constraint on the internal slots of the value of the variable is present
on the corresponding slots of the frame containing the variable.

Constraints. The constraints on the first argument are propagated to all the variables
designated by the second argument.

To carry out a planning and design activities certain information must be available. In
addition, certain conditions, states or evaluations may apply to the data. Eastman (1999: 343)
calls this the Readset and Before Constraints. When an activity is completed data will be
added or modified. That design data will possibly have new conditions, constraints or states
associated with it. Eastman call this the activities’ Writeset and After Constraints. Together
they define an activity Φ that has the following general structure:

)}{,}{,}{,}({ ABWR CCEE=Φ

where =RE}{ the set of entities to be read into the application
 =WE}{ the set of entities that are written by the application

1 This term refers to a convenient LISP construct. LISP was a prominent language in AI ten years ago.

University of Pretoria etd

184

=BC}{ the set of constraints that must be satisfied before the application can
be executed

=AC}{ the set of constraints that are satisfied within the application and can
be relied on by later operations

The before constraints and after constraints specify a logical relationship between activities
and the information and the conditions that the activities require. The Readsets and Writesets
define data dependancies. The before constraints and after constraints identify process
dependencies.

Constraints, as defined here, can have one of four values (Eastman 1999:343):

 TrueT >==< implies that it has been satisfied
 FalseF >==< implies that it has been evaluated and has failed

UnknownU >==< implies that it has not been evaluated, possibly because it is
not available to do so

BlankX >==< implies that changes have been made to the context, so that
the state of the constraint is uncertain

University of Pretoria etd

185

Figure 3: Taxonomy of constraint types (Hinrichs 1991:99)

6.2.3 The design of the ARGOS intelligent component

In order to conveniently process design fragments on the desktop without the use of CAD
requires intelligent components that can encapsulate the design fragments. The component
should also be able to retrieve design fragments from anywhere. To test the idea a prototype
control was built. Consider Figure 49 for an example of the control running in Internet
Explorer 5.0 The component has the ability to be resized in the x and y axis whilst in two
dimensional mode and the x and z axis whilst in three dimensional mode. Appendix F
contains the actual code that connects the various parts of the control parametrically together.
The intention is that a designer might place a number of the controls in a spreadsheet to test
the relationship between architectural design units at any level of specificity. Each component
is an autonomous encapsulated world on its own.

University of Pretoria etd

186

Figure 4: ARGOS object in 2D mode (Author)

Figure 5: ARGOS object in 3D mode (Author)

University of Pretoria etd

187

Synchronisation between the autonomous components can achieved by means of very simple
Visual Basic for Application code if it is used in a spreadsheet.

Figure 50 illustrates the ARGOS control in 3D mode. The 3D mode enables a designer to get
a feeling for volume in a basic way. The z-axis adjustment facilitates the adjustment of the
height. The controls can be made highly sophisticated by adding automatic volume
calculation and readout of pertinent design parameters. It is envisaged that many different
variants of ARGOS can be built such as:

• Controls that are unlocked, leaving it up the user to place, size and populate them with

design information
• Controls that contain cases from the past at various levels of specificity
• Rule-Based controls that model certain well known design characteristics such as energy

use
• Model-Based controls that model the constructional performance of a structure such as

the forces on a slab

6.2.4 Classification and knowledge organisation in a packaged environment

If the packaging of architectural design knowledge in the form of encapsulated Microsoft
ActiveX controls is to be successful then it is important that a designer can easily find
relevant controls anywhere in the world. It is also important to realise that a control that has
not been brought into the specific environment where it will be used should contain
knowledge that is neutral. Once it arrives in the specific environment where it will be used it
should take on the localised qualities. An example of this is the cost of plant, labour,
construction materials, temperature and soil conditions.

The core problem in Information Science (IS) is seen as information seeking and “information
retrieval (IR). The design of information systems and knowledge organisation by
classification and indexing is a means to that end.

Hjörland (ISKO 1994:91) identifies nine principles on the organisation of knowledge.

1. Naïve-realistic perception of knowledge structures is not possible in more advanced

sciences. The deepest principle on the organisation on knowledge rests upon principles
developed in and by scientific disciplines.

2. Categorisations and classifications should unite related subjects and separate unrelated

ones. In naïve realism, subject relationships are based on similarity. Two things or
subjects are seen as related if they are “alike”, that is if they have common properties or
descriptive terms ascribed.

3. For practical purposes, knowledge can be organised in different ways and with different

levels of ambition.

• Ad-hoc classification (categorisation) reflects a very low level of ambition in
knowledge organisation. Every time you arrange flowers in your private home, you
use a kind of “ad-hoc classification” determined by your private taste, the colours of
your rooms, what other objects they should match with.

• Pragmatic classification reflects a middle level of ambition in knowledge
organisation. It is a compromise between ad hoc classifications and scientific
classifications. Amateur gardeners or horticulturists have other criteria for
categorising proteas and azaleas than the biologist would imply.

University of Pretoria etd

188

• Scientific classification reflects a very high level of ambition in knowledge
organisation. It is highly abstract and generalised way of organising knowledge. An
example of this is the classification of animals and plants according to biological
taxonomies.

4. Any given categorisation should reflect the purpose of that categorisation. It is very

important to teach the student to find out the lie of the land and apply ad hoc
classifications, pragmatic classifications or scientific classifications when appropriate.

5. Concrete scientific categorisations and classifications can always be questioned. The

concept of “science” has more than one meaning.

• Science as a social institution, consisting of people paid to do research. This is the
cultural concept of science.

• Science as a normative, epistemological concept (to argue in a scientific way). What
constitutes science in this respect is a matter of continuous development, argument
and criticism in methodology and theory of science and in the development of science
itself.

6. The concept of “polyrepresentation” is important. In typical information seeking

situations, some categorisations are useful to some degree, others to some other degree.

7. To a certain degree different arts and sciences could be understood as different ways of

organising the same phenomena.

8. The nature of disciplines varies. The distinction between “hard sciences” and “soft

sciences” is well known, but perhaps not fruitful.

9. Many authors indicated the important problem that the quality of knowledge production

in many disciplines is in great trouble. It seems if the priorities become more and more
short-sighted, that less effort are made to develop long-sighted, well organised and well-
cared for bodies of knowledge and literature. This means, that the integrity of scientific
knowledge as well as other forms of knowledge is threatened.

University of Pretoria etd

189

Figure 6: The relationship between the ARGOS, ActiveX design object and the
applications software (Author)

6.2.5 The co-existence of ARGOS with other software

The Architectural General Object System (ARGOS) is a Microsoft ActiveX object with the
internal design fragment stored in XML. Microsoft Visual Basic provides enough
functionality to build the object (Appleman 1999). Although third party users can generate the
object independently, it is recommended that a structured front end consisting of an
appropriate collection of methodologies as described for the AEDES system could be used.
This will ensure that the object is optimal for the given set of requirements. COM software
components such as ActiveX controls can be developed with several different programming
languages. The most common choice, if Web pages on the subject are any indication, is
Microsoft Visual C++. Presently Visual Basic 5 and 6 also support the development of
ActiveX controls very well. Using Visual C++, COM software can be written using one of
three development libraries, the ActiveX Template Library, Microsoft Foundation Class
Library or the BaseCtl framework. ActiveX controls can use a variety of programming
languages from Microsoft for component design in addition to Visual C++ like Visual Basic,
Visual J++ and even Word or Excel’s programming languages.

Currently only highly skilled programmers can build the ActiveX objects. For this reason a
special module B1, Packaging Software is proposed (Figure 51). This software tool takes the
final design fragment and encapsulates it into a single object. Once the object is created it can
be distributed in many different ways and used in a wide variety of environments. The
contents of the object can be imported back into the original environment that created it.
However the object can be used in many other environments such as spreadsheets, Web pages
and process analysis.

University of Pretoria etd

190

6.2.5.1 Concept selection

The process of concept selection is important in the product development environment and
therefore architectural design. In Architecture it is often necessary to compare alternative
architectural design concepts, especially during the early phases of design. To this end the
ARGOS kits could be inserted into a spreadsheet. The designer could then conveniently
analyse various design aspects in the familiar environment of a spreadsheet without doing any
programming. In this case the controls containing the likely concepts would be drawn into a
spreadsheet or a simple Visual Basic program. The ratings from the different concepts are
derived from the controls and subsequently compared with one another.

6.2.5.2 Spreadsheets

Spreadsheets such as Microsoft Excel support the use of ActiveX controls. Many people use
spreadsheets and it is a convenient environment for initial project planning tasks such as cost
estimating, area and energy analysis. In this environment there is no need to be connected to a
database, although the proposed design of the ARGOS object includes links to material and
product databases.

In order to use the control in this environment, a user simply has to insert the control into the
spreadsheet. To access the list of properties and methods provided in the control in the
spreadsheet, the user has to connect the desired property in the control to a cell(s) in the
spreadsheet. This can be achieved by the example code fragments below (Code Fragment 3).

In this case the cells are manipulated by the Visual Basic GotFocus and LostFocus events. In
the case of the function ArgosAB_GotFocus a range of cells Range(“A1:A10”) on
Worksheet(“Sheet1”) is set to the value of the GrossArea property retrieved from object
instance ArgosAB. Note that during the creation of the object certain properties were set to
read only. In a similar way the function ArgosAB_lostFocus sets the value of a range of cells
Range(“A1:A10”) to an empty string. At the same time a property text of the text box
txtArgos is set to the text string “RESET TO EMPTY”. The control is a totally encapsulated
world that contains many properties. These autonomous controls need to be connected
together in order to do something useful with it. This can be achieved in any ActiveX
compliant container environment.

Private Sub ArgosAB_GotFocus()
 Worksheets("Sheet1").Range("A1:A10").Value = ArgosAB.GrossArea
 txtArgos.Text = ArgosAB.GrossArea
End Sub

Private Sub ArgosAB_LostFocus()
 Worksheets("Sheet1").Range("A1:A10").Value = ""
 txtArgos.Text = "RESET TO EMPTY"
End Sub

Code Fragment 3: Communication between an ARGOS ActiveX control and Excel
Spreadsheet cells (Author)

6.2.5.3 Computer languages

A systems integrator or software tool designer can use the ActiveX controls (objects) in
exactly the same way. However he can implement the objects in far more advanced
environments. A typical scenario would be where a suggested method such as
ArgosAB.UnpackFunction or ArgosAB.UnpackCAD could be invoked. This tells the particular

University of Pretoria etd

191

instance of the design component (ArgosAB) that the user wants to inspect the particular
design functions embodied into the design or want the design object to download the CAD
drawing to start with CAD based layout planning.

6.2.5.4 Process analysis

In an environment such as offered by Arena users can use the control to extract the desired
properties that he wants to analyse. The capabilities of Arena can be utilised to optimise flow
of people in the specific layout. Arena uses Visual Basic for Applications (VBA) as its
command language.

6.2.6 The design of the ARGOS object

The ARGOS object [A1] can be placed inside any ActiveX container [B1] such as supported
by Excel, Word, Visio or World Wide Web pages. Due to the intrinsic information that is
built into the object the designer can use the object immediately without connecting to any
outside information sources. However to realise the full power of this approach it is
recommended that a user connects to the Internet to access convenient outside data sources to
provide information such as product data [D1], material characteristics [E1], other existing
cases [F1] and Facilities Management cost models. Figure 52 illustrates this concept as well
as the relationship of the object with such remote data sources.

Figure 7: The relationship of the ARGOS object to other intelligent data sources
(Author)

Internally the ARGOS design case contains 4 main types of design knowledge that consists of
both alphanumeric and graphic information:

• Tacit design information
• Explicit design information

University of Pretoria etd

192

• Graphic information in the form of a design drawing that should preferably be in a neutral
data format

• Functional design information such as the design functions and their allocation to
physical design elements in a structured format. The W3C, XML format is ideal for this

Some of the information in the first two groups is exposed directly as ActiveX properties. In
this case the design object properties is a synonym for surface features1. The indices of a case
are those combinations of features that distinguish it from other cases, because they are
predictive of something important in the case. In addition to be being predictive of something
important, indices need to be concrete enough to be recognisable and abstract enough to
make a case useful in a variety of future situations. This enables a designer to assess the
applicability of the design or to estimate approximate cost. If the design appears to be suitable
then the detailed functional design can be inspected.

Again it is important to note that it is an incorrect assumption when people argue about
surface features, deep features, structural features, pragmatic features and thematic features in
the sense of designing retrieval methods for cases based on one of those. To build a good
index it is important to choose from all these levels and make sure that it has the important
properties (Kolodner 1996:357). Those descriptors describe where a feature lies in a
representation or what its content is. Sengupta et al. (1999) gives an indication of the
usefulness of the W3C, XML standard for the representation of a case structure and describes
methods to translate between relational databases and XML. The author is of the opinion that
XML is almost ideal for the structured documentation of the intrinsic artefact design
functions. By structured the following is assumed:

• The structure can be analysed by means of computer software.
• It is a complete documentation of the design performance requirement, functions,

allocations to construction elements and specifications using systems engineering
principles.

• Design function groups can be inserted into the existing structure.
• Constraint posting can be supported.
• Quality is an intrinsic part of the function structure.

If adaptation is required then the functional tree can be modified. Modification could be by
means of the insertion of function fragments, elements or specifications. If existing design
fragments cannot be found then the designer has to design the specific parts from first
principles following a process of structured design.

Although the user definable properties that a user can set in this environment are persistent
within the particular container, this persistence is destroyed the moment the object is moved
to a different container environment. To overcome this problem two object methods
PersistDesignOut and PersistDesignIn are introduced that will write the design data into an
XML computer file on a local disk or an ftp directory on a remote project server. In this way
structured design functions can be freely exchanged. As indicated in Figure 52 there is a bi-
directional exchange of persistent data.

[D1] and [C1] are fictitious remote data sites that can be nominated by means of a data
address within the object. This is achieved by setting the object property DataLocation to a
valid URL. By means of the method DisplayRemoteData or by pressing the command button,
these data will be displayed. The designer can then select the record and apply it to the current
design object. Note that the data flow from remote data sources is uni-directional at this stage.

1 There is a difference between easily available and surface features. Surface features make good indices to the extent that they
are predictive of something important or useful.

University of Pretoria etd

193

The connection to the local database is conveniently achieved by means of the Microsoft
ActiveX Data Object.

6.3 World Wide Web Implementation

Microsoft Internet Explorer supports the ActiveX controls. When the ARGOS design object is
inserted into a web page the code looks like in Code fragment 4. The object starts with the
label

<object classid="clsid:59DF65DF-632C-11D3-8D31-4854E8284FB0"
id="UserControl11" width="250" height="467">

and ends with the label

</object>

The classid is particularly important, because it is a totally unique code that is used to
identify the particular class of the ActiveX control. This code is guaranteed to be unique in
the world. This object was labelled with this code during the design and programming of the
object. The id is the name that will appear on the list of possible controls when a user wants
to insert an ActiveX control into his container software. In this case the id is
UserControl1. The properties available for the object is exposed with the statements that
read <param name="_ExtentX" value="5292">. In this example the ARGOS
object contains 15 user definable properties. These properties fall into two main groups:

• Explicit
• Tacit

The explicit attributes have the prefix AE_ and the tacit ones AT_. The explicit properties
contain surface features (in CBR terminology) such as gross area, net area, rentable area,
construction area, volume, shape, durability, energy use and cost. The tacit properties contain
factors that were identified in Chapter 3, 3.5 where Kansei engineering was discussed in
detail. This gives an indication of the sensory aspects of the design such as sight, hearing,
taste, smell, internal sensitivity and recognition. Architecture has lot to do with the sensory
aspects such as feeling of space, colour and acoustics.

It is apparent from the code fragment that the design detail is hidden away from the designer
at this stage. The directly available properties make it possible to do basic preliminary
feasibility studies. To make the detail visible the user will have to press the command buttons
for CAD or Function that will unload the CAD drawing or the XML function tree. The
ARGOS object also contains two buttons that a user can use to maximize or minimize the
object. If a user wants to perform a specialised task he can invoke one of several object
methods available.

<html>

<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="Template"
content="C:\PROGRAM FILES\MICROSOFT OFFICE\OFFICE\html.dot">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<title>AEDES</title>
</head>

University of Pretoria etd

194

<body background="aedes_b.gif" link="#0000FF" vlink="#800080"
bgproperties="fixed">

. . .

<object classid="clsid:59DF65DF-632C-11D3-8D31-4854E8284FB0" id="UserControl11"
width="250" height="467">
 <param name="_ExtentX" value="5292">
 <param name="_ExtentY" value="9885">
 <param name="BackColor" value="0">
 <param name="ForeColor" value="0">
 <param name="Enabled" value="0">
 <param name="BackStyle" value="0">
 <param name="BorderStyle" value="0">
 <param name="AE_grossarea" value="0">
 <param name="AE_nettarea" value="0">
 <param name="AE_rentable_area" value="0">
 <param name="AE_construction_area" value="0">
 <param name="AE_volume" value="0">
 <param name="AE_shape" value="0">
 <param name="AE_durability" value="0">
 <param name="AE_energy_use" value="0">
 <param name="AE_cost" value="0">
 <param name="AT_sight" value="0">
 <param name="AT_hearing" value="0">
 <param name="AT_taste" value="0">
 <param name="AT_smell" value="0">
 <param name="AT_internal_sensitivity" value="0">
 <param name="AT_recognition" value="0">
 <param name="AF_function" value="0">
</object>
. . .

<hr size="1" noshade color="#0000FF">

<p align="left"><!--webbot
bot="Timestamp" startspan s-type="EDITED"
s-format="%d %B %Y %I:%M %p" -->12 February 2000 06:46 AM<!--webbot bot="Timestamp"
i-CheckSum="54291" endspan --></p>
</body>
</html>

Code Fragment 4: ARGOS object placed in a web page (Author)

6.4 Hypothetical use of ARGOS

Due to time and financial constraints it is not the intention to develop a full commercial
system in this study. However this section provides a run-through of how a designer might
use the system.

It is assumed that a designer wants to design a new 16-bed male/female/paediatric in-patients
section. The designer decides to see whether a previous conceptual layout of this type of
facility exists. Unfortunately nothing exists in the office and a search of the web is also
unsuccessful. It is also assumed that the ARGOS ActiveX control set is installed and available
on the design workstation.

The designer decides that he will be using his Microsoft Excel Spreadsheet as a blackboard,
because this is convenient for the type of design testing that he wants to do. The design brief
specifies a design of not more than 260 m² and the cost should be below R 780 000-00. The
accommodation requirement for the design is the following:

Capacity of 16 beds
Staff WC
Patient ablution

University of Pretoria etd

195

Sit bath
Nurse station
Duty room
Clean linen storage
Clean utility room
Ward kitchen
Dirty utility room
Store

The client states that it is a specific requirement that energy be saved especially with regards
air conditioning.

The designer starts the process by calling up an Excel Spreadsheet with a default ARGOS
control panel. He selects a minimal parametric ARGOS control from the Control Toolbox
(ARGOS.CBR) and inserts it into the spreadsheet (Figure 53).

Figure 8: Design of 16 bed male/ female/ paediatric in-patients section step 1
(Author)

At this stage the spreadsheet contains four command buttons that enable the designer to
calculate net m², gross m², volume m³ and a special button that enables him to export the
design in XML format to an XML aware CAD system for subsequent detailed design. For
convenience a combobox is also included where the designer can list the spaces in the design.
At the moment the ARGOS control is still default size and the internal properties all have
default or undefined values.

The designer now continues to develop the design according to the brief and his experience.
After some time the design looks like in Figure 54. The design contains 14 ActiveX controls
of varying size. The designer adjusts some of the properties that will be important for
subsequent retrieval of previous design cases. He sets the wall thickness in the M_wall1,

University of Pretoria etd

196

M_wall2, M_wall3 and M_wall4 properties to respectively 55, 220, 55 and 220. Seeing that
this is a special section intended for paediatrics some Kansei adjectives are added in the
AT_hearing, AT_internal_sensitivity, AT_recognition, AT_sight, AT_smell and AT_taste
properties.

Figure 9: Design of 16 bed male/ female/ paediatric in-patients section step 2
(Author)

Some useful adjectives that could be used are listed in Figure 27. The Kansei properties now
read:

AT_hearing = quiet
AT_internal_sensitivity = warm, tranquil, cheerful
AT_recognition = cute, elegant
AT_sight = cute, elegant
AT_smell = pleasant
AT_taste =

These properties are very important for subsequent retrieval of possible previous design
experience. The ARGOS properties can be defined by typing directly into the relevant
property, set by program or indirectly adjusted by means of the x, y or z slide controls. The
properties are also useful because they can be directly transferred to CAD systems that
support the definition of attributes such as MicroGDS or AutoCAD.

At this stage a typical property list for the 4 Bed Ward would look like the one illustrated in
Figure 55. Note the Kansei definitions at the top of the list and the various wall thickness
properties at the bottom of the list.

University of Pretoria etd

197

Figure 10: Setting design properties of a paediatric ward (Author)

At this stage the designer would like to know the gross and net area. This is accomplished by
selecting the relevant command buttons that start Visual Basic routines that scan through all
the design controls present and retrieve all the areas. In a similar way the volume is
determined.

The system reports the following (Figure 56):

Net m² = 221.256
Gross m² = 251.5808
Volume m³ = 639.42984

At this stage he is not sure what the construction cost per m² is and activate his Microsoft
Internet Explorer. He accesses the http://design.case.co.za web page that is one of the
available design information sites to search for an estimated construction cost/m² for this type
of facility. This is conceptually illustrated in Figure 52. He finds this cost to be R 2800-00/m².
On the basis of this it is estimated that it would cost R 704 426-24 to build this facility. In the
meantime the air conditioning engineer is analysing the design from an energy point of view.
He finds that the current volume would require a significantly larger installation than
originally anticipated. In an attempt to solve this the ceiling height is lowered from 2 890mm
(34 brick courses) to 2 720mm (32 brick courses) (Figure 57). This is accomplished by setting
the AA_zdim property to 2 720 for each ARGOS component. The recalculation indicates that
the volume has now in fact been reduced from 639.43 m³ to 604.29 m³. This is an immediate
saving of 5,5%. In a similar way other direct design parameters can be adjusted and tested.

University of Pretoria etd

198

Figure 11: The calculation of area and volume (Author)

Figure 12: The reduction of volume by lowering the ceiling (Author)

University of Pretoria etd

199

The designer is now satisfied with the basic design and continues with the detailed design. By
double clicking1 on the ward the search engine is invoked to search for previous design cases
that fit the type and dimensions previously captured. Initially only the main description is
used to search for a list. The system reports that three types of ward is available:

Two Bed Ward
Four Bed Ward
Observation/ Trauma Ward

He selects the Four Bed Ward. ARGOS now uses the AA_xdim, AA_ydim, AA_zdim as well as
the set of Kansei descriptions such as AT_hearing, AT_internal_sensitivity, AT_recognition,
AT_sight, AT_smell and AT_taste as search parameters. This is implemented with the dynamic
linguistic variable method described in detail in Chapter 3. Only one solution is found and
placed into the design (Figure 58). In a similar way other parts of the design can be developed
and further refined. Once the designer is satisfied he can export the entire design to an XML
aware CAD system or a rendering/ visualisation package for detailed design and the
production of working drawings.

Figure 13: The retrieval and insertion of a Four Bed Ward detailed case (Author)

6.5 Empirical response tests

To ensure that the proposed system would be scalable and could eventually be applied to real
problems in the architectural design domain a series of response tests were conducted. A
recently completed very large shopping centre analysed to establish the needs of the

1 Two possibilities exist to implement the CBR retrieval in ARGOS. The basic ARGOS can switch to CBR mode or a special
separate ARGOS control can be written to handle only this aspect. The final implementation will become clearer with continued
research.

University of Pretoria etd

200

professional team consists of 57 spaces on the lower first floor, 148 on the ground floor and
73 on the upper first floor. The proposed component system should be capable of supporting
the following types of design activities in large and complex designs:

• Concept selection
• Retrieval of design experience
• Test of spatial relationships
• Scenario planning
• Collaboration on a global basis
• Modelling and simulation

To support and implement these activities require the ARGOS components to support any
combination of parametric, Rule-based, Model-based and Case-Based methodologies. The
tests concentrated on how responsive the components are to return direct and derived
parametric values such as gross area and wall-space ratio. The prototype component presently
supports 30 primary design properties, inter linked where appropriate.

The efficient response is primarily due to the fact that the parametric calculations are
performed inside the ARGOS components where it is optimal and in a compiled form. The
software that interrogated the components was, in this case, Visual Basic for Applications
running at a more moderate interpreted speed than compiled Visual Basic. Although the prime
purpose of the system is not efficient response, but rather opportunistic control, flexibility and
interfacing to external software these tasks need to be accomplished within reasonable time.

The tests were conducted on a Microsoft Excel spreadsheet used as a blackboard, because it is
so widely used and offers a convenient interface to spreadsheet capabilities and analysis
software. It is clear that the slow computer (266 MHz CPU with 32 MiB1 of RAM) is efficient
up to about 75 components, whereas the moderate and fast computers are still efficient well
beyond 100 components. The tests consisted of a Visual Basic program requesting parametric
values that could be used in complex external analysis programs (Figure 59).

ARGOS component response

7.9 8.7 9.5

16.5

0.63 0.62 0.5 0.74

4.77 4.33 5.1
6.1

0
2
4
6
8

10
12
14
16
18

15 30 45 60 75 90 105

Number of ARGOS components

R
es

po
ns

e
tim

e
m

ill
is

ec
on

ds
(m

s)

266 MHz CPU
900 MHz CPU
466 MHz CPU
Poly. (266 MHz CPU)
Poly. (900 MHz CPU)
Poly. (466 MHz CPU)

Figure 14: ARGOS component response (Author)

1 One mebibyte (MiB) is equivalent to 1 048 576 bytes whereas one megabyte is equivalent to 1 000 000 bytes.

University of Pretoria etd

201

The increase in file size is linear (Figure 60). It should be noted that the size is expressed in
kibibytes2 as recommended by the International Electrotechnical Commission for binary
multiples in December 1998.

ARGOS blackboard size

140

224

287

390

0
50

100
150
200
250
300
350
400
450

15 25 35 45 55 65 75 85 95

Number of ARGOS components

Si
ze

 in
 k

ib
ib

yt
e

(K
iB

)

Figure 15: ARGOS blackboard size (Author)

Summary

A life cycle information infrastructure based on XML is used as a basis for ARGOS. The use
of XML as a design language facilitates design knowledge delivery to users. The use of
Cascading Style Sheets, XSL and VML was explored. This proves the versatility of XML
beyond doubt. The storage of a CAD drawing in XML was analysed in detail.

Due to the generic nature of ARGOS the range of possible applications is large. The role in
structured planning and design knowledge delivery is proposed. The relationships of ARGOS
to other intelligent data sources were explored.

A detailed parametric ARGOS object was written with the ability to switch between 2D and
3D modes. A compact miniature Internet browser was developed that could be combined with
the basic ARGOS component. This will enable unlimited data access.

Internally the ARGOS design case should contain four main types of design information
consisting of both alphanumeric and graphic information:

• Tacit design information
• Explicit design information
• Graphic information in the form of XML
• Functional design information and constraints

2 One kibibyte (KiB) is equivalent to 1 024 bytes whereas one kilobyte (kB) is equivalent to 1 000 bytes.

University of Pretoria etd

202

Finally a short hypothetical run-through of how the ARGOS system might be used is
described. Empirical response tests were also conducted for a blackboard (spreadsheet) with
25, 50 and 100 controls on different types of computer. This indicates that the ARGOS
blackboard type of architecture using a spreadsheet is effective.

University of Pretoria etd

	Introduction
	6.1 Life cycle Information infrastructure
	6.2 Packaging and retrieval of design knowledge
	6.3 World Wide Web implementation
	6.4 Hypothetical use of ARGOS
	6.5 Empirical response tests
	Summary

