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SUMMARY

Non-binary LDPC coded STF-MIMO-OFDM with an iterative joint receiver structure

by

Daniel Johannes Louw

Study leader: Dr. B.T. Maharaj

Department of Electrical, Electronic & Computer Engineering

Master of Engineering (Electronic)

The aim of the dissertation was to design a realistic, low-complexity non-binary (NB)

low density parity check (LDPC) coded space-time-frequency (STF) coded multiple-input

multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with an

iterative joint decoder and detector structure at the receiver. The goal of the first part of the

dissertation was to compare the performance of different design procedures for NB-LDPC codes

on an additive white Gaussian noise (AWGN) channel, taking into account the constraint on the

code length. The effect of quantisation on the performance of the code was also analysed.

Different methods for choosing the NB elements in the parity check matrix were compared. For

the STF coding, a class of universal STF codes was used. These codes use linear pre-coding and

a layering approach based on Diophantine numbers to achieve full diversity and a transmission

rate (in symbols per channel use per frequency) equal to the number of transmitter antennas.

The study of the system considers a comparative performance analysis of different ST, SF and

STF codes. The simulations of the system were performed on a triply selective block fading

channel. Thus, there was selectivity in the fading over time, space and frequency. The effect of

quantisation at the receiver on the achievable diversity of linearly pre-coded systems (such as the

STF codes used) was mathematically derived and verified with simulations. A sphere decoder

(SD) was used as a MIMO detector. The standard method used to create a soft-input soft output

(SISO) SD uses a hard-to-soft process and the max-log-map approximation. A new approach

was developed which combines a Hopfield network with the SD. This SD-Hopfield detector was

connected with the fast Fourier transform belief propagation (FFT-BP) algorithm in an iterative

 
 
 



structure. This iterative system was able to achieve the same bit error rate (BER) performance as

the original SISO-SD at a reduced complexity. The use of the iterative Hopfield-SD and FFT-BP

decoder system also allows performance to be traded off for complexity by varying the number

of decoding iterations. The complete system employs a NB-LDPC code concatenated with an

STF code at the transmitter with a SISO-SD and FFT-BP decoder connected in an iterative

structure at the receiver. The system was analysed in varying channel conditions taking into

account the effect of correlation and quantisation. The performance of different SF and STF

codes were compared and analysed in the system. An analysis comparing different numbers of

FFT-BP and outer iterations was also done.

Keywords:

MIMO-OFDM, Non-binary LDPC, Hopfield Network, Sphere Decoder, Quantisation,

Space-Time Codes, Space-Frequency Codes, Space-Time Frequency Codes.

 
 
 



OPSOMMING

Non-binary LDPC coded STF-MIMO-OFDM with an iterative joint receiver structure

deur

Daniel Johannes Louw

Studie leiers: Dr. B.T. Maharaj

Departement Elektriese, Elektroniese & Rekenaar Ingenieurswese

Meester in Ingenieurswese (Elektronies)

Die doel van die verhandeling was om ’n realistiese, lae-kompleksiteit nie-binêre (NB)

LDPC gekodeerde ruimte-tyd-frekwensie-gekodeerde MIMO-OFDM-sisteem met iteratiewe

gesamentlike dekodeerder- en detektorstrukture by die ontvanger te ontwerp. Die eerste

deel van die verhandeling was om die werkverrigting van verskillende ontwerpprosedures

vir NB-LDPC kodes op ’n gesommeerde wit Gausruiskanaal te vergelyk met inagneming

van die beperking op die lengte van die kode. Verskillende metodes om die nie-binêre

elemente in die pariteitstoetsmatriks te kies, is gebruik. Vir die ruimte-tyd-frekwensiekodering

is ’n klas universele ruimte-tyd-frekwensiekodes gebruik. Hierdie kodes gebruik lineêre

pre-kodering en ’n laagbenadering gebaseer op Diofantiese syfers om volle diversiteit te

bereik en ’n oordragtempo (in simbole per kanaalgebruik per frekwensie) gelyk aan die aantal

senderantennes. Die studie van die sisteem oorweeg ’n vergelykende werkverrigtinganalisie van

verskillende ruimte-tyd-, ruimte-freksensie- en ruimte-tyd-frekwensiekodes. Die simulasies

van die sisteem is gedoen op ’n drievoudig selektiewe blokwegsterwingskanaal. Daar

was dus selektiwiteit in die wegsterwing oor tyd, ruimte en frekwensie. Die effek van

kwantisering by die ontvanger op die bereikbare diversiteit van lineêr pre-gekodeerde sisteme

(soos die ruimte-tyd-frekwensiekodes wat gebruik is) is matematies afgelei en bevestig deur

simulasies. ’n Sfeerdekodeerder (SD) is gebruik as ’n MIMO-detektor. Die standaardmetode

wat gebuik is om ’n sagte-inset-sagte-uitset (SISO) SD te skep, gebruik ’n harde-na-sagte

proses en die maksimum logaritmiese afbeelding-benadering. ’n Nuwe benadering wat

’n Hopfield-netwerk met die SD kombineer, is ontwikkel. Hierdie SD-Hopfield-detektor

 
 
 



is verbind met die FFT-BP-algoritme in iteratiewe strukture. Hierdie iteratiewe sisteem

was in staat om dieselfde bisfouttempo te bereik as die oorspronklike SISO-SD, met laer

kompleksiteit. Die gebruik van die iteratiewe Hopfield-SD en FFT-BP-dekodeerdersisteem

maak ook daarvoor voorsiening dat werkverrigting opgeweeg kan word teen kompleksiteit

deur die aantal dekodering-iterasies te varieer. Die volledige sisteem maak gebruik van ’n

QC-NB-LDPC-kode wat met ’n ruimte-tyd-frekwensiekode by die sender aaneengeskakel is

met ’n SISO-SD en FFT-BP-dekodeerder wat in ’n iteratiewe struktuur by die ontvanger

gekoppel is. Die sisteem is onder ’n verskeidenheid kanaalkondisies ge-analiseer met

inagneming van die effek van korrelasie en kwantisering. Die werkverrigting van verskillende

ruimte-frekwensie- en ruimte-tyd-frekwensiekodes is vergelyk en in die sisteem ge-analiseer.

’n Analise om ’n wisselende aantal FFT-BP en buite-iterasies te vergelyk, is ook gedoen.

Sleutelwoorde:

MIMO-OFDM, Nie-binêr LDPC, Hopfield Netwerk, Sfeerdekodeerder, Kwantisering,

Ruimte-tydkodes, Ruimte-frekwensiekodes, Ruimte-tyd-frekwensiekodes.
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ChapterOne

Introduction

Multiple-input multiple-output (MIMO) schemes have greatly increased system capacity

and reliability (due to spatial diversity) over conventional single-input single-output (SISO)

systems. However, the design of systems capable of achieving this capacity is still an open

research topic.

Along with spatial diversity due to multiple antennas, frequency diversity and time diversity

may also be available to the system, depending on the channel conditions. Schemes that

utilise this diversity are called space-time (ST) codes, space-frequency (SF) codes and

space-time-frequency (STF) codes.

In SISO schemes, forward error correction (FEC) coding is used to improve reliability.

Codes have been designed that are able to operate at a fraction of a decibel from the Shannon

bound. The best class of codes, to date, is sparse graph codes, of which turbo codes and

low-density parity check (LDPC) codes are the best known examples. It has been shown that

by defining the code over non-binary (NB) alphabets a performance increase may be achieved.

In this dissertation, a system combining NB-LDPC codes with a MIMO system using

ST, SF and STF codes is proposed. At the receiver, an iterative joint detector and decoder

structure is employed.
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Chapter One Introduction

1.1 Background

In this section the background of the different aspects of the dissertation will be discussed.

1.1.1 LDPC codes

LDPC codes were first discovered by Gallager in 1963 [2]. The codes were then re-discovered

by Mackay and Neal [3] in 1996. Davey and MacKay [4] then extended the codes to arbitrary

Galois fields. The decoding of LDPC codes is done by the use of Tanner graphs and Pearl’s

belief propagation (BP). Richardson and Urbanke [5] developed a BP algorithm using the fast

Fourier transform (FFT) for LDPC codes which reduces the decoding complexity. When BP is

extended directly to NB-LDPC codes, the decoding complexity grows exponentially with the

size of the Galois field. However, by using the FFT-based BP decoding algorithm (FFT-BP),

the growth in complexity becomes linear.

Several methods for designing binary LDPC codes have been developed. Specifically,

the use of density evolution [5] and extrinsic information transfer (EXIT) charts [6] has been

shown to yield codes capable of performing very close to the Shannon bound. The use of these

methods for the direct design of NB-LDPC codes is problematic owing to the complexity and

the astronomical memory requirements. Simplified versions of density evolution have been

developed in conjunction with coset-LDPC codes to yield a class of NB codes [7]. Another

method of creating NB-LDPC codes is to design a binary LDPC code and simply replace all

the 1s with elements from the Galois field. Quasi-cyclic (QC) LDPC codes are a class of code

that do not use density evolution and may be encoded efficiently using shift registers. Several

methods for constructing binary QC-LDPC and NB-QC-LDPC codes based on a structured

finite field approach have been developed [8, 9]. These QC codes have an extremely low error

floor. A class of NB-QC-LDPC codes that are able to guarantee a girth of 12 was developed by

Ge and Xia [10].

1.1.2 MIMO, OFDM and STF codes

There are two main advantages of MIMO systems over SISO systems. Firstly, MIMO systems

have a higher capacity than SISO systems. Capacity may be interpreted as the maximum

allowable transmission rate for communication at an arbitrarily low error rate. In MIMO
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systems the capacity increases linearly with the number of transmit antennas or the number of

receive antennas, whichever is the least. Secondly, MIMO systems experience spatial diversity

[11].

Orthogonal frequency division multiplexing (OFDM) is a bandwidth efficient transmission

scheme which transmits parallel streams of data on orthogonal sub-carriers. It can be

implemented efficiently using the FFT operation. OFDM has very useful properties when

operating in a frequency selective channel. Specifically, by adding a cyclic prefix at the

transmitter and removing it at the receiver, inter-symbol interference (ISI) is avoided. Also, by

limiting the bandwidth of each sub-carrier to the coherence bandwidth of the channel, OFDM

is able to ensure that flat fading occurs on each sub-carrier. This significantly simplifies channel

equalisation and decoding. These flat fading sub-channels provide a convenient method for

coding over frequencies and OFDM thus provides a basis for SF and STF codes.

Through the use of MIMO and OFDM, henceforth called MIMO-OFDM, the system

designer is able to place data symbols in space, time and frequency. This allows for codes to

be designed that are able to extract diversity in time, space and frequency. These codes can

be compared by considering the diversity as well as the transmission rate that they are able to

achieve. Many different designs have been proposed in literature. These include orthogonal

ST codes [12, 13], algebraic ST codes [14, 15], algebraic SF codes [16, 17] and high rate STF

codes [17]. The codes considered in this dissertation are the rate-1 Alamouti ST code [12],

the rate-1 SF code [16], the rate-1 STF code [18] and the rate-2 STF code [17]. The SF and

STF codes considered use the concept of linear precoding (LP) and layering using Diophantine

approximations. These codes require a joint detector at the receiver. The detector used for this

is the sphere decoder (SD).

The SD was first developed as a universal lattice decoder [19]. Because of the high

initial complexity of the SD, O(n6), many efforts were made to reduce the complexity of the

process. Current implementations are able to reduce the complexity to be on the order of n3.

The SD is however still one of the most computationally intensive parts of the system and

reducing the complexity further is still an open research topic.
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1.1.3 LDPC coded STF codes

Concatenating LDPC codes with multi-antenna codes is a promising approach and many

systems have been proposed [20–25]. Since turbo codes were introduced in 1993 [26], the

concept of iterative processing at the receiver has found many applications. One application

is to use the turbo principle to create a joint detector and decoder at the receiver. In terms

of MIMO communication systems, several systems combining FEC techniques with ST and SF

codes have been proposed. Some of these systems also employ a turbo receiver structure. These

studies do not, however, consider the performance of NB-LDPC codes on SF and STF codes.

In addition, the analyses in these papers generally do not consider realistic channel conditions

where antenna correlation is taken into account. A notable exception is [27], which uses binary

LDPC codes but no turbo receiver.

1.2 Motivation and Objective of Dissertation

The objective of this dissertation is to design a system combining NB-LDPC codes with

MIMO-OFDM using ST, SF and STF codes and an iterative joint detector and decoder structure.

Figure 1.1 shows a block diagram of the transmitter of the proposed system while Figure 1.2

shows a block diagram of the receiver of the proposed system.

Data Source
Nonbinary 

LDPC 
Encoder

STF encoder

OFDM 
Modulator

OFDM 
Modulator

OFDM 
Modulator

De
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r

Figure 1.1: A block diagram of the transmitter of the proposed Turbo NB-QC-LDPC coded
STF-MIMO-OFDM system.

The design will specifically focus on keeping the computational complexity low to allow for a

realistic implementation. The system will be analysed in realistic triply selective (space, time
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Figure 1.2: A block diagram of the receiver of the proposed Turbo NB-QC-LDPC coded
STF-MIMO-OFDM system.

and frequency) fading channel conditions. The effect of quantisation at the receiver will also be

analysed.

1.3 Author’s Contribution

The purpose of this dissertation is the design and analysis of a low complexity NB-LDPC coded

STF coded MIMO-OFDM system with an iterative joint receiver structure. In the process of

designing this system, several contributions were made.

1.3.1 LDPC code design

In chapter 3 the design of NB-LDPC codes is considered. In order to keep encoding complexity

low, a QC code design is chosen. For the sake of realistic complexity and latency, the

code length, as well as the number of FFT-BP decoding iterations, are limited. Several

design procedures (subject to the restrictions) for NB-QC-LDPC codes are implemented and

compared. It was found that girth-12 codes performed best. The method used to select the

non-binary elements in the parity check matrix was analysed and it was found that by replacing

the method used in [8] with a random selection procedure a performance improvement could

be obtained. The codes were also analysed with quantisation at the receiver and the effect on

performance measured.
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1.3.2 Quantisation Limits of STF codes

In chapter 5 the ST, SF and STF codes using LP are discussed. It was found that the process

of LP places extra requirements on the number of quantisation bits at the receiver. The limit

of the achievable diversity in a quantised LP coded system was mathematically derived. These

limits were then verified by simulating SF and STF codes with quantisation at the receiver. The

contributions from this chapter are the result of joint research with P.R. Botha.

1.3.3 Reduced complexity SD decoder

In chapter 6, the soft output SD is developed and discussed. A reduced complexity SO-SD

utilising a Hopfield network and an iterative receiver structure is developed. The performance of

the detector is compared with that of the normal detector. The computational complexity of the

SD-Hopfield detector is explicitly calculated and compared with the complexity of the normal

SO-SD. It is shown that the Hopfield-SD provides a convenient method of trading complexity

for performance.

1.3.4 Turbo NB-QC-LDPC coded STF-MIMO-OFDM system

In Chapter 7 the full system combining the code developed in Chapter 3 with the MIMO-OFDM

system and the STF codes is given. The turbo structure is explained. The system is analysed

in triply selective block fading conditions. The effect of correlation at the antennas as well as

quantisation at the receiver is analysed with simulations.

1.4 Publications

The author wrote or co-wrote several papers based on the research work performed in the course

of this dissertation.

1. A paper entitled, “A reduced complexity Soft-Input Soft-Output MIMO detector

combining a Sphere Decoder with a Hopfield Network” authored by D.J. Louw, P.R.

Botha and B.T. Maharaj has been accepted for WCNC 2010, which will be held in Sydney,

Australia in April 2010.

2. A paper entitled, “Achievable Diversity Limits in a Quantized MIMO-OFDM Linear

Pre-coded System” authored by P.R. Botha, D.J. Louw and B.T. Maharaj was submitted
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for review to ISWPC 2010 which will be held in Modena, Italy in May 2010.

3. A paper entitled “A low complexity Soft-Input Soft-Output MIMO detector which

combines a Sphere Decoder with a Hopfield Network” authored by D.J. Louw and B.T.

Maharaj was submitted for review to MELECON 2010, which will be held in Malta in

April 2010.

1.5 Outline of Dissertation

The dissertation consists of eight chapters. Chapter 2 provides a basic introduction to FEC codes

and introduces terminology and notation used throughout the dissertation. Chapter 3 introduces

sparse graph codes and provides an explanation and a derivation for FFT-BP over arbitrary

fields. From the explanation, the design process for NB-LDPC codes is discussed. The analysis

of different QC-NB-LDPC codes is then given. Chapter 4 discusses mobile wireless channels

and introduces the triply selective fading channel model used in the simulations. Chapter 5 gives

an overview of multi-antenna coding and presents the ST, SF and STF codes used in the rest

of the dissertation. The achievable diversity of quantised LP coded systems is derived in this

chapter. Chapter 6 discusses MIMO detection for LP coded systems. The SD is discussed and

the reduced complexity Hopfield-SD detector is developed. Chapter 7 presents the full Turbo

NB-QC-LDPC coded STF-MIMO-OFDM system. This chapter also contains the analysis and

simulation results of the system. In Chapter 8 all the conclusions and results drawn from the

dissertation are presented and discussed. Future research possibilities are also proposed.
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Chapter Two

Introduction to Forward Error
Correction Codes

Communication is the process whereby information is transferred between two or more entities.

One can create a simple model of communication with three components: a transmitter (the

entity which has the information), a channel (the path through which the information must

travel) and a receiver (the entity which wants the information). If the channel were perfect

and did not in any way change the information, then communication would be easy and one

could transmit infinite amounts of information without any errors. However, channels used by

current communication systems are far from perfect. In a digital communication system these

imperfections result in errors in the received signal. Forward error correction (FEC) codes

encode the information at the transmitter in such a way that the errors can be detected and

corrected at the receiver. Simply put, the encoder adds redundancy to the information which is

used at the decoder to correct the errors. The amount of redundancy added can be measured as

a ratio of the number of symbols after encoding to the number of symbols before encoding. If

k represents the number of symbols before encoding and n represents the number of encoded

symbols, then the rate of the code is defined as r = k/n. This chapter starts by introducing some

information theory fundamentals and then describes block codes and specifically linear block

codes.
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Chapter Two Introduction to Forward Error Correction Codes

2.1 Information Theory Fundamentals

In order to determine any mathematical bounds on what is achievable in a communication

system (and with FEC codes) one first needs a mathematical definition of information.

Consider two discrete memoryless information sources (DMS) X and Y with possible

outcomes x1, x2, ..., xn and y1, y2, ..., ym respectively. Let the probability that X = xi be denoted

by P(xi) and the conditional probability that X = xi given that Y = yi be denoted as P(xi|yi).

The information content provided by the occurrence of the event yi about xi is defined as [28]:

I(xi; yi) = log
P(xi|yi)
P(xi)

. (2.1)

I(xi; yi) is called the mutual information between xi and yi. The units of information depend on

the base of the logarithm. When the base is 2, the units are bits and when the base is e, the units

are nats. When xi and yi are perfectly correlated, the event yi would always indicate that the

event xi has occurred, thus

P(xi|yi) = 1 (2.2)

∴ I(xi; yi) = log
1

P(xi)
(2.3)

= − log P(xi) (2.4)

which simply contains the information provided by the event xi. Thus the self-information of

the event X = xi may be given as:

I(xi) = − log P(xi). (2.5)

From the mutual and self-information between events, one can derive the average mutual

information between sources, as well as the average self-information of a source. The average

mutual information is obtained by weighting I(xi; y j) for each possible event pair (i, j) with the

probability of this event occurring and then summing over all these possibilities :

I(X; Y) =

n∑
i=1

m∑
j=1

P(xi, y j)I(xi, y j) (2.6)

=

n∑
i=1

m∑
j=1

P(xi, y j) log
P(xi|yi)
P(xi)

. (2.7)
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Similarly the average self-information is defined as:

H(X) =

n∑
i=1

P(xi)I(xi) (2.8)

= −

n∑
i=1

P(xi) log P(xi). (2.9)

When X represents the alphabet of possible output symbols from a source then H(X) represents

the average self-information per source symbol and is called the entropy of a source. The

average conditional self-information is called the conditional entropy and is defined as:

H(X|Y) =

n∑
i=1

m∑
j=1

P(xi, yi) log
1

P(xi|yi)
. (2.10)

H(X|Y) represents the the information in X after Y has been observed. The different average

information terms may be combined to yield the following:

I(X; Y) = H(X) − H(X|Y) (2.11)

The concept of average mutual information may be carried over from discrete random variables

to continuous random variables. If X and Y are defined as continuous random variables with a

joint probability density function (PDF) p(x, y) and marginal PDFs p(x) and p(y), the average

mutual information between X and Y is defined as:

I(X; Y) =

∫ ∞

−∞

∫ ∞

−∞

p(x)p(y|x) log
p(y|x)p(x)
p(x)p(y)

dxdy. (2.12)

The concept of average self-information does not carry over to continuous variables. This is

because an infinite number of bits are required to represent the variable exactly. The substitute

used is called differential entropy and is defined as:

H(X) = −

∫ ∞

−∞

p(x) log p(x)dx. (2.13)

Similarly, the average conditional entropy of X given Y may be defined as

H(X|Y) =

∫ ∞

−∞

∫ ∞

−∞

p(x, y) log p(x|y)dxdy (2.14)

and thus

I(X; Y) = H(X) − H(X|Y). (2.15)
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2.2 Channel Capacity and the Noisy Channel Coding Theorem

If one considers X to be the random variable that represents all possible symbols that may be

transmitted from the source over a channel and Y to be the random variable that represents all

possible symbols that may be received, then the channel capacity is defined as:

C = max
P(xi)

I(X; Y) (2.16)

for a discrete memoryless channel (DMC). The capacity of a channel is thus the mutual

information between the input and output variables maximised over the set of input

probabilities. For a bandwidth limited waveform channel the capacity of a channel per unit

time is defined as

C = lim
T→∞

max
p(x)

1
T

I(X; Y). (2.17)

Most real world communication systems are modelled in part as additive white Gaussian noise

(AWGN) channels. The capacity of an AWGN channel was derived by Shannon in 1948 [29]

and can be given as:

C = W log
(
1 +

Pav

WN0

)
bits/s (2.18)

where W represents the bandwidth, Pav represents the average signal power and N0 is the power

spectral density of additive noise. However, this capacity is reliant on an input PDF, which is a

statistically independent zero mean Gaussian random variable and will decrease if another input

random variable is used. One may also normalise channel capacity with respect to bandwidth

used:

C
W

= log
(
1 +

Eb

N0

C
W

)
bits/s/Hz (2.19)

where Eb is the energy per bit. From this equation one can derive the channel capacity in bits

for any given signal-to-noise ratio (SNR) per bit. Alternatively, given a certain transmission

rate, one can find the required SNR per bit. The meaning of channel capacity becomes clear

when one considers the noisy channel coding theorem [29]:

NOISY CHANNEL CODING THEOREM : There exist channel codes that make it

possible to achieve reliable communication, with as small an error probability as desired, if the

transmission rate R < C, where C is the channel capacity. If R > C, it is not possible to make
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Chapter Two Introduction to Forward Error Correction Codes

the probability of error tend toward zero with any code.

Thus, once the capacity for any channel over which one would like to communicate has

been derived, there are clear bounds on what is achievable and a clear goal for the design of the

code. The problem is that while the theorem defines what is possible, it gives no indication as

to how this may be achieved.

2.3 Block codes

There are two main code types : Convolutional codes and Block codes. Block codes encode

a finite number (a block) of symbols at a time, while convolutional codes encode streams of

symbols continuously. However, in real world applications these streams are generally of finite

length, effectively resulting in a block code. Thus, while the encoding and decoding algorithms

differ for convolutional and block codes, most of the results given in this section hold for both

types. In this dissertation, only block codes are considered, thus no more mention will be made

of convolutional codes.

The notation and terminology used for block codes will now be introduced. Let

A = {α0, ..., αq−1} be an alphabet containing q elements. If q = pn, where p is a prime

and n an integer, then A can be considered a finite field GF(q). For digital communication

systems p is generally chosen as 2. When n = 1, the alphabet is the general binary alphabet

A = {0, 1}. Binary codes are defined for input and output alphabets of GF(2). Non-binary

codes on the other hand are defined over larger alphabets, GF(pn). For the rest of this

dissertation, GF(q) will be denoted by Fq and Fq will be the assumed alphabet over which the

codes are defined.

Before specific aspects of a code can be analysed, it must be formally defined. An encoder

takes, as an input, k symbols from alphabet Fq and produces n symbols from alphabet Fq. An

encoder may thus be viewed as a mapping from a k-dimensional vector to an n-dimensional

vector. The code is the set of codewords produced by this mapping. Thus, if φ : Fk
q → F

n
q is the

encoder, then the code C := φ[Fk
q] is the range of φ.

The ability of a code to correct errors comes from the dissimilarity between codewords
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Chapter Two Introduction to Forward Error Correction Codes

in the code. This dissimilarity allows one to distinguish between codewords even when the

codewords have been corrupted. The dissimilarity between codewords is thus an important

parameter, the measure of which will have an impact on the power of the code. The metric

used is called the Hamming distance and is defined as the number of positions in which two

codewords differ:

dH(x, y) := |{i : xi , yi}|, (2.20)

where x and y are codewords. From this definition one may define the minimum distance of a

code as the smallest Hamming distance between any two codewords in the code:

d(C) = min{dH(x, y) : x, y ∈ C, x , y}. (2.21)

From the minimum distance of a code, one can determine its guaranteed error-correcting

capability. The minimum distance indicates the minimum number of symbols which need to

change in order to make one codeword look like another codeword. Thus, if fewer symbols are

changed (received in error), then the receiver will know that errors have occurred. Thus a code,

C is guaranteed to detect up to s errors if

d(C) > s. (2.22)

In order to correct the errors, the code determines which codeword is closer to the received word

in terms of the hamming distance. Thus the hamming distance divided by two would provide

the decision point between the correct codeword and the closest incorrect codeword. The code

can thus correct up to t errors where

t =

⌊
d(C) − 1

2

⌋
. (2.23)

In order to guarantee a certain error correction capability, t, for all codewords in a code as

well as all possible error patterns, the minimum distance is the most important parameter. It

should, however, be remembered that there may be many codeword pairs with a Hamming

distance much larger than the minimum distance. Thus for some error patterns, the code might

be able to decode many more errors than t. Decoders which cannot exploit this property are

called bounded distance decoders [6]. It can be shown [6] that communication at capacity is

not possible with the use of bounded distance decoding. If a decoder is used which can exploit

this property, then the minimum distance is no longer the most important parameter, rather the

distribution of distances becomes the important factor.
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2.4 Linear Block Codes

A class of block codes which has found much use is linear block codes. A linear code has two

defining properties:

1. Any two codewords can be added to produce a new codeword.

2. Multiplying any codeword with an element in Fq produces another codeword.

These two conditions imply that the all-zero codeword is always a codeword in a linear code.

It also implies that since Fn
q is a vector space, a linear code is a linear subspace of Fn

q. For

linear codes the minimum distance can be found by the use of the concept of Hamming weight.

The Hamming weight of a codeword, wH(x), is defined as the Hamming distance between the

codeword and the all zero codeword, thus

w(x) := dH(x, 0). (2.24)

The minimum distance of a linear code is equal to the smallest Hamming weight of the nonzero

codewords in the code:

d(C) = min{wH(x) : x ∈ C, x , 0}. (2.25)

Another major advantage of linear codes is that since the code is a k-dimensional linear

subspace, all one needs to describe the code is k basis vectors (codewords). All other codewords

may be derived as linear combinations of these basis codewords. It should be noted that any k

distinct nonzero codewords may be used to form the basis. A useful method for expressing the

basis is in matrix form. Since the basis can be used to generate any codeword in the code, it is

called a generator matrix. Formally, a generator matrix G for a [n, k] linear code is a k × n full

rank matrix, where the rows are the k basis vectors:

G =



g0

g1
...

gk−1


=



g0,0 . . . g0,n−1

g1,0 . . . g1,n−1
...

...

gk−1,0 . . . gk−1,n−1


(2.26)

The generator matrix provides a simple method for encoding data words. If x is an input data

column vector of length k, then y is its corresponding codeword where

y = GTx. (2.27)
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Note that this mapping from dataword to codeword is not unique, in the sense that a different set

of basis vectors for the same code might have produced a different mapping. The performance

of a code does not depend on the specific mapping used during encoding. A useful form of

the generator matrix is called the systematic form. The result of encoding with a generator

matrix in systematic form is that the data word is mapped directly into the first k symbols in

the codeword. Thus, after errors have been corrected at the decoder, the data can be effortlessly

extracted. A generator matrix is said to be in systematic form when

G = [Ik|P], (2.28)

where Ik is a k× k identity matrix and P is a k× (n− k) parity matrix. For each code, C, one may

define a dual code C⊥ as a code consisting of all codewords in Fn
q that are othogonal to all the

codewords in C. Since all codewords in C can be generated by its generator matrix, it suffices

to check that all codewords in C⊥ are orthogonal to all the rows of G. Let H be the (n − k) × n

size generator matrix of C⊥. Since all codewords in C⊥ are created by H and orthogonal to G,

GHT = 0. (2.29)

H is generally referred to as the parity check matrix of C. Since all codewords in C are

orthogonal to all codewords in C⊥, any codeword in C multiplied by H will also be zero:

Hy = 0, (2.30)

where y is a codeword in C. Thus H may be used to check if any received word is a correct

codeword (check the parity of the symbols). This result forms an integral part of the decoding

of LDPC codes. It should also be noted that for a specific code, H is not unique and any set of

basis vectors for C⊥ can be used. However, because of the specific technique used for decoding

LDPC codes, not all versions of H, for the same code, will perform equally well [6].
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Chapter Three

Sparse Graph Codes

The motivation for sparse graph codes can be found in the 1948 paper by Shannon [29]. In this

paper the Shannon random ensemble was defined as:

SHANNON RANDOM ENSEMBLE : Let the field Fq be fixed. Consider the ensemble of

codes C (n,M) of length n and cardinality M. There are nM degrees of freedom in choosing a

code, one for each element in each codeword. The ensemble consists of all qnm possible codes.

All codes are given equal probability. To sample from the ensemble simply pick a random code.

In the paper it was shown that almost any code (a large percentage of codes in the ensemble)

can be used for transmission at vanishing probabilities of error as long as the transmission rate

is less than the capacity of the channel and n is large. Large random codes can thus provide

a simple solution to the problem of finding capacity approaching code designs. The problem

with purely random codes is that the complexity and the memory requirements of encoding

and decoding can become prohibitive as the code size increases. A solution which combines

the concept of large random codes with reasonable complexity is sparse graph codes that rely

on belief propagation.

3.1 Graphs and Belief Propagation

From the description of the Shannon random ensemble it is evident that there are very many

good codes if the code length becomes large enough. The problem that remains is to make the

process of encoding and decoding efficient. Traditional codes introduce a lot of structure in
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the encoding process which can then be used at the receiver to speed up decoding. However,

random codes have no structure of which to take advantage. For large codes (required to achieve

capacity), an optimal solution where all possible solutions are considered exhaustively is clearly

unfeasible. One approach is to consider the decoding problem as the calculation of a marginal

of a multivariate function. This is the approach of BP decoding.

3.1.1 Marginals of functions and message passing

The marginal of a function f with respect to a variable x1 is defined as the summation of the

evaluation of f over all possible permutations of the remaining variables (x2, · · · , xn). Thus, the

marginal f̃ (x1) is given by:

f̃ (x1) =
∑

x2,··· ,xn

f (x1, x2, · · · , xn) (3.1)

which will be alternatively represented as:

f̃ (x1) =
∑

x̃1

f (x1, x2, · · · , xn) (3.2)

where
∑

x̃1
indicates the summation over all variables except x1. The method used to compute

a marginal of a function efficiently, makes use of the distributive law. Let a, b, c ∈ Fq, the

distributive law states:

ab + ac = a(b + c). (3.3)

This property is applied to functions. As an example [6] one can consider a function in six

variables (x1, · · · , x6) which may factorised as follows:

f (x1, x2, x3, x4, x5, x6) = f1(x1, x2, x3) f2(x1, x4, x6) f3(x4) f4(x4, x5). (3.4)

For this function the marginal with respect to x1 can be calculated as follows:

f̃ (x1) =
∑

x̃1

f (x1, x2, x3, x4, x5, x6) (3.5)

=

[ ∑
x2,x3

f1(x1, x2, x3)
][∑

x4

f3(x4)
(∑

x6

f2(x1, x4, x6)
)(∑

x5

f4(x4, x5)
)]
. (3.6)

The calculation of the marginal has now become the calculation of many smaller marginals. For

this specific case the number of operations required has decreased from being on the order of

O(|Fq|
6) to O(|Fq|

3), where |Fq| = q is the cardinality of the alphabet from which x1, · · · , xn are
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taken. A factor graph is a graphical representation of a factored function, and when combined

with message passing it provides a convenient systematic way of calculating the marginal.

A factor graph is a bi-partite graph because it consists of two types of nodes. One kind

of node (drawn as a circle) represents a variable and the other kind of node (drawn as a

square) represents a factor of the function (and is thus a function itself). A variable node

is connected to a factor node if the variable appears in the factor. Variable nodes are not

connected to other variable nodes and factor nodes are not connected to other factor nodes.

A factor graph is called a factor tree if there are no cycles in the graph. A cycle occurs when

there is more than one path between any given variable node and factor node pair. A node

connected to only one other node is called a leaf node. The connection between two nodes

is called an edge. The bi-partite graph for the function in Equation 3.4 can be seen in figure 3.1.

x1 x2 x3 x4 x6

f1 f2 f3 f4

x5

Figure 3.1: Bi-partite graphs of the function in Equation 3.4.

Calculating a marginal with a bi-partite graph is done through a process known as message

passing. Message passing is used in many applications of graph theory [30]. Assuming that

the graph is a tree, message passing starts with the leaf nodes. These nodes generate a message

and pass it to the node connected to it. The transmitting node is known as a child node and

the receiving node is known as a parent node. In terms of the tree structure, the parent node

will be closer to the base of the tree. When a node has received messages from all its children

nodes these messages are used to calculate a message, which is then passed to the parent.

This process is repeated until the message has reached the base node (this node represents the

variable over which the marginal is being calculated).

In the case where message passing is being used to calculate a marginal, the message

being passed from one node to another is a function on Fq and is represented by a vector of
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length q. The message from a factor node ( f j) to a variable node (xi) represents the marginal of

the factor f j with respect to xi. If the kth position in the message corresponds to the element

αk ∈ F, then the value at that position corresponds to the value of f j when xi = αk. The message

from a variable (xi) node to a factor node represents the product of the marginals over xi of

the other factor nodes connected to xi. The kth position in this marginal vector can thus be

interpreted as the value that the product of marginals over xi would take if xi = αk.

For a multivariate function, the marginal can be calculated with respect to each variable

in the function. This can be done by the message passing process described above by simply

viewing the tree as starting from the variable in question. Figure 3.2 shows the graph of the

function in Equation 3.4 using first x1 and then x2 as the base nodes. To calculate the marginal

of the function with respect to x1, one would use Tree x1 and to calculate the marginal of the

function with respect to x2, one would use Tree x2. However, since the graph structure remains

x1

x2 x3 x4 x6

f1 f2

f3 f4

x5

v
x2

f1

x3 x1

f2

x6x4

f3 f4

x5

Tree x1 Tree x2

Figure 3.2: Tree graphs of the function in Equation 3.4 with x1 and x2 as the base.
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the same, the marginals for all the variables may be calculated at the same time on the same

graph. In this case, a node considers each connection, one at a time. For each connection an

output message is calculated using all the input messages except the one from the connection

for which it is currently calculating an output message. This approach can be seen in Figure

3.4. The message passing algorithm will continue until a message has been sent along each

edge in both directions, at which time the marginals with respect to all the variables will have

been calculated.

A marginal can only be calculated exactly using message passing on a factor graph when the

graph is a tree. Figure 3.3 shows a simple graph with a cycle. The length of the cycle is equal

to the number of edges that must be traversed to move from a node back to itself. The cycle

in Figure 3.3 is thus of length 4. The problem with cycles is immediately apparent from the

x1 x2

f1 f2 x1

x2

f1 f2

Figure 3.3: Graph of a cycle of length 4.

figure. Since there is no leaf node, the message passing process has no way of starting. Before

any of the variable nodes can send a message, it must first receive a message from one of the

factor nodes. However, before any of the factor nodes can send a message, it must first receive

a message from one of the variable nodes. Exact marginalisation can thus not be performed if

the graph is not a tree. The message passing algorithm may be adapted to allow for graphs with

cycles (see section 3.1.4); however, the performance will always be strictly sub-optimal.

3.1.2 Decoding as marginalisation

In order to use marginalisation over graphs as a decoding procedure for block codes, the

decoding process must be written as a marginal. Let x be the vector of transmitted symbols

where xi ∈ Fq ∀ i and c ∈ C where C is the code in question. Let y be the vector of received
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x1 x2 x3

f1

μ3μ2v1

f2 f3 f4

x4

μ4 v3 v4

Figure 3.4: Graph depicting an isolated factor node and an isolated variable node.

symbols. The decoding problem can be stated as finding the most likely x given that y was

received. In bitwise maximum a posteriori probability (MAP) decoding, this rule can be stated

as:

x̂MAP
i (y) = argmaxxi∈F

p(xi|y) (3.7)

= argmaxxi∈F

∑
x̃i

p(x|y) (3.8)

= argmaxxi∈F

∑
x̃i

p(y|x)pX(x) (3.9)

= argmaxxi∈F

∑
x̃i

∏
j

p(y j|x j)1{x∈C}

 , (3.10)

where the derivation used the assumption that the channel is memoryless, which gives:

p(y|x) =
∏

j

p(y j|x j). (3.11)

Equation 3.10 uses the assumption of uniform priors over all codewords and introduces the

indicator function:

1{condition} =

 1 if condition true

0 otherwise.
(3.12)

In this case the indicator function is used to determine whether a vector x is a member of the

code. If x is not a member of the code then p(x) = 0 and the term
∏

j p(y j|x j) is removed from

the summation of the marginal. The marginal
∑

x̃i
(
∏

j p(y j|x j)1{x∈C} in Equation 3.10 will be a

vector of values corresponding to the elements in F. The value in the marginal vector at position

j, corresponding to element α j ∈ Fq, can be interpreted as the probability that the symbol xi =

α j. By finding the element in the marginal with the largest value (argmax) the MAP decoding
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is completed. It is, however, useful that soft outputs over all possibilities are directly available

in the marginal after normalisation. In its current form, Equation 3.10 is no different from

an exhaustive search through all possible codewords. The reduction in complexity comes from

when the marginal is factorised. Specifically, the code membership function can be factorised by

considering each parity check equation in the code (row of the parity check matrix) as a factor.

To illustrate the process of creating a factor graph from a parity check matrix, an example will

be used. Let the parity check matrix H of code C be given as:

H =


1 1 0 1 0 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

 . (3.13)

By using the fact that a vector x is a member of a code if Hx = 0, the indicator function may be

factorised as follows:

1{x∈C} =

 1 if Hx = 0

0 otherwise
(3.14)

=

 1 if (h1x = 0) and (h2x = 0) and (h3x = 0)

0 otherwise
(3.15)

= 1{x1+x2+x4=0}1{x3+x4+x6=0}1{x4+x5+x7=0} (3.16)

where hi corresponds to the ith row of H and the addition is done over the code field Fq. The

MAP decoding rule for this code may now be written as:

x̂MAP
i (y) = argmaxxi∈F

∑
x̃i

∏
j

pY j |X j(y j|x j)1{x1+x2+x4=0}1{x3+x4+x6=0}1{x4+x5+x7=0}

 . (3.17)

When using factor graphs for decoding, the graph is referred to as a Tanner graph [31]. The

variable nodes are called symbol nodes and the factor nodes representing parity checks in the

code are called check nodes. The Tanner graph for the marginal in this equation can be seen

in Figure 3.5. Decoding (for all the symbols in x) can now be done by running the message

passing algorithm on this graph. Up until now, the message passing approach to calculating a

marginal has been given in general terms. The specific calculations for the message passing

algorithm when the marginal represents the decoding of a block code will now be explained.

3.1.3 Message passing rules for MAP decoding of block codes

Let the transmitted sequence be x where xi ∈ Fq. It is assumed that Fq is a field, and may thus be

represented as Fq = {0, α0, α1, . . . , αq−2}. Let µ f j(xi) represent the message from factor node f j
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x1

x2

x3

x4

x6

x5

p(y1|x1)

p(y2|x2)

p(y3|x3)

p(y4|x4)

p(y5|x5)

p(y6|x6)

p(y7|x7)
x7

1{x1 + x2 + x4 = 0}

1{x3 + x4 + x6 = 0}

1{x4 + x5 + x7 = 0}

Figure 3.5: Tanner graph of the marginal function matched to the parity check matrix given in
Equation 3.13.

to variable node xi. Let vxi( f j) represent the message being sent from symbol node xi to check

node f j. The factor nodes which represents the channel are all leaf nodes and will simply send

their initialised vectors p(yi|xi) to the respective symbol nodes. Since these nodes are leaf nodes,

they can now be removed from the factor graph and will no longer play any role in decoding.

Since the output of a variable node is the product of the marginals sent to it, its update rule is a

point wise multiplication of the received marginals. Thus, if a variable node is connected to dv

function nodes, the output along the jth edge towards the jth factor node connected to it, can be

given by:

vxi( f j) =

dv∏
n=1
n, j

µ fn(xi). (3.18)

At the function node, the update rule is more complex. The derivation of the update rule will

be shown by using an example. Consider the simple graph in Figure 3.6. Let the marginal be

calculated with respect to x1:

f̃ (x1) =
∑

x̃1

p(y1|x1)p(y2|x2)p(y3|x3)1{x1+x2+x3=0} (3.19)

Marginalisation requires the calculation of the function over all possible values of the variables.

Let the field be F2 = {0, 1}. There are thus eight possible combinations for the variables in
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x2 x3

f1 = 1{x1+x2+x3=0}

vx3(f1)

vx2(f1)

p(y1|x1) p(y2|x2) p(y3|x3)

x1

μf1(x1)

Figure 3.6: Simple graph for check node update example.

question. If the channel probability vectors are given by:

p(y1|x1) = (0.2, 0.8) (3.20)

p(y2|x2) = (0.7, 0.3) (3.21)

p(y3|x3) = (0.4, 0.6) (3.22)

then the values of the function for the eight different sequences can be calculated as follows:

p(y1|x1 = 1)p(y2|x2 = 1)p(y3|x3 = 1)1{x1+x2+x3=0} = 0.144 · 0 = 0 (3.23)

p(y1|x1 = 1)p(y2|x2 = 1)p(y3|x3 = 0)1{x1+x2+x3=0} = 0.096 · 1 = 0.096 (3.24)

p(y1|x1 = 1)p(y2|x2 = 0)p(y3|x3 = 1)1{x1+x2+x3=0} = 0.336 · 1 = 0.336 (3.25)

p(y1|x1 = 1)p(y2|x2 = 0)p(y3|x3 = 0)1{x1+x2+x3=0} = 0.224 · 0 = 0 (3.26)

p(y1|x1 = 0)p(y2|x2 = 1)p(y3|x3 = 1)1{x1+x2+x3=0} = 0.036 · 1 = 0.036 (3.27)

p(y1|x1 = 0)p(y2|x2 = 1)p(y3|x3 = 0)1{x1+x2+x3=0} = 0.024 · 0 = 0 (3.28)

p(y1|x1 = 0)p(y2|x2 = 0)p(y3|x3 = 1)1{x1+x2+x3=0} = 0.084 · 0 = 0 (3.29)

p(y1|x1 = 0)p(y2|x2 = 0)p(y3|x3 = 0)1{x1+x2+x3=0} = 0.056 · 1 = 0.056. (3.30)

The marginal can now be calculated by summing over these probabilities:

f (x1) = [0.036 + 0 + 0 + 0.056, 0 + 0.096 + 0.336 + 0] (3.31)

= [0.092, 0.423]. (3.32)
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From this it can be seen that the MAP solution for x1 is x1 = 1. In order to get the marginal into

a probability it must simply be normalised to add to 1. Thus:

p(x1|y) =

(
0.092

0.092 + 0.423
,

0.423
0.423 + 0.092

)
(3.33)

= [0.178, 0.822] (3.34)

The marginal will now be calculated again, this time by using the graph in Figure 3.6. The

messages from the factor nodes representing the output of the channel to the variable nodes are

simply the probability vectors p(xi|yi). Nodes x2 and x3 then pass these messages to the factor

node. The factor node then computes the marginal:

µ f1(x1) = p(y2|x2)p(y3|x3)1{x1+x2+x3=0} (3.35)

=
[
p(y2|x2 = 1)p(y3|x3 = 1) + p(y2|x2 = 0)p(y3|x3 = 0), (3.36)

p(y2|x2 = 1)p(y3|x3 = 0) + p(y2|x2 = 0)p(y3|x3 = 1)
]
.

This message is then passed to variable node x1. Variable node x1 has now received messages

from all the factor nodes connected to it and simply performs a point wise multiplication to

yield the final result:

f (x1) = p(y1|x1) · µ f1(x1) (3.37)

=

[
p(y1|x1 = 0)

[
p(y2|x2 = 1)p(y3|x3 = 1) + p(y2|x2 = 0)p(y3|x3 = 0)

]
, (3.38)

p(y1|x1 = 1)
[
p(y2|x2 = 1)p(y3|x3 = 0) + p(y2|x2 = 0)p(y3|x3 = 1)

]]
= [0.092, 0.423], (3.39)

which is the same as above. The calculation of µ f1(x1) as shown above requires the calculation

of the value of the function for all combinations of all the variables. One can simplify this by

noting that the combinations for which the function 1{x1+x2+x3} is equal to 1 are the only ones

worth considering. Specifically for the x1 = 0 position the combinations of x2 and x3 are 00 and

11, whereas for the x1 = 1 position the combinations are 10 and 01. This can be seen viewed as

a circular convolution of the p(y2|x2) and p(y3|x3) vectors. Let the kth component of the vector

resulting from the Fq convolution operator �F between two vectors v1 and v2 be given by [7]:[
v1 �F v2

]
k

=
∑
a∈F

v1
a · v

2
k−a, k ∈ Fq, (3.40)
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where k − a is done over the field Fq. The calculation of the marginal can now be written in

terms of a convolution:

µ f1(x1) = p(y2|x2)p(y3|x3)1{x1+x2+x3=0} (3.41)

= p(y2|x2) �F2 p(y3|x3). (3.42)

This update rule can be generalised to yield the following rule for creating the output message

from a factor node. Consider the jth factor node connected to dc variable nodes. The output

message to the ith variable node can be given by:

µ f j(xi) = vx1( f1) �F vx2( f1) �F · · · �F vxi−1( f1) �F vxi+1( f1) �F · · · �F vxK ( f1) (3.43)

=

K⊙
k=1,k,i

vk( f1). (3.44)

This equation is valid for all codes defined over finite fields. Up until now, only codes where

the parity check matrix has 1s and 0s have been considered. In the general case, the elements in

the parity check matrix may be any of the elements in the field over which the code is defined.

Thus, for codes defined over higher order fields than F2, the non-zero elements in the parity

check matrix will have values other than 1. In this case, the parity check equation corresponding

to the jth row of the parity check matrix will have the following general form:

K∑
i=1

hixi = 0, (3.45)

where hi is the element in the parity check. The addition is done over Fq. This changes the

function at the function node to:

f j = 1{∑K
i=1 hi xi=0}. (3.46)

This affects the rule for the output of a function node since it can no longer be simply represented

by a convolution. The convolution is, however, a very convenient representation. A solution

to this problem is to introduce a function node on each edge of the graph. This node will

be referred to as the permutation node. When the message is moving from the variable node

towards the factor node the effect that multiplication by hi has on the marginal of the ith edge is

a multiplication by hi of the indices of the marginal. The new function node will thus perform a

permutation on the marginal corresponding to the value of hi. If hi = α j then all the values in the

vector except the value corresponding to the zero element will rotate to the left by j positions.

In other words, the value which used to be at the position which corresponds to αk will now

Department of Electrical, Electronic & Computer Engineering Page 26

 
 
 



Chapter Three Sparse Graph Codes

be at the position which corresponds to αk × α j. When the message is moving from the factor

node towards the variable node, the inverse happens and the permutation is reversed. From the

introduction of the new node, the function at the factor node will once again be:

f j = 1{∑K
i=1 xi=0}. (3.47)

This allows for the convolution-based update rule. The calculation of the convolution is not

fast and the complexity grows exponentially with both the field size and the number of nodes

connected to a check node. This complexity can be reduced by noting that a convolution

becomes a multiplication when the Fourier transform has been applied. Thus [5][32]:

µ f j(xi) =

K⊙
k=1,k,i

vk( f1) (3.48)

= F

 K∏
k=1,k,i

F (vk( f1))

 . (3.49)

Over finite fields, the Fourier transform reduces to a Hadamard transform and can be efficiently

implemented using the butterfly approach of the FFT. The algorithm using the FFT is called

FFT-BP. Adding the permutation node and the Fourier transform, a generic representation of

the Tanner graph can be seen in figure 3.7.

3.1.4 Graphs with cycles

The assumption that the graph of the code is a tree has allowed for the use of message passing

to perform MAP decoding. The problem is that codes without cycles have been shown to have

poor performance [6]. The message passing algorithm must thus be modified to allow for

graphs with cycles. This can be done by changing the update procedure. The algorithm for

FFT-BP on codes with cycles over an arbitrary field is given in Algorithm 1.

The leaf nodes in the graph (the channel nodes) pass their messages to the variable nodes. In

a graph without cycles, each node can wait for messages from all the edges connected to it

(except one) before starting to create outputs. In graphs with cycles this is not possible. A

solution to this problem is for each variable node to forward the message that came from the

channel node to all the check nodes. In this way a message has been sent on every edge. Each

check node can then calculate outputs for each edge in the standard manner. From the outputs

of the check nodes, each variable node can then create outputs using the standard update rules.
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x1 x2 x3

p(y1|x1) p(y2|x2) p(y3|x3)

∏

h1 h2 h3

FFF

Channel nodes

Variable nodes

Permutation nodes

Fourier nodes

Product node

Permuted variable nodes

Figure 3.7: General graph for FFT-BP decoding at the factor node.

Since the initial messages are not exact and the graph is not a tree, a single iteration of the

network updates will not give the exact solution to the marginal. Instead, many iterations must

be run where the result of each iteration converges towards the correct result. This leads to

another interpretation of the effect that cycles have on BP. Since there is more than one path

connecting a variable node to a check node, the information sent from the variable node to the

check node will pass back to the variable node. This results in a positive feedback effect, which

degrades performance. The effect of this positive feedback can be reduced by designing the

code such that the cycles are as long as possible. The length of the shortest cycle in the code is

referred to as the girth of the code.
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Algorithm 1 FFT-Belief Propagation over Fq

1: procedure Initialisation

2: vk( fi) = p(yk|xk) ∀ i . Outputs of Variable Nodes are Set to Channel Node Outputs

3: end procedure

4: procedure Decoding Iterations

5: for Iter Count = 0→ Num Iter do

6: Normalise vk( fi) ∀ k, i . All vectors must sum to 1

7: Permute vk( fi) ∀ k, i . Permutation Node Update

8: vFk ( fi) = F (vk( fi)) ∀ k, i . Fourier Node Update

9: µFf j
(xi) =

∏K
k=1,k,i v f

k ( fi) ∀ i, j . Product (Check) Node Update

10: µ f j(xi) = F (µFf j
(xi)) ∀ k, i . Fourier Node Update

11: Normalise µ f j(xi) ∀ i, j . All vectors must sum to 1

12: Permute µ f j(xi) ∀ i, j . Permutation Node Update

13: vk( fi) =
∏k

i=1
i, j
µ fi(xi) ∀ k, i . Variable Node Update

14: end for

15: end procedure

16: procedure Calculate Final Output

17: vk =
∏k

i=1 µ fi(xk) ∀k

18: Normalise vk ∀k . All vectors must add to 1

19: end procedure

3.2 LDPC codes

LDPC codes which were first developed by Gallager in [2] and then rediscovered by MacKay

and Neal [3], are defined as being codes which have at least one sparse Tanner graph. A sparse

Tanner graph is a graph with few edges. This corresponds to a parity check matrix with few

non-zero elements. The reason for the sparsity (low density) is that it reduces the number and

increases the length of the cycles in the graph. The number of nodes connected to a node is

the degree of the node. LDPC codes for which each check node has the same degree and each

variable node has the same degree are known as regular LDPC codes, while codes for which the

degrees of the nodes vary are known as irregular LDPC codes. Regular LDPC codes are denoted

as (l, r) codes where l is the degree of the check nodes and r is the degree of the variable nodes.

It has been found [6] that irregular LDPC codes in general perform better than regular LDPC

codes, especially when the code is binary. Irregular LDPC codes are described by defining a
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check node distribution. This is done by using a polynomial:

Λ(x) =

lmax∑
i=1

Λixi (3.50)

where lmax denotes the maximum degree of a check node and Λi indicates the number of check

nodes with degree i. A similar polynomial may be defined for the distribution of the degree of

the variable nodes:

P(x) =

rmax∑
i=1

Pixi (3.51)

where rmax denotes the maximum degree of a variable node and Pi indicates the number

of variable nodes with degree i. Irregular codes may alternatively be described from the

perspective of the edges. Thus:

λ(x) =
Λ′(x)
Λ′(1)

(3.52)

=

lmax∑
i=1

λixi−1 (3.53)

and

ρ(x) =
P′(x)
P(1)

(3.54)

=

rmax∑
i=1

ρixi−1. (3.55)

In this case λi(ρi) is interpreted as the fraction of edges connected to a check node (variable

node) of degree i. All codes following a certain degree distribution are said to belong to an

ensemble and it can be shown that any code randomly drawn from an ensemble will perform

approximately the same [6].

3.2.1 Design procedures

The design of an LDPC code comes down to a design of the parity check matrix and its

equivalent Tanner graph. For the binary case a procedure known as Density Evolution (DE)

was developed to optimise the degree distributions of the code by considering the PDF of

the received symbols. By using this procedure, codes that can operate within a fraction of a

decibel from capacity in AWGN and fading channels have been designed. DE assumes that the

code is of infinite length. This creates the problem that codes following the degree distribution
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must be very large. The code length directly effects the delay (latency) introduced by the code

into the communication system, thus making large codes unsuitable for delay-limited systems

such as voice communication. Thus, the design of small to medium frame length codes is an

important problem for reliable communication in delay-limited systems. For smaller codes

(that cannot effectively be approximated as having infinite length) some heuristic methods have

been developed to improve performance when using DE to design the code. In the case of

binary LDPC codes with a short frame length, the problem is that there is not enough space

to place enough parity checks to meet the optimised degree distributions while maintaining a

high girth. A solution to this problem is to design the code over a higher order field. These

so-called NB-LDPC codes have the advantage of a sparser Tanner graph while maintaining

a higher binary equivalent density. This is because the non-zero elements in the parity check

matrix are drawn from a higher order field and have a binary representation with multiple 1’s

while still only representing a single edge in the tanner graph. Several studies have shown that

the NB-LDPC codes outperform binary LDPC codes when the frame length is constrained [4]

[33] [34]. The general trend is that the performance improvement increases with field size and

is often more pronounced with higher code rates. The trade off incurred when using larger

field sizes is that the decoding process becomes more complex. However, with the use of the

FFT-BP decoding algorithm, the increase in complexity is not prohibitive.

Another problem that LDPC codes face, is that the encoding process is computationally

and memory-storage intensive. Since there is no structure in the code, the encoder is required

to store the relatively large generator matrix and perform a matrix multiplication. Several

attempts have been made to mitigate the complexity and storage requirements of the encoder

[33] [35]. Many of these attempts operate by introducing some structure into the parity check

matrix. The method chosen for this dissertation is to design the code to be QC. QC codes can

be efficiently encoded using shift registers.

3.2.2 QC-LDPC Codes

A QC code is defined as a code where every codeword can be cyclicly shifted by l positions and

still produce a codeword. The degree of the QC code is l. A QC-LDPC code has a parity check

matrix that is made up of rotated identity matrices of size l × l. The advantage of QC-LDPC

codes over random LDPC codes is that the encoder can be implemented with shift registers
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[36]. The encoding process is thus very fast and computationally inexpensive compared to

random LDPC codes, which are implemented with a matrix multiply.

The design of QC binary codes has been well studied and several possible design procedures

have been proposed [10] [8] [37] [38]. The design problem is in finding rotations for the

identity matrices that result in large girths. Also, the size of the rotated matrices relative to

the total size of the code affects the resultant degree distribution of the code. Owing to the

definition of QC-LDPC codes, they have regular degree distributions. In an effort to create

irregular degree distributions, one may replace some of the identity matrices with zero matrices.

Designing NB-QC-LDPC codes can be as simple as designing a binary QC-LDPC code

and replacing the 1s with elements from the field over which the NB-QC-LDPC code should

be defined. The choice of elements can have a large effect on the performance of the code and

will be discussed later. The difficulty with this approach is that degree distributions that work

well for binary codes do not necessarily work well for NB codes and vice verca. Put more

generally, the size of the field over which the NB-LDPC code is being defined will affect the

optimal degree distribution. Some results have shown [39] that with large field sizes the matrix

should be ultra-sparse. In the next section the performance of several different construction

techniques will be compared.

3.3 QC-LDPC codes based on finite fields

3.3.1 Construction of QC-LDPC codes by matrix dispersion

A convenient method for representing and constructing QC-LDPC codes was developed in [8].

A QC-LDPC code’s parity check matrix consists of cyclicly shifted identity matrices. In this

method the cyclic shift is indiced by a finite field element. The finite field used, Fq, will be

called the construction field. Let α be the primitive element of the construction field then the

powers of α (α−∞, α0, . . . , αq−2) will give all the elements of the field. From this, a location

vector z may be defined as follows:

z(αi) = {z0, z1, . . . , zq−2}, (3.56)

where zi = 1 and zk = 0 ∀k , i. For α−∞, z is defined as the all-zero vector. Let σ be an element

of GF(q). z(σα) will correspond to the location vector of σ cyclicly shifted to the right by one
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position. A (q−1)× (q−1) sized matrix A(σ) can then be created by using z(σ), z(σα), z(σα2),

. . . , z(σαq−2) as the rows of the matrix. As an example consider, GF(4), σ = α2, A(σ) will then

be:

A(σ) =


0 0 1

1 0 0

0 1 0

 . (3.57)

This matrix is thus the (q − 1) × (q − 1)-fold matrix expansion of σ. The expansion of the

zero element (α−∞) is a (q − 1) × (q − 1) all zero matrix. Using this approach, the design of a

QC-LDPC code requires one to create a matrix consisting of elements in the construction field.

This matrix is then expanded by using the (q−1)×(q−1)-fold matrix expansion of each element.

The design problem is to choose the correct elements.

3.3.2 Requirements for code with a minimum girth equal to 6

In order for a code to have no cycles of length 4 and thus a girth of at least 6, it must meet

the row-column (RC) constraint. The RC constraint states that no two rows may have non-zero

elements at the same positions in more than one column. Consider a m × n matrix W:

W =



w0

w1
...

wm−1


=



w0,0 w0,1 . . . w0,n−1

w1,0 w1,1 . . . w1,n−1
...

...
. . .

...

wm−1,0 wm−1,1 . . . wm−1,n−1


, (3.58)

where wi j ∈ Fq. Two constraints may be imposed on this matrix:

1. αkwi and αlwi must differ in at least n − 1 places for: 0 < i < m, 0 < k, l < q − 12 and

k , l.

2. αkwi and αlwj must differ in at least n−1 places for: 0 < i, j < m, i , j and 0 < k, l < q−2.

These constraints are known as the α-multiplied row constraints and imply that each row of W

may contain at most one zero element. Let H be the matrix created when each element in W is

expanded using the (q − 1) × (q − 1)-fold matrix expansion. Thus:

H(W) =



A(w0,0) A(w0,1) . . . A(w0,n−1)

A(w1,0) A(w1,1) . . . A(w1,n−1)
...

...
. . .

...

A(wm−1,0) A(wm−1,1) . . . A(wm−1,n−1)


. (3.59)
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From the structure of the location vectors and the α-multiplied row constraints, it can be shown

that H will meet the RC constraint [8]. For any pair (γ, ρ) of integers with 1 < γ < m and

1 < ρ < n, let H(γ, ρ) be a γ × ρ subarray of H. H(γ, ρ) is then a γ(q − 1) × ρ(q − 1) matrix and

also satisfies the RC-constraint. Then the null space over of H(γ, ρ) gives a QC-LDPC code of

length γ(q − 1) with rate at least (γ − ρ)/γ, whose Tanner graph has a girth of at least 6.

In order to change the binary QC-LDPC code described above into an NB-QC-LDPC

code, the 1’s must be replaced by elements from a finite field, Fq2. This field will be called

the code field. The code field and the construction field may be the same field, but it is not

required. There are several methods for replacing the 1s with elements from the code field. The

method used in [9] does this by redefining the location vector as:

z(αi) = {z0, z1, . . . , zq−2} (3.60)

where zi = αi and zk = 0 ∀k , i. Another method is to pick the elements at random from the

code field. Work was also done in [34] to find optimum choices based on the binary image of

the code. However, it was found that for code fields where q2 ≥ 256 the optimised method will

not outperform random selection. Several methods to create codes that meet the α-multiplied

row constraints will be described in the next sections.

3.3.3 Girth 6 codes based on dispersion of the multiplicative group

Consider a construction field Fq. Let m be the largest prime factor of q − 1, thus cm = q − 1.

Let α be a primitive element of Fq and β = αc. Then β is an element of Fq of order m (m is the

smallest integer such that βm = 1). The set Gm = {1, β, β2, . . . , βm−1} forms a cyclic subgroup of

the multiplicative group Gq−1 = {1, α, . . . , αq−1} of Fq. Let W be a m × m matrix over Fq:

W =



w0

w1
...

wm−1


=



1 1 . . . 1

β β2 . . . βm−1

...
...

. . .
...

βm−1 (β2)m−1 . . . (βm−1)m−1


. (3.61)

It was shown in [8] that this matrix meets the requirements for a girth-6 code as given above.

Therefore, after the (q− 1)× (q− 1)-fold matrix expansion, as defined above, the resultant code

will have a girth of at least 6.
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3.3.4 Structured NB-QC-LDPC codes with large girth

This construction method was developed in [10]. A parity check matrix is said to be ultra-sparse

if it has a uniform column weight of 2. Ultra-sparse binary LDPC codes have been shown to

have poor performance [6] as they will have many codewords with a low hamming weight and

thus have a small minimum distance. It has, however, been shown that the performance of

ultra-sparse NB-LDPC codes is quite good and improves with the field size. Let P be an m ×m

permutation matrix defined by:

Pi j =

{ 1 if i + 1 = j mod m

0 otherwise.
(3.62)

The parity check matrix of a (J,L)-regular QC-LDPC code is made up of J × L permutation

matrices :

H =


Pa11 . . . Pa1L

...
...

...

PaJ1 . . . PaJL

 . (3.63)

Choosing values for a is part of the design problem. For ultra-sparse codes J = 2 and the rate

is controlled with L. It has been shown that the maximum girth for a code with L ≥ 3 is 12. In

[10] this bound is met by taking the top row as identity matrices and using the Hoey sequence

for a. The Hoey sequence is given below for the first 18 numbers:

0, 1, 3, 7, 12, 20, 30, 44, 65, 80, 96, 122, 147, 181, 203, 251, 289, 360. (3.64)

To obtain an NB code from this binary image, a substitution is done where each 1 is replaced

with an element from the desired field. In [10] an approach which uses a unit weight circulant

was used. This approach is similar to the approach defined in equation 3.60. It works by

defining the unit weight circulant matrix of size m over GF(q):

Ĩm =



α0 0 . . . 0

0 α1 . . . 0
...

...
. . .

...

0 0 . . . αm−1


(3.65)

where m < q. Using this matrix the code structure is defined as:

H =

 Ĩm . . . Ĩm

Pa21 Ĩm . . . Pa2L Ĩm

 . (3.66)
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However, if the field size of the code is much larger than the size of the permutation matrix, then

the weight of the expanded matrix is relatively low, which results in poor performance. In [39]

it was found that for F256 and larger, the optimal choice of NB elements can be closely achieved

by randomly selecting the elements from the field. This is the approach that was taken in this

dissertation.

3.4 Codes used in this dissertation

The codes used in this dissertation were limited to the following parameters: The number of

Table 3.1: NB-QC-LDPC code parameters

Code parameters

Code rate 1
2

Field size (q) 256

Code length (n) in bits 2304

Data length (k) in bits 1152

Code length (n) in symbols 288

Data length (k) in symbols 144

encoded bits was chosen as 2304 in order to be an integer multiple of the number of bits in

the ST, SF and STF codes used later in the dissertation. F256 was chosen as this represents a

byte of data which is a standard unit. The code will thus not need to break message bytes into

sections. F256 is also a large enough field to demonstrate the performance of NB-LDPC codes.

Four codes matching the parameters above were created using the method described in section

3.3.3:

1. The first code used a construction field of F32 and selected NB elements using the method

given in Equation 3.60. This code will be called C1.

2. The second code used a construction field of F32 and selected NB elements using the

random method. This code will be called C2.

3. The third code used a construction field of F64 and selected NB elements using the method

given in Equation 3.60. This code will be called C3.
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4. The fourth code used a construction field of F64 and selected NB elements using the

random method. This code will be called C4.

Two codes matching the parameters above were created using the method described in section

3.3.4.

1. The first code used J = 2, L = 4, m = 77 and the first four elements of the Hoey sequence.

The NB elements were selected using the method given in Equation 3.66. This code will

be called C5.

2. The second code used J = 2,L = 4,m = 77 and the first four elements of the Hoey

sequence. The NB elements were selected using the random method. This code will be

called C6.

3.4.1 Performance of codes in an AWGN channel

In this study the performance of the 6 different codes will be compared. The simulations were

performed on an AWGN channel using BPSK modulation. Table 3.2 shows a summary of the

EB/N0 required by all the codes in order to achieve a BER of 10−4. The complete performance

curves can be seen in Figures 3.8, 3.9, 3.10, 3.11, 3.12 and 3.13. None of the codes showed any

signs of approaching an error floor in the simulated region.

Table 3.2: NB-LDPC code comparison, AWGN Channel

Eb/N0 required to achieve a BER of 10−3[dB]

Code C1 C2 C3 C4 C5 C6

Eb/N0 3.505 3.635 2.83 2.22 3.25 1.3

When comparing C3 with C1, one can see that C3 outperforms C1 by 0.675 dB. This is because

the construction field for C3 is twice the size of the construction field for C1. This means that

there are fewer rotated matrices in C1 than in C3, and C3 thus has a sparser parity check matrix.

This result thus agrees with the general concept that for NB-LDPC codes, matrices should be

sparse. Comparing C3 with C5 one can see that the girth 6 code (C3) outperforms the girth 12

code (C5) code by 0.42 dB. This indicates that girth is not the only factor when determining

the performance of a code. When comparing the performance of C4 with C3, one can see

an improvement of 0.61 dB. This improvement is due to using random nonzero elements over

using the unit weight circulant approach. Comparing the performance of C6 with C5, one can
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see an improvement of 1.92 dB. This performance is also due to the use of random non-zero

elements. With this improvement the girth 12 code outperforms the girth 6 code. Since C6 has

the best performance, it was used for all the rest of the simulations in this dissertation. Figures

3.14 and 3.15 show the performance of C6 in quantised channel conditions. From the figure

one can see that the code can operate without any loss in performance with only 6 quantisation

bits per BPSK modulation symbol.
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Figure 3.8: Performance of the girth-6 NB-QC-LDPC code using the F32 construction field with
the unit weight circulant NB elements in an AWGN channel (C1).
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Figure 3.9: Performance of the girth-6 NB-QC-LDPC code using the F32 construction field with
with random NB elements in an AWGN channel (C2).
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Figure 3.10: Performance of the girth-6 NB-QC-LDPC code using the F64 construction field
with the unit weight circulant NB elements in an AWGN channel (C3).

Department of Electrical, Electronic & Computer Engineering Page 39

 
 
 



Chapter Three Sparse Graph Codes

0 0.5 1 1.5 2 2.5 3
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

BE
R

AWGN Channel

 

 

10 Iterations
20 Iteration
30 Iterations
40 Iterations
50 Iterations
100 Iterations

Eb/N0 [dB]

Figure 3.11: Performance of the girth-6 NB-QC-LDPC code using the F64 construction field
with with random NB elements in an AWGN channel (C4).
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Figure 3.12: Performance of the girth-12 NB-QC-LDPC code using the unit weight circulant
NB elements in an AWGN channel (C5).
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Figure 3.13: Performance of the girth-12 NB-QC-LDPC code with random NB elements in an
AWGN channel (C6).
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Figure 3.14: Performance of the girth-12 NB-QC-LDPC code with random NB elements in a
quantised AWGN channel running 10 FFT-BP iterations (C6).
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Figure 3.15: Performance of the girth-12 NB-QC-LDPC code with random NB elements in a
quantised AWGN channel running 50 FFT-BP iterations (C6).
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Chapter Four

A Triply SelectiveMIMO
ChannelModel

A MIMO communication system is a system which has multiple transmit and multiple receive

antennas. Figure 4.1 shows a block diagram of a MIMO system. The incoming data signal is

processed, placed on NT antennas and transmitted. The transmitted signal passes through the

MIMO channel and is received by the NR receive antennas. The received signal is then processed

to retrieve an estimate of the original data. In order to provide useful performance results

Compression
FEC Coding
STF Coding
Modulation

Demultiplexing

Multiplexing
Demodulation
STF Decoding
FEC Decoding
Decompression

Input Data Output Data
MIMO Channel

NT Transmit 
Antennas

NR Receive
 Antennas

Transmitter Signal 
Processing

Receiver Signal 
Processing

Figure 4.1: A block diagram of a MIMO mobile wireless system.

and comparisons of the signal processing techniques (FEC coding, Multi-Antenna coding etc.)

discussed in this dissertation, a realistic and accurate mathematical model of a MIMO channel

is required. This chapter starts by discussing the different physical effects in a mobile wireless
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channel. A SISO mobile wireless channel model is then presented and extended to a MIMO

mobile wireless channel capable of simulating fading conditions with selectivity over space,

time and frequency.

4.1 SISO Mobile wireless channel

Several effects occur in mobile wireless communication channels. These effects [11] will be

explained below.

4.1.1 Physical effects

4.1.1.1 Noise

One kind of signal corruption that exists in all forms of communication is noise. Noise exists

when there are signals present in the system (specifically at the receiver) that were not sent by

the transmitter. The sources of noise are diverse. Some common sources include radiation from

outer space, amplifier noise, interference from other communication systems and thermal noise.

The most commonly used statistical model for noise is AWGN. The noise is additive because it

is added to the signal at the receiver (after the rest of the channel). The noise is white, because

it is assumed that the noise exists at the same power at all frequencies and the noise is Gaussian

because the amplitude of the noise signal is zero mean Gaussian distributed. The PDF of the

noise is therefore given as:

p(η(t)) =
1√

2πσ2
n

exp
(
−
η2(t)
2σ2

n

)
(4.1)

where η(t) is the noise signal and σ2
n is the noise power. In a system where complex modulation

schemes are used, the noise is added to both the complex and the real axis. In this case the noise

is usually modelled as being a circular symmetric complex Gaussian variable. The noise can

thus be given as:

n(t) = nR(t) + nI(t) (4.2)

where nR(t) and nI(t) are independent Gaussian processes, with the same variance, following

the distribution given in Equation 4.1.
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4.1.1.2 Multiple paths

Multipath refers to the condition where there are several paths between the transmitter and

the receiver. These paths could include a LOS path as well as paths created when the signal

bounces off scatterers in the environment. The result of multiple paths is that multiple copies of

the signal arrive at the receiver. When the multiple paths are combined at the receiver, several

effects occur. The first effect is ISI and occurs when the path delays are on the order of a symbol

period. The second effect is fading. Fading occurs when the amplitude of the signal decreases.

Fading can generally be divided into two types [11]:

• Large-scale fading - This type of fading is due to path loss as a function of distance and

shadowing by large objects such as buildings and hills. This occurs as the mobile moves

through distances on the order of the cell size and is typically frequency independent.

• Small-scale fading - This type of fading is due to constructive and destructive interference

of multiple signal paths between the transmitter and receiver. This occurs as the

mobile moves through distances on the order of the carrier wavelength and is frequency

dependent.

Large-scale fading is applicable to issues such as cell-site planning and is not considered in

this thesis. Small-scale fading is relevant to the design of the communication system and is

considered in this dissertation. From this point onwards, small scale fading will be referred to

as fading. As an example consider figure 4.2. In the figure there are two main paths. These

paths will create ISI. Each path is made up of many paths with very similar path delays, which

will result in independent fading on each main path.

4.1.1.3 Relative motion

When the transmitter and the receiver are in relative motion, the signal experiences a shift in

frequency (Doppler shift). If the relative motion does not have a constant velocity, the Doppler

shift will not be constant. The Doppler shift can be positive or negative, depending on the

relative direction of movement between the transmitter and receiver. For example, consider a

transmitter moving at a velocity of v(t) [m/s] relative to the receiver, transmitting on a carrier

with a wavelength of λ [m]. The time-variant Doppler frequency shift, denoted by fd(t) [Hz], is

given by:

fd(t) =
v(t)
λ

cos(θ(t)) (4.3)
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Scatterer 1

Scatterer 2

LOS component

Path 1

Path 2

Scatterer 1

Scatterer 2

Transmitter Receiver

LOS component

Path 1

Path 2

Figure 4.2: A simplistic representation of a wireless channel.

where θ(t) is the angle of arrival of the signal as a function of time. When the Doppler shift

varies with time, the signal is ‘smeared’ in the frequency domain. This effect is known as the

Doppler Spread. The Doppler spread is defined in Hertz and is equal to the width of the Doppler

spectrum. In this dissertation, Doppler spread will be denoted by Ds.

4.1.2 Signal effects

The physical effects of the channel on the signal are mathematically modelled. Some definitions

that are used will be given below [11].

• Coherence Time: The coherence time (Tc) of a channel is defined as the time over which

the amplitude of the signal does not change significantly and is proportional to the inverse

of the Doppler spread:

Tc ∝
1

Ds
(4.4)

Department of Electrical, Electronic & Computer Engineering Page 46

 
 
 



Chapter Four A Triply SelectiveMIMO ChannelModel

• Delay Spread: The delay spread (Td) of the channel is defined as the difference in

propagation time between the shortest and the longest significant paths. It is thus a

measure of how much the signal is ‘smeared’ in the time domain.

• Coherence Bandwidth: The coherence bandwidth (Wc) of the channel is defined as the

range of frequencies over which the amplitude of the frequency response of the channel

does not change significantly. The coherence bandwidth is proportional to the inverse of

the delay spread:

Wc ∝
1
Td
. (4.5)

Using the definitions provided above, the fading experienced by the channel may be classified

into several categories. In terms of the frequency domain, the fading experienced by a signal

will be either flat or frequency selective:

• Flat Fading: A signal is defined as experiencing flat fading when all the frequency

components of the signal experiences the same fading. This occurs when the bandwidth

occupied by the signal is less than the coherence bandwidth of the channel, or equivalently

when the signal period is larger than the delay spread.

• Frequency Selective Fading: A signal experiences frequency selective fading when

the different frequency components experience different fading. This occurs when the

bandwidth occupied by the signal is larger than the coherence bandwidth or equivalently

when the signal period is less than the delay spread of the channel. Signals in a frequency

selective channel experience ISI and require an equaliser at the receiver (except in the

case of OFDM)

In terms of the time domain, fading is categorised as slow fading or fast fading.

• Fast Fading: The signal is defined as experiencing fast fading when the channel

parameters vary faster than the signal. This corresponds to a high Doppler spread and

equivalently occurs when the symbol period is longer than the coherence time.

• Slow Fading: The signal is defined as experiencing slow fading when the channel

parameters vary more slowly than the signal. This corresponds to a low Doppler spread

and equivalently occurs when the symbol period is shorter than the coherence time.
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4.1.3 Modelling of fading

Several models for the fading amplitude have been suggested in literature. These include:

Raleigh fading, Rician fading, Weibull fading and Nakagami-n fading. Each model has its

own advantages and disadvantages and is able to model different scenarios effectively. In this

dissertation, the Rayleigh fading model is used. The Rayleigh fading model assumes that there

is no LOS component path and is thus a worst case scenario. In the Rayleigh fading model,

the random variable (RV) used to represent the fading is constructed by considering a complex

Gaussian RV in phasor form. The amplitude of the fading RV is thus the amplitude of X1 + X2

where X1 and X2 are Gaussian random variables. The PDF of the amplitude of the fading RV is

thus Rayleigh distributed:

pA(r) =

{ r
σ2 exp

[
−r2

2σ2
r

]
f or r ≥ 0

0 otherwise,
(4.6)

where σ2
r is the variance of both X1 and X2 and is set to 1/2 to ensure that no power is added to

the signal. The mean of the amplitude of the fading RV is:

E[r] =

√
π

2
σ2

r . (4.7)

The variance of the amplitude of the fading RV can be given as:

σ2
R =

(
2 −

π

2

)
σ2

r . (4.8)

The phase of the fading RV will be uniformly distributed and its PDF is thus:

pθ(p) =
1

2π
f or − π ≤ p ≤ π. (4.9)

4.1.4 Modelling of frequency selective multipath

A frequency selective multipath channel can be effectively modelled as a finite impulse response

(FIR) filter where each tap in the filter corresponds to a signal path. In the case where there is

relative motion between the transmitter and the receiver, the amplitude and phase of the taps

will vary with time (fading). If the time varying channel impulse response (CIR) of the channel

is given by h(t, τ) and the transmitted signal is given by s(t), the received signal will be:

r(t) = s(t) ~ h(t, τ) (4.10)
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where r(t) is the received signal and ~ represents the time domain convolution operator. In the

case where the time delays of the different multipath components remain constant (which will

be assumed for the remainder of this dissertation), the impulse response for a channel consisting

of K paths may be given as:

h(t, τ) =

K−1∑
i=0

βi(t)δ(τ − τi)
[
exp(φi(t)

]
(4.11)

where βi(t), φi(t) and τi are the amplitude, phase and time delay of the ith multipath respectively.

A time invariant channel impulse response may be obtained by averaging h(t, τ) over time:

h(τ) = h(t, τ) (4.12)

=

K−1∑
i=0

hiδ(τ − τi)
[
exp(φi(t))

]
(4.13)

where hi is the time average of βi(t) and x(t) is used to denote the time average of the variable

x(t). From the channel impulse response a channel power delay profile [PDP] (P(t, τ)) may be

defined:

P(t, τ) = |h(t, τ)|2 (4.14)

By averaging the PDP over time, a time invariant PDP can be given as:

P(τ) =

K∑
i=1

Piδ(τ − τi) (4.15)

where Pi is the power in the ith tap and may be given by:

Pi = |hi|
2. (4.16)

In order to model realistic channels, measurements have been taken to produce different time

invariant PDPs. In this dissertation, the 20-tap suburban alternative PDP [1] as well as a standard

2-tap channel was used for simulation purposes (see Appendix A for full PDP specifications).

Using the time-invariant PDPs as a starting point, one can now add fading to the channel model.

Let αi(t) represent the complex fading process of the ith multipath. The time varying amplitude

and time varying phase of the ith multipath may then be given as:

βi(t) = |αi(t)|βi(t) (4.17)

φi(t) = ∠αi(t). (4.18)

From this equation one may then produce any fading characteristic by defining the characteristic

of αi(t).
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4.1.5 SISO channel model

Combining the fading, multipath and noise yields a system model, which may be expressed as:

r(t) = s(t) ~ h(τ) + n(t). (4.19)

A diagram representing the model for a SISO mobile wireless channel as derived above can be

seen in Figure 4.3. A delay Di as given in the figure corresponds to the incremental time delay

from one tap to the next, thus Di = τi − τi−1. In this dissertation, only digital communication

D1 D2 DK
s(t)

h1 h2 hK

α1(t) α2(t) αK(t)

n(t)

r(t)

Figure 4.3: The SISO mobile wireless channel model

systems will be considered. It is thus useful to move the channel model to the discrete time

domain. Let Ts be the sampling time. For the moment, also assume that all the time delays

of the taps of the CIR (τ1, τ2, . . . , τK) are integer multiples of the sampling time. The system

model can now be expressed as:

y[t] =

L−1∑
i=0

h[i]x[t − i] + n[t] (4.20)

where L = Td/Ts and represents the number of samples required to represent the CIR.
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4.2 MIMO mobile wireless channel

The SISO mobile channel model described above can now be extended to a MIMO channel

model. Essentially, a SISO channel as described above, exists between each transmitter and

receiver antenna pair. The received signal at an antenna will thus be the sum of the signals from

each of the transmit antennas.

There are, however, some difficulties which arise in modelling realistic MIMO channels.

Since the antenna pairs exist in the same physical space the channels experienced will be

similar to some degree. The degree of similarity is called correlation. The correlation will

depend on both the spacing of the antennas and on the richness of the scattering environment.

An effective method to introduce correlation into the model is thus required. It was also shown

in [40] that the transmit and receive filters can have an effect on the correlation and thus need

to be taken into account.

This section will start by setting up the mathematical notation and framework for the

MIMO channel model and then describe the method used to introduce correlation.

4.2.1 Model description and notation

Consider a MIMO system with NT transmit antennas and NR receive antennas. Let pT (t) and

pR(t) be the normalised time-invariant impulse responses of the transmit and receive filters

respectively. If gi j(t, τ) represents the CIR of the sub-channel between the ith transmit antenna

and the jth receive antenna, the combined CIR of the sub-channel can be given as:

hi, j(t, τ) = pR(t) ~ gi, j(t, τ) ~ pT (t). (4.21)

Let hi, j[k, τ] be the discrete time version of hi, j(t, τ) sampled at Ts where k is the sampling

indice. It should be noted that the impulse response of a transmit or receive filter is generally

designed to be infinite to limit the bandwidth usage of the signal. As a result, hi j[k, τ] will

also have an infinite number of taps. However, the filters are usually designed such that the

power in the time domain taps of the impulse response falls off rapidly. Thus, for the purpose

of modelling, when the power in a tap falls below a defined threshold (such as 0.01%), the

effect of the taps are negligible and can be ignored. Let the range of indices, required to yield

the predefined amount of power, be from −L1 to L2 (where L1, L2 ∈ Z; L1, L2 ≥ 0). The total
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number of values in hi, j[k, τ] is thus equal to L, where L = L1 + L2 + 1. The combined CIR

is thus a non-causal FIR filter. This does not imply that the physical channel is non-causal.

The physical channel gi j(t, τ) is always causal; it is the introduction of the transmit and

receive filters that causes hi, j[k, τ] to be non-causal. For this dissertation it is assumed that the

sub-channels between all pairs of transmit and receive antennas have the same PDP but with

independent fading. The time averaged, combined CIR (hi, j[k, τ]), is thus the same for all i and j.

In a realistic channel it is seldom the case that the taps are spaced at intervals that are

integer multiples of the symbol period (Tsym). Thus in order to represent the CIR accurately,

the sampling period Ts is generally higher than the symbol period and given by Ts = Tsym/γ,

where γ is an integer. Since the CIR has been oversampled, the transmit signal must also be

oversampled. Since the transmit filter has been included in the CIR, this can simply be done

by inserting γ − 1 zeros between each symbol. Thus, if si[t] is the sequence of symbols to be

transmitted from the ith transmit antenna and k is the sampling indice, the oversampled transmit

sequence xi[k] can be given by:

xi[k] =

{
si

[
k
γ

]
i f k

γ
∈ Z

0, otherwise.
(4.22)

The signal received at antenna j can now be given as:

y j[k] =

NT∑
i=1

L2∑
l=−L1

hi, j[k, l]xi[k − l] + z j[k] (4.23)

where z j[k] = n j[k] ⊗ pR[k] is the noise at the jth receive antenna, that has been passed through

the receive filter. This process can now efficiently moved to a matrix representation. Let

y[k] and x[k] and z[k] respectively be the vector of signals received, the vector of symbols

transmitted and the vector of noise samples at sampling instance k. The channel model can now

be expressed as:

y[k] =

L2∑
i=−L1

Hi[k]x[k − i] + z[k], (4.24)

where the channel matrix Hi[k] is structured as follows:

Hi[k] =


h1,1[k, i] . . . h1,NT [k, i]

...
. . .

...

hNR,1[k, i] . . . hNR,NT [k, i]

 . (4.25)
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z-1 z-1 z-1x[k]

H-L1[k] H-L1+1[k] HL2[k]

z[k]

y[k]

Figure 4.4: The discrete time MIMO mobile wireless channel model

A diagram of the model can be seen in Figure 4.4. If one considers Hi[k] for all i it is evident

that the channel requires NT NRL channel co-efficients at each sampling instance k. These

co-efficients may be represented as a single vector by placing the channel co-efficients of the

different subchannels in the same vector, hv[k]:

hv[k] = [hT1,1[k], . . . ,hT1,NR
[k], . . . ,hTNT,1[k], · · · ,hTNT,NR

[k]]T (4.26)

The modelling problem has now been reduced to generating hv[k] and the noise vector z[k] in

such a way as to produce a system with the correct stochastic properties.

4.2.1.1 Introducing Antenna Correlation

Antenna correlation can be modelled in different ways. This dissertation uses the Kronecker

model. The Kronecker model works on the assumption that the antenna correlation between

the transmitted and received signals can be split into the correlation at the transmit antennas

and the correlation at the receive antennas separately. Let Ψ be the total correlation, ΨT be the

correlation matrix for the transmit antennas and ΨR be the correlation matrix for the receive

antennas. Thus,

Ψ = ΨRΨT (4.27)
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where ΨR and ΨT can be given as:

ΨT =


ρ1,1

T . . . ρ1,NT
T

...
. . .

...

ρNT ,1
T . . . ρNT ,NT

T

 (4.28)

ΨR =


ρ1,1

R . . . ρ1,NR
R

...
. . .

...

ρNR,1
R . . . ρNR,NR

R

 (4.29)

where ρi, j
T represents the correlation between the ith and the jth transmit antennas while ρi, j

R

represents the correlation between the ith and the jth receive antennas. Different models may

now be used to determine values for ρi, j
R and ρi, j

T . In this dissertation, the exponential process is

used [41]:

ρ
m,p
R = r|m−p| (4.30)

ρ
n,q
T = r|n−q|, (4.31)

where |r| ≤ 1. Scaling r will thus add more or less correlation.

4.2.2 Statistical properties of the channel co-efficients

4.2.2.1 Noise

The original noise vector n[k] is white zero-mean Gaussian distributed. The filtered noise vector

z[k] is also zero mean Gaussian distributed with an auto-covariance matrix that can be given as:

Rzz(k1 − k2) = E
[
z(k1) · zH (k2)

]
(4.32)

= N0 · RpR pR [(k1 − k2)Ts] INR (4.33)

where RpR pR(·) is the autocorrelation of the receive filter. If RpR pR(·) satisfies the following

condition:

RpR pT (kTs) = 0, k , 0 (4.34)

then zi[k] is white from sample to sample and from antenna to antenna with a variance of N0.
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4.2.2.2 Channel fading parameters

In order to generate a channel fading co-efficient vector with the correct stochastic properties,

the stochastic properties must first be defined. Since gi(t, τ) is zero mean complex Gaussian

distributed, hi(t, τ) will also be zero mean complex Gaussian distributed. As as result hv[k] will

be zero mean Gaussian distributed. To find the correlation properties of hv[k] one studies its

covariance matrix. The covariance of hv[k] can be given by [40]:

Ch[k1 − k2] = E[hv[k1].hHv [k2]] (4.35)

= (ΨR ⊗ΨT ⊗ CIS I)J0(2π fd(k1 − k2)Ts) (4.36)

where ⊗ denotes the Kronecker product, ΨT and ΨR are the antenna correlation matrices as

described above and CIS I is the filter tap ISI covariance matrix. fd is the Doppler frequency and

J(·) is the Bessel function of the first kind of order zero. CIS I is defined as [40]:

CIS I =


c[−L1,−L1] . . . c[−L1, L2]

...
. . .

...

c[L2,−L1] . . . c[L2, L2]

 (4.37)

where

c[l1, l2] =

K∑
i=0

PiRPT ,PR[l1T s − τ1]R
∗

PT ,PR
[l2Ts − τi] (4.38)

and RPT ,PR[·] is the convolution function of the transmit and receive filters. Pi is the power in

the ith tap of the PDP (see Equation 4.15) and K is the number of original taps in the PDP.

Ch[k1 − k2] thus takes into account the correlation due to antennas as well as the the correlation

due to the transmit and receive filters and the channel taps. If one wishes a vector of values to

have correlation properties given by a matrix X, then the vector must be multiplied by a matrix

X1/2. To create the correlation matrix for any sampling instance k, one sets k1 = k2. Thus hv[k]

can be created by multiplying a zero mean complex Gaussian vector with the square root of the

correlation matrix (Ch[0]) as follows:

hv[k] = C1/2
h (0) · φ[k] (4.39)

=
(
Ψ

1/2
R ⊗Ψ

1/2
T ⊗ C1/2

IS I

)
· φ[k], (4.40)

where φ[k] is an NT NRL × 1 vector whose elements are uncorrelated Raleigh flat fading and

E
[
φ[k1] · φH [k2]

]
= J0[2π fd(k1 − k2)Ts] · INT NRL. (4.41)
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A useful property of this model is that it does not require the channel tap delays in the PDP to be

integer multiples of the sampling frequency. Through Equation 4.38 the CIS I matrix will take

into account the effects of fractionally spaced taps without the need to increase the sampling

frequency.

4.2.3 Block fading channel conditions and OFDM

Most of the work in this dissertation uses OFDM. For simulation purposes and to analyse

the multi-antenna coding techniques properly, assumptions are made on the temporal

characteristics of the channel. Some codes, such as the Alamouti ST code, assume quasi-static

fading conditions in which the channel fading parameters (φ[k] in equation 4.39) remain

constant for the entire ST codeword (2 OFDM symbols in the case of Alamouti). Most of the

SF and STF codes assume block fading channel conditions. Block fading assumes that the

channel fading parameters remain constant for the duration of one OFDM symbol (Tsym).

Since OFDM allows the placement of information symbols on individual subcarriers, it

is useful to rewrite equation 4.24 in the frequency domain. Consider the combined CIR

between the ith transmit antenna and the jth receive antenna for the kth transmitted OFDM

symbol, hi j[k]. If one defines N f to be the number of discrete frequencies, the frequency

domain representation of this channel (h f
i j[k]) can be given by:

h f
i j[k] = Fhi j[k] (4.42)

where F = [fτ0 , fτ1 , . . . , fτL−1], f = [1, ζ, . . . , ζN f−1]T and ζ = exp
(
− 2π

Tsym

)
. h f

i jp[k] will thus

contain the channel response from the ith transmit antenna to the jth receive antenna along the

pth subcarrier. In this dissertation it is assumed that the OFDM modulation system has perfect

timing and synchronisation. Thus, the symbol received at the jth receive antenna on the pth

subcarrier for the kth OFDM symbol can be given as:

y j,p[k] =

NT∑
i=1

h f
i jp[k]ci,p[k] + w j,p[k] (4.43)

where ci,p[k] is the codeword transmitted from the ith transmit antenna on the pth subcarrier and

w j,p[k] is the noise at the jth receive antenna for the pth subcarrier. In matrix form, over all

subcarriers, this can be written as:

y j[k] =

NT∑
i=1

h f
i j[k]diag(ci[k]) + w j[k]. (4.44)
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More generic descriptions will be given in the section on multi-antenna codes when they are

required.

4.2.4 Generating random variables

4.2.4.1 Generating AWGN random variables

The channel requires the generation of a vector of independent zero mean Gaussian RVs with

a specific variance. The process followed to produce these is to create a zero mean Gaussian

RV with variance equal to 1 and then to scale the RV with the correct scaling factor. Many

algorithms exist for the creation of zero mean Gaussian RVs. These algorithms normally start

by creating a uniformly distributed RV and then transforming the variable into a Gaussian RV

using a transformation algorithm. Examples of algorithms that create uniformly distributed

RVs are the Mersenne Twister and the Wichman-Hill algorithms. Examples of transformation

algorithms are the Bray-Marsaglia and the Box-Muller sine-cosine algorithm. This dissertation

used the Wichman-Hill algorithm in conjunction with the Bray-Marsaglia algorithm [42].

The output of these algorithms may be directly scaled by the required noise variance if

SNR versus BER simulations are required. However, most coded systems require Eb/N0 versus

BER simulations. To obtain noise which results in the correct Eb/N0 in a digital simulation, the

scaling factor (ns) is calculated as follows [43]:

ns =

√
σ2

s fs

10
Eb/N0

10 2 fb

(4.45)

where σ2
s is the variance of the transmitted signal, fs = 1/Ts is the sampling frequency of the

system and fb is the input frequency of the information bits.

4.2.4.2 Generating Rayleigh flat fading co-efficients

There are many algorithms available to create Raleigh fading variables with the required

time domain characteristics (Doppler spread). For example, Clarke’s model starts by creating

independent complex Gaussian variables using methods as described in the previous section

and then filters these values with a filter shaped like the required Doppler spectrum. In this

dissertation however, the modified Jakes model is used [44]. This model creates fades by

summing over many sinusoids. The fading process (α(t)) is given by:

α(t) = αr(t) + αi(t) (4.46)
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where

αr(t) =

√
2

NS

NS∑
n=1

cos(2π fd cos βn + ζn) (4.47)

αi(t) =

√
2

NS

NS∑
n=1

cos(2π fd sin βn + ηn) (4.48)

and

βn =
2πn − π + θ

4NS
. (4.49)

NS represents the number of sinusoids added and should be larger than eight. ηn, θ and ζn are

independent uniformly distributed random variables in the interval [−π, π]. For the purpose of

the simulator, L of these processes are independently created. These processes are then matched

to φ[k] (from equation 4.39). Thus φ j[k] = α j(kTs) where α j(kTs) is the sampled version of the

jth fading process.
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Chapter Five

Multi-Antenna Coding
Techniques

MIMO systems theoretically offer several performance improvements over SISO systems.

Specifically, the capacity of a MIMO system grows linearly with the minimum of the number of

transmit and receive antennas. This increased capacity allows for an increase in the throughput

of a MIMO system over a SISO system. A second improvement is increased reliability in a

fading environment. This is due to the diversity obtained from the independent paths between

the transmitter and receiver antennas. In order to extract these gains, multi-antenna codes must

be developed. These codes can be characterised by the diversity order and the transmission

rate achieved. Codes that are able to extract all the available diversity and communicate at a

high rate will inevitably have a high decoding complexity. As a result, the complexity of a

code is another important parameter to consider. This chapter presents the design of ST, SF

and STF codes with varying rates, achieved diversity and decoding complexity. The effect of

quantisation at the receiver on the achievable diversity of full rate codes using linear precoding

is also derived mathematically and verified using simulations.

5.1 ST codes

Consider a MIMO system with NT transmit and NR receive antennas. Let x = [x1, x2, . . . , xp]

denote a block of information symbols, of size p, taken from a complex modulation alphabet

such as bipolar phase shift keying (BPSK) or quadrature amplitude modulation (QAM). This
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block of information symbols is encoded to produce a code C

C =



c1,1 . . . c1,NB

c2,1 . . . c2,NB

...
. . .

...

cNT ,1 . . . cNT ,NB


, (5.1)

where NB represents the number of symbol periods over which the code is defined. The code

entry ci, j represents the complex symbol to be transmitted from antenna i at time interval j. The

rate of the code is defined as the number of information symbols per channel use and may be

calculated as:

r =
p

NB
. (5.2)

The maximum achievable rate is equal to the number of transmit antennas. Deriving exact

performance curves for an ST code is non-trivial. A useful measure which is used instead

is a pairwise error probability (PEP), which is the probability that one codeword (C) will be

mistaken for another (C′). The PEP can be upper bounded by [45]

P(C→ C′) ≤
 r∏

i=1

λi

−NR (
ρ

4NT

)rNr

, (5.3)

where ρ denotes the SNR at each receive antenna, r denotes the rank of the matrix D given by

D = C−C′ and λ1, λ2, . . . , λr are the non-zero eigenvalues of the matrix given by (C−C′)H(C−

C′). Thus, this gives an upper bound on the symbol error rate. From this PEP, two design

criteria for ST codes were developed:

• Rank Criterion or Diversity Criterion: The minimum rank of the matrix D over all

pairs of distinct codewords must be as large as possible.

• Product Criterion: The minimum of the products of the eigenvalues (λ1, λ2, . . . , λr) over

all pairs of distinct codewords must be as large as possible.

The rank criterion will affect the achievable diversity of the code and thus the slope of the BER

curve, while the product criterion will affect the coding gain achieved by the code and thus the

horizontal shift of the BER curve. Important parameters to consider, other than these criteria,

include the code rate and the decoding complexity. The first ST block codes to be developed

were orthogonal codes.
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5.1.1 Orthogonal codes

Orthogonal codes are defined as codes where the code matrix meets the following requirement:

CT C =

n∑
i=1

|si|
2I, (5.4)

where si is a complex modulation symbol and n is the number of symbols in a codeword.

When this criteria is met, the channel decouples into n separate channels. The SNR of the ith

subchannel is:

S NR =
ρ2

NT
·
||H||2

σ2 · E
[
|si|

2
]
. (5.5)

This decoupling allows the symbols in the code to be maximum likelihood (ML) decoded

separately using maximum ratio combining (MRC), thus making the complexity of the decoding

process grow linearly with code size. The original orthogonal code is known as the Alamouti

code [12] and was designed for NT = 2:

C =

 s1 −s∗2
s2 s∗1

 . (5.6)

The Alamouti code is able to achieve a diversity of 2 at a rate of 1. After the seminal Alamouti

code, some work was done in [13][46] to develop generalised orthogonal codes for any number

of antennas. For the cases where NT = 3, 4, codes were found that could achieve a rate of 3/4.

However, for arbitrary complex modulation constellations and NT > 4, the codes developed in

[13] were limited to a rate of 1/2.

5.1.2 Quasi-orthogonal codes

As a result of the limited rate of orthogonal ST codes, the requirement of orthogonality was

relaxed to create quasi-orthogonal ST block codes (QO-ST) [47]. QO-ST block codes were

developed that could achieve a rate of 1; however, these codes could not achieve full diversity.

Using the concept of constellation rotation described in the next section, QO-ST block codes

were developed that could achieve full diversity [48]. However, these codes were not able to

achieve a rate of 1 for more than 4 antennas. The trade-off for the higher rate compared to

the orthogonal codes is that the symbols could no longer be separately decoded. They are ML

decoded in pairs (or even larger groups). This leads to an increase in decoding complexity.
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5.1.3 Constellation rotation and linear precoding

In order to achieve full diversity and full rate, simple orthogonal type codes are not sufficient.

Advanced codes make use of the concepts of constellation rotation (CR), LP and layering [49–

53].

5.1.3.1 Constellation rotation

In CR, the complex modulation constellation is ‘rotated’ to yield a new constellation. The

purpose of the rotation is to make a transmitted symbol robust against fading. In order for

CR to work, the symbol has to fade independently along the real and imaginary axes. Figure

5.1 shows a symbolic representation of a standard quadrature phase shift keying (QPSK)

constellation. If the symbol experiences fading along either the real or the imaginary axis,

Figure 5.1: Symbolic QPSK constellation.

the symbols fade toward one another and one bit of information is lost. This can be seen in

Figure 5.2. Consider now the rotated constellation in figure 5.4. If fading is experienced along

a dimension, the symbols do not move towards each other, as can be seen in Figure 5.4. As a

result, all the information is maintained. In order for the information to be lost, the signal has

to experience fading along both dimensions. CR is thus able to achieve diversity of order 2,

as long as the fading along the two dimensions is independent. In practice, the fading can be

made to be independent by interleaving the complex and real components of different symbols.

This diversity can be explained in terms of information theory. In the case of normal

constellations each dimension carries nb bits of information (for QPSK, nb = 1). After CR
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Figure 5.2: Symbolic Faded QPSK constellation.

Figure 5.3: Symbolic Rotated QPSK constellation.

each dimension carries 2nb bits of information. Since only 2nb of information exists in each

symbol, the two dimensions are carrying the same information. Lth-Order diversity is defined

as occurring when the information is transmitted across L independent fading paths. CR thus

achieves a diversity order of 2. The concept of entangling the information in several dimensions

together, to yield diversity can be generalised to yield LP.

5.1.3.2 Linear precoding

In CR the information bits from the 2 phase dimensions are entangled. In LP the information

from any arbitrary set of dimensions may be entangled. Consider the vector x, which consists

of n complex data symbols drawn from some modulation alphabet A. x can be viewed as a
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Figure 5.4: Symbolic Faded rotated QPSK constellation.

point in an n-dimensional vector space where the n complex mathematical dimensions could

correspond to any n orthogonal complex physical dimensions such as different points in time,

frequency or space. The rotation matrix, Θn, is defined as an n × n complex matrix. The design

criteria may be given as follows:

1. The rank of Θn (RΘ) must be equal to n.

2. The LP process must not add power, thus:

tr(ΘΘH ) = n (5.7)

where the notation tr(M) refers to the trace of the matrix M.

3. Maximum diversity gain criterion:

|θTk (x − x′)| , 0, ∀ x , x′ ∈ A (5.8)

where θTk denotes the kth row of Θn.

4. Maximum coding gain criterion: Find the matrix Θn which maximises the minimum

Euclidean distance, dΘn , between the closest pair of encoded vectors.

dΘn = min
∀x,x′

n∏
k=1

|θTk (x − x′|2 (5.9)

If criterion 2 is met, then the code will be able to achieve full diversity. Criterion 3 allows for

maximum separation of the different coded vectors and thus maximises the coding gain. In
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general, if a code has maximised its coding gain, then the code will also meet criterion 2. If n is

a power of two then the precoding matrix is unitary. Unitary matrices have the advantage that

the distance properties of the original modulation constellation are maintained. This means that

the performance in an AWGN channel is invariant from an uncoded system. In this dissertation

only unitary matrices are used. A construction method for a unitary matrix which meets the

above criteria can be given by [51] :

Θn = Fndiag(θ0, θ1, . . . , θn−1), (5.10)

where Fn is the n × n DFT matrix and θ is given by θ = e2π/(4n). This construction method

is used for all the rotation matrices used in this dissertation. For a discussion on non-unitary

matrices see [52]. The process of LP can now be defined as:

s = Θnx. (5.11)

If Θn meets the requirements given above, each symbol in s will contain all the information in

x. If each symbol is then transmitted along an independently fading dimension (such as two

time periods experiencing independent fading), the system will achieve a diversity order equal

to n.

5.1.3.3 Layering

Layers may be created in a code matrix to increase the throughput of the system. Each layer

is independently encoded with the linear precoder. Diophantine approximation theory is then

used to keep these layers separable at the decoder [54]. This is done by multiplying each layer

with a Diophantine number. The Diophantine number may be given by:

φ = θ1/n (5.12)

where θ is the same number as used for the LP matrix. Each layer is then assigned a power of

φ. The ith layer is thus multiplied with φi−1. The exact placement of layers will be explained in

the following sections.

5.1.4 Diagonal algebraic space time codes

Diagonal algebraic space time (DAST) codes were developed in [14] and are based on algebraic

rotations. Basically DAST codes entangle a vector of symbols and place them on the diagonal
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of a code matrix. A Hadamard transform is then performed on the code matrix to improve the

peak to average power ratio. The structure can thus be given by:

CNT = HMT diag(x1, x2, . . . , xNT ) (5.13)

where x = ΘNT s and HNT is the size NT Hadamard matrix. Since Hadamard matrices only

exist in sizes that are a power of two, these DAST codes only exist for NT = 2k, k ∈ Z; k ≥ 0.

Universal DAST codes that exist for any NT are of the form:

CNT =



x1 0 . . . 0

0 x2 . . . 0
...

...
. . .

...

0 0 . . . xNT


, (5.14)

where x = ΘNT s and ΘNT is the NT × NT rotation matrix defined by equation 5.10. Since the

information in each symbol si will be transmitted from each transmit antenna and at each time

instance, DAST codes are able to provide full diversity while achieving a rate of 1. DAST

Codes (and all codes that use LP) can be efficiently decoded using a SD.

5.1.5 Threaded algebraic space time codes

Threaded algebraic space time codes (TAST) codes are also known as universal space time

codes and can achieve full diversity at a transmission rate equal to NT (the highest possible rate)

[54]. TAST codes are essentially an extension of universal DAST codes. DAST codes have

one thread placed on the main diagonal of the code matrix. TAST codes have up to NT threads.

These threads are placed on the cyclicly shifted diagonals of the code matrix. To improve

performance, Diophantine approximation theory may be used to create Diophantine numbers

which make the different threads ‘transparent’ to each other at the receiver. The code will thus

have the following structure:

CNT =



φ0x1,1 φ1x2,1 φ2x3,1 . . . φNT−1xNT ,1

φNT−1xNT ,2 φ0x1,2 φ1x2,2 . . . φNT−2xNT−1,2

φNT−2xNT−1,3 φNT−1xNT ,3 φ0x1,3 . . . φNT−3xNT−2,3
...

...
...

. . .
...

φ1x2,NT φ2x3,NT φ3x4,NT . . . φ0x1,NT


(5.15)
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where

xi = (xi,1, xi,2, . . . , xi,NT )T (5.16)

= ΘNT si (5.17)

and

si = (s1+NT (i−1), s2+NT (i−1), . . . , sNT +NT (i−1)) (5.18)

The sequence of information symbols (s) is thus demultiplexed up into NT vectors (si),

individually precoded using Equation 5.17, multiplied by a Diophantine number and then placed

on the diagonals of the code matrix. The algebraic rotation matrix used is the same one as was

used for the DAST codes (equation 5.10) and the Diophantine number φ = θ1/NT where θ is the

same as that used for the DAST code. TAST codes are able to extract all the diversity available

in space and time (NT NRNB).

5.2 SF Codes

In frequency selective channels, different frequencies separated by more than the coherence

bandwidth may experience independent fading. If one were to place the same information on

N f independently faded frequencies, a diversity order of N f can be achieved. This is the concept

of SF codes. Since OFDM allows for the easy placement of information on carriers, SF codes

are a natural coding technique to use for OFDM systems. However, multi-carrier systems other

than OFDM can also make use of SF codes. Consider an OFDM system with N f -subcarriers.

A codeword C[k] can be structured as follows:

C[k] = (c1[k] c2[k] . . . cNT [k]) (5.19)

=



c1,1[k] c1,2[k] . . . c1,NT [k]

c2,1[k] c2,2[k] . . . c2,NT [k]
...

...
. . .

...

cN f ,1[k] cN f ,2[k] . . . cN f ,NT [k]


(5.20)

where cp,i[k] contains the symbol transmitted at the ith transmit antenna on the pth subcarrier

during the kth OFDM symbol. The signal received at the jth receive antenna was given in

equation 4.44 and is reproduced here:

y j[k] =

NT∑
i=1

h f
i j[k]diag(ci[k]) + w j[k]. (5.21)
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A channel matrix over all transmit-receive antenna pairs and subcarriers may be constructed as

follows:

H f [k] =



Dh
1,1[k] Dh

1,2[k] . . . Dh
1,NT

[k]

Dh
2,1[k] Dh

2,2[k] . . . Dh
2,NT

[k]
...

...
. . .

...

Dh
NR,1

[k] Dh
NR,2

[k] . . . Dh
NR,NT

[k]


(5.22)

where

Dh
i j[k] = diag(h f

i j[k]) (5.23)

=



h f
i j1[k] 0 . . . 0

0 h f
i j2[k] . . . 0

...
...

. . .
...

0 0 . . . h f
i jN f

[k]


. (5.24)

Defining cv[k] as a NT N f × 1 vector version of C[k]:

cv[k] = [cT1 [k] cT2 [k] . . . cTNT
[k]]T , (5.25)

one can can rewrite Equation 5.21 as follows:

y[k] = H f [k]cv[k]. (5.26)

Since N f is generally large (128 or more) the code C[k] is often broken up into J sub-codes that

span N f c = N f /J subcarriers. The mth N f c × NT sub-code matrix Cm[k] can be given as:

Cm[k] = [cm,1[k] cm,2[k] . . . cm,NT [k]] (5.27)

=



cm,1,1[k] cm,1,2[k] . . . cm,1,NT [k]

cm,2,1[k] cm,2,2[k] . . . cm,2,NT [k]
...

...
. . .

...

cm,N f c,1[k] cm,N f c,2[k] . . . cm,N f c,NT [k]


(5.28)

where cm,i is the vector of symbols from the mth code transmitted on the ith transmit antenna.

Thus C[k] may be given by

C[k] = [CT1 [k] CT2 [k] . . .CTJ [k]]T (5.29)

The design procedure for the code will now be considered.
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5.2.1 SF code design

The methods of linear precoding and layering used in the ST codes can easily be extended

to create SF codes. If a vector of symbols that has been linearly precoded is placed over

independent fading dimensions then the diversity in these dimensions will be extracted

irrespective of whether these dimensions occur in time or frequency. Using the structure of the

generic DAST code will thus produce a rate-1 full diversity code while using the structure of

the TAST code will produce a rate-NT full diversity code.

To guarantee the extraction of all the diversity in a frequency selective channel with K

independent fading paths as well as the diversity from the NT transmit antennas, the number of

subcarriers over which the code should be defined is N f c = NT K [55]. Thus the total number of

sub-codes is J = N f /N f c where it will be assumed that N f is an integer multiple of N f c.

5.2.1.1 Rate-1 SF code

Since the code structure will be the same for each OFDM symbol, for the purpose of notational

brevity the OFDM symbol indice will be dropped. Let s be the size N f × 1 vector of symbols to

be transmitted. s is broken up into J sub-vectors sm of length N f c and linearly precoded to yield

J encoded sub-vectors xm

s = [sT1 sT2 . . . sTJ ]T (5.30)

xm = ΘN f csm f or 1 < m < J (5.31)

These encoded subvectors can then be further broken up into vectors of length K:

xm = [xTm1 xTm2 . . . x
T
mNT

]T (5.32)

The mth full diversity rate-1 SF code sub-matrix can be given as [16]:

Cm =
√

NT



xm,1 0K . . . 0K

0K xm,2 . . . 0K
...

...
. . .

...

0K 0K . . . xm,NT


(5.33)

where 0K is a column vector of 0s with length K. This code will be able to extract NT NRK

orders of diversity. As an example, consider the case where K = 2,NT = 2,N f c = 4. The
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sub-code matrix Cm will be:

Ci =
√

2


xm[1] 0

xm[2] 0

0 xm[3]

0 xm[4]


(5.34)

where xm = Θ4sm.

5.2.1.2 Rate-NT SF code

Let s be the size NT N f ×1 vector of symbols to be transmitted. s is broken up into J sub-vectors

sm of length NT N f c to be placed in the mth subcode. This vector is then further broken down

into NT subvectors, sm j, of length N f c and linearly precoded to yield NT J encoded sub-vectors

xm j.

s = [sT1 sT2 . . . sTJ ]T (5.35)

sm = [sTm1 sT2,m2 . . . s
T
mNT

]T (5.36)

xm j = ΘN f csm j f or 1 < m < NT J. (5.37)

These encoded subvectors can then be split up into NT vectors of length K:

xm j = [xTm j1 xTm j2 . . . xTm jNT
]T . (5.38)

The mth sub-code of a full diversity rate-NT SF code can then generically be given by [18]:

Cm =



φ0xm11 φ1xm21 . . . φNT−1xmNT 1

φNT−1xmNT 2 φ0xm12 . . . φNT−2xm(NT−1)2
...

...
. . .

...

φ2xm2NT φ3xm3NT . . . φ0xm1NT


(5.39)

This code will also be able to extract NT NRK orders of diversity. As an example consider the

case where NT = 2,K = 2,NFc = 4:

Cm =


xm1[1] φxm2[1]

xm1[2] φxm2[2]

φxm2[3] xm1[3]

φxm2[4] xm1[4]


(5.40)
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where xm j = Θ4sm j. The performance of the code improves when the channels experienced by

the symbols are as independent as possible. Performance may thus be improved in SF codes

if the sub-carriers are interleaved to spread the subcarriers of a single sub-code over the entire

frequency range that is used [16, 18].

5.3 STF Codes

If the channel experiences frequency selective fading conditions that change independently from

one OFDM block to the next, the channel is said to experience triply selective block fading

conditions. In this case, diversity may be extracted over space, time and frequency. A code

which spans all three of these dimensions is an STF code. Consider a MIMO-OFDM system

with NT transmit antennas, K taps in the channel PDP and N f subcarriers. Let NB denote the

number of OFDM symbols over which the code is to be defined. The structure of the code will

be similar to that of the SF code but different in the sense that it must now be defined over NB

blocks [17]. Thus, generically an STF code will be structured as follows:

C =
[
CT [k] CT [k + 1] . . . CT [k + NB − 1]

]T
(5.41)

=



c1[k] c2[k] . . . cNT [k]

c1[k + 1] c2[k + 1] . . . cNT [k + 1]
...

...
. . .

...

c1[k + NB − 1] c2[k + NB − 1] . . . cNT [k + NB − 1]


(5.42)

where ci[t] denotes the vector of symbols to be placed on the ith antenna during the tth OFDM

symbol. Using the frequency domain representation of the channel as given in Equation 5.22,

one can create a combined channel matrix H f :

H f =



H f [k]

H f [k + 1]
. . .

H f [k + NB − 1]


(5.43)

Defining a vectorised version of the code C as:

cv = [cH1 [k] cH2 [k] . . . cHNT
[k], cH1 [k + 1] cH2 [k + 1] . . . cHNT

[k + 1], . . . , (5.44)

cH1 [k + NB − 1] cH2 [k + NB − 1] . . . cHNT
[k + NB − 1]],
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allows one to write the received vector as:

y =



y[k]

y[k + 1]
...

y[k + NB − 1]


= H f cv. (5.45)

Because of the size of N f , C is generally also broken up into subcodes Cm. Let cim[k] be

the vector of symbols transmitted from the ith antenna during the kth period of time over the

subcarriers in the mth sub-code. In terms of cim[k], the code structure may be rewritten as in

equation 5.46.

C =
[
CT [k] CT [k + 1] . . . CT [k + NB − 1]

]T
(5.46)

=



c11[k] c21[k] . . . cNT 1[k]

c12[k] c22[k] . . . cNT 2[k]
...

...
. . .

...

c1J[k] c2J[k] . . . cNT J[k]

c11[k + 1] c21[k + 1] . . . cNT 1[k + 1]

c12[k + 1] c22[k + 1] . . . cNT 2[k + 1]
...

...
. . .

...

c1J[k + 1] c2J[k + 1] . . . cNT J[k + 1]
...

...
. . .

...

c11[k + NB − 1] c21[k + NB − 1] . . . cNT 1[k + NB − 1]

c12[k + NB − 1] c22[k + NB − 1] . . . cNT 2[k + NB − 1]
...

...
. . .

...

c1J[k + NB − 1] c2J[k + NB − 1] . . . cNT J[k + NB − 1]



(5.47)

The vectors from code m and time instance k are now combined into a matrix:

Ckm =
[
c1m[k] c2m[k] . . . cNT m[k]

]
(5.48)

With this, one can define the mth subcode Cm with the following structure:

Cm =
[
C1m C2m . . . C(k+NB−1)m

]
(5.49)

In the case where NB = 1, this structure will reduce to the structure for a subcode of an SF code,

as given in equation 5.27.
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5.3.1 STF Code Design

The concept of spreading LP coded vectors over multiple dimensions, as was used in both

TAST and SF codes, may be used to create STF codes. Principally, a vector of symbols is

linearly precoded and then placed over all the subcarriers, transmit antennas and time periods.

Up to NT such vectors may be combined using layering to produce a rate NT STF code.

5.3.1.1 Rate-1 STF Code

Let s be the size N f NB×1 vector of symbols to be transmitted. s is broken up into J sub-vectors

sm of length N f cNB and linearly precoded to yield J encoded sub-vectors xm

s = [sT1 sT2 . . . sTJ ]T (5.50)

xm = ΘN f csm[k] f or 1 < m < J. (5.51)

These encoded subvectors can then be further broken into vectors of length K:

xm = [xTm1 xTm2 . . . x
T
mNT NB

]T . (5.52)

The mth full diversity rate-1 STF code sub-matrix can be given as:

Cm = [C1m C2m . . . CNBm], (5.53)

where

Ckm =



xm,(k−1)NT +1 0K . . . 0K

0K xm,(k−1)NT +2 . . . 0K
...

...
. . .

...

0K 0K . . . xm,(k−1)NT +NT


. (5.54)

This code will be able to achieve a diversity order of NT NRKNB. As an example, consider the

case where NT = 2,K = 2,NB = 2,N f s = 4. The subcode matrix can be given as [17]:

Cm =


xm[1] 0 xm[5] 0

xm[2] 0 xm[6] 0

0 xm[3] 0 xm[7]

0 xm[4] 0 xm[8]


, (5.55)

where xm = Θ8sm. An alternative method to create a rate-1 STF code is to create a rate-NB SF

code and then to repeat this code over NB symbol periods. As an example consider the case
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when NT = 2,K = 2,MB = 2,N f s = 4. The subcode matrix can be given as [17]:

Cm =


xm[1] φxm[5] xm[1] φxm[5]

xm[2] φxm[6] xm[2] φxm[6]

φxm[7] xm[3] φxm[7] xm[3]

φxm[8] xm[4] φxm[8] xm[4]


, (5.56)

where

[xm[1], xm[2], xm[3], xm[4]] = Θ4[sm[1], sm[2], sm[3], sm[4]] (5.57)

and

[xm[5], xm[6], xm[7], xm[8]] = Θ4[sm[5], sm[6], sm[7], sm[8]]. (5.58)

5.3.1.2 Rate-NT STF code

Let s be the size NT N f NB × 1 vector of symbols to be transmitted. s is broken up into J

sub-vectors sm of length NT NBN f c to be placed in the mth subcode. This vector is then further

broken down into NT subvectors, sm j, of length N f cNB and linearly precoded to yield NT J

encoded sub-vectors xm j:

s = [sT1 sT2 . . . sTJ ]T (5.59)

sm = [sTm1 sT2,m2 . . . s
T
mNT

]T (5.60)

xm j = ΘN f cNBsm j f or 1 < m < NT J. (5.61)

These encoded subvectors can then be split up into NT NB vectors of length K:

xm j = [xm j1 xm j2 . . . xm j(NT NB)]. (5.62)

The mth full diversity rate-NT STF code sub-matrix can be given as [17, 55]:

Cm = [C1m C2m . . . CNBm] (5.63)

where

Ckm =



φ0xm1((k−1)NT +1) φ1xm2((k−1)NT +1) . . . φNT−1xmNT ((k−1)NT +1)

φNT−1xmNT ((k−1)NT +2) φ0xm1((k−1)NT +2) . . . φNT−2xm(NT−1)((k−1)NT +2)
...

...
. . .

...

φ2xm2((k−1)NT +NT φ3xm3((k−1)NT +NT . . . φ0xm1((k−1)NT +NT )


. (5.64)
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This code will also be able to achieve a diversity order of NT NRKNB. As an example consider

the case where NT = 2,K = 2,N f s = 2,NB = 2. The mth subcode matrix can be given as:

Cm =


xm1[1] φxm2[1] xm1[5] φxm2[5]

xm1[2] φxm2[2] xm1[6] φxm2[6]

φxm2[3] xm1[3] φxm2[7] xm1[7]

φxm2[4] xm1[4] φxm2[8] xm1[8]


(5.65)

where xm1 = Θ8sm1 and xm2 = Θ8sm2.

5.4 Simulation results

This dissertation uses ST, SF and STF codes and this section provides the result curves for

these codes without any FEC coding. Simulations were performed on the MIMO-WiMAX

platform developed in [56]. The MIMO-WiMAX parameters chosen for all simulations done

are illustrated in Table 5.1. The coding schemes and corresponding conditions in which they

Table 5.1: MIMO-WiMAX simulation parameters

MIMO-WiMAX parameters

Transmit antennas 2

Receive antennas 2

FFT size 128

Number of sub-channels 2

Users per sub-channel 1

Mode FUSC

Cyclic prefix length 0.25

Maximum Doppler spread fd = 100Hz

Sampling time Ts = 0.8µs

Channel bandwidth 1.25MHz

Transmit filter Square root raised cosine, α = 0.5

Receive filter Square root raised cosine, α = 0.5

were simulated, in all the simulations, are illustrated in Table 5.2. Modulation schemes were

adjusted appropriately to maintain the same b/s/Hz. For comparison purposes, it was chosen at

2 b/s/Hz to be able to compare the coding techniques over various channel conditions. In the
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case of the SF rate-2 code some simulations were also performed using QPSK to yield a system

with a throughput of 4 b/s/Hz.

Table 5.2: Coding parameters used in simulation

Code Modulation Fading condition Decoder

ST code QPSK Quasi-static fading Single-symbol ML

Rate-1 SF code QPSK Block fading Sphere-decoding

Rate-2 SF code BPSK/QPSK Block fading Sphere-decoding

Rate-1 STF code QPSK Block fading Sphere-decoding

Rate-2 STF code BPSK Block fading Sphere-decoding

For the purpose of simulation in this dissertation, two different PDPs are used. To illustrate the

performance in ideal cases, a simple, equal power, two tap channel is used. The two taps are at

0 µs and 8 µs. The second PDP which is used is the more realistic 20 tap suburban alternative

channel [1]. A figure showing this PDP can be seen in Appendix A.

5.4.1 Two tap channel, no channel correlation

The simulation parameters for the first simulation were set up to illustrate the maximum

performance of these codes in ideal channel conditions and are summarised in Table 5.3.

The simulations were performed on the two tap, equal power, Rayleigh multipath channel to

Table 5.3: Simulation 1 parameters

Simulation parameters

Frequency-Selectivity Two tap equal power PDP at 0 µs and 8 µs

Time-selectivity Block-fading conditions with fd = 100Hz

Space-selectivity None

illustrate the achievable diversity gain for a system with a frequency diversity order of two. For

all fading conditions simulated, no time-selectivity was introduced, as the coding techniques

assume that the channel remains constant for each OFDM symbol. In the case of quasi-static

conditions, the channel remained constant over two OFDM symbols. From Figure 5.5, it can

be seen that the STF codes have a steeper slope compared to the SF and ST codes. This

illustrates the larger diversity gain exploited by STF codes in block fading conditions. There is

a 1 dB loss in performance when QPSK is used instead of BPSK for the rate-2 SF code. The
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Figure 5.5: Results obtained for coding techniques in a two tap equal power PDP at 0 µs and 8
µs with no space-selectivity.

rate-2 SF BPSK code outperforms the rate-1 SF code owing to a higher diversity product [16].

The diversity product consists of an intrinsic diversity product as well as an extrinsic diversity

product, which depends on the channel used. Larger delay spreads cause an increase in diversity

product for the rate-2 SF BPSK code over the rate-1 SF code. The simulation used a large delay

spread (approximately 13 sample delay) which causes the 1.5 dB performance difference. The

rate-2 STF code outperforms the rate-1 STF code at high Eb/N0 only slightly, as these codes

have very similar diversity products.

5.4.2 Two tap channel, correlated channel conditions

In this study, simulation parameters were set up to illustrate the performance of these coding

techniques in highly correlated channel conditions and are summarised in Table 5.4. The

frequency selectivity was kept the same as for the first simulation, to illustrate the effects

a highly correlated channel will have on the performance of these codes compared to the

uncorrelated conditions. Space-selectivity was introduced at the transmitter and receiver

using the method described in Equation 4.30. Figure 5.6 clearly illustrates the performance

degradation due to correlated MIMO channels. Compared to Figure 5.5, each curve suffers a
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Table 5.4: Simulation 2 parameters

Simulation parameters

Frequency-Selectivity Two tap equal power PDP at 0 µs and 8 µs

Time-Selectivity Block-fading conditions with fd = 100Hz

Space-Selectivity Exponential correlation matrix with r = 0.7
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Figure 5.6: Results obtained for coding techniques in a two tap equal power PDP at 0 µs and 8
µs using an exponential correlation matrix with r = 0.7

performance loss of approximately 3 dB. The results obtained follows the theoretical analysis

from [41] which shows that a 70% correlation will result in a 3dB loss compared to uncorrelated

conditions. The rate-1 STF code crosses the ST code graph at 6 dB, where in Figure 5.5,

the STF code already showed improvement at around 2.5 dB - 3 dB. These results illustrate

the degradation in performance of high diversity codes in highly correlated channels at lower

Eb/N0 values. At high Eb/N0 values, the rate-1 SF and rate-2 SF codes differ by less than 0.5

dB, whereas in Figure 5.5, the rate-2 showed a significant improvement over all Eb/N0 values.

This is due to a lower diversity product, where the extrinsic diversity product is dependent

on the channel, which is highly correlated, reducing overall diversity in the channel. The
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performance of both the rate-2 SF and rate-2 STF codes were more heavily degraded than the

respective rate-1 SF and rate-1 STF codes.

The comparisons of the multi-antenna codes presented for different correlations are illustrated

in Figure 5.7. Figures 5.7 illustrate a comparison in Eb/N0 for different correlations to maintain
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Figure 5.7: Performance comparison in two tap equal power PDP for various correlations

a BER of 10−3.5 in the two-ray equal power PDP. From the figure it can be seen that the rate-1

STF code requires the least amount of power to maintain the BER of 10−3.5. It also indicates

that the rate-2 SF code will perform better than the rate-1 SF code for r ≤ 0.6.

5.4.3 Suburban Alternative channel, no channel correlation

In this study, the effect, of changing the PDP of the channel, on the relative performance of

the codes is analysed. From Figure 5.8, it can be seen that the STF codes have a steeper

slope compared to the SF and ST codes. This illustrates the larger diversity gain exploited

by STF codes in block fading conditions. There is a 1.5 dB loss in performance at a BER of
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10−3, when QPSK is used instead of BPSK for the rate-2 SF code. In contrast to the case on

the two tap channel where the rate-2 SF BPSK code outperforms the rate-1 SF code, in this

case the rate-1 SF code outperforms the rate-2 SF code. This change in performance is due

to the lower extrinsic diversity in the channel. In the two tap channel the rate-2 STF code

outperforms the rate-1 STF code at high Eb/N0 while on the suburban alternative the rate-1 STF

code outperforms the rate-2 STF code. This is also due to the lower extrinsic diversity in the

channel. From these results one can conclude that the higher rate codes are more sensitive to

channel conditions than the rate-1 codes.
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Figure 5.8: Results obtained for coding techniques in the 20 tap suburban alternative PDP with
no space-selectivity.

5.4.4 Suburban Alternative channel, correlated channel conditions

In this study, the effect of correlation in the channel on the relative performance of the codes is

analysed. Figure 5.9 shows the performance of the codes on the suburban alternative channel

for various correlation values. For the suburban alternative PDP, the STF code performs best

for r ≤ 0.6, whereas the rate-1 SF code shows the best performance for highly correlated

conditions. The rate-2 SF code has the worst performance for all correlated conditions in the

suburban alternative PDP. The slope of the rate-2 STF code increases faster than the slope of
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Figure 5.9: Performance comparison in a suburban alternative PDP for various correlations

the rate-1 STF code in both Figures 5.7 and 5.9. This indicates that in both ideal and realistic

channel PDPs, higher rate codes are more susceptible to highly correlated channel conditions.

5.5 Achievable Diversity of quantised LP coded STF codes

The use of LP allows for diversity to be achieved without sacrificing transmission rate. As a

result, the requirements on the number of bits at the quantiser is increased. This section derives

the limitation on the achievable diversity in a quantised LP system.

5.5.1 Quantisation

Quantisation is the process of approximating a continuous range of values by a set of discrete

symbols [57]. In the context of this dissertation, it is taken to mean the digitisation of the real

valued baseband received signal with pulse-code modulation (PCM) [58]. Since quantisation

is an approximation, a certain amount of error will be introduced by the quantisation process.

Department of Electrical, Electronic & Computer Engineering Page 81

 
 
 



Chapter Five Multi-Antenna Coding Techniques

This error can be given as:

ε = q(x) − x, (5.66)

∴ q(x) = x + ε, (5.67)

where x is the signal that is quantised, ε is the error and q(x) is the quantised signal. Equation

(5.67) shows that the quantised signal can be thought of as an unquantised signal to which noise

has been added. This noise can generally be regarded as being Gaussian when the quantiser

has “high-resolution” [59], i.e. when the number of quantisation levels is large. In [57] it is

shown that if a quantiser has NQ levels (and therefore quantises a signal to QB = log2 NQ bits),

and the source signal has a range of Rs, and the level spacing of the quantiser (∆) is chosen as

∆ = Rs/NQ, the SNR can be approximated as:

SNR = C + 6QB dB, (5.68)

where C is a constant. This result is occasionally referred to as the “6-dB-per-bit rule”. This

results in an error floor depending on the number of bits used in quantisation. Fortunately, for

a system employing three bits of quantisation (QB = 3 bits), the SNR is approximately 18 dB

and thus the error floor is only expected after a SNR of 18 dB.

In addition to the noise introduced by quantisation, [60] shows that the quantisation of a

time signal affects the precision of a single-tone frequency estimator based on the FFT. The

results in [60] show that the variance of the estimated frequency increases dramatically once

the number of bits used in quantisation (QB) is below four bits. As OFDM is also based on the

FFT, a drastic loss in performance is expected in OFDM systems quantised to less than four

bits.

5.5.2 Effect of quantisation on LP coded systems

LP is used to encode the data symbols in a manner that extracts the most benefit from the

diversity available in the channel. It does this by mapping a set of data symbols to a new set of

encoded symbols that are transmitted. An LP coded data vector (x) permits the correct decoding

of all of the data symbols (s) encoded by the LP, upon the reception of a single encoded symbol

(xi), thus yielding diversity equal to the rank of the rotation matrix (RΘ) [52]. Each encoded

symbol is therefore required to represent all the information in s. Therefore, if an original data
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symbol represented Nob bits per dimension, the number of information bits per dimension that

the encoded symbol represents is:

Ncb = NobRΘ. (5.69)

The transmission of an N f sized encoded OFDM block would therefore entail the transmission

of N f Ncb bits per dimension over N f time intervals. Thus, assuming that the information is

spread equally over the N f time intervals, this would require each time interval to contain at

least Ncb bits per dimension. This would require the digital-to-analogue converters (DACs) and

the analogue-to-digital converters (ADCs), used in the system, to quantise the signal per time

interval to at least Ncb bits. Should the ADCs and the DACs not quantise to Ncb bits, then the

achievable diversity will be less than the diversity the code was designed for. In other words,

if the number of bits of the ADC and the DAC is QB, then the maximum achievable diversity

(Dmax) due to linear precoding in a system is given by the following:

Dmax =
QB

Nob
. (5.70)

In a MIMO system, a portion of the diversity is obtained from the receive antennas, and only

diversity due to rotation is given in (5.70), thus the total diversity Dtotal of the system is given

by

Dtotal = DmaxNR, (5.71)

where NR is the number of receive antennas.

5.5.2.1 Quantising of the received signal

In this dissertation, only the received signal is quantised. The transmitted signal is not quantised

except by the limitations of the IEEE-754 double format [61] as used by GNU C++12. The range

of the received signal is mapped to the range of an unsigned long int of 64 bits. The received

signal is then cast to the unsigned long int type. Thus, the lowest value of the signal is then

represented by 0 and the highest value by 264 − 1. Then all but the QB most significant bits are

discarded, and the result that has been mapped is cast back to type double and mapped back to

the original range of the received signal. This is done separately for the in-phase and quadrature

parts of the received signal. Figure 5.10 shows a diagram of the receiver. The figure shows

that the in-phase and quadrature components of the OFDM time signal are quantised separately

before being added together for the FFT operation.
1 http://www.open-std.org/jtc1/sc22/wg21/
2 http://gcc.gnu.org/
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Figure 5.10: Block diagram of the implemented baseband receiver.

5.5.3 Ideal two-tap channel simulations

Figure 5.11 shows the BER versus EB/N0 plot of the rate-2 STF code, defined by (5.65), for

various levels of quantisation. Superimposed on the figure are the theoretical BER plots for

QPSK with 6, 8 and 10 orders of diversity obtained from Matlab’s3 berfading function. To

facilitate the comparison between the slope of the simulated results and that of the theoretically

expected results, the theoretical results were shifted horizontally on the EB/N0 axis. In the

figure, a noticeable degradation in performance can be observed starting at 5 bits of quantisation

(QB = 5 bits). Equation 5.71 predicts that a system quantised to 5 bits should achieve 10

orders of diversity. By comparing the curve at QB = 5 bits with the theoretical 10th order

diversity curve, it is evident that the asymptotic slopes are very similar. With QB = 4 bits,

Equation 5.71 predicts 8 orders of diversity. Comparing the QB = 4 curve with the theoretical

8th order diversity curve, it is apparent that the asymptotic slopes are very similar. At 3 bits,

Equation 5.71 predicts 6 orders of diversity. However, by comparing the QB = 3 curve with the

theoretical 6th order diversity curve, it appears that the achieved diversity is less than expected.

Finally, at 2 bits, the system fails and an error floor of 0.1 is observed. Figure 5.12 shows the

BER versus EB/N0 plot of the rate 2 SF code, defined by Equation 5.40, for various levels of

quantisation. It is evident that the unquantised system achieves less than ten orders of diversity,

with the slope indicating that a diversity order of 8 is achieved. With QB = 4 bits, the code

achieves close to three orders of diversity. At QB = 3 bits, the results follows the two orders

3 Copyright The Mathworks, Inc., www.mathworks.com
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Figure 5.11: BER plot of a rate-2 STF Code with RΘ = 8, with various levels of quantisation.
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of diversity theoretical results up to an EB/N0 ratio of 6dB, beyond which its performance is

severely degraded. As was the case for the STF rate 2 code, at 2 bits the system fails with an

error floor of approximately 0.03.

Comparing Figures 5.11 and 5.12, it can be seen that the SF code outperforms the STF

code when QB < 4, and that the STF code outperforms the SF code when QB ≥ 4. This is

expected, since the STF code has a larger rotation matrix, and would therefore be more severely

affected by quantisation than the SF code which has a smaller rotation matrix.

5.5.4 Suburban alternative PDP simulation

In Figure 5.13, it can be seen that an initial order of diversity has been lost due to the channel, but

the performance degradation due to quantisation still follows the prediction. A code designed

for this channel may be able to extract the additional diversity offered by this channel, but

would still be limited by quantisation. Figure 5.14 shows that less than three orders of diversity

is achieved by the SF code in the suburban alternative channel. It is evident that neither the SF

nor the STF code can fully extract the diversity available in the suburban alternative channel.

This may be due to the fact that they were designed for the two tap channel.
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Figure 5.13: BER plot of a rate-2 STF Code with RΘ = 8, with various levels of quantisation.
Suburban alternative PDP. NT = NR = K = 2
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Figure 5.14: BER plot of a rate-2 SF Code with RΘ = 4, with various levels of quantisation.
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Chapter Six

MIMO Detection

The received signal, y, in a MIMO system may be described as:

y = Hx + n (6.1)

where H is the equivalent channel matrix, x is the transmitted data vector and n is the noise

vector. The equivalent channel matrix includes the effects of the channel as well as the rotation

matrix used during linear precoding. The detection process requires the receiver to estimate the

transmitted sequence based on the received sequence. Normally some parts of the transmitted

sequence will be known a priori (pilot symbols) and this knowledge will be used to estimate the

channel part of H. This estimation will generally have some error. This dissertation, however,

does not focus on channel state estimation and will thus assume that H is known perfectly at the

receiver. Detection thus becomes the process of estimating which possible transmitted sequence

is most likely, given the received sequence and the channel state information.

6.1 Maximum A Posteriori ProbabilityMIMO Detection

The probability that a sequence was transmitted, given the received sequence and the channel

state information, can be expressed and expanded using Bayes’ rule as follows:

P(x|y,H) = P(y|x,H)P(x) (6.2)

The detection may be performed one symbol at a time. Assume that the data symbols are

drawn from the BPSK modulation alphabet. The optimal detection of a single bit requires the

calculation of the MAP that the bit equals a 1 (or a 0). This probability is generally expressed
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as a log likelihood ratio (LRR). An LLR for a bit, xi, is defined as follows:

LLR(xi) = ln
(

P(xi = 1)
P(xi = 0)

)
(6.3)

The MAP LLR of a bit takes into account all the available information at the receiver. The

optimal detection of a bit in an STF symbol for a MIMO system can thus be expressed by

calculating the conditional LLR of the bit given the received sequence and the channel state

information (CSI). This a posteriori probability in LLR form for the ith bit will be denoted by

Λ
p
i :

Λ
p
i = LLR(xi|H, y) (6.4)

= ln
(

P(xi = 1|H, y)
P(xi = 0|H, y)

)
(6.5)

The zero and one signalling may be trivially replaced by 1 and −1 signalling to match the bit to

a BPSK symbol. The above equation may be simplified using Bayes rule as follows:

Λ
p
i = ln

(
P(xi = 1|H, y)

P(xi = −1|H, y)

)
(6.6)

= ln


∑

x∈X+1
i

P(y|x,H)P(x)∑
x∈X−1

i
P(y|x,H)P(x)

 , (6.7)

where Xs
i is the set of all possible x vectors for which xi = s. P(x) represents the a priori

probability of the sequence x. Since the noise is Gaussian, this expression can be expanded

further:

P(y|x,H) =
1

(πN0)MR
exp

(
−
||y −Hx||2

N0

)
(6.8)

∴ Λ
p
i = ln


∑

x∈X+1
i

1
(πN0)MR

exp
(
−
||y−Hx||2

N0

)
P(x)∑

x∈X−1
i

1
(πN0)MR

exp
(
−
||y−Hx||2

N0

)
P(x)

 (6.9)

= ln


∑

x∈X+1
i

exp
(
−
||y−Hx||2

N0
+ ln P(x)

)
∑

x∈X−1
i

exp
(
−
||y−Hx||2

N0
+ ln P(x)

) (6.10)

= ln

 ∑
x∈X+1

i

exp
(
−
||y −Hx||2

N0
+ ln P(x)

) −
ln

 ∑
x∈X−1

i

exp
(
−
||y −Hx||2

N0
+ ln P(x)

) . (6.11)

The calculation of the LLR for bit xi thus requires the calculation of the probability of every

sequence for which xi = 1 and for which xi = −1. This is clearly a mammoth task and
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very computationally expensive. The calculation may be simplified by the use of the max-log

approximation:

ln

∑
i

exi

 ≈ max
i

(xi) (6.12)

as follows:

Λ
p
i ≈ min

x∈X1
i

{
||y −Hx||2

N0
− ln P(x)

}
−

min
x∈X−1

i

{
||y −Hx||2

N0
− ln P(x)

}
. (6.13)

The a priori information is generally expressed as a vector of LLRs (Λa). The a priori probability

that a bit is equal to 1 and -1 may be calculated from these LLRs as follows:

P(xi = −1) =
1

1 + exp(Λa
i )

(6.14)

P(xi = 1) =
exp(Λa

i )
1 + Λa

i
. (6.15)

The a priori probability of a sequence x may then be calculated as:

P(x) =
∏
i:xi=1

P(xi = 1)
∏

i:xi=−1

P(xi = −1). (6.16)

Substituting the equations for the probabilities in terms of the LLRs and simplifying yields:

P(x) =
∏

i

exp
(

1
2 (1 + xi)Λa

i

)
1 + exp(Λa

i )
. (6.17)

From this, one may calculate the a priori term in the max-log-map equation:

− ln P(x) = − ln

∏
i

exp
(

1
2 (1 + xi)Λa

i

)
1 + exp(Λa

i )

 (6.18)

= −
∑

i

1
2

xiΛ
a
i +

∑
i

(
−

1
2

Λa
i + ln

(
1 + exp(Λa

i )
))

(6.19)

= −xTΛa +
∑

i

(
−

1
2

Λa
i + ln

(
1 + exp(Λa

i )
))
. (6.20)

Substituting this into equation 6.13 yields:

Λ
p
i ≈ min

x∈X1
i

 ||y −Hx||2

N0
− xTΛa +

∑
i

(
−

1
2

Λa
i + ln

(
1 + exp(Λa

i )
)) −

min
x∈X−1

i

 ||y −Hx||2

N0
− xTΛa +

∑
i

(
−

1
2

Λa
i + ln

(
1 + exp(Λa

i )
)) . (6.21)
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Considering that the term: ∑
i

(
−

1
2

Λi + ln
(
1 + exp(Λi)

))
(6.22)

does not depend on x, it will cancel out. This yields:

Λ
p
i ≈ min

x∈X1
i

{
||y −Hx||2

N0
− xTΛa

}
−

min
x∈X−1

i

{
||y −Hx||2

N0
− xTΛa

}
. (6.23)

The problem has now been reduced to finding the most likely sequence x for which the bit, xi,

is equal to 1 and the most likely sequence for which the bit xi is equal to −1. Calculating Λ
p
i for

all the bits in x can be done by first finding the MAP solution (x̂):

x̂ = arg min
x∈X

{
||y −Hx||2

N0
− xTΛa

}
. (6.24)

The MAP solution provides the hard output of the detector. For each bit in the sequence, the

MAP detection algorithm is then run again to find a counter-hypothesis. The counter-hypothesis

for the ith bit, x̂′i , is calculated with the bit in question being fixed at the opposite value of the

MAP solution (−1 × xi).

x̂′i = arg min
x∈X,xi=−xMAP

{
||y −Hx||2

N0
− xTΛa

}
(6.25)

The MAP solution and the counter-hypothesis are then substituted into equation 6.23 to

calculate Λ
p
i :

Λ
p
i ≈ x̂i

(
||y −Hx̂||2

N0
− x̂TΛa

)
−

x̂i

(
||y −Hx̂′i||2

N0
− x̂

′T
i Λ

a
)
. (6.26)

This process is summarised in Algorithm 2. The MAP minimisation may be done using any

MAP detector. The SD is a solution which is well suited to this problem.

6.2 Sphere Decoder

The LP based SF and STF codes, described in the previous chapter, require a special detector.

While orthogonal ST codes can use simple methods such as MRC, no such simplifications exist

for the SF and STF codes. Pure ML detection is computationally very expensive as it requires

Department of Electrical, Electronic & Computer Engineering Page 91

 
 
 



Chapter Six MIMO Detection

Algorithm 2 Soft-Output MIMO Detection
1: procedure Obtain Initial Hard Solution

2:

x̂ = arg min
x∈X

{
||y −Hx||2

N0
− xTΛa

}
.

3: end procedure

4: procedure Calculate Soft Outputs

5: for i = 1→ N do

6: Calculate ith counter hypothesis:

7:

x̂′i = arg min
x∈X,xi=−xMAP

{
||y −Hx||2

N0
− xTΛa

}
8: Calculate ith output LLR:

9:

Λ
p
i ≈ x̂i

(
||y −Hx̂||2

N0
− x̂TΛa

)
−

x̂i

(
||y −Hx̂′i||2

N0
− x̂

′T
i Λ

a
)

(6.27)

10: end for

11: end procedure

the calculation of the ML metric for every possible transmitted vector. This is unfeasible for

most realistic systems. One method that may be used to reduce complexity while maintaining

error rate performance is the SD. SD will be used to interchangeably mean both sphere decoding

and sphere decoder, where the meaning will be clear from the context. The SD is the generic

lattice decoder and produces near optimal ML performance [19]. Many different versions of the

SD algorithm have been developed with the aim of reducing complexity [62–66]. The lowest

complexity SDs are generally accepted to have a complexity in the order O(n3) [66–68].
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6.2.1 Basic operation of the SD

The ML metric which must be minimised by the detection algorithm is:

γ(x) =
1

N0
||y −Hx||2 − xTΛa, (6.28)

Initially, consider the case where the a priori information is zero. The transmitted vector may be

viewed as a point in m-dimensional space. One may then view the received vector y as a point

in a new m-dimensional space, which is defined by H. Each possible transmitted vector will

then be mapped onto a point in the new vector space. The SD works by creating a hypersphere

centred at y with a specific radius C in the new vector space. The SD algorithm then only

considers points within the sphere. Once a valid solution within the sphere is found, the radius

is reduced to the distance from the received point to the new solution. This procedure is repeated

until no new points can be found within the sphere. The closest point found will then be used

as the result. If no valid solutions were found in the initial sphere, then the radius is increased.

Thus, if a valid solution is found in the initial radius, the algorithm should produce exactly the

same result as the exhaustive ML decoder. If a valid solution is not found, then the radius must

be increased and the algorithm performed again.

6.2.2 Complexity reduction

The reason that the SD can achieve a complexity reduction over exhaustive ML decoding is that

only points within a sphere, around the received point, are considered. The SD criterion requires

the distance between the received vector and a possible solution to be less than a specific radius,

C. This metric may be expressed as:

µ(x) = ||y −Hx||2 ≤ C2. (6.29)

The procedure that the SD uses to search for points in a sphere relies on the ability of the SD to

consider one dimension (one symbol) at a time. This is achieved by rewriting equation 6.29 as

follows [69]:

µ(x) = ||y −Hx||2 = (x − x̂)†H†H(x − x̂), (6.30)

where x̂ = (H†H)−1H†y is the unconstrained ML solution calculated with the zero forcing

(ZF) algorithm. The matrix H†H is Hermitian and positive definite and thus has a Cholesky
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decomposition H†H = L†L in which L is a lower triangular matrix with real, positive diagonal

entries. Equation 6.30 then becomes:

µ(x) = (x − x̂)†L†L(x − x̂) (6.31)

= |l11(x1 − x̂1)|2 + |l22(x2 − x̂2) + l21(x1 − x̂1)|2

+ · · · +

∣∣∣∣∣lnn(xn − x̂n) +

n−1∑
j=1

ln j(x j − x̂ j)
∣∣∣∣∣2. (6.32)

The first term in equation 6.32 can be calculated using only the first bit. The second term

requires only the first two bits. This pattern continues until the nth bit, where n is the number

of bits in the symbol. Since each term in equation 6.32 is positive, the metric will grow

monotonically. As a result, when the metric exceeds C2, the algorithm has determined that all

the vectors (that start with the currently considered sequence of bits) lie outside the sphere and

may be discarded. The SD process can thus be viewed as a tree-searching algorithm. As an

example, consider the hypothetical tree search in Figure 6.1. In the figure, only the first 3 bits

bit 1

bit 2

bit 3

-1 1

-1

-1-1

-1

-1-1

1

11

1

1

Figure 6.1: Diagram of the tree search used in SD.

of the detection are shown. The red lines indicate when the metric associated with a certain bit

sequence of bits has grown larger than the radius of the sphere. All the branches in the tree

connected to a red branch are shown in grey to indicate that these metrics are never calculated.

The blue path shows the sequence of bits that correspond to a symbol inside the sphere. The

process starts at the first bit where the metric is calculated for bit 1 = -1. The metric is found to

be less than the radius, therefore the process continues. The metric for bit 1 = -1 and bit 2 = -1

is then calculated. This metric is found to be larger than the radius and all paths from bit 2 = -1

are discarded. The metric for bit 1 = -1 and bit 2 = 1 is then calculated. This metric is found to
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be inside the radius and thus the process continues until a valid solution (-1,1,1) is found. The

radius is now set to the metric for (-1,1,1). The process is repeated, starting at node 1 again.

However, all paths from bit 1 = -1 have been calculated. Thus only the branches from bit 1 = 1

need be calculated. However, since the metric from bit 1 = 1 is larger than the new radius, all

the paths may be disregarded. The solution has thus been found and only 6 out of a possible 14

branches have been considered, yielding a substantial reduction in complexity compared to the

exhaustive search.

The sphere decoder metric in equation 6.29 may be related to the ML metric in equation

6.28 as follows:

γ(x) =
1

N0
µ(x) − xTΛa (6.33)

When one assumes that the a priori information is zero (as has been done), then minimising the

SD metric will also minimise the ML metric. However, if the algorithm has a priori information

available, then modifications need to be made to the SD.

6.2.3 Sphere Decoding with A priori information

The obvious method that one would consider to incorporate a priori information into the SD

decoder is to replace the SD metric with the ML metric. The problem with this approach is that

a priori information comes in the form of LLRs, which can be both positive and negative. As a

result the terms in equation 6.31 will no longer all be positive. Thus, when the metric exceeds

C2, one can no longer assume that the points lie outside the sphere, as the metric may decrease

when the next bit is calculated. Overcoming this problem has resulted in two basic approaches.

The first relies on a list sphere decoding (LSD) method and the second on translating the the

received vector.

6.2.3.1 List Sphere Decoding Method

In the LSD method [70], the SD keeps track of the M best solutions in the tree. In the case

where the a priori information is zero, these solutions can then be used in Equation 6.11 or

Equation 6.23 to produce soft outputs. The problem with this method is that in order to ensure

that a counter-hypothesis exists for each bit (so that the bit’s LLR is not infinite), M might

have to be very large and the complexity of the LSD algorithm grows exponentially with M.
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The extension of this method to include non-zero a priori information is called ITS detection

[71]. In ITS detection, the LSD algorithm is run to produce the M best sequences assuming

that the a-priori information is zero. The metrics for these sequences are then updated using the

a priori information as in Equation 6.28. From this updated metric list the best sequences are

then chosen for producing the output. The problem with this method is that unless M is very

large, there is a possibility that the best sequence, including the a priori information, was not in

the initial list and the MAP solution is thus not found.

6.2.3.2 Translating the received vector

A method which does not suffer from the problems in ITS detection, relies on including the a

priori information in the SD metric directly by using a translated vector [72]. The metric, which

must be minimised by the SD, is:

ML(x) =
||y −Hx||2

N0
− xTΛ. (6.34)

However, the SD is generally able to minimise the metric:

MLS D(x) = ||y −Hx||2. (6.35)

A method must thus be obtained for writing Equation 6.34 in the form of Equation 6.35. Let

the translation vector ỹ be defined as the vector which solves the equation:

−Λ = −
2HT ỹ

N0
. (6.36)

Equation 6.34 then becomes:

ML(x) =
||y −Hx||2

N0
−

2xTHT ỹ
N0

. (6.37)

Since the decoding is a minimisation one can add any term that does not vary with x. Add the

constant term:

ỹT ỹ + 2yT ỹ
N0

(6.38)

to Equation 6.37:

ML(x) =
||y −Hx||2 − 2xTHT ỹ + ỹT ỹ + 2yT ỹ

N0
(6.39)

=
ỹT ỹ + 2yT ỹ + yTy + xTHTHx − 2xTHTy − 2xTHT ỹ

N0
(6.40)

=
||y + ỹ −Hx||2

N0
. (6.41)
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The translated received vector ŷ may now be defined as:

ŷ = y + ỹ. (6.42)

The ML metric becomes:

ML(x) =
||ŷ −Hx||2

N0
, (6.43)

which is in the form of Equation 6.35. Thus in order to include a priori information for the

SD, Equation 6.36 is solved for the translation vector. From this vector the translated received

vector is calculated using Equation 6.42. SD is then performed on Equation 6.43.

6.3 Hopfield Network

Hopfield networks consist of interconnected neurons [73]. The neurons compute an output vi(t)

from the input signal ui(t) as follows:

vi(t) = g[βui(t)] (6.44)

where i is the indice of the neuron, β is the gain and g(x) is a smooth monotonically decreasing

sigmoid function with the following requirements:

g(−∞) = 0 (6.45)

g(0) =
1
2

g(∞) = 1.

The signal ui(t) obeys the following equation:

dui(t)
dt

= −
ui(t)
τ

+

N∑
j=1

Ti jv j(t) + Ii (6.46)

where τ is a constant that can be set equal to unity, N is the number of neurons in the network and

Ii is a constant bias added to the input of a neuron. Ti j are elements of a symmetric connectivity

matrix that are zero when i = j, as each neuron is connected to all the other neurons but not to

itself. Thus:

Ti j = T ji (6.47)

Tii = 0 ∀ i.
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Hopfield showed that when Equation 6.47 is met and the neurons are operating in a high gain

mode (β is large) the stable states of the network are the local minima of the computational

energy of the network (E):

E = −
1
2

N∑
i=1

N∑
j=1

Ti jviv j −

N∑
i=1

viIi, (6.48)

which may be written in matrix form as:

E = −
1
2

vT Tv − vT I. (6.49)

Using a Hopfield network to calculate a minimisation of some kind, such as ML detection,

is done by writing the equation to be minimised in such a way as to link the variables in the

equation with terms in Equation 6.49. In this way the local minima of the computational energy

of the network will match the local minima of the ML equation [74, 75].

6.3.1 Derivation for use of Hopfield network in MIMO detection.

For ML detection, the transmitted vector x must be found which minimises the following

equation:

ML(x) = ||y −Hx||2 (6.50)

= (y −Hx)T (y −Hx) (6.51)

This equation can be expanded as follows:

ML(x) = yTy + xTHTHx − 2xTHTy (6.52)

The first term in the above equation is a constant for all possible transmitted sequences and may

thus be removed from the ML equation. In order to match the ML equation to Equation 6.49,

the H matrix will be expanded with summations to yield the following:

ML(x) = −2
N∑

i=0

xiHTi y +

N∑
i=0

N∑
j=0

HTi Hjxix j (6.53)

where Hi represents the ith column of H, xi represents the ith transmitted symbol and N

represents the number of transmitted symbols. For BPSK type modulation, the values of x

are either 1 or −1. Since the aim is to map the output of the neurons to the transmitted bits, the

Department of Electrical, Electronic & Computer Engineering Page 98

 
 
 



Chapter Six MIMO Detection

definition for the non-linear function defined in 6.45 is changed as follows:

g(−∞) = −1 (6.54)

g(0) = 0

g(∞) = 1.

One example of such a function is the hyperbolic tan function. This requirement allows one to

add the following term to the ML equation:

−

N∑
i=0

HTi Hi(x2
i − 1). (6.55)

This term is created by finding a polynomial with roots equal to −1 and 1. Since xi is always

1 or −1 this term will thus always be zero and will not affect the ML equation. The i = j

case is also separated from the double summation term in Equation 6.53. The equation is then

simplified as follows:

ML(x) = −2
N∑

i=0

xiHTi y +

N∑
i=0

N∑
j=0
j,i

HTi Hjxix j −

N∑
i=0

HTi Hi(x2
i − 1) (6.56)

+

N∑
i=0

HTi Hix2
i

= −2
N∑

i=0

xiHTi y +

N∑
i=0

N∑
j=0
j,i

HTi Hjxix j −

N∑
i=0

HTi Hix2
i +

N∑
i=0

HTi Hi (6.57)

+

N∑
i=0

HTi Hix2
i .

The third and fifth terms in Equation 6.57 cancel and the fourth term is a constant for all possible

x and can thus be removed. The final ML equation is thus :

ML(x) =

N∑
i=0

N∑
j=0
j,i

HTi Hixix j − 2
N∑

i=0

xiHTi y. (6.58)

One can now match the parameters in the ML equation (6.58) to those in the energy equation

(6.49). This is done by defining the following:

Ti j =

 −2HTi Hj i f i , j

0 i f i = j
(6.59)

I = 2HTy. (6.60)
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This definition results in a symmetric T matrix where Ti j = T ji. Substituting these definitions

into equation 6.58 yields the following:

ML(x) = −
1
2

N∑
i=1

N∑
j=1

Ti jxix j −

N∑
i=1

xiIi (6.61)

= −
1
2

xT Tx − xT I, (6.62)

which is exactly the same as the energy equation when x = v. Thus, once the Hopfield network

has converged, the transmitted data sequence can be read as the output of the neurons. The

equation describing the convergence of the network (Equation 6.46) is in continuous time. A

discrete time version for use in a digital system is given below:

ui[t + 1] = Tiv[t] + Ii (6.63)

vi[t + 1] = g(βui[t + 1]), (6.64)

where Ti represents the ith row of T. The Hopfield network will thus run several iterations

of Equations 6.63 and 6.64 until the values of v have converged. A diagram showing the

Hopfield network can be seen in Figure 6.2. While this derivation was done for BPSK, the

I1 I2 IN

u1[t] u2[t] uN[t]

v1[t] v2[t] vN[t]

g(β(u1[t])) g(β(u2[t])) g(β(uN[t]))

T1N T2N

TN2

T21 TN1

T12

Figure 6.2: Diagram of Hopfield network.

same equations hold for QPSK if a complex-to-real conversion is performed. Higher order
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modulation techniques can also be used with the method described in [72]. The process to

adapt the Hopfield network to use a-priori information is exactly the same as for the SD.

6.3.2 Heuristic improvements to the Hopfield network

The performance of the Hopfield network may be improved by several heuristic methods. The

first considers the update procedure of the network. In equation 6.63 all the neurons are updated

at the same time (batch update). Better performance can be achieved using sequential update

where the neurons are updated one at a time and the new outputs are used for updates of the

other neurons. Thus, equation 6.63 is calculated for i from 1 to N and v j[t + 1] is used instead

of v j[t] if j < i. The second heuristic allows for the inclusion of a momentum term. Normally

τ = 1 (see equation 6.46) which means that ui[t] does not affect ui[t + 1] directly. A momentum

term is added by making τ nonzero and results in the ui[t + 1] depending on ui[t]. This changes

Equation 6.63 to:

ui[t + 1] = αu[t] + Tiv[t] + γIi, (6.65)

where α =
(
1 − 1

τ

)
and γ are scaling terms which may be varied to improve performance

[76]. The third heuristic used to improve performance is called annealing. Annealing has been

shown to improve the performance of many kinds of network-based optimisation techniques

and specifically Hopfield networks [77, 78]. In an annealing procedure, variable values (scaling

factors) are changed from one iteration to the next. The most important parameter to anneal is

the gain of the neuron (β). Initially, the gain is set low to allow the neurons to stay in a less

determined zone (and to keep the algorithm from getting stuck in a local minima). The gain is

then increased with each iteration to force the algorithm to converge. Annealing may also be

used on the other scaling factors introduced above. The values of the parameters as used in this

dissertation and the annealing procedure are:

γ[t] = 0.672 + 0.2797 exp (0.0575t − 0.426) (6.66)

β[t] = 0.0267 + 0.1363 exp (0.0442t − 1.86) (6.67)

α[t] = −0.137 + 0.369 exp (0.131t − 1.863) , (6.68)

with t being the iteration number. The parameters were obtained and optimised by using a

genetic algorithm to minimise the metric:

‖y −Hx̃‖, (6.69)
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where x̃ is x with bit x̃i = −xi. The optimisation was done in this way, because it closely

resembles the required functioning of the Hopfield network in the combined SD-Hopfield

detector, which will be explained in the next section. The final update equations are thus:

ui[t + 1] = α[t]u[t] + Tiv[t] + γ[t]Ii (6.70)

vi[t + 1] = g(β[t]ui[t + 1]). (6.71)

The diagram of the final Hopfield network can be seen in Figure 6.3. The iterative operation

of the Hopfield network requires the output of the network (v) to be initialised at some value.

If nothing is known about the sequence being detected, then the values may be initialised to

random values. If, however, information is available, initialising the output close to the correct

output will improve the performance and speed up the convergence of the network.

I1

ɣ[t]

I2

ɣ[t]

IN

ɣ[t]α[t] α[t] α[t]

u1[t] u2[t] uN[t]

v1[t] v2[t] vN[t]

g(β[t](u1[t])) g(β[t](u2[t])) g(β[t](uN[t]))

T21 TN1

TN2T12

T1N T2N

Figure 6.3: Diagram of complete Hopfield network including heuristic improvements.

6.4 SD-Hopfield Detector

Using the Hopfield network, a reduced complexity soft-output (SO) detector is constructed.

Considering Equation 6.23, it can be seen that N + 1 ML detection processes are required to

produce the soft outputs. In the optimal SO-SD detector, the SD is used for all N + 1 detections.
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In the SD-Hopfield detector, the SD is used for the first detection, as this will produce a near

optimal hard output. The Hopfield network is then used to create the N counter-hypotheses.

For the creation of the ith counter-hypothesis, the Hopfield network is initialised at the ML

solution (x̂) with the ith bit set to −x̂i. Since the Hopfield network is less complex than the

SD, a complexity reduction is achieved. The performance of the system may be improved by

employing an iterative structure.

6.4.1 SD-Hopfield turbo detector

The Hopfield network is a suboptimal detector. An iterative joint detector and decoder (turbo)

structure can be used to improve the performance of the system. In this itertive system the

SD-Hopfield detector is connected in a turbo structure with the decoder of an FEC code. In

principle, any FEC code could be used in the turbo structure with the SD-Hopfield decoder.

In this dissertation NB-QC-LDPC codes are used. The decoder used is the FFT-BP algorithm

[5, 32, 79]. A block diagram of the SD-Hopfield turbo receiver can be seen in Figure 6.4. The

Hard Output 
Sphere Decoder

β

y,H,σ
Hopfield 
Network

Belief 
Propagation 

Decoder

x

Figure 6.4: SD-Hopfield turbo receiver

turbo process works by passing extrinsic information generated by one decoder to the other

decoder to be used as a-priori information. In the first iteration the SD decodes the received

signal and assumes that the a-priori information is zero. The SD then passes the MAP solution

to the Hopfield network, which calculates a counter hypothesis solution for each bit. Using

these counter-hypotheses in the max-log-map equation, given in 6.23, produces soft outputs,

which are passed to the FFT-BP decoder. The FFT-BP decoder runs a set number of decoding

iterations. Extrinsic information is calculated from the output of the FFT-BP decoder, which is

then passed back to the SD. The SD then re-decodes the received information using the extrinsic

information as a-priori information. The resultant soft outputs then represent the a-posteriori

information. From this information the extrinsic information is calculated and passed to the
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FFT-BP decoder. This iterative process may be repeated as often as required. The extrinsic

information (Λe) is calculated as:

Λe = Λp − Λa. (6.72)

Since the soft MIMO detector is sub-optimal, the extrinsic information coming from the

Hopfield network will tend to be over optimistic (the LLR values are too large). A simple

method to counter this and improve the performance is to introduce a scaling factor. This has

been shown to work in many turbo-coded systems. An analysis to find a good scaling factor

was done. For this analysis, the SF rate-2 code given in Equation 5.40 was used with the

NB-QC-LDPC code, C6, developed in Section 3.4. The result can be seen in Figure 6.5 where

the Eb/N0 required to achieve a BER of 10−4 is plotted against different scaling factors. From

the figure, one can see that a scaling factor of 0.4 yields the best results. Introducing the scaling

factor improves the performance by almost 1dB.

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
5

5.2

5.4

5.6

5.8

6

Scaling Factor

Eb
/N

0

 

 

5 Iterations
4 Iterations

Figure 6.5: SNR required to achieve a BER of 10−4 for different scaling factors.

6.4.2 Complexity analysis

The complexity of the SD is difficult to provide analytically since it is not always the same

and depends greatly on the heuristic methods used to speed up the tree-pruning process. The

results provided in literature places the complexity between O(n6) and O(n3) in the best case

scenarios. The complexity of the Hopfield network is, however, very easy to calculate. The

complexity calculation can be broken up into two parts: the number of operations required for
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the initialisation process and the number of calculations required per iteration of the network.

For this analysis each multiplication or addition will be considered as a floating point operation

(flop). The calculation of a transcendental function will be kept separate and referred to as a

tflop. These may be calculated using look-up tables.

6.4.2.1 Initialisation Phase

Setting up the connection weights requires the calculation of Equations 6.59 and 6.60. This

corresponds to one matrix-by-matrix multiplication and one vector-by-matrix multiplication.

This complexity is given in Table 6.1. It should be noted that in the case of the SD-Hopfield

Table 6.1: Hopfield Network Initialisation Complexity

Initialisation Complexity

Description Operations Units

Matrix ×Matrix n3 flop

Matrix × Vector 2n2 flops

Total n3 + 2n2 flops

detector, the equations required for the initialisation of the Hopfield network will already have

been performed by the SD.

6.4.2.2 Iteration

Each Hopfield iteration requires the calculation of Equation 6.65. This requires: one

matrix-by-vector multiplication, two scalar-by-vector multiplications and two vector additions.

The annealing of the parameters requires: three transcendental calculations, six multiplications

and six additions. An iteration also requires the calculation of the neuron function. This

corresponds to one scalar-by-vector multiplication and one vector transcendental calculation.

The number of flops required per iteration will be denoted by C f iter and the number of tflops

required per iteration will be denoted by Ctiter. The complexity is given in Table 6.2.

6.4.2.3 Complexity comparison

For the pure SD detection, 50 iterations of the FFT-BP algorithm were run. For the SD-Hopfield

detector 10 FFT-BP iterations were run per turbo iteration, resulting in a total of 50 FFT-BP

Department of Electrical, Electronic & Computer Engineering Page 105

 
 
 



Chapter Six MIMO Detection

Table 6.2: Hopfield Network Iteration Complexity

Complexity per Iteration

Description Operations Units

Matrix × Vector 2n2 flops

3 - Scalar × Vector 3n flops

2 - Vector + Vector 2n flops

Vector Transcendental n tflops

Annealing 3 tflops

Annealing 12 flops

C f iter 2n2 + 5n + 12 flops

Ctiter n + 3 tflops

iterations. The complexity of the FFT-BP decoding is thus not considered in this analysis. The

total complexity of the SD-Hopfield detector can be expressed as:

CTotal = io(C(SD) + ii(C f iter + Ctiter) (6.73)

= ioC(SD) + ioii(C f iter + Ctiter), (6.74)

where io is the number of turbo iterations and ii is the number of internal Hopfield iterations.

C(SD) represents the complexity of an SD iteration. Notice that the initialisation complexity of

the Hopfield detector has been omitted as the required equations will have been calculated by

the SD. The complexity of the optimal SD detector can be represented as:

CS S D = (n + 1)C(SD). (6.75)

The specific complexity gain will thus depend on the number of iterations and n. In this

dissertation ii = 10, io = 5 were chosen. The complexity gain can then be expressed as:

Cgain = CS S D −CTotal (6.76)

= (n + 1)C(SD) − 5C(SD) − 50(C f iter (6.77)

+Ctiter)

= (n − 4)C(SD) − 50(C f iter + Ctiter). (6.78)

Considering that the complexity of the SD is cubic in n and the complexity of the Hopfield

network is square in n, the gain is heavily dependent on n. For the example of the rate-2 SF

code, n = 16 and the run-time for the SD-Hopfield detector was approximately five times faster

than the optimal SO-SD detector.
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6.5 Simulation Results

The simulations were performed on the MIMO-WiMAX channel simulator developed in [56].

The sphere decoder used in the simulations was taken from [66]. The simulation parameters

can be found in Table 6.3. Simulations were performed on an ideal two-tap channel and a more

realistic suburban alternative channel. The suburban alternative PDP in Table 6.3 can be found,

and was applied to the simulator in [27]. Whilst the FFT size used is 128, only 48 carriers

are used in these simulations, as that corresponds to one WiMAX user. Twelve SF frequency

symbols are grouped together and interleaved to form one 48-carrier grouping for a user. This

grouping is then combined with a second user, pilot and guard bands to form the 128-carrier

OFDM symbol.

Table 6.3: MIMO-WiMAX simulation parameters

MIMO-OFDM parameters

Transmit antennas 2

Receive antennas 2

FFT size 128

Number of sub-channels 2

Users per sub-channel 1

Mode FUSC

Cyclic prefix length 0.25

Maximum Doppler spread fd = 100Hz

Sampling time Ts = 0.8µs

Channel bandwidth 1.25MHz

Transmit filter Square root raised cosine, α = 0.5

Receive filter Square root raised cosine, α = 0.5

Ideal channel parameters

Frequency-Selectivity Two-ray equal power PDP at 0 µs and 8 µs

Time-Selectivity Slow-fading conditions with fd = 100Hz

Space-Selectivity None

Realistic channel parameters

Frequency-Selectivity Suburban-alternative, 20 tap PDP

Time-Selectivity Slow-fading conditions with fd = 100Hz
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Figure 6.6: Performance of SD-Hopfield detector on the rate-2 SF code with the NB-QC-LDPC
code on a two tap channel.
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Figure 6.7: Performance of SD-Hopfield detector on the rate-2 SF code with the NB-QC-LDPC
code on the suburban alternative channel.
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From the results in figure 6.6 one can see that the performance of the SD-Hopfield detector

is approximately the same as that of the optimal SO-SD detector. The performance of the

SD-Hopfield detector improves with each iteration, but from the figure it can be seen that

5 iterations are sufficient to match the performance. Running more iterations allows the

SD-Hopfield to beat the pure SD detector. From Figure 6.7 one can see that the SD-Hopfield

detector still performs well in realistic channel conditions, although more iterations are required

to equal the performance of the optimal SO-SD detector exactly.
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Chapter Seven

The Turbo NB-QC-LDPC coded
STF-MIMO-OFDM System

In this chapter, the building blocks discussed and developed in the previous sections are

combined to form a complete system. The system combines the NB-QC-LDPC code with

the universal STF codes on a MIMO-OFDM platform. At the receiver an iterative turbo

decoder structure is used. The system will thus be called: Turbo NB-QC-LDPC coded

STFC-MIMO-OFDM. This chapter will start with a description of the transmitter and the

receiver. The performance of the system will then be analysed.

7.1 Transmitter

Figure 7.1 shows a block diagram of the transmitter. The data from the source (d) is first

encoded using the NB-QC-LDPC code. The encoded data (e) is then sent to the STF encoder,

which performs LP and layering to produce the codeblock (C). This block is then demultiplexed

and all the symbol vectors (x) sent to the correct transmit antennas. The OFDM symbols are

then created (c) and transmitted.

7.2 Receiver

Figure 7.2 shows a block diagram of the receiver. The signals received at each antenna (r) are

OFDM demodulated and multiplexed to create a sequence of received symbols (Y), which is

then sent to the SD. The SD then decodes the received signal assuming no a priori information
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Figure 7.1: A block diagram of the transmitter of the Turbo NB-QC-LDPC coded
STF-MIMO-OFDM system.
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Figure 7.2: A block diagram of the receiver of the Turbo NB-QC-LDPC coded
STF-MIMO-OFDM system.

and then sends the soft outputs (Λp) to the FFT-BP decoder. The FFT-BP waits for the entire

LDPC codeword to arrive and then decodes the received signal. From the soft output of the

FFT-BP decoder, the extrinsic information is calculated and passed back to the SD. Extrinsic
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information is calculated in the same manner was described in Chapter 6. The SD then uses

the extrinsic information from the BP decoder as a priori information and decodes the received

signal again. From the output of the SD the extrinsic information of the SD decoding (Λe)

is extracted and sent to the FFT-BP decoder to be decoded again. The SD and the FFT-BP

decoders repeatedly pass extrinsic information back and forth for a set number of iterations, at

which time the soft output of the FFT-BP decoder is hard limited and used as the output of the

system (do).

7.3 System Analysis

Using simulations, the performance of the system is analysed. The following aspects of the

system are analysed:

1. The effect of the number of turbo iterations and the number of internal FFT-BP decoder

iterations on the BER performance.

2. The effect of channel correlation on the BER performance of the system.

3. The effect of quantisation at the receiver on the BER performance of the system.

4. The comparative performance of SF and STF codes in correlated and quantised channel

conditions.

The simulations were performed in both an ideal two tap as well as a more realistic 20-tap

suburban alternative channel.

7.3.1 Simulation Results and Discussion

The simulations were performed on the channel simulator developed in [56]. The SD used

in the simulations was taken from [66]. The simulation parameters can be found in Table

7.1. Simulations were performed on an ideal two tap channel and a more realistic suburban

alternative channel. The suburban alternative PDP in Table 7.1 can be found, and was applied

to the simulator in [56]. While the FFT size used is 128, of this only 48 carriers are used for the

simulations in this dissertation, as that number corresponds to one user. Twelve SF frequency

symbols are grouped together and interleaved to form one 48-carrier grouping for a user. This

grouping is then combined with a second user, pilot and guard bands to form the 128 carrier

OFDM symbol. In this section QPSK was used in all simulations.
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Table 7.1: MIMO-WiMAX simulation parameters

MIMO-OFDM parameters

Transmit antennas 2

Receive antennas 2

FFT size 128

Number of sub-channels 2

Users per sub-channel 1

Mode FUSC

Cyclic prefix length 0.25

Maximum Doppler spread fd = 100Hz

Sampling time Ts = 0.8µs

Channel bandwidth 1.25MHz

Transmit filter Square root raised cosine, α = 0.5

Receive filter Square root raised cosine, α = 0.5

Ideal channel parameters

Frequency-Selectivity Two-ray equal power PDP at 0 µs and 8 µs

Time-Selectivity Slow-fading conditions with fd = 100Hz

Space-Selectivity None

Realistic channel parameters

Frequency-Selectivity Suburban-alternative, 20 tap PDP

Time-Selectivity Slow-fading conditions with fd = 100Hz

7.4 Turbo System Results

7.4.1 Two tap Channel

7.4.1.1 Turbo NB-QC-LDPC coded STF-MIMO-OFDM system, iteration study, no

correlation

In this section, the performance of the system with regard to the number of internal FFT-BP

and external turbo iterations is investigated. The effect of the number of FFT-BP iterations

will be considered first. Figures 7.3, 7.4 and 7.5 show the performance of the rate-1 STF

code over a range of turbo iterations for 10, 20 and 30 FFT-BP iterations per turbo iteration,

respectively. The simulations were performed on the two tap channel with no correlation in
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order to isolate the effects of the number of iterations on the performance of the system, from

other complicated channel effects. From these simulations, the Eb/N0 required to achieve a

BER of 10−4 for these parameters is summarised in Table 7.2.

Table 7.2: FFT-BP Iteration Study, Two Tap Channel

Eb/N0 required to achieve a BER of 10−4[dB]

Turbo Iteration number 1 2 3 4 5 6

10 FFT-BP iterations 2.63 2.15 1.93 1.85 1.85 1.8

20 FFT-BP iterations 2.5 2.0 1.86 1.82 1.78 1.75

30 FFT-BP iterations 2.45 2.0 1.84 1.82 1.77 1.77

From the table it can be see that while an increase in FFT-BP iterations will initially improve the

performance of the system, the gain achieved decreases when turbo iterations are performed.

Specifically, after 3 turbo iterations, the difference between running 10 FFT-BP iterations

and running 30 FFT-BP iterations is only 0.09 dB. As a result, the complexity incurred by

increasing the number of FFT-BP iterations to more than 10 is unnecessary when more than

two turbo iterations are performed. It should be noted that for LDPC codes in general the

performance improvement with iteration number is not linear. Thus, increasing the number

of FFT-BP iterations to 100 or 1000 might in fact provide substantial gains. However, in this

dissertation the focus of the system design is on realistic complexity which is why these cases

are not considered.

The gain achieved by increasing the number of turbo iterations will now be considered.

Figures 7.3, 7.6 and 7.7 show the performance of the STF rate-1, SF rate-2 and SF rate-1

code respectively. In these simulations, 10 internal FFT-BP iterations are run and the number

of turbo iterations varied from 1 to 6. The baseline performance (without the FEC) of these

codes can be found in Figure 5.5. From these simulations, the gain achieved for each iteration

of the system is presented in Table 7.3. The gain for iteration number i is calculated as the

difference in Eb/N0, between iteration i and i − 1, required to achieve a BER of 10−4. 0

iterations corresponds to the baseline case. From the table one can see that the gain decreases

rapidly with each iteration. After the third iteration, almost all of the gain has been achieved.

Thus, considering the complexity incurred, increasing the number of turbo iterations beyond

three is unnecessary.
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Table 7.3: Turbo Iteration Study, Two Tap Channel, BER = 10−4

Gain achieved after each iteration [dB]

Iteration number 1 2 3 4 5 6

STF rate-1 6.375 0.5 0.225 0.1 0.05 0

SF rate-2 6.3 0.86 0.25 0.16 0.1 0.05

SF rate-1 8.7 0.25 0.075 0.025 0.025 0.025
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Figure 7.3: Performance of the turbo NB-QC-LDPC coded system with the STF rate-1 code
on the two tap channel with no correlation and 10 internal FFT-BP iterations for each turbo
iteration.
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Figure 7.4: Performance of the turbo NB-QC-LDPC coded system with the STF rate-1 code
on the two tap channel with no correlation and 20 internal FFT-BP iterations for each turbo
iteration.

0 0.5 1 1.5 2 2.5 3 3.5 4
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Eb/N0 [dB]

BE
R

2 Tap Channel, No Correlation, 30 internal FFT-BP iterations

 

 

1 Iterations
2 Iteration
3 Iterations
4 Iterations
5 Iterations
6 Iterations

Figure 7.5: Performance of the turbo NB-QC-LDPC coded system with the STF rate-1 code
on the two tap channel with no correlation and 30 internal FFT-BP iterations for each turbo
iteration.
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Figure 7.6: Performance of the turbo NB-QC-LDPC coded system with the SF rate-2 code
on the two tap channel with no correlation and 10 internal FFT-BP iterations for each turbo
iteration.
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Figure 7.7: Performance of the turbo NB-QC-LDPC coded system with the SF rate-1 code
on the two tap channel with no correlation and 10 internal FFT-BP iterations for each turbo
iteration.
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7.4.1.2 Turbo NB-QC-LDPC coded STF-MIMO-OFDM system, correlated channel

In this section the effect of channel correlation on the performance of the system is analysed.

The number of FFT-BP iterations is set to 10 for all simulations. In the first part of the analysis,

the effect of the number of turbo iterations in a correlated channel with r = 0.6 is analysed.

Figures 7.8, 7.9 and 7.10 respectively show the performance of the rate-1 STF code, the rate-2

SF code, and the rate-1 SF code on the two tap channel, in correlated channel conditions with a

correlation factor of 0.6. Considering the performance of the system after one iteration as the

baseline, Table 7.4 shows the gains achieved by running more iterations. From the table it can

Table 7.4: Iteration Study in Correlated Channel Conditions, Two Tap Channel, BER = 10−3

Performance gain after each iteration[dB]

Iteration number 2 3 4 5 6

STF rate-1 0.75 0.25 0.1 0.09 0.07

SF rate-2 0.85 0.3 0.15 0.1 0.15

SF rate-1 0.28 0.06 0.03 0.07 0.04

be seen that the majority of the gain is achieved in the first three iterations. This re-enforces the

result obtained for the iteration analysis performed in uncorrelated channel conditions.

In the second part of the analysis, the correlation factor is varied while the number of

turbo iterations is kept constant at six. The purpose of this analysis is to quantify the loss

experienced by the system for different levels of correlation. While only 3 iterations are

required for good performance, six iterations are used in this analysis as this represents the best

performance of the system which allows the study to consider the absolute effect of correlation.

Figures 7.11, 7.12 and 7.13 show the performance of the rate-1 STF, rate-2 SF and rate-1 SF

codes respectively. The loss incurred for each of these codes is summarised in Table 7.5. The

loss is calculated as the difference between the Eb/N0, required to achieve a BER of 10−3 as

compared to the uncorrelated case. From the table, one can see that the SF rate-1 code is the

most robust against channel correlation. In all three cases, the performance losses increase with

the correlation factor. The rate at which the loss increases, also increases with the correlation

factor.
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Table 7.5: Correlation Study, Two Tap Channel, BER = 10−3

Performance loss for each correlation factor [dB]

Correlation 0.2 0.4 0.6 0.8

STF rate-1 0.125 0.555 1.125 2.375

SF rate-2 0.2 0.6 1.375 -

SF rate-1 0.1 0.35 0.65 1.4
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Figure 7.8: Performance of the turbo NB-QC-LDPC coded system with the STF rate-1 code
on the two tap channel with correlation factor r=0.6 and 10 internal FFT-BP iterations for each
turbo iteration.
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Figure 7.9: Performance of the turbo NB-QC-LDPC coded system with the SF rate-2 code on
the two tap channel with correlation factor r=0.6 and 10 internal FFT-BP iterations for each
turbo iteration.
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Figure 7.10: Performance of the turbo NB-QC-LDPC coded system with the SF rate-1 code
on the two tap channel with correlation factor r=0.6 and 10 internal FFT-BP iterations for each
turbo iteration.
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Figure 7.11: Performance of turbo NB-QC-LDPC coded system with the rate-1 STF code
running 6 turbo iterations on the two tap channel with correlation factors ranging from r=0.0 to
r=0.8.
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Figure 7.12: Performance of turbo NB-QC-LDPC coded system with the rate-2 SF code
running 6 turbo iterations on the two tap channel with correlation factors ranging from r=0.0 to
r=0.8.
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Figure 7.13: Performance of turbo NB-QC-LDPC coded system with the rate-1 SF code
running 6 turbo iterations on the two tap channel with correlation factors ranging from r=0.0 to
r=0.8.
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7.4.2 Suburban Alternative Channel

7.4.2.1 Comparison of ST, SF and STF codes without turbo iterations, no channel

correlation

In this study, the performance of the different ST, SF and STF codes are compared. The

purpose of the study is to determine whether the relative performance of these multi-antenna

codes, as discussed in Chapter 5 still hold when an FEC code is applied. For this analysis no

turbo iterations are performed. This would correspond to the 1 iteration curves in other figures.

Figure 7.14 shows the performance of different ST, SF and STF codes. The number of FFT-BP

iterations used is 50.

Comparing the performance of the rate-1 SF and the rate-1 STF code at a BER of 10−4

one can see that the STF code outperforms the SF code with 0.2 dB. However, in the uncoded

case the STF code outperforms the SF code by 1.1 dB. The slopes of the two curves may also be

compared. In the uncoded case, the slope of the STF curve is noticeably steeper than that of the

SF curve. However, in the coded case, any difference in slope is marginal. The gain of the STF

code over the SF code without the FEC code, is due to the extra time diversity which the code

can exploit. However, when the FEC code is added, the FEC code exploits the time diversity.

Since the time diversity cannot be exploited twice, the two codes perform approximately the

same. Because of a larger SD being required, the decoding of the STF rate-1 code is more

complex than that of the SF rate-1 code. This extra decoding complexity is offset by the gain

in performance. However, when the FEC code is used there is no gain in performance. There

is thus no good reason to use the STF code over the SF code when an external FEC code is

employed.

Figures 7.15 and 7.16 show the performance of different ST, SF and STF codes when

respectively 8 bit and 5 bit quantisation is employed at the receiver. When comparing the

results in the figure with the results in Figure 7.14, one can see no loss in performance.
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Figure 7.14: Performance of the NB-QC-LDPC coded system on the suburban alternative
channel with no correlation.
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Figure 7.15: Performance of the NB-QC-LDPC coded system on the suburban alternative
channel with no correlation and 8 bits quantisation.
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Figure 7.16: Performance of the NB-QC-LDPC coded system on the suburban alternative
channel with no correlation and 5 bits quantisation.

7.4.2.2 Turbo NB-QC-LDPC coded STF-MIMO-OFDM system, iteration study, no

correlation

Figures 7.17, 7.18 and 7.19 show the performance of the rate-1 STF, rate-2 SF and rate-1 SF

codes on the 20 tap suburban alternative channel with no correlation. In all three figures the

number of internal FFT-BP iterations per turbo iteration is 10. From these figures one can see

that similarly to the situation in the ideal two tap channel, the performance of the system after 3

iterations is close to the performance after 6 iterations. This re-enforces the conclusion that only

3 iterations are required in the system. The performance is also very similar to the performance

in the ideal 2-tap channel.
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Figure 7.17: Performance of turbo NB-QC-LDPC coded system with the rate-1 STF code on
the suburban alternative channel with no correlation.
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Figure 7.18: Performance of turbo NB-QC-LDPC coded system with the rate-2 SF code on the
suburban alternative channel with no correlation.
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Figure 7.19: Performance of turbo NB-QC-LDPC coded system with the rate-1 SF code on the
suburban alternative channel with no correlation.

7.4.2.3 Turbo NB-QC-LDPC coded STF-MIMO-OFDM system, correlated channel

Figures 7.20, 7.21 and 7.22 show the performance of the rate-1 STF code, the rate-2 SF code and

rate-1 SF code in correlated channel conditions with a correlation factor of 0.6. Figures 7.23,

7.24 and 7.25 show the performance of the rate-1 STF code, the rate-2 SF code and the rate-1 SF

code for different correlation factors after 6 turbo iterations. In all cases, the number of FFT-BP

iterations are fixed at 10 per turbo iteration. Comparing these figures with the corresponding

figures from the two tap channel studies, one can see that except for a very slight degradation

in performance, all the results are approximately the same.
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Figure 7.20: Performance of turbo NB-QC-LDPC coded system with the rate-1 STF code on
the suburban alternative channel with correlation factor r=0.6.
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Figure 7.21: Performance of turbo NB-QC-LDPC coded system with the rate-2 SF code on the
suburban alternative channel with correlation factor r=0.6.
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Figure 7.22: Performance of turbo NB-QC-LDPC coded system with the rate-1 SF code on the
suburban alternative channel with correlation factor r=0.6.
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Figure 7.23: Performance of turbo NB-QC-LDPC coded system with the rate-1 STF code
running 6 turbo iterations on the suburban alternative channel with correlation factors ranging
from r=0.0 to r=0.8.
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Figure 7.24: Performance of turbo NB-QC-LDPC coded system with the rate-2 SF code
running 6 turbo iterations on the suburban alternative channel with correlation factors ranging
from r=0.0 to r=0.8.

0 0.5 1 1.5 2 2.5 3 3.5
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

BE
R

Suburban Alternative Channel, Varied Correlation, 6 Iterations

 

 

No Correlation
r = 0.2
r = 0.4
r = 0.6
r = 0.8

Eb/N0 [dB]

Figure 7.25: Performance of turbo NB-QC-LDPC coded system with the rate-1 SF code
running 6 iterations on the suburban alternative channel with correlation factors ranging from
r=0.0 to r=0.8.

Department of Electrical, Electronic & Computer Engineering Page 130

 
 
 



Chapter Seven The Turbo NB-QC-LDPC coded STF-MIMO-OFDM System

7.5 Summary of Results

In this section, the results that were obtained in this chapter are summarised. Table 7.6 shows

the results of the iteration study that was used to determine how many turbo iterations and how

many internal FFT-BP iterations per turbo iteration should be performed. The table also shows

the performance of the SF and STF codes in the two tap channel, when there is no channel

correlation. Table 7.7 shows the analysis of the system performance in correlated channel

Table 7.6: Summary of Turbo and FFT-BP Iteration Study, Two Tap Channel

Eb/N0 required to achieve a BER of 10−4[dB]

Turbo Iteration number 1 2 3 4 5 6

10 FFT-BP iterations 2.63 2.15 1.93 1.85 1.85 1.8

20 FFT-BP iterations 2.5 2.0 1.86 1.82 1.78 1.75

30 FFT-BP iterations 2.45 2.0 1.84 1.82 1.77 1.77

Iteration gain[dB], 10 FFT-BP iterations

Turbo Iteration number 1 2 3 4 5 6

STF rate-1 6.375 0.5 0.225 0.1 0.05 0

SF rate-2 6.3 0.86 0.25 0.16 0.1 0.05

SF rate-1 8.7 0.25 0.075 0.025 0.025 0.025

conditions. Simulations were also performed in a 20-tap Suburban alternative channel, and

the performance results were found to be very similar to those of the 2-tap channel.

Table 7.7: Summary of Analysis in Correlated Channel Conditions, Two Tap Channel

Performance gain after each iteration[dB], correlation = 0.6, BER = 10−3

Turbo Iteration number 2 3 4 5 6

STF rate-1 0.75 0.25 0.1 0.09 0.07

SF rate-2 0.85 0.3 0.15 0.1 0.15

SF rate-1 0.28 0.06 0.03 0.07 0.04

Performance loss due to each correlation factor [dB], BER = 10−3

Correlation 0.0 0.2 0.4 0.6 0.8

STF rate-1 0.0 0.125 0.555 1.125 2.375

SF rate-2 0.0 0.2 0.6 1.375 -

SF rate-1 0.0 0.1 0.35 0.65 1.4
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7.5.1 Conclusions

Based on the simulation results presented in this chapter, the following list shows the

conclusions that were drawn.

• The number of internal FFT-BP iterations, per turbo iteration, should be 10.

• After 3 turbo iterations most of the gain has been achieved. This holds for correlated and

uncorrelated conditions in both the 2-tap as well as the 20-tap channel.

• In correlated channel conditions, the performance of the system degrades. The

performance loss increases with the correlation factor. The rate at which the performance

loss increases, also increases with the correlation factor.

• The SF rate-2 code is the more susceptible to channel correlation than the SF rate-1 code

or the STF rate-1 code.

• When a powerful FEC code (such as the NB-QC-LDPC code) is used, an SF code can

equal the performance of an STF code at a reduced complexity.

In general, the system performed well over a range of different channel conditions.
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Chapter Eight

Conclusions and future
research

8.1 Conclusion

In this dissertation a Turbo NB-QC-LDPC coded STF-MIMO-OFDM system was developed.

• In Chapter 2, a basic introduction to FEC codes was provided and terminology and

notation which are used throughout the dissertation were presented.

• In Chapter 3, the design of NB-LDPC codes was considered. In order to keep encoding

complexity low, a QC code design was chosen. For the sake of realistic complexity

and latency, the code length, as well as the number of FFT-BP decoding iterations,

was limited. Several design procedures for NB-QC-LDPC codes were implemented and

compared. It was found that girth-12 codes performed best. The method used to select

the NB elements in the parity check matrix was analysed and it was found that for the

field size considered, a random selection procedure performed best. The codes were

also analysed with quantisation at the receiver and the effect on the performance was

measured.

• In Chapter 4, mobile wireless channels were discussed and the triply selective fading

channel model used in the simulations was presented.

• In Chapter 5, multi-antenna coding techniques were discussed. Specifically the ST, SF

and STF codes used in the system were presented. The SF and STF codes use LP and

layering. It was found that the process of LP places extra requirements on the number of

Department of Electrical, Electronic & Computer Engineering Page 133

 
 
 



Chapter Eight Conclusions and future research

quantisation bits at the receiver. The limit on the achievable diversity in a quantised LP

coded system was mathematically derived. This limit was then verified by simulating SF

and STF codes with quantisation at the receiver.

• In Chapter 6, MIMO detection was discussed. The SISO-SD was presented. A reduced

complexity SO MIMO detector combining a Hopfield network with an SD in an iterative

receiver structure was developed. The performance of the detector was compared with

that of the optimal SISO-SD detector. The computational complexity of the SD-Hopfield

detector was explicitly calculated and compared with the complexity of the normal

SO-SD. It was shown that the Hopfield-SD can achieve the same performance as the

optimal SO-SD at a reduced complexity. The SD-Hopfield detector was also shown to

provide a convenient method for trading off complexity for performance.

• In Chapter 7, the full Turbo NB-QC-LDPC coded STF-MIMO-OFDM system combining

the code developed in Chapter 3 with the MIMO-OFDM system and the STF codes was

presented. The turbo structure was explained. The system was analysed with simulations

in triply selective block fading conditions on realistic as well as ideal channels. The effect

of the number of internal FFT-BP decoding iterations, as well as the number of turbo

iterations, on the performance of the system was analysed. The effect of correlation at the

antennas, as well as quantisation at the receiver, was analysed with simulations. It was

found that the system is robust against channel correlation as well as quantisation at the

receiver. It was also shown that in the system, the SF code achieves the same performance

as the STF code at less complexity.

8.2 Future Research

The research presented in this dissertation can be used as a stepping stone for future research.

Aspects that deserve attention, which were not considered in this dissertation, include channel

state estimation (CSE), adaptive systems, differential multi-antenna coding and higher order

modulation schemes.

8.2.1 CSE

In every part of this dissertation it was assumed that perfect CSI was available at the receiver.

This is, however, unrealistic as there is always some error associated with the CSE. Research
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should thus be done on the effect of imperfect CSI on the performance of the system and all

the sub-systems presented in this dissertation. Different CSE algorithms can be implemented

and their performance noted. It is also possible to combine the CSE algorithm in an iterative

structure with the current iterative joint decoder.

8.2.2 Differential STF coding

The use of differential coding allows the receiver to operate without CSI. No pilot bits are

thus required in the signal. This allows for a high rate code to be used without decreasing the

effective rate of the system when compared with the uncoded case. Using the system structure

as proposed in this dissertation with differential STF codes could thus provide a performance

increase over uncoded STF systems without a loss in transmission rate.

8.2.3 Higher order modulation techniques

In the analysis of the proposed system, only QPSK and BPSK were considered. However,

for high spectral efficiencies, higher order modulation techniques are required. A performance

analysis of the system using higher order modulation techniques in correlated and quantised

channel conditions should be performed.

8.2.4 Adaptive systems

Usually adaptive systems change the modulation technique in order to stay in a specific BER

range. This, however, tends to result in a discrete jump in the BER experienced by the system.

The use of an iterative structure as used in this dissertation allows for a convenient method to

trade performance for complexity by increasing and decreasing the number of turbo iterations.

This same process could also be use to change the system adaptively in order to maintain a

required BER. An adaptive scheme could thus be developed which combines moving between

different modulation techniques with changing the number of turbo iterations to yield a smooth

transition between modulation schemes.

8.2.5 QC-LDPC code design

In this dissertation, only a limited range of specifications was considered in the code design.

Research can be done to compare different design procedures over a greater range of code rates
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and field sizes.
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AppendixA

Power Delay Profiles
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Figure A.1: Suburban-alternative power delay profile [1]
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[56] K. P. Maré and B. T. Maharaj, “Performance Analysis of Modern Space-Time Codes

on a MIMO-WiMAX Platform,” in Proceedings of IEEE International Conference on

Wireless and Mobile Computing, Networking and Communications, WIMOB ’08, 2008,

pp. 139–144.

[57] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Transactions on Information Theory,

vol. 44, no. 6, pp. 2325–2383, Oct. 1998.

[58] G. F. Sage, “Performance of Multilevel PCM,” IEEE Transactions on Aerospace and

Electronic Systems, vol. AES-2, no. 4-Suppl, pp. 353–361, 1966.

[59] H. Viswanathan and R. Zamir, “On the whiteness of high-resolution quantization errors,”

IEEE Transactions on Information Theory, vol. 47, no. 5, pp. 2029–2038, 2001.
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