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Summary

Knowledge of the absorption of inhalation anaesthetic agents is essential if
one is to safely administer them. Despite many years of research in linear
science, no model has been described that can reliably predict inhalation
agent uptake. To date no published investigation has looked for non-
linearity in the absorption process. The aim if this research project was to
determine if the absorption of anaesthetic agents is non-linear, using

isoflurane and enflurane as examples.

To detect non-linearity, four conditions must be met:
Sensitivity to initial conditions,

Fractal Dimension of the attractor,

Invariant probability distribution of the attractor, and

Detection of an underlying dynamical process.

Ten measured time series for both isoflurane and enflurane absorption were
measured. These were then compared with ten noise signals, with similar

standard deviations, means and number of points in the series.

Calculated Lyapunov exponents tested sensitivity to initial conditions. The
dimension of the attractor was calculated using the following statistics, each
giving an approximation of the fractal dimension. Approximate entropy,
information entropy, correlation dimension and fractal dimension (box
counting method). The Invariant probability distribution of the attractor was
tested for using non-linear forecasting. Detection of an underlying

dynamical process was determined by the method of surrogate data.

Each of the four conditions required have been met with statistical
significance ( p< 0.05) and acceptable statistical power ( >0.8). Itis
therefore concluded that the absorption of both isoflurane and enflurane are
non-linear processes. The implications and implementations in anaesthesia

practice are discussed.
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Opsomming

'n Deeglike kennis van die opname van narkose dampe is nodig om die
toediening daarvan veilig te maak. Ten spyte van etlike jare van navorsing,
is geen liniére model beskryf wat die opname van dampe akkuraat voorspel
nie. Geen publikasie het tot op hede die hipotese van nie-liniére absorpsie
van narkosedampe ondersoek nie. Die doel van die navorsingsprojek is om
die moontlikheid dat die opname van narkose dampe nie-liniér is te

ondersoek, met gebruik van isofluraan en enfluraan as voorbeelde.

Om vir nie lineariteit te toets, moet daar aan die volgende vereistes voldoen
word:

Sensitiwiteit vir aanvanklike omstandighede,

Fraktale dimensie van die attraktor,

Invariante waarskynlikheids verspreiding van die attraktor, en die

Identifisering van 'n onderliggende dinamiese proses.

Tien gemete tydreekse is vir beide isofluraan- en enfluraan-absorpsie
afsonderlik bepaal. Dié is vergelyk met tien ruis-tydreekse met
vergelykbare standaardafwykings, gemiddelde waardes en aantal datapunte
in elke betrokke reeks.

Berekende Lyapunov eksponente is gebruik om te toets vir sensitiwiteit vir
aanvanklike omstandighede. Die attraktor-dimensie is gemeet met die
volgende statistiese metodes, waar elkeen 'n beraming gee van die fraktale
dimensie. Benaderde entropie, inligtings-entropie, korrelasie-dimensie en
fraktale-dimensie (blok-tel-metode).  Die invariant waarskynikheids-
verspreiding van die attraktor is bepaal deur nie-liniérevoorspelling.
Identifisering van 'n onderliggende dinamiese proses is gedoen volgens die

metode van surrogaat-data.

Daar is aan al die vereistes van statistiese betekenis voldoen ( p<0.05) en

aanvaarbare statistiese krag ( >0.8). Met analise van beskikbare data is die
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gevolgtrekking dat die opname van narkose-dampe nie-liniér geskied.

implikasies en toepaslikheid in narkose praktykvoering word bespreek.

v

Die



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

<

Declaration

I, Johan Daniel Steyn do hereby solemnly declare that this is my own
original work, and that it has not been submitted to any other university for

degree purposes.

Signed:

N oiec)

21/0212003



NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

u
& !

TABLE OF CONTENTS
CHAPTER  TITLE PAGE
1 Introduction 1-1
2 Literature Study 2-1
2.1 Linear Models Described In The Literature 2-1
2.1.1 The Square Root Of Time Model 2-1
2.1.2 The Relationship Between Anaesthetic Uptake And Cardiac Output 2-2
2.1.3 Re-Evaluations Of The Square Root Of Time Model 2-2
2.14 The Svstem Model For Closed Circuit Inhalation Anaesthesia 2-6
2.1.5 Simple Linear Regression Models 2-8
2.2 Non Linear Dynamics And Medicine 2-9
2.2.1 Non Linear Dynamics In General 2-9
222 Non-Linear Dynamics And Medicine 2-11
223 Recent Advances In Pharmacokinetics 2-14
224 Anaesthesiology 2-15
23 Non Linear Models 2-15
2.4 References 2-15
3 Research Method 3-1
3.1 Aim 3-1
32 Data Required 3-1
33 Patient Selection And Anaesthetic Technique 3-1
34 Accuracy Of Measurements 3-1
3.5 Ethical Considerations 3-2
3.6 Data Processing 3-2
3.7 Hypothesis ' 3-3
3.7.1 Sensitivity To Initial Conditions 3-3
372 Fractal Dimension Of The Attractor 3-3
3.73 Invariant Probability Distribution Of The Attractor 3-3
374 Detection Of An Underlying Dynamical Process 3-3

38 Null Hypothesis 3-3



39
3.9.1
39.2
3.10
3.11
3.12
3.12.1
3.12.2
3.13

4.1
4.2
4.2.1
4.2.2

5.1
5.2
5.2.1
522
523
524
525
53
5.3.1
53.2
5.4
54.1
5.5
5.6
5.7
5.7.1

o

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Qo VYUNIBESITHI YA PRETORIA

Data Analysis

Time Domain Indexes
Non-Linear Indexes
Computation

Power Analysis

Testing Of The Null Hypotheses
Description

Symbolic Representation

References

Measured Time Series
Method

Characteristics
Description

Tabular Summary

Dimension

Definition

Discussion

Classical Fractals And Self-Similarity

Fractals And The Problem Of Dimension
Fractal Dimension

Information Dimension

Correlation Dimension

Computational Algorithms

Computational Description

Computational Solution

Programmatic Solution

Testing The Programs

The Dimensions Of The Recorded Times Series
The Dimensions Of The Control Noise Times Series
Statistical Analysis

Hypothesis

vii

3-3
3-4
3-4
3-6
3-6
3-6
3-6
3-7
3-7

5-1
5-1
5-1
5-1
5-2
5-4
5-5
5-6
5-7
5-7
5-8
5-8
5-9
5-10
5-12
5-12
5-12



5.7.2
5.7.3
5.7.4
5.7.5
5.8

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.4
6.4.1
6.4.2
6.5
6.6
6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.8
6.9

7.1
7.2
7.2.1
7.2.2
7.3
7.3.1

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

+-
5@ UNIVERSITEIT VAN PRETORIA
Qe

Statistical Methods And Tests
Results

Power Analysis

Conclusion

References

Approximate Entropy

Definition

Discussion

Computation Algorithms

Computational Description

Computational Solution

Implementation And Interpretation

Programmatic Solution

Programmatic Considerations

Testing The Program

Approximate Entropy Of The Measured Time Series
Approximate Entropy Of The Control Noise Time Series
Statistical Analysis

Hypothesis

Statistical Methods And Tests

Results

Power Analysis

Conclusion

References

Lyapunov Exponents
Definition

Discussion

General Description
Implementation Details
Computation Algorithms

Initialization

vili

5-13
5-13
5-15
5-18
5-19

6-10
6-10
6-11
6-11
6-13
6-13



&

&

B;a UNIVERSITEIT VAN PRETORIA
et

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

7.3.2 Initial Error 7-4
7.3.3 Transformation 7-4
7.3.4 Error Amplification 7-4
7.3.5 Renomalization 7-4
7.3.6 Loop 7-5
7.3.7 Result 7-5
7.4 Summary Of The Main Aspects Of Lyapunov Exponents Relevant To 7-5
Strange Attractors
7.5 Program Used To Estimate The Lyapunov Exponents 7-5
7.5.1 Testing The Program 7-5
7.6 Lyapunov Exponents For The Time Series Measured 7-5
7.7 Lyapunov Exponents For The Control Noise Signals 7-9
7.8 Statistical Analysis 7-9
7.8.1 Hypothesis 7-10
7.8.2 Statistical Methods And Tests 7-10
7.83 Results 7-11
7.8.4 Power Analysis 7-11
7.9 Conclusion 7-13
7.10 References 7-13
8 The Method Of Surrogate Data 8-1
8.1 Definition 8-1
8.2 Discussion 8-1
8.2.1 Introduction 8-1
822 Statistical Hypothesis Testing 8-2
8.2.3 Computing Significance 8-3
8.2.4 Estimating Error Bars On Significance 8-3
8.2.5 Battery Of Discriminating Statistics 8-4
83 Algorithms For Generating Surrogate Data 8-4
8.3.1 Unwindowed Fourier Transform Algorithm 8-4
8.3.2 Windowed Fourier Transform Algorithm 8-5

8.3.3 Amplitude Adjusted Fourier Transform 8-5

X



&

&

B;a UNIVERSITEIT VAN PRETORIA
et

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

8.4 Experimental Observations Using This Technique 8-5
8.5 Program Used 8-6
8.5.1 Testing The Program 8-6
8.6 The Method Of Surrogate Data Applied To The Time Series Measured 8-9
8.6.1 Hypothesis 8-9
8.6.2 Statistical Methods And Tests And Data Processing 8-10
8.6.3 Power Analysis 8-10
8.6.4 Results 8-13
8.7 References 8-13
9 Nonlinear Forecasting 9-1
9.1 Definition 9-1
9.2 Discussion 9-1
9.2.1 Forecasting For A Chaotic Time Series 9-1
9.3 Computational Algorithm 9-2
9.4 Program Used 9-3
94.1 Description 9-3
9.4.2 Testing The Program 9-3
9.5 Nonlinear Forecasting Applied To The Measured Time Series 9-5
9.5.1 Tabular Results Of The Nonlinear Forecasting 9-5
9.5.2 Graphical Results Of The Nonlinear Forecasting 9-7
9.5.3 Individual Graphical Results With Noise As A Control 9-7
9.6 Statistical Analysis 9-7
9.6.1 Hypothesis 9-7
9.6.2 Statistical Analysis Of The Results 9-8
9.6.3 Testing For Statistical Significance 9-10
9.7 Conclusion 9-12
9.8 References 9-12
10 Statistical Analysis Summary 10-1
10.1 Hypothesis 10-1
10.2 Null Hypothesis 10-1
10.3 Testing The Hypothesis 10-1



10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.4

11
11.1
11.1.1
11.1.2
11.1.3
11.2
11.2.1
11.2.2

11.2.3
11.2.4
11.3

11.3.1
11.3.2
11.3.3
11.3.4
11.4

11.4.1

11.5

12
12.1
12.2
12.2.1
12.2.2

&

&

B;a UNIVERSITEIT VAN PRETORIA
et

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Method

Sensitivity To Initial Conditions

Fractal Dimension Of The Attractor

Invariant Probability Distribution Of Attractor
Detection Of An Underlying Dynamical Process

Conclusion

Discussion

Implications For Anaesthesia

Administration

Modeling

Pharmacokinetics

Literature Evidence Against The Compartmental Models

Assumptions Made In Linear Modeling

Shortfalls In The Compartmental Model Noted In The Literature To
Date

Alternatives To The Compartmental Model

The Role Of Statistical Tests

Possible Sources Of Non Linearity In The Absorption Process
Non-Heterogeneous Blood Flow

Fractal Vascular Anatomy

Dynamic State Of The Cell Membranes In The Body

Physiological Advantages Of Chaos

Why Were Only Two Gases Used?

Are These Results Necessarily Applicable To Other Gases Used In
Anesthesia?

References

Conclusion And Implementation
Conclusion

Implementation in Anaesthesia practice
Anaesthesia Administration

Anaesthesia Modelling

xi

10-1
10-1
10-2
10-3
10-4
10-4

11-7
11-7
11-8
11-8
11-8
11-9
11-9
11-10
11-10

11-10

12-1
12-1
12-1
12-2
12-2



12.2.3
12.3

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix [

Appendix J

o
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Qo VYUNIBESITHI YA PRETORIA

Anaesthesia Pharmacokinetics

References

Patient Consent Form Example

Measured Time Series

Surrogate Data For Henon And Logistic Map

Noise Signals

Henon And Logistic Map Time Series

Fractal Dimension Code

Information Dimension Code

Approximate Entropy Code

Non-Linear Forecasting Code And Non-Linear Forecasting Graphs

Surrogate Data Sets For The Measured Time Series

xii

12-2
12-2



Number
Table 2-1

Table 4-1
Table 4-2
Table 5-1
Table 5-2

Table 5-3
Table 5-4

Table 6-1
Table 6-2
Table 6-3
Table 6-4

Table 7-1
Table 7-2
Table 7-3

Table 7-4

Table 8-1
Table 8-2

Table 8-3

Table 8-4

Table 9-1

NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

u
& !

LIST OF TABLES

Caption
Anaesthetic Uptake As Represented By The Slope Of The Linearly
Fitted Curve And Coefficient Of Determination (R2) Between The Slope
And Patient Characteristics. (After Hendrickx Et Al)
Tabular Summary Of The Measured Time Series For Isoflurane
Tabular Summary Of The Measured Time Series For Enflurane
Calculated Dimensions for Known Chaos and Known Noise signals
Statistical Characteristics of the Dimension Values for the Enflurane
Measured Time Series
Dimensions of the Dimension Values for the Control Noise Time Series
Results of the Student's T-test comparisons for the two groups of
measured time series
Calculated Approximate Entropy For Known Chaos And Known Noise
Approximate Entropy Values for the Measured Time Series
Approximate Entropy of the Control Noise Signals
Results of Student's T-test for the measured time series and the noise
control signals
Lyapunov Exponents for known Chaos and known Noise signals
Lyapunov exponents for the Measured Time Series
Lyapunov Exponents for the Control Noise Time Series
Results of the T-test comparisons for the two groups of measured time
series
Calculated Values For The Henon And Noise Time Series
Calculated Statistics For The Henon And Noise Time Series And Their
Surrogates
The Calculated Statistics For The Measured Isoflurane Times Series And
Their Surrogates
The Calculated Statistics For The Measured Enflurane Times Series And
Their Surrogates
Tabular Results Of The Non-Linear Forecasting with The Henon Series

and a noise series

Xiii

Page
2-5

4-2
4-3

5-10
5-11

5-12
5-14

6-6
6-8
6-9
6-11

7-6
7-8
7-9

7-11

8-8
8-9

8-14

8-15

9-4



Table 9-2

Table 9-3

Table 9-4
Table 10-1

Table 10-2

Table 10-3
Table 10-4

i
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

Tabular Results Of The Non-Linear Forecasting For The Measured Time 9-6

Series

Statistical And Visual Analysis Of Non-Linear Forecasting On The
Henon And Measured Time Series

Results Of The Binomial Comparison

Student's T-test Results (Pvalue) For The Measured Time Series
Compared To Noise Controls (Lyapunov Exponent)

Student's T-test Results (P Values) For The Measured Time Series
Compared To Noise Controls (Fractal Dimension)

The P Values Of The Binomial For The Ten Tests In Each Group
The P Values For The Measured Time Series And Their Surrogates
Using Lyapunov Exponents And Correlation Dimension As

Comparisons

Xiv

9-9

9-12
10-2

10-2

10-3
10-4



UNIVERSITY OF PRETORIA

-
g;a UNIVERSITEIT VAN PRETORIA
Qe YUNIBESITHI YA PRETORIA

LIST OF FIGURES

Number Caption

Figure 5-1 Example Of Log/Log Plot And Regression Line With Slope Created
By The Information Dimension Program.

Figure 5-2 Power Of The T-test For The Isoflurane Measured Time Series

Figure 5-3 Power Of T-test For Isoflurane Measured Time Series

Figure 5-4 Power Of T-test For Isoflurane Measured Time Series

Figure 5-5 Power Of T-test For Enflurane Measured Time Series

Figure 5-6 Power Of The T-test For The Enflurane Measured Time Series

Figure 5-7 Power Of T-test For Enflurane Measured Time Series

Figure 6-1 Power of the T-test for the isoflurane Measured Time Series

Figure 6-2 Power of the T-test for the Enflurane Measured Time Series

Figure 7-1 Power Of The T-test For The Isoflurane Measured Time Series

Figure 7-2 Power Of The T-test For The Enflurane Measured Time Series

Figure 8-1 Power Of The T-test For The Isoflurane Surrogates

Figure 8-2 Power Of The T-test For The Isoflurane Surrogates

Figure 8-3 Power Of The T-test For The Enflurane Surrogates

Figure 8-4 Power Of The T-test For The Enflurane Surrogates

Figure 9-1 The Correlation Coefficient Of The Predicted And Actual Values For
A Henon Attractor And A Noise Signal.

Figure 9-2 Graphical Results Of Non-Linear Forecasting With All The Measured
Time Series

Figure 9-3 Power Of The Binomial For The Isoflurane Measured Time Series

Figure 9-4 Power Of The Binomial For The Enflurane Measured Time Series

Page
5-9

5-15
5-16
5-16
5-17
5-17
5-17
6-12
6-12
7-12
7-12
8-11
8-11
8-12
8-13
9-5

9-11
9-11



ot

53 UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

e

YUNIBESITHI YA PRETORIA

Introduction Chapter 1

1 Introduction

Knowledge of the absorption of inhalation anaesthetic agents is
essential if one is to safely administer them. Severinghaus was the first to
systematically study inhalation agent absorption, and his investigations

resulted in the "square root of time model"" ?

As the possibility of
computer-assisted anaesthesia administration becomes a reality, interest in
this fundamental aspect of anaesthesia has continued to remain intense.
Despite many years of research in linear science, no model has been

described that can reliably predict inhalation agent uptake.

In a recent essay in The Lancet, Ary L Goldberger3 states that,
"Clinicians are increasingly aware of the remarkable upsurge of interest in
non-linear dynamics, the branch of sciences widely referred to as chaos
theory. The extent to which chaos relates to physiological dynamics is
being investigated and is controversial. Chaos theory also holds promise for
the elucidation of major problems in contemporary physiology and

molecular biology."

A literature study was conducted to see if the possibility that the
absorption of inhalation agents was a non-linear process had been

investigated. Not a single reference could be found.

The aim if this research project is to determine if the absorption of

anaesthetic agents is non-linear, using isoflurane and enflurane as examples.

! Severinghaus JW. The Rate Of Uptake Of Nitrous Oxide In Man.
Journal Of Clinical Investigation 1954:33;1183-1189.

2 1 owe HJ Emst EA The Quantitative Practice Of Anaesthesia - Use Of
The Closed Circuit. Baltimore: Williams And Wilkins, 1981.

1-1
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3 Goldberger A.L. Non-Linear Dynamics For Clinicians: Chaos Theory,
Fractals And Complexity At The Bedside. The Lancet 1996:347;1312-
1314.
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Literature Study Chapter 2

2 Literature Study

2.1 Linear Models Described in the Literature

2.1.1 The square root of time model

This model was described by Severinghaus and refined by Lowe" %,
The uptake of a potent inhaled anaesthetic is said to be predicted by the
square root of time. This concept has been widely accepted during the past

forty years, despite its shortcomings.

A "unit dose" is taken up by the body during the first minute and
during each subsequent time interval (3 min, 5 min, 7 min, 9 min, 11 min,
etc). In addition, a prime dose is required to saturate the circuit, the
functional residual capacity, and the arterial delivery system. The addition
of the prime and unit doses yields the cumulative dose. The doses are
calculated using equations incorporating the patient’s estimated cardiac
output, anaesthetic agent minimum alveolar concentration (MAC),
molecular weight, and blood/gas partition coefficient of the inhalation agent

in use.

Unit dose (Liters of vapor) = 2 x fraction of minimum alveolar
concentration being delivered x minimum alveolar concentration x blood

gas partition coefficient x cardiac output.

Prime dose (Liters of vapor)= Unit dose (liters of vapor) = 2 X
fraction of minimum alveolar concentration being delivered x minimum
alveolar concentration x blood gas partition coefficient x cardiac output +
circuit and functional residual capacity volume x fraction of minimum

alveolar concentration x minimum alveolar concentration.

Cumulative dose (Liters of vapor)=prime dose + unit dosex time in

minutes.

The cardiac output is estimated using the formula of DeBrodie:

2-1
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Cardiac output = 0.2 x mass®* (liters per minute)®.

This model was derived with data obtained form five (5) patients,
using a narcotest gas analyzer. This type of apparatus calculates the
concentration of inhalation agent based on its absorbtion by silicone. It was

popular in the 1950°s.}

2.1.2 The relationship between anaesthetic uptake and cardiac

output

Watt et al.’® investigated the relationship between cardiac output and
anaesthetic uptake. They predicted that the continuous measurement of
uptake of a volatile anaesthetic agent during inhalation anesthesia would
prove to be a sensitive guide to trends in cardiac output. This hypothesis
was tested by comparing the rate of uptake of enflurane at a constant end
expired concentration of 1% (in reality the uptake was not measured, only
the anaesthetic agent requirement to maintain a 1% end tidal concentration),
with repeated thermodilution cardiac output measurements in patients
undergoing cardiac surgery. A closed breathing system using a computer
controlled liquid enflurane injection system was used to maintain the
constant end tidal concentrations. In all 266 cardiac output measurements
were made before cardiopulmonary bypass. No combined statistics are
presented, but coefficients of determination (r*) ranging from 0.16 to 0.42
were reported. The conclusion reached by the authors was that a qualitative
but not quantitative relationship was demonstrated, and that they were
unable to derive a clinically useful quantitative measure of cardiac output

from the rate of the enflurane uptake using a computer controlled system’.

These findings refute the square root of time model, where the only

patient dependent variable is an estimation of the cardiac output.

2.1.3 Re-evaluations of the Square Root Of Time Model

Recently, the square root of time model has been subject to

4.5,6,7,8

numerous re-evaluations None of these investigators were able to

validate the model.

2-2
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2.1.3.1 Couto Da Silva et al

These authors® studied the square root of time model in a
quantitative way to test its clinical use, particularly for developing countries.
The technique of intermittent injection into a closed circuit was used. The
concentrations of inhalation agent were measured, but blinded from the
investigator, and the systolic blood pressure was used as an end point. The
objective was to maintain a value within 20% of pre-induction values. The
prescribed doses were adhered to, but after the first two, they were adjusted
according to the systolic blood pressures. The mean doses found necessary
for each anaesthetic were within 33% of those calculated to produce 1.3
minimum alveolar concentration, however, the end-tidal concentrations
stabilized at levels of 0.97 minimum alveolar concentration for halothane,
0.43 minimum alveolar concentration for enflurane and 0.77 minimum
alveolar concentration for isoflurane. This represents a range of 33% to
74% of predicted values. They concluded that the Lowe intermittent-
injection square root of time method of closed circuit anaesthesia provides a
basis for simple, economic anaesthesia, but that the uptake of anaesthetic

agents declined more slowly than predicted.

2.1.3.2 Hendrickx et al

Hendrickx et al’investigated the uptake of desflurane and isoflurane
during closed-circuit anaesthesia using liquid injection techniques, to see if
patient characteristics predict desflurane and isoflurane uptake, and, if the
mode of ventilation had any effect on uptake. The investigation was
initiated by the recent clinical observations on the uptake of inhaled
anesthetics which conflict the square root of time model™'%"%! where
some authors have suggested that the uptake of anaesthetic gases is fairly
constant during the first 60 to 100 minutes'’ and the inability to correlate

isoflurane and enflurane uptake with patient characteristics”®.

For this study the cumulative dose and end expired concentrations of
anaesthetic gases were recorded over time at one minute intervals.

Individual uptake curves were fitted when a 1.3 * minimum alveolar

2-3
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concentration values were obtained. The cumulative doses after 4, 15, 30,
45 and 60 minutes as well as the variables of the fitted curves of each
individual were correlated with patient characteristics. The desflurane and
isoflurane uptake was compared with the square root of time model. The
uptake during controlled and spontaneous ventilation were compared to
determine the effects of the mode of ventilation of the uptake of anaesthetic

agents.

Within each group, there was interindividual variability in the uptake
at all times, with a coefficient of variation of 8% to 20%. The cumulative
dose versus time data, did not correlate with any of the patient
characteristics, neither did the cumulative doses as 4, 15, 30, 45 and 60
minutes. No significant difference was found between spontaneous and
controlled ventilation. The square root of time model was found to

overestimate the uptake, especially during the first part of the procedure.
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R’ BETWEEN SLOPE AND PATIENT

CHARACTERISTICS
Slope
of
linearly Body
fittted Range of surface
Agent curve slope Age Height | Weight Weight”* | area

Desflurane 0.22 0.174- 0.281 | 0.306 0.689 0.674 0.635
(Spontaneous) 0313

Desflurane 0.22 0.191- 0.145 | 0.122 0.212 0.206 0.126
(Controlled) 0.246

Isoflurane 0.1 0.077- 0.166 | 0.470 0.274 0.273 0.453
(Spontaneous) 0.125

Isoflurane 0.11 0.088- 0.004 | 0.027 0.002 0.002 0.006
(Controlled) 0.131

Table 2-1 Anaesthetic Uptake As Represented By The Slope Of
The Linearly Fitted Curve And Coefficient Of Determination (Rz)
Between The Slope And Patient Characteristics. (After Hendrickx Et
AP)

Inter-individual variation in uptake in this study was observed, with
poor correlation between uptake and patient characteristics. These results

are similar to others recently published””'2.

2.1.3.3 Bengston et al

Bengston et al* undertook a study to investigate uptake rates of
enflurane and isoflurane during spontaneous and controlled ventilation. No
significant difference in uptake was found between spontaneous and
controlled ventilation, regardless of the agent used. They conclude, "In the

present study, the anaesthetic uptake rates of the square root of time concept
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could not be confirmed.” If unit doses according to Lowe’s formula were to
be injected in a closed circuit system, the amount of liquid anaesthetic

would not correspond to the patient’s uptake rate.

2.1.4 The System model for closed circuit inhalation anaesthesia

The System model for closed circuit inhalation anaesthesia'’ and
other models have recently been described ®”'>, but only the Systematic
Model has been subject to systematic performance evaluation. The
purposes of constructing this model were to construct a model that simulates
the uptake and distribution of a single inhaled anaesthetic agent during
closed circuit anaesthesia and to extend the basic model to more elaborate
models with additional features. The model does not assume a constant
alveolar concentration, and therefore lends itself for validation by non-

L . . . 13
invasive measuring techniques such as respiratory mass spectometry .

The basic model for the uptake and distribution of a single inhaled
anaesthetic agent depicts the body and the closed circuit as a system of 14
compartments. The anaesthetic is taken up from the lung-close circuit
compartment and is then distributed to other tissue compartments: kidney,
brain, heart, liver, muscle, connective tissue, and adipose tissue. The model
derives from the subject’s age, weight, height and gender the other
physiologic variables including tissue volumes, blood volume, cardiac
output, dead space, alveolar space and tidal volume. The data for the total
blood volume, cardiac output, tissue volumes, tissue blood flow and
partitian coefficients are derived from Lowe’s data. The volume into which
the anaesthetic agent is distributed in the lung not only includes the mid-
inspiratory alveolar gas volume, i.e. the mid-inspiratory alveolar gas volume
plus half the tidal volume, but also the lung tissue volume multiplied by its
tissue-gas partitian coefficient. ~ The functional residual capacity is
calculated as a function of height, age, and gender with the aid of a
regression equation for un-anaesthetized subjects in the sitting position. It
was subsequently adapted for a supine, anaesthetized subject by a correction

factor of 0.65.1
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All blood is stored in pools, thus simulating the differences in
circulation times that exist in the body. One fifth of the total blood volume
is at arterial tension and is stored in the arterial pool. The rest of the blood
is shared among the central venous pool and three venous pools associated
with tissues and organs grouped into compartments, mainly based on

perfusion. 13

The basic model is intended to operate with controlled ventilation
and does not take into account the concentration and second gas effects.
Alveolar ventilation is the difference between total ventilation and dead
space ventilation. The basic model has two versions: these differ in the size
of their peripheral shunt: the shunt is 0 and 16% of the cardiac output for

Version A and B respectively"’.

A liquid anaesthetic agent injected directly into the closed system is
assumed to mix uniformly after vaporization with the contents of the
anaesthetic system as to behave as an ideal gas. A bolus injection of liquid
anaesthetic was simulated by adding anaesthetic vapor to the closed system

over a period of 60 seconds”.

The model has some important unique features: it includes the
breathing system and does not avoid the complexity of the closed system'’.
One must note that it does not consider the alveolar membrane as a barrier'
as the lung tissue volume is included in the lung compartment volume®.
Unlike earlier closed circuit anaesthesia models it does not assume constant
arterial concentration or zero calculation time. It is written with the aid of a
special‘ purpose simulation language developed at the University of
Technology (The Netherlands)"’.

Different versions of the model were subject to quantified predictive
performance evaluations by comparison of the predicted and measured
alveolar concentrations profiles in 53 patients. [Each concentration was
measured by mass spectrometry and was compared to four predicted
concentrations calculated by the four computer simulations (one per version

of the model). For each patient, the authors calculated the root mean

2-7



o
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Qo VYUNIBESITHI YA PRETORIA

Literature Study Chapter 2

squared error, bias, and the scatter of the prediction errors. Liquid
halothane'* was used in this performance evaluation. The version showing
the best overall performance showed a root mean square error of 19.6£7.2%
(meantstandard deviation), a bias of 0.5+15.9% and a scatter of 13.243.5%.
The range of the results for all the models was: root mean square error 19.6

to 25.3%, the bias .48 to 13.57% and the scatter 13.18 to 15.92%'*.

The model incorporating non-pulmonary elimination and age
adjusted partitian coefficients proved to be the most accurate and was said to
be sufficiently reliable and accurate to represent halothane closed circuit

anaesthesia'®.

The same model was evaluated in a performance evaluation
quantifying the total variability and within patient variability, but between
repeat anaesthetics variability'”. Fourteen patients were studied who
received closed circuit enflurane anaesthesia on two occasions. The end
tidal concentrations measured and those predicted served to calculate the
predictive performance measures of the model. The overall results were: the
root mean squared error 15+7%, bias 0+14% and scatter 9+3%. The within
the patient standard deviations were smaller for the root mean squared error

(4%) and bias (10%), but not for scatter (3%)15 .

The estimated variance resulting from within patient variance was
90%. The authors conclude that the performance measures were partly
dependent on the patient. There was no association between the personal
performance measures and age, sex, body weight, body surface area or body
mass index. These findings lead the authors to conclude, “Additional, yet
unknown factors may contribute in a significant extend to an individuals

pharmacokinetic response”"”.

2.1.5 Simple linear regression models

2.1.5.1 Lockwood et al

Two almost identical studies®’ investigating the uptake of desflurane

and isoflurane respectively were published by these authors. Both studies
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report linear regression fit equations using the best least squares fit method.
A bi-exponential equation was reported for isoflurane and a tri-exponential
one for desflurane. However, no coefficient of determination is reported for
either equation, and only one study’ reported a cumulative mean and
standard deviation for the dose of isoflurane given. Perturbations from the
equation were assumed to reflect changes in cardiac output. Due to lack of

vital information, these results must be interpreted with caution.

2.2 Non linear dynamics and medicine

2.2.1 Non linear dynamics in general

The entire section 2.2.1 is taken from an article by JD Meiss of

Boulder, Colorado'®.

2.2.1.1 What is non-linear?

In geometry, linearity refers to Euclidean objects: lines, planes, three
dimensional space etc. these objects appear the same no matter how they
are examined. A non-linear object, a sphere for example, looks different on
different scales, when looked at closely enough it looks like a plane, and

from far enough distance it looks like a point.

In algebra linearity is defined in terms of functions that have the
property f{x+y)=fix)+f(y) and f(ax)=af(x). Non-linear is defined as the
negation of linear. This means that the result f may be out of proportion to

the input x or y. The result may be more than linear or less than linear.

2.2.1.2 What is non-linear science?

Linearity is rather special and no model of a real system is truly
linear. Some things are profitably studied as linear approximations to the

real model.

Nonlinear systems have been shown to exhibit surprising and
complex effects that would never be anticipated by a scientist trained only in

linear techniques. While linear objects can be enumerated, nonlinear ones
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are nonenumerable, and as of yet mostly unclassified. There is currently no
general technique for telling whether a particular nonlinear system will
exibit the complexity of chaos, or the simplicity of order. Thus as nonlinear
science cannot be subdivided into proper subfields, it exists as a whole.
Nonlinear science has applications to a variety of fields from mathematics,
physics, biology and chemistry, engineering, economics and medicine. One
of its most exciting aspects, is that it brings researchers from many

disciplines together with a common language.

2.2.1.3 What is a dynamical system?

A dynamical system consists of an abstract phase space or state
pace, whose coordinates describe the dynamical state at any instant, and a
dynamical rule which specified the immediate future trend of all state
variables, given only the present values of those same state variables.
Mathematically, a dynamical system is described by an initial value

problem.

Dynamical systems are determinestic if there is a unique consequent
to every state, and stochastic or random if there is more than one consequent
chosen from some probability distribution e.g. tossing a coin has two

consequents with equal probability for each initial state.

2.2.1.4 What is phase space?

Phase space is the collection of possible states of a dynamical
system. A phase space can be finite (limited number of states), countably
finite (integer) or uncountalbly infinite (state variables are real numbers).
Implicit in the notion is that a particular state in phase space specifies the
“system completely, all that we need to know about a system to have

complete knowledge of its immediate future.

The path in phase space traced out by a solution of an initial value
problem is called an orbit or trajectory of the dynamical system. If the state

variables take real values in a continuum, the orbits or continuous time
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system is a curve, while the orbit of a discrete system is a sequence of

points.

2.2.1.5 What is chaos?

In mathematical terms, chaos is effectively unpredictable long time
behavior arising in a deterministic dynamical system because of sensitivity
to initial conditions. A deterministic dynamical system is perfectly

predictable given perfect knowledge of the initial conditions.

For a dynamical system to be chaotic, it must have a large set of
initial conditions, which are highly unstable. No matter how precisely you
measure the initial conditions in these systems, your prediction of its
subsequent motion goes radically wrong after a time. The key to long term
unpredictability is a property known as sensitivity to (or sensitive
dependence on) initial conditions. Typically, the predictability horizon
grows only logarithmically with the precision of measurements. A chaotic

system can be represented in phase space.

2.2.1.6 What are fractals?

A fractal as defined by Mandelbrot is a set with a fractional (non
integer) dimension, and a self similar structure. The dimensions of
properties measured are dependent on the scale of measurement. Self-
similarity implies that measurement at a smaller scale will yield similar

characteristics to those at a larger scale.

2.2.2 Non-linear Dynamics and Medicine

Clinicians are increasingly aware of the remarkable upsurge of
interest in non-linear dynamics; the branch of science widely referred to as
chaos theory'”. Linear systems are well behaved. The magnitude of their
responses is proportionate to the strength of the stimuli. These systems can
be fully understood and predicted by dissecting out their components, and
these subunits add up without surprises or anomalous behaviors. By

contrast for non-linearity proportionality does not hold, neither can the
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system be understood by analyzing their components individually. The'
reductionism strategy fails because the components of the non-linear system
are coupled. Their non-linear coupling generates behaviors that defy
explanation by traditional (linear) models such as self-sustained, periodic
waves (e.g. ventricular tachycardia), abrupt changes (e.g. sudden onset of a

seizure) and, possibly chaos'’.

One important class of abrupt, non-linear transition is called a
bifurcation, which describes situations in which a very small increase or
decrease in the value of some factor controlling the system causes it to
change abruptly from one type of behavior to another. A common type of
bifurcation is the sudden appearance of regular oscillations that alternate
between two values. This dynamic may underlie various alternans patterns
in cardiovascular dysfunction. A familiar example is the beat to beat
alternation in QRS axis and amplitude seen in some cases of cardiac
tamponade'®. Many other examples of alternans in pertubated cardiac
physiology have been described such as ST-T alternans preceding

ventricular fibrillation, and pulsus alternans during heart failure"®.

The extent to which chaos relates to physiological dynamics is being
investigated and is controversial'’. At first, it was widely assumed that
chaotic fluctuations were produced by pathological systems such as cardiac
electrical activity during atrial or ventricular fibrillation. However, the
current weight of evidence does not support the view that the irregular
ventricular response in fibrillation itself represents deterministic cardiac
chaos. An alternative hypothesis is that the subtle but complex heart rate
fluctuations seen during normal sinus rhythm in individuals are attributable
in part to deterministic chaos, and that various diseases may involve a
paradoxical decrease in this type of non-linear variability”’. The intriguing
question of the role, if any, of chaos in physiology or pathology remains

unresolved.

Examples of fractal like anatomies include the arterial and venous
trees, the branching of certain cardiac muscle bundles, the tracheobronchial

tree and His-Purkinje network. Mechanistically these self-similar structures
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all serve a common physiological function: rapid and efficient transport over
a complex spatially distributed system. Various other organ systems contain
fractal structures that serve functions related to information distribution (the
nervous system), nutrient absorption (bowel), and collection and transport

(biliary duct system, renal calyces)”.

Complex structures with the statistical properties of fractals have
been described for heart rate variability, fluctuations in respiration”,
systemic blood pressurezz, human gait23 , white blood cell counts, and certain

jon-channel kinetics'’.

If scale variance is a central organizing principle of physiological
structure and function, we can make a general, but potentially useful
prediction about what might happen when these systems are severely
perturbed. If a functional system is self-organised in such a way that it does
not have a characteristic scale of length or time, a reasonable anticipation
would be a breakdown of scale free structure or dynamics with disease. The
antithesis of a scale free system, i.e. one with many scales, is one that is
dominated by one frequency or scale. A system that has only one dominant
scale becomes easily to recognize and characterize, because such a system is
by definition periodic, i.e. it repeats behavior in a highly predictable

pattern”.

The paradoxical appearance of periodic dynamics in many disease
states in one of the most compelling examples of complexity loss in disease.
Complexity refers specifically to multi-scale, fractal type of variability in
structure of function. Many of the disease states are marked by less
complex dynamics than those seen under healthy conditions'’.  This
decomplexification of systems with disease seem a common feature of
many diseases as well as aging?®. Remarkably, the output of many severely
pathological systems is nearly sinusoidal in appearance. For example,

severe congestive heart failure and fetal distress syndrome”.

Generally, the practice of bedside diagnosis would be impossible

without the loss of complexity and the emergence of such pathological
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periodicitieszo. It is these periodicities and highly structured patterns that
allow clinicians to identify and classify many pathological features of their
patients.  Familiar examples include periodic tremors in neurological
disease, AV Wenckebach patterns, the sine wave electrocardiogram pattern
in hyperkalemia, manic depressive alternations and Cheyne-Stokes

breathing patterns in heart failure'”.

Although fractals are irregular, not all irregular structures or erratic
time series are fractal. An essential feature of the class of fractals seen in
biology is a distinctive type of long range order'” This property generates
correlations that extend over many scales of space or time. Certain diseases
are marked by a breakdown of this long-range organization property
producing an uncorrelated randomness similar to white noise. An example

is the erratic ventricular response in atrial fibrillation'’

Practical applications of non-linear dynamics are likely to arise
within the next few years. Probably the first bedside implementations will
be in physiological monitoring'’ Several indices derived from chaos theory
have shown promise in forecasting those at high risk of electrophysiological
or hemodynamic instability, including heart rate alternans, ST-T alternans,
breakdown in fractal scaling, differences or changes in the non-linear

dimension or complexity of a time series'’

Findings of non-linear dynamics have also challenged conventional
mechanisms of physiological control based on classic homeostasis, which
indicates that healthy systems seek to attain a constant steady state. By
contrast non-linear systems with fractal dynamics behave as if they are
driven far from equilibrium under bases conditions. This kind of complex
variability, rather than a single homeostatic steady state, seems to define the

free running function of many biological systems' "%,

2.2.3 Recent advances in pharmacokinetics

Fractal washout curves for ’O-labeled water in isolated, perfused
rabbit hearts have recently been described”>. These concepts are being

incorporated into noncompartmental pharmacokinetic models, although the
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question arises as to whether one can ascribe physical or physiological
significance to time as a fractal, and whether the fractal so used can cast

some light on the enigma of the power function®.

2.2.4 Anaesthesiology

In 1990 Goodman®’ predicted that many anaesthesia applications
would be forthcoming from the emerging science of non-linear dynamics.
However, to date the literature does not bear this prediction out. The only

publications to date have concerned heart rate variability®®,

2.3 Non linear models

A literature study was conducted to see if anyone had investigated
the possibility that the absorption of inhalation agents was a non-linear

process. Not a single reference could be found.

One article” investigating the uptake of oxygen during exercise
identified a non-linear component above that which was expected for
extrapolation of the linear relationship which lead the authors to conclude, "
suggests that it [oxygen uptake] is not related to the pattern of motor unit
recruitment in any simple way". However, this non-linear component was

not further quantified.
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3 Research Method

3.1 Aim

To investigate if the absorption of anaesthetic gases, using isoflurane

and enflurane as examples, is a non-linear process.

3.2 Data required

A time series of gas absorption was used, consisting of the amount

of gas absorbed and the time at which this took place.

This was not a comparative study but an experimental study to
statistically prove that the absorption of isoflurane and enflurane is non-
linear. With this deterministic analysis any individual’s data can be
decisively predictive. NB This is not possible with stochastic

measurements.

3.3 Patient selection and anaesthetic technique

Patient data from twenty (20) patients undergoing general
anaesthesia with controlled ventilation at the Pretoria Academic Hospital
were used. Informed consent for the use of the data was obtained from the
patients. (See attached consent form, Appendix A). The technique used
was the decision of the anaesthesiologist administering anaesthesia, but
only patients where the main anaesthetic used was isoflurane or enflurane
were selected for the purposes of this study. Gas analysis data as displayed
on the Datex monitor screen was recorded from S5 minutes after the
induction of anaesthesia until about 50 minutes after the induction of
anaesthesia. This yielded a time series with approximately 550 to 1000
readings per series. The number of points is sufficient for the analysis

required®.
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3.4 Accuracy of Measurements

The anaesthetic agent concentration was measured by the Datex
AS/3 or Datex Capnomac Ultima Anaesthesia monitors currently in use at
the Pretoria Academic Hospital. Before each recording, the apparatus and
recording device was calibrated. The accuracy of these measuring
instruments is given by the manufacturer’” as being accurate < 0.2% for
both the Datex AS/3 and the Datex Capnomac Ultima. This compares well
to mass spectrometery which approaches accuracies of < 0.01% if properly

calibrated.’

3.5 Ethical considerations

No deviation from standard anaesthesia practice was required. No
additional risk was incurred by the patient. Informed consent was required
for the use of the patient data by the researcher. No personal information
about the patient will be disclosed at any stage. The necessary approval of
the Ethics Committee, Faculty of Medicine, University of Pretoria and
Pretoria Academic Hospitals was obtained on 22/07/1998. An addendum to
the original protocol was approved on 30/09/1998 allowing both enflurane

and isoflurane to be used. The protocol was assigned protocol number
120/98.

3.6 Data processing

Data indicating gas absorption in a breath by breath fashion was
recorded from the Datex monitors currently in use at the Pretoria Academic

Hospital.

The inspiratory and expiratory isoflurane or enflurane concentrations
was processed using Lin's’ method to yield a time series of milliliters per

breath of isoflurane or enflurane absorbed.

Uptake of agent in ml = C1% x {1 - %} X I}
i

CI: Inhalation agent concentration in inspired breath
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V : Tidal volume in milliliters

3.7 Hypothesis

The absorption of isoflurane and enflurane is a non-linear process.

To detect nonlinearity four conditions must be met*>'?:

3.7.1 Sensitivity to initial conditions

3.7.2 Fractal Dimension of the attractor

3.7.3 Invariant probability distribution of the attractor
3.7.4 Detection of an underlying dynamical process

3.8 Null hypothesis

The absorption of the anaesthetic agents Isoflurane and Enflurane is
fully described by independent and identically distributed random
variables'?, i.e. the variability seen in the absorption is random® and there is

no underlying deterministic process.

The time series measured will be analytically indistinguishable from

noise signals.

3.9 Data analysis

Numerous methods of analysis derived from classical signal
processing or non-linear dynamics are available. No single measure is more
appropriate than others for physiological research or clinical practice™®, on
the contrary it is necessary to use a large panel of analysis techniques, rather
than a single one, to investigate a time series’. This is in contrast with linear
statistical practice where the greatest difficulty lies in selecting the

appropriate test’.

Therefore, a panel of tests recommended by Mansier et al’ will be

used in the analysis of the time series obtained. They are:
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3.9.1 Time domain indexes

3.9.1.1 Mean

D Xi

N

Uu=

u: Mean
Xi: Data points
N: Number of points in series

Reference’

3.9.1.2 Standard deviation

oo /Z(X;—u)’

o: Standard deviation

u: Mean

Xi: Data points

N: Number of points in series

Reference’

3.9.2 Non-linear indexes

3.9.2.1 Sensitivity to initial conditions

Lyapunov exponents’ allow the quantification of sensitive
dependence on initial conditions. The first exponent A, has to be positive
for the system to be chaotic, but the following ones may be positive or
negative. The sum A=A, + A, + ... + A, gives the exponential rate A of the

contraction (if positive) or expansion (if negative) of the system.

3-4



NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

Research Method Chapter 3

U
<& |

3.9.2.2 Fractal Dimension of the chaotic attractor

3.9.2.2.1 Embedding dimension or reconstructing the attractor

Using a method of delays, the one dimensional time series will be
constructed into an m dimensional attractor’. The m dimension of the space
in which one embeds the trajectory is called the embedding dimension. If
this is large enough then the geometrical properties of the trajectory and of
the reconstructed attractor are conserved by this processing. Statistical and
geometrical variants of the attractor such as fractal dimension, Lyapunov

exponents, and entropy can then be computed’.

3.9.2.2.2 Measuring the attractor

3.92221 Fractal dimension

Chaotic systems are drawn together towards attractors that have in
most cases a non-integer dimension: i.e. fractal dimension®. This can be

obtained by the box counting method’.

3.9.2.2.2.2 Correlation dimension

Also a measure of the non-integer dimension of the attractor, which
is computationally more efficient than the box counting method®. This can

be obtained by the Grassberger-Proacaccia algoritm’.

3.9.2.2.2.3 Information entropy

This is a quantification of the information uniformity carried by the
probability distribution. In the case of a strange attractor where the measure
considered is the counting measure on the trajectory, the information

entropy is lower than the sum of positive Lyapunov exponents’.

3.9.2.2.2.4 Approximate entropy

A variant of Information entropy has been proposed by Pincus et
al'®, as less sensitive to noise and more suitable for short stationary time

series, in the range from 500 to 1000 numbers'’.
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3.9.23 Invariant probability distribution of attractor or
unpredictability

Non linear forecasting described by Sugihara and May'' is a method
whereby apparent noise associated with deterministic chaos can be
distinguished from sampling error and other sources of induced

environmental noise.

3.9.2.4 Detection of an underlying dynamical process'?

Comparison with surrogate data is a means of identifying non-
linearity in a time series. Surrogate data is generated by one of three
methods, namely Unwindowed Fourier transform, Windowed Fourier
transform or Amplitude adjusted Fourier transform'>. The surrogate data
generated is then compared to the original. This developed "check" has

been described as significant development in chaos research®.

3.10 Computation

The above-mentioned analyses will be done using Microsoft Excel
8® (in licensed possession of the researcher), Santis, and DSN. (Two non-
linear analyses programs, in public domain). Should it become necessary

other software may also be used.

3.11 Power Analysis

A power analysis'? using expected results'® revealed that considering
a p value (using a Student's T-test) of < 0.05 as significant, ten measured

signals and ten noise signals in each group would be sufficient for a power
>0.8.

3.12 Testing of the null hypotheses

3.12.1 Description

Each individual condition will be subject to testing. The isoflurane

and enflurane groups will be individually compared to noise control signals.
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A p value < 0.05 will be considered significant in each case. A power
analysis will be done on each set of results and only accepted if the power >
0.8. If all four conditions are met for a gas, then the variability in the
absorption will be considered non-linear, and the null hypothesis that the

variability is random will be rejected.

3.12.2 Symbolic representation
3.12.21 Nul hypothesis
Hy: 66 =dw
& : Test statistic for measured time series

dv : Test statistic for noise signals

3.12.2.2 Hypothesis

Hia: pc=un (Lyapunov exponents, Hys © tic=pn)

Hp: uc#un (Dimension, Hyp © uc=un)

Hjc:mw> 0.5 (Non-linear forecasting, H,c: 7=0.5)

Hp : pe#un (Surrogate data),
Hipw: e=usp , Hopay: io=psp , (Lyapunov exponent)
Hipay: pe#uso , Hopay: pe=wsp , (Correlation
Dimension)

The null hypothesis will be rejected for a gas, if Hy4, His, Hic, and

H,p are all found to be true.
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The null hypothesis were rejected for a gas, if H,4, H;s, Hic, and Hip

were all found to be true.
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4 Measured Time Series

4.1 Method

After measuring instrument calibration, the anaesthesia gas analysis
displayed on the Datex Monitor screen was captured in a spreadsheet format
using a personal computer (Siemens Nixdorf PCND). The anaesthetic agent
to be used was up to the discretion of the anaesthesiologist administering the

anaesthetic.

4.2 Characteristics

42 1 Description

A total of twenty times series were measured, each on a different
patient. For ten, isoflurane was used as an anaesthetic and for ten, enflurane
was used as an anaesthetic. The mean age of the patients was 50+20 (mean
+ standard deviation) , with a range of 21 to 82 years. The mean mass of the
patients was 61+14, with a range of 41 to 89 kilograms. Six of the ten
patients in the isoflurane group were male, in comparison with five of the
ten patients in the enflurane group. The mean number of points in the time

series is 5994244 with a range of 254 to 1259 points.
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4.2.2 Tabular Summary
FILE NAME [AGE | MASS |SEX| NUMBER | MEAN | STANDARD | TIDAL
(KG) OF POINTS DEVIATION | VOLUME

Iso-01 63 63 M 495 133.37 118.54 600
Iso-02 65 61 F 254 9947 66.56 650
I1s0-03 56 89 M 912 236.28 76.24 700
Iso-04 77 67 M 1259 175.75 98.59 650
Iso-05 34 78 M 854 147.68 49.79 550
Iso-06 23 50 F 641 140.72 69.53 500
Iso-07 24 45 F 276 127.36 104.09 300
I1so-08 65 43 F 341 183.35 72.06 250
Iso-09 68 41 M 753 54 .42 20.38 375
Iso-10 45 70 M 664 113.55° 58.11 450

Table 4-1 Tabular Summary Of The Measured Time Series For

Isoflurane
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FILE NAME | AGE |[MASS| SEX | NUMBER | MEAN | STANDARD | TIDAL
(KG) OF POINTS DEVIATION | VOLUME

Enf-01 77 65 F 387 366.49 63.73 500
Enf-02 34 63 F 472 170.2 82.63 385
Enf-03 21 60 M 383 253.02 104.21 385
Enf-04 82 62 M 636 162.45 71.71 400
Enf-05 34 44 M 692 49.55 2.688 300
Enf-06 34 55 M 377 196.54 248.81 350
Enf-07 30 58 F 637 2247 133.47 450
Enf-08 72 85 M 504 160.71 61.11 600
Enf-09 65 83 F 708 99.27 5.46 550
Enf-10 43 | 55 | F - 740 160.69| 63.17 450

Table 4-2 Tabular Summary Of The Measured Time Series For
Enflurane

A full listing of the measured time series is to be found in
Appendix B.
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5 Dimension

5.1 Definition

The description “strange attractor” has been used to describe
nonperiodic, randomlike time series, describing the unfamiliar geometric
structure on which the series moves in phase space'. The quantitative
measure of the “strangeness” of the attractor is described by its dimension',
dimension being the first level of knowledge necessary to characterize its
properties. Dimension may be thought of as giving the amount of
information necessary to specify the position of a point on the attractor

within a given accuracy’.

5.2 Discussion

The revolution in nonlinear dynamics has been sparked by the
introduction of new geometric, analytic, and topological ideas, which have
given experimentalists and numerical analysts new tools to analyze
dynamical processes. This in some ways parallels the earlier Newtonian
revolution, which introduced the calculus into dynamics. Thus in some
ways we are entering the second phase of the Newtonian revolution in

dynamics'.

5.2.1 Classical Fractals and Self-Similarity

Mandelbrot is often called the father of fractal geometry, although
fractals and their description go back to classical mathematics and
mathematicians of the past like Cantor (1872), Peano (1890), Hilbert (1891),
von Kock (1904), Sierpinski (1916), Julia (1918) and Huasdorff (1919) to
name a few examples®. The creations of these mathematicians played an
essential role in Mandelbrot’s concept of new geometry, although they did
not think of their creations as conceptual steps towards a new perception or
a new geometry of nature. On the contrary, their creations, for example the
Cantor Set and the Koch curves, were regarded as exceptional objects, as

counter examples, as “Mathematical Monsters™. These were seen as
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shapes, intended to demonstrate the deviation from the familiar rather than

typify the normal.

Mandelbrot was the first to demonstrate that these early
mathematical fractals in fact had many features in common with shapes
found in nature. He turned the manifested mathematical interpretation and
value of these inventions upside down, and furthermore went on to develop
a language into which these characters could be embedded. Noticing that
the seemingly exceptional is more like the rule and then developing a
systematic language with words, sentences, and grammar3, Mandelbrot
called this a summary of scientific experiments in mathematics, linguistics,
economics, physics, medical sciences and communication networks to

mention just a few areas in which he was involved®.

5.2.2 Fractals and the problem of dimension

The original concepts of dimension originated in topology, a branch
of mathematics that deals with form and shape from a qualitative point of
view. Two of its basic notions are “dimension” and “homeomorphism.”
Straight lines can be bent into curves and circles can be pinched into
triangles or pulled into squares, but not everything is topologically
interchangeable®>. The intersection of two lines, for example, remain an
intersection, the number of holes in an object is also a topological invariant.
The transformations, which are applied, are called homeomorphisms, and
when applied they must not change the invariant properties of the objects’.
Thus, a sphere and a cube are homeomorphic, but the sphere and a doughnut
are not. In the development of topology, mathematicians looked for
qualitative features, which would not change when the objects were
transformed properly, technically by a homeomorphism, but preserving the
3

dimension®. But it turned out there were severe difficulties in arriving at a

proper and detailed notion of dimension that would behave in that way’.

During this century, mathematicians came up with many different
notions of dimension such as small inductive dimension, large inductive

dimension, covering dimension, and homological dimension*. Some of
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these are topological in nature; their value is always a number or zero for

points and does not change for topologically equivalent objects’.

In attempting to measure complex objects, the questions of length,
area and volume can be ill posed. Curves, surfaces, and volumes can
become so complex that these ordinary measurements become meaningless.
However, it is possible to measure the degree of complexity by evaluating
how fast length, or surface, or volume increases if one measures with
respect to smaller and smaller scales. The fundamental idea is to assume the
two qualities, length, or surface or volume on the one hand, and scale on the
other hand are not arbitrarily but rather are related by a law’. This law will
allow one to compute one quantity from the other. The law that seems to be

relevant is the power law in the form of yac x%.

The power law can be summarizes as follows:’ if the x and y data of
an experiment range over very large numerical scales, then it is possible that
there is a power law which expresses y in terms of x, ya x°. To test the
power law conjecture a plot of the data is made in a log/log plot. If then, the
measurements fit a straight line, the exponent can be read off as the slope of

the line.

Such a law turns out to be very useful for the discussion of
dimension. The problem of dimension has not been made easier to
understand with the description of at least ten different kinds of dimension
since the turn of the century’. They are all related. Some of them make
sense in certain situations, but not in others, sometimes they make sense and
are the same, sometimes several make sense, but do not agree. The details

can be confusing even to the research mathematician®.

For the purposes of this thesis, dealing with a biological time series,
the discussion of dimension will be limited to those dimensions, which have
been found useful for analyzing biological time series. They are fractal

dimension, information dimension and correlation dimension?® .

The issue is further confused by the lack of uniformity of definitions.

For example Farmer et al’ consider the capacity and the Hausdorff
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dimensions as metric dimensions and groups them under the heading
“Fractal Dimension”, and information dimension and pointwise dimension
as dimensions of the “Natural Measure”. This is in contrast with Moon',
who classifies the pointwise dimension and the information dimension as
measures of the fractal dimension! For the purpose of this thesis, the
definitions used will be taken from Mansier et al’, being the most recent

reference to discuss all three dimensions that are to be calculated.

5.2.3 Fractal dimension

This dimension is calculated using the box counting method’ and is
sometimes called the “Box Counting Dimension™. The box counting
method proposes a systematic measurement of any structure in the plane

under consideration and can be readily adapted for structures in space.

The structure under consideration is placed on a regular mesh with
mesh size s, and the number of grid boxes which contain some of the
structure are counted’. This gives a number, N; the value of which depends
on the choice of s and so is denoted as N(s). S is changed to progressively
smaller sizes and the corresponding number N(s) is counted. A log/log
diagram is then plotted of log(N(s)) / log(1/s). A straight line is then plotted
to the points of the diagram and its slope D, is measured. This number is

the fractal dimension’.

This dimension is one of the most commonly used dimensions. The
reason for its dominance lies in easy and automatic calculation by computer.
It is straight forward to count boxes and to maintain statistics allowing
dimension counting. The program can be used for shapes with and without
self-similarity. = Moreover, the objects can be embedded in higher

dimensional spaces’.

A formal definition of the box counting dimension is given by

Peitgen et al’:

The box counting dimension is D; of any bounded subset 4 of R".
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Let NxA) be the smallest number of sets of diameter at most, &

which cover 4. Then:

Dh(A)= lim lOgNJ(A)
50 logl/é

provided that the limit exists.

Roughly speaking the definition says that Ng4) a &° for small J,
where s=Dg)(4).

More precisely, it says that:

s w fors < D,(A)
Ns(4)5 _){Ofors > D,,(A)}

5.2.4 Information dimension

The information dimension gives an idea of the natural measure of
an attractor™. In computing the box counting dimension the cubes used in
covering the attractor are equally important although the frequencies with
which an orbit on the attractor visits these cubes may be very different. In
order to take the frequency, with which each cube is visited into account, the
relative frequency with which a typical orbit visits different regions of the
attractor must also be taken into account’. The natural measure gives the
relative probability of different regions of the attractor as obtained from the

averages, and is therefore “natural” to consider’.

The information dimension is a generalization of the capacity that
takes into account the relative probability of the cubes used to cover the set.

This dimension was originally introduced by Balatoni and Renyi’.
The information dimension is given by

_ 1(¢)
"0 log(l/€)

Where
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N(g)

I()=Y Plog—

-1 pl
and P; is the probability contained in the /* cube. Letting the i* cube
of side € be C;, P/=u(C). Note that if all cubes have equal probability then
liy=logN.y, and hence d.=d|. However for unequal probabilities

1y<logNyy. Thus in general d.>d;, where d, is the box counting dimension.

I is the amount of information necessary to specify the state of the
system to within an accuracy of €. The information dimension may
therefore be viewed as telling how fast the information necessary to specify
a point on the attractor increases as ¢ decreases’. Stated otherwise it may be

viewed as a measure of the unpredictability in a system'.

5.2.5 Correlation dimension

This dimension is the exponent of the power law dependence of the
correlation integral as a measure of the strangeness of an attractor’. It has
been successfully used by many experimentalists and is in some ways

related to the pointwise dimension'.

To calculate the correlation dimension the orbits of an attractor are
discretized in phase space. One then calculates the distances between the
pairs of points using either conventional Euclidean measure of distance
(square root of the sum of the squares of the components) or some
equivalent measure such as the sum of absolute values of vector

components. A correlation function is then defined as':

C(r)=lim 1 mfmbeir of pairs (i, j)
with dist —ances, <r

For many attractors this function has been found to exhibit a power

law dependence on r as r—0; that is,

- _d
lrl_IgC(r)-ar
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So that one may define a correlation dimension using the slope of

the In C versus ln r curve:

d,, =lim 08¢ log C(r)
) logr

It has been shown that C(») may be calculated more effectively by
constructing a sphere or cube at each point x; in phase space and counting

the number of points in each sphere. That is:

1 N N

C(r=lim—=> Y H(r =[x, - x,)
i

Where H(s)=1 if s>0 and H(s)=0if s<0. This differs form the

pointwise dimension in that the sum here is performed about every point'.

5.3 Computational algorithms

The program SANTIS has the facility to calculate the Correlation
Dimension using the Grassberger Procaccia algorithm®. Neither of the two
programs used had the facility to calculate either the Fractal dimension or
the Information dimension. A programmatic solution was developed using

Microsoft Excel version 8® and Microsoft Visual Basic for Applications®.

The code for the programmatic solution for the fractal dimension can
be found in Appendix F and the code for the programmatic solution for the

information dimension can be found in Appendix G.

5.3.1 Computational description

The fractal dimension is calculated by putting the structure onto a
regular mesh with a mesh size s and counting the number of grid boxes,
which contain some of the structure. The mesh sizes are made progressively
smaller and the process repeated. A log/log-diagram is then constructed and
a straight line fitted to the plotted points of the diagram. The slope of this

line is now measured and this is the fractal dimension®. For the information
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dimension the number of grid boxes containing structure are weighted
according to the number of orbits contained in a specific box, using the

probability of finding a point in that cell'.

5.3.2 Computational solution

The time series to be analyzed is put into an array structure, the
maximum and minimum values are determined. The user is asked then to
enter the maximum number of boxes required in the mesh structure. Box
sizes are then calculated from 1 box to the maximum number specified, with
the grid size being calculated from the values in the time series and the
number of boxes required by the user. To calculate the information
dimension, the number of points in a box are added up and weighted
according to the formula in 5.2.4. to calculate the fractal dimension the

number of boxes containing structure are summed.

These stored values are then entered into a log/log-plot, and the
slope of the regression line is determined, which is the dimension that is

desired, either fractal or infomation.

5.4 Programmatic solution

The program for both the fractal dimension and for the information
dimension was developed using Microsoft Excel version 8®, using Visual
Basic for Applications. The time series under consideration is pasted into a
range and then a runtime resizable array. The time series maximum and
minimum values are used to calculate the box sizes up to the maximum
number of boxes specified. The counting procedure is done in a loop. The
values calculated are stored in an array. These values are later pasted into a
new range from which a graph is constructed. Microsoft graph® does not
have the facility to construct log/log graphs. To overcome this problem, the
required log conversions of the numbers are done first in the spreadsheet
and then a graph is constructed from the converted values. Using linear

regression, the slope of the graph is then calculated.

5-8



UNIVERSITY OF PRETORIA

&
&

B.a UNIVERSITEIT VAN PRETORIA
& YUNIBESITHI YA PRETORIA

Dimension Chapter 5
5
4
3 y = 1.3443x + 0.1895
R? = 0.8857
2 M
1 - *
W
0 T T
0 0.5 1 1.5

Figure 5-1 Example of log/log plot and regression line with slope

created by the information dimension program.

5.4.1 Testing the programs

5.4.1.1 Method

The programs written and the SANTIS correlation dimension feature
were tested, to see if they could measure the information, fractal, and
correlation dimensions accurately. The null hypothesis is that they are
unable to distinguish known chaos from noise. A Henon time series and
Logistic map with a starting value 0.2 and a delta value of 3.8 were used as
known chaotic series' (These two time series may be found in Appendix E).
Four noise series generated by SANTIS were used as control series (These
four time series may be found in Appendix D). A Student’s T-test was used
as the test statistic and a p value of <0.05 was considered significant, in

order to reject the null hypothesis.

5.4.1.2 Resiults

5-9



-
UN
%

NIBESITHI YA PRETORIA

VERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA

Dimension Chapter 5
HENON | LOGISTIC| NOISE1 NOISE2 NOISE3 | NOISE4 P
MAP

information | 1.370 | 2.140 0.854 0.850 1.120 0.944 0.0164
Dimension '
Correlation | 1.245 | 0.933 3.039 3.039 3.039 2.986 0.000038
Dimension

Fractal 0.990 1.025 0.948 0.940 0.940 0.850 0.0366
Dimension

Table 5-1 Calculated dimensions for known chaos and known

noise signals

The p values calculated were 0.0164, 0.000038, and 0.0366 for the

information dimension, correlation dimension, and the fractal dimension

respectively. They are all less than 0.05 and therefore the null hypothesis is

rejected and it is concluded that the programs are successfully able to

differentiate known chaos from known noise.

5.5 The dimensions of the recorded times series

The dimensions were calculated in the same manner for the twenty

measured time series. The time series are to be found in Appendix B.

5-10




<

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Dimension Chapter 5
FILE NAME | INFORMATION DIMENSION | CORRELATION DIMENSION | FRACTAL DIMENSION

Iso-01 1.504 0.785141 0.864
Iso-02 1.52 1.48417 1.068
Iso-03 1.41 0.952904 0.847
Iso-04 1.586 1.03614 1.13
Iso-05 1.64 1.50338 0.989
Is0-06 1.338 1.3673 1.17
Iso-07 0.917 1.04189 0.987
Iso-08 1.38 1.36093 1.15
Is0-09 0 1.52047 0
Iso-10 0 1.57578 0.8521
Enf-01 0.0634 1.88901 0.476
Enf-02 1.9 0.814319 0.9622
Enf-03 1.949 0.975127 1.04
Enf-04 1.84 1.81347 0.894
Enf-05 0 0.0982057 0
Enf-06 1.24 1.46198 0.94
Enf-07 1.47 1.46198 1.035
Enf-08 1.67 1.23643 0.862
Enf-09 0 0.101749 0
Enf-10 1.57 0.80455 0.672

Table 5-2 Dimensions of the measured time series
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5.6 The dimensions of the control noise times series

NOISE INFORMATION DIMENSION | CORRELATION DIMENSION | FRACTAL DIMENSION
SIGNAL
1 1.352 2.98029 1
2 1.972 2.92491 0.965
3 1.9707 2.94902 1.018
4 2.0346 2.93406 0.984
5 1.6275 2.95673 0.910
6 1.9972 3.33461 1.0354
7 1.8233 2.9325 1.0554
8 1.884 3.12329 0.9182
9 1.8115 2.93593 1.0885
10 2.0456 2.80135 0.9991

Table 5-3 Dimensions of the control noise time series

5.7 Statistical Analysis

The hypothesis and null hypothesis were formulated and stated in
chapter 3, and are repeated here for clarity sake.

5.7.1 Hypothesis

The absorption of isoflurane and enflurane is a non-linear process.

To detect nonlinearity four conditions must be met:
e Fractal Dimension of the attractor

e Sensitivity to initial conditions
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e Invariant probability distribution of the attractor

e Detection of an underlying dynamical process

5.7.1.1 Null hypothesis

The absorption of the anaesthetic agents Isoflurane and Enflurane is
fully described by independent and identically distributed random variables,
i.e. the variability seen in the absorption is random’ and there is no

underlying deterministic process.

The time series measured will be analytically indistinguishable from

noise signals.

5.7.1.2 Fractal Dimension of the attractor

This part of the hypothesis is being tested by this chapter.

5.7.2 Statistical Methods and Tests

The information dimension, the fractal dimension and the correlation
dimension for each of the measured time series was compared to the
information dimension, fractal dimension and correlation dimensions of a
control noise series. The isoflurane and enflurane measured time series
were treated as separate groups and each was individually compared to the

noise series control group.

A Student's T-test was used to compare the measured and the control
groups, with, as stipulated in chapter 3 a p value of < 0.05 being considered

significant.

5.7.3 Results
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INFORMATION | CORRELATION | FRACTAL
DIMENSION DIMENSION DIMENSION

Isoflurane 0.005435 <0.00000 0.2133
group
Enflurnane 0.028838 0.000003 0.038049
group.

Table 5-4 Results of the Student's T-test comparisons for the two

groups of measured time series

All the Student's T-test comparisons yield p values of <0.05 except
for the fractal dimension of the isoflurane measured series and the noise
group. These results strongly recommend the acceptance of the hypothesis
stated above (5.7.1) and more specifically, that there is evidence for a fractal
attractor underlying the measured time series for both isoflurane and

enflurane.

5.7.3.1 Isoflurane Fractal Dimension

The fractal dimension or box counting dimension® as termed in some
literature is the eldest of the measures of dimension, being based on work
done by Hausdorff in 1919. As the number of computations are increased
the log/log plot is no longer a straight line and therefore it becomes
impossible to accurately measure the fractal dimension and the results
reported often underestimate the dimension’. These shortcomings have lead
investigators to sometimes give up using the fractal dimension or look for

alternatives such as the information dimension' etc.

Bearing these facts in mind, it is concluded that not too much
significance should be drawn from the fact that the t test was unable to

distinguish the isoflurane measured time series from the noise series.
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5.7.4 Power Analysis

To prevent a type II statistical error from being made, where the null
hypothesis is accepted when the hypothesis is actually true, a power
analysis'® was performed. For the analysis, an alpha level of 2.35 was used
which corresponds to a p value of <0.01 for the rejection of the null

hypothesis. A power level of >0.8 was considered acceptable .

5.7.4.1 Power analysis for Isoflurane group

5.7.4.1.1 Information Dimension

1.02
1 % *
0.98

0.96
0.94 (

¢
¢
¢
'S

Power

2 5 8 1 14
Number of Series required

Figure 5-2 Power of the Student's T-test for the isoflurane

measured time series

5.7.4.1.2 Fractal Dimension
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Figure 5-3 Power of Student's T-test for isoflurane measured

time series

5.7.4.1.3 Correlation Dimension
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Figure 5-4 Power of Student's T-test for isoflurane measured

time series
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5.7.4.2 Power analysis for Enflurane group

5.7.4.2.1 Information Dimension

L 4
L 4
L 4
L 4

1.02 B
1 ~%_; * ‘
0.98

0.96
0.94 4
0.92

Power

2 5 8 11 14
Number of Series required

Figure 5-5 Power of Student's T-test for enflurane measured

time series

5.7.4.2.2 Fractal Dimension

1.02
1 {
0.98 -
0.96
0.94 [
0.92
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2 5 8 11 14 17 20
Number of Series Required

Power

Figure 5-6 Power of the Student's T-test for the enflurane

measured time series
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5.7.4.2.3 Correlation Dimension
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Figure 5-7 Power of Student's T-test for enflurane measured

time series

5.7.4.3 Power Analysis Conclusion

Twenty series were used in each of the Student's T-test analyses. All
the power analysis showed that this was more than adequate for a power of
> 0.8 and a p value of < 0.01.

5.7.5 Conclusion

The results presented above show that there is evidence for a fractal
attractor underlying the absorption of both isoflurane and enflurane. These
results reach statistical significance (p<0.05) with acceptable statistical
power (>0.8).
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6 Approximate Entropy

6.1 Definition

Approximate Entropy is the natural information theoretical
parameter for an approximating Markov Chain to a process'. It is a recently
developed statistic quantifying regulatory and complexity that appears to
have potential application to a wide variety of physiological and clinical

time-series data, including quantifying chaotic systems.

6.2 Discussion

In applications to a range of medical settings, findings have
associated sickness and aging with significantly decreased Approximate
Entropy values, consistent with the general hypothesis associating
compromised physiology in many systems with more regular, patterned
sinus rhythm heart rate tracings, and normative physiology in many systems
with greater irregularity'. Findings implicitly associating greater regularity
with compromised physiological status have been found elsewhere,
including spectral analysis of heart rate in preterm babies®, sudden infant
death syndrome babies’, in adult sudden death syndrome victims and in
analysis of electrocardiographic waveforms during fatal ventricular
tachyarrythmias®. These findings have produced qualitatively interesting
results but lack a clear-cut statistic that summarizes the frequency spectra or

underlying system structure'.

In order to calculate Approximate Entropy two input parameters m
and r must be fixed. M is the “length” of the compared runs and r is
effectively a filter. Clinically, relatively low Approximate Entropy values
(e.g., for heart rate) appear to correlate with pathology'. Greater non-
linearity causes larger Approximate Entropy values. Greater stochastic
influence produces larger Approximate Entropy values. Both greater
ensemble non-linear and stochastic effects are manifested visually in greater

randomness and complexity.
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Approximate Entropy is a regularity parameter, and discerning
changes in apparently random to very regular is the primary focus of this

parameter'.

The historical development of mathematics to quantify regularity has
centered on various types of entropy measures. Entropy addresses system
randomness and predictability. Greater entropy is associated with more

randomness and less system order’.

There are numerous entropy formulations and many entropy
definitions, which often cannot relate to one another. K-S entropy,
developed by Kolmogorov allows one to classify deterministic systems by
rates of information generation'. This form of entropy can be estimated by
algorithms such as the Grassberger and Procaccia’ algorithm or the
Eckmann and Ruelle® algorithm. There has been keen interest shown in
these algorithms in the last 10 years', since entropy has been shown a

parameter that characterizes chaotic behavior’.

K-S entropy was not developed for statistical application. It is
primarily applied by ergodic theorists to well defined theoretical
transformations, with no noise, and an almost infinite amount of data'. It is
compromised by steady, small amounts of noise, and generally requires a

vast amount of input data to achieve a convergence®, 10 000 points or more.

Approximate Entropy was constructed along thematically similar
lines to K-S entropy, though with a different focus'. This was to promote a
widely applicable statistically valid formula for the data analyst that will
distinguish data sets by a measure of regularity. The intuition motivating
Approximate Entropy is that, if joint probability measures for reconstructed
dynamics that describe each of the two systems are different, then their

marginal probability distributions on a fixed partition are probably different.

Orders of magnitude of fewer points are needed to accurately
estimate these marginal probabilities than to accurately reconstruct the

“attractor” measure defining the process'.
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Approximate Entropy has three technical advantages over K-S
entropy. Approximate Entropy is nearly unaffected by noise of magnitude
below r, the filter level. It is robust to occasional, very large or small
artifacts, it gives meaningful information with a reasonable number of data

points, and is finite for both stochastically and deterministic processes'.

6.3 Computation Algorithms

6.3.1 Computational description

Two input parameters m and r are fixed. M is the “length” of
compared runs, and r is effectively a filter. For a fixed m and r, the
parameter Approximate Entropy (m,r) and the statistical estimate
Approximate Entropy(N,m,r), given N data points u(1), u(2)... y(N) are
defined.

Given N data points {x(i)}, form vector sequences x(7) through x(N-
m-+1), defined by x(@)=[ u(i),... uy(N+m-1)]. These vectors represent m

consecutive 4 values, commencing with the i point.

Define the distance dfx(i),x(j)] between vectors, with x(i) and x(j) as
the maximum difference in their respective scalar components. Use the
sequence x(1),x(2).... x(N-m+1) to construct for each i < N-m+],
C"(r)=(number of j<N+m-1) such that dfx(i), x(j)] <r / (N-m+1). The
C/"(r ) values measure within a tolerance r the regularity or frequency of
patterns similar to a given pattern of window length m. Define gm(r) = (N-
m+1)-1 IN-1+ml=1 In(CIm(r)), where In is the natural logarithm, and then
define the parameter Approximate Entropy(mr) = limy_,fdm(r)-
gm1(r)]'.

Approximate Entropy is a measure of the logarithmic likelihood that
runs of patterns that are close for m observations remain close on next
incremental comparisons. The greater the likelihood of remaining close,

produces smaller Approximate Entropy values and vice versa'.
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6.3.2 Computational solution

This is described as a number of steps':

6.3.2.1 Step one

Focus on a specific length 2 vector, called for example x(44). The
conditional probabilities will be calculated for all length 2 vectors, then log

averaged.

6.3.2.2 Step two

Identify all the length 2 vectors that are component wise close to

vector x(44), using the r-value to define “close.”

6.3.2.3 Step three

Compute the conditional probability that the identified vectors are
close to the original vector plus two, x(46). The probability ratio A/B is
calculated where A is the number of instances where the length 2 vector is
close to x(46) and B the number of instances that the length 2 vector is close
to x(44).

6.3.2.4 Step four

Repeat steps one to three for each length 2-vector x(i), calculating
the conditional probability in each case. Calculate the average of the
logarithm of these probabilities. The negative of this value is the
Approximate Entropy. The negative of the log is used to ensure a positive

result.

The opposing extremes are a perfectly regular sequence, e.g.
sinusoidal behavior, which produces very low Approximate Entropy and
independent sequential processes, e.g. random walk, which produces very

large Approximate Entropy.
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6.3.3 Implementation and interpretation

The value of N for Approximate Entropy is typically between 100
(one hundred) and 5000 (five thousand). Based on theoretical analysis and
clinical application it has been concluded that for m=2 and N=1000, values
of r from 0.1 to 0.25 of the standard deviation of the y(i) data produce good

statistical validity for Approximate Entropy(N,m,r) for many models'.

Theoretical calculations indicate reasonable estimates of these
probabilities are achieved with a N value of at least 10" and preferably at
least 30” points', analogous to results for correlation dimension®. For r
values smaller than 0.1 of the standard deviation one usually achieves poor
conditional probability estimates as well, whereas r values larger than 0.25

the standard deviation, too much detailed system information is lost'.

6.4 Programmatic solution

Neither of the two non-linear programs, SANTIS and DSN offered
calculation facilities for Approximate Entropy. A programmatic solution
was developed using Microsoft Excel version 8® and Microsoft Visual

Basic for Applications®.

The code for the programmatic solution is found in Appendix H.

6.4.1 Programmatic considerations

The program was developed using the algorithm as described in
section 6.3. A Macro was written for Microsoft Excel Version 8 using
Microsoft Visual Basic for Applications. The user first places the time
series to be analyzed in column A of Sheet 1 of the Approximate Entropy
Workbook. The user is then asked to enter the number of points in the time
series to be analyzed. The mean and standard deviation of the time series
are then calculated. The user is then asked for the r (filter) value that is to
be used. A value of 0.24 times the Standard deviation of the time series was
used throughout the analyses for this thesis.  This is within the

recommendations made by Pincus et al '. An embedding dimension of is
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then selected for the analysis. A value of two (2) was used throughout the
analyses for this thesis, being appropriate for the size of the time series

under consideration'.

Using a series of nested loops’ the time series is analyzed as
described in section 1.3 for each two-length vector in the time series. For a
time series consisting of one thousand points, this involves over one million
runs through the loop, with 5 decisions and at least one calculation per loop!
Each calculated probability is stored in a variable and the negative log of the

average is then the approximate entropy of the time series.

6.4.2 Testing the Program

6.4.2.1 Method

The program written was tested to see if it could measure the
approximate entropy accurately. The null hypothesis is that it is unable to
distinguish known chaos from noise. A Henon time series and Logistic map
with a starting value 0.2 and a delta value of 3.8 were used as known chaotic
series’ (These two time series may be found in Appendix E). Four noise
series generated by SANTIS were used as control series (These four time
series may be found in Appendix D). A Student’s T-test was used as the
test statistic and a p value of <0.05 was considered significant, in order to

reject the null hypothesis.

6.4.2.2 Results

SIGNAL |HENON| LOGISTIC | NOISE1 | NOISE2 | NOISE3 | NOISE 4 P
MAP

Approximate | (0,278 0.195 0.119 0.090 0.119 0.108 |0.0096

Entropy

Table 6-1 Calculated approximate entropy for known chaos And

Known Noise
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The calculated p value was 0.0096. This is less than 0.05 and
therefore the null hypothesis is rejected and it is concluded that the program

is successfully able to differentiate known chaos from known noise.

6.5 Approximate Entropy of the measured time series

The Approximate Entropy was calculated in the same manner for the
twenty measured time series. The time series are to be found in Appendix
B.
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TIME SERIES APPROXIMATE ENTROPY
1s0-01 0.066
Iso-02 0.113
Iso-03 0.144
1so-04 0.095
Iso-05 0.121
1s0-06 0.133
iso-07 0.062
Is0-08 0.03
Iso-09 0.243
Iso-10 0.127
Enf-01 0.204
Enf-02 0.132
Enf-03 0.087
Enf-04 0.183
Enf-05 0
Enf-06 0.056
Enf-07 0.143
Enf-08 0.125
Enf-09 0
Enf-10 0.13

Table 6-2 Approximate entropy values for the measured time

series
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6.6 Approximate Entropy of the control Noise time Series

NOISE SIGNAL APPROXIMATE
ENTROPY

1 0.01101
2 0.01105
3 0.00708
4 0.09901

5 0.0689

6 0.02084
7 0.013347
8 0.023086
9 0.000701
10 0.008503

Table 6-3 Approximate entropy of the control noise signals

6.7 Statistical Analysis

The hypothesis and null hypothesis were formulated and stated in
chapter 3, and are repeated here for clarity sake.
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6.7.1 Hypothesis

The absorption of isoflurane and enflurane is a non-linear process.

To detect nonlinearity four conditions must be met:
e Fractal Dimension of the attractor
e Sensitivity to initial conditions
e Invariant probability distribution of the attractor

e Detection of an underlying dynamical process

6.7.1.1 Null hypothesis

The absorption of the anaesthetic agents Isoflurane and Enflurane is
fully described by independent and identically distributed random variables,
i.e. the variability seen in the absorption is random'® and there is no

underlying deterministic process.

The time series measured will be analytically indistinguishable from

noise signals.

6.7.1.2 Fractal Dimension of the attractor

This chapter is testing this part of the hypothesis.

6.7.2 Statistical Methods and Tests

The approximate entropy for each of the measured time series was
compared to the approximate entropy of a control noise signal. The
isoflurane and enflurane measured time series were treated as separate
groups, and each was individually compared to the noise signal control

group.

A Student's T-test was used to compare the measured and the control

groups, with, as stipulated in chapter 3, a p value of <0.05 being considered

significant.
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6.7.3 Results
APPROXIMATE
ENTROPY
T-test isoflurane 0.000499
group
T-test enflurane 0.003085
group

Table 6-4 Results of Student's T-test for the measured time

series and the noise control signals

All the Student's T-test comparisons yielded p values of < 0.05.
These results strongly recommend the acceptance of the null hypothesis
stated above(6.7.1) and more specifically, add to the evidence presented in
chapter 5 that there is a fractal attractor underlying the measured time series

for both isoflurane and enflurane.

6.7.4 Power Analysis

To prevent a type Il statistical error from being made, where the null
hypothesis is accepted when the hypothesis is actually true, a power
analysis'’ was performed. For the analysis, an alpha level of 2.35 was used
which corresponds to a p value of <0.01 for the rejection of the null

hypothesis. A power level of >0.8 was considered acceptable'".

6.7.4.1 Power Analysis of the isoflurane group
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Power

2 5 8 11 14
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Figure 6-1 Power of the Student's T-test for the isoflurane

measured time series

6.7.4.2 Power analysis of the enflurane group

1.01
1 '—M"

0.99

0.98 /

0.97

0.96 +
2 5 8 1" 14

Number of Series Required

Power

Figure 6-2 Power of the Student's T-test for the enflurane

measured time series

6.7.4.3 Power Analysis conclusion

Twenty series were used in each of the Student's T-test analyses. All
the power analysis showed that this was more than adequate for a power of
> (.8 and a p value of <0.01.
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6.8 Conclusion

The results presented above are further evidence for a fractal
attractor underlying the absorption of both isoflurane and enflurane. These
results reach statistical significance (p<0.05) with acceptable statistical

power (>0.8).
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7 Lyapunov exponents

7.1 Definition

Lyapunov exponents are the average exponential rates of divergence
or convergence of nearby orbits in phase space'. The calculation of
Lyapunov exponents is a tool for determining whether or not a system is

chaotic?, and quantifying the sensitive dependence on initial conditions.
7.2 Discussion

7.2.1 General description

Since nearby orbits correspond to nearly identical states, exponential
orbital divergence means that systems whose initial differences may not be
resolvable, will soon behave differently, and predictability will soon be lost.
Any system containing at least one positive Lyapunov exponent is defined
to be chaotic'”’. The magnitude of the exponent reflects the time scale on

which the dynamics of the system become unpredictable.

Assuming two trajectories a;(?) and a,(?) are starting with a small
difference (i.e, a small distance in phase space), for the distance A the

following relation holds:
A(t) = |a2 () -a (t)| = Iaz 0)-aq, (O)I -exp(Ar) = & - exp(Ar)

The first exponent has to be positive for the system to be chaotic, but
the following one may be positive or negative'. The sum of the Lyapunov
exponents 1s the timer-averaged divergence of the phase space velocity, and
is therefore a quantitative measure for chaotic behavoir’. A dissipative
dynamical system will have at least one negative exponent'. A Lyapunov

exponent of zero holds for a periodic system®.

The magnitudes of the Lyapunov exponents quantify an attractor’s
dynamics in information theoretic terms. The exponents measure the rate at

which the system process creates or destroys information'. Thus the
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exponents are expressed in bits of information per second or bits per orbit

for a continuous system and bits per iteration for a discrete system.

7.2.2 Implementation details

7.2.2.1 Selection of embedding dimension and delay time

In principle, when using delay coordinates to reconstruct an
attractor, an embedding dimension, m, of the original attractor is obtained
for a sufficiently large m and almost any choice of the time delay, .
Accurate exponent estimation requires some care in choosing these two
parametes'”. An embedding is usually obtained if m is chosen to be greater
than twice the dimension of the underlying attractor, although using smaller
values of m may often yield reliable Lyapunov exponents'. When an
attractor is reconstructed in phase space, whose dimension is too low,
“catastrophes” or so called spurious exponents the interleave a distinct part
of the attractor are likely to result’. If m is chosen too large, noise will tend
to decrease the density of the points defining the attractor, making it hard to
find replacement points. Increasing m past what is minimally required has

the effect of unnecessarily increasing the level of contamination of the data'.

7.2.2.2 Noise

Noise in an infinite dimension process that, unlike the deterministic
component of the data, fills each available phase space dimension in
reconstructing the attractor. Noise can originate either in measurement
because of simple lack of resolution, or form fluctuations in the state of the
system or its parameters, which enter into the dynamics. It is ironic that
noise is not a problem unless large amounts of data are available to define
the attractor. This is because noise is only detectable when the point density

is high enough to provide replacements near the noise length scale'.

Low pass filtering has been proposed as an approach for reducing
the effects of noise'. As could be expected filtering can distort shapes in the

attractor, but the divergent nature of the attractor is not usually lost.
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Published figures estimate about 20 percent difference in Lyapunov

exponent estimation for filtered and unfiltered experimental data'.

7.3 Computation algorithms

The main idea in calculating the Lyapunov exponent is comparing
an orbit belonging to some initial condition with an orbit for an initial
condition, which carries and error Ey. Then it is possible to record how the
error amplifies during the course of the iteration to EE; .... The error

amplification factor |E,/Ey| is written as a “telescope product™.

The Lyapunov exponent characterizes the average logarithmic
growth of the relative error per iteration. To arrive at a well-defined
exponent, the size of the initial error must approach zero. In practice the
size of the error in each iteration is renormalized to some convenient

number °.

Ek
Ek—l

A =lim limlilog

n—so 0 B =

The choice of the size of the error € to which is renormalized after
each iteration may effect the result. The amplification factor for
infinitesimally small errors, is obtained when €—0. Using a derivative
transformation, it is possible to compute how much an infinitesimally small

error in a point (x,y) of the attractor is transformed by one iteration®.

DH(x,y) =\-2ax])

If the error is in the direction of the given vector (dx,dy), then this

vector can be multiplied by the derivative matrix®.

[ %ax(l)[cgyx) = (— 2ax-dx+dy)

b-dx

7-3



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

&
&
B.a UNIVERSITEIT VAN PRETORIA
et

Lyapunov Exponents Chapter 7

The amplification factor is determined by the quotient of the lengths

of the two vectors (dx,dy) and (-2ax-dx+dy,bdx).

7.3.1

Using this approach the algorithm may be summarized as follows®:

Initialization

Iterate the initial point (0,0) one hundred times to arrive at (x,y).

initialize an accumulator to zero.

7.3.2

C€ITOTI.

7.3.3

734

7.3.5

Initial error

For an arbitrary angle ¢, consider (cos ¢, sin ¢), the direction of the

Transformation

Compute the transformed error according to
—2ax1] dx |=|—-2ax-
b1t g)=(-2em )

Then iterate (x,y), i.e. obtain the point H(x,y) and the transformed

€rror

(-2ax-cos¢ + sin ¢ bcosg).

Error ampilification

The error has increased ( or decreased) by the factor

d= \/(— 2ax-cos¢ +sing) +(b-cosg)
Accumulate the logarithm of this factor.

Renormalization

Replace the old point (x,y) by its successor H(x,y) and replace the old

error direction by the new directional vector (cos@,sing) by (-x-cosg+sing,

bcosg)/d.
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7.3.6 Loop

Go back to step 3, transformation until N iterations have been

performed.

7.3.7 Result
Divide the contents of the accumulator by N.
7.4 Summary of the main aspects of Lyapunov exponents
relevant to strange attractors

e It is recognized that an attractor is chaotic if it has one positive

Lyapunov exponent .

¢ Indiscrete systems, as well as in continuous systems, there are as
many Lyapunov exponents as there are dimensions of underlying

space.

e The sum of all Lyapunov exponents characterizes how fast area

(in two dimensions) or volume ( in three dimensions) expands or
shrinks.

e The Lyapunov exponents are independent of the choice of

coordinates.

7.5 Program used to estimate the Lyapunov exponents

The program SANTIS has the capability to estimate Lyapunov

exponents for a time series’.

7.5.1 Testing the program

7.5.1.1 Method

The program used was tested to see if it could measure the
Lyapunov exponents accurately. The null hypothesis was that is unable to

distinguish known chaos from noise. A Henon time series and Logistic map
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with a starting value 0.2 and a delta value of 3.8 were used as known chaotic

series’. (These two time series may be found in Appendix E). Four noise

series generated by SANTIS were used as control series (These four time

series may be found in Appendix D). The Student’s T-test was used as the

test statistic and a p value of <0.05 was considered significant, in order to

reject the null hypothesis.

7.5.1.2 Results

HENON | LOGISTIC NOISE1 | NOISE2 | NOISE3 | NOISE 4 P
MAP
Lyapunov 3.90 4.69 0.22 0.22 0.22 0.26 0.000074
exponent
Settings for the Lyapunov exponent Calculation with SANTIS
Delay / tau 1 1 1 1 1 1
Embedding 2 2 2 2 2 2
dimension
Minimum 10 1.0 1.0 1.0 1.0 1.0
Distance of
Trajectories
(% of sample
range)
Maximum 10.0 10.0 10.0 10.0 10.0 10.0
Distance of
Trjectories (%
of sample
range)

Table 7-1 Lyapunov exponents for known chaos and known

noise signals

The calculated p value was 0.000074. This is less than 0.05 and

therefore the null hypothesis is rejected and it is concluded that the program

is successfully able to differentiate known chaos from known noise.
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7.6 Lyapunov exponents for the time series measured

The Lyapunov exponents were calculated in the same manner for the
twenty measured time series. The time series are to be found in Appendix

B.
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FILE |LYAPUNOV |DELAY/| EMBEDDING | MINIMUM DISTANCE | MAXIMUM DISTANCE
NAME | EXPONENT| TAU | DIMENSION |OF TRAJECTORIES (% | OF TRIECTORIES (%
OF SAMPLE RANGE) | OF SAMPLE RANGE)
Is0-01 0.79 1 2 1 10
Iso-02 1.27 1 2 1 10
1so-03 0.207 1 2 1 10
Iso-04 1.63 1 2 1 10
Iso-05 1.107 1 2 1 10
Iso-06 0.638 1 2 1 10
Iso-07 0.41 1 2 1 10
Iso-08 1.06 1 2 1 10
1s0-09 1.66 1 2 1 10
Iso-10 0.65 1 2 1 10
Enf-01 0.645 1 2 1 10
Enf-02 0.131 1 2 1 10
Enf-03 0.687 1 2 1 10
Enf-04 1.245 1 2 1 10
Enf-05 0.393 1 2 1 10
Enf-06 0.579 1 2 1 10
Enf-07 0.52 1 2 1 10
Enf-08 0.452 1 2 1 10
Enf-09 0.37 1 2 1 10
Enf-10 0.519 1 2 1 10

Table 7-2 Lyapunov exponents for the measured time series
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7.7 Lyapunov exponents for the Control Noise Signals

NOISE LYAPUNOV
NEW EXPONENT
1 0.123468
2 0.074407
3 0.126614
4 0.102054
5 0.100305
6 0.120309
7 0.098572
8 0.100782
9 0.098225
10 0.092514

Table 7-3 Lyapunov exponents of the control noise time series

7.8 Statistical Analysis

The hypothesis and null hypothesis were formulated and stated in

chapter 3, and are repeated here for clarity sake.
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7.8.1 Hypothesis

The absorption of isoflurane and enflurane is a non-linear process.

To detect nonlinearity four conditions must be met:
e Fractal Dimension of the attractor
e Sensitivity to initial conditions
e Invariant probability distribution of the attractor

e Detection of an underlying dynamical process

7.8.1.1 Null hypothesis

The absorption of the anaesthetic agents Isoflurane and Enflurane is
fully described by independent and identically distributed random variables,
i.e. the variability seen in the absorption is random® and there is no

underlying deterministic process.

The time series measured will be analytically indistinguishable from

noise signals.

7.8.1.2 Sensitivity to initial conditions

This chapter is testing this part of the hypothesis.

7.8.2 Statistical Methods and Tests

The Lyapunov exponents for each of the measured time series was
compared to the Lyapunov exponent a control noise signal. The isoflurane
and enflurane measured time series were treated as separate groups and each

was individually compared to the noise signal control group.

A Student's T-test was used to compare the measured and the control
groups, with, as stipulated in chapter 3, a p value of <0.05 being considered

significant.

7-10



NIVERSITEIT VAN PRETORIA
NIVERSITY OF PRETORIA
UNIBESITHI YA PRETORIA

U
<

Lyapunov Exponents Chapter 7
7.8.3 Results
LYAPUNOV
EXPONENTS
T-test isoflurane 0.000426
group
T-test enflurane 0.000824
group

Table 7-4 Results of the Student's t-test comparisons for the two

groups of measured time series

All the T-test comparisons yielded p values of < 0.05. These results
strongly recommend the acceptance of the null hypothesis stated above
(7.8.1) and more specifically, that there is evidence for sensitivity to initial
conditions underlying the measured time series for both isoflurane and

enflurane.

7.8.4 Power Analysis

To prevent a type II statistical error from being made, where the null
hypothesis is accepted when the hypothesis is actually true, a power
analysis’ was performed. For the analysis, an alpha level of 2.35 was used
which corresponds to a p value of <0.01 for the rejection of the null

hypothesis. A power level of >0.8 was considered acceptableg.

7.8.4.1 Power analysis for Isoflurane group
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Figure 7-1 Power of the Student's T-test for the isoflurane

measured time series

7.8.4.2 Power analysis of the enflurane group

1.02 -
1 ¢
5 0.98 //
2 096 /
o 094
0.92 |
0.9 '
2 5 8 11 14
Number of Series Required

Figure 7-2 Power of the Student's T-test for the enflurane

measured time series

7.8.4.3 Power analysis conclusion

Twenty series were used in each of the Student's T-test analyses. All
the power analysis showed that this was more than adequate for a power of
> (.80 and a p value of < 0.01.
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7.9 Conclusion

The results presented above show that there is evidence for
sensitivity to initial conditions underlying the absorption of both isoflurane
and enflurane. These results reach statistical significance (p<0.05) with

acceptable statistical power (>0.8).
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8 The Method of Surrogate Data

8.1 Definition

The method of surrogate data is a statistical approach to identifying
nonlinearity in a time series. The method first specifies some linear process
as a null hypothesis, then generates surrogate data sets which are consistent
with this null hypothesis, and finally computes a discriminating statistic for
the original and for each of the surrogate data sets. If the value computed
for the original data is significantly different than the ensemble of values
computed for the surrogate data, then the null hypothesis is rejected, and

nonlinearity is detected'.

8.2 Discussion

8.2.1 Introduction

The inverse problem for a nonlinear system is to determine the
underlying dynamical process in the practical situation where all that is
available is a time series of data. For experimental sets simple
autocorrelation and Lyapunov exponent estimates can signal chaos where
there is none. This is particularly so of data sets that are short and noisy'.

Most authors recognize these pitfalls, but they are not easily avoided.

Some data sets very cleanly exhibit low dimensional chaos, but there
are many examples where the evidence is sketchy and difficult to evaluate.
The real complication arises because low dimensional chaos and
uncorrelated noise are not the only available alternatives. The erratic
fluctuations that are observed in an experimental time series owe their
dynamical variation to a number of various influences. Chaos, nonchaotic
but still nonlinear determinism, linear correlations and noise, both in the

dynamics and in the measuring apparatus' >~

The goal of identifying linearity is considerably easier than that of
positively identifying chaotic dynamics. The approach of surrogate data is

to specify a well defined underlying linear process or null hypothesis, and to
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determine the distribution of the quantity, for example, dimension, for an
ensemble of surrogate data sets which are just different realizations of the

hypothesized linear stochastic process'*.

Error bars can be put on the value given by the surrogates reliably
because of the many realizations of the null hypothesis, the errors can be
estimated numerically form the standard deviation of all the estimated

dimensions of the surrogate data sets'.

8.2.2 Statistical Hypothesis testing

The formal application of the surrogate data method is expressed
statistically using a null hypothesis against which observations are tested,

and a discriminating statistic'.

The null hypothesis is a potential explanation that is sought to be
shown inadequate for explaining the data. The discriminating statistic is a
number, which quantifies some aspect of the time series. If this number is
different for the observed data, than would be expected under the null
hypothesis, then the null hypothesis can be rejected’.

An ensemble of surrogate data sets are generated which share given
properties of the observed times series. These are, for example, mean
variance, and Fourier spectrum. Nevertheless, these surrogate data sets are
otherwise random as specified by the null hypothesis*. For each surrogate
data set, the discriminating statistic is computed, and form this ensemble of

statistics the distribution is approximated'.

This approach is computationally intensive, but avoids analytical
deviation, which can be difficult, if not impossible. This allows increased
flexibility in the choice of the null hypothesis and the discriminating
statistic(s). The hypothesis and statistic can even be chosen independently

of each other!.
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8.2.3 Computing significance

Let Qp denote the statistic computed for the original time series and
Qui for the i-th surrogate generated under the null hypothesis. Let py and
oy denotes the sample mean and the standard deviation of the distribution of

Qu .

If multiple realizations of the experimental data are available, then it
may be possible to compare the two data sets directly using a Mann-
Whitney or a student-t test. Alternatively if only one realization of the

experimental data is available, the following method can be used'.

The measure of “significance” is defined by the difference between
the original and the mean surrogate value of the statistic, divided by the

standard deviation of the surrogate data values.

9=IQD—/UH|

Oy

The significance is a dimensionless quantity, but is call by

convention, “sigmas™'.

8.2.4 Estimating error bars on significance

The errors are computed by the standard propagation of errors

methodology. They are written on the graph as AS.

2 2 2
(Ang) =[Al/‘H—/‘D|] +[AO'H)
g Huy —Hp Oy

gt ]

Now the error of the sample mean based on N observations is given
by (A,u)2=0'2/N, and the error of the sample standard deviation is
(40)’=0°/N.
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Therefore':

(ﬁg)_ o; /N, +oc, /N, L]
g (,UH"/U/))Z 2Ny,

The absolute error is given by '

A3=‘/(1+%32)/NH +(op/0y) N,

When only a single realization of the time series is available, then op

is taken to be zero and the second term of the equation is ignored.

8.2.5 Battery of discriminating statistics

The method of surrogate data can in principle be used with virtually
any discriminatory statistic. Formally the null hypothesis can be rejected if
the statistic has different distributions for the data and the surrogates.
However the method is more useful if the statistic actually provides a good
estimate of a physically interesting quantity'. Choices of statistics used
have included correlation dimension, Lyapunov exponents, forecasting error

and correlation integral'.

8.3 Algorithms for generating surrogate data

8.3.1 Unwindowed Fourier Transform Algorithm

This algorithm is based on the null hypothesis that the data came
from a linear Gaussian process. The surrogate data are constructed to have

the same Fourier spectra as the raw data’.

First the Fourier transform is computed for both positive and
negative frequencies, /=0,1/N,2/N.....1/2,without the benefit of windowing.
The Fourier transform has complex amplitude at each frequency. To
randomize the phases, each complex amplitude is multiplied by ¢'®, where ¢
is independently chosen for each frequency in the interval [0,2zr]. in order

for the inverse Fourier transform to be real, i.e. with no imaginary
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components, the phases must be symmetrized, so that ¢()=-¢-f). Finally,

the inverse Fourier transform is the surrogate data'.

This algorithm has at least two limitations. Firstly that it does not

133 %

reproduce pure” frequencies very well. Secondly spurious high
frequencies can be introduced, most probably as an artifact of the Fourier

transform, which assumes the time series is periodic with a period of N'.

8.3.2 Windowed Fourier Transform Algorithm

The problem of spurious high frequencies can be addressed by
windowing the data before taking the Fourier transform. The time series is
multiplied by a function w(f) =sin(zt/N) which vanishes at the end points t=0
and r=N. This suppresses the jump discontinuity from the last to the first
point, and seems to effectively get rid of the high frequency effect. It may

however introduce spurious low frequencies form the power spectrum w(?)

itself’.

8.3.3 Amplitude Adjusted Fourier Transform

This algorithm generates a surrogate data set associated with the null
hypothesis that the observed time series is a monotonic nonlinear
transformation of a linear gaussian process'. The idea is to first rescale the
values in the original time series so that they are gaussian. Then the
windowed or unwindowed Fourier transformation algorithms are used to
make a surrogate time series, which has the same Fourier spectrum as the
rescaled data. Finally, the gaussian surrogate is then rescaled back to have

the same amplitude distribution as the original time series.

8.4 Experimental observations using this technique

The method of surrogate data has been applied to both experimental

and other data. Some of the observations made were':
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a) Increasing the number of points in a time series increases the
significance with which nonlinearity can be detected in a time

series, which is known to be chaotic.

b) Increasing the complexity of the chaotic time series decreases

the ability to distinguish from linearity.

¢) Nonlinearity could be detected even with a signal to noise ratio

of one to one, using a time series of length 512.

d) The decrease in significance is not always monotonic, low levels

of dynamical noise can make the nonlinearity more evident.

€) Oversampling can produce artifacts of autocorrelation and mask
nonlinearity, which is evident if a correct sampling interval is

used.

8.5 Program used

The public domain program SANTIS has the capacity for generating
Surrogate Data® using a random phase method, which is described in 8.3.1.
This algorithm is based on the null hypothesis that the data came from a

linear Gaussian process'.

8.5.1 Testing the program
8.5.1.1 Method

8.5.1.1.1 Statistical Tests

The program used was tested to see if it generated surrogate data
accurately. The null hypothesis tested against was that is unable to
distinguish known chaos from noise. A Henon time series was used as a
known chaotic series’. This time series may be found in Appendix E. A
noise signal generated by SANTIS was used as a control series. (This time

series may be found in Appendix D).
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For the present situation where only one realization of the
‘experimental’ data is available, a modified T-test is used to calculate a
measure of significance’. The measure of significance (S) is defined by the
difference between the original and the mean surrogate value of the statistic,

divided by the standard deviation of the surrogate values:

S = IQD _luH‘
Oy

Where Op denotes the statistic computed for the original time series,
uy is the sample mean and oy is the sample standard deviation. The
significance is properly a dimensionless quantity. If the distribution of the
statistic is gaussian (and numerical experiments indicate that this is often a
reasonable approximation'), then the p value is given by p=P(ZZS/\/2)’,
where Z has a n(0,1) distribution®. This gives the probability of observing
significance S or larger if the null hypothesis is true. For the current test, a p

value of <0.05 was considered significant, in order to reject the null

hypothesis.

8.5.1.2 Results
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HENON TIME SERIES LYAPUNOV EXPONENT CORRELATION
DIMENSION
Henon Original 2.07854 1.24500
SD1 1.34043 3.02000
SD2 1.15344 3.05000
SD3 1.33218 3.15000
SD4 1.36878 2.96000
SD5 1.33900 3.06000
Mean of Surrogates 1.30676 3.04800
Standard deviation of 0.08685 0.06907
Surrogates
NOISE TIME SERIES LYAPUNOV EXPONENT CORRELATION
DIMENSION
Noise Original 0.12347 3.03000
SD1 0.13290 2.93500
SD2 0.12597 3.03200
SD3 0.14202 2.99490
SD4 0.12780 2.95600
SD5 0.13647 3.14750
Mean of Surrogates 0.13303 3.01308
Standard deviation of 0.00652 0.08383
Surrogates

Table 8-1 Calculated values for the henon and noise time series
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LYAPUNOV EXPONENT CORRELATION DIMENSION
Sigma p Sigma p
Henon Time 8.886 1.66E-10 26.1057 —0
Series
Noise Times 1.4668 0.149 0.20183 0.4432
Series

Table 8-2 Calculated statistics for the henon and noise time

series and their surrogates

The p values for the known chaotic signal, the Henon Time series,
and its surrogates for both the Lyapunov exponent and the correlation
dimension are well below 0.05. The p values for the known noise series and
its surrogates are well above 0.05. It is therefore concluded that the
SANTIS program is able to distinguish noise from known chaos using the
method of surrogate data The surrogate data sets for the Henon Time series

and the Noise time series are to be found in Appendix C.

8.6 The Method of Surrogate Data applied to the time series
measured

8.6.1 Hypothesis

The absorption of isoflurane and enflurane is a non-linear process.

To detect nonlinearity four conditions must be met:
e Fractal Dimension of the attractor
e Sensitivity to initial conditions
e Invariant probability distribution of the attractor

e Detection of an underlying dynamical process

8-9
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8.6.1.1 Null hypothesis

The absorption of the anaesthetic agents Isoflurane and Enflurane is
fully described by independent and identically distributed random variables,
i.e. the variability seen in the absorption is random’ and there is no

underlying deterministic process.

The time series measured will be analytically indistinguishable from

noise signals.

8.6.1.2 Invariant probability distribution of the attractor

This part of the hypothesis is being tested by this chapter.

8.6.2 Statistical Methods and Tests and Data processing

The twenty measured time series were processed using SANTIS and
a surrogate data set for each time series was constructed. A single surrogate
was made for each series because they are multiple realizations of
observational data'. The surrogate data sets are to be found in Appendix J.
The statistics chosen for the analysis were the correlation dimension and the
Lyapunov exponent'. These two statistics were calculated for the surrogates

and the originals as set out in Chapters 5 and 7 respectively.

The isoflurane group and the enflurane group are each compared to
their own surrogate data set. The two groups of statistics will be compared
using a Student's T-test' and a p value of < 0.05 will be considered

significant.

8.6.3 Power Analysis

To prevent a type 11 statistical error from being made, where the null
hypothesis is accepted when the hypothesis is actually true, a power
analysis® was performed. For the analysis, an alpha level of 2.35 was used
which corresponds to a p value of < 0.01, for the rejection of the null

hypothesis. A power level of >0.8 was considered acceptable®.

8-10
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8.6.3.1 Power Analysis for the Isoflurane Group

8.6.3.1.1 Lyapunov Exponent

1.00050 +
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-

L 4
L 4
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Figure 8-1 Power of the Student's T-test for the isoflurane

surrogates

8.6.3.1.2 Correlation Dimension

1 — ——————9
:
3 0.995
o
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Figure 8-2 Power of the Student's T-test for the isoflurane

surrogates
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8.6.3.2 Power Analysis for the Enflurane Group

8.6.3.2.1 Lyapunov Exponent
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Figure 8-3 Power of the Student's T-test for the enflurane

surrogates

8.6.3.2.2 Correlation dimension
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Figure 8-4 Power of the Student's T-test for the enflurane

surrogates

8.6.3.3 Power Analysis conclusion

Ten surrogates were used in each of the Student's T-test analyses.
All the power analysis showed that this was more than adequate for a power
of> 0.8 and a p value of < 0.01.

8.6.4 Results

8.6.4.1 Tabular summary of results obtained
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ORIGINALS SURROGATES
Lyapunov Exponent | Correlation Dimension | Lyapunov Exponent | Correlation Dimension
Iso-01 0.79 0.785141 0.95 2.54573
Iso-02 1.27 1.48417 1.77 2.63195
Iso-03 0.207 0.952904 2.71 2.70931
Iso-04 1.63 1.03614 1.57 2.28634
Iso-05 1.107 1.50338 1.76 2.84977
Iso-06 0.638 1.3673 1.79 2.50964
Iso-07 0.41 1.04189 1.59 2.45525
Iso-08 1.06 1.36093 2.38 2.54241
Iso-09 1.66 1.52047 0 2.70942
Iso-10 0.65 1.57578 1.86 2.42537
Student's | 0.378105 0.0000001 (p Values)
T-test

Table 8-3 The results for the measured isoflurane times series

and their surrogates
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ORIGINALS SURROGATES
Lyapunov Exponent | Correlation Dimension | Lyapunov Exponent | Correlation Dimension
Enf-01 0.645 1.88901 2.1 2.61761
Enf-02 0.131 0.814319 2.07 2.48397
Enf-03 0.687 0.975127 1.87 2.55907
Enf-04 1.245 1.81347 1.358 2.51946
Enf-05 0.393 0.0982057 2.38 2.87178
Enf-06 0.579 1.46198 2.995 2.92315
Enf-07 0.52 1.46198 1.922 292315
Enf-08 0.452 1.23643 2.32 3.22789
Enf-09 0.37 0.101749 2.17 2.96908
Enf-10 0.519 0.80455 1.967 2.63558
Student's | 0.0000119 0.0000187 (p values)
T-test

Table 8-4 The results for the measured enflurane times series

and their surrogates

8.6.4.2

Conclusion

The results presented above show that there is evidence for an

invariant probability distribution of the attractor underlying the absorption

of both isoflurane and enflurane.

These results all reach statistical

significance (p< 0.05) with acceptable statistical power (>0.8).
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9 Nonlinear forecasting

9.1 Definition

Nonlinear forecasting is an approach for making short term
predictions about the trajectories of chaotic dynamical system. It
distinguishes apparent noise associated with deterministic chaos from
sampling error and other sources of externally induced environmental

noise'?.

9.2 Discussion

Nonlinear forecasting combines some new ideas with previously
described techniques to make short term predictions that are based on a
library of past patterns in the time series'?. By comparing the predicted and
actual trajectories, tentative distinctions between dynamical chaos and

measurement error can be made.

For a chaotic time series, the accuracy of nonlinear forecasting falls
off with an increase in prediction interval, whereas for uncorrelated noise,
the forecasting accuracy is roughly independent of the prediction interval'.
The rate at which the prediction accuracy falls off for a chaotic time series
gives an estimate of its Lyapunov exponent’. This method provides an
estimate of the number of dimensions or “active variables” of the attractor
underlying a time series that is identified as chaotic. It does not require a
large number of data points, and seem to be useful when the observed time

series has relatively few points.

9.2.1 Forecasting for a chaotic time series

Nonadjacent values in chaotic time series are completely
uncorrelated, and standard statistical methods cannot be used to generate
predictions two or more steps into the future that are significantly better
than the mean value for the series. But if deterministic laws govern the

system, then, even if the dynamical behavior is chaotic, the future may be
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able to some extent be predictable from the behavior of past values that are

similar to those of the present'.

The predictions are sensitive to the choice of the embedding
dimension, E'. They are less accurate with higher embedding dimensions.
This effect is thought to be caused by the contamination of nearby points in
the higher dimensional embeddings with points whose earlier coordinates
are close but, whose recent and therefore more relevant coordinates are

distant.

The forecasting technique is phenomenological in that it attempt to
asses the qualitative character of a system’s dynamics without attempting to
provide an understanding of the physical or biological mechanisms which
ultimately govern the system'. This contrasts strongly with many laboratory
and field experiments, which often attempt to elucidate detailed

mechanisms.

The time series is split into two parts and inferences are made about
the dynamical nature of the system. This is done by examining the way in
which the correlation coefficient between the predicted and the observed
results for the second part of the times series varies with the prediction
interval'. It has been shown to work with artificially generated time series,
for which the underlying mechanisms are known, as well as for
epidemiological data', heart rate analysis™, action potential trains’, the

human EEG?® and disease incidence®.

9.3 Computational algorithm

First an embedding dimension, E, is chosen, and then lagged
coordinates are used to represent each lagged sequence (with a lag time of 1)
of data points, {x, X 5X.25..-Xe-E-1)z} @s a point in E dimensional space. The
results do not seem to be very sensitive to the choice of T value, provided it
is not too large'. Each sequence for which a prediction is to be made is now
regarded as an E-dimensional point, comprising of its present value and the

E-1 previous values each separated by one lag time t. All nearby E
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dimensional points are located in the state space, and a minimal
neighborhood is defined to be such that the predictee is contained within the
smallest simplex termed by its E+/ closest neighbors. The prediction is
now obtained by projecting the domain of the simplex into its range, that is
by keeping track of where the point in the simplex end up after p time steps.
To obtain the predicted value, the original predictee position is computed
within the range of its simplex, giving exponential weight to its original

distances from the relevant neighbors'.

Nonlinear forecasting is a non-parametric method which uses no
prior information about the model used to generate the time series, only the

information in the output itself'=.

9.4 Program used

Neither of the two programs used for analysis in this thesis have the

facility to do the nonlinear forecasting method as described above.

Microsoft Excel 8° and Visual Basic for Applications® were used to
develope a computer program using the algorithm outlined above. The code

for the program is to be found in Appendix I.

9.4.1 Description

9.4.2 Testing the program

The program written was tested to see if it could perform nonlinear
forecasting accurately. The null hypothesis is that it is unable to distinguish
known chaos from noise. A Henon attractor time series as well as a noise
series were used in the testing. The data for the Henon time series is to be
found in Appendix E, the data for the noise series is to be found in
Appendix D.

A Henon attractor time series of 1500 data points was used and the

following results were obtained:
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HENON NOISE
PREDICTION

TIME Correlation Correlation
coefficient coefficient

1 0.931009 0.508566

2 0.834199 0.446426

3 0.7625 0.522498

4 0.51392 0.429119

5 0.493131 0.482085

6 0.454723 0.484795

7 0.39385 0.472593

8 0.27307 0.508908

9 0.266334 0.403556

10 0.267688 0.436132

Table 9-1 Tabular results of non-linear forecasting with a henon

attractor and a noise signal.
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Figure 9-1 The correlation coefficient of the predicted and

actual values for a henon attractor and a noise signal.

The decrease in the correlation coefficient with increasing prediction
time is a characteristic of chaos when subjected to nonlinear prediction'.
This property is noteworthy because it indicates a simple way to
differentiate additive noise from deterministic chaos. Prediction with
additive noise that is uncorrelated will seem to have a fixed amount of error,
regardless of how far or close into the future one tries to project. However,
prediction with deterministic chaos will tend to deteriorate as one tries to

forecast into the future'*.

In this testing process, the noise signal serves as a control. It is
therefore concluded that the program successfully distinguished two known
chaotic signals from noise, and can therefore be used in the measured time

series analysis.

9.5 Nonlinear forecasting applied to the measured time series

9.5.1 Tabular results of the nonlinear forecasting
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PREDICTION TIME

Time Series 1 2 3 4 5 6 7 8 9 10
Iso-01 | 0.998405 | 0.998335 | 0.992936 | 0.992584 | 0.988504 | 0.985449 | 0.101956 | 0.941643 | 0.635765 | 0.504829
Iso-02 | 0.533014 | 0.600201 | 0.52655 | 0.518132 | 0.242406 | 0.247409 | 0.201772 | 0.253008 | 0.273863 | 0.242467
Iso-03 | 0.839198 | 0.564994 | 0.319887 | 0.279051 | 0.276087 | 0.384769 | 0.380413 | 0.32074 | 0.291326 | 0.219981
Iso-04 | 0.394032 | 0.606389 | 0.492526 | 0.218237 | 0.225495 | 0.291932 | 0.271515 | 0.237173 | 0.281784 | 0.257786
Iso-05 | 0.705453 | 0.677779 | 0.457691 | 0.359112 | 0.544889 | 0.430544 | 0.439531 | 0.516171 | 0.453563 | 0.396119
Iso-06 | 0.606736 | 0.422822 | 0.400923 | 0.351216 | 0.375366 | 0.361049 | 0.32929 | 0.321007 | 0.292137 | 0.318042
Iso-07 | 0.649942 | 0.651781 | 0.623762 | 0.623034 | 0.639909 | 0.464699 | 0.225289 | 0.219731 | 0.250955 | 0.3424
Iso-08 | 0.770772 | 0614863 | 0.5281 | 0.327084 | 0.188408 | 0.215324 | 0.248173 | 0.242243 | 0.264178 | 0.258138
Iso-09 | 0.745023 | 0.679602 | 0.516286 | 0.551967 | 0.60212 | 0.547318 | 0.534397 | 0.523138 | 0.442113 | 0.438931
Iso-10 | 0682728 | 0.62896 | 0.609579 | 0.374676 | 0.328768 | 0.297518 | 0.267572 | 0.235619 | 0.289276 | 0.329628
Enf-01 | 0.717534 | 0.723738 | 0.660926 | 0.546588 | 0.426491 | 0.288177 | 0.311193 | 0.385414 | 0.422615 | 0.485991
Enf-02 | 0600321 | 0.404382 | 0.375737 | 0.424702 { 0.443001 | 0.415924 | 0.447971 | 0.465681 | 0.460097 | 0.406184
Enf-03 | 0531233 | 0.576416 | 0.335309 | 0.19716 | 0.202522 | 0.227774 | 0.257508 | 0.321101 | 0.344167 | 0.362232
Enf-04 | 0765703 | 0.620539 | 0.492355 | 0.28632 | 0.168492 | 0.214412 | 0.24075 | 0.211609 | 0.187674 | 0.221962
Enf-05 | 0572695 | 0.535491 | 0.401022 | 0.334509 | 0.336435 | 0.307602 | 0.319179 | 0.335237 | 0.325309 | 0.327527
Enf-06 | 0.503582 | 0.406577 | 0.450085 | 0.420845 | 0.411436 | 0.412036 | 0.406986 | 0.370103 | 0.411651 | 0.445861
Enf-07 | 0532502 | 0.518669 | 0.507854 | 0.451757 | 0.493164 | 0.416277 | 0.280079 | 0.274419 | 0.303553 | 0.294224
Enf-08 | 0682265 | 0.595385 | 0.457385 | 0.403076 | 0.352322 | 0.312621 | 0.31423 | 0.222915 | 0.224516 | 0.23655
Enf-09 | 070515 | 0.731499 | 0.576043 | 0.497984 | 0.455496 | 0.329483 | 0.319908 | 0.306684 | 0.325026 | 0.324227
Enf-10 | 0589421 | 0.529481 | 0.426854 | 0.36702 | 0.416705 | 0.486401 | 0.341717 | 0.424236 | 0.283022 | 0.321246

Table 9-2 Tabular results of the non-linear forecasting for the

measured time series
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9.5.2 Graphical results of the nonlinear forecasting

Correlation Coefficient

Predition Time e~ Ent-10

Figure 9-2 Graphical results of non-linear forecasting with all

the measured time series

9.5.3 Individual Graphical Results with Noise as a control

Individual graphs of Non-Linear forecasting with a noise signal as
control are to be found in Appendix I.
9.6 Statistical Analysis

The hypothesis and null hypothesis were formulated and stated in
chapter 3, and are repeated here for clarity sake.
9.6.1 Hypothesis

The absorption of isoflurane and enflurane is a non-linear process.

To detect nonlinearity four conditions must be met:
e Fractal Dimension of the attractor

e Sensitivity to initial conditions
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e Invariant probability distribution of the attractor

e Detection of an underlying dynamical process

9.6.1.1 Null hypothesis

The absorption of the anaesthetic agents Isoflurane and Enflurane is
fully described by independent and identically distributed random variables,
i.e. the variability seen in the absorption is random’ and there is no

underlying deterministic process.

The time series measured will be analytically indistinguishable from

noise signals.

9.6.1.2 Detection of an underlying dynamical process

This part of the hypothesis is being tested by this chapter.

9.6.2 Statistical Analysis of the Results

No recommendation is made by Sugihara et all on how to decide
whether the time series under consideration is non-linear as determined by
the method of Non-Linear forecasting other than graphical representation
and imperial decision. Using this method, only one of the time series was
considered not to demonstrate characteristics of a non-linear time series,

namely Enf-016.

To make the decision more objective and less imperial, it was
decided to calculate the coefficient of determination between the measured
signal and the noise signal, using the values obtained with the Henon time
series as a guideline for a coefficient of determination value which should

be used in deciding if the time series should be considered non-linear or not.

9-8
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SERIES COEFFICIENT OF DETERMINATION <<0.5 <<0.37 | VISUAL
Henon 0.363 Yes Yes Yes
lo-01 0.263 Yes Yes Yes
Iso-02 0.082 Yes Yes Yes
Iso-03 0.281 Yes Yes Yes
Iso-04 0.151 Yes Yes Yes
Iso-05 0.281 Yes Yes Yes
iso-06 0.446 Yes No Yes
Iso-07 0.169 Yes Yes Yes
Iso-08 0.234 Yes Yes Yes
Iso-09 0.331 Yes Yes Yes
Iso-10 0.246 Yes Yes Yes
Enf-01 0.091 Yes Yes Yes
Enf-02 0.169 Yes Yes Yes
Enf-03 0.055 Yes Yes Yes
Enf-04 0.277 Yes Yes Yes
Enf-05 0.198 Yes Yes Yes
Enf-06 0.156 Yes Yes No
Enf-07 0.256 Yes Yes Yes
Enf-08 0.250 Yes Yes Yes
Enf-09 0.168 Yes Yes Yes
Enf-10 0.342 Yes Yes Yes

Table 9-3 Statistical and visual analysis of non-linear forecasting

on the henon and measured time series
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The coefficient of determination for the Henon Time Series was
calculated to be 0.363. The coefficient’s of determination for the measured
time series were all less than 0.5, and only one, Is0-06 is not less than 0.37.
Adopting the most strict approach, that the nonlinear forecasting of a time
series must not only visually be judged to be in favor of a nonlinear process,
but also that the coefficient of determination be less than the control value,
namely 0.37, the following is then deducted: nine out of the ten measured
isoflurane time series and nine out of the ten measured enflurane time series
are in favor of their being an underlying dynamical process in the absorption

of the two gases. Is this statistically significant?

9.6.3 Testing for statistical significance

The problem identified in the section above will be statistically

addressed using a binomial distribution®.

9.6.3.1 Hypothesis and Null hypothesis

The hypothesis to be tested is as follows:H;: n > m, with the null
hypothesis being: Hy: Tt =mo. The value used for 7o will be 0.5

9.6.3.2 Power Analysis

To prevent a type 1l statistical error from being made, where the null
hypothesis is accepted when the hypothesis is actually true, a power
analysis® was performed. For the analysis, an alpha level of 1.645 was used
which corresponds to a p value of < 0.05 for the rejection of the null

hypothesis. A power level of >0.8 was considered acceptable®.

9-10
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9.6.3.2.1 Power Analysis for the Isoflurane Group
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Figure 9-3 Power of the binomial for the isoflurane measured

time series

9.6.3.2.2 Power Analysis for the Enflurane Group
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Figure 9-4 Power of the binomial for the enflurane measured

time series
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9.6.3.2.3 Power Analysis Conclusion

Ten binomial comparisons were used in each group. Both the power

analysis showed that this was adequate for a power of > 0.8 and a p value of

<0.05.

9.6.3.3 Results

BINOMIAL RESULTS (P VALUES)

Isoflurane 0.01074
Group

Enflurane 0.01074
group

Table 9-4 Results of the binomial comparison

Both of the binomial comparisons yielded p values < 0.05. These

results strongly recommend the acceptance of the hypothesis stated above

(9.6.1) and more specifically, that there is evidence for an underlying

dynamical process underlying the measured time series for both isoflurane

and enflurane.

9.7 Conclusion

The results presented above show that there is evidence for a fractal

attractor underlying the absorption of both isoflurane and enflurane using

the method of nonlinear forecasting. These results reach statistical

significance (p< 0.05) with acceptable statistical power (>0.8).
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10 Statistical Analysis Summary

10.1 Hypothesis

The absorption of isoflurane and enflurane is a non-linear process.

To detect non-linearity, four conditions must be met'*:
1. Sensitivity to initial conditions

2. Fractal Dimension of the attractor

3. Invariant probability distribution of the attractor

4. Detection of an underlying dynamical process

10.2 Null hypothesis

The absorption of the anaesthetic agents Isoflurane and Enflurane is
fully described by independent and identically distributed random variables,
ie. the variability seen in the absorption is random® and there is no

underlying deterministic process.

The time series measured will be analytically indistinguishable from

noise signals.

10.3 Testing the hypothesis

10.3.1 Method

Ten measured time series for both isoflurane and enflurane
absorption were measured. These were then compared to ten noise signals,

with similar standard deviations, means and number of points in the series.

10.3.2 Sensitivity to initial conditions

Calculating Lyapunov exponents tests for sensitivity to initial

conditions.
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STUDENT'S T-TEST RESULTS (P VALUE) FOR THE MEASURED
TIME SERIES COMPARED TO NOISE CONTROLS

Isoflurane group 0.000426 (power: 0.998495)

Enflurane group 0.000824 (power: 0.999492)

Table 10-1 Student's T-test (p value) for the measured time

series compared to noise controls (Lyapunov exponent)

10.3.3 Fractal Dimension of the attractor

The dimension of the attractor was calculated using the following statistics.
Each statistic gives an approximation of the fractal dimension. The
approximate entropy is the only method described specifically for short,
noisy, biological signals®. Therefore only the statistics calculated for the

approximate entropy will be used for testing against the null hypothesis.
e Approximate entropy

¢ Information entropy

e Correlation dimension

e Fractal dimension (Box counting method)

10-2
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STUDENT'S T-TEST RESULTS (P VALUES) FOR THE MEASURED
TIME SERIES COMPARED TO NOISE CONTROLS

Approximate| Information | Correlation Fractal

Entropy Dimension dimension | Dimension

Isoflurane 0.000499 0.005435 <0.000000 0.2133

group (Power: (Power: »1) | (Power:
(Power: 1)1 5 999905) 0.975885)

Enflurane 0.003085 | 0.028838% 0.000003 0.038049
group (Power: (Power: (Power: »1) | (Power:
0.999997) | 0.999954) 0.999427)

Table 10-2 Student's T-test (p values) for the measured
time series compared to noise controls (fractal dimension)

10.3.4 Invariant probability distribution of attractor

Non linear forecasting was used to determine this characteristic.
Each series was judged by a combination of visual and statistical criteria and
then designated a “yes” or “no” answer. The proportions were analyzed

using a binomial distribution, with Hyz=0.5.

THE P VALUES OF THE BINOMIAL FOR THE 10 TESTS IN
EACH GROUP

Isoflurane group 0.01074 (Power: 0.928) 9/10 tests “yes”

Enflurane group 0.01074 (Power: 0.928) 9/10 tests “yes”

Table 10-3 The p values of the binomial for the ten tests in

each group
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10.3.5 Detection of an underlying dynamical process

This was determined by the method of surrogate data.

THE P VALUES FOR THE MEASURED TIME SERIES AND THEIR
SURROGATES USING LYAPUNOV EXPONENTS AND
CORRELATION DIMENSION AS COMPARISONS

Lyapunov Exponent group | Correlation Dimension

Group

Isoflurane 0.0378105 (Power: —»1) | 0.0000001 (Power: —»1)
group

Enflurane 0.0000119 (Power: —»1) | 0.0000187 (Power: —1)
group

Table 10-4 The p values for the measured time series and
their surrogates using Lyapunov exponents and correlation
dimension as comparisons

10.4 Conclusion

Each of the four conditions required by the hypothesis have been
met with statistical significance (p< 0.05) and acceptable statistical power
(>0.8). It is therefore concluded that the null hypothesis should be rejected
and accepted that the absorption of both isoflurane and enflurane are non-

linear processes.
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11 Discussion

11.1 Implications for anaesthesia
11.1.1 Administration

11.1.11 User adjusted inhalation agent concentration

The practice whereby the anaesthesiologist adjusts the concentration
of the inhalation agent against the patient’s response to stimuli does not

require any change, because this process is inherently non-linear.

11.1.1.2 Calculated inhalation agent concentration

The method of pre-calculated injections described by Lowe'
assumes that the absorption of the inhalation agent is predictable and

therefore needs to be adjusted or phased out.

Computer assisted anaesthesia provision where preset concentrations
are entered by the user are coming into practice, for example, Driger’s
“Physioflex.” These types of anaesthesia machines can compensate for a
nonlinear absorption, provided that a feedback loop is built into the system,
allowing adjustment of the inspired concentration based on the expired

concentration of inhalation agent.

11.1.2 Modelling

Prediction is the sine qui non of modelling? and studying biological
signals is the first step toward this end. Presently prediction of how non-
linear systems behave in the real world is only possible for a limited period
of time’. As further mathematical techniques are developed and the
dynamics underlying non-linear processes are further discovered, this goal

should be realized. For the moment, it eludes us.
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11.1.3 Pharmacokinetics

Standard textbooks do not mention pharmacokinetic models other
than those based on compartments described by single or multiple
exponential equations. Non compartmental models, which have kinetics,
that are fractal in nature, have been described for tracers®, '’O-labeled

Water,’ and opiates".

If the non-linear nature of inhalation agent absorption is taken into
account when simplified models are described, then the search for an ideal
model that accurately describes the process will prove to be futile. Maybe
the 40 odd years since Severinghaus and the square root of time model have

proved this!

11.2 Literature evidence against the compartmental models
11.2.1 Assumptions made in linear modeling

11.2.1.1 Assumptions made in the compartment model

A compartment is a region or subspace within a biological system
throughout which the concentration of some substance is regarded as
uniform*. A compartmental model is one consisting of one or several of
such subspaces. The rate of exchange of material between compartments is
governed by a set of non-negative rate coefficients, which are usually taken
to be constant in time. Not every compartment in a given system exchanges
material with every other compartment, which allows compartmental
models to assume various configurations such as the catenary or linear

model, and the radially symmetric or mammillary model*.

Compartments are largely intuitive structures and they can be useful
for both heuristic and computational purposes. They are governed by sets of
ordinary differential equations, where time is the sole independent variable,
and the concentrations or masses of material in the various compartments
are the dependent variables. One differential equation can be written for

each compartment to govern the flow of material to and from this
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compartment. Compartments are easily visualized and sometimes

identifiable with anatomical spaces®

In a steady state, the amount of substance within a compartment
remains constant. When the steady state is displaced by means of a
disturbance that increases or decreases the amount of material in one or
more compartments, the masses of material in many of the compartments
will change with time. When the disturbance is removed, the system will
return to steady state. This relaxation process, under the influence of
constant rate coefficients, will be described by sums of real, negative
exponential functions. The real negative exponential is the characterizing
function of the linear compartmental model, although complex exponents

giving rise to sine and cosine terms, can, in principle appear”.

When the clearance of a substance is measured by some or other
means, a clearance curve can be constructed. When such a process is
modeled by means of a linear compartmental model, one compartment of
which contains the plasma; the mathematical function governing the
clearance curve will consist of sums of real, negative exponentials. If the
logarithm of the plasma concentration of the substance under consideration
is plotted against time, and if a compartmental model is a valid
representation of the biokinetic process of plasma clearance, data will tend
to fall on a straight line for large values of time. Stated otherwise, a semi-

log plot of clearance data will tend to approach linearity with increasing

time*.

11.21.2 The System Model for Closed-circuit Inhalation
Anaesthesia

This model is the most recently described compartmental model of

inhalation anesthetic agents in the literature®.

It does not assume a constant alveolar concentration of inhalation
agent, and therefore lends itself to validation by non-invasive measuring
techniques as well as attempting to predict the breath by breath alveolar

concentration after bolus injections of liquid inhalation agent.
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The basic model for the uptake and distribution of a single inhalation
anesthetic depicts the body and the closed circuit as a system of 14
compartments. The anesthetic agent is taken up from the lung-closed circuit
compartment and is then distributed to the other tissue compartments:
kidney, brain, liver, muscle, connective tissue, and adipose tissue. The
model derives from the subject’s age, body weight, height and gender the
other physiological variables, including tissue volumes, blood volume,
cardiac output, dead space, alveolar space and tidal volume®. This type of

model has been illustrated by both hydraulic’ and electrical® analogies.

The data source for the total blood volume, cardiac output, tissue
volumes, tissue blood flows, and partitian coefficients were based on that of

Lowe'.

Two extensions were made to the basic model to include the effect
of the anesthetic agent on cardiac output and to allow monitoring feedback

from expiratory gas®.

11.2.2 Shortfalls in the compartmental model noted in the literature to
date

11.2.21 Failure to recognize the functional residual capacity
as an extension of the anaesthetic circuit

This criticism has been leveled by Lin’ against both the square root
of time model and the compartmental models such as those described by
Lerou et al°. The basis of this argument is that the functional residual
capacity must be considered part of the breathing circuit and not as part of
the “lung compartment” as done by both the examples mentioned. This
criticism by Lin is backed up by experimental evidence'® where the
absorption of nitrous oxide was determined by a subtraction method. Their
results differ significantly from those previously described, showing that the
initial absorption of nitrous oxide was minimal and that after a period of

functional residual capacity washin, the absorption was relatively constant’.
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11.2.2.2 Failure to recognize the alveolar membrane as a
barrier

The mathematical model of uptake described by Eger'' used the Fick
principle in part to explain the uptake of anesthetic agents, but only took the
solubility coefficient and the partial pressure across the membrane to
explain uptake, but did not include the diffusion coefficient, the area of the
membrane or the thickness of the membrane into account. This is again
pointed out by Lin’, who then proposes that the absorption of anaesthetic
agents should be represented by 1-(Alveolar fraction/Inspired fraction) and
not by the (Alveolar fraction/Inspired fraction) as proposed by Eger''. The
method of Lin’s was used in this thesis to calculate the absorption of

anesthetic agents.

Anaesthetic uptake has been traditionally described using high flow
techniques during which the inspired concentration is held constant’. The
relationship between the alveolar (Fa) and inspired (Fi) concentrations over
time (Fa/Fi curve) is used to describe the pharmacokinetics. However,
several misconceptions exist regarding the meaning of the Fa/Fi curves.
The initial portion of the Fa/Fi curves represents mostly washin of the
anaesthetic circuit and the functional residual capacity, and patient uptake is
probably minimal during the first few minutes of an anaesthetic’’. In
addition, the Fa/Fi curves by themselves do not describe the patient uptake,
but uptake is rather represented by the area above the Fa/Fi curves and is the

product of Fi, the fraction of uptake (1-Fa/Fi) and the alveolar ventilation’.

11.2.23 No correlation with patient demographics

In a study designed to see whether patient characteristics (age,
height, weight, body surface area, and cardiac output estimated by the Brody
formula) could predict the uptake of desflurane and isoflurane'?, the authors
conclude, “There was a poor correlation between uptake and patient

characteristics. Interindividual variability in the uptake is likely not as a
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result of patient characteristics.” Other studies have reached similar

conclusions'*"3

11.2.24 Failure to describe adequately statistical methods

Two articles recently describe the absorption of isoflurane and

desflurane during anesthesia'*".

A tri-exponential and bi-exponential
model were fitted respectively. However, almost no statistical information

is given. This forces one to regard these results with caution.

11.2.2.5 Fractal nature of structure and blood flow of organs

Organs are not normally homogeneously perfused’. Regional blood
flows in the heart are broadly heterogeneous. In both the heart and lung, the
spatial variation appears to be fractal. This means that the spatial
heterogeneity shows statistical self-similarity. Fractal like anatomy has
been described for the arterial and venous trees, the branching of cardiac
muscle bundles, the tracheobronchial tree, and the His-Purkinje network'®.
Other organ systems containing fractal like structures including the nervous

system, the bowels, the billiary duct system, and the renal calyces'(’.

11.2.2.6 Fractal nature of flow limited blood-tissue
exchange and the Invalidity of the “well stirred” tank
model

Bassinghtwaighte et al’ measured flow-limited washout of a tracer
from the heart. The data exhibited a particular combination of power law
forms. The interpretation is that both the residue and the outflow curves
demonstrate self-similarity, in the sense that for each proportional increase
in time, there is a constant proportional diminution in signal. In the field of
nonlinear dynamics, this is termed power law behavior. Such behavior is
the hallmark of fractals, the self-similarity means that apparent behavior is
independent of the time unit considered. The evidence points strongly to the

conclusion that the myocardial water washout is a fractal process.
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The observed fractal washout may be explicable on the basis that

regional flows per gram of tissue have spatial distributions”.

This study contrasts notably with and clearly refutes, the long held

perception that washout is an exponential prosess.’

11.2.3 Alternatives to the compartmental model

Compartmental models remain the most popular means of modeling
kinetic data in the medical literature at present, but they are not used
universally*. Non-compartmental models are defined as those models that
do not necessarily require the presence of regions that are well mixed.
Concentrations of drugs may vary continuously both in space and time
within the organism. Continuous concentration gradients will be permitted.
Partial differential equations or integral equations may replace the ordinary

differential equations of compartmental systems®.

The power function given by C = 4¢™® is proposed as an alternative.
The clearances of both drugs and tracers have been modeled using this
function’. One area of great theoretical interest involves the area of its
application, in that the concept of biological halftime is completely

fallacious and may result in gross errors, both actually and conceptually.

The power function may arise from the diffusion process, which
constitute a rate-limiting step for removal of certain substances from the
circulation (see 11.2.2.2). It has been realized for some time that a power
function can be related to the sum or integral of an infinitely large number

of exponential functions®.

11.2.4 The role of statistical tests

When measured data can be curve fitted by a power function
requiring only two or three adjustable parameters and gives rise to a smaller
sum of squares residuals than required by a curve, for example a triple
exponential with six adjustable parameters, the case for the power function

would seem overwhelming®. It is probably true that statistical tests in
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themselves convince us that one model is to be preferred over another, but
there are circumstances where no intuitive or geometric criteria really
present themselves. One may then seek refuge in purely statistical criteria®.
One wonders whether functions are decided upon merely because it was
assumed that it should be so, when another function would fit the data

equally well"”.

11.3 Possible sources of non linearity in the absorption process

11.3.1 Non-heterogeneous blood flow

The standard textbook lists the flows of blood to organs in ml/min or
in ml/g/min."® No indication of intra-organ variation will be found, and the
'ranges of values given implicitly reflect with inter-animal or temporal
fluctuation. For years, there was a generally held opinion that the variation
in apparent regional blood flow was due to unavoidable experimental errors
in the methods used. Recently it has been shown that the spatial dispersion
of the heterogeneity of blood flow in the heart has a fractal dimension
approaching 1.2, and for the lung of approximately 1.1'®, These values are
very similar to the information dimension values calculated for the
measured time series of isoflurane and enflurane. The values were 1.12 and

1.29 respectively.

11.3.2 Fractal vascular anatomy

The dichotomously branching and randomly asymmetric variation
models of simple bifurcating networks of blood vessels that have been
described's, prove adequate to describe the dependence of the relative
dispersion of the flow distribution on the size of the supplied region, even
though they give overly simple descriptions of the vascular network. In
each case, the form of the microvascular network is linked to an
experimentally measurable variable, local blood flow, and its heterogeneity
in the normally functioning organ. While this approach has been tried only

in the heart and lung, it seems safe to predict that such fractal approaches
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will be useful in describing other systems with heterogeneous flow

distributions'®.

11.3.3 Dynamic state of the cell membranes in the body

The compartment model of inhalation agent absorption ignored
membranes and used solubility coefficients derived from cadaver specimens
of organs®. This meant that any dynamic from either heterogeneity of blood
flow or of the membranes themselves were ignored or never considered. It
is now proven that the membranes in the absorption process constitute a
barrier to the absorption process’. Chaotic models of cell membrane
channel kinetics have been proposed in the recent literature'® and could
partly explain varability in cell membrane permeability over time. Other

mechanisms cannot be excluded.

11.3.4 Physiological advantages of chaos

Chaotic systems can be controlled more finely and more quickly
than linear systems. In linear systems, the response of the output depends
linearly on the input. Small changes in a parameter of a linear system
produce only small changes in output. Chaotic systems can have
bifurcations, and qualitative changes in behavior as a parameter is varied.
Thus, small changes in a parameter of a chaotic system can produce very
large changes in the output. Hence, a chaotic system is under much finer
control. The variable controlling a chaotic physiological response may need
to change only a small amount to induce the desired large change in the
physiological state. A chaotic physiological system can switch very quickly

from one state to anotherlg.

“Homeostasis,” the stability of the “milieu interieure” has been
regarded as the modus operandi of physiological systems since the time of
Claude Bernard. The principle was that the body is designed so that the
concentrations and rates of processes tended toward a stable state, through
multiple feedback mechanisms. This was not a passing idea, for it had

many affirmations and was firmly positioned in the medical literature. Now
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the questions is posed if the term homeostasis should not be replaced by the
term homeodynamics, allowing a more flexible view of how the systems
work and making room for the concept of systems with complex responses,

even to the point of instability'®.

11.4 Why were only two gases used?

11.4.1 Are these results necessarily applicable to other gases used in
anaesthesia?

In the anaesthesia literature, inhalation agents are treated as a
homogenous group as far as pharmacokinetics are concerned, with two
notable exceptions, halothane, and methoxyflurane.® The unity of the group
originates in the different solubilities of the agents predicting minimum
alveolar concentrations at which responses to noxious stimuli are blunted.
The two exceptions are made because they are the only two agents that are
metabolized to a significant degree in the body, affecting their kinetics. Due
to cost and time constraints, two of the most commonly used inhalation

agents in South Africa were chosen as examples for this thesis.
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12 Conclusion and Implementation

12.1 Conclusion

The results presented in this thesis meet the four conditions required to accept
the hypothesis that the absorption of both isoflurane and enflurane are non
linear, with statistical significance (p<0.05) acceptable statistical power
(p>0.8). The four conditions met are: sensitivity to initial conditions, fractal
dimension of the attractor, invariant probability distribution of the attractor and

detection of an underlying dynamical process.

It is therefore concluded that the absorption of the anaesthetic agents isoflurane

and enflurane is non linear.

12.2 Implementation in Anaesthesia practice
12.2.1 Anaesthesia Administration

12.2.1.1 User adjusted inhalation agent concentration

The practice whereby the anaesthesiologist adjusts the concentration of
the inhalation agent against the patient’s response to stimuli does not require

any change, because this process is inherently non-linear.

12.2.1.2 Calculated inhalation agent concentration

The method of pre-calculated injections described by Lowe' assumes
that the absorption of the inhalation agent is predictable and therefore needs to
be adjusted or phased out.

Computer assisted anaesthesia provision where preset concentrations are

entered by the user are coming into practice, for example, Driger’s
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“Physioflex.” These types of anaesthesia machines can compensate for a
nonlinear absorption, provided that a feedback loop is built into the system,
allowing adjustment of the inspired concentration based on the expired

concentration of inhalation agent.

12.2.2 Anaesthesia Modelling

Prediction is the sine qui non of modelling” and studying biological
signals is the first step toward this end. Presently prediction of how non-linear
systems behave in the real world is only possible for a limited period of time’.
As further mathematical techniques are developed and the dynamics underlying
non-linear processes are further discovered, this goal should be realized. For

the moment, it eludes us.

12.2.3 Anaesthesia Pharmacokinetics

Standard textbooks do not mention pharmacokinetic models other than
those based on compartments described by single or multiple exponential
equations. Non compartmental models, which have kinetics, that are fractal in

nature, have been described for tracers*, > O-labeled Water,’ and opiates‘.

If the non-linear nature of inhalation agent absorption is taken into
account when simplified models are described, then the search for an ideal
model that accurately describes the process will prove to be futile. Maybe the

40 odd years since Severinghaus and the square root of time model have proved
this!
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