

26

Chapter 3: Review of literature

Introduction

In this chapter the various well-established techniques from the world of manufacturing,
knowledge management, knowledge based design, Case-Based Reasoning, objects, Kansei
Engineering, Quality Function Deployment and TRIZ are analysed in depth in an attempt to
discover if improvements can be made to the early phases of design.

It is not intended to criticise the product innovation methodologies discussed below and
mapped out in Figure 2. The intention is rather to establish what value these methodologies
could add to the initial and also subsequent stages of the design process. At this stage it is also
presumed that the eventual solution proposed in this study should be such that any external
product innovation methodology (application) can be applied to it whenever desired.

It is beyond the purposes of this study to provide a detailed discussion of the numerous
different design theories.

Over the years many different product development techniques evolved in the world. None of
these product innovation methodologies or techniques is capable of solving all the problems
inherent in the product design process. However the rich set of techniques is successful in
solving many of the sub-aspects.

Figure 1: Product innovation methodologies (Collated by author)
The author is of the opinion that the great difficulty that is experienced is partly due to the fact
that technology, especially electronic computing, exploded beyond all recognition. This has
the effect that most problem solvers are almost by default attempting to solve the particular
problems by means of computer models, rules or cases. This creates the incredibly difficult

University of Pretoria etd

27

problem that design knowledge must first be quantified or moved from the tacit level to the
explicit level (Figure 1) to be in a readily processable form on the electronic computer.

The following current techniques exist that could assist the product development team in
product innovation (Figure 1). Although many more techniques exist the present study
concentrates on Case-Based Reasoning against the background of Theory of Constraints,
QFD, TRIZ and System Engineering. The assumption with sub-problem 1 was that techniques
from the manufacturing industry would only partially solve the problem and that a bridging
technique between the human brain and systematic (structured) approaches will have to be
established. CBR is specifically studied in the light of sub-problem 3 to see whether designs
can use experience from the past to expedite present designs.

Figure 1 maps the different tacit levels where these techniques source information and
indicate how far the information can be quantified or moved to a level of explicit knowledge.
On the horizontal axis the various main stages of the architectural design process are mapped
out. Traditionally QFD was only really useful in the initial design stages up to design
development. However in the prototype system AEDES attempts were made to stretch it
further across the life cycle of the structure, hence the dotted line. Natural Language
Processing (NLP) is an evolving technology that could greatly assist to turn the spoken and
written word into explicit knowledge. Attempts are currently been made to develop NLP
software to facilitate concept extraction out of text. However it is going to take at least
another three years before a sufficient level of reliability is reached.

The accurate extraction of customer needs are very important for ultimate success of the
architectural design. Some methods for defining customer needs are (Zultner 1999):

• Kansei Engineering – emotions of the customer.
• QFD – voice of the customer.
• Theory of Constraints – mind of the customer.
• Customer Context Analysis – context of the customer.
• Systems Dynamics – environment of the customer.

Methods for structuring product acquisition

• Business Engineering – attempt to structure entire product environment.
• Systems Engineering – structured methodology for sequencing design activities.

In order to create a digital representation of an architectural design artefact it is necessary to
create a building product model. A building product model is a digital information structure
of the objects making up a building. It captures the form, behaviour and relations of the parts
and assemblies within the building. Major efforts are being made throughout the world to
develop such a representation. Among the industry groups involved in achieving this are the
U.S.A. based Product Data Exchange using STEP (PDES) organisation and its international
counterpart, International Standards organisation – Standard for the Exchange of Product
model data (ISO-STEP). Efforts are also being undertaken by research groups funded by the
European Union in Europe and by the National Science Foundation in the U.S.A. Another
significant effort is of the International Alliance for Interoperability (IAI). According to
Eastman (1999) building product models will eventually be used by most people associated
with the building and real estate businesses such as architects, engineers, contractors, owners
and facility managers.

In this study the use of the structured hierarchical ASCII standard, XML will be used to
explore the creation of a simple, yet powerful design language to support desk top based
design tools such as design modellers whilst at the same time maintaining a close relationship

University of Pretoria etd

28

with the Internet. The opinion is expressed that the ASCII nature of XML makes it a strong
candidate for an application independent design language because it is simple but at the same
time flexible and extendable. It is also a very powerful integrator of non-XML data. XML
provides three constructs that could be used to achieve flexibility and extendibility:

• Notations
• Unparsed external entities
• Processing instructions.

University of Pretoria etd

29

3.1 Knowledge management

3.1.1 Introduction

This section is included because architectural design depends to a large extent on the
availability of sound knowledge. Some of the wide range of knowledge that is required in this
domain can be summarised as:

! National Building Regulations.
! Characteristics of materials.
! Construction components.
! Construction methods.
! Energy use.
! Surveyor General’s diagram.
! Acoustics.
! Solar movement.
! Anthropometrics.
! Climatic conditions such as temperature, wind and rainfall.
! Construction detail.

If this type of information cannot be readily obtained then it makes the designer ineffective. It
is highly desirable that the designer is able to quickly retrieve this knowledge whenever
required. Whatever solution is ultimately proposed its success will depend to a large extent on
the convenient access to this type of information. With the advent of large construction
projects it is also crucial that designers are able to collaborate globally. Microsoft’s approach
to KM is studied to establish if it is suitable for the proposed solution.

Nonaka (1998:22) states that in an economy where the only certainty is uncertainty, the one
source of lasting competitive advantage is knowledge. When markets shift, technologies
proliferate, competitors multiply and products become obsolete, successful companies are
those that consistently create new knowledge. These companies are also able to disseminate it
widely throughout the organisation and quickly embody it in new technologies and products.
The creation of knowledge is seen in the context of the Japanese approach that creating new
knowledge is not simply a matter of processing objective information. It depends on tapping
the tacit and often subjective insights, intuitions and guesses of individual employees. These
insights are then made available for testing and use by the company as a whole. Making
personal knowledge available to others is the central activity of the knowledge-creating
company, whose sole business is continuous innovation. By this is understood that According
to Nonaka the following four basic patterns for creating knowledge in an organisation exists
(Figure 3):

1. Tacit to tacit.
2. Explicit to explicit.
3. Tacit to explicit.
4. Explicit to tacit.

Harari (1999) confirms this with his interpretation of knowledge when he suggests that
companies should have cutting-edge skills, state-of-the-art tools, creative tools, creative
freedom, business accountability for employees and speed and intelligence in everything. This
is all aimed at doing something truly special that amazes customers.

Tom Davenport defines knowledge as a fluid mix of framed experience, values, contextual
information and expert insight that provides a framework for evaluating and incorporating

University of Pretoria etd

30

new experiences and information. It originates and is applied in the minds of knowers. In
organisations, it often becomes embedded not only in documents or repositories, but also in
organisational routines, processes, practices and norms.

Knowledge management (KM), as defined by the GartnerGroup, is a discipline with new
processes and technologies that differentiate it from information management. New
technologies are required to capture knowledge that was previously tacit. Tacit knowledge is
embodied in the minds and expertise of individuals. Once captured, knowledge must be
shared to leverage its value and reused in similar situations and contexts.

The unique requirements of KM have inspired many startup ventures and innovations by the
information industry (Figure 9). The needs for new technologies and the technological
advances have occurred simultaneously. The need is to quantify knowledge, codified in
digital form in the form of documents and apply it in new situations. The codified knowledge
must be found first and searching is dependent upon natural language. New KM capabilities
must overcome the ambiguity and context-dependent nature of natural language.

3.1.2 The nature of knowledge

Table 1: Stages of technological knowledge (Bohn 1997:77)

Stage

Name

Comment

Typical form of
knowledge

1 Complete ignorance Nowhere
2 Awareness Pure art Tacit
3 Measure Pre-technical Written
4 Control of the mean Scientific method feasible Written and embodied in

hardware
5 Process capability Local recipe Hardware and operating

manual
6 Process characterisation Fine-tune the process to

reduce costs
Empirical equations
(numerical)

7 Know why Science Scientific formulas and
algorithms

8 Complete knowledge Nirvana

Bohn (1997) identified eight stages of technological knowledge ranging from complete
ignorance to complete knowledge (Table 1).

The stages that a field of endeavour goes through before it can be considered a science are
(Goldratt 1990):

1. Classification
2. Correlation (The question why is not asked. How is at the centre of interest)
3. Effect-Cause-Effect (Know why)

The first stage, classification, in Facilities Management (FM) started about ten years ago.
Numerous classifications were developed to assist in the various activities that are undertaken
by facility managers. An example of this is the SAPOA standards with regards properties to
calculate rentable and usable space in buildings. During the National Health Facilities Audit
the concept of departments such as outpatients, operating and administrative were used to
group spaces that share a common planning unit. This was used specifically to facilitate a
large-scale condition and suitability analysis.

University of Pretoria etd

31

The second stage was entered about five years ago when FM developers and users realised
that all the various operational and strategic FM actions need to be integrated into a holistic
systems environment. The most important question at this stage is how. A characteristic of
this stage is many different highly detailed models and approaches, but a lack of deeper
scientific understanding. Both architectural briefing and design and FM are at the moment in
this stage. The latter developed significantly faster than the former. The author is of the
opinion that the scarcity of financial resources, energy and a general realisation that there are
limits to growth (Meadows et al. 1975) provided the impetus. The domain of FM is far less
challenging than architectural briefing and design, albeit extremely important.

The challenge of the present study is to make the quantum leap into the third stage where the
know why becomes the characteristic. A complete mastery of know why would indicate that
the level of science has finally been reached. Sir Isaac Newton finally turned physics into a
science when he discovered the fundamental laws of motion and gravity. He asked the
question why do apples fall down rather than flying in all directions? He assumed a cause for
this phenomenon. He assumed the gravitational law. Explanation appears on the stage. It is a
foreign word in the classification and correlation worlds where the only proof is in the
pudding. Past experience is no longer the only tool. He published works such as Philosophiae
Naturalis Principia Mathematica in 1687.

Nonaka (1998) clearly indicates that the classic pyramid model that consists of discrete layers
of data, information, knowledge and wisdom is an oversimplification, because this model
assumes a quantification of all data, hence a total transfer from tacit to implicit (Figure 2).

Figure 2: The classical view of knowledge hierarchies (Author)

Today it is recognised that the steps of the knowledge cycle consists of the actions of create,
capture, organise, access and use. The most appropriate model of the knowledge cycle is by
Nonaka (GartnerGroup 1998:2) and (Nonaka 1998:21). Humans have certain capabilities that
lead to the four broad, fundamental human behaviours illustrated in Figure 3.

University of Pretoria etd

32

Figure 3: The knowledge cycle and process. See text. (GartnerGroup 1998:2)

3.1.2.1 Socialisation

This is people learning from each other by doing. Tacit knowledge is exchanged, as a by-
product of collaborating, like an apprenticeship. Socialisation arises out of real-time
connections among people to consolidate their knowledge. Currently, tacit-to-tacit sharing
requires physical presence, but technologies such as virtual reality could eventually simulate
presence.

3.1.2.2 Externalization

The situation where knowledgeable people consciously convert their tacit knowledge to an
explicit form is called externalization. Publishing captures information, but KM requires
capturing processes, conditions, rules, timing and other factors that can be re-created in
subsequent situations. It requires that tacit knowledge such as a person’s experience be
engineered into an explicit form. Before KM, information was captured in documents, papers,
E-mail and notes. These textual sources look like long strings of words to most software. KM
technology attempts to represent the traditional content and new media by exploiting natural
language processing (NLP), sets of rules, document structure, context and relationships so
that it can be reapplied in related situations.

3.1.2.3 Combination

The activity of gathering and integration of the captured knowledge of individuals and groups
for access by the enterprise is called combination. Combination requires that the engineered
knowledge be evaluated, transferred to other groups and communities and leveraged through
reuse.

3.1.2.4 Internalization

University of Pretoria etd

33

Internalization is the “experience” of the explicit knowledge by individuals, who learn by
making the explicit knowledge their internal knowledge. Internalization employs the
techniques of pedagogy to teach knowledge that is customized and applicable to individual
needs. It requires engineering knowledge to engage the attention of the user.

3.1.3 The current situation

Currently tacit to tacit sharing requires physical presence, but technologies such as virtual
reality will eventually simulate presence. Current KM implementations depend on a small
subset of the types of products that are needed for the complete knowledge cycle. GroupWare
and information searches are the most used with more advanced technologies appearing in
less than 15 percent of implementations. The need to externalise tacit knowledge will drive
new technologies.

The ability to access stored information is far ahead of the ability to find relevant information.
Turning explicit knowledge into tacit knowledge is still the purview of computer-based
training (CBT) and teaching. Developments in distance learning are starting to appear from
vendors such as IBM/ Lotus. The use of products for meetings, such as group decision
support systems, has had very limited success (GartnerGroup 1998). Physical and virtual
workspaces are still experimental and tele-technologies are today less effective than face-to-
face meetings.

Improvements are expected to be made over the next five years, but the majority of sharing
will continue to be through oral communication for the next 10 years or more. There are four
main reasons why KM technologies will remain tools rather than replace current behaviours
in the knowledge cycle:

Situation. Each situation that requires knowledge is unique. It is not feasible to predict exactly
what knowledge is required beforehand.

Language. Humans share what they know through the imperfect vehicle of language.
Although language is imperfect it conveys precise information within the context of use that
the human brain is well adapted to. Language skills vary widely. Language is often
insufficient to represent other factors that cannot be expressed verbally. This is one of the
reasons why more than 50 percent of knowledge worker communication is still face-to-face,
where complex things like trust can be established.

Context. Making knowledge explicit often leads to storage out of context. The preservation of
context is very important for architectural design, because designs are always solutions within
the context of numerous requirements and constraints. One of the innovative methods to store
or communicate contextual knowledge is by means of business stories or novels. It is not
surprising if it is considered that the oldest means of storing information is found in epics
such as Homer’s Iliad and the Finnish Kalevala. An outstanding modern example of this is the
method that Goldratt, (1993) uses to explain the ideas which underlie the Theory of
Constraints (TOC). In books such as “The Goal” he uses the context of a novel to explain
manufacturing processes in the context of a manufacturing plant. The technique of using a
novel is successful because it gives contextual meaning to the various powerful and
innovative concepts explained. Because of the way that the human brain operates this method
of externalization makes the later internalization of vast amounts of knowledge feasible.

By considering context while processing natural language it is possible to interpret the
meaning of a sentence from related text by placing the individual sentence in context.
According to Popov (1982) there are various levels of context that need to be considered
when processing natural language.

University of Pretoria etd

34

Textual context is the meaning derived from the sentences preceding the current sentence.

Situational context is the meaning from the current sentence and is usually only given
implicitly.

Global context is like the topic of a conversation and allows an algorithm to choose between
several meanings. An example is the word overloaded that could mean having too much
luggage, put to great a demand on an electrical system or the technical term in computer
programming where one programming keyword such as “=” might have different meanings in
different syntactical constructs.

Local context is the meaning derived from only the few preceding sentences. This is useful
because the topic of the conversation may progress. Local context provides the most recent
topic.

A simple algorithm for processing context and reference is not possible since a form of fuzzy
processing is required. Researchers are experimenting with neural networks to train a
computer to recognize certain common situations (frames) and to generalize about new
situations.

A machine that processes natural language must be able to categorize, understand and process
the wide variety of language components. Some of the different hierarchical syntactical parts
of language identified by Russian analyst (Zvegintsev 1976) are:

• Discourse
• Sentences
• Phrases
• Words
• Morphemes
• Syllables
• Phonemes
• Differentiating signs

Relevance. The value of information is subjective. For information to be knowledge, it must
get the user’s attention relative to other information, comparable to a teacher-student
interaction.

The representation of tacit knowledge is currently the focus of development, but it is unlikely
that it will be used practically until after the year 2002 (GartnerGroup 1998).

3.1.3.1 Desirable emerging technologies to enable knowledge management

The storage and retrieval of knowledge in written form was viable with paper and limited
online access before the advent of the World Wide Web. The present unprecedented
quantities of information online made the retrieval of documents or records inadequate. New
capabilities are addressing the conversion of text into more usable forms. It is now important
to achieve summarization in order to find relevant knowledge. This is a capability that would
increase the quality of stored knowledge. However, it depends on accurately representing the
meaning of text. With the current information overload, users will want to know what a
document is about rather than having to read it or a summary. Capabilities are being
developed that describe the people, places and things discussed in document. This is at a far
higher level than a pure keyword search. Users can search in a natural language way for
subjects such as “Tell me about Microsoft, Internet components and Visual Basic”. Unlike
present search technology that search for those words specifically, representation technology

University of Pretoria etd

35

will identify what Internet components are and respond with the latest Microsoft Internet
Information Server technology used. The barriers to computer understanding of language
results from the innumerable ways to express the same thing, the different meanings of words
and the inherent imprecise nature of language structure. If information technology fails to
achieve significant breakthroughs in representation technology soon the knowledge
community will be faced with vast but virtually unusable knowledge stores.

If intelligent processing of design information is to take place on the electronic desktop then
relevant structured information needs to be delivered to the electronic design tools. This
indicates the necessity for a flexible and self-describing design language.

Concept extraction is at the same time one of the most promising and problematic of the
emerging capabilities. It depends on NLP to parse sentences according to rules (Figure 4). In
this particular example the Xerox Inxight Hyperbolic Tree was used in the Syracuse
University TextWise system. President is capitalized and directly precedes a name. The
lexicon says President is a title and Mubarak is a name. In a newspaper article users want to
know how concepts are used and not just the fact that they occur. In a document that contains
the concept “Chrysler” it could be an advertisement, stories about the company’s stock
performance or an article about a recent merger.

Figure 4: Concept extraction for representation (GartnerGroup 1998:8)

By representing the concepts according to conceptual relations, the technology could infer the
difference. Once concepts are extracted, they can be stored in databases according to their
usage and relationships Concepts are also the basis of visualization capabilities. They are
displayed on a screen where the relative proximity of each concept reflects relative similarity
of meaning. This provides the user with a conceptual map of a knowledge domain, enabling
navigation to the units of stored knowledge. It also shows relationships such as affiliation. For
the next two years automatic linguistic representations will require access to manual checking
through visual user interfaces to expose inaccuracies.

University of Pretoria etd

36

Figure 5: Visualisation of representation (GartnerGroup 1998:9)

Knowledge representation will expand beyond linguistics to include technologies that will
converge over the next five years. Significant developments in collaborative filtering resulted
in successful products such as grapeVine, NetPerceptions, Firefly and WiseWire. Users with
similar profiles are considered sources of recommendations to each other. Profiles use
representation technology to capture similar interests.

Concept extraction provides a way to describe documents. The concepts can be used as
attributes in a database. Expert systems continue to be focused on narrow domains, which can
be described by rules.

Knowledge representation is the conversion of captured knowledge into a reusable form. But
it focuses on the tacit-to-explicit part of the cycle. It must be integrated with sharing media to
overcome the scalability issues of space and time. Sharing over time has both a historical and
a coordination dimension. Knowledge must be maintained over time or it will lose its value. It
must be current, as is true of any information. Knowledge workers try to interact
synchronously, in real time, because they want the latest knowledge applied to the current
situation. Scheduling a simultaneous interaction is increasingly difficult, especially with
worldwide enterprises. The two notions of time exacerbate each other. One of the largest
demands in KM is to overcome the need to interact in real time to share current knowledge.
The reusability test requires that person A must be able to make sense of and apply person B’s
knowledge at person A’s time and place. When this is not feasible, users must resort to
sharing media by means of E-mail and teleconferencing.

3.1.4 Knowledge management architectures

There are several barriers to a next-generation responsive information system, which can be
rapidly composed or adapt itself to a new environment. Presently vendors are reluctant to
support truly open architectures. Neither the vendors nor the users understand the importance
or the nature of the interface between modules. In any modular system, the interface

University of Pretoria etd

37

definition is critical to the assembly of those modules into larger functional modules. Many
vendors claim to have open architectures, but they are only open if one adheres to their
proprietary standards. An architecture or framework can really only be called open if it is
freely available and the command interfaces and data interfaces are widely published and
easily accessible. The World Wide Web fits this picture.

Another major barrier to the imperative is the multiplicity of standards for specific domains
and the length of time it takes to create a new standard. While the availability of certain
standards will enable the move to information infrastructures, there are many conflicts and
many standards are lacking. There are multiple overlapping standards in high-level
communications, particularly for passing of messages among distributed objects on
heterogeneous systems and for data exchange (Table 2). There are also diverse standards for
graphical user interfaces for documents, images, video and sound. These are all important for
next-generation manufacturers. The multiplicity of standards makes access and use of the data
difficult. This particularly true in the design world where AEDES and ARGOS needs to be
implemented. STEP has come a long way in addressing these problems but it is taking too
long and has become so complex that users are adapting other standards to allow them to
progress.

Table 2: Current and emerging multiple standards that form a barrier to responsive
NGM information systems (NGM 1997)

Topic

Subtopic Example available or emerging standard

Communication CORBA, http, OLE/COM/DCOM, DCE, ISO/OSI
Data exchange Product STEP and its various APs
 Geometry STEP AP 210, DXF, STL, HPGL, ACIS SAT
 Text, hypertext http, SGML, XML, RTF
 Images JPEG, BMP, GIF, TIFF, DIB, PCX, MSP
 Simulation data SAVE MDF/ CDF
 Production plans ALPS, STEP AP
Presentation/ GUI Windows, X-Windows, Open GL, Tcl/Tk
Process modelling IDEF, NIAM
Computer languages C, C++, ADA, Java, Visual Basic
Sound WAV, AU, RA, MIDI, RMI, AIF
Video MPEG, AVI, MOV
Database Query
Languages

 SQL, SDAI

If there were standards for every aspect of the command and data interfaces among modules,
this would not be a barrier. Lacking these, it currently takes too long for a group of companies
to agree on even the product data exchange standards let alone all the other standards that
must be considered. For example the Distributed Computing Environment Group (DCE), the
Object Management Group (OMG) and Microsoft are all working on protocols for message
passing between distributed objects on heterogeneous systems. The HTTP Working Group is
working on similar standards. The contributors to the NGM (Agility Forum 1997) project are
of the opinion that CORBA, OLE and DCE will merge with http and Java having a strong
influence on all. Java and http will have a strong influence on the whole communication
domain, but it is not yet clear what it will be.

During a recent investigation by the author of 16 companies that positioned themselves in the
KM domain it became clear that the IT industry has already done a tremendous amount to
gain a deeper understanding of the exact requirements and architecture of a Knowledge
Management System (KMS). The solutions investigated ranged from attempts to integrate the
multimedia enterprise knowledge in various forms in a readily accessible user interface to

University of Pretoria etd

38

intelligent cross-linked repositories with highly configurable knowledge profiling
environments.

All the local suppliers are unanimous in their opinion that it is at this stage almost impossible
to fully quantify knowledge that originates at the tacit level. Tacit knowledge is seen as the
experiential knowledge of people that exists mostly in the minds of professionals. For this
reason all the solution providers are concentrating on the communications and access profile
aspects of KM.

The main technical requirements to implement a KM system successfully can be summarised
in Table 3. In order to implement a comprehensive briefing and design system the
infrastructure needs are very similar to the requirements for KM. The only difference that can
be identified is the type of knowledge that is stored and the mix of software tools that would
be used to solve the various problems in the design stages.

Table 3: The main requirements for a Knowledge Management enabling environment
(Collated by author)

Main Requirements

Expanded software requirements for integrated knowledge based
architectural briefing and design system

Communication

Network infrastructure

• Flexible high speed network configuration supporting distributed objects and an

ubiquitous service environment.

General office knowledge content management

• Store all forms of project and office knowledge such as scanned paper documents,

electronic word processing documents, video and voice recordings into an
information base.

• Provide support listing, browsing, sorting, grouping, filtering and searching of the
knowledge base.

Teams that collaborate in real time and over distance

• Conversation services with transcript functionality for distance discussions.
• Video conferencing for virtual meetings.
• Screen sharing services for sharing of the document creation process, virtual white

boards and application sharing.
• Streaming media services for recording virtual meetings and video (meeting) on

demand.
• Event and meeting databases for organising and optimising meetings.
• Home pages on Web servers for each task community, team or expert to speed up the

access to project information (knowledge sources)

Design team
flexibility and
responsiveness

Team skills profiles

• Directory and membership services that support the building of communities through

grouping people together into expert teams working on the same set of information.
• Forum services to create workspaces for communities and teams that contain all

interest-related data.
• Self-subscription services to specific matters of interest for dependent information

delivery and subscribing.
• Organisation databases integration like people skills and human resource databases

for enhancing community, team and experts information and searches this
information.

Responsibility and accountability

• Services to assign responsibilities to members of the team.

University of Pretoria etd

39

• Workflow services for automatic trace ability processes based on roles and Subject
Matter Experts (SME).

• Tracking services that follow team contacts and team activities.
• E-mail services for automating notification, routing and simple workflow services.

User Interface and
information search

User interface

• Personalization systems that allow customisation of the computer project interface.
• Web browsers with the ability to include e-mail, project data and design intelligence

tools for easy access.

Ubiquitous demand driven design and construction information

• Construction industry catalogue and search services.
• Availability of material and product databases.
• Acquire pre-packaged starter kits from other companies via the web.
• Services to build own office electronic storage that combines often used information

from external origin.
• Notification services that react on changes in design or fundamental information

contained in local catalogues and integrate with the e-mail system.

Reporting

• Dynamic project reports available on the Internet or intranet. (OLAP technologies

and services)
• Configurable ad-hoc, multi-media query builders that can be profiled to serve the

needs of the user or the task at hand.

Project resource
integration and
access

Information access

• One convenient entry/ access point to all project information and applications.
• Knowledge indexing services that can index all the documents for easy subsequent

retrieval.
• Subscriber services where the service provider maintains the infrastructure and the

subscriber accesses the service by means of his Internet Explorer/ Netscape driven by
credit card payments, if and when required. This saves the user buying less often
used specialised tools to analyse energy and cost if and when required.

• Rapid design concept selection for new designs and projects based on previously
stored structured knowledge.

Life cycle continuity of information

• Building design and operational information that is maintained over the life cycle of

the building.
• Captures project briefing and design decisions and knowledge automatically and

during the course of the project in the form of plug and play design starter kits.

3.1.4.1 Hypertext based systems

One of the most basic means to organise electronic knowledge is by means of hypertext
driven systems. An example of this is the use of a World-wide Web page with hyperlinks that
could point to documents such as word-processing, spreadsheets, images and presentation
documents. The capabilities of the Microsoft Windows operating system facilitate in-place
activation.

The main advantage of hypertext is that the reader can choose his own associative way
through hypertext, depending on his background knowledge, interests, context of use and his
task at hand. One of the difficulties for the reader of hypertext is to get an overview of the
structure of the knowledge presented. To this end hypertext systems normally provide tours.

University of Pretoria etd

40

History lists provide intelligent backtracking. Bookmarks also assist to orientate the user in
the vast hypertext landscape.

In AEDES a context sensitive help file was created that tested some of the underlying
principles mentioned above. The present help file was created in the Microsoft .HLP format.
This format will very likely be superseded with a HTML, www format help file. At the
moment the .HLP format is predominant on the desktop, but the gradual move to HTML
format is becoming evident in the Microsoft Office 2000 suite.

3.1.4.2 Search engines such as Alta Vista Discovery

The downloadable Alta Vista Discovery search engine provides a convenient means to index
documents on the personal computer and in a network environment. The author tested the
software and found it a good solution. The only problem is that the index needs to be rebuild
from time to time to keep it current. This action takes a long time, typically an hour on the
present equipment that we are operating on. The look and feel of the output is exactly the
same as the Alta Vista search engine used in the Internet environment (Figure 6). In the
example the search word was “Aedes”. The response was a list of all documents that contain
the word “Aedes”. In the example Powerpoint, rich text file and Microsoft Word formats were
found along with the local directory paths. The search engine is also capable to index email
messages. A very rudimentary summarise facility is provided, but unfortunately not of much
use, because it purely extracts random fragments of text up to the specified number of words.

The main advantage of this environment is that it can exist independently of any other system
software. It provides good search and find facilities for a diverse range of documents. It can
almost be seen as a very basic document management system.

Figure 6: A typical Alta Vista Discovery screen (Author)

University of Pretoria etd

41

3.1.4.3 Essential elements of a knowledge management architecture

Figure 7: Knowledge management architecture (GartnerGroup 1998:3)

Figure 7 details the technologies that are targeted at KM. They are classified according to the
architectural fit and the KM process that they support. The enterprise infrastructure is a
networked service supporting distributed object models such as the OMG CORBA and
Microsoft DCOM. Directory services and security services are becoming openly accessible by
the upper levels of software. Workgroup applications continue to be silos of unstructured,
mostly textual information that is set apart from database silos of structured information.
Progress is being made to bridge the text data wall through SQL. However currently KM must
be satisfied with the integrated retrieval of records. Text indices are easily offered using the
centralised model of the Internet, but databases demand complex program interfaces and
additional structures such as data warehouses.

University of Pretoria etd

42

Figure 8: Knowledge Management technology model (GartnerGroup 1998:4)

The KM technology layer of the architecture defines four essential elements (Figure 8).
Technologies include mathematical algorithms, statistical techniques and database
architectures. Frameworks define the central focus of an architecture, reflecting many subtle
differences in vendor orientation. Information retrieval vendors are likely to be document-
centric and more experienced with unstructured content. Database vendors are likely to be
data-centric and experienced in high-speed transaction processing. Components are units of
functionality that can be plugged into other products, but are not directly used by the
knowledge worker. Tools are directly manipulated by the end user and are often branded.
Good examples of desktop productivity tools are Visio, Word and Powerpoint. The software
available today provides different levels of support for each of the five process steps.
However neural networks, Baysian Nets and linguistics-natural language processing are all
unproven. Neural networks, a development of artificial intelligence, learns to recognise
patterns. Baysian Nets is a probabilistic model from past to future events. Linguistics-natural
language processing is the representation of everyday language for computer understanding.

New deployment of advanced, underlying technologies presents a conundrum. The
technologies are unproven but demanded by the market. Natural language processing (NLP)
development and neural network application are both being funded by the same agencies such
as the U.S. Department of Defence’s DARPA (High Performance Knowledge Base Program.
Neural nets require training that makes it very difficult to succeed with single pass queries.
NLP is still the most promising for capturing the meaning of language, a capability that will
soon be essential for KM.

University of Pretoria etd

43

3.1.5 Microsoft’s approach to KM

Figure 9: Knowledge Management vendors (Based on GartnerGroup 1998:16)

Although Microsoft remains strongly tied to the desktop, recent innovations in enterprise OS
and network technology indicate that they are in the process of functional leapfrog. Figure 9
indicates the current position of Microsoft in comparison to other software developers with
regard KM software. However in the present study the slight lack of vision as indicated is
more than adequately compensated by the excellent desktop, document centric, convenient
and portable object technology. Microsoft currently offers a comprehensive platform, albeit
slightly conservative in terms of what a fully functional KM system will require. To ensure
the success of the KMS very special professionals will be required such as Knowledge
Architect (KA) and chief Knowledge Officer (CKO).

The Microsoft approach to KM is not unlike the generic structures illustrated in Figure 7.
They are also of the opinion that the two prerequisite technologies for all KM systems are a
Complete Intranet and Messaging and Collaboration (Leibmann 1999).

University of Pretoria etd

44

C
om

m
un

iti
es

,
Te

am
s

an
d

Ex
pe

rts
Complete Intranet

Messaging and Collaboration

Pr
e -

re
qu

is
ite

s

C
on

te
nt

 M
an

ag
em

en
t

(P
ub

lis
h&

M
et

ad
at

a)

R
ea

l T
im

e
C

ol
la

bo
ra

tio
n

D
at

a
An

al
ys

is
(D

at
a

W
ar

eh
ou

si
ng

 a
nd

Bu
si

ne
ss

 In
te

lli
ge

nc
e)

Po
rta

ls
 a

nd
 S

ea
rc

h

KM Enabling Modules

Figure 10: The modules of a Knowledge Management evolution (Leibmann 1999:7)

The remaining KM-Enabling Modules extend the basic infrastructure to a KM system that
includes services like Content Management, Information Delivery and Data Analysis.
Automated services such as Data Tracking and Workflow processes are also included as part
of the Community and Team competencies.

The KM-Enabling Modules have a modular character. Although some of the modules profit
from the implementation of a previous module, they can be chosen in any order related to the
specific business case that needs to be accomplished. Real-time Collaboration services, such
as video conferencing, can be included on top of the pre-requisite technologies, but are
enhanced by the meta data services provided in the Content Management Module. Meta data
is a special database of where diverse sources of data can be found.

3.1.5.1 Messaging and collaboration

IT systems intended to support KM need to support the capturing of undocumented
information such as human thoughts, sharing of ideas and documents. It is important to find
this information efficiently. Another prerequisite of an IT system that supports KM is the
existence of a set of common tools that are well known by all knowledge workers.

The tool that is used to provide an entry point to this IT system presents the information and
controls all interaction with it. It needs to be capable of handling all the information that is
part of the working environment of the knowledge worker. Ideally only one tool or
application should exist for this interface.

The entry point to the information and applications in a KM system is also called a “Portal
Service”. If the same environment also supports also the creation of content, it is called a KM
desktop. The capabilities of web browsers make them ideal candidates for this task.

3.1.5.2 Complete Intranet

An information network that provides access to all the data needed supports this module of
KM. Decisions must be taken fast enough to get a competitive advantage. A Complete
Intranet KM system should enable people to find the right information or sources for helping
solve problems or drive decisions.

University of Pretoria etd

45

3.1.5.3 Communities, teams and experts

The two pre-requisite technologies of KM put all collaboration and document-based
knowledge sources together enabling the knowledge worker to browse information objects
based on knowledge groups. Communities, teams and experts add the next level of sharing
knowledge and turning it to results.

Teams differ from communities in that teams are task driven and communities are interest
driven. A team usually works closely together, in a workgroup, on the same tasks and goals.
In many cases the information produced by a team is closely held within the team until it has
reached a level of completeness where it can be shared, for example in a review, with a
broader audience. Communities are mostly driven by interests in the same area and are more
loosely coupled, for example by subscriptions. Communities are especially useful for building
knowledge to higher levels, often by getting successive levels of input from a wide audience.

The role of an expert is to qualify and filter information. Often an expert is related to a limited
set of subjects. Subject matter experts (SME) can be defined in two ways. He is either an
organisational function (defined by the KA) or as very knowledgeable person who is a well-
known expert in his team or organisation, assuming the status of an SME for contributing
high quality information or for reviewing it.

The SME is an important role for a KM-related Information Web or Intranet. In traditional
Intranet solutions, there is little control over who can store or upload information into the
Intranet. This is not a bad thing and is desirable in order to build an extensive information
repository. To maximise the usefulness of the Intranet, the information should be filtered,
classified and grouped. This process is part of the responsibility of the SME.

Communities, teams, and experts are also used for the controlled process of putting
information into the KM system. Filtering, qualification, approval or more complex workflow
processes for documents and other electronic data need to be established. In a KM system
these processes are not strictly based on traditional organisational roles such as manager,
reviewer, approver and author but more on Subject Matter Experts. This can add a great level
of dynamic and flexibility to the KM system and the automated processes.

3.1.5.4 Portals and search

Portal Services like Yahoo, Lycos and Excite are well known. They allow consumer oriented
services such as easy information shopping. Those Portals categorise personal interests in
groups like “News”, “Sports”, “Economy”, “Education”, “Science” and “Entertainment”.
They allow for easy browsing within those groups in building a logical hierarchy of
subgroups or forums. The browsing and search services support the consumer in his quest to
gain knowledge out of the large Internet information store. Another benefit of these consumer
Portals is the high customisation provided for its visitors. Objects of interest can be
bookmarked in a personalised Portal, allowing for immediately access when revisiting the
portal site.

This technique when applied to business-oriented goals is one of the key KM-enabling
modules following the same idea of the consumer-oriented portals in the corporate world.
Business Portals provide the knowledge workers within the company, and also external
suppliers and customers, with instantly task-relevant information objects. A Primary goal of a
portal is the transparent enterprise, hiding the complexity to access knowledge stores. Even if
the user accesses legacy information stores he should not be aware of it.

Examples of Business Portal Information Objects are:

University of Pretoria etd

46

• Corporate and team links.
• Team application links.
• Incoming mail notification and headers.
• Personal tasks.
• Corporate search.
• Integration of business intelligence data.

From the examples, some direct organisational tasks can be derived. Teams in the enterprise
need these definitions in order to locate internal or external company information. This allows
them to successfully include links to that information into the portal.

This Module also defines the creation of catalogues that build groups of related information
based on business needs over structured and unstructured enterprise information (KM
information base) to allow for full-text search against the partitioned data. An extension to the
Catalogues is the definition of Searches against these Catalogues.

In order to define the Catalogues for an organisation, there has to be a very good
understanding of the business and its processes. At this stage, the Knowledge Architect needs
the support from the different divisions, business units and departments that understand how
their information is organised and is related to their business goals, tasks, and needs.

3.1.5.5 Content management

Portals and Search address the problem of searching knowledge using all information sources
in the enterprise such as structured and unstructured internal information objects. Examples of
these are office documents and collaborative data. External sources such as partners, suppliers
and competitors can be identified. Other external sources such as the Internet provide a
tremendous potential for knowledge if the criteria for including such information are well
chosen.

All the pools of information sources that are part of and accessible to the KM system combine
to build the KM information base. This Module handles how knowledge assets get into the
KM information base. To handle this new complexity of the KM information base and help
knowledge workers to stay focused on solving business problems without disappearing in
technology a sophisticated KM taxonomy needs to be built based on meta data. It also needs
to publish information in the knowledge base. The KM information base must then be made
accessible through operations driven by the meta data complex.

When publishing, several things should be considered concerning the KM taxonomy. Meta
data tagging of documents is important for the quality of the content in the stage of document
publishing. However it should not be a burden for people to submit information. The KM
system must encourage users to submit information. Positive aspects for promoting this
condition are the building of well-focused Communities in order that users feel part of and
respected in a concentrated team and do not loose their inclination or motivation to submit.
Building huge submission and posting systems where users do not get recognised or rewarded
will discourage them from providing their knowledge, which will prevent the company from
evolving a culture for knowledge management.

3.1.5.6 Real-time collaboration

The knowledge on a specific subject is often not in documented form and is therefore lost to
the organisation. There are ways retrieve the lost knowledge into a state where an IT system
can manage it. This especially focuses on areas where computers can be used to exchange

University of Pretoria etd

47

thoughts, documents and other aids for capturing such tacit knowledge for the KM
information base.

The process of capturing tacit knowledge can start with the introduction of simple computer-
based chat services. Regular meetings arranged with expert groups to talk about specific
topics can be extended with these services, well known from the Internet and enriched by
building automatic transcripts for the chat sessions. Transcripts can be enriched with the
corporate KM meta data and stored in the KM information base for later search and retrieval.

More advanced services like video conferencing follow the same concept. The video stream is
recorded on video equipment and is subsequently transferred to the KM system. Descriptions
and meta data are either merged with this video stream or can be stored in parallel on a file or
database. For cultures where such virtual meetings are common, an event database is typically
built where upcoming and past meetings are stored, together with event titles and
descriptions. They can be listed or searched by subject matter by means of meta data. A
hyperlink is provided so those users may join a virtual meeting. If the meeting takes place in
the future, integration into the e-mail system ensures that this event is marked in the calendar,
and on the event date a reminder automatically guides the participant to the virtual meeting.
After the event or meeting, on-demand services will make that knowledge available, by
providing the recorded video out of the KM information base to the KM desktop.

When integrating this technology into the automated KM services scenario, notifications are
sent automatically to the appropriate knowledge workers to remind them of an interesting
meeting or event. The appropriate URLs can also be listed on the KM portal.

A hybrid of abovementioned technologies is the integration of presentation techniques. In this
an online presentation that consists of slides is sent over the network. The audience receives
the video, audio and slides of the presentation on the KM desktop. The chat service is
integrated as a separate area on the KM desktop and enables the audience to type questions
during the meeting into the chat area. These questions are transferred to the presenter or a
person controlling the online presentation. On receiving the questions the presenter can
answer them during or at the end of the event. The slides as a document, the chats as a
transcript document and the audio and video as a stream are linked together and stored in the
KM system.

The same technologies not only make virtual events available for the KM information base,
but also real events like conferences. Each session on a conference can be recorded and than
be made available for all employees in the events system on the corporate net. Another
solution is to produce CDs of the sessions and distribute them to all subsidiaries or make them
orderable for interested employees.

Real-time Collaboration KM also provides support for sharing the creation process. It enables
distant knowledge workers to share a single virtual working space and to collaborate on the
creation of documents. This includes not only the sharing of the creation process using the
productivity suite, but also white board functionality. This kind of technology is also known
as screen sharing.

University of Pretoria etd

48

3.2 Knowledge based design

3.2.1 Introduction

This section investigates the various Knowledge-Based Design approaches in an attempt to
see whether they could add value to the final solution proposed. Over the years many different
approaches were used that had different levels of success. It is intuitively sensed that highly
structural and prescriptive methods are not suitable. It also appears that certain information in
design is well defined whereas other information is incompletely specified and vague. This
section analyses Artificial intelligence and design, problem-solving architectures and Case-
based design.

The first generation of Knowledge-based Design Systems (KBDS) was characterised by the
dominance of logic models and rule-based systems then prevailing within expert systems
technology. The paradigm of Knowledge Engineering (KE) appeared to be promising and
relevant to design. KE turned out to be far more applicable to Knowledge Management (KM)
that is likely to form the holistic operational framework for globally enabled design and
project environments. KE has limited use for the range and complexity of design tasks.
Debenham (1998:1) states that a unified KE methodology treats data, information and
knowledge in a homogeneous manner. However, with a few exceptions, models of expert
knowledge appeared to have limited utility for the range and complexity of design tasks
(Oxman et al. 1994).

Debenham (1998:23) defines a Knowledge-based system as a system that represents an
application containing a significant amount of real knowledge and has been designed,
implemented and possibly maintained with due regard for the structure of the data,
information and knowledge. A significant amount means that the application boundary of the
system should identify an area of the application that is appropriately dealt with using
knowledge-based systems design techniques.

In an application:

• Data is the set of fundamental, indivisible things (Debenham 1998:18).
• Information is the set of implicit associations between data things (Debenham 1998:20).
• Knowledge is the set of explicit associations between the information things and/or the

data things (Debenham 1998:20).

An expert system is a system in which knowledge is represented as it is, possibly in the same
form that it was extracted from an expert. In an expert system the represented knowledge
should endeavour to solve problems in the same way as the expert knowledge source solved
them.

Debenham (1998:23) identifies differences between Knowledge-based systems and expert
systems:

• Expert systems perform in the manner of a particular trained expert. A knowledge-based

system is not constrained in this way. In a knowledge-based system the represented
knowledge should be “modular” in the sense that it can easily be placed alongside
knowledge extracted from another source.

• Expert systems do not necessarily interact with corporate databases. In general,
knowledge-based systems belong on the corporate system platform and should be
integrated with all principal, corporate resources.

University of Pretoria etd

49

Carrara et al. (1994) states that computer-aided architectural design research has inherited the
unanswered questions first raised by theorists like Rittel, Simon and Schon. To this has been
added the additional complexity of representing the answers in an explicit and complete way
so that they can be handed over to and reproduced by machines. The combined search for
solutions to these questions is called Knowledge Based Computer-aided Architectural Design
(KBCAAD). This title implies that the search for tools that could assist designers in the
design of buildings relies on one hand on understanding the cognitive processes of
architectural design itself as well as the theories, methods and techniques that have been
developed outside the discipline of architecture. It is the synthesis of these two sources that
holds the promise that an appropriate balance will finally be found.

Architectural CAD researchers have been focussing their attention on the cognitive aspects of
the architectural design process since approximately 1990. They have been constructing
models of design knowledge and reasoning. They developed data structures to represent them
computationally. Although the models are unique to the discipline of architecture they were
borrowed and adapted from other disciplines such as Artificial Intelligence (AI) and product
development. Inference engines that were prominent at the height of the interest in expert
systems have not proved themselves for design applications of substance.

Due to the complexity of design, systems for design have often defined the task with artificial
narrowness (Hinrichs 1991:3). In AI, as in Fuzzy Set theory, progress in the past was made by
limiting the universe of discourse or even closing it in an attempt to simplify the enormously
complex design problems. To make the systems tractable the following typical four
approaches were used (Hinrichs 1991:3):

• Selection. Select components to instantiate a skeletal design. Selection problems are

typically constraint satisfaction problems in which all variables to be satisfied for are
known ahead of time. The space of possible components is given as if from a catalogue.

• Configuration. Arrange a given set of components. Configuration is essentially the dual
of selection. This method concentrates on the relationship between components rather
than the components themselves.

• Parametric. Fix numeric parameters. Parametric problems are similar to selection
problems except that the components are quantities and the task is usually to optimise or
to partially satisfy constraints.

• Constructive. Build up designs from components. Constructive design is analogous to
planning, in that components take on the role of operators or actions. Typically, the space
of components is fixed throughout the design process.

Hinrichs (1991:3) observes the fact that if design problems are viewed as instances of
abovementioned types, they can often be solved using efficient algorithms and heuristics.
However, rigid classifications do not capture the flexibility that real designers exhibit. A
model of design or a system that supports design in an open world should be able to use any
of the four generic types of design.

In addition to the different types of design approaches, AI research has explored different
approaches to the process of design. Hinrichs (1991:3) summarises some of these approaches
as:

• Pure synthesis: Construct designs from the bottom up. The pure synthesis approach

assumes that the design problem space is basically a very large graph. If the appropriate
heuristics can be found to prune it, searching that graph can discover solutions. An
example of this type of approach can be found in the rule and production based systems
such as LOOS (Flemming 1994:5). It contains a generator able to accept a layout and find
all possible ways of adding a new object. A tester evaluates a layout generated in this way

University of Pretoria etd

50

and a controller mediates between these two components. After each generate-and-test-
cycle, the designer selects the next layout to be expanded based on the evaluations
produced by the tester.

• Hierarchical refinement: Refine skeletal designs from the top down. Hierarchical

refinement assumes that there are really only a few basic types of designs. If the problem
can be classified, a design template can be instantiated, and propagating constraints can
solve variables. An example of this is the simple cut-and-paste approach developed by the
Division of Building Technology of the CSIR in South Africa for health facility design. It
is based on a large set of templates at various levels and assists unskilled designers to
rapidly design a hospital or a clinic.

• Transformational approach: In this approach design is claimed to be a mapping from

function to structure. Just as Fourier and Laplace transforms map from one domain that is
difficult to reason in to another that is more tractable, the transformational approach to
design suggests decomposing functions and mapping primitive functions onto structures.
Conradie and Küsel (1999) experimented with this in the precedent system AEDES
discussed in Chapter 4.

• Case-Based Design: The case-based and analogical approaches assume that the problem

being solved is probably similar to one that was seen before. If a historical case can be
retrieved, a solution can be found by transferring directly from that previous case. An
example is the ARCHIE-2 system (Goel et al. 1991; Kolodner 1993) that uses similar
solutions from the past to solve the current problem.

Currently the most promising AI solution is the use of design cases. This is empirically
validated successful solutions and failures to design problems from the past. If structured
design methodologies are to be used then design knowledge generated should be stored in
such as way as to expedite future designs. This is also one of the key objectives of
Knowledge-Intensive CAD where attempts are being made to elevate CAD systems beyond
only electronic drawing boards. Mäntylä (1995: 3) states that a key objective for the logistical
management of information is reuse of existing information. Ideally all (design) information
created or learned should be made available to later use in a correct, useful and timely
fashion.

3.2.2 Artificial intelligence and design

In the late 1950s Allen Newell and Herbert Simon proved that computers could do more than
calculate. Marvin Minsky, head of the Massachusetts Institute of Technology (MIT) Artificial
Intelligence (AI) project at the time, announced with confidence that within a generation the
problem of creating Artificial Intelligence would be substantially solved. Then suddenly the
field of AI ran into unexpected difficulties. The trouble started with a failure of attempts to
program an understanding of children’s stories. The program lacked the common
understanding sense of a four year old and no one knew how to give the program the
background knowledge necessary for understanding even the simplest stories. An old
rationalist dream was at the heart of the problem. AI is based on the Cartesian idea that all
understanding consists in forming and using appropriate symbolic representations. For
Descartes, these representations were complex descriptions built up out of primitive ideas or
elements.

Dreyfus (1993:xi) states "Common-sense understanding had to be represented as a huge data
structure comprised of facts plus rules for relating and applying those facts."

AI struggles with essentially three central problems (Dreyfus 1993:xviii).

University of Pretoria etd

51

• How everyday knowledge must be organised so that inferences can be made.
• How skills or know-how can be represented as knowing-that.
• How relevant knowledge can be brought to bear in particular situations.

Dreyfus (1993:xxviii) states that "Heidegger, Merleau-Ponty, and the gestaltists would say
that objects appear to an involved participant not in isolation and with context-free properties
but as things that solicit responses by their significance."

"What we really need is a system that learns on its own how to cope with the environment and
modifies its own responses as the environment changes. To satisfy this need, recent research
has turned to an approach sometimes called ‘reinforcement learning’." (Dreyfus 1993:xxxix)

"The point is that a manager's expertise, and expertise in general, consists in being able to
respond to the relevant facts. A computer can help by supplying more facts that the manager
could possibly remember, but only experience enables the manager to see the current state of
affairs as a specific situation and so see what is relevant. That expert know-how cannot be put
into the computer by adding more facts, since the issue is which is the current correct
perspective from which to determine which facts are relevant." (Dreyfus 1993:xlii)

Feigenbaum makes the following comments in his analysis of MYCIN, a program developed
by Shortliffe in 1976 for diagnosing blood and meningitis infections and recommending drug
treatment (Dreyfus 1993:28).

" He conscientiously notes that the experts themselves are not aware of using rules:

...Experience has also taught us that much of this knowledge is private to the expert, not
because he is unwilling to share publicly how he performs, but because he is unable. He
knows more than he is aware of knowing. (Why else is the Ph.D. or the Internship a guild-like
apprenticeship to a presumed ‘master of the craft’? What the masters really know is not
written in the textbooks of the masters.) "

The author tested the translation capabilities of a translation program freely available on the
Internet. The result is really amazing, however upon closer inspection certain inherent and
fundamental problems become apparent.

The following slightly technical paragraph from a recent German conversation class was
submitted to the translator.

“ Die Stadt Frankfurt am Main

In der Stadt Frankfurt gibt es heute viele grosse Bürogebäude und in der Umgebung findet
man viel Industrie. Die Farbwerke Höchst, wo Farben, Lacke und andere Chemikalien
erzeugt werden, sind in der Nähe von Frankfurt zu Hause. Andere grosse industrielle
Konzerne sind Siemens und Halske AG., Hartmann und Braun (Elektroinstrumente) und
Mouson (Kosmetik). Auch die Glas- und Porzellanindustrie ist bedeutend.

Frankfurt ist auch ein kultureller Mittelpunkt und hat natürlich eine Universität und
verschiedene Hochschulen. Das Städel ist die städtische Kunstgalerie und besitzt viele
Kunstschätze. “

After a few seconds the translator responded back with the following partially correct answer.

“ The city Frankfurt/Main

University of Pretoria etd

52

In the city Frankfurt gives it today many large office buildings and in the environment finds
one much industry. The inking attachments Hoehst, where colours, lacquers and other
chemicals are produced, are in the proximity from Frankfurt at home. Other large industrielle
of companies are Siemens and Halske AG, hard man and brown (electrical instruments) and
Mouson (Kosmetik). Also the glass and porzellanindustrie are important.

Frankfurt is also a cultural focal point and has naturally a university and different
universities. The Staedel is the urban art gallery and possesses many art treasures. “

Upon analysis of the results it is apparent that the problems mentioned by Dreyfus are real.
The wrong translation of the phrase “gibt es heute” indicates that the context or idiomatic
expression was not understood. The most serious error was the company “Hartmann und
Braun” that was translated as “hard man and brown”. This indicates that purely mechanistic
parsing was used in this case without any higher level contextual comprehension. It is also
apparent in the short paragraph that the translator had difficulty with certain technical terms
such as “porzellanindustrie”. It is the author’s experience, and Dreyfus confirms it, that AI is
only successful in small well-defined domains. The above translation does not make sense on
its own. If AI is to be successful at all it is mandatory that context be well understood.
Nobody has yet succeeded in devising an algorithm that can accurately summarise written
text or a book, because this process would require exceptional contextual understanding. This
is indeed one of the most difficult problems known.

Dreyfus (1993:xxx) notes "It seems highly likely that the rationalist dream of
representationalist AI will be over by the end of the century”.

Designers and CAD researchers became interested in AI for two reasons. The first is the
influence of structured programming as propagated by Dahl, Dijkstra and Hoare (Flemming
1994:1). Computer programming is seen as a process of step-wise refinements where program
specifications are developed through several levels of abstraction. The specification is
complete at any level. Transitions from one level to the next consist of expanding the program
by adding greater detail. The prescriptions of structured programming are impossible to
follow in many design situations because they presuppose that the task at hand is well
understood and amenable to algorithmic treatment.

The second reason was due to the frustrations with the unintelligent nature of commercial
CAD systems. Even today CAD is contributing very little to the initial and most demanding
stages of design. In an attempt to solve the latter AI was applied. AI is generally concerned
with tasks whose execution appears to involve some intelligence if done by humans. Design
falls into this category.

AI research can be divided into two broad approaches.

• Understanding of the human brain. Computer models in this tradition represent a model

or simulate human cognition and succeed to the degree to which they emulate human
performance.

• Intelligent systems. Systems that perform intelligent tasks effectively without concerns for
how faithfully the model simulates human performance or cognition.

The efforts in the first category are theoretically motivated and must seek empirical
acceptance. Efforts in the second category are practically motivated and must stand the test of
practical usefulness. Computers that work exactly like people are unlikely to do better than
people. CAD tools, whether AI based or not, should always be seen as a complement to
human designers assisting them in tasks where they perform less well, but do not compete in

University of Pretoria etd

53

areas that the human brain performs well. Programs that assist in design are most useful in the
following areas:

• Suggest possibilities to designers they have not thought of.
• Remind them of things they might have forgotten.

The author will attempt to prove that in addition to the two possibilities a third option exists.
This is where intelligent components are used to facilitate the manipulation of complex design
information in a convenient environment to facilitate concept selection and design
experimentation during the early phases of design. During this phase the designer is often
confronted with incomplete information and designs could very easily change. At the same
time decisions taken during this phase will significantly influence operational characteristics.

Flemming (1994:21) states that the fixation of some AI researchers on processes rather than
results is puzzling. Chess-playing programs were initially considered a legitimate AI topic.
Recently the world chess champion, Kasparov was beaten by the super-computer Deep Blue.
This was not achieved by imitating chess players, but rather by a more efficient generate-and-
test approach that results, in part, simply from hardware improvements. In addition there was
behind-the-scenes expert intervention. Bellman (1978:144) came to the conclusion that the
human brain remains far above anything that can be mechanised. Oksala (1994:27) states that
many architectural problems are life-long and in a theoretical sense typically non-terminating.
Architectural products are often so complex with respect to environmental situations that we
can only describe them partially.

3.2.2.1 Life cycle enabled design ontology

In the design and implementation of software intended to support the design and construction
environment, ontology plays an important role. Simoff et al. (1998:23) mention that ontology
originated in philosophy as a systematic account on the nature and the organisation of reality.
Currently ontology is considered to be a branch of metaphysics addressing issues such as the
categorical structure of reality. There is no ontology that is accepted as the definitive
categorical scheme. A typical categorical scheme has a hierarchical structure with the most
general entity at the top of the hierarchy.

Simoff et al. (1998:23) mention that the concept of ontology entered the field of artificial
intelligence as a formal system for representing domain concepts and their related linguistic
realisations by means of basic elements.

Unfortunately there is growing confusion about the meaning of the term in the context of its
usage in AI in design. Presently the term is so wide that it ranges from the ISO STEP object
model description (a hierarchical interoperability standard) to concept structures for sharing
ideas. The application of ontology for the description of design domain faces additional
difficulties due to the interdisciplinary and evolutionary nature of the domain (Simoff et al.
1998:24).

In the precedent systems PREMIS and AEDES three fundamentally distinct ontologies can be
identified.

• Location (property). This is a hierarchical structure that expresses the hierarchical

relationship of locational entities. It starts with the country definition and goes right down
to shared space (Figure 11).

• Administration. This is related to the activities and administrative uses that are made of
these locational entities for managerial, classification or maintenance purposes.

University of Pretoria etd

54

• Graphical objects. The graphical database contains a set of structured entities that links to
the alphanumeric relational database.

Due to the fact that location/ property is pivotal to Facilities Management portion of the life
cycle this world was viewed as primary in PREMIS. Administration is broken down into the
main categories organisational structure, legal, people and construction elements (Figure 12).
The relationship between graphical objects and the location alphanumeric category is
maintained by means of a system of implicit linking (Appendix A). In this system a graphical
object has a relationship with an alphanumeric record by virtue of the fact that the graphical
object name is the same as the concatenation of the key fields in the relevant Relational
Database Record.

In an attempt to structure briefing and design Conradie and Küsel (1999) used an
oversimplified ontology in the AEDES prototype of active and passive requirements and
functions. Passive requirements are related to physical elements such as structure, services,
finishes, fittings, furniture and equipment. Active requirements are activities that were given
activity function names such as enable ablutions. In this approach SE principles as well as
functional decomposition were explored.

Simoff et al. (1998:28) suggest an ontology that delineates the categories of building design
space as activity and space. An activity consists of equipment, service, time, performer,
consumer and constraints. Space consists of geometry, divider, link and constraints. In this
model relations define the explicit connection between entities.

In Product Data Modelling (PDM) that is essentially the briefing and design phase of the
product life cycle another important world can be identified:

• BPM structure. This is a traceable hierarchical framework for organising design

knowledge and documentation on every stage of the design process. A good example of
this is the Industry Foundation Classes (IFC™ Release 2.0) as defined by the
International Alliance of Interoperability (IAI). This is essentially a hierarchical object
structure that describes structural interactions, but also attempts to facilitate
interoperability between different systems in the construction industry. This model is not
as comprehensive as the ISO STEP object standard (Figure 13).

University of Pretoria etd

55

Figure 11: Typical hierarchical relational database structures used in a Facilities Management
system (Author)

University of Pretoria etd

56

Figure 12: IAI, Industry Foundation Classes Release 2.0 Object Hierarchy (Author)

3.2.3 Problem-solving architectures

Today the following general design problem-solving strategies exist (Flemming 1994):

• Top-down strategies that develop a design specification through several levels of

abstraction.

University of Pretoria etd

57

• Bottom-up strategies that construct a design incrementally in small steps more or less at
the same, final level of abstraction.

• Middle-out strategies that start with a highly structured description and, transform it to
satisfy given requirements.

Within each of these strategies a function or behaviour driven approach could be
distinguished from a form driven approach. These distinctions correspond approximately to
the goal- and data-driven approaches in AI.

3.2.3.1 Top-down strategies

1. Function-driven strategies

The logic design component selects functional components from a knowledge base that
contains descriptions of individual components and templates that tell the system how to
design with them. This synthesis proceeds through the levels of a functional hierarchy. At the
highest level, it derives the overall system architecture in terms of functional subsystems and
ensures correct interconnections between subsystems. The next level inherits the
characteristics of the components determined at higher levels and can split single functional
components into successor parts. When the lowest level is reached the individual subsystem
components and their connections are known. The AEDES prototype system is an example of
this type of functionally based system.

2. Form-driven strategies

This strategy is closely related to the type of structures that the IAI (Figure 12) proposes. It is
a decomposition of the building structure into the various sub-structures and materials. The
fundamental approach is to build a model of a building and to generate all documentation
from the 3D model. The process to design a structure for a specific building starts from
specifications of the overall building form and type. It successively selects component types
and materials at each level in the hierarchy. The choices available at each step can be found
by one of three methods:

• Selection from a pre-defined, finite set of alternatives.
• Synthesis by further decomposition.
• Computation based on rules or numerical calculations.

Constraints can be defined to avoid certain combinations of decisions. A design approach in
which the parts for assembly are selected from a predefined set is also called configuration
design.

3.2.3.2 Bottom-up strategies

1. Function-driven strategies.

This approach takes individual functional, behaviour or performance specifications and
derives a description of a design incrementally by taking these specifications into account.
Flemming (1994) states that this approach is rare because the interactions between
performance indicators and design variables are so complex that it does not generally render
this approach feasible. One particular system (WRIGHT) avoided these problems by using a
system of disjunctive constraints that translate the desired behaviour characteristics into
constraints in the design variables. This system determines all feasible ways of satisfying the
constraints incrementally using constraint satisfaction techniques developed in AI.

University of Pretoria etd

58

2. Form-driven strategies

Form-driven, bottom-up strategies are employed by the classical incremental generate-and-
test approaches that generate a design in small steps. The intermediate evaluations are used to
direct the process into the most appropriate direction. Typically it would contain a generator
that is able to accept a layout and find all possible ways of adding a new object. A tester
evaluates a layout generated in this way and a controller mediates between these two
components. After each generate-and-test-cycle the controller selects the next layout to be
expanded, based on the evaluations produced by the tester. An early experimental system that
used this approach is LOOS. It is unlikely that future Case-Based Design methodologies
would use this type of approach, because it is so tedious. The computer attempts to execute
tasks that a human designer can do just as well.

3.2.3.3 Middle-out strategies

1. Function-driven strategies.

In this approach a system starts with a highly structured description of the desired behaviour
of a design. This description is transformed, at the same level of abstraction or granularity,
into a physical description. An example of this is a system that accepts a graph-based
description of an algorithm to be executed by a computer chip and transforms this description
into a collection of hardware components and their connections.

2. Form-driven strategies

This strategy starts with a highly detailed and structured design description and refines or
adapts it to the given context. Examples of this are the ARCHIE and ARCHIE-II systems
described in detail by Kolodner (1993). ARCHIE is an interactive prototype Case-Based
Reasoning (CBR) system for the design of buildings such as libraries and courthouses. It
supports the construction and evaluation of solutions. Users specify their problem description
and/ or solution description. The system retrieves and displays past designs and provides
suggestions and warnings. In support of evaluation, the system computes potential outcomes
and retrieves and displays past designs with similar outcomes. ARCHIE showed that design
cases could be very large and need to be decomposed into smaller units. Libraries of design
cases can be useful but may need to be supplemented with other types of design knowledge.
Practical support systems need usable interfaces to allow easy access to relevant information.
The most important lesson learnt is that the operation should be kept simple. ARCHIE is a
useful precedent for the present study even though Kolodner (1993:162) described ARCHIE
as a failure.

Architectural design systems based on CBR must solve two major system design and
implementation problems:

• Indexing. An indexing system must be designed to facilitate retrieval of stored cases so

that the most appropriate ones can be retrieved in the new design situation.
• Adaptation. They must support the refinement or adaptation of an existing case to the new

situation.

University of Pretoria etd

59

3.2.4 Case-based design

3.2.4.1 Introduction

A solution stored for possible reuse at a later time is called a case in the AI literature. The
ability to "frame" a problem is what differentiates great from ordinary designers. It is the
ability to distinguish between the vital few and mundane many design factors that leads to a
good design. Kolodner (1993:13) defines a case as a contextualized piece of knowledge
representing an experience that teaches a lesson fundamental to achieving the goals of the
reasoner. Rather than viewing reasoning primarily as a composition process, Case-Based
Reasoning (CBR) views reasoning as a process of remembering one or a small set of concrete
instances or cases and basing decisions on comparisons between the new situation and the old
instance. This view has important implications:

• CBR emphasises the use of concrete instances over abstract operators. It regards large

chunks of composed knowledge as the starting point for reasoning. Though there may be
smaller and more abstract chunks of knowledge in memory, they derive from cases and
are thus secondary to them (Kolodner 1996:361).

• CBR emphasises manipulation of cases over composition, decomposition and

recomposition processes. Reasoning by use of cases comes first and composition of
operators is of secondary importance (Kolodner 1996:364).

Of all the AI methods available today, Case-Based Design (CBD) is the most promising with
regards the storage of previously synthesised design solutions. CBD is a sub-set of CBR that
is aimed specifically at design using CBR methods.

CBD facilitates the provision of a comprehensive design database of past solutions that
designers will not remember on their own. CBD has distinct advantages over other AI
techniques such as Knowledge-Based Systems and Models.

The CBR paradigm has a bias against problem decomposition and recomposition implied by
composition of operators, because composition is a highly complex process. When problems
are entirely decomposable into noninteracting parts, decomposition and recomposition are
easy. As problems become less and less decomposable into non-interacting parts,
recomposition becomes harder and harder. Traditional methods must be stretched beyond
their original intent to deal with these problems. Such problems, which are called barely
decomposable, can be more efficiently solved by methods that do not have to decompose
them (Kolodner 1993:16).

Kolodner (1993) is of the opinion that engineering and architectural design is almost entirely
a process of adapting old solutions to fit a new situation or merging several old solutions to do
the same. Carrara et al. (1994) agree with this viewpoint when they characterise design as:

1. Defining a set of functional objectives that ought to be achieved by the design artefact.
2. Constructing design ‘solutions’ which, in the opinion of the designer, are (or should) be

capable of achieving the predetermined objectives.
3. Verifying that these solutions are internally consistent and that they achieve the

objectives.

Richens (1994:309) strongly disagrees with this point of view when he claims that
architectural objectives usually include functional ones, but are dominated by less definable
intentions. Flemming (1994:22) states that attempts to introduce machine innovation and

University of Pretoria etd

60

creativity are red herrings. Oksala (1994:41) expresses the opinion that it is realistic to design
machines that work as architectural design assistants and are capable of redesigning work
according to given rules.

It is essential that this database be built up during the normal activities of a design firm. If a
designer has generated a solution he should be able to store it literally with the push of a
button. Most experimental prototype systems at the moment rely on independent and separate
processes that may require the assistance of an expert that is intimately familiar with the
technicalities of indexing and retrieval. The author is of the opinion that Case-Based Systems
would be practical when designers themselves are actively involved in the modification of a
case and its storage for re-use. This machine/ designer relationship uses the best of both
worlds.

The author argues that CBD is a valid option for the following reasons:

1. Experts (domain experts) using any preferred front-end design method build up the

corpus of knowledge. It does not preclude traditional methods. Structured methods would
be more efficient.

2. Unlike other structured methods CBR allows a problem to be solved as a complete unit.
This is closer to the holistic synthesis of design problems that is dominant in architectural
design.

3. Successful precedents in an architectural environment already exist (Kolodner 1993).

 If a similar problem has been solved previously, it can provide the glue that holds barely
decomposable problems together. Rather than dealing with hard recomposition problems, the
reasoner only has to address those parts of the old solution that do not fit the new situation.

Case-Based Reasoning (CBR) is an approach to knowledge, memory structure and reminding
that is based upon modelling experiential knowledge. It is characterised in the literature as a
problem solving approach of a reasoner, which makes inferences from previous solutions
which are adapted to current situations. It has demonstrated its usefulness in domains where
experience is strong, but the domain model is weak or poorly formalised (Oxman et al. 1994).
Rather than duplicating human cognition, these models attempt to capture the essence of the
human cognitive processes and to explicate the principles of their operation. A new
generation of Knowledge-based System can potentially work in a partnership relationship
with the human designer. The objectives of support or aid systems have been defined as to
enhance human decision making by suggesting alternatives, predicting consequences and
conveniently grouping together the information that goes into decision making.

There are many different types of solutions. The solution to a design problem is the artefact
that was designed. With a solution in place, a reasoner that retrieves a case can use its solution
to derive a new solution. Solutions also have other components that aid adaptation. The
following list from the research community as interpreted by Kolodner (1993:154) is useful:

• The solution itself.
• The set of reasoning steps used to solve the problem. This was well addressed in the

AEDES prototype.
• The set of justifications for decisions that were made in solving the problem.
• Acceptable solutions that were not chosen and the reasoning and justifications that go

with them.
• Unacceptable solutions that were ruled out and the reasoning and justification that go with

them.
• Expectations of the result of deployment of the solution.
• Things that went wrong with the previous solution.

University of Pretoria etd

61

3.2.4.2 Advantages of a Case-Based Reasoner?

CBR has several advantages that give an indication when it should be used. The list below has
been collated and adapted from Kolodner (1993). The following advantages can be identified:

1. CBR reasoning allows the reasoner to propose solutions to problems quickly, because it

avoids the time necessary to derive those answers from scratch.
2. CBR allows a reasoner to propose solutions in domains that are not completely

understood. This is of particular importance to the advanced planning that is necessary to
design and build complex facilities such as hospitals.

3. Remembering previous experiences is particularly useful in warning of the potential for
problems that have occurred in the past, alerting a reasoner to take action to avoid
previous mistakes.

4. CBR can be used as a communication tool between designers and other less design
literate participants.

5. Cases help a reasoner to focus his reasoning on important parts of a problem by pointing
out what features of a problem are the important ones.

6. A CBR system can be made to learn. In CBR problem solving efforts are saved to
expedite future work. Learning is a natural consequence of problem solving efforts. CBR
systems can be designed in such a way that they adapt to changes in their environments
by means of adaptive fuzzy sets, discussed below. The system can continue to collect
cases after deployment.

7. When CBR is used to solve problems, solutions can be justified by the cases they are
derived from. In a domain where it is difficult to evaluate solutions objectively such as
architectural design, CBR has the advantage of providing illustrations of the effects of
particular solutions.

8. CBR can be designed to anticipate potential problems as natural part of their reasoning.
Unsuccessful experiences with past solutions can be used in case-based systems to
anticipate possible problems that might result from solving a problem a certain way. In
general this capability adds efficiency. In architectural design anticipation of problems is
critical.

9. CBR provides a way for designers and computers to interact in a realistic way. CBR is
fundamentally inspired by human behaviour. Certain tasks in design such as the
calculation of energy consumption or acoustic performance is easier for a computer to
achieve, whereas aesthetic design decisions is best decided by the designer. Designers are
good with creative reasoning, but poor at remembering the full range of applicable cases.
Humans tend to be biased in their remembering or as novices they not yet had the
experiences they need to solve the problem. During an interview of the professional team
involved in a large and complex construction project this fact was emphasised.

10. The knowledge acquisition for a CBR system is natural. Concrete examples rather than
piecemeal rules can be used. Experts (experienced practitioners) find it difficult to report
the knowledge they use to solve problems. They are quite at home reporting their
experiences and discussing the ways in which cases are different from one another.

11. CBR should be considered when it is difficult to formulate domain rules but cases are
available. Formulating rules is difficult in weak-theory domains such as architectural
briefing and design. In this domain knowledge is incomplete, uncertain or inconsistent. It
is impossible to formulate rules when there is a great amount of variability in design
situations that have the same outcome.

12. CBR can be considered when rules that can be formulated require more input information
that is normally available. This may be due to incomplete specified problems or the fact
that the knowledge required is not available at problem-solving time. This is often the
case in the construction industry and fast track projects where all project information is
not available up-front.

University of Pretoria etd

62

13. CBR should be considered when it is expensive to use rules because the average rule
chain is long.

14. CBR should be used when generally applicable knowledge is not sufficient to solve a
problem. This could be due to the fact that knowledge changes with context or because
some of the knowledge required solving the problem is used only under special
circumstances.

15. CBR should be considered when a case library already exists. In the present study some
hospital design cases (starter kits) are already available, albeit in an unstructured format.

16. When no fast computation method exists for deriving a solution from scratch, CBR
allows new solutions to be derived from old ones. In the case of the basic hospital starter
kit set developed at the Division of Building Technology at the CSIR, simple hospitals
but different hospital designs can quickly be built by means of different exemplar
department and architectural units.

17. When there is no fast computational method for evaluating a solution or when there are so
many unknowns that evaluation methods are unusable or difficult to use, CBR provides
an alternative.

18. CBR allows evaluation of solutions when no algorithmic method is available for
evaluation.

19. Cases are useful in interpreting open-ended and ill-defined concepts.

3.2.4.3 The disadvantages and caveats of Case-Based Reasoning

CBR has several disadvantages and caveats in architectural design that should also be
considered. The list below has been collated and adapted from Kolodner (1993):

1. CBR requires cases. Traditionally the effort in building a CBR system went into case

collection. It is apparent from a study and interviews1 with the designers of ARCHIE that
it was an enormous effort. To be successful in the architectural profession and the
construction industry it should not require such extraordinary efforts. The case library
should be automatically assembled during the normal professional design activities.

2. For CBR to be useful and reliable, cases with similar problem statements should have
similar solutions. CBR is based on the premise that situations recur in a predictable way.
Adaptation modifies old solutions to fit new situations. If a domain is discontinuous
where similar situations require wildly different kinds of solutions, then CBR cannot be
used and would be misleading. This is unfortunately only partially true in architecture.
Creative designers do not always solve related design problems in a similar way.

3. CBR solutions are not guaranteed to be optimal. The full range of possible design
solutions is usually not explored in a CBR system intended for design support. Optimal or
more creative solutions may be missed. This is a problem in any heuristic system such as
TRIZ that is also discussed in the present study. The designer cannot escape his
responsibilities, however the CBR system will remind him of design aspects he might
have forgotten.

4. An inexperienced case-based reasoner might be tempted to use old cases blindly, relying
on previous experience without validating it in the new situation.

5. A case-based reasoner might allow cases to bias him or her too much in solving a new
problem.

6. Case libraries require considerable storage space. In the design of CBR systems special
consideration must be given to ensure a long life of the case with changing technology. A
large sum of money in terms of intellectual capital, time and effort is encapsulated in the
case library. Persistence of data is therefore of paramount importance.

7. Inexperienced people are often not reminded of the most appropriate sets of cases when
they are reasoning.

1 Janet Kolodner and Craig Zimring personal communication during April 2000.

University of Pretoria etd

63

3.2.4.4 Case-based Reasoning compared with other methods

The CBR/ CBD cycle (Kolodner 1993:18) has striking similarities with the product
development method of concept selection proposed by (Pugh, 1996; Ulrich et al., 1995)
(Figure 13). In generalised terms the CBD cycle is the case equivalent of concept selection.

Figure 13: Case-Based Reasoning compared to concept selection (Collated by
author from Kolodner (1993:18), Ulrich et al. (1995) and Pugh (1996))

The typical stages of the CBD cycle are (Kolodner et al. 1996:35):

1. Retrieval. Partially matching cases must be retrieved to facilitate reasoning. This is called

case retrieval. The case was created in the first instance by a case storage process also
called memory update.

2. Solution proposal. In problem-solving CBR, a ballpark solution to the new problem is
proposed by extracting the solution from the retrieved case.

3. Adaptation. This is the process of altering an old solution to fit it to the context of the new
situation.

4. Criticism. This is a critical analysis of the new solution before applying it.
5. Justification. This is the process of creating an argument for the proposed solution, done

by a process of comparing and contrasting the new situation with prior cases. Sometimes
justification might by followed by a criticism step in which hypothetical situations are
generated and the proposed solution applied to them in order to test the solution.

6. Store (memory update). The new case is permanently saved for future use.

The following table compares Case-Based Reasoning, (CBR), Rule-Based Reasoning (RBR)
and Model-based Reasoning (MBR)1.

1 Janet Kolodner is of the opinion that CBR, MBR and RBR form a continuum. Personal communication 14 April 2000.

University of Pretoria etd

64

Table 4: A comparison between Case-Based, Rule-Based and Model-based
Reasoning (Collated by author)

Case-Based Reasoning

Rule-based Reasoning

Model-Based Reasoning

Cases in case libraries are constants
that describe the way things work.

Rules in rule bases are patterns.

Store causal models of devices or
domains.

Cases are retrieved that match the
input partially.

Rules are retrieved that match the
input exactly.

Cases are retrieved first,
approximating the entire solution at
once, then adapted and refined to a
final answer.

Rules are applied in an iterative
cycle of microevents.

Cases are large chunks of domain
knowledge, quite likely redundant,
in part, with other cases. Based on
idiosyncratic knowledge, specific to
episodes but mostly not normative.
Provides methods for constructing
solutions.

Rules are small, ideally independent
but consistent pieces of domain
knowledge.

Emphasise general knowledge that
covers a domain. Models hold
knowledge needed for validation or
evaluation of solutions but do not
provide methods for constructing
solutions.

CBR can be used both when a
domain is well and not so well
understood. In the latter case it
assumes the role of a generalised
model.

Not applicable Is used when a domain is well
enough understood to enumerate a
causal model.

Provides for efficient solution
generation and evaluation is based
on the best cases available.

Not applicable Provides a means of verifying
solutions, but solution generation is
unguided.

Needs a means of evaluating its
solutions, guiding its adaptation and
knowing when two cases are
similar.

Not applicable Models provide a means of
evaluating its solutions.

These differences led to differences in knowledge acquisition. In RBR, knowledge is
extracted from experts and encoded in rules. This is often difficult to achieve. In CBR most
(but not all) knowledge is in the form of cases. CBR needs adaptation rules and similarity
metrics and more types of knowledge, but knowledge is easier to acquire.

Both MBR and CBR were developed as methods for avoiding reasoning from scratch. Both
compose knowledge into large chunks and reason using large chunks. The differences have
mostly to do with the content of the knowledge used and the conditions of applicability for
each.

3.2.4.5 Types of Case-Based Reasoners

Kolodner (1993) distinguishes between automated reasoners and retrieval-only aiding and
advisory systems. Numerous cases can be found in the literature to illustrate the former type
that can achieve numerous diverse tasks. Typical examples are:

1. CHEF is a case-based planner. Its domain is recipe creation. Recipes are viewed as plans.
2. CASEY is a case-based diagnostician. It takes as its input a description of its new patient,

including normal signs and presenting signs and symptoms. Its output is a causal
explanation of the patient’s disorders.

3. JULIA is a case-based designer that works in the domain of meal planning.

University of Pretoria etd

65

4. HYPO is an interpretative reasoner that works in the domain of law. It takes as input a
legal situation and as its output it creates an argument for its legal client.

5. PROTOS implements both case-based classification and case-based knowledge
acquisition. Given a description of a situation or object, it classifies the situation or object
by type.

6. CLAVIER is a manufacturing industry related system for configuring the layout of
composite aeroplane parts for curing in an autoclave. It is used at Lockheed in California.

7. ROBBIE (Re-Organisation of Behaviour by Introspective Evaluation) combines a case-
based planner with an introspective component. It was used to simulate an intelligent
agent travelling in a limited world of a number of street blocks. The agent had to conform
to certain basic rules. The agent could intelligently work out alternative rules if an
unforeseen obstacle came in the way (Fox 1995).

The former group is where an application in an architectural domain is most likely to achieve
success. CBR fits well with the way that designers work. People use CBR naturally in much
of their everyday reasoning. Kolodner (1993) provides existing examples that are precedents
for the present study. These examples are all retrieval-only aiding and advisory systems. The
first one is a hypothetical architect’s assistant. ARCHIE and ARCHIE-II are useful precedents
of prototype systems that give direction to the present study. ARCHIE-II uses the concept of
design stories. Some stories in ARCHIE-II tell about design features that did not work and
what could be done to remedy the situation. Others report on features that were successful.
Users first describe to the system the problem they are working on. The system subsequently
retrieves buildings that are similar to the desired new one. The user can then display the
building or part of a building that is retrieved. He is shown a floor plan surrounded by
annotations. These annotations describe the various design features.

Domeshek et al. (1994) describe the MIDAS (Memory for Initial Design of Aircraft
Subsystems) system. This system used ARCHIE as a precedent to support early design of
aircraft subsystems. Both ARCHIE-II and MIDAS use the Design-MUSE shell that eases
construction of case-based design aids. An important goal of this system was that domain
experts should be able to maintain it, rather than AI experts.

Oxman (1994) recognises four cognitive approaches for modelling design case knowledge:

• Generic models (model-based)
• Associative models
• Exemplar models
• Precedent

3.2.4.6 Generic models

A design space is essentially a delineation of a class of things. That is designs conforming to
particular meanings and a particular syntax. Knowledge is used to define classes of designs
called generic designs. It is often convenient to make the generic nature of knowledge
explicit. Rather than using grammatical rules, a design space may be defined in terms of a
class description called a generic model. This is done by listing all properties of the class,
including the ranges of properties that an instance may take and also the interrelationships
between properties. A small house can be defined in terms of its generic form and attributes.
The graphic structure contains implicit information about the essential properties of the class.
The properties could also be listed. An example is the list of allowable rooms it may have. It
may also be stated that it includes items such as a roof and a front door.

In some cases a certain design instance is said to typify a class. It embodies the features of its
class in which we are interested. Such a design is said to be an archetype. The concept of an

University of Pretoria etd

66

archetype is useful because we prefer to think in terms of instances rather than in terms of the
abstract world of classes of things.

In design the term prototype is also used. This is generally seen as a design from which other
designs originate. A prototype typifies a class of designs and serves as a generic design.

3.2.4.7 Associative models

The associative mechanism is another key principle of cognition, which is present in design
thinking. In associative reasoning concepts are linked on the basis of conceptual relations to
form a structure of concepts. This can be represented by a conceptual network, which maps
the structure of relationships and emphasise semantics. A semantic network is the set of all
relationships which concepts have to other concepts. The semantic network is related to some
context in which it has meaning. This provides the basis upon which to model attribute-based
associative thinking in design. In typological design there is a restrictive definition of
essential formal variables in the type and how they can be hierarchically modelled into a set
of formal concepts. In associative reasoning it is the particular structure of conceptual
linkages in contrast to a well-defined hierarchical structure, which is significant.

In architectural design, knowledge associated with recognised categories such as building
types provides a clear domain example of typological knowledge through which generic
designs can be modelled. With regards to design concepts, there is no comparable consensus
on what constitutes the vocabulary of architectural concepts. One area where a vocabulary has
begun to emerge is that of the formal concept. Formal concepts describe particular features
(formal attributes) of the design entities. In the case of architecture, these are the vocabulary
of concepts, which describe the formal content of building designs. A system like this could
allow for the maintenance, presentation and possible modifications of associative linkages
between concepts within the designs.

An example of this type of model is the FORMNET system. This system contains a
vocabulary of more than hundred formal attributes that are hierarchically organised into nine
major categories and 40 sub-categories. These were established through the survey and
analysis of the literature on formal analysis and on the architecture of Le Corbusier. The
formal knowledge relative to the villas is organised into a semantic network in which the
formal attributes are the nodes. This provides a means to navigate within the system by
associative connections between formal concepts, to study the coincidence of formal concepts
in various designs and to study relationships between attributes. Some of the attributes that
are used in FORMNET are symmetry, grid, regulating lines and free plan. The projects are
described both two and three-dimensionally, while the concepts are described two-
dimensionally. Historical styles such as Doric and Gothic also provide associative models.
Doric gives democratic and Gothic religious associations.

3.2.4.8 Exemplar models

In this approach it is attempted to re-use prior knowledge rather than to generate new designs.
The previous solution is adapted to the current situation. Prior knowledge is associated with
specific design cases in which the knowledge is highly explicit.

The case, as specific knowledge, can be distinguished from generic knowledge by its unique
departure from the norm. A design case has something specific to communicate regarding the
solution, its history of generation and its implications in use. Since the knowledge of prior
problem solutions is used, the case is structured in such a way that it can be adapted.

Architectural details are an example of this type of case. Building details are example-based
and detailing is often based on the re-use of specific examples, which are exemplars, or

University of Pretoria etd

67

examples that function as models. The information base could be very broad and special
attention has to be paid to the access method. The traditional CI/SfB indexing conventions
are not adequate. Organisation of the index according to a convention of typological
categories of elements will support conventional search by taxonomic categories (category,
element name and product name). However it will not necessarily support search by other
categories such as design principles and it will not support browsing and cross-indexing.

Three broad classes of domain knowledge can be identified:

• Procedural knowledge is a process or algorithm for design. The design of a staircase is an

example where the calculations are based on floor to floor height, length of the stair run,
and the tread riser relationships.

• Causal knowledge is a detailed procedure for calculation. An example is the calculation
and design of partitions for thermal or acoustic properties.

• Behavioural knowledge is the understanding of the performance achieved by particular
materials or by a particular configuration of elements in a building. This characterises
much of the knowledge of building detailing.

Despite the abundance of literature and information in the field, knowledge is generally
poorly structured. The knowledge is not structured in such a way that it can be used in models
of the design process. It is the integration of knowledge behind the detail within the working
environment, which is a long-term objective of intelligent CAD libraries.

Some desirable characteristics of such a system are:

• Memory and indexing approach to support exploration as well as directed search.
• Explanations such as pitfalls and lessons should be integrated into the case.
• The graphic representation should be linked to a model of the case adaptation process.
• Library and the design environments should be integrated.

3.2.4.9 The design precedent

The selection process of relevant ideas from prior designs in current design situations has
been termed precedent-based design. During the course of exploration of design ideas within
precedents, designers are able to browse freely and associatively between multiple precedents
in order to make relevant connections. This makes the discovery of unanticipated concepts
possible in precedents. In precedent-based systems the ability to encode, search and extract
design knowledge relevant to the problem at hand is significant.

One method to represent design knowledge in this type of CBR is to base it upon a
decomposition of holistic case knowledge into separate chunks of design knowledge. One
means to decompose case knowledge into separate and independent chunks is the concept of
the story, which is currently employed in the CBR community (Oxman et al. 1994:59). The
design story is employed as a way to decompose existing descriptions of complex design
precedents into chunks. A story is also useful because it provides contextual information. In
order to structure a story in a useful format that can be analysed a tri-partite schema that uses
an issue-concept-form formalism can be used. Each design story is a way to link these three
components. Indexing of the cases could become story indexing rather than case indexing.
Linkages between precedents can be established through matching of issues and design and
design concepts.

The design precedent addresses some of the problems of the other models. Because of their
network structure, the knowledge representation can use a semantic network or in the form of
a node-link structure as provided in hypertext systems.

University of Pretoria etd

68

Precedent-based design is viewed as a significant paradigm in architectural design. However,
it has been the subject of less theoretical and research work than typological design. The
potential for design aid systems based upon precedent libraries (design thesauri) is another
realistic possibility.

3.2.5 Case-based Reasoning indexing and retrieval

3.2.5.1 Introduction

One of the important issues in CBR is retrieval of appropriate cases. The indexing and
retrieval methods as described by Kolodner (1993), Flemming (1994) and Charlton et al.
(1998) already solved the indexing and retrieval problem substantially. It is clear that the
indices required to facilitate the initial selection of relevant cases need to be based on
linguistic variables. All present methods are based on static linguistic variables that are
searched in order to find the most appropriate case. The author is of the opinion that static
linguistic variables fail to address the problem of context of the index. An example of this is a
description that states that the design for a specific building is energy efficient. The linguistic
variable energy efficient could have been quantified as a design that requires 50 2/ mW . If a
significant breakthrough is made in lighting design a new low energy design might be feasible
requiring only 20 2/ mW . This would invalidate the previous assumption that 50 2/ mW is
energy efficient. The best solution to this type of problem is to formulate a dynamic, context
sensitive linguistic variable energy efficient. The value is calculated at the time of retrieval in
terms of the known universe of designs. This implies that it is better to store the calculation
method with the linguistic variable, rather than absolute values. In the case of lower order
values that are absolute such as gross area, rentable area, volume and reverberation time it is
acceptable to store the values in an absolute way. If static non-linguistic variables are to be
compared and weighed then the Flemming method is convenient to weigh up the various
factors. The author is of the opinion that Charlton et al. (1998:322) comes the closest to a
dynamic approach by recommending the use fuzzy sets. However they fail to recognise the
need for dynamic linguistic indices.

3.2.5.2 The indexing problem

The indexing problem has several parts. When a case is created, appropriate labels must be
assigned to ensure that it can be conveniently recalled. Labels are also used at retrieval time to
judge the appropriateness of an old case in a new situation. Some of the basic requirements of
indices are (Kolodner 1993:194-195):

• They have to anticipate the vocabulary a retriever might use.
• Indexing has to be by concepts that are normally used to describe the items being

indexed, whether they are cosmetic features or something more abstract.
• Indexing has to anticipate the circumstances in which a retriever is likely to retrieve

something.

Tasks and domains must be analysed to find the functionally relevant descriptors that should
be used to describe and index cases. This is called the indexing vocabulary. Index vocabulary
is a subset of the vocabulary used for full symbolic representations of cases. In the event of
retrieval-only CBR it is not necessary to represent the entire contents of the cases
symbolically. It is only necessary to represent in the case index the part of the description
needed for retrieval. This is called index assignment. Indices are those combinations of
features of a case that describe the circumstances in which a reasoner might find the case
useful during reasoning.

University of Pretoria etd

69

The following general guidelines for choosing indices can be identified (Kolodner 1993:197):

• Indices should be predictive. This is those combinations of descriptors of a case that were

responsible for solving it the way it was solved and those combinations that influenced its
outcome.

• Predictions that can be made should be useful. They should address the purposes the case
will be used for.

• Indices should be abstract enough to make a case useful in a variety of future situations.
This often implies that indices should be more abstract than the detail of a particular case.

• Indices should be concrete enough to be easily recognisable in future situations. It should
be possible to recognise the case with little inference.

3.2.5.3 Choosing an indexing vocabulary

A vocabulary needs to cover relevant similarities rather than just surface features. Focussing
the indexing on the relevant features of a case does this. Because indices are chosen from a
case’s description, the requirements of the indexing vocabulary are known. The case can be
described from two main sets of material (Kolodner 1993:203):

1. The functional approach. By means of the functional methodology representative domain

cases are collected. The corpus of available cases and the tasks that must be supported are
examined. For each case the points it can make, the situations in which each point is
applicable and the ways the case needs to be described to make it available.

2. The reminding approach. The kind of reminding that is natural among human experts
who do the designated task is examined. Similarities between new situations and the cases
they are reminded of. This is an attempt to find out which descriptors are important to
judge similarity and the circumstances.

The indexing vocabulary must capture those domain dimensions that are useful for reminding.
One of the attempts to a vocabulary for intentional situations was the Universal Index Frame
(UIF). In 1982 Schank proposed organising structures called Thematic Organisational
Packets (TOPs). TOPs are organisers of cases that are thematically similar to each other. If
two cases have the same thematic structure they fall into the same thematic category. The
Universal Index Frame (UIF) of Schank and Osgood in 1990 built on this concept. It uses the
dimensions and vocabulary of goal and plan interactions to structure the descriptions of
intentional situations. The UIF suggests the following descriptors or dimensions (Kolodner
1993:228):

• Anticipatory affect: the emotions of the character going into the situation
• Pretask belief: relevant beliefs of the character going into the situation
• Task: the task the actor is actively engaged in as the episode plays itself out
• Theme: relevant thematic relationships, roles played by the character, character traits and

ambitions that the character brings to the situation
• Goal: the character’s relevant goal
• Plan: the plan the character uses or intends to use in the situation
• Result: the major impact of what happened in the situation
• Positive side effects
• Negative side effects
• Resultant affect: the emotions of the character leaving the situation
• Post-task belief: relevant beliefs of the character leaving the situation. This is what the

character learned from the situation
• Change in affect: a characterisation of the degree of change in the character’s feelings as

a result of the episode

University of Pretoria etd

70

3.2.5.4 Methods for index selection

Kolodner (1993:249) identified the following general steps of index selection:

1. Determine what the case could be useful for.
2. Determine under what circumstances it would be useful.
3. Translate the circumstances into the vocabulary of the reasoner.
4. Synthesise the circumstances to make them as recognisable and generally applicable as

possible.

Kolodner (1993:249-281) provides a detailed description of how indices can be chosen. The
description below is a summary of these methods:

1. Choosing indices by hand. This is used when the cases are complex and the indices need

to be accurate. This is also used when the knowledge required to choose the indices
accurately is not concretely available or is too complex to insert directly into the
computer.

2. Choosing indices by machine. This is useful when the problem solving and understanding
are already automated. Three methods of automated index selection exist i.e. checklist-
based, difference-based and explanation-based methods.

2.1 Choosing indices based on a checklist

This type of index is based on a specific set of dimensions. The checklist facilitates the
process of index selection. For each dimension on the checklist a value is found or computed
that describes the case. This method puts a significant responsibility on the system builder,
because it is only as good as the previously designed checklist. Typical problems that can be
encountered are incomplete checklists that result in insufficient indexing. It is also important
to discriminate between important and unimportant dimensions. The following steps
summarise the process for setting up a checklist:

• List the tasks that the case retrieval will support.
• For each task, determine the features that tend to predict solutions and outcomes.
• For each kind of feature, compute a set of useful generalisations of the feature. Make sure

that the features chosen are recognisable and available during reasoning.
• Create the checklist by collecting the complete set.

The list of heuristics below gives an indication of which features are indexing candidates.
Features should chosen that:

• Predict outcomes.
• Be predictive of other features.
• Make the kinds of predictions the reasoner needs.
• Discriminate.

2.2 Difference-based

In this indexing method the purpose of indexing is to keep track of the differences between
cases. During retrieval search algorithms can choose the best matching cases from the case
library. Not all features that are different across cases make useful indices. To ensure that a
difference-based index retriever selects only predictive features, difference-based indexing
must be combined with some method of choosing predictive features. One way of achieving
this is by a combination of difference- and checklist-based methods.

University of Pretoria etd

71

As discussed above, checklist-based indexing methods focus on which dimensions to focus on
for indexing. Difference-based methods concentrate on which values along any dimension are
useful for indexing. A combination of the two methods allows indexing on predictive
dimensions that differentiate a case from other similar ones. The following steps summarise
the process to set up this type of index:

• Select a classification for each case.
• Select types of features that are known to be predictive. These are usually context

sensitive checklists.
• For each feature its value is computed that results in dimension-value pairs.
• From this list all pairs are removed that are non-predictive in the specific context or

normative.

The pairs that are left are those that are predictive and that differentiate the case from others.

2.3 Explanation-based indexing

Difference- and checklist-based indexing methods provide a means of computing predictive
features to indices. The problem with this is that indices are based on a model of the features
that are usually predictive and do not analyse cases individually for their predictive features.
This leads to the problem that features are selected that are not predictive for the particular
case or features that are predictive are not indexed.

Explanation-based indexing methods attempt to choose indices appropriately for individual
cases. The reasoner uses explanation-based generalisation methods to generalise the
explanation. Indices are then chosen from the content of the generalised explanation. In
explanation-based indexing, domain knowledge is used to determine which facts of a case are
relevant and which can be safely ignored. The index is generalised to the most abstract point
where the explanation can still hold. After the reasoner discovers it has made a mistake, it
attempts to explain it or assign blame. After explaining the mistake, it extracts from the
explanation the concrete recognisable features of the situation that that were responsible for
the problem. It then generalises those features to the point where they are still concrete but
where the explanation that was derived can still be applied. Unlike checklist-based methods
this method chooses as indices only those features that are responsible for the failure. Those
features, if observed in future cases, will predict the failure observed in this case. Checklist-
and difference-based methods have no means of distinguishing which of the many potentially
predictive and differentiating features are responsible for the failure, and will index using far
more features.

The explanation-based index selection process consists of the following steps:

1. Create an explanation.
2. Select relevant observable features from the explanation.
3. Generalise those observable features as far as possible, making sure the resulting

generalisations are also observable. The original explanation must still apply, given this
general description.

4. If the index supports a solution-creation goal, then
• append additional information specifying the goal the case achieves.
• generalise the goal appropriately and repeat the process.

University of Pretoria etd

72

3.2.5.5 Retrieving cases from the case library

If a large case design library has been built up it should be possible to conveniently retrieve a
case by means of a retrieval procedure. Flemming (1994:84) identified a method that uses the
principle of a target index, t . t is compared with all available cases c . Given a target index,
the comparison with a case index proceeds object-by-object and attribute-by-attribute for
those objects that belong to and those attributes that have values in the target index. In the
simplest case, only objects of the same class or type and attributes with the same names are
compared. In order to extend the allowed matches several schemes are used that include
subtype, subrange and subset matching. The following general rules are defined:

• An object A comparable to an object B if B belongs to the same class or to a subclass of A.
• An attribute a is comparable to an attribute b if a is implied by b.

Comparability of attributes implies that attributes have values of the same type. For example a
minimum x-dimension attribute is implied by a minimum dimension attribute. In the simplest
case, the results of comparisons are binary. Sometimes it is important to distinguish whether a
lower bound is missed narrowly or by a large degree. It may also be important to know
whether only one or several functional units are missing when two constituent attributes are
compared. Flemming (1994:85) suggests that for each comparison the degree to which it
succeeds be computed. This is expressed as the closed bounded interval [0,100]. 100 is a
perfect match and lower numbers indicate the percentage by which a perfect match has been
missed.

When scanning cases for retrieval the individual comparisons must be aggregated so that
cases with the best overall fit are presented to the designer. One solution to arrive at ranked
values of cases would be to compare the weighed sums of the individual matches. However
plausible weights are difficult to determine in building design. Interactions between
comparisons cannot be taken into account. The way in which certain deficiencies enter an
overall evaluation may depend crucially on the way other comparisons succeed. This is
known as the problem of mutual preferential dependence. To avoid some of these problems
problem features are divided into predetermined priority classes and matches for prioritised
features are determined first. Cases that match the most features are preferred. This process
uses weighed sums implicitly. Features in the same class are given the same weight and
matches are added up. Features in higher classes overrule those in lower classes. The designer
is able to decide which features he is going to search on.

The method of calculation can be formalised in the following way by defining a special
retrieval function

),(ctϕ

which returns a real number in the closed bounded interval [0,100] to express the match
between a target index t and a case index c .

ϕ unpacks t recursively in terms of its valued attributes and computes their matches with
comparable valued attributes in c .

ϕ is specialised with regards the objects or data types that have to be compared. Some
special forms of ϕ are indicated below. The subscripts indicate the type of specialisation.

University of Pretoria etd

73

()=BAOBJ ,ϕ

{
0 if A and B are not comparable;
100 if A has no valued attribute;

()Baw OBJATTR
a

a ,,ϕ∑ otherwise,

Unordered lists like the value of attribute tests can be compared similarly to OBJϕ . The sum
goes over all valued attributes a of A . aw are weights with

1=∑
a

aw ; and

()=BaOBJATTR ,,ϕ

{
()baATTR ,ϕ if B contains a valued attribute b comparable with a ;

0 otherwise

()baATTR ,ϕ is specialised with respect to the data type of a and b . For attributes whose data

types are lower bounds (like the attributes minimum-width and min-area of a functional unit
of variable size.

()=baBOUNDLOWER ,_ϕ {
100 [] []ab / if [] <b []a ;

100 otherwise.

Where []x denotes the value of an attribute x . Upper bounds as well as general numbers can
be treated similarly. Names match either completely (100) or not at all (0).

The basic form of ϕ that unravels a constituent attribute in a target index can be defined as
follows:

()=LKLISTCONST ,_ϕ ()[]Lkkw OBJ
k

k ,,max γϕ∑

where the sum goes over all objects k in K . ()Lk ,γ is defined as an operator that traverses
L and the constituents of the objects in L to grab a corresponding object comparable with
k . γ satisfies the following conditions:

1. If no corresponding object can be found γ returns a dummy object to enforce a 0 value
of ϕ for this particular k .
2. Repeated calls to γ will not return objects that have been returned before; that is, the
mapping established by γ from objects in K to objects in L and their constituents is
right-unique.
3. If γ maps an object in K to a constituent m of an object l in L , it does not map other
objects in K to objects on the path from l to m .

Charlton et al. (1998:324) state that the descriptions on which retrieval of a relevant case
depends are ultimately based on classifications. A classification consisting of restricted values
is seen as a flat classification. The very reason for the existence of a classification is to enable

University of Pretoria etd

74

stored cases to be retrieved. The methodology discussed above is not very useful at the level
where the decision must taken if a design case is appropriate at all for the design problem
under consideration. This methodology is more appropriate at a direct technical level where
various different technical factors need to be directly considered before a final conclusion is
reached. It is difficult to develop suitable indices, because it needs to consider the reference
framework of the user. Static indices are rigid because they are unable to adapt to the context
of use.

Charlton et al. (1998:322) suggested the use of static fuzzy sets with labels that are
meaningful to the designer. For each prototypical case, designers are asked to specify its
membership values in fuzzy sets. Each label specifies the degree to which the particular
artefact is part of the fuzzy set identified by the label’s name. Collectively, the labels can be
seen as providing a multitude of descriptive names for a case, instead of a single possibility.
The use of fuzzy sets as described by Charlton is more flexible than Flemming’s, however the
membership values in the fuzzy sets themselves are still static. The author is of the opinion
that this can be significantly improved by means of a method of dynamic fuzzy sets. A
description of this proposed methodology follows below.

3.2.5.6 The use of fuzzy sets for case indexing

It is now 35 years since the first creation of Fuzzy Sets and Fuzzy Logic that bridge
mathematical precision and the vagueness of common-sense reasoning. Fuzzy sets have been
successfully implemented in numerous commercial products such as vacuum cleaners,
washing machines, rice cookers and cameras that resulted in energy efficiency and increased
convenience for the consumer. The Japanese city of Sendai has been using subway trains
controlled by fuzzy logic since 1986.

Bellman and Zadeh (1970) and Bojadziev et al. (1995:113) describe fuzzy sets as a special
class of object in which there is no sharp boundary between those objects that belong to the
class and those that do not. Below follows a short summary of the main characteristics of
fuzzy sets.

(1) Let))(,{(xxA Aµ=]}1,0[)(, ∈∈ xXx Aµ

Where)(xAµ is a function called the membership function of x in A.)(xAµ and
MXA →:µ is a function from X to a space called the membership space. When M only

contains two points, 0 and 1, A is nonfuzzy and its membership is identical with the
characteristic function of a nonfuzzy set. It can be assumed that M is the closed interval [0,1],
with 0 and 1 representing respectively the lowest and highest grades of membership.

A fuzzy set is normalised when at least one Xx ∈ attains the maximum membership grade
1, otherwise the set is called non-normalised. Assume that the set X is non-normalized, then
max 1)(<xAµ . To normalise the set X means to normalise its membership function)(xAµ .
This is given by:

)(max
)(
x

x

A

A

µ
µ

Empty set. A is called an empty set labelled φ if 0)(=xAµ for each Ax ∈ .

Fuzzy singleton. The fuzzy set))}(,{(iAi xxA µ= , where ix is the only value in UA ⊂ and

]1,0[)(∈iA xµ .

University of Pretoria etd

75

α - level set or α -cut. This is denoted by αA and is the crisp set of elements which belong to
A at least to the degree α :

xA {=α },)(, αµ ≥∈ xUx A]1,0[∈α

Strong α - level set. This is defined by:

xA {' =α]1,0[},,)(, ∈>∈ ααµ xUx A

In many practical situations the membership function Aµ has to be estimated from partial
information about the subject of consideration. The problem of estimating Aµ from the
knowledge of the set of pairs))(,()),....,(,(11 NANA xxxx µµ is the problem of abstraction.
This problem plays a central role in pattern recognition, but also in the selection of a suitable
case for architectural design. Similar abstractions had to be made to calculate the average
condition and suitability of facilities during the National Health Facilities Audit (NHFA) in
South Africa. In the case of the NHFA criteria had to be carefully derived to determine what
the rating of a particular construction element should be on a scale of [1,5] where 5 denoted
the optimum and 1 the worst case scenario. In the internal calculations this was replaced by a
normalised closed bounded interval [0,1].

Equality. Two fuzzy sets are equal, written as BA = , if and only if BA µµ = . That is

)()(xx BA µµ = for all x in X .

Containment. A fuzzy set A is contained in or is a subset of fuzzy set B , written as BA ⊂ ,
if and only if BA µµ ≤ . The fuzzy set of energy efficient buildings is a subset of the fuzzy
set of buildings.

Complementation. 'A is said to be the complement of A if and only if AA µµ −= 1' . For
example, the fuzzy sets: {=A high_rise_buildings} and {' =A not high_rise_buildings} are
complements of one another if the negation “not” is interpreted as an operation which
replaces)(xAµ with)(1 xAµ− for each x in .X

Intersection. The intersection of A and B is denoted by BAI and is defined as the largest
fuzzy set contained in both A and B . The membership function of BAI is given by
(2) XxxxMinx BABA ∈=)),(),(()(µµµ I where abaMin =),(if ba ≤ and

bbaMin =),(if ba > . In infix form, using the conjunction symbol ϖ in place of
Min , (2) can be written more simply as

(3) ABA µµ =I ϖ Bµ . The notion of intersection bears a close relation to the connective
“and”. If A is the class of high rise buildings and B is the class of energy efficient
buildings, then BAI is the class of buildings that is both high rise and energy
efficient. It should be noted that in the example “and” is interpreted in a “hard” sense.
That is, we do not allow any trade-off between)(xAµ and)(xBµ so long as

)()(xx BA µµ > or vice-versa. For example if 8.0)(=xAµ and 5.0)(=xBµ , then
5.0)(=xBAIµ so long as 5.0)(≥xAµ . In some cases, a softer interpretation of

“and” which corresponds to forming the algebraic product of)(xAµ and)(xBµ ,
rather than the conjunction)(xAµ ϖ)(xBµ may be closer to the intended meaning of
“and”. From the mathematical as well as the practical point of view, the identification

University of Pretoria etd

76

of “and” with ϖ is preferable to its identification with the product, except where ϖ
clearly does not express the sense in which one wants “and” to be interpreted.

Union. The union of A and B is denoted by BAU and is defined as the smallest fuzzy set
containing both A and B . The membership function of BAU is given by
(4) XxxxMaxx BABA ∈=)),(),(()(µµµ U where abaMax =),(if ba ≥ and

bbaMax =),(if ba < . In infix form, using the disjunction symbol ω in place of
Max , (4) can be written more simply as

(5) ABA µµ =U ω Bµ .

As in the case of the intersection, the union of A and B bears a close relation to the
connective “or”. If A = {high_rise_buildings} and B = {energy_efficient_buildings}, then

BAU = {high_rise_buildings or energy_efficient_buildings}. As in the case mentioned
above a “hard”, “or” which corresponds to (5) and a soft “or” that corresponds to the
algebraic sum of A and B can be distinguished. This latter is denoted by BA ⊕ and is
defined by (7).

Algebraic product. The algebraic product of A and B is denoted by AB and is defined by

(6) .),()()(Xxxxx BAAB ∈= µµµ

Algebraic sum. The algebraic sum of A and B is denoted by BA ⊕ and is defined by

(7) .),()()()()(Xxxxxxx BABABA ∈−+=⊕ µµµµµ

From (7) it follows that

(8))'.''(BABA =⊕

ϖ and ω are associative and distributive over one another. (product) and ⊕ (sum) are
associative but not distributive.

3.2.5.7 The use of fuzzy sets to formulate dynamic linguistic variables for case retrieval

Variables whose values are words or sentences in natural or artificial language are called
linguistic variables. Natural language words is a convenient means to retrieve architectural
design cases, because humans think in terms of words that most closely describe the desired
design qualities. To illustrate the concept of a linguistic variable consider the word age in a
natural language. The meaning of this word is the summary of an enormous large number of
individuals. It cannot be characterised precisely. This word also has a different meaning in
different domains. The meaning of age in a building domain is something totally different to
age in a human context. The discussion will continue with age in the context of buildings. By
means of fuzzy sets age can be described more precisely. Age is a linguistic variable
consisting of fuzzy sets such as very_new, new, old and historic. These words are called terms
of the linguistic variable age. Each term is defined by an appropriate membership function.
Bojadziev (1995:178) states that good candidates for membership functions are triangular,
trapezoidal or bell-type shapes with or without a flat. These mathematical shapes describe the
different ways membership functions can be structured. An example is a triangular fuzzy
number that are very often used in applications such as fuzzy controllers, managerial decision
making and the social sciences. The underlying advantage of the fuzzy relationship shapes

University of Pretoria etd

77

mentioned is that membership functions for terms using them can be constructed on the basis
of little information.

Let us describe the linguistic variable age on the universal set]200,0[=U (Figure 14) by
means of triangular fuzzy numbers, which specify the terms very_new, new, old and historic.

Figure 14: Terms of the linguistic variable age in a building context (Author)

The membership functions of the terms using a triangular calculation are:

=)(_ xnewveryµ {
1

10
20 x−

for

for

100 ≤≤ x ,

2010 ≤≤ x ,

=)(xnewµ { 10
10−x

40
60 x−

for

for

2010 ≤≤ x ,

6020 ≤≤ x ,

=)(xoldµ { 80
20−x

80
180 x−

for

for

10020 ≤≤ x ,

180100 ≤≤ x ,

=)(xhistoricµ { 120
60−x

1

for

for

18060 ≤≤ x ,

200180 ≤≤ x ,

University of Pretoria etd

78

Note that the triangular µ values for the linguistic terms of age are not linear. In this case it
can also be seen that compression of scale occurs at the very_new end. An important
limitation, of linguistic terms defined like these in the example, is that they are static. This
implies that the structure is not self-adjusting if the context where the terms that are used
changes. This limits the universal application of terms that are defined in this way. The author
proposes a system of linguistic variables to be defined that stores the calculation method.
When the linguistic variable is brought into a specific context, then the terms would assume
the correct relative values in the context of the specific environment.

Linguistic variables are important in applications. The parameters of technical systems such
as condition, suitability, energy, temperature, weight, speed, pressure and heat can be
understood as linguistic variables.

3.2.5.8 Fuzzy set linguistic modifiers

Let Ux ∈ and A is a fuzzy set with membership function)(xAµ . Assume that m is a
linguistic modifier such as very, not and fairly. mA is a modified fuzzy set whose
membership function)(xmAµ is a composition of a suitable function)(xf and))((xf Aµ .

The following selections for)(xf are often used to describe the modifiers not, very and
fairly.

xxf −= 1)(not,),(1)(xx AnotA µµ −=
2)(xxf = very, 2)]([)(xx AveryA µµ = ,

2
1

)(xxf = fairly, 2
1

)]([)(xx AfairlyA µµ = .

Consider the fuzzy set A that describes the size of a particular facility in terms of gross m² by
the linguistic variable SIZE. Assume a small database of five facilities each having a specific
gross m².

Facility Name Facility Code Gross m²

Facility 1

1F 5 830

Facility 2
2F 1 431

Facility 3
3F 12 979

Facility 4
4F 11 500

Facility 5
5F 7 500

Assume further that SIZE has three terms large, medium and small having the following
values in the closed bounded interval [0,1].

large [0.66,1] 166.0 ≤≤ x
medium [0.33,0.66) 66.033.0 <≤ x
small [0,0.33) 33.00 <≤ x

In order to ensure a dynamic and flexible system the values of the terms are expressed in
terms of a universal set in the context of the application under consideration. The gross m²
values therefore range from)](),([areaarea FMaxFMin where areaF is the facility gross area.

University of Pretoria etd

79

In terms of the small example database above the range of values from small to large would
be:

(1) [1431,12979]

Assume that Facility xF has a gross m² area of 8 000 m². In terms of the data above it can be
stated that:

(2) ==
−

= 69,0
))()((

)(_

aa

areax
size FMinFMax

F
xµ large

areaxF _ is the area of Facility x.

Assume that a new facility with a gross area of 15 000 m² is added to the database above. In
terms of Facility xF the following is now true:

(3) ==
−

= 59,0
))()((

)(_

aa

areax
size FMinFMax

F
xµ medium

Due to the inclusion of the large facility, xF has been reclassified as medium. Due to the
flexible formulated definitions the system under consideration will be self-adjusting. This is
especially useful when fuzzy sets are considered that give a measure of performance such as
energy use.

In the case of interpreting case indices the intersection, union and complement are the most
useful. The author is of the opinion that fuzzy sets can be used to select the most appropriate
cases from the possible set of cases in the CBR based system envisioned. If a vocabulary of
words can be carefully selected that best describe certain index phenomena then, by means of
a process of abstraction suitable Aµ , values can be allocated.

The author comes to the conclusion that the calculations that were made in the NHFA with
regards condition and suitability are really a subset of total number of possible fuzzy sets
possible in this domain. To quantify condition in abovementioned audit the author allocated
discrete meanings to fuzzy condition rating words such as as_new, maintain, repair, replace/
upgrade and condemn/ leave. Each of these keywords was allocated a value in the [0,1] range:

as new = 1,0
maintain = 0,8
repair = 0,6
replace/ upgrade = 0,4
condemn/ leave = 0,2

In a similar way suitability assessments were allocated keywords with values in the [0,1]
range:

ideal = 1,0
acceptable = 0,8
tolerable = 0,6
hardly tolerable = 0,4
intolerable = 0,2

University of Pretoria etd

80

The contribution of cost per gross m² for each of 98 construction elements was derived from
an analysis of bills of quantities from quantity surveyors. During the audit the average
condition for a particular facility was derived by means of the following:

(1) caw
e

e∑
=

98

1

 where the meaning of the variables is:

=e the construction element number
=ew the condition cost model weight in the range]1,0[

=c condition rating in the range]1,0[
=a gross area in m² of the department, building or total facility are where the element

occurs.

In a similar way the average suitability for the facility was calculated as:

(2) saw
e

e∑
=

98

1

 where the meaning of the variables is:

=e the construction element number
=ew the suitability cost model weight in the range]1,0[

=s suitability rating in the range]1,0[
=a gross area in m² of the department, building or total facility are where the element

occurs.

Abovementioned calculations resulted in the average condition and suitability per facility that
could be summarised to district, region, province and country level. The conclusion is made
that on the basis of abovementioned concept super concepts can be defined that would
facilitate the powerful manipulation of derived high level concepts. The processing domain of
the facilities audit is limited. This makes it feasible to formulate fuzzy data abstractions. The
keyword SIZE can be expressed in terms of the size in gross m² found in the audit. It is
impossible to define SIZE as a universal quantified concept.

An example of an expression in fuzzy terms could be the following:

List all large hospitals (size description), in a new condition that occur in the province of
Western Cape (location). In this case we have two fuzzy variables and one non-fuzzy
variable. If suitable ranges of words (labels) can be defined and by means of abstraction fuzzy
values be allocated then the fuzzy operations, intersection and union can be used.

Structured Query Language (SQL) as implemented in Oracle has the capability to process
sets, although this capability is not often used. The following SQL operators are available in
the SELECT statement:

UNION Combines two queries and returns all distinct rows returned by either

individual query.
UNION ALL Combines two queries and returns all rows returned by either query,

including duplicates.
INTERSECT Combines two queries and returns all distinct rows returned by both

individual queries.
MINUS Combines two queries and returns all distinct rows by the first but not by the

second.

These set operators make it possible to implement traditional set theory easily. This can
readily be expanded to implement fuzzy sets. The following would be required:

University of Pretoria etd

81

• Definition library (labels) of concepts that will typically be manipulated.
• Standard functions and procedures that can be included in a CBR program or object.
• A data set where the domain operational parameters are known.

The following list of linguistic fuzzy sets and terms can be defined for use in queries related
to the life cycle of buildings:

CONDITION

new = 1,0
maintain = 0,8
repair = 0,6
replace = 0,4
condemn = 0,2

SUITABILITY

ideal = 1,0
acceptable = 0,8
tolerable = 0,6
hardly tolerable = 0,4
intolerable = 0,2

SIZE

very large
large
average
small
very small

AGE

very old
old
recent
new

DISTANCE

far
close

LARGE

exceptionally large
very large
large
average size

SMALL

very small
small

University of Pretoria etd

82

average size

UTILISATION

totally over utilised
very over utilised
over utilised
normal use
under utilised
significantly under utilised
under utilised

In all cases the keyword that is closest to the main subject in the list appears at the top of the
list. These keywords can be converted into static fuzzy set labels by allocating approximate
membership values. It can be assumed that Aµ will be in the range [0,1]. In the case of
CONDITION the values could be:

new 0.1)(9.0 ≤≤ xAµ
maintain 9.0)(7.0 <≤ xAµ
repair 7.0)(5.0 <≤ xAµ
replace 5.0)(3.0 <≤ xAµ
condemn 3.0)(0.0 <≤ xAµ

In this case all the values are linear. The abstraction to the particular values was calculated in
such a way as to get a clear distinction between the different condition categories in order to
map it to colours. In this case absolute accuracy was not important. It doesn’t matter how
many terms the particular fuzzy set contains. If the fuzzy set only contains two categories then
it becomes a traditional set.

If a user needs to define a dynamic fuzzy set that displays a list of all new (condition)
buildings, that is small (gross area) the equivalent dynamic database SQL statement could be
the following:

University of Pretoria etd

83

SELECT FacilityCode
FROM FacilityResource
WHERE (RemainingResource/TotalResource) >= 0.9
AND ConditionCode = 0

INTERSECT

SELECT FacilityCode
FROM Facility
WHERE ((FacilityArea/(MAX(FacilityArea) – MIN(FacilityArea)) < 0.4)
AND ((FacilityArea/321300.0) >=0.2)

INTERSECT

SELECT FacilityCode
FROM Facility
WHERE FacilityCode LIKE ‘WCP%’;

3.2.6 Conclusion

Kolodner (1993:263) suggests that the following methods be used to maintain context
sensitivity in the case index selection.

• Use several checklists, each organised around a different well-known context.
• Keep track of how useful individual indices are and modify lists when they are not useful.

Kolodner (1993) also suggested the method of parameter adjustment for interpolating values
in a new solution based on those from an old one. In parameter adjustment changes in
parameters in an old solution are made in response to differences between problem
specifications in an old and a new case. Several case-based reasoning systems use parameter
adjustment as a method of adaptation. A system called PERSUADER adjusts old labour-
management contracts with new information. If an old contract was signed in a location
where the cost of living is high and has risen faster than the norm, but it is not the case in the
new dispute, then a smaller percentage wage increase is in order in the new contract.

In all cases the use of a dynamic adaptive fuzzy set based indexing system comes the closest
in solving the problems associated with context sensitivity and parameter adjustment. The
inherent flexibility of fuzzy sets make them ideal for indexing in many different environments
as well as level of detail. This will be the case with design cases found in the construction
industry.

Linguistic variables offer a convenient means to intensify or soften the effect of the terms of a
fuzzy set.

University of Pretoria etd

84

3.3 The systems view of the world

3.3.1 Introduction

In this section manufacturing, concurrent engineering, Taguchi techniques and the Fuzzy
Front End is included because of the prominence of these in the world of manufacturing.
Architectural design is seen as a type of low-quantity production. Concurrent Engineering
attempts to speed up the engineering process in order to be more effective. Taguchi
Techniques indicate how big the impact of small variations in critical parameters or
dimensions might be. The Fuzzy Front End provides an opportunity to buy value time during
the design process.

In this study it is proposed that architectural design experience be packaged in cases and
design starter kits. A case is seen as an entire project where all the design knowledge is stored
in the form of artefact descriptions and process descriptions. Artefact descriptions consist of
shape- and functional views. The process description consists of sequences over time. The
author observed that the data that are required to structure the existence of an artefact over the
life cycle exist in different worlds spread over time. These worlds were identified in chapter
3.2. It is observed that attempts to unify the different worlds into one single model such as the
Industry Foundation Classes, discussed under 3.2 is unlikely to succeed. In the author’s
experience it is far more flexible to use processes as a means of formulating relationships
between these worlds over time. This has been tested in the PREMIS facilities management
system.

The present study attempts to store architectural design knowledge in the form of cases and to
create portable mini architectural design cases (starter kits) which many domain-specific tools
such as CAD and spreadsheets can share. The term mini design case refers to a design case at
a level where it becomes portable and small enough to plug into many different design
environments. It must also be small enough to be conveniently distributable via the World
Wide Web. This approach is supported by Charlton et al. (1988:311) where a Common
Product Data Model (CPDM) is mentioned. In the CPDM design data is represented by
structured objects, which can be shared. The CPDM can capture a large portion of the data
involved in the artefact’s development without coercing artefacts into static class hierarchies.
This allows flexible and dynamic modelling in terms of multiple object perspectives, dynamic
object reclassification and dynamic class evolution. Attempts to achieve this were made in the
prototype system AEDES, however the integration between the artefact description and
process description is still primitive.

Once a user has decided to use a specific mini design case it will be brought into a specific
context. The purpose of this chapter is to explore the fundamental characteristics of the
context of the project environment that consists of main topics such as processes, product
modelling and life cycle decision validation. In a highly competitive environment the
processes and product modelling could be concurrent. Although there are strong similarities
between the construction and manufacturing industry there are also fundamental differences.

It is important to realise that the best techniques would not succeed if the motivation, attitude,
spirit, personality are not supported by the corporate culture.

3.3.2 What is manufacturing?

The word manufacture is derived from two Latin words manus (hand) and factus (made). The
combination means made by hand. Modern manufacturing is accomplished by automated and
computer-controlled machinery that is manually supervised. Manufacturing can be defined in
many ways with two directly applicable to the manufacturing industry (Groover 1996):

University of Pretoria etd

85

• Technologically.
• Economically.

Other types of manufacturing not addressed in this study are:

• Energy manufacturing.
• Environmentally.
• Informatically.
• Socially.

Technologically, manufacturing is the application of physical and chemical processes to alter
the geometry, properties and appearance of a given starting material to make parts or
products. The processes to accomplish manufacturing involve a combination of machinery,
tools, power and manual labour (Figure 15). Manufacturing is almost always carried out as a
sequence of operations. Each operation brings the material closer to the final desired state.

Economically, manufacturing is the transformation of materials into items of greater value by
means of one or more processing and/or assembly operations (Figure 15). Manufacturing adds
value to the material by changing its shape or properties or by combining it with other
materials that have been similarly altered.

Figure 15: Two ways to define manufacturing, a technical or an economic process
(Groover 1996:3)

Groover (1996) identifies primary, secondary and tertiary industries. Primary industries are
those that cultivate and exploit natural resources such as agriculture and mining. Secondary
industries take the outputs of the primary industries and convert them into consumer and

University of Pretoria etd

86

capital goods. Manufacturing is the principal activity in this category, but it also includes
construction and power utilities. Tertiary industries constitute the service sector of the
economy.

The quantity of products made by a factory has an important influence on the way its people,
facilities and procedures are organised. Production quantity refers to the number of units
produced annually of a particular product type. Product variety refers to different product
designs or types that are produced in the plant. The construction industry is presently a low
quantity high variety industry. There is an inverse correlation between product variety and
production quantity in terms of factory operations. If a factory’s product variety is high, then
its production quantity is likely to be low. If the production quantity is high, then product
variety will be low. The terms soft and hard product variety can be identified. Soft product
variety occurs when there are only small differences between products, such as the differences
between car models made on the same production line. In an assembled product, soft variety
is characterised by a high proportion of common parts among the models. In hard product
variety, the products differ substantially and there are few common parts, if any. Again the
construction industry is unique in the sense that a lot of parts are common at a low level, but a
large variety exist at higher levels. There is also variation between the various construction
trades as to the level of standardisation that can be achieved. Air-conditioning parts can be
standardised and pre-assembled in a factory before being brought onto site, however this is
less feasible with structural elements such as slabs, columns and walls.

3.3.2.1 Manufacturing capability

Manufacturing plants consist of processes and systems designed to transform a certain limited
range of materials into products of increased value. The three building blocks, materials,
processes and systems constitute the subject of modern manufacturing. There is a strong
interdependence among these factors. A company engaged in manufacturing cannot do
everything. Manufacturing capability refers to the technical and physical limitations of a
manufacturing firm and each of its plants. The following dimensions of this capability can be
identified:

• Technological processing capability.
• Physical size and weight of product.
• Production capacity.

3.3.2.2 Manufacturing processes

Manufacturing processes can be divided into two basic types:

• Processing operations.
• Assembly operations.

A processing operation transforms a work material from one state of completion to a more
advanced state that is closer to the final desired product. It adds value by changing the
geometry, properties or appearance of the starting material. An assembly operation joins two
or more components in order to create a new entity, which is called an assembly or sub-
assembly.

3.3.2.3 Low-quantity production

Groover (1996:21) describes this type of production as a low-quantity range of 1 to 100
units/year. The construction industry bears a close resemblance to this type of manufacturing.
In manufacturing the term job shop is often used to describe this type of production facility.

University of Pretoria etd

87

A job shop makes low quantities of specialised and customised products. The products are
typically complex, such as space capsules, prototype aircraft and special machinery.
Construction activities are normally not nearly as complex as the former.

A job shop must be designed for maximum flexibility in order to deal with the wide product
variations encountered. In an analysis by the author of a large construction project this is
evident in the large variation of project team configurations and types of construction projects
undertaken. If the product is large and heavy and difficult to move in the factory, it typically
remains in a single location during its fabrication or assembly. Workers and processing
equipment are brought to the product, rather than moving the product to the equipment.
Examples of such products include ships, aircraft, railway locomotives and heavy machinery.
These products are usually built in large modules at single locations and then the completed
modules are brought together for final assembly using large-capacity cranes. In South Africa
these practices are not widespread in the construction industry and in-situ construction
predominates.

3.3.3 Concurrent engineering (CE)

Many terms have been used to describe similar approaches, including simultaneous
engineering, life cycle engineering, design integrated manufacturing, design fusion, early
manufacturing involvement, parallel engineering, concurrent design and design in the large.

Ziemke et al. (1993:26) trace the origins of CE back to 1940, during the Second World War.
The American Aviation Corporation received an order for 320 NA-73 fighter aircraft from the
British Air Purchasing Commission. These aircraft were later known as the US P-51
Mustangs. The condition of this order was that the first prototype, NA-73X, had to be ready
for testing 120 days after receipt of contract. Given the short schedule one would have
assumed that the design engineers would only have used proven and conservative design
features. Instead the Mustang included the first use of novel concepts such as laminar flow
airfoils and the introduction of a combined radiator housing-ejector nozzle that provided 300
pounds of jet thrust, instead of the usual radiator air drag. The aircraft was designed and built
in 102 days. During that time, 2 800 drawings representing 600 000 hours of effort were
produced. In retrospect it now seems that critical success factors in such wartime design and
development teams were their small size, their broadly experienced leadership and above all,
motivation.

Currently there is a different reason for CE. During the last decade the life cycle time of
products from different branches of industry decreased while the time spent on product
development greatly increased. This is known as the time-trap. In terms of the local
construction industry this is an over-simplification, because other factors such as the period of
high inflation and the fact that buildings are still constructed for a relatively long life. In the
new Menlyn Shopping centre project the planning horizon is 25 years. Due to these changes
the pay-off period between market entry and amortisation extended as well. In order to meet
the challenges of successfully competing in innovative markets the development and design
of new products has become one of the most significant factors. The situation can be
characterised by three main tendencies:

• Shift from a seller’s to a buyer’s market.
• Increasing globalisation.
• Change in the importance of technology.

The optimisation of the magic triangle that consists of time, quality and costs is necessary to
face competition and complexity in the changed environment described above.

University of Pretoria etd

88

The most important elements when applying CE are people and the design of product
development processes. Co-operation and communication are regarded as the most important
success factors by companies, which are successfully practising CE. This involves:

Figure 16: Decoupling of time, cost and quality by means of Concurrent Engineering
(Berndes 1996)

• Cutting back barriers among departments and hierarchies.
• Promoting interdepartmental co-operation.
• Building up close links between suppliers and customers.
• Support of CE by top management.

3.3.3.1 Strategies for concurrent engineering

University of Pretoria etd

89

Figure 17: Strategies for concurrent engineering (PSI-strategy) (Berndes 1996)

Generally, three possible strategies can be identified as CE guiding principles (Figure 17):

• Parallelisation.
• Standardisation.
• Integration.

1. Parallelisation

Parallelisation in the product development process implies the cutting and optimisation of
time. The first step is to remove existing float time in the development process. This means
that processes, which do not have any dependencies on other processes, are carried out
simultaneously. In practice most processes depend on others. In this case the dependent
process has to be started before the preceding process is completed. An earlier start of the
succeeding process is possible in most cases, because it can be carried out without having
completed the preceding process. Not all information is required to start a new process. The
result of this approach is the advantage of an accelerated execution of linked processes, but
also the disadvantage of a higher decision complexity. This additional complexity is caused
by an increased amount of information transfer between departments or teams. The proportion
of uncertain and incomplete information is also higher due to the fact that not all parallel
processes are finished which give inputs to other processes when they are started. In contrast
to the Tayloristic principle, not only time can be cut due to parallelisation, but also
amendment costs because of a lower number of mistakes. An example of parallelisation is the
synchronisation of the development of product and means of production. The approach of
parallelisation should be carried out under the principle that parallelisation does not mean to
work side by side only but to work with one another.

2. Standardisation

Standardisation is defined as the unity of aspects in the product development process which
show a high degree of similarity or the possibility of repetition. This is achieved by means of
two basic approaches:

• Structuring of processes. Processes, which are often repeated, are specified and

generalised.
• Structuring of product. This is the standardisation of products inclusive of its systems,

elements and construction kit.

University of Pretoria etd

90

Standardisation is related to:

• Technical and structural aspects such as the usage of modules or components in the final

product such as standard parts.
• Procedural aspects, structuring of operations and the definition of sequences of activities.
• Software standards such as ISO STEP , IAI IFC (Industry Foundation Classes).
• Aspects relating to the organisation of the structure such as interface between projects and

departments. A clear definition of the organisation, i.e. standardised structures, is required
to reduce and control the increased outlay of providing required information due to the
implementation of CE.

The objectives of standardisation are to avoid repetition and needless work as well as to learn
from existing experience of the company, industry or nation. Project staff can take repetitive
and similar decisions quickly. Better co-ordination will be achieved. If routine tasks are
optimised then theoretically more time will be available for innovative and creative work and
for the management of unpredictable events. Standardisation should only be carried out if it is
really necessary for parallelisation and integration (Berndes et al. 1996). Too much
standardisation can lead to increased bureaucracy. Standardisation can vary from guidelines to
compulsory arrangements and rules to fixed detailed operations.

3. Integration

If the product development process is seen as a uniform value-added chain then several
departments such as R&D, sales, marketing, production and service are involved in the
development of the product. The allocation of development tasks in different functional areas
increases interface problems that result in the loss of information. The reason for the
information loss is non-synchronised time scales, different interpretation of tasks and
ignorance of the requirements at the other side of the interface.

Integration requires working in interdisciplinary teams and thinking and behaving in a process
oriented way. There has to be the realisation that there is one common objective instead of
several objectives that are department specific. The various departmental staff (or
professionals in a construction team) must establish a view of the whole process that enables
them to take appropriate action within their specific domains. Another important aspect of
integration is data integration. A large proportion of construction data on large projects such
as Menlyn is still in paper format. Integration will be greatly increased if more electronic
information can be made reliable enough as to be trusted.

3.3.3.2 Concurrent engineering enabling technologies

The successful implementation of CE requires a convenient-to-use information technology
infrastructure. To achieve parallelisation, standardisation and integration and to introduce and
support throughout the entire product life cycle process the CE platform consists of three
major components (Kessler 1996:104):

• A framework to model, support, control and integrate processes and teams. All the data

necessary for the product must be produced within these processes.
• An information Management System to manage, change, release and store metadata

related to the product.
• A Products Information archive to store and access a common product data model.

Abovementioned requirements were identified in the ESPRIT project CONSENS (Concurrent
Simultaneous Engineering System) in 1992. The objective of this project was to develop an

University of Pretoria etd

91

organisational and information technology concept to realise Concurrent Simultaneous
Engineering in European companies.

Typical features built into abovementioned to support parallelisation are:

• Controlled and concurrent access to distributed data and information.
• Multi project management.
• Client-server architecture and multiple desktops.
• Interactions between different software packages.
• Modelling of independent and dependent processes to enable parallel and simultaneous

work.
• Flexible reaction to changes in the product development process as well as in the

organisation of the project.
• Support the user in adapting the installed project according to new requirements.
• Distributed database.
• Common method for executing tasks via the user interface.
• Visualisation of information and data flows to and from other processes.
• Structuring of the project or product into distinct interrelated or independent work

packages, which can be worked in parallel.
• Possibility to divide the project into its components and flexible management in work

packages.
• To support teamwork and parallel access of team members to different tasks of an

installed project.
• To provide mechanisms to free information or data in time for other users to enable

concurrent and simultaneous work in this project.

Standardisation:

• Software is implemented on different hardware platforms in a heterogeneous network.
• Distributed databases.
• Standardised interfaces to exchange data between different software tools and

frameworks.
• Support of standardisation with the possibility to reuse results in multiple projects and to

ensure their consistency.
• To allow the reuse of results and work packages.
• To prepare libraries for the reuse of processes and project tasks.
• To support the installation and reuse of standardised processes and projects.
• To provide functionality to model processes and their data interdependence.
• Reuse of existing components by an interface connected to external documents handling

systems and archives.

Integration:

• To integrate different kinds of users such as supplier, designer and project manager and to

provide each user with his customised profile of the integration platform.
• To provide a common graphical user interface for each user of the system.
• To allow the integration of domain neutral tools to support the user in controlling the

processes.
• To offer interfaces for communication and integration.
• Access to different tools through the user interface of the integration platform.
• To run the integration platform as a distributed system to support different user locations.
• To use standardised interfaces and mechanisms to allow the exchange of data between

different design tools.

University of Pretoria etd

92

• Use of standards for communication and integration.
• To manage the status of results and keep track of their consistency so that completely

specified information can be distinguished from partially specified information.
• To manage all interdependencies between work packages and to inform the participants

of the effects of their task.
• To provide the possibility to exchange information in a controlled and defined way

between different processes.
• To execute tools necessary to fulfil tasks in a convenient and controlled way.
• To check the data transfer between processes.
• Multiple schemas, interrelated data and a shared data model.
• Object-oriented structuring of the real world.
• Consistency control and storage in the data-handling component provides a defined status

of the data.
• To support a project or process oriented organisation and changes in the organisation of

the current project.

University of Pretoria etd

93

3.3.3.3 Flow management

The storing of architectural design knowledge in the form of cases or a smaller more portable
format will be in the form of an encapsulated environment. This environment when it is
brought into the specific design project will form part of a life cycle process. At this point it
will be governed by the flow patterns of the specific process environment. For this reason the
author is of the opinion that a study of the basic flows in the construction development
process phases gives an idea of the information flows, but fails to clearly identify production
capacity of the user types. This has the effect that the criticality of various decisions and the
lead times required to ensure proper synchronisation in the fast track or concurrent
engineering project cannot be planned for.

Activities used in a design process cannot be invoked in an arbitrary order as data and time
dependencies of activities have to be taken account of. To enable the user the possibility to
define a set of activities in a specific order, flows are introduced. A flow defines time and data
interdependencies between activities. Specific features of CAD and CASE (in a software
engineering sense) that are used in a design or software engineering process cannot be
invoked in an arbitrary order. The output data of one activity might be required as input for
another. Figure 18 illustrates the basic different types of flows that are possible in any
process. The rectangular elements represent activities or processes. Their interrelations are
symbolised by an arrow, which presupposes that the activity on the left of the arrow has to be
executed before the one on the right.

Both in the ESPRIT SCENIC project and local studies undertaken by Allen at the CSIR in
1999 information flows between the different users of project information in construction
were extensively studied. The SCENIC project identified the following generic stages in the
building life cycle:

1. Inception.
2. Briefing.
3. Feasibility.
4. Concept design.
5. Scheme or outline design.
6. Detail design.
7. Tender documentation.
8. Estimating and tendering.
9. Evaluation of tenders.
10. Off-site fabrication or prefabrication.
11. Delivery or logistics.
12. Production or assembly.
13. Testing, commissioning and hand-over.
14. Operation and facilities management.
15. Re-use or demolition (disassembly).

The author noted that in all cases the links between the different users, the time of occurrence
and the nature of communication were recorded. However there are two major omissions.
Firstly the diagrams fail to identify the throughput capability of the various different
constituent processes. No research has been done on the time taken to achieve certain design
and decision taking activities. This analysis is critically important to implement a successful
CE system within the construction industry. The second omission is the fact that certain
activities or even processes should be grouped together to ensure efficiency and modularity.
This has a direct influence on the future sustainability and maintainability of systems.

University of Pretoria etd

94

Figure 18: Different flow types in a process (Author)

To the information in Figure 18 throughput information should be added (Figure 19). It is
clear from a Voice of Customer (VOC) exercise, recently undertaken by the author that
numerous bottlenecks can be identified during the construction process. Goldratt (1993:207)
explained the impact on throughput in a process where bottleneck and non-bottleneck
activities, equipment or even team members are combined (Figure 19).

University of Pretoria etd

95

Figure 19: Throughput in a manufacturing process (Author, based on Goldratt
1993:207)

In Figure 19, non-bottleneck activities (machines or workers) are designated with A and
bottleneck ones with a B. The activities are connected by information or material flows. In
each rectangular block the capability of the activity is indicated at the top right in bold
numerals. The amount of the capability that can be utilised in each case is indicated by the
value at the top left. The information flow consists of the following typical abstract and
tangible activities and entities in the construction industry:

• Analyses (strategic, client and facilities analysis)
• Communication (appoints, reports, request, approves, program, brief, schedule)
• Design information (concept, scheme and detail design drawings, models)
• Construction material (pre-assembled and raw)
• Waste removal

Consider the various throughput types detailed in Figure 19.

Throughput type 1:

Non-bottleneck activity A is feeding bottleneck activity B. If B runs at full capacity, then 150
units will end up as inventory. In context this would mean unprocessed entities that cannot be
handled by B. The production throughput of A is therefore effectively limited to 450 units.

Throughput type 2:

Bottleneck activity B is feeding non-bottleneck activity A. In this case, even if B runs at its
full capacity, A will be starved of input, or it cannot run at full capacity. In this case only 450
units out of a possible 600 can be utilised. From this it can be concluded that the level of
utilisation of a non-bottleneck is not determined by its own potential, but by some other
constraint in the system.

University of Pretoria etd

96

Throughput type 3:

In this case output coming from both bottleneck and non-bottleneck processes are combined
into a final product by means of assembly. In this simplified case, it is assumed that the final
assembled product requires one item from A and one item from B. If process A runs at full
capacity the effect will be that inventory (parts) will be manufactured that cannot be
assembled into a final product, because too few parts are coming from the bottleneck B
process. This has the effect that a significant amount of capital could be caught up in excess
inventory. Goldratt (1993) identified the unexpected fact that a system running at full capacity
is not necessarily an efficient system.

Throughput type 3 and 4:

In these cases there is no constraint in the system. Both A and B can produce at full capacity.
However the constraint has now shifted from the internal processes to the ability to sell the
products produced, in this case X and Y. Product X can only be sold at only 300 units per time
unit. 300 units will therefore end up in inventory. In the case of product Y the sales force is
able to sell all units per time unit. If the manufactured products cannot be sold, then capital
will be tied up in inventory. If the sales tempo cannot be balanced with throughput the process
could also become very inefficient.

3.3.3.4 Theory of Constraints (TOC)

Theories are usually classified as either descriptive or prescriptive. Descriptive theories, such
as the law of gravity, tell us why things happen, but they do not help us to do anything about
them. Prescriptive theories both explain why and offer guidance on what to do. TOC is in
essence a prescriptive theory. Goldratt states that several principles converge that make the
manufacturing environment particularly applicable for TOC. Goldratt identified the following
TOC principles:

• Systems thinking is preferable to analytical thinking in managing change and solving

problems.
• An optimal system solution deteriorates over time as the system’s environment changes.

A process of ongoing improvement is required to update and maintain the effectiveness
of a solution.

• If a system is performing as well as it can, not more than one of its component parts will
be. If all parts are performing as well as they can, the system as a whole may not be
optimal. The system optimum is not the sum of the local optima.

• Systems are analogous to chains. Each system has a weakest link (constraint) that
ultimately limits the success of the entire system.

• The strengthening of any link in a chain other than the weakest link (constraint) does
nothing to improve the strength of the whole chain.

• Knowing what to change requires a thorough understanding of the system’s current
reality, its goal and the magnitude and direction of the difference between the two.

• Most of the undesirable effects within a system are caused by a few core problems.
• Core problems are almost never superficially apparent. They manifest themselves

through a number of undesirable effects (UDEs) linked by a network of cause and effect.
• Elimination of individual UDEs gives a false sense of security while ignoring the

underlying core problem. Solutions that do this are likely to be short-lived. Solution of a
core problem simultaneously eliminates all resulting UDEs.

• Core problems are usually perpetuated by a hidden or underlying conflict. Solution of
core problems requires challenging the assumptions underlying the conflict and
invalidating at least one.

University of Pretoria etd

97

• System constraints can be either physical or policy. Physical constraints are relatively
easy to identify and simple to eliminate. Policy constraints are usually more difficult to
identify and eliminate, but removing them normally results in a larger degree of system
improvement than the elimination of a physical constraint.

• Inertia is the worst enemy of a process of ongoing improvement. Solutions tend to
assume a mass of their own that resists further change.

• Ideas are not solutions.

Goldratt (1993) states that to be productive you must have accomplished something in terms
of the goal. Productivity is meaningless unless you know what your goal is. If the goal is to
make money, an action that moves the company towards making money is productive. The
high level measurements that are normally used to measure company performance is:

• Net profit
• Return on investment (ROI)
• Cash flow

The primary goal of any company is therefore to make money by increasing net profit, while
simultaneously increasing return on investment and simultaneously increasing cash flow. In
practical terms this can be stated as in terms of the operational rules throughput, inventory and
operational expense. Throughput (T) is the rate at which the system generates money through
sales. It is specifically sales and not production, because if you produce something but do not
sell it, it is not throughput. Inventory (I) is all the money that the system has invested in
purchasing things, which it intends to sell. Operational Expense (OE) is all the money the
systems spends in order to turn inventory into throughput. Everything that goes into a process
is covered by the relationship between these three operational measurements.

In order to improve a system the question is where the attention should be focussed. The
theoretical limit in reducing OE and I is zero. A system cannot produce output with no
Inventory and no Operating Expense and they are therefore somewhat above zero.
Theoretically there is no upper limit to how high you can increase T, but as is apparent from
Figure 19, there is a practical limit to the size of your market. The potential for increasing T is
likely to be much higher than the potential for decreasing OE and I. It makes sense to expend
as much effort as possible on activities that tend to increase T primarily and make reduction
of I and OE a secondary priority (Dettmer 1997:17).

3.3.4 Taguchi techniques for quality engineering

According to Ross (1988) Taguchi addresses quality in two main areas namely off-line and
on-line quality control (QC). Both off these areas are very cost sensitive in the decisions that
are made with respect to the activities in each. Off-line QC refers to the improvement of
quality in the product and process development stages. On-line QC refers to the monitoring of
current manufacturing processes to verify the quality levels produced. Off-line QC is of
particular importance in this study due to the fact that it is proposed that CBR/ CBD methods
will be used in the design process. It is also important to improve quality as early as possible
in the product life cycle. Taguchi methods should be seen in context with the other important
methods discussed such as QFD and Kansei engineering.

3.3.4.1 The meaning of quality

Products have characteristics that describe their performance relative to customer
requirements. Characteristics such as energy use of a house with regards heating of water, fuel
economy of a vehicle and the strength of a door knob are all examples of products
characteristics that are important to customers at one time or another. The quality of a product

University of Pretoria etd

98

is measured in terms of those characteristics. Quality is related to the loss to society caused by
a product during its life cycle. A high quality product will have minimal loss to society as it
goes through this life cycle. The loss that a customer sustains can take many forms. It is
generally a loss of product function or properties. Other losses are time, pollution and noise. If
a product does not perform as expected the customer experience some loss. After a product is
shipped, a decision point is reached. It is the point at which the producer can do nothing more
to the product. Before shipment the producer can use expensive or inexpensive materials, use
an expensive or inexpensive process, but once shipped, the commitment is made for a certain
product expense during the remainder of its life cycle. This is of particular importance in the
construction industry where the correct choice of lighting in a large shopping complex can
save hundreds of thousands of Rands during the operational life of the complex.

Quality has but one true evaluator, the customer. The birth of a product is when a designer
takes information from the customer to define what the customer wants, needs and expects
from a particular product. Sometimes a new idea creates its own market, but once a
competitor can duplicate the product, the technological advantage is lost.

3.3.4.2 Taguchi loss function

The Taguchi loss function recognises the customer’s desire to have products that are more
consistent and the producers desire to make a low-cost product. The loss to society is
composed of the costs incurred in the production process as well as the costs encountered
during use by the customer such as repair and lost business. A supplier in Japan made a
polyethylene film with a nominal thickness of 0,991 mm that is used for greenhouse
coverings (Figure 20). The customers want the film to be thick enough to resist wind damage
but not too thick to prevent the transmission of light. The producers want the film to be
thinner to be able to produce more area of the material at the same cost. At the time the
national specifications for film thickness stated that the film should be 0,991 mm ± 0,203 mm.
A manufacturer that made this film could control film thickness to 0,02 mm consistently. The
company made an economic decision to reduce the nominal thickness to 0,813 mm and with
their ability to produce film within 0,02 mm of the nominal the product would meet the
national specification. The intention of this was reduce manufacturing costs and increased
profits.

Unfortunately at the time strong typhoon winds caused a large number of the greenhouses to
be destroyed. The cost to replace the film had to be paid by the customer. These costs were
much higher than expected. What the producer had not considered was the fact that the
customer’s cost would rise while the producer’s cost was falling. The loss function, loss to
society, is the upper curve. This is the sum of the producer and customer’s curves. This curve
shows the proper thickness for the film to minimise loss to society. This is where the nominal
value of 0,991 mm is located.

It is clear from the function that as the film gets thicker from the nominal 0,991 mm the
producer is loosing money. On the other hand when the film gets thinner the customer is
loosing money. The producer should fabricate film with a nominal thickness of 0,991 mm and
reduce variation to that thickness to a low amount. If the manufacturer does not attempt to
hold the nominal thickness at 0,991 mm and causes additional loss to society, then it is worse
than stealing from the customer. If someone steals R10-00, the net loss to society is zero.
Someone has a R10-00 loss and the thief gained R10-00. If the manufacturer causes an
additional loss to society, everyone in society has suffered some loss. A producer who saves
less money than the customer spends on repairs has done something worse than stealing from
the customer. Subsequent to this experience the national specification was changed to make
the average thickness produced 0,991 mm. The tolerance was left unchanged at ± 0,02 mm.

University of Pretoria etd

99

The cost of damages to the environment through energy production (externalities) are also a
loss to society.

Figure 20: Costs associated with greenhouse film (Ross 1988)

3.3.5 The Fuzzy Front End (FFE)

In the high pressure environment of fast track (concurrent projects) time is an irreplaceable
resource. The construction team should find opportunities to buy cycle time for less than cost.
These opportunities appear throughout the development process. One place that is not often
exploited seriously is the fuzzy zone between when a project opportunity is known and when
we mount a serious effort on the development project. This approach is very different from
conventional approaches that try to get a perfect solution at this stage by adding numerous
checks and balances. The conventional logic is sound when markets are predictable and the
cost of delay is low. However it breaks down in fast moving markets and when the cost of
delay is high. This situation has been observed on large construction projects in this country.

Three critical factors combine to make the Fuzzy Front End an area of opportunity (Smith et
al., 1998):

• It lasts a long time.
• It is a cheap place to look for cycle time.
• Individual companies have big performance differences.

1. It lasts a long time.

Various delays occur right at the start of a construction project. There is a lot of time between
when the team knows about a project and the time when a full development team started
working on it.

2. It is a cheap place to look for cycle time.

If the typical actions that can be taken to buy a week of cycle time at various stages of the
development process are analysed, enormous differences in cost are discovered. One

University of Pretoria etd

100

consumer company spent $ 750 000 to buy three weeks of cycle time near the end of its
development process by accelerating the shipment of critical capital equipment. This was a
sound business decision, because the cost of delay on the programme was much higher than $
250 000 per week. Yet the same three weeks could have been purchased for less than $100 a
week during the FFE. This is 2 500 times cheaper!

3. Individual companies have big performance differences.

Some large companies plan so well that compelling market opportunities are lost due to the
long period of time it takes to produce products. It has often been noticed that dynamic small
companies can design and produce products long before the large company can even start.
Instances have been noted where a small start-up company was 500 times faster than a large
Fortune 500 company where well-intentioned planning and budgeting processes guaranteed
defeat (Preston et al. 1998:52).

The following actions can be taken to improve the front-end processes:

• Institute metrics.
• Calculate the cost of delay.
• Assign responsibilities.
• Assign resources and deadlines.
• Capture opportunities frequently and early.
• Subdivide the planning.
• Create technology and marketing infrastructure.
• Create a strategy and a master plan.
• Prevent overloads.
• Create a quick-reaction plan.

Wheelwright et al. (1992:93) identified the primary types of development projects as:

• Enhancements, hybrids and derivatives.
• Next generation or platform.
• Radical breakthroughs.
• Research and advanced development.
• Alliance or partnered projects.

It is interesting to note the similarities between the construction industry and the platform
development projects with regards the FFE. Platform projects represent the bundling and
packaging of a set of improvements (design requirements) into a new system solution (design
synthesis) for a much broader range of customer needs than the category of derivatives. Much
creativity, insight and initiative are required at the FFE of a platform project than a derivative
project.

University of Pretoria etd

101

3.4 Objects

3.4.1 Introduction

This section is included due to the dominance of objects in software engineering, CAD and
interoperability. If the final application can be based on a generic platform using these
technologies the likelihood of success is much higher. The author worked with one of the first
object based CAD systems in the world i.e. GDS from Applied Research in Cambridge. The
origins of this pioneering system through OXSYS, BDS and eventually GDS is described by
Eastman (1999:53-61).

The concept of objects in software engineering, CAD and interoperability is dominating
current software applications and new solutions proposed. Most modern programming
languages claim to be based on objects. CAD systems such as MicroGDS, AutoCAD and
MicroStation also claim to use object-oriented technology. To package software routines and
data in the form of objects is very useful mainly because it keeps relevant, related data
together. However objects are not the ultimate solution to all the problems studied in this
thesis. This is mainly due to the fact that architectural design knowledge is generated at both
tacit and explicit levels. The very fact that objects are encapsulated instances of a class
implies that some higher order of system integration is required. This chapter explores
various theories surrounding this very broad subject. The chapter is concluded with an
analysis of the main industry standard object technologies available. In order to be successful
in the complex knowledge driven environment we are currently operating in, it is very
important that objects conform to certain essential requirements such as interoperability, www
enabling and platform independence.

3.4.2 Origins of the object approach

The central concept in the object approach is that of the object. An object associates data and
processes in a single entity, leaving only the interface visible from the outside. The interface
gives the user access to the operations that can be performed on the object. This approach is
not new, it appeared in the language Simula. Simula was designed as a structured
programming language for simulating parallel processes. The classes of Simula made
abstraction possible by hiding the implementation and creating increasingly complex entities.
The abstract aspect of the object approach, which enables a data structure to be hidden by the
allowable operations for that structure was, formalised in the 1970s in the theory of abstract
data types.

In parallel with this formalisation of abstract types, the language Smalltalk was developed.
This language also implemented the object concept in the form of classes but added message
passing taken from the actor concept and the use of inheritance to structure the classes
hierarchically in terms of generalisation.

After Smalltalk the relations between generalisation and inheritance were developed
extensively in artificial intelligence (AI) in connection with knowledge representation and
more particularly in the context of frames and semantic networks.

Three points of view led to the object concept:

• Structural – the object is seen as an instance of a data type, characterised by a structure

that is hidden by the permitted operations.
• Conceptual – the object corresponds to a concept of the real world, which can be

specialised.
• Actor – the object is an active, autonomous entity that can respond to messages.

University of Pretoria etd

102

3.4.2 Why is the use of objects advisable

The object approach is characterised by the structuring of problems into object classes. The
domains where this approach is used all require complex software that can handle large
volumes of information. In the hope of controlling this complexity a number of objectives
have been defined:

• Representation of real world entities without distorting or decomposing them.
• Re-use or extension of existing software.
• Development of environments rich in facilities such as tools for creating interfaces,

debugging and for tracing execution paths.
• Rapid construction of high-quality graphical interactive man-machine interfaces, able to

react to any external event such as a change of data.
• Facilitate the rapid prototyping of applications particularly for man-machine interfaces

and general processing logic, without incurring the need for complete recoding.
• Facilities for exploiting parallelism when the software is implemented on multiple or

distributed processor systems.

Objects can help the developer achieve these aims by their powers of abstraction,
generalisation and interaction.

The object approach entails firstly defining the features of the objects that constitute an
application and then making these objects interact by message passing. An object has a static
aspect, which represents its state by means of instance variables or attributes. This is hidden
by its dynamic aspect, which represents its behaviour and corresponds to the operations that
can be performed on the object.

Object-oriented design is without doubt the main field in which the use of objects facilitates
the work of the designer. It enables entities of the real world and the relationships between
these to be represented directly. According to Meyer (1988) Object-oriented design is the
method which leads to software architectures based on the objects every system or subsystem
manipulates rather than the function it is meant to ensure. Object-oriented design is also the
construction of software systems as structured collections of abstract data type
implementations (Meyer 1988).

Object-oriented programming is unlike traditional programming. Objects are seen as active
entities that perform their actions in response to messages sent to them. Instead of a software
system program structure that consists of data and functions or procedures, a program is
organised into active entities composed of data structures hidden by functions. The same
function name can be used to perform similar actions on different objects, which makes it
possible to construct an abstract language with which essentially different objects can be
acted on in a similar manner.

An object approach program consists of a set of objects that exchange messages with each
other, triggering operations (triggers or methods depending on the environment) that cause the
internal state of the object to change and results to be returned.

An object-oriented database or object database (ODB) differs from traditional databases,
because the real world objects are represented identically in the database on disk and in the
application program in memory. An object is said to be persistent if its lifetime is greater than
that of the program that created it and in this case it exists in the database. In traditional
relational database management system an object is often decomposed in order to be stored

University of Pretoria etd

103

into different database tables. In the object databases the object memory image is written
directly to the disk.

It is estimated that by 1996 at least 80% of software developers were using object approaches
(Bouzeghoub et al. 1997). One of the reasons for this gain in popularity is the fact that the
object approach does not necessitate having pure object languages or pure object Database
Management Systems (DBMS).

The market for object-oriented tools is very varied:

• Design methodology tools (CASE).
• Application Development Environments (ADE), including fourth-generation languages.

These are usually used for building client-server applications for relational databases,
using predefined graphical objects and a proprietary object language.

• Object-oriented programming languages (OOL) either pure object such as Smalltalk or
hybrid such as C++.

• Object-oriented Database Management Systems (ODBMS). Either pure object or
extensions of relational systems to include objects often called object-relational DBMS.

• Object-oriented middleware based on object request brokers (ORB) for passing messages
between objects such as Common Object Request Broker Architecture (CORBA).

The four fields in which the object approach seems particularly important are:

• Programming, using either object-oriented extensions of existing languages (such as C,

Pascal, Visual Basic) or pure object languages (Smalltalk, Eiffel or Java).
• Databases, using extensions to existing relational systems such as Ingres, Oracle, DB2,

Informix or new systems, often based on OOL such as Gemstone, ObjectStore, Versant
and O2.

• Design methods based on a combination of object-oriented models and specific
representations. Objects have influenced most traditional methods.

• Distributed systems where distributed objects collaborate. As a result of the activities of
the OMG, the object approach is bringing about a unification of the middleware products.
This makes it possible to assemble objects over a network or even the Internet. Microsoft
is important with its propriety approach at the core of Object Linking and Embedding
(OLE) which is very likely to become a de facto standard in the near future.

3.4.3 Object-oriented programming

3.4.3.1 Encapsulation

Structured programming languages such as Pascal and ALGOL were designed with the aim of
improving the structure of complex programs. They relate the processing to the data structure.
In this approach there are three parts to an application program:

• Data structure
• Operations
• Main program

This approach was suitable if the application, albeit large, did not have to evolve a lot. It
reaches it limits when the data structures or the procedures have to be shared by different
programs and the data structures change with time.

Object programming solves these problems by encapsulation of the data and the operations
that manipulate them in objects. This is an application of the principle of abstraction. An

University of Pretoria etd

104

object is only accessible by means of its external interface operations that are visible. Its
implementation is hidden from the programs that manipulate the object and have no effect on
the programs that use it. Encapsulation thus ensures mutual independence among programs,
operations and data. The advantage is that different programs can share the same objects
without the need for import and export procedures.

There are two very similar approaches that give a partial solution to the problems inherent in
structured programming. The modular approach as used in the Modula language enables
semantically related procedures to be grouped into modules that import or export procedures
from and to other modules. This effectively encapsulates procedures in modules and thus
makes it easier to represent the structure of an application. The object-based approach as used
in the Ada language, extends the modular approach by adding abstract data types so as to
make encapsulation of data structures possible. This increases the re-usability and
extendibility of an application. Unlike the object-oriented approach the object-based
approach lacks the concepts of inheritance and polymorphism.

3.4.3.2 Objects

Object and class are interdependent. An object is an instance of a class. A class is a logical
grouping of objects having the same structure and the same behaviour. An object is an
abstraction of a data item and consists of:

Object = identity + behaviour + state

An object identifier (OID) defines an object’s identity. It is an unique and invariant attribute
that enables the object to be referenced independently of all other objects. In the AEDES
prototype system the Microsoft Global Unique Identifier (GUID) was used to this effect for
the unique and persistent identification of CAD objects. The identifier is either generated by
the system where the object is created or is packaged with the object during construction. An
example of the former is the implicit linking type object names used in PREMIS. An example
of the latter is the GUID pioneered by Microsoft to ensure global unique identification of
ActiveX controls. In AEDES this was used to ensure unique identification of the graphical
packaging of the starter kits (Figure 21).

University of Pretoria etd

105

Figure 21: Using a Global Unique Identifier (GUID) to link graphic objects to other
data (Author)
Figure 21 illustrates various different object concepts. The CAD drawing that contains the
layout of a small bathroom has been inserted into an Oracle form. The particular data field of
the form is defined as an OLE container. By double clicking on the CAD drawing the server
for the CAD drawing is activated. The server is actually the CAD program itself, but the user
is not really aware of it. Once the CAD server for the particular drawing is running it modifies
the menu structure of the Oracle form to reflect the capabilities of the particular application
running. In this case the command language of the CAD package uses Visual Basic as its
command language. This small autonomous Visual Basic application with the List and Exit
buttons can retrieve the attributes of a particular object within the CAD drawing. In this case
it is responding back with the RGUI of the FIXTURE:WC graphic object. The Global Unique
Identifier (RGUI) has been generated by the Microsoft utility guidgen.exe that is distributed
with the Visual Basic language system. The R in RGUI indicates that we are dealing with a
particular instance of the class of objects called FIXTURE:WC. In the particular CAD system
an R as the first letter indicates that the attribute data applies only to this particular reference
or instance of the object.

The state of an object is a value that can either be simple, a literal, or structured, for example a
list. In the latter case it can be composed of simple values, referenced to other objects or
values that are themselves structured.

The behaviour of an object is defined by a set of operations that can be applied to it (the
methods) and are defined in the class to which the object belongs.

An object is an abstraction of a data item characterised by a unique and invariant identifier, a
class to which it belongs and a state represented by a simple or a structured value.

University of Pretoria etd

106

Two objects O1 and O2 are identical if their OIDs are equal. They are equal if their states are
equal. For objects O1, O2 we write O1 == O2 if O1 and O2 are identical and O1 = O2 if their
states are equal. This implies, O1 == O2 ⇒ O1 = O2.

3.4.3.3 Class

Objects of the same nature, for example a CAD representation of a building component, will
generally have the same structure and behaviour. The class expresses the common features
and is a means of classification.

Class = instantiation + attributes + operations

A class provides the mechanism of instantiation that enables a new object (design object in
AEDES terms) to be created. The object that is thus created is an instance of the class. The set
of all instances of a given class is the class extent. In the AEDES prototype eight hierarchical
classes of architectural objects were identified:

• Complex (Hospital complex: Group of buildings)
• Facility (Hospital building and site)
• Department (Administration department)
• Unit (Bathroom)
• Zone (Wet area)
• Building Element (Door)
• Component (Door lock set)
• Sub-component (Screw)

A class is also an abstract data type, which specifies the attribute and behaviour of operations
for object instances of the class. The instance attributes have a name and a type. The
operations are the operations that can be applied to an object belonging to the specific class.

A class is an abstract data type characterised by a set of properties (attributes and operations)
common to its objects, with a means for creating objects with these properties.

The principle of encapsulation ensures that the attributes of a class can only be accessed
externally by means of the operation (method) of reading that is provided.

3.4.4 The model approach to architectural design

In the past many attempts were made to structure architectural design in the form of full 3D
models. One of the earliest attempts was OXSYS. All these attempts failed to achieve full
automation of the design process or full quantification of the various design factors. Richens
(1994) states that the Knowledge Based System (KBS) community is over-optimistic in their
analysis of the nature of design. The KBS community (Carrara et al. 1994) typically
characterises design as:

• Defining a set of functional objectives that ought to be achieved by the design artefact.
• Constructing design solutions which, in the opinion of the designer, are (or should) be

capable of achieving the predetermined objectives.
• Verifying that these solutions are internally consistent and achieve the objectives.

However, the abovementioned is only a part of what really goes on in architectural design.
Architectural objectives usually include functional ones, but are dominated by less definable

University of Pretoria etd

107

intentions and are never collected completely before design starts. They evolve and are
discovered as the work proceeds.

This is not due to architects that are badly trained, but more due the nature of the problem.
Yet an approach that starts with a requirement that leads to derived functions and to design
objects is useful if the intention is to package the explicit design knowledge. Pugh (1996)
states that design is not only the integrative mechanism that brings together the arts and
sciences but also the culture which envelopes both. Design is not like mathematics or physics.
It does not represent a body of knowledge. It is the activity that integrates the bodies of
knowledge present in the arts and sciences. The author is of the opinion that design is both an
integration between arts and sciences in a horizontal dimension, but also an integration
between tacit and explicit knowledge in a vertical dimension over time.

The reasons that could be identified why an electronic model approach to architecture is only
partially successful and why attempts towards interoperability are likely to fail are the
following:

• Model based approaches assume that all design knowledge must reside in a single model,

or a set of interoperable objects. This approach assumes that all design knowledge can be
quantified.

• It is assumed that working drawings such as plans, elevations, sections and details can be
produced from the model. In OXSYS, BDS and other subsequent systems this failed
because architectural drawings contain notations such as specifications, dimensions and
general notation that can only be conveniently placed on 2D extractions of the 3D model.
These extractions to 2D worked well, however if any changes are required then changes
had to be made in the 3D model. This was time consuming and inefficient.

• The model approach captures only the functional manifestations of the design process, not
the invisible tacit and experience aspects.

• Intelligence in a CAD system is inversely related to flexibility. The more detailed you
wish to make the data model, the more circumscribed is the Universe and so flexibility is
lost.

• Even after 5 years the International Alliance for Interoperability (IAI) failed to solve the
problem of the intelligent internal interoperability of design objects such as a door in a
wall. The IAI is likely to achieve extraneous interoperability due to standardisation of the
design objects. Even at this stage the definitions of internal design objects are very
incomplete and still require a significant effort to bring about a new industry standard.

3.4.5 Frameworks for object components

The use of objects improves technologies such as languages, tools, databases and other
technologies that are essential for the construction of complex applications. The objects that
can be produced by means of these technologies are very heterogeneous, particularly in size
and level of abstraction. To assemble these into an application creates very difficult problems.
The task can be simplified by using middleware products such as CORBA for communicating
between these heterogeneous objects.

An object component is an independent, autonomous object, capable of co-operating with
other objects in a distributed system with the intention to provide a globally available service
to the application. Components were initially developed to ease the work of system
developers and integrators where the synonymous terms technical object and technical
component had their origins. More recently the concept of business object came into use.

Object middleware is a software bus that enables any object component to inter communicate
in a manner that is transparent to the network and to the specific software application. It must

University of Pretoria etd

108

be convenient to create, deploy and maintain complex systems. The components should be
extendable and adaptable to specific needs and be capable of being combined dynamically in
many different ways. Object frameworks offer an architecture into which the object
components can be integrated and co-operate. An object framework provides tools for
creating and assembling the components. The development of such frameworks, a very
important requirement in the object world, is a great challenge. Only a few designers have
mastered the technology of middleware. Recently frameworks for compound documents such
as Object Linking and Embedding (OLE) developed by Microsoft appeared. The metaphor of
a document is used for the integration of components.

3.4.5.1 Aims of object components

A component should have the following properties:
• Standard interface.
• Encapsulation
• Extendibility.

Standardisation of interfaces is the only way to ensure that independent components,
developed with different programming languages, can co-operate. Encapsulation ensures that
as components evolve they will not impact on the interface and the application that must use
it.

The creation of abstract superclasses improves the extendibility of a software product. The
superclass defines the general behaviour common to all possible classes. If a new special
subclass is desired all you have to do is to implement a new subclass with only the specialised
behaviour that is different.

The term object component includes many different software products such as libraries of
classes, graphical interfaces, compound-document components and business objects. Three
main categories can be identified:

• Technical components.
• Compound documents.
• Business components.

3.4.5.2 Technical components

These are libraries of classes developed by programming languages such as C++ or
Smalltalk. They are normally generic and extend the services provided by the language. In the
PREMIS parametric symbol programming language, Symbolix, special components are
provided to facilitate the programming of complex graphic visualisations. They are sometimes
specialised for a particular activity such as access to relational databases or the development
of graphical interfaces. The use of technical components is more along the classical lines in an
object-oriented manner, by including classes from these components in the application
program.

3.4.5.3 Compound documents

A compound document is an electronic document into which diverse components can be
incorporated. Such a document is typically presented as a graphical window in which each
component has its own graphical interface. The document metaphor is used extensively in the
personal computer world. The document is generalised to enable objects of a variety of types
to be edited and visualised in a uniform manner. In contrast to the cut and paste approach to
joining heterogeneous objects, the compound document approach is essentially dynamic. This

University of Pretoria etd

109

enables the object component to be manipulated directly from the document in which it is
contained. This has the benefit of simplifying the creation and maintenance of complex
documents.

Use of this approach requires many document components to be available in particular
multimedia components. Technical components are easily integrated into a compound
document.

3.4.5.4 Business components

A business object is an element of a typical business field of activity such as that of a bank or
manufacturing company with rich semantic properties such as name, attributes, interfaces,
relationships and constraints. Typical business objects for a manufacturing company may be
address book, customer management, warehouse management, cash management, purchases,
orders, finances, parts and deliveries. The objects must be able to communicate at a high
semantic level. The company Discon uses a business object approach (Engelbrecht 1998).
They use the technique of Functional Effect Back tracking to calculate the most appropriate
grouping of these objects. The intention is that if a major component such as the financial
module is replaced with a newer one it should not in any way destabilise the existing rest of
the components.

Business components are of large size, with classes composed of many subclasses. They are
unlike technical components and components of documents that are designed to facilitate the
re-use of code. They are created in a top-down manner by means of object-oriented analysis
and design.

Due to the availability of powerful CASE and 4GL tools more and more time is devoted to
the analysis and design of business systems. Business components are becoming increasingly
important in giving structure to applications. Enterprises are developing these components to
meet their own needs for interoperability and re-use of applications.

The Business Object Model Special Interest Group (BOMSIG) of the OMG is working on the
standardisation of business objects. It proposes to define these in terms of three types of
object:

• Presentation, for managing the object’s graphical interface.
• Business, for managing the object on disk.
• Process, for realising complex operations on the business objects.

Objects of these three types can be heterogeneous and will communicate over a distributed
architecture such as CORBA.

3.4.6 OLE/ COM from Microsoft

In 1994 Microsoft began to introduce Visual Basic custom controls. Today these controls are
known as ActiveX. Microsoft is actively promoting the use of a new object-component model
(COM) for the efficient management of distributed objects and the incorporation of these into
compound documents. Today it is possible to use these controls in a wide variety of
environments such as Microsoft Word, Excel, Visual Basic, Access, the www and other third
party products such as Arena and Visio.

The problem of the fragile base class in classical models such as C++ inhibits distribution of
components and particularly successive versions in binary. Classical object models are
therefore unsuitable for distribution over a network. This problem motivated the development

University of Pretoria etd

110

of dynamic languages such as Java. Microsoft’s aim of code exchange in binary implies the
need to define a means for invoking objects at binary level, independent of any language. The
CORBA approach, which specifies the interface in terms of a language, is not suitable.

Management of compound documents is an important objective of producers of distributed
component frameworks. Microsoft is seriously committed to this route with its OLE
architecture that is based on Component Object Model (COM).

There are two possible methods for integrating objects into a compound document, i.e. linking
and embedding. The linking option uses a pointer in the forms of a name or identifier into the
document. The linked object continues to reside in the original source document. The
advantage of this is that it does not increase the size of the document and allows for multiple
applications to share the object. In the case of embedding a copy of the original source object
is inserted into the current document. This increases the size of the document but allows the
linked object to evolve independently.

A framework for compound documents offers various basic services when components are
assembled, stored and modified. The main services are persistence, saving objects, data
exchange, construction of documents and interactive activation for making these active and
modifying them.

3.4.6.1 Persistence of objects

Containers can be saved to disk and returned to memory when needed. It is important to
remember the type of every object component. Microsoft organises the objects into compound
files each containing a number of subfiles.

3.4.6.2 Data exchange

The facility of exchanging data between documents enables parts of documents to be copied
directly into another. It is an essential requirement for drag-and-drop. This service can make
use of the more rudimentary cut-and-paste service that uses the clipboard as an intermediary
place of storage.

3.4.6.3 Enabling relationships between documents

A basic relationship service is necessary for enabling one document to point to another or to
an object. In the case of simple compound documents the relationship is logical inclusion. The
management of hyper documents requires other types of links to construct the hyperlinks. For
compound documents aggregation is the only type of link that is handled. The invariance of
the pointers creates special problems. Use of absolute file names with offsets inside the file is
prohibited so as to ensure this invariance in the face of modifications. OLE uses names of
files or subfiles, but these are modified if the reference is changed.

3.4.6.4 In-place activation

Activation occurs when the object is selected in the document window. The document
remains under the control of its application or of an adapted application. This facilitates
visualisation and editing. The editing menu of the main application is changed to reflect the
needs of the object under consideration whilst maintaining full synchronisation.

In the case of OLE this is achieved by contacting the application that created the object under
consideration. It continues to load it under a server process (if it is not already active) and
transfers control to the server.

University of Pretoria etd

111

3.4.6.5 The object-component model

COM supports classes. A class is being implemented as a set of functions provided by servers
in the form of executables (EXE) or by libraries (DLL). Encapsulation is total and data are
hidden. Only the functions are visible. A class has a 32-bit global identifier (GUID) that is
generated by an OLE utility or for basic classes specified by Microsoft.

An object is an instance of a class, with hidden data. In general it will have several interfaces
each with an identifier and accessible at binary level by a pointer. Clients communicate with
an interface by means of this pointer. This can be obtained through the medium of the
interface identifier. It references a table of functions of the interface, given in the order they
were specified.

To enable users to find the interfaces, each object is provided with a standard interface
IUnknown through which its other interfaces can be found. The interface to IUnknown is thus
a root from which all classes providing basic functions descend. It enables a user to point to
any object and obtain at least a pointer to IUnknown. IUnknown also enables counts of
references to be kept, so that the memory space of objects no longer being referenced can be
reclaimed.

Inheritance of structure does not exist in COM. Inheritance of structure is replaced by objects
with multiple interfaces. This enables modification of components without incurring the need
for recompilation. It also makes versions of interfaces possible. The existence of one interface
through which the others can be found means that objects are self-documenting.

3.4.6.6 Support for distributed objects

This enables access to the interface of distant objects, managed by a different process EXE.
The server process can be local or distant. OLE ensures transparency of the type of server for
all client objects. Different components are brought into play for this purpose and a service is
provided for localising the server and initiating execution. This service, service control
manager (SCM), localises the server by first consulting the system directory and then
activating the server. If it is already active it will establish contact with it. Message passing is
based on the RPC of DCE. It is a matter of creating an issuing proxy object in the client and a
receiving stub in the server. This mode of dialogue takes place over a proprietary software
bus.

3.4.6.7 OLE/ COM basic services

COM and OLE provide the services essential to distributed systems. The basic services are
implemented more in COM and those relating to compound documents more on OLE. Some
of the services provided are:

• Persistence, for storing and retrieving distributed persistent objects.
• Exchange, for transferring data between components in a uniform manner.
• Relationships, for implementing links by means of intelligent names.
• In-place activation, for assembling and activating multiple components in a container.
• Automation for dynamic invocation of typed objects from programming languages such

as Visual Basic and Visual C++.

The functions essential to these services are described below. They are grouped according to
the interfaces to the objects that use the services.

University of Pretoria etd

112

Persistence

This provides for saving and restoring collections of objects either directly or by means of
links within a single file. The container receives the application objects in memory pages and
its contents can be saved in a compound file. There is therefore a hierarchy of files consisting
of data elements and directories held in a single physical file.

Transaction management is used. Writing is in transaction mode, with either complete
validation at the end of the transaction (commit) or cancelling all the updates performed in the
course of the transaction (revert). Files can be modified incrementally without the need for a
complete rewrite. Files are shared, making it possible for data to be exchanged between
processes. The basic interfaces provided by the file management service are as follows:

IStorage(Record->Create,Open,Copy,EnumElementTo, …)
IStream(File->Create,Read,Write,Seek, …)

Data exchange

COM provides a uniform data transfer service, for which there is a standard interface
IDataObject. This interface provides functions for recording in memory and retrieving data in
various formats. The basic functions are GetData, SetData and EnumerateFormat. Objects
with the interface IDataObject can exchange data directly without needing to go through a
clipboard as is required in Windows. The interface also enables a user to be advised of a
change in the source.

On top of IDataObject the drag-and-drop service enables data to be moved from a source
object to a target. This is by means of a pointer to an IDataObject. The service acts as a
mediator between the source and the target. The two must have the interfaces IDropSource
and IDropTarget respectively.

Relationship

This enables objects to be linked to or incorporated into compound documents. It manages
relationships that are simple aggregations. A link references an object from a compound
document. It is implemented by a persistent name, a moniker. A moniker is an object that
implements a link. Monikers support composite names, relative names and a function
BindToObject that gives access to an object.

In-place activation

An object that forms part of a compound document is activated by a double click. The
application that created the document is loaded as a server and takes over control. It can act
either in-place or in a new window. The document can be edited directly on-screen. Linked or
incorporated objects can also be activated in place, without the need to create a new window.
The application takes over the document window and the object becomes the active agent that
controls the keyboard. Only incorporated objects can be modified. Several interfaces are
needed for in-place editing. The container must support IOleInPlaceSite and
IOleInPlaceFrame and the object must have been given IOleInPlaceActiveObject.

Automation is a key OLE service that enables the functions of an application to be described
(EXE), incorporated into OLE and made dynamically callable by any language that can use
scripts. A good example of this is the VBScript sub-set of Visual Basic that is now extensively
used in Internet web pages. The interface is described in the Object Description Language
(ODL). Object descriptions are held in a type library. The type libraries can be managed
directly by the ICreateType interface for creation.

University of Pretoria etd

113

A client OLE automation controller invokes an OLE automation server. The invocation is
dynamic and is passed by the interface IDispatch. IDispatch receives the function Invoke
from the client, decodes its parameters and sets up a link with the server. It calls the required
function and passes the parameters.

3.4.6.8 The main OLE interfaces

Microsoft introduced the OLE architecture in 1991 for the purpose of managing compound
documents. Since 1994 all the interfaces described above have been combined in a single
context. Multiprocesses are supported in Windows NT and single processes in Windows 95/
98. Recent distributions of Visual Basic include the distributed version of COM, DCOM. This
has the effect that OLE is steadily evolving from its original use in compound documents to a
distributed system where any client can communicate with any server.

The kernel implements COM and brings together the basic functions of persistence of objects,
management of intelligent names and uniform transfer of data between objects. OLE is built
on top of COM or DCOM. It provides management of compound documents by means of in-
place visual editing and drag-and-drop of objects between documents. It also supports nesting
of linked or copied objects and management of relative links.

Microsoft provides a very complete architecture. It is object based rather than object-oriented.
Unfortunately it does not support inheritance. The services and framework provided is very
complex. The architecture goes well beyond the handling of compound documents.
Distribution is achieved by means of message exchange between proxies and stubs using
RPC.

Objects are multi-interfaced providing a kind of multiple inheritance with convenient
properties. Microsoft is already using a component approach, based on OLE in many fields
such as operating systems, databases and multimedia. Other suppliers can enhance
Microsoft’s products by incorporating their own components.

University of Pretoria etd

114

3.5 Kansei engineering and new product development

3.5.1 Introduction

Kansei Engineering (KE) is one the lesser-known product development techniques. Due to the
enormous influence that the Japanese had in the domain of product development this
technique was included. Figure 2 indicates that KE is one the techniques that is able to extract
tacit needs from the level of unexpressed thought. This is exactly the area in design where
very little has been achieved in design systems over the past 35 years. KE is also one of the
few proven techniques that can operate at this high tacit level. It is envisaged that some
support for KE be included in the final product.

The term KE was first used in 1986 by Kenichi Yamamoto, the current chairman of Mazda
Motors, in a special lecture given at the University of Michigan. Thirty years ago companies
could easily make a profit because it was a seller’s market. The product development
strategies of the time were based on product output. With the increasing saturation of the
market product developers and marketing had to pay increasingly more attention to quality to
differentiate their products. Today consumers demand good quality products. The economic
success of a manufacturing firm depends on their ability to identify the needs of customers
and to quickly create products that meet these needs and can be produced at low cost (Ulrich
et al. 1995:2). To achieve these goals is a marketing, design and manufacturing problem. The
totality can be called product development or total design (Pugh 1996). The basic needs
manifested itself in movements such as the Total Quality Movement (TQM). Moss (1995:4)
states that TQM is both a philosophy and a set of guiding principles that represent the
foundation of a continuously improving organisation. TQM is the application of quantitative
and human resources to improve the material and service supplied to an organisation. It is also
the degree to which the needs of the customer are met, now and in the future. KE is one of the
methods that can be used to quantify the higher order tacit feelings of the consumer into a
product.

Nagamachi (1999a) is of the opinion that even in a strong economy, like that of the U.S.A.,
one of the reasons why some products sell well and some not is due to fact that not all
products focus on consumer feelings and emotions. He calls this Kansei. The use of KE could
provide quantified knowledge that can potentially be encapsulated in object-oriented
architectural design packaging (Figure 1). Zultner (1999:360) identified KE as one of the
methods to define customer needs that concentrate on the emotional responses.

3.5.2 What is Kansei Engineering (KE)

It is a technology that attempts to quantify cognition and product image in such a way as to
influence the product development process (Figure 22). Like Quality Function Deployment
(QFD), Kansei is a technique that is consumer-oriented and attaches importance to the voice
of the customer. Nagamachi started KE at Hiroshima University about 25 years ago. It is an
ergonomic consumer-oriented technology for new product development. In Kansei
engineering Nagamachi focuses on three main aspects:

• Accurately understanding of consumer Kansei.
• To translate the quantified Kansei values into the product design.
• To create a system and organisation for Kansei-oriented design.

University of Pretoria etd

115

Figure 22: The Kansei engineering process (Nagamachi 1999)

The word Kansei encompasses the following meanings:

• A feeling that one holds about a certain thing that may or may not exist but is thought to

help enhance one’s quality of life.
• All feelings and emotions that one has about a product, including its functions and

appearance.
• Vague psychological emotions and senses that one holds but is not yet expressed.

The techniques used in Kansei attempts to quantify human cognition through the six senses of
vision, hearing, smell, taste, touch and inner sense (feeling). For example you would walk
into a building and approach the receptionist’s desk. You rapidly form a first impression. You
might feel that interior design is very modern (vision), the receptionist is very professional
(cognition) and the acoustics is very good due to the soft carpets, wall and ceiling
construction (hearing). Kansei initially sounds vague and ambiguous. However with special
methods the feelings can be made tangible for the specific product where they manifest.

KE is a technology to translate Kansei into the design domain. Presently well-developed
methodologies and software systems support it. The general input sources of KE data could
be:

• Physiological data. When using physiological data to measure Kansei, the software can be

used to determine data patterns.
• Psychological data can be handled by means of the sorting of data into clusters using a

neural network model, classification of the data by means of genetic algorithms and
breaking down the data into design elements using the quantification theory.

The latter method is most often used because of its convenience.

3.5.3 Types of Kansei Engineering

Five main technical types of KE is most often used:

• Type 1: Category Classification. It identifies the design elements of the product to be

developed, translated from the consumer’s feelings and image.
• Type 2: Kansei Engineering System (KES). A computer aided system, with an inference

engine and Kansei databases, is used.
• Type 3: Hybrid Kansei Engineering System. The dual software systems of forward KES

that goes from Kansei to the design specifications and reverse KES that goes from design
specifications to Kansei is used in this type.

• Type 4: Virtual Kansei Engineering. This is an integration of virtual reality technology
and Kansei engineering in a computer system.

• Type 5: Collaborative Kansei Engineering Designing. Group work design system utilising
intelligent software and databases over the Internet.

University of Pretoria etd

116

3.5.3.1 Type 1: Category Classification

Category Classification is a method by which a Kansei category of a planned target is broken
down into a tree structure to determine the physical design detail. Mazda used this type of KE
for the new “Miata” (Eunos Roadster in Japan). KE became the fundamental technology for
new product development at Mazda.

In the case of the “Miata” the project team decided that the zero level product purpose
(mission or aim) would be “Human-Machine Unity” (Figure 23). The team broke the zero-
level concepts into subconcepts level 1, 2 to n. In the case of the “Miata” the zero-level
concepts were tight feeling, direct feeling, speedy feeling and communication. The various
feelings are translated into physical traits, ergonomic specifications and automotive design
elements.

Figure 23: The translation of Kansei into physical car traits (Nagamachi 1999)

3.5.3.2 Type 2: Kansei Engineering Computer System (KES)

The KES is a computerised system with an Expert System that supports the transfer of the
consumer’s feeling into physical design elements. The KES has four databases and an
inference engine in the KES structure (Figure 24). The following databases are used:

• Kansei Database. Kansei words used in the new product domain are collected. Typically

600 to 800 words are initially collected. This is reduced to approximately 100 words that
best describe the new product. These words are normally adjectives and sometimes
nouns. In the automotive industry words such as “fast”, “easy to control” and “gorgeous”
are used. After an ergonomic evaluation has been conducted these Kansei words are
analysed by multivariate techniques such as factor and cluster analysis. The Kansei
database contains the statistically analysed data. The KE is conducted by means of a
Semantic Differential (SD) method on a five-point scale.

University of Pretoria etd

117

• Image Database. Data evaluated by SD scales are then further analysed using Hayashi’s
Quantification Theory Type II (Nagamachi 1999b). It is a multiple regression technique
for qualitative data. The statistical relationships obtained between Kansei words and
design elements constitute the image database. This database relates the most appropriate
design elements to Kansei words and vice versa.

• Knowledge base. The knowledge base is a rule based database in if then form. It controls

the image database. It also includes design guidelines and digital colour expression
system.

• Shape and colour databases. The design detail is implemented in a shape design and

colouring database. The parts are design aspects that are co-ordinated into the final
assembled product with each Kansei word. The colour database consists of colours co-
ordinated with Kansei words. The design and colour is extracted by a purpose made
inference system based on the rule-base and is graphically displayed on the screen.

Figure 24: Type 2: Kansei Engineering Computer System (KES) (Nagamachi 1999)

3.5.3.3 Type 3: Kansei Engineering Modelling

KE type 3 uses a mathematical model constructed in the computerised system in stead of a
rule-base system as described above at type 2. The mathematical model is based on Fuzzy
Logic. Sanyo attempted to use Fuzzy Logic in an intelligent colour printer that could enhance
bad original images. The developers carried out an experiment on an image of a beautiful girl
and obtained data of the hue, brightness and saturation for a girl’s face colour which are
represented by a membership function in Fuzzy Set Theory. The data were transformed to
Red: Green: Blue in the computer colour system. This enabled the KE colour printer to
enhance the original picture by means of the KE inference system. The intelligent colour
printing system comprised a camera, computer and a colour printing system driven by Fuzzy
Logic. It was able to diagnose the original picture.

University of Pretoria etd

118

Nagamachi also developed a computerised language analysis system for the Japanese
language to analyse words in terms of Fuzzy Integral and Fuzzy Measure Logic. It is used to
analyse brand name feeling. Several Japanese companies use this system to select appropriate
product names (ring and feeling) for new brand products.

3.5.3.4 Type 4: Hybrid Kansei Engineering

In contrast to the forward KE discussed under type 2, type 4 is called Backward KE. This is
used in the situation where there is an existing product and the designer wants to know how
well this design fits a specific set of Kansei criteria. The computerised system makes design
suggestions. If types 2 and 4 are combined then it is called a hybrid KE. (Figure 25).

By means of this type of KE system the designer is able to get design specifications from
Kansei words through the forward KE. This helps the designer to be more creative based on
his own ideas and suggestions offered by the system. The drawings generated can be input
into the system. An image processing system can analyse the sketch. The system is then able
to diagnose the input sketch by reference to the Kansei database. This enables the designer to
evaluate his own creative design.

Figure 25: Components of a hybrid Kansei Engineering System (Nagamachi 1999)

3.5.3.5 Type 5: Virtual Kansei Engineering

This technique is new and combines KE and Virtual Reality (VR). The advantage of VR is
that it enables people to experience computer generated virtual designs by means of a head-
mounted display. Control is by means of data gloves. With this technique customers can
evaluate the new product that were built by means of KE. Nagamachi constructed a Virtual
Kansei Engineering kitchen design system for Matsushita. The kitchen was designed by KE to
fit the exact customer needs. Subsequently the customer could evaluate the virtual kitchen by
means in terms of his specific Kansei requirements.

3.5.4 Main Kansei Engineering steps

The following main steps are used in a typical KE process. It is a category classification
method and is used most often today.

• Clearly define the product purpose.
• Collect the Kansei data using various marketing methodologies.

University of Pretoria etd

119

• Determine the Kansei product mission or baseline. This is the main purpose of the
product. In the case of AEDES this could have been “Total Architectural Knowledge
Management”.

• Break the base line product concept down into primary, secondary and tertiary sub-
concepts.

• During the breakdown pay special attention to the appropriate design metrics and issues
such as size, mass and material.

• Implement tests such as ergonomic engineering in order to find more detailed design
specifications.

• Summarise the overall specifications and review whether they fit the baseline concept.
• Verify the results with the designers’ 3D design mock-ups.
• Make adjustments to the final requirements.

3.5.5 The Semantic Differential Method

Advertising and marketing men are frequently faced with the problem of quantifying
subjective data with regards the reactions of customers to image of a brand, product or
company. In an attempt to solve this problem Snider and Osgood (Snider et al. 1957) devised
a technique called the Semantic Differential technique (SD). SD attempts to measure what
meaning a concept have for people in terms of dimensions which have been empirically
defined and factor-analysed. There is a remarkable similarity between this technique and
Fuzzy sets (Zadeh et al. 1970).

Osgood used a seven-point, equal-interval ordinal scale. These scales were usually selected
from 50 pairs of polar adjectives. An example is:

Good bad

Progressing from left to right on the scale, the positions are described as representing
extremely good, very good, slightly good, being both good and bad, slightly bad, very bad and
extremely bad.

Numeric weights can be assigned to each position. These can be converted to individual or
group means and presented in a profile form. The reliability of this method is reasonably high.

The main advantages of SD are:

• It is a quick and efficient way of quantifying large data samples. It captures the direction

and intensity of opinions and attitudes towards a concept.
• It provides a comprehensive picture of the image or meaning of a product or personality.
• It is a standardised technique for capturing the multitude of factors which a brand or

product comprises.
• It is easily repeatable and reasonably reliable. It can be used on a continuous basis to

capture changes in customer attitudes.
• It avoids stereotyped responses and allows individual frames of reference.
• It eliminates some of the problems of question phrasing such as ambiguity and

overlapping of statements.

Nagamachi simplified the original Osgood seven-point scale somewhat when he applied it to
the design of coffee cups.

University of Pretoria etd

120

Figure 26: Adjectives applicable to coffee cups when using the semantic differential
method (Nagamachi 1999)

3.5.5 Conclusion

KE is used in diverse industries such as the automobile, apparel, home appliance, office
machinery, home and cosmetics. These industries include some of the most important car
manufacturers in the world. Other applications include diverse fields such as digital colour
expression, language analysis, video camera and discomfort analysis by means of cross-
modality matching. During a workshop attended by the author, Nagamachi stated that
although KE is a very comprehensive system it is not a design system, but rather a design
support system. KE could certainly be useful to move certain tacit data down to explicit levels
where it could be used in design knowledge management and packaging. It is interesting to
note the similarities between SD and the dynamic linguistic variables discussed under 3.2.5.7

University of Pretoria etd

121

3.6 Quality Function Deployment (QFD)

3.6.1 Introduction

Due to the important role that a holistic approach to quality plays in the product realisation
process this section was included. If architectural design knowledge is to be successfully
packaged for use during the product life cycle then quality must form an integral part of it.
Figure 2 gives an indication of the tacit level of knowledge that QFD operates at. In the
precedent system AEDES (Conradie et al. 1999) QFD was made an integral part of the
briefing and design system. In the present study QFD was used to analyse the needs of the
construction team for a very large construction project. This indicated the need for a design
processor clearly. It is now known that QFD is too elaborate for the normal architectural
design project. For this reason ARGOS does not form a core part of ARGOS anymore. If it is
necessary to use it, it should rather be applied as an outside process. Certain projects might
still be suitable for QFD.

The author first learned about Quality Function Deployment (QFD) in May 1998. During
further study it was discovered that QFD is one of the most powerful and robust methods to
support the product design process. Although QFD was already conceived in Japan in the late
1960s the western world was slow to adopt it. At the moment it is still largely unknown in
South Africa and met with scepticism. QFD is an adaptation of some of the Total Quality
Management (TQM) tools. The author gained practical experience in the use of QFD during a
recent Voice of Customer (VOC) exercise with the members of the professional team to
establish accurate user requirements for the AEDES prototype system that is a precedent for
the present study.

After World War II statistical quality control (SQC) was introduced to Japan and became the
central quality activity in the area of manufacturing. This was integrated with the teachings
Juran and Ishikawa. This gradual evolution was strengthened by 1961 publication of Total
Quality Control by Feigenbaum. The result of this was that SQC was transformed into TQC
during the transitional period between 1960 and 1965. It was at this stage that Akao (1997:
19) became prominent and influential in the subsequent development. Two important factors
led to QFD, as we know it today:

• People started to recognise the importance of design quality.
• Companies were already using Quality Control (QC) charts. However the charts were

produced during manufacturing after the new products were conceived clearly leaving a
quality gap at the initial product conceptualisation.

Akao (1997:19) states that by the time design quality is determined, there should already exist
critical Quality Assurance (QA). In 1972 abovementioned deficiencies were addressed in an
approach described as “hinshitsu tenkai” (Quality Deployment). This established a method to
deploy, prior to production start-up, the important quality assurance points needed to ensure
the design quality throughout the production process. The method was still inadequate in
terms of setting the design quality. This was resolved by means of the quality chart used at the
Kobe shipyards of Mitshubishi Heavy Industry. Value Engineering (VE) also influenced
QFD. VE is a way to define functions of a product.

In 1978 the term Quality Function Deployment became firmly entrenched. QFD is a literal
translation of the Japanese words “hinshitsu kino tenkai”.

The most important contributions of QFD are (Akao 1997):

• Established quality management in product development and design.

University of Pretoria etd

122

• Provides a communication tool to designers. Engineers and hopefully architects in future
are positioned halfway between the market and production. They need to lead product
development. QFD gives a powerful means to build a system for product development.

• QFD can significantly contribute to the software industry.
• Future TQM will become important in future to align company-wide activities to

customer focus. Akao believes that Voice of Customer (VOC) should be the common
bedrock for creating a partnership of such activities.

The Americans are attempting to combine many different ideas with QFD. This includes
TRIZ, Taguchi methods and conflict management. QFD and Taguchi methods are gaining
attention in the USA as effective methods for concurrent engineering. In product and
manufacturing process design, a key optimisation tools is Taguchi’s Robust Design Method.
The prioritisation capabilities of QFD assist the development team to decide where to apply
Taguchi’s methods.

The global use ISO 9000 series influenced quality control greatly. It established a global
quality standard for the first time. The ISO 9000 series require companies to earn their
customer’s trust by demonstrating a system of quality assurance. ISO defines a quality system
as the organisational structure, responsibility, procedure, process and resource for
implementing quality control. Akao predicts that QFD will be recognised as an international
standard and be incorporated in ISO.

3.6.2 What is QFD?

QFD is a method for structured product planning and development that enables a
development team to specify clearly the customer’s wants and needs and then to evaluate each
proposed product or service capability systematically in terms of its impact on meeting those
needs (Cohen 1995).

The QFD process involves constructing one or more matrices, sometimes referred to as
quality tables. The first of these matrices is called the House of Quality (HOQ) (Figure 27). It
displays the customer’s requirements along the left and the development team’s technical
response to meeting those needs along the top. The matrix consists of several sections or
submatrices joined together in various ways that contains interrelated information.

University of Pretoria etd

123

Figure 27: Schematic representation of the QFD House of Quality (Cohen 1995:12)

Each of the labelled sections is a structured expression of the product or process development
team’s understanding of an aspect of the overall planning process for a new product, service
or process.

Section A contains a structured list of customer wants and needs. The structure is usually
determined by qualitative market research. The data are in the form of a tree diagram that is
obtained by methods such as a Voice of Customer exercise.

Section B contains three main types of information:

• Quantitative market data. This category consists of three columns that indicate

importance to the customer, customer satisfaction performance and competitive
satisfaction performance.

• Strategic goal setting for the new product or service. This category indicates the level of
customer performance being aimed for and the improvement ratio required. The two
columns normally used here are goal and improvement ratio.

• A computation for rank ordering the customer wants and needs. Under this main category
the ability to sell the product or service, overall importance to the development team of
each customer need and cumulative normalised raw weights are normally captured. These
three columns are called sales point, raw weight and normalised raw weight.

Section C contains in technical language the description of the product or service they intend
to develop. This is normally generated or deployed from the customer wants and needs in
section A. It is important to note that there will probably not a one-to-one correlation between
the user requirements and the technical solutions offered.

Section D contains the development team’s judgements of the strength of the relationship
between the items in A and the technical response in C. Typically a 9,3,1 scale is used that can
also be written by means of special symbols (Figure 27).

University of Pretoria etd

124

Section E contains the technical development team’s assessment of technical correlation (roof
of the quality house) between the items in the technical response.

Section F contains three types of information:

• The computed rank ordering of the technical responses, based on the rank ordering of

customer wants and needs from section B and the relationships in section D.
• Comparative information on the competition’s technical performance.
• Technical performance targets.

Not all the various sections of the QFD diagram will always be used. In the literature many
different variations exist. It is possible to go beyond the initial House of Quality. In the
AEDES prototype a system of 5 matrices were used. In this system the HOW of one level of
matrix becomes the WHAT at the next level. The effect is that progressive refinement is
attained until the desired level of detail is reached.

3.6.3 The affinity diagram

The affinity diagram is a means of for organising qualitative information. The hierarchy is
built from the bottom up. The source of ideas into the affinity diagram can be internal or
external. The team developing the diagram brainstorms internal ideas. Brainstormed ideas are
appropriate for a team that has no data to begin with. In the case of the AEDES Voice of
Customer (VOC) exercise an extensive prior literature study was made as to what the
requirements might be and also to prepare a structured questionnaire to assist the interviewers
in asking the correct questions.

Methods that could be used to hear the VOC are (Technosolve 1998; Cohen 1995):
• Focus group interviews.
• Contextual inquiry.
• Conference room interviews.
• Surveys.
• Gemba visits (Observe user in his working environment).
• Walk mile in his shoes.
• Customer complaints.
• Customer requests for existing product enhancement or new products.
• Expert opinion.
• Published sources.
• Social events such as parties or exhibitions.

University of Pretoria etd

125

Table 5: Methods of obtaining Voice of Customer (Collated by author)

Formal methods Informal methods

Fo
cu

s
gr

ou
p

C
on

te
xt

ua
l i

nq
ui

ry

C
on

fe
re

nc
e

ro
om

in

te
rv

ie
w

Su
rv

ey
s

G
em

ba
 v

is
its

W
al

k
m

ile
 in

 h
is

sh

oe
s

C
us

to
m

er

co
m

pl
ai

nt
s

C
us

to
m

er
 re

qu
es

ts

Ev
en

ts
 s

uc
h

as

ex
hi

bi
tio

ns

Speed (S,M,F or ~)

F

S

M

~

S

S

F

S

S

Cost (L,M,H or ~)

L

H

M

~

H

H

L

L

M

Requirement yield
(L,M,H or ~)

L

H

M

~

M

M

L

~

L

External ideas are the facts that the team acquires. One of the most thorough methods of
obtaining data is by means of a customer interview VOC exercise. This takes very careful
planning. Questions are prepared beforehand to prepare the interviewers for their task. During
an interview attempts are made to uncover as many real unexpressed customer needs as
possible. The complete interview is tape-recorded for a subsequent verbatim transcription.

The AEDES development team conducted eight one-hour interviews with the professional
team of a large construction project. The example passage below is an example of such a
fragment of information that was communicated by one of the interviewees.

In the subsequent analysis the transcribed interviews are very carefully screened to find
passages, statements or remarks that clearly express useful thoughts of the customer. The
analysis team then hypothesised as to what the statement actually meant and extracted
hypothesised user requirements. In the case of the AEDES VOC exercise 173 such user
requirements (URs) were identified. On the analysis form careful note was taken of direct
product features that are mentioned during the interview that gives direct clues as to desirable
product features.

An example of a probing question during a recent VOC interview was:

Q. “ So you can store the process case that you had here and transfer it. From that point of
view we already have a bit of a case library that you can draw on in the future?”

A. “That is how we go from project to project. I’ve got a file down there, that has got your
process methods and production rates and durations, so that every time you come onto a
project…e.g. how many bricks do a bricklayer lay, I’ve got a set standard that is there. I
program the whole programme. I know exactly what should be the duration, then the
construction guys go along, they program the whole program and if it is way out, I can say to
the guys you are smoking yourselves and it is not from my brain, it is from the files, from the
database, it is from the cases that we have put together. That case study is somehow static,
however, there is suddenly a new way of laying bricks, then the bricklaying process will
change, the duration will change and we will have to update that knowledge that information

University of Pretoria etd

126

will have to change. But, it is probably quite static at the moment. No new techniques have
been developed the last couple of years for brick laying.”

During the subsequent analysis of abovementioned verbatim that clearly expresses a customer
need the following hypothesised customer requirements and issues and factors were extracted
from the transcription.

Issues/ factors:
• Pre-packaged case histories (experiential knowledge).
• Base information across life cycle process.
• Updating of cases.
• Validation of decisions.

Customer Requirement:
• Enables all team members to refer back to and retrieve experiential project knowledge at

any level of grain as and when required.

The URs were printed on large sticky labels and pasted onto post-it-notes. The cards were
placed on the boardroom table where they could be seen by the entire team. At this stage the
team observes total silence and first reads all the cards in sequence in order to get the contents
in short term memory. Each member then begins to move the cards together that they think
belong together. It is important that the cards are not grouped by similar wording, but rather
by similar benefits to the customer. If a card continues to shuttle between different piles the
card can be duplicated and placed in two piles. It eliminates a test of wills between two team
members.

After the silent sorting process is complete, discussion may start again. The initial 173 URs
were grouped into heaps of similar user benefits and a summary title added that best describes
the contents of the heap. At this stage the team had 23 abstracted heaps. The next day more
effort was put into the grouping exercise and this produced seven higher level URs. At top
level it was possible to abstract this to three ultimate user requirements (Table 6).

University of Pretoria etd

127

Table 6: Essential user requirements extracted for the AEDES VOC exercise

Broad Category User Requirement Detailed user requirements
1. Planning in holistic context 1.1 Requirements & methods of life cycle process

1.2 Fast track operational processes
1.3 Contextual visualisation

Enhance project
Effectiveness
(Relates to strategy:
doing the right thing) 2. Life cycle sustainability 2.1 Optimise project in terms of sustainability

2.2 Timeous planning according to type & scale
2.3 Demonstrated financial risk & return

3. Enhanced decision making 3.1 Sound decision-making

3.2 Co-ordinated decision making
3.3 Trace-ability & validation of decision

4. Enhanced information management 4.1 Access to information
4.2 Information flows and interchange-ability
4.3 Transparency of interactions & information

Enhanced project
efficiency
(Relates to productivity:
doing things right)

5. Product delivery efficiency 5.1 Problem solving
5.2 Product performance characteristics
5.3 Contractor supply chains
5.4 Quality assurance
5.5 Efficiency in terms of time/cost savings

6. Facilitates practical project experience 7.1 Skills transfer & job creation

7.2 Practical training & learning
Enhanced human
capital and learning

7. Learning infrastructure 7.1 Organisational memory
7.2 Experiential project knowledge
7.3 Rapid access to experiential knowledge
7.3 Generic briefing templates

Table 7 : Sample of form used to extract constant sum paired comparisons from
users

Subsequently a method called “constant sum paired comparisons” was used where each
attribute is compared to every other attribute (Cohen 1995:97). This technique is preferred

University of Pretoria etd

128

over a five point scoring scales because it yields better statistical accuracy and is non-ordinal.
The QFD institute in Detroit also recommends this technique. In this technique a participant is
expected to weigh up pairs of factors against each other. This takes careful thinking. The
comment is normally that unlike factors are compared, however it must be seen as an
importance rating or a rating that tries to determine which factor gives you the most problems.
Of the 35 questionaires sent out, a total of nine were returned.

The results of the pairings were analysed and the results indicated clearly the need for a
strategic what-if scenario system across the project life-cycle.

The consolidated results produced the results below that are ordered from the most important
to the least important.

Table 8: Relative importance of user requirements within group

User requirement Level of
Consensus

Relative
importance
as a
percentage

Normalised
relative
importance

U2 – Strategic what-if scenarios across project life cycle Good 30.91 0.31
U1 – Planning in an appropriate holistic context Good 24.89 0.25
U6 – Practical project experience and learning Good 16.03 0.16
U7 – Learning support infrastructure during project delivery Useful 11.47 0.11
U5 – Project delivery efficiency Useful 7.35 0.07
U4 – Information management across project life cycle Useful 7.33 0.07
U3 – Decision management across project life cycle Good 2.02 0.02

The user requirements (Customer needs and benefits) can now be filled in on the What side of
the QFD matrix. The relative importance values can be placed on the planning matrix. The
technical team can proceed to generate technical concepts (Technical response or substitute
quality characteristics). Analysis of the most important requirements clearly indicates that the
following functionalities are required:

• Structured data in appropriate classification containers
• Life cycle software tool modularity
• Systems approach
• Data hierarchies because construction element relationships exhibit a hierarchical

structure.
• World wide web connectivity of tools and data
• Data labelling
• Desktop working environment
• Life cycle supply support data like material performance libraries
• Learning support such as intelligent archived case studies that is a complete cognitive

snapshot of the various design factors.
• Process support

From this it becomes clear that life cycle process and data integration need to be created. This
must further be supported by appropriate modular analysis tools and packaging of designs at
various levels of granularity. This is a clear indication that a need for intelligent Case-based
Reasoning enabled components exists that could assist the project team with design and
operational decisions. This type of component must be flexible to operate in many different
software environments at various stages of the product life cycle.

University of Pretoria etd

129

3.6.4 Kano’s model of user satisfaction

The Japanese TQM consultant Noriaki Kano provides useful insights of customer satisfaction
as it relates to product characteristics. Kano’s model divides product characteristics into three
distinct categories, each of which affects customers in a different way. The three categories
are (Figure 28):

• Dissatisfiers. These are “must-be”, “basic” or “expected” characteristics.
• Satisfiers. These are also known as “one-dimensional” or “straight-line” characteristics.
• Delighers. These are also known as “attractive” or “exciting” characteristics.

3.6.4.1 Dissatisfiers

These are product characteristics that the customer takes for granted when they are present,
but that cause dissatisfaction when they are missing. Dissatisfiers are things customers do not
normally ask for, because they tacidly assume that they will be taken care of. If a product or
service is delivered that has many dissatisfiers, customers will be extremely unhappy.

If dissatisfiers are eliminated then customers will hardly notice all the work that has been
done to eliminate the dissatisfiers. The reduction of dissatisfiers can only raise customer
satisfaction to a “not dissatisfied” state.

3.6.4.2 Satisfiers

This is a feature or characteristic that a customer wants in his product and would usually ask
for. The more satisfiers that are provided, the happier customers will be. It is also known as
desired quality because it represents the aspects of the product that define it for the customer.
Examples of this that were expressed during the AEDES VOC exercise are:

• Compatible data interchange amongst project participants.
• Project specific configuration of software.
• On-line availability of information

In the competitive world of software development one can expect satisfiers to be present in all
the competitive products.

3.6.4.3 Delighters

These are product attributes or features that are pleasant surprises to customers when they first
encounter them. However if delighters are not present, customers will not be dissatisfied,
because they do not know what they are missing. We cannot learn about product delighters by
directly asking our customers. Examples of delighters are not as instructive as examples of
satisfiers and dissatisfiers. Each delighter is unique and no particular patterns can be
identified. Some delighters are entire new products that created entirely new markets. In the
present study delighters for the portable design cases called ARGOS could be:

• Integration into any ActiveX compliant container environment such as spreadsheets.
• All pertinent design information available in a convenient to use environment of the users

choice.
• Support for design via the Internet.
• Integration of function, shape and quality into a single highly portable mini-case

environment.

University of Pretoria etd

130

• The ability to use structured information from the past to assist with future design
problems.

Figure 28: Kano's customer satisfaction diagram (Cohen 1995:37)

The needs that delighters fill are often called latent or hidden needs because they are not
directly communicated. QFD offers some assistance in this regard where the interviewers
during a VOC exercise attempts to scaffold into the unconscious product desires of the client.
During subsequent analysis of the VOC the analysts attempt to cover assumed, expressed and
latent elements. QFD is particularly useful because it helps the development team to clearly
separate customer needs from technical solutions.

3.6.5 QFD software

Very good commercial QFD software such as QFD/Capture Professional is available. Typical
features of this software includes:

• The ability to publish HTML web page output of QFD reports.
• Generate customer surveys in text, Microsoft Word, Rich Text Format and HTML Web

Page formats.
• Produce market opportunity map reports identifying the best opportunities for product

improvement.
• Generate relationship tree diagrams showing measures for each requirement in a graphical

tree and branch format.
• Print out and work with blank chart templates, which are useful as documents-in-progress

during team meetings.

University of Pretoria etd

131

Figure 29: QFD/Capture product planning matrix screen (Author)

During the prototype development of the AEDES software the author developed QFD
software that could integrate the architectural briefing and design process directly in an
underlying database. This was an attempt to make the information captured during the QFD
briefing and design sessions directly available to other distant members of the design team.
The biggest difference between the AEDES QFD and standard software is the fact that it
worked in depth as well. In-depth implied that the user could see more detail by clicking on
the intersection of a specific row or cell (Figure 31).

QFD has a practical limitation in the sense that it cannot conveniently accommodate more
than a 20 by 20 matrix. Architecture contains information at many different levels of detail
that is likely to give rise to very large matrices. This was solved by means of the in-depth
method. The disadvantage of the latter is that it is not possible to see information directly at a
glance. However reports were developed that can be printed out and studied at leisure.

University of Pretoria etd

132

The in-depth method required a special database structure that is detailed in Figure 31. The
relational database table QFD contained the main QFD project information. Two main
hierarchies branch from this main table, i.e. the QFDHow and QFDWhat branches each
having respective subtables called QFDSubHow and QFDSubWhat. Special connecting tables
(somewhat unusual in relational database design) were used to keep book of the relationships
between the What and How data branches. The relationships are what would occur in section
D (Figure 27). The tables QFDRoof and QFDSubRoof are self-referring tables (recursive) and
are designed to support the relationships that are required by the QFD technical correlations
(QFD roof).

Figure 30: Relational database tables used in the AEDES prototype QFD software
(Author)

The software only allowed viewing of the design data. Editing was accomplished by means of
special database forms. The QFD software provided a convenient means to view the
numerous different technical correlations that exists in architecture. The software provided
convenient navigational command buttons that facilitated navigation across a larger than
displayed virtual QFD matrix. A drawback of this was that it was not possible to view the
entire matrix at a glance. The author is of the opinion that it is not always necessary to see all
design issues at once in architecture, because not all design factors at all levels are so closely
related that it is necessary to have simultaneous visual display. Future improvement of the
software could be to write QFD software in a Visual Basic ActiveX control. This would
greatly improve the usefulness of the QFD software because it would then be possible to use
the advanced methodology in a convenient environment such as a spreadsheet, CAD systems
or it could be integrated into software shells developed in languages such as Visual Basic or
Visual C++.

University of Pretoria etd

133

Figure 31: Typical screen of the AEDES prototype QFD software (Author)

University of Pretoria etd

134

3.7 Theory of inventive problem solving (TRIZ)

3.7.1 Introduction

There are two groups of problems people face, those with generally known solutions and
those with unknown solutions. Those with known solutions can usually be solved by
information found in the technical literature or through extensive training. These solutions
follow the general pattern of problem solving. Here a standard solution is elevated to a
standard problem of a similar or analogous nature. A standard solution is known and from that
standard solution comes a particular solution to the problem.

The other type of problem has an unknown solution. It is called an inventive problem and
may contain contradictory requirements. In modern times inventive problem solving falls in
the field of psychology where the links between the brain, insight and innovation are studied.
Methods such as brainstorming and trial-and-error are commonly suggested. Depending on
the complexity of the problem, the number of trials will vary. If the solution is within the field
of experience then the number of trials will be fewer. If the solution is not found the inventor
must look beyond his experience and knowledge to new fields such as manufacturing or
aviation. Then the number of trials will grow large depending on how well the inventor can
master psychological tools like brainstorming, intuition and creativity. A further problem is
that psychological tools like experience and intuition are difficult to transfer to other people in
the organisation.

This leads to what is called psychological inertia where the solutions being considered are
within the inventor’s own experience and do not consider alternative technologies to develop
new concepts. When we overlay the limiting effects of psychological inertia on a solution
map covering broad scientific and technological disciplines the ideal solution might lie
outside the inventor’s field of expertise. Psychological inertia defeats randomness and leads to
looking only where there is personal experience.

3.7.2 TRIZ

Genrich S. Altshuller, born in the former Soviet Union in 1926, developed a superior
approach relying on technology. His curiosity about problem solving led him to search for
standard methods. Altshuller screened over 200 000 patents looking for inventive problems
and how they were solved. Only 40 000 had somewhat inventive solutions, the rest were
straightforward improvements. At this stage it is estimated that more than a 1 000 000 patents
have been screened world-wide. Altshuller defined an inventive problem as one in which the
solution causes another problem to appear. Usually inventors must resort to a trade-off and
compromise between the features and thus do not achieve an ideal solution. In his study of
patents he found that many described a solution that eliminated or resolved the contradiction
and required no trade-off. Altshuller identified five levels of inventive solutions (Kaplan
1996:2; Mazur 2001):

• Level one. These are routine design problems solved by methods well known within the

speciality. No invention is required. About 32% of the solutions fell into this level.
• Level two. These are solutions that leave the existing system fundamentally unchanged.

New features are introduced or minor improvements are made to the existing system. This
is effected by known methods and sometimes compromises may be made. About 45% of
the solutions fell into this level.

• Level three. This constitutes an essential improvement of an exiting system. Methods
outside the known industry are used. Certain contradictions need to be resolved. About
18% of the solutions fell into this category.

University of Pretoria etd

135

• Level four. At this level inventions are characterised by solutions found in more in
science than in technology. Only about 4% of the solutions fell into this category.

• Level five. This is the level where rare scientific discoveries or pioneering inventions
occur. Only about 1% of the solutions fell into this category.

He also noted that with each succeeding level, the source of the solution required broader
knowledge and more solutions to be considered before an ideal one could be found. Altshuller
found that 90% of the problems engineers faced had been solved somewhere before. If
engineers could follow a predictable through the various levels and using their knowledge and
experience most of the solutions could be derived from knowledge already present in the
particular company or industry.

Altshuller distilled the problems, contradictions and solutions to these patents into a
comprehensive theory of inventive problem solving which he named TRIZ.

There are a number of laws in the theory of TRIZ. One of them is the law of Increasing
Ideality. A technical system evolves in such direction as to increase its degree of Ideality
(Kaplan 1996). Ideality is defined as the quotient of the sum of the system’s useful effects,

iU , divided by the sum of its harmful effects, jH .

Ideality =
∑
∑

j

i

H
U

Useful effects include all the valuable results of the system’s functioning. Harmful effects
include undesired inputs such as cost, the space occupied, energy consumed, pollution and
danger. The ideal state is one where there are only benefits and no harmful effects also termed
the Ideal Final Result. From a design point of view, engineers must continue to pursue greater
benefits and reduce cost of labour, materials, energy and harmful side effects. If the
improvement of a benefit results in increased harmful effects, a trade-off is made, but the Law
of Ideality drives designs to eliminate or solve any trade-offs or design contradictions. The
ideal final result will eventually be a product where the beneficial function exists but the
machine itself does not. The evolution of the mechanical spring-driven watch into the
electronic quartz crystal watch is an example of this move towards Ideality.

Boris Zlotin and Alla Zusman, TRIZ scientists at the American company Ideation and
students of Altshuller have developed an “Innovative Situation Questionnaire” to identify the
engineering system being studied, its operating environment, resource requirements, primary
useful functions, harmful effects and ideal result.

3.7.3 Steps in using TRIZ

3.7.3.1 Formulate the problem: the prism of TRIZ

This first step is to restate the problem in terms of physical contradictions. Identify problems
that could occur. Could improving one technical characteristic in solving the problem cause
other technical characteristics to worsen, resulting in secondary problems? Are there technical
conflicts that might force a trade-off?

3.7.3.2 Search for previously well-solved problems

Altshuller extracted from over 1 500 000 worldwide patents 39 standard technical
characteristics that cause conflict. These are called the 39 Engineering Parameters. Find the
contradicting engineering principles. First find the principle that needs to be changed. Then
find the principle that is an undesirable secondary effect. State the standard technical conflict.

University of Pretoria etd

136

3.7.3.3 Look for analogous solutions and adapt to solution

Altshuller also extracted from the worldwide patents 40 inventive principles. These are hints
that will help an engineer find a highly inventive (patentable) solution to the problem. To find
which inventive principles to use, Altshuller created the table of Contradictions. This table
lists the 39 Engineering Parameters on the X-axis (undesired result or conflict) and Y-axis
(feature to change or improve). The appropriate Inventive principles that could lead to a
solution are listed in the intersecting cells.

3.7.3.4 Socially responsible TRIZ

Structurally and philosophically TRIZ methods look at the big picture. During problem
definition the TRIZ practitioner looks at nine combinations of the past, present and future
models of the sub-system, system and super-system. Interactions, resources, harmful and
secondary effects are identified during the definition of the problem.

Terninko (1999:285) states that the TRIZ method can support sound environmental design
through the recognition of resources within the sub-systems, systems and super-systems. If
the future of the system and super-system is well understood then possible future disastrous
effects can be avoided. He suggests a different type of TRIZ formula to take account of the
harmful effects.

Ideality =
∑ ∑

∑
+ harmsts

benefits
cos

The equation above is more a construct than a directly usable equation. This particular version
of the ideality equation contains cost and harmful effects in the denominator.

It is not difficult to identify the benefits and this is what the TRIZ specialist normally tries to
understand. The identification of possible harmful effects and its alternatives is just as
important. The product designer is normally far too casual about the costs and harms in the
denominator. See item 4.2.1.2 for Sustainable Development.

TRIZ does represent a method that can be socially responsible, but the practitioner must resist
pressure from society and industry for rapid and incomplete analysis. Organisations are often
driven by profit while ignoring the customer and the medium to long consequences of their
solutions.

Summary

The techniques and product innovation methodologies discussed in this chapter are useful at
various tacit and explicit levels. They are also applicable in different building life cycle
phases (Figure 2).

It is clear that after the initial optimism about the possibilities of AI in design, a more mature
and realistic approach is now followed. CBR is a promising sub-field of AI that can greatly
contribute to the contextual storing of design knowledge. It is clear that AI should be used
more in the background and especially in architecture automatic adaptation of designs should
not be attempted.

Knowledge Management is becoming very prominent although there are still unsolved
problems. However many researchers are working on the particular sub-problems due to the

University of Pretoria etd

137

importance of this for the global economy. KM is still fluid, however the theory is well
understood such as the movements of the knowledge cycle. The sharing of knowledge is
important in any enterprise and this is supported by the current importance attached to
intellectual capital. Concept extraction and Natural Language Processing remains
problematic, however significant progress has already been made. The current and emerging
technical standards that form a barrier to responsive NGM were identified. The main
requirements for a KM enabling environment are:

• Communication
• Design team flexibility and responsiveness
• User Interface and information search
• Project resource integration and access

The problems of ontology and the role that AI can play in Knowledge Based Design were
investigated. It was observed that CBR and the concept selection cycle of Pugh (1996) bear
striking similarities. The various main known problem-solving architectures were investigated
and the conclusion can be made that CBR, RBR and MBR should be not be seen in isolation
but should rather be viewed as a continuum of techniques.

The use of fuzzy sets as a means of formulating dynamic linguistic variables for aiding the
retrieval of design knowledge in general and cases specifically were investigated. It was
discovered that the semantic differential method of Snider and Osgood (Snider et al. 1957)
and the semantic differential adjectives as used by Nagamachi bear a relationship to the
approach advocated by the author.

The analysis of the characteristics of manufacturing such as process, flow and throughput
indicate that these are not directly applicable to problems under consideration, but should
rather be applied at the process level. Concurrent Engineering is an important technique to
avoid the so-called time-trap. This is where the life cycle time of products decreased while the
time spent on product development greatly increased. Three possible strategies could be
identified as CE guiding principles:

• Parallelisation.
• Standardisation
• Integration

The theories of Goldratt showed that the manufacturing environment is particularly applicable
for Theory of Constraints and that the system optimum is not the sum of the local optima.

Taguchi techniques indicate the importance of off-line and on-line quality control. This
indicates that quality is related to the loss to society caused by a product during its life cycle.
In terms of the current thesis these methods should rather be used select appropriate materials
to minimise life cycle costs in the context of sustainable development.

The advantages of the fuzzy Front End (FFE) was identified:

• It lasts a long time
• Cheap place to look for cycle time
• Individual companies have big performance differences

The investigation of objects indicates that it is the preferred way to achieve abstraction,
generalisation and interaction in systems supporting the life cycle development process. The
unique way those objects were used in the precedent systems PREMIS and AEDES were
discussed. This section was concluded with strategies followed by Microsoft to establish if

University of Pretoria etd

138

these could offer opportunities for the packaging of architectural design and design
parameters.

Kansei Engineering (KE) is a mature and useful technique to quantify cognition and product
image in such a way as to influence the product development process. KE operates at a very
high tacit level is could make a significant contribution to the storage of tacit architectural
design information.

The QFD exercise undertaken indicated that the ability to generate what-if scenarios across
the project life cycle as the most important user requirement. QFD as a technique to extract
raw architectural user requirements was pioneered in the AEDES system. QFD is useful if the
time and cost can be justified. QFD is an important technique in the manufacturing industry
and was one of the techniques that saved the Detroit automotive industry from ruin in the face
of severe competition from Japan. The contribution that QFD can make in architecture is
dependent on the acceptance that this slightly elaborate technique can gain.

The chapter is concluded with TRIZ that is a powerful method to solve inventive problems.
However the present commercial TRIZ software emphasise engineering type of problems. A
significant amount of work will have to be done to make its use tractable in architecture.

University of Pretoria etd

	Introduction
	3.1 Knowledge management
	3.2 Knowledge based design
	3.3 The systems view of the world
	3.4 Objects
	3.5 Kansei engineering and new product development
	3.6 Quality Function Deployment (QFD)
	3.7 Theory of inventive problem solving (TRIZ)
	Summary

