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Chapter 1: Introduction 

Formal Concept Analysis (FCA) is an established area of research in the computer 
sciences with many areas of application especially in branches of artificial intelligence. 
Central to FCA is the notion of a formal concept lattice (or concept lattice for short). A 
concept lattice is a mathematically well-defined structure that comprises of a number of 
concepts describing a context. Each concept has an extent consisting of a number of 
objects from the context as well as the attributes that these objects have in common within 
the context. The concepts are ordered in a partial order and form an order-theoretic 
lattice. Chapter 2 defines and gives examples of concept lattices. 

Concept lattices have been proposed and studied in a number of areas of application: 

• 	 Data analysis (Vogt and Wille (1995)). 

• 	 Discovery of association rules (Stumme et al. (1998, 2000), Pasquier et al. 
(1999)). 

• 	 Information retrieval (Godin et al. (1995a), Carpineto and Romano (1996a)). 

• 	 Exploration of attributes and attribute relationships in data (Ganter (1999), 
Duquenne (1999, 2001)). 

• 	 Conceptual clustering and classification (Godin et al. (1991), Carpineto and 
Romano (1996b)). 

• 	 Machine learning (Oosthuizen (1994b), Mephu Nguifo and Njiwoua (2001), Xie 
et al. (2002)). 

• 	 Computer assisted human browsing and dissemination of data (Cole and 
Stumme (2000), Cole and Eklund (2001 )). 

FCA was proposed in the early eighties by Wille (1982). Ganter and Wille (1999) now 
serves as the foundation of FCA. FCA builds on the work of Birkhoff (1973) and Barbut 
and Monjardet (1970). In FCA, the problem of generating the set of concepts of a concept 
lattice and then constructing the line diagram to represent the concept lattice has been 
well-studied (refer to Kuznetsov and Obiedkov (2002) for an overview and comparison). 
Chapter 3 describes the basic challenges of this problem. 

In the worst case, concept lattices are however exponential in size in terms of the input 
context. Although, in general, natural data does not realize the worst case, in practical 
applications very large lattices can still result. This creates time and space performance 
issues for applications using lattices and therefore every effort should be made to more 
effiCiently construct lattices. This dissertation approaches the efficiency problems from two 
points of view and proposes complementary solutions for each. First a new lattice 
construction algorithm, called AddAtom, unrelated to well known and published algorithms 
is proposed. The algorithm efficiently constructs lattices and is proposed as a general 
purpose lattice construction algorithm that outperforms other published algorithms in a 
wide range of contexts (although not in all types of contexts). The second proposed 
approach to managing the time taken to build the lattice is to construct sub-lattices instead 
of the complete lattice of all concepts. A generic framework and the necessary operations 
for building such lattices are proposed and defined. The resulting data structure is called a 
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compressed pseudo-lattice. Not only does this approach allows for the incremental scaling 
of the lattice size in relation to the amount of time that an application can afford to spend 
on constructing lattices, but initial evidence suggest a number of other advantages, 
despite the removal of a large number of concepts from the lattice. 

AddAtom 

The AddAtom algorithm is explained and defined in chapter 4. When inserting a new 
object into a lattice LnJ the basic strategy of the algorithm is to start at the zero concept in 
Ln and then recursively search its parent concepts for generator concepts in an elegant 
and tightly focussed search. After creating the required new concepts and arcs associated 
with the generator concepts and modifying the relevant concepts a new lattice Ln+l is 
produced. 

The algorithm is characterised by a number of features that differentiates it from some of 
the other construction algorithms. Firstly, it is an incremental lattice construction algorithm 
and therefore constructs a lattice Ln+l from an input lattice Ln by adding an additional 
object to the context of Ln. Secondly, it creates the set of concepts and the line diagram of 
the lattice. Thirdly, it is defined on concept lattices as well as on concept sublattices, 
which makes it suitable to be used in generating compressed pseudo-lattices. 

Fourthly, AddAtom is defined in terms of a class of lattice operations, called the intent­
and extent representative operations of a lattice. These operations elegantly define the 
nature of lattice construction and their use to traverse and inspect a lattice is significantly 
different from most other approaches that use the supremum and infimum operations. 
These operations are in some sense second order supremum and infimum operations and 
are useful in situations where, for example, the infimum or supremum of a set of attributes 
in a lattice is trivial (i.e. either unit or the zero concept). Throughout the dissertation it is 
argued that these operations are very useful in traversing and searching the lattice for 
areas of interest. This is underpinned by the fact that the intent- and extent representative 
operations are key to the definition of AddAtom as well as compressed pseudo-lattices. 
Chapter 6 also provides examples of how these operations may be useful in information 
retrieval (IR) and machine learning. 

During the past few decades a number of lattice construction algorithms have been 
proposed and although not all the algorithms are directly comparable due to the fact that 
all do not produce the same outputs (e.g. some generate the line diagrams while others 
merely generate the set of concepts). In Chapter 5 a worst-case complexity bound of 
AddAtom is established as O<IILlI.!lOW.max(1I0'1!)). This bound is cubic in nature relative to 
the lattice size. Although this bound is not of the same order of magnitude as that of the 
lowest known for lattice construction algorithms, this does not necessarily mean that the 
algorithm has a worse performance. 

The results of experimental comparisons of AddAtom with other lattice construction 
algorithms (chapter 5) show that AddAtom is a very good lattice construction algorithm 
and compares well with other algorithms from an experimental point of view. It does 
however not perform the best across all types of contexts. In random contexts with either 
very low or very high densities other algorithms perform slightly better than AddAtom. In 
these contexts AddAtom is still the second best performer. These results are consistent 
with the claim that the theoretical bound is not very sharp, confirming that the algorithmic 
performance of AddAtom is very good and that it is a worthy candidate for use as a 
general purpose lattice construction algorithm in that it is efficient (compared to other 
algorithms) over the range of artificial and natural data sets albeit not over all types of 
contexts. 

Compressed pseudo-lattices 
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Compressed pseudo-lattices are defined in chapter 6 and provide a formal framework 
within which concepts can be removed from lattices to create sublattices. The data 
structure, essentially a bipartite graph that incorporates an embedded sublattice, 
combines desirable features of concept lattices in a structure that allows for a flexible 
mechanism of scaling the size of the embedded sublattice, using defined operations that 
compress and expand it by removing or adding atoms and coatoms. A compressed 
pseudo-lattice essentially represents a lattice from which a number of atoms and/or 
coatoms have been removed. Additionally the relation of the sublattice to the context from 
which it was derived is preserved. An application-dependent compression strategy or 
criterion is required to guide this process. It is argued that the removal of concepts from a 
concept lattice may hold advantages over traditional approaches. 

The implementation of the algorithms developed for supporting the AddAtom and 
compressed pseudo-lattice implementations are discussed in chapter 7. A number of 
implementation issues and considerations as well as the strategies to deal with these are 
also discussed. 

Finally, chapter 8 summarise the findings of the dissertation and ends by identifying areas 
of further research related to AddAtom and compressed pseudo-lattices. 
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Chapter 2: Order theoretic and FCA lattice 
definitions and notation 

This chapter defines the basic lattice terminology and notation used throughout this text. 
The basic order-theoretic lattice definitions are well known and may be found in many 
standard mathematical texts, for example in Gratzer (1971). Building on the order­
theoretic definitions the notation and definitions of Formal Concept Analysis (FCA) are 
then introduced (Ganter and Wille (1999)) and the basic FCA building block, the formal 
concept lattice, is defined. 

Next an EA-Iattice is defined. An EA-Iattice is closely related to a FCA lattice and is 
described as a substantially equivalent lattice to a formal concept lattice. EA-Iattices have 
some desirable features that make it suitable for the use in compressed pseudo-lattices 
(chapter 6). The different views of a lattice are also explored. Both the EA-Iattice and the 
different views of a lattice are concepts that are frequently used in the rest of the chapters. 

The chapter concludes by defining the intent- and extent representative operations on a 
lattice. 

An important aspect of the intent- and extent representative operations is that they are 
defined specifically for use in concept sub-lattices, such as those formed by removing 
atoms and/or coatoms from formal concept lattices. In chapter 6 the notion of removing 
concepts from lattices is formalised and generalised into additional concept lattice 
operations and the definition of a data structure called a compressed pseudo-lattice. The 
removal of concepts from concept lattices have been proposed by other authors (refer to 
chapter 8 for a discussion) but the approach taken here is more general. The concept of 
an EA-Iattice (section 2.5) is defined and compared to a formal concept lattice (section 
2.3). 

2.1 LIST AND SET NOTATION 

In this text, sets are denoted by capitals e.g. S. whilst the set elements are in lower case 
e.g. x, y or z. A set is indicated by the notation {x, y, z} or {at. a2,···, an}. 

The cardinality of set S is denoted by IiSIi. 

Ordered lists are shown as (x, y, z). 

2.2 ORDER THEORETIC LATTICE DEFINITIONS 

A binary relation on a set is an association between pairs of elements of the set. 

Consider a set S and arbitrary elements x, y and z in S. A partial ordering relation, . on S 
is a binary relation that is reflexive (x';; x), antisymmetric (x';; y 1\ y';; X => X y) and 
transitive (x';; y 1\ y';; z => x.;; z). The set S in conjunction with an associated partial 
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ordering relation, < , is called a partially ordered setl or poset and is denoted by (S, < ). 
For x, YES, x:t: y, x is said to covery, denoted by y < x when y < x and there is no Z E S, 
Z :t: x, Z :t: y such that y < z and z <; x. 

When y < x, some texts refer to x as the parent, predecessor, upper cover or upper 
neighbour of y. Similarly y is referred to as the child, successor, lower cover or lower 
neighbour of x. 

One way of visually representing a poset is by means of a directed graph called a line 
diagram in which elements of the poset form the nodes and a directed arc (or edge) is 
drawn from node y to x iff y < x. line diagrams are often referred to as a Hasse 
diagrams. They provide a natural data structure for visually representing posets. By 
convention, instead of showing the direction of arcs explicitly in the line diagram, node x is 
shown above node y if y < x. By virtue of the transitivity of the partial ordering relation, 
line diagrams are directed acyclic graphs. 

Two elements x, y of a poset (S, ~ >are called comparable if y ~ x or x ~ y. If these 
conditions are not met they are said to be not comparable. 

Consider a poset L. x E L is an upper bound of H ~ L iff y x for all y E H. Out of all the 
upper bounds of H in L, the least upper bound of H (if it exists) is called its supremum and 
is denoted by Sup(H) or Sup(L, H). likewise, x E L is a lower bound of a set H ~ L iff x <; y 
for all y E H. The greatest lower bound of H (if it exists) is called its infimum and is 
denoted by lnf(H) or lnf(L, H). A poset (L, <; ) is a lattice iff Sup( {x, y }) and lnf({x, y}) exist 
for all pairs x, y E L. It is not difficult to show that if Sup(H) exists then it is unique, and 
likewise for Inf(H). Some texts refer to a supremum as a join and the infimum as a meet. 
Two or more elements of a poset are also said to meet at their infimum. A poset S is a 
complete lattice if the supremum and infimum exist for all subsets of S. It can be shown 
that all non-empty finite posets that are lattices are complete. A subset U of a complete 
lattice V that is closed under both suprema and infima is called a complete sublattice. 

A complete lattice L has a largest element called the unit element, denoted by l L , and a 
smallest element called the zero element, denoted by OL' The elements in a lattice 
covering the zero element are often called atoms whilst the elements covered by the unit 
element are called coatoms. 

The upward closure of any element c, indicated by UpwardClosure(L, c), is the set of 
elements greater than or equal to c in terms of the partial order. The downward closure of 
c is the set of elements that are less than or equal to c, and is indicated by 
DownwardClosure(L, c). 

Figure 2.1 is the line diagram of the poset ( {I, 2, 3, 4, 6, 8, 12,24}, I) where min means that 
m is a factor of (or divides) n. In the 'figure, 24 is the supremum of {3, 8} whilst 2 is the 
infimum of {8, 2}. It is easy to verify that both the supremum and infimum of any pair of 
elements exist, that in each case they are unique and this poset is therefore a lattice. The 
upward closure of 6 is {6, l2, 24} whilst its downward closure is {I, 2, 3,6}. Since 24 is the 
largest element of the poset it is the unit element whilst I, being the smallest element, is 
the zero element of the poset. Elements 2 and 3 are the atoms of the lattice whilst 8 and 12 
are the coatoms. 

1 Ganter and Wille (1999) also refers to a partially ordered set as an ordered set but we avoid this terminology 
since it may cause confusion with that of a completely ordered set in which all the elements can be ordered 
from smallest to largest. 
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Figure 2.1: Lattice of (fl, 2, 3, 4. 6. 8, 12, 24j, i)) where min means m is a factor of (or 
divides into) n 

In what follows the direction of the arcs will not be shown since there is no loss of 
generality in doing so. 

Not all elements of a poset are necessarily related or comparable (hence the term partial 
order). A subset, S, of a poset whose elements are all comparable (Le. x ~ y or y ~ x for 
all x, y, E S, x ¢ y) is called a chain. A subset, S, of a poset, none of whose elements are 
comparable is called an anti-chain. 

The width of a finite poset is defined as the maximal size of an antichain in that poset. The 
length of a poset is defined as the supremum of the sizes of chains in the poset. 

In a line diagram of a lattice, the nodes above a given element x are said to be spanned 
by x if there is a path from the x to the nodes. A node that spans a set of nodes is 
therefore a lower bound of the set of nodes. If for a node y there is a set of nodes with 
paths that end in y then y an upper bound of the set of lattice elements. 

2.3 FCA DEFINITIONS 

Consider a domain of discourse in which each element of a set of objects, 0 = {oj, 02, ... , 

OJ}, possesses one or more observable attributes from a set of attributes A = {aJ, a2, .. " ak}' 
We also refer to objects as entities, whilst attributes are sometimes referred to as features 
or descriptors. The triple C =(0, A, I), where I is a binary relation between 0 and A, I c;; 0 
x A, is referred to as a context and denotes this domain of discourse. The binary relation I, 
also called an incidence relation, identifies the attributes of each object. The notation oIa is 
used to indicate that object 0 possesses the attribute a. For any E c;; 0 and F A the 
following operators are defined: 

E' = { a : A I(V 0 E E) ola} the set of attributes common to the objects in E 
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F' == { 0 : 0 I('II a E F) oIa} - the set of objects common to the attributes in F 

FCA studies posets known as formal concept lattices (also referred to as Galois lattices) 
that are induced by a binary relation over a pair of sets of objects and attributes. In FCA 
the context C = (0, A, I) is known as a formal context. A formal concept of a formal context 

is a couple (E, F) from 'P(O) x 'P(A) with E 0 and F ~ A (where 'P(X) is the power set of 
the set X). In addition, the following property is satisfied: 

F E' and E=F' 

A formal concept (henceforth referred to simply as a concept) is thus a pair consisting of a 
set of related objects having some attributes in common and the set of precisely those 
attributes that all the objects have in common. E is also called the extent of the concept c 
== (E, F) while F is called the concept's intent denoted by Extent( c) and Intent( c) respectively. 
The set F with F ~ A is the intent of some concept if and only if (FT F, in which case the 
concept of which F is the intent is precisely (F', F). Similarly E ~ 0 is the extent of a 
concept (E, E') iff (E')' E. The support of a concept is defined as the number of objects 
in its extent. 

The set of all formal concepts in a context can be shown (according to the basic theorem 
on concept lattices - see Ganter and Wille 1999) to constitute a lattice with respect to the 
partial ordering relation defined as: 

(Et, F1) ~ F2) iff El ~ (or equivalently iff Fl :2 F2) for two concepts Cl = 
(E2' F2) 

This lattice is known as a formal concept lattice in FCA. Since only formal concepts are 
part of a concept lattice and since there is a direct relationship between E and E', and 
therefore either extent or intent of a concept in a formal concept lattice uniquely identifies 
the concept. 

Incidence relation 
nw Iw II nc 11g 21g mo Ib sk 

LE J J J 
BR J .( .( .( 

FR J J J .( .( 

DG J J .( .( .( 

SW J J J J I 
RD J J J .( J 
BN J J .( J 
MZ J .( .( J 

Entities/ob' ects Attributes 

LE Leech nw Needs water 
BR Bream Iw Lives in water 
FR Frog II Lives on land 
DG Dog nc Needs chlorophyl 

ISW Spike-weed 11g 1 leaf germination 
:RD Reed 21g 2 leaf germination 

IBN 
Bean mo Is motile 

MZ Maize Ib Has limbs 
sk Suckles young 

~ < 0, {nw,IW,11,nc, 1Ig,2\g,mo,lb,sk};. 

Figure 2.2: Context and formal concept lattice of the Living Context 

A context can easily be represented by a cross table, i.e. by a matrix where the rows are 
labelled by the objects in the context and the columns by the attributes. A cross (or tick) in 
row g and column m indicates that the object g possesses the attribute m. 

Figure 2.2 is the formal concept lattice of a small context. This simple context, called the 
Living Context, is taken from Ganter et al. (1986) and was originally used in a Hungarian 
educational film. The context is a simple ecological description of some living organisms. 
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Although very simplistic, it is useful for illustrative purposes. Each concept in the figure is 
numbered and is also labelled with its intent and extent. 

The lattice shows a number of characteristics of the Living Context. For example the unit 
concept h =({LE, BR, FR, DG, SW, RD, BN, MZ}, {nw}) has all the objects of the context 
in its extent but also has {nw} as intent. This indicates that all the objects in the Living 
Context possess the attribute nw. Alternatively it can be said that all living things/objects 
(in the context) need water. By virtue of the partial ordering relation, it is clear that each 
concept y that is covered by x possesses at least all the attributes of x and at least one 
attribute in addition in its intent. Similarly the extent of x possesses at least the objects of 
the intent of y and at least one object in addition. Since there is no concept in the lattice 
above concept n6 that has llg in its intent and both nw and nc are also contained in n6's 
intent it shows that any object with llg as an attribute also has nc and nw as attributes. 
Concept n4 with intent {nw, nc} indicates that the converse is however not true, in that 
there are objects with nw and nc as attributes but not possessing llg for example BN. 

A formal concept lattice is a useful structure since the formal concept lattice of a particular 
context contains encoded within its concepts all "meaningful" concepts in that only 
combinations of objects that actually have a particular set of attributes in common are 
grouped together in a concept. (This is as a result of the definition of formal concepts.) 
Similarly all groupings of attributes that does have common objects are represented in the 
lattice. Thus a set of attributes such as {nc, sk} is not a "meaningful" set since there is no 
set of objects that has this particular and only this particular set of attributes in common. 
Another way of viewing this is that there is no evidence in the context to suggest that {nc, 
sk} is a meaningful concept in the context. (Note however, that if the context is expanded 
in some way, this might not continue to be the case.) Similarly, the set of attributes F = {Il, 
lw} is also not a grouping of attributes supported by the context. Using the operator 
defined earlier F' = {FR, RD} and therefore the objects FR and RD are the only two having 
11 and lw in common. However applying the operator (F'Y = {nw, 11, lw} we see that 
whenever 11 and lw are present for an object of the context, the attribute nw is always 
present. F is thus not a grouping of attributes supported by the evidence but {nw, 11, lw} is 
and corresponds to concept ns of the lattice. This type of reasoning makes lattices a 
particularly useful tool in machine learning and in knowledge discovery in databases 
(KDD). Some of the many types of reasoning (e.g. abductive reasoning, inductive 
reasoning, unsupervised learning, supervised learning etc.) supported by a lattice are 
discussed in Oosthuizen (1994b). 

2.4 WHY EA-LATTICES? 

When algorithmically constructing formal concept lattices, for machine learning purposes 
based on using "real" or natural data, there are however a number of drawbacks. These 
drawbacks are the reason for defining EA-Iattices, a class of lattices closely related to 
FCA lattices, in section 2.5. 

• 	 The same concept may simultaneously represent different objects and attributes in 
the context. This can happen when incrementally building the lattice and objects 
already represented in the lattice do not sufficiently differentiate the attributes or 
when there are duplicate objects (perhaps as a result of data errors or incomplete 
data). It is desirable to have each object and attribute represented by a separate 
concept because this correspond to the natural world where distinct objects are 
indeed acknowledged as being different although the initial information about their 
features might not be sufficient to indicate the precise nature of the differences. 
The same can be said in regard to differentiating features of objects. A "real world" 
example would be when two closely related books are described by a number of 
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keywords. Because the texts of the books are so closely related the list of 
keywords describing each book could be the same for both books although they 
are still two separate books. In this example a concept lattice of books will typically 
be augmented with meta-information describing the location of the book in for 
example a library. If more than one object are represented by one concept a 
separate data structure needs to be created to store this meta-information. Should 
the different books be represented by different concepts, the lattice data structure 
could directly be used for this purpose without additional data structures. In the 
Living Context, concept n14 is clearly the most precise representative of the object 
DG. However, it is also the only representative of the attribute sk (sk occurs in no 
concept higher up in the lattice). Thus, despite the fact that object DG and attribute 
sk are different real-world concepts, they have the same representative in the 
formal concept lattice. The problem could conceivably be avoided by carefully 
choosing the attributes of each object or introducing more attributes, but this is not 
always possible. 

• 	 When incrementally building a lattice, the concepts corresponding to particular 
objects or attributes change as the lattice grows. When numbering the concepts in 
the data structure representing the lattice it is desirable to have the line diagram 
node corresponding to the particular object or attributes stay the same throughout 
the lifetime of the data structure. The node can then be used as an index into the 
data structure. A concept corresponds to an object if the extent of the concept 
contains only that object. A concept corresponds to an attribute if its intent 
contains only that attribute. 

• 	 The objects, attributes and so-called intermediate concepts of the lattice are not 
clearly partitioned in a formal concept lattice. In figure 2.2 it is difficult identifying 
the concepts corresponding to particular objects or attributes since they may be 
located on any level of the lattice. Indeed, as was pointed out above a concept, 
such as concept n14 may even "correspond" to both an object and an attribute. 

• 	 Attributes that are not present in any of the objects are not represented in a formal 
concept lattice. This can happen when the lattice is built incrementally and initially 
contains only a few objects, none of which contain the particular attributes. 
Similarly, if the lattice is being constructed by incrementally introducing new 
attributes, the objects without any attributes introduced into the lattice to date will 
not be represented in the lattice. 

For the above reasons and for reasons related to the definition of a compressed pseudo­
lattice (chapter 6), a related lattice called an EA-Iattice or entity attribute lattice is defined. 
(Oosthuizen (1994b) and Kourie and Oosthuizen (1998) previously made mention of such 
lattices, but never formally defined them.) Each object and each attribute in an EA-Iattice 
is represented as a separate concept that is not associated (or co-labelled with) with any 
other object or attribute. (Note that this need not be true in general for a formal concept 
lattice, as will be discussed below.) As a result, the concepts (excluding lL and ad in an 
EA-Iattice can be partitioned into three sets: the attribute concepts, the object concepts 
and the intermediate concepts respectively. (Note that such a partitioning is not 
necessarily possible in a formal concept lattice as, for example, when the extent of one 
attribute is a subset of another. The Living Context introduced in figure 2.2 is an example 
of a context where such a partition is not possible.) This corresponds to the real world in 
the sense that an object (or attribute) is acknowledged to be unique, even if there is 
initially insufficient evidence to support its uniqueness in the light of the data examined up 
until that time. Due to the one-to-one mapping from objects and attributes to concepts, it is 
thus permissible in an EA-Iattice to talk of an object concept and an attribute concept. 
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2.5 EA-LAITICE DEFINITION 

Assume that IIAII > 1, 11011 > 1. A concept (E, F), where E k 0 and F k A. is called an EA­
formal concept in a context (0, A, I) if anyone of the following conditions are satisfied: 

1. /lEI! = 1 and F = E' 

2. IIFII 1 and E = F' 

3. E= 0andF A 

4. E OandF=0 

5. F=E' andE=F' 

The set of all EA-formal concepts from 'P(O) x 'P(A) in a formal context C = (0, A, I), is 
called an EA-formal concept lattice'! (or simply an EA-Iattice) with respect to the partial 
ordering relation S;EA3 defined as: 

(EJ, FI ) S;EA (E2' F2) iff EI k E2 or FI d Fz for two concepts CI =(Ej, FI) and C2 =(Ez, Fz) 

In such a lattice, L, the zero concept, denoted by OLI corresponds to the EA-formal 
concept (0, A) (condition 3), whereas the unit concept, denoted by l L , corresponds to the 
EA-formal concept (0, 0) (condition 4). Attributes are in the form (F', F) where F is a set 
containing only one element of A (condition 2). Objects are in the form (E, E') where E is a 
set containing only one element of 0 (condition 1). 

The lattice below is the corresponding EA-Iattice of the Living Context applying the 
definition of an EA-Iattice (for comparative purposes OL and lL are shown but will be 
excluded from further lattice diagrams). The same concept numbering of corresponding 
concepts in figure 2.2 is used to enable comparisons. Concepts that are exactly the same 
(in terms of their intents and extents) to that of the formal concept lattice are shaded. 

2 	 Note that some authors use the term 'lattice' interchangeably with 'formal concept lattices'. Here we 
distinguish between the order-theoretic term 'lattice' and 'sub lattice' and the FCA terms 'formal concept 
lattice' and 'concept lattice' both of which are special 'order-theoretic lattices'. An EA-Iattice is an order­
theoretic lattice but not necessarily a formal concept lattice. 

3 It should be noted that is a partial ordering relation only on EA-formal concepts and not on all possible 
concepts (this is also the case with and formal concepts). 
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Unit concept: 

Attribute concepts: 

Intermediate concepts: 

Object concepts: 

Zero concept: 

Figure 2.3: EA-Iattice of the Living Context showing the partitioning of the concepts 
(compare to figure 2.2) 

Note that an EA-Iattice of a context differs only from the formal concept lattice if the 
concepts of conditions 1-4 are not generated by condition 5. This happens for example in 
a given context if an attribute f, is such that F" :1:- F, F = {f}. In such a case, (F', F) will be 
included in the context's EA-Iattice, but not in the context's concept lattice in which case 
the concept (F', F") will be labelled with the attribute f. Consider for example concepts MZ 
or sk in the EA-Iattice in figure 2.3 and compare them to the formal concept lattice of the 
same context of figure 2.2. The concepts in the EA-Iattice in figure 2.3 that correspond to 
the formal concepts in figure 2.2 are shaded and are identified by the fact that they have 
only one parent or child concept. In this example the zero concept is the same for the EA­
lattice and formal concept lattice but not the unit concept. The EA-Iattice is therefore 
essentially a generalisation of a formal concept lattice in the sense that it possibly 
contains a number of additional concepts. These additional concepts correspond only to 
objects (condition 1), attributes (condition 2), the unit concept (condition 3) or the zero 
concept (condition 4). 

An intermediate concept of an EA-Iattice is defined as a concept with more than one 
object in its extent and more than one attribute in its intent. Applying the same definition of 
intermediate concepts to formal concept lattices it can be seen from the definitions of both 
kinds of lattices of that the sets of intermediate concepts of the two types of lattices are 
identical. 

It is important to note that an EA-Iattice cannot use ordering relation since it is not 
antisymmetric for the given set of concepts. In the example above the antisymmetric 
property (x ~ yAy ~ X=> X y) does not hold for ~ in regard to the concept nc =({BN, MZ, 
SW, RD}, {nc}) and n4 =({BN, MZ, SW, RD}, {nw, nc}). The slight modification of the partial 
ordering relation (from to ~EA) is therefore due to the fact that, in an EA-Iattice, the intent 
or the extent of some attribute concepts and object concepts may be the same as some 
intermediate concepts. The supremum and infimum also need to be recomputed in terms 
of the revised partial ordering and may thus differ from those of a formal concept lattice. 
(The EA-Iattice may for example have a different unit element compared to its 
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corresponding formal concept lattice, as in the Living Context example). The EA-Iattice is 
however for all practical purposes the same as a formal concept lattice (e.g. in lattice 
construction algorithms where only slight modifications are required). 

From the definition it is easy to show that an EA-Iattice has the following properties: 

• 	 There is one concept associated with each object ej in the form (E, E') where E = 
{ ej}. Similarly there is one associated concept for each attribute aj in the form (F', 
F) where F = {aj}. These concepts are called the associated object concept and the 
associated attribute concept respectively. 

• 	 Zero concept, Q =(0, A) and unit concept, lL (0, 0) are distinct from the object 
and attribute concepts and always have the same structure (Le. empty extent and 
intent respectively). 

• 	 The EA-Iattice, excluding the unit and zero concepts, can be partitioned into three 
sets corresponding to objects, attributes and intermediate concepts. The three sets 
correspond to the top, bottom and middle sections of the line diagram of a lattice 
(refer to figure 2.3). 

• 	 All EA-formal concepts in the formal concept lattice of a corresponding EA-Iattice 
are contained in the EA-Iattice. An EA-Iattice thus has at least the same number of 
concepts as a formal concept lattice. Since the number of concepts in a large 
lattice is dominated by the intermediate concepts, the size of an formal concept 
and EA-Iattice differs very little for large lattices. The difference in algorithmic 
complexity for their respective construction is also negligible (refer to chapter 5). 

• 	 The EA-Iattice may contain a number of concepts in addition to those of the 
corresponding formal concept lattice. These additional concepts will correspond to 
the objects, attributes, unit concept or zero concepts, but there are no additional 
intermediate concepts. 

• 	 Each intermediate concept in an EA-Iattice has at least two parent- and two 
children concepts. (Note that this is also true for non-atom and non-coatom 
concepts in boolean lattices but is not true in general for all FCA lattices such as 
the lattice in figure 2.2). Attributes concepts have only one parent (ld and only the 
attribute concepts generated by condition 5 have at least two child concepts. Other 
attribute concepts have one child concept. Similar dual observations can be made 
for object concepts. 

• 	 Each attribute has no parent concepts other than lL' 

• 	 Each object concept has no children concepts other than OL. 

• 	 Attribute concepts in the EA-Iattice that do not correspond to a concept in the 
formal concept lattice have only one child concept. (Note that the corresponding 
concept in the formal concept lattice has only one parent.) 

• 	 Object concepts in the EA-Iattice that do not correspond to a concept in the formal 
concept lattice have only one parent concept. (Note that the corresponding 
concept in the formal concept lattice has only one child concept.) 

• 	 In an EA-Iattice the atoms and coatoms have a one-to-one relationship to the 
object- and attribute concepts of that lattice respectively. 

In drawing the EA-Iattice a number of conventions will be followed: 
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• 	 The IL and OL concepts and associated cover relationships will not be shown so 
that the lattice is bounded from above by the attributes of the lattice and bounded 
from below by the objects of the lattice. 

• 	 The attribute and intermediate concepts are labelled with their intent only whilst 
object concepts are labelled with the object identifier itself. 

• 	 When convenient or to simplify the line diagram of a lattice, the labels of the 
concepts (especially the intermediate concepts) will be substituted for a concept 
number. From time-to-time a concept number and attribute list may also be used in 
conjunction especially for labelling intermediate concepts. 

These conventions do not impact on the generality of the discussions or line diagrams 
since the complete line diagram and complete labels for concepts can be easily 
determined by inspecting the lattice using the definition of an EA-Iattice (e.g. the intent of 
a concept is all the attributes contained in its upward closure). 

As can be expected from the similarity in the definitions of the formal concept- and EA­
lattices there is a direct mapping from the one to the other. 

2.6 BOOLEAN LATTICES 

A power-set lattice (Ganter and Wille (1999)) of a set of attributes A is the lattice ('P(A), 
A Boolean lattice is a lattice that is isomorphic to some power-set lattice. The figure below 
is the Boolean formal concept lattice of A = {a, b, c, d}. The corresponding incidence 
relation shows that a Boolean lattice is formed when there are as many objects as 
attributes and each object differs from each of the other objects by only one attribute. 

Since a Boolean lattice contains all concepts from 'P(O) x 'P(A) it follows that a Boolean 
lattice is both a formal concept- and an EA-Iattice. The converse is however not true in 
general. Formal concept- and EA-Iattices are not in general Boolean lattices. 

Since a Boolean lattice contains all the possible concepts that can be formed with a given 
set of attributes, it also forms the theoretical upper limit of the size of a lattice with the 
given set of attributes. A Boolean lattice has exactly the same number of concepts as the 

elements of 'P(A). Since 'P(A) is exponential in terms of IIAII it follows that the number of 
concepts in a Boolean lattice is exponential in terms of IIAII and has 211AII elements (refer to 
chapter 5 for more formulas related to the various size aspects of a Boolean lattice). 
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Figure 2.4: Boolean lattice with four attributes and objects 

2.7 AUGMENTED LATTICES 

In applications such as machine learning and data mining that use formal concept lattices 
and EA-Iattices it is common to augment or label the concepts of a lattice with additional 
meta-information that can be used in the application. These lattices are called augmented 
lattices (Kourie and Oosthuizen (1998)). 

Examples of such meta-information could be: 

• The support of a concept. 

• A reference to a external database for object concepts. 

• A name or descriptor for attribute and object concepts. 

• Pre-computed upward and downward closures. 

2.8 DIFFERENT VIEWS OF A LATTICE 

In describing lattices, their properties and their construction, there are two different but 
essentially equal "views" of a lattice. One view of a lattice is to describe the lattice from a 
set theoretic point of view and the other from a graph theoretic point of view. 

2.8.1 Set-theoretic view of lattices 

The set-theoretic view of lattices emphasises the fact that a lattice consists of a set of 
concepts. Using the convention that we refer to a concept only by its intent (and assuming 
that there are no objects with the same intent), a formal concept- or an EA-Iattice is 
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essentially a set of sets (Le. a set of concepts in which each concept is a set of attributes). 
In Kourie &Oosthuizen (1998), for example this view is taken. 

Since concepts are merely sets, set operations such as union and intersection can be 
performed directly on (the intents of) concepts. The supremum of two concepts with 
intents A and B in a Boolean lattice is for example the concept with the intent A n B. The 
cover relationship between concepts is defined by set containment. One of the key 
aspects of the set-theoretic view is that the lattice is described in terms of its attributes 
(sometimes the objects) and since there are far fewer attributes than other (intermediate) 
concepts most computations are very efficient. 

The disadvantage of the set-theoretic view is that we emphasise the set related properties 
of lattice concepts in favour of the graph-related properties especially the child-parent 
relationship of nodes in a graph. The advantage is however that lattice properties, 
operations and theorems are more easily proved because the lattice is essentially a 
construct defined in terms of sets, which have more easily manipulated mathematical 
relationships. 

2.8.2 Graph-theoretic view of lattices 

The graph-theoretic view of lattices emphasises the lattice as a collection of nodes (as 
opposed to sets of attributes) with the specific partial ordering relationship between them 
depicted by the arcs in the graph. The lattice is thus described in terminology such as 
"parent", "child", "upward closure", "downward link", "top", "bottom" etc. This greatly 
increases the understanding of the lattice concepts by newcomers to the subject since it 
refers to a graphic representation of the lattice namely the line diagram rather than the 
more abstract concept of a set of partially ordered sets of sets. In this view the intent and 
extent of concepts as well as the context can be inferred by closure operations. Although 
this view describes exactly the same lattice, different aspects of the lattice (in this case the 
line diagram representation) are promoted. 

To distinguish between the two views we will follow the convention of referring to 
"concepts" when using the set-theoretic view and to "nodes" when using the graph 
theoretic view. Graph terminology such as "arcs", "parent node" and "child node" is also 
freely used when taking a graph theoretic view. 

Often the graph properties of the lattice are emphasised in that nodes are numbered and 
referred to by number in-stead of their intent, extent or both. The intent and extent of the 
node is often not explicitly shown and must then be derived by the graph properties using 
closure operations. 

The disadvantage of the graph-theoretic view is that the mathematical properties of the 
lattice may be obscured and compared to the set-theoretic view the proving of theorems is 
not straightforward (if one would be restricted to graph terminology only). An example of 
this is to be seen in Oosthuizen (1994b) where both the construction and application of 
lattices to machine learning from a graph-theoretic view are described. The graph­
theoretic view is essentially a description of the lattice as a data structure consisting of 
nodes that have a number of node properties such as its extent, intent, child nodes and 
parent nodes. 

In the set-theoretic view, a set of concepts can be proven to be a lattice by verifying that a 
unique infimum and supremum exist for any set of nodes. To do the same in the graph­
theoretic view, the line diagram of the lattice may be inspected and the arcs leading 
upward or downward from a set of nodes are followed until they meet. If, for example, the 
arcs leading upward join at two or more nodes that are unrelated (Le. the one is not a 
parent of the other), there does not exist a unique smallest upper bound and therefore the 
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lattice property does not hold. A similar inspection should be done to verify the 
uniqueness of the greatest lower bound of each set of nodes. In figure 2.5 below both n3 
and ns are upper bounds for {n7, ns} as can be seen by following the arcs in bold. 
However, n3 and n5 are unrelated. (In this example, it is of course assumed that there is in 
fact no top element - i.e. the assumption previously mentioned that the top is implicit has 
been lifted.) There is therefore not a unique least upper bound for {n7, n8} and the graph 
therefore does not represent a lattice. Oosthuizen (1991) refers to the subgraph consisting 
of ng, n5, n7, n3 and the connecting arcs as a quad and describe the problem of 
algorithmically constructing a lattice as one in which an acyclic graph is constructed to 
connect all objects and attributes without any quads (Le. every pair of nodes has a join 
and meet and that these should necessarily be unique). Note that any number of 
intermediate nodes can exist between the four "corner" nodes of a quad. 

Figure 2.5: Example of a poset with non-unique infima and suprema of concepts n3, ns, n7, 
n8 (also called a quad) 

Although the two viewpoints are essentially the same and there are many ways to 
combine the two views they represent the two main ways in which authors have chosen to 
describe lattices and especially the construction and application thereof. Authors such as 
Godin (1991) and Carpineto and Romano (1996b) tend to emphasise the set-theoretic 
view whilst Oosthuizen (1991) has favoured the graph-theoretic view in the description of 
their lattice construction algorithms. 

Further on in this text it will be argued that the key to the AddAtom lattice construction 
algorithm is was developed using a more graph-theoretic view. The graph-theoretic view 
emphasises the use of the information that is contained in the lattice - the partial ordering 
of nodes and therefore the characteristics of the context from which the lattice was 
constructed. 

In order to gain the advantages of both these views we will use both in various sections of 
this text. The set-theoretic view will be used to formally describe the lattice and its 
construction whilst the graph theoretic view will be used to informally describe the lattice 
construction concepts. 

2.9 INTENT AND EXTENT OPERATIONS 

In this section we define the approximate intent representative set (AIR) as well as the 
exact intent representative set (EIR) of a set of attributes with regards to a concept lattice 
or complete concept sublattice. These operations define in some sense a 'second-order 

 
 
 



meet operation' or 'second-order infimum' for concept lattices. The intent- and extent 
representative operations were originally defined in the context of compressed pseudo­
lattices or concept sublattices where the infimum and supremum of some concepts in L 
have been removed (such lattices are under consideration in chapter 6). Since the 
removal of concepts from a lattice is the opposite of lattice construction there is a 
relationship between the two concepts. This relationship is explored in section chapter 6. 

Let Q !:: A be a set of attributes and H be the set of associated attribute concepts of Q in 
an EA-Iattice L. The meet of the set of attribute concepts H, Meet(L, H) is a concept. If 
Intent(Meet(L, H» =Q then the Meet(L, H) is called an exact meet (or exact infimum) of the 
attributes in Q since it spans only the attribute concepts H and contains only elements of 
Q in its intent. If the meet contains additional attributes in its intent or alternatively spans 
attribute concepts other than H, then it is called an approximate meet (or approximate 
infimum) of the attributes. Similarly an exact join (or exact supremum) and approximate 
join (or approximate supremum) can be defined using a set G of object concepts 
associated with a set R of objects in stead of the set H of attribute concepts associated 
with the set Q. 

Since the elements of the set of attributes, A, are not elements of an EA-Iattice or concept 
lattice, L, the meet or infimum of a subset of A in L is not defined. Furthermore, since 
lattices of which concepts have been removed will be considered it is useful to define 
Inf(L, Q), Q!:: A as the maximal elements4 of the set {x: LI Intent(L, x) d Q} (I.e. the set of 
greatest concepts that contains at least the attributes of Q in their intents). This function is 
closely related to the infimum or meet of a set of associated attribute concepts. In an EA­
lattice Inf(L, Q) =Inf(L, H) where H is the set of attribute concepts associated with Q, but 
this function is also defined on lattices of which concepts (e.g. the associated attribute 
concepts themselves) have been removed and in which case Inf(L, Q) may not be a 
single concept. Similarly Sup'(L, R) is the minimal elements of {x : LI Extent(L, x) d R} 
where R is a set of objects. 

Consider a concept lattice or -sublattice, L. Let Q be a set of attributes, Q !:: A. Let S be 

the set of all elements of Inf(L, F), FE 'P(Q) (I.e. S = {x : L I :3 F E 'P(Q), x E Inf(L, F)}). 
Exclude the zero concept from S. The set of approximate intent representatives of Q in L, 
denoted by AIR(L, Q), is the set of minimal concepts in S. 

Now let T be that subset of S whose elements have intents that are not subsets of Q. The 
set of exact intent representatives of Q with respect to L, denoted by EIR(L, Q), is the set 
of minimal elements in S T. If T == 0 then clearly EIR(L, Q) == AIR(L, Q). 

From the definition it follows that the results of both AIR(L, Q) and EIR(L, Q) are anti­
chains. They are said to be infimum-denses and are therefore a concise way of 
representing Q. In the case of the exact intent representative there is a close relationship 
between Q and EIR(L, Q) since the intents of elements of EIR(L, Q) not only span the 
associated attribute concepts of Q, they constitute in fact, the minimal set of meets that do 
so. There is not necessarily such a direct mapping between Q and AIR(L, Q) in the sense 
that concepts in the intents of elements of AIR(L, Q) possibly contain attributes in addition 
to those in Q. 

Dual extent operations for AIR(L, Q) and EIR(L, Q) can be defined as follows. R can be 
seen as a set of objects (instead of Q, the set of attributes) and Inf and the maximal 
operations can be substituted by Sup' and minimal operations in the above definitions 

4 xES is minimal, iff S, y"* x; such that y :::EA x. Similarly xES is maximal, iff ily E S, Y "* x; such that x 
:::EA y. 

5 A set X (';;; Y is called infimum-dense in Y if every element from X can be represented as the infimum of a 
subset of Y. 
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respectively. The zero concept is replaced by the unit concept. This defines the set of 
approximate extent representatives, AER(L, R) and the set of exact extent 
representatives, EER(L, R). In an EA-Iattice if Sup'(L, R) is non-trivial (i.e. if Sup'(L, R) is 
not h), Sup'(L, R) = AER(L, R) = EER(L, R). 

It is useful to define a further related set of operations, namely EIR(L, Q, c), c E L. This is 
the set of exact intent representatives of Q not less than c. It corresponds identically to 
EIR(L, Q), except that in determining the minimal elements of S above, the downward 
closure of a designated concept, c, is specifically excluded from consideration. As a result, 
if c is in EIR(L, Q), then EIR(L, Q, c) contains no concepts that are less than or equal to c. 
In particular, if c = Meet(L, Q), then EIR(L, Q, c) is the set of concepts covering c in the 
sublattice L. The set of exact extent representatives ofR not greater than c, EER(L, R, c) is 
defined similarly. It is easy to see that EIR(L, Q) = EIR(L, Q, OL). Similarly EER(L, R) = 
EER(L, R, lL). In the same way, the set of approximate intent representatives of Q not less 
than c, AIR(L, Q, c) is defined. The set of approximate extent representatives ofR not less 
than c is similarly defined. 

The operations defined here are collectively referred to as the intent- or extent operations 
of a concept lattice (or sublattice). 

For example in figure 2.3 calculating AIR(L, {ow, oc, llg, 2lg}), S = {ow, 2lg, oc, llg, 04, 06, 

BN}. {BN, 06} is the set of minimal elements of S and therefore AIR(L, {ow, oc, llg, 2lg}) = 
{BN, 06}. In calculating EIR(L, {ow, oc, llg, 2lg}) we see that T = { BN } since BN also 
spans 11 in addition. The minimal elements of S - T = { ow, 2lg, oc, llg, 04, 06 } is { 06, 2lg} 
and therefore EIR(L, {ow, oc, llg, 2lg}) = { 06 }. Chapter 6 provides more examples. 

2.10 SUMMARY 

In this chapter the basic building blocks and definitions that are key to formal concept 
analysis and that will be used in the rest of this text have been defined. This includes the 
notion of a lattice, sublattice, formal concept lattice and EA-Iattice. A number of different 
operations have also been defined on these structures, this include the intent- and extent 
representative operations. 
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Chapter 3: Lattice construction 


This chapter discuss the considerations when algorithmically constructing a concept 
lattice or rather the line diagram of the concept lattice. This is done through the 
formulation of an ineffective lattice construction algorithm. 

3.1 ALGORITHMIC LATTICE CONSTRUCTION 

Lattice construction algorithms use A, ° and I of a context C = (0, A, I) as input (or a 
labelled version of cross table as shown in the incidence relation of the Living Context in 
figure 2.2 in chapter 2). All the concepts are discovered and connecting arcs representing 
the cover relationship are constructed between appropriate pairs of concepts. The basic 
output of such an algorithm is thus a set containing the concepts of the lattice as well as a 
set of arcs connecting these concepts. 

3.2 INCREMENTAL VS. BATCH LATTICE CONSTRUCTION ALGORITHMNS 

There are two basic strategies for algorithmically constructing a concept lattice form I. The 
first is to consider the whole context and construct the lattice in a non-incremental or batch 
way (Le. if more objects are added to the context, the whole lattice must be reconstructed 
from the start). (Bordat (1986), Chein (1969), Ganter (1984), Kuznetsov (1993), Lindig 
(1999, 2000), Zabezhailo et al. (1987» have followed this strategy. The second strategy is 
to incrementally build the lattice, adding objects to the lattice until the lattice of the whole 
context is constructed. In each invocation of an incremental algorithm an existing lattice Li 
is used as input. The new object is added to the lattice along with any new concepts and 
attributes that may be required to create a new lattice Li+l. Therefore unlike the non­
incremental strategy, a valid lattice exists after each iteration of the algorithm. The 
incremental algorithm will also modify the arcs of Li to create L i+l . Godin (1991), Carpineto 
and Romano (1993, 1996b), Oosthuizen (1991), Dowling (1993) and Norris (1978) have 
followed an incremental lattice construction strategy (refer to section 5.1 for references to 
more algorithms). 

The main advantage of incremental lattice construction algorithms is that new objects can 
efficiently be added to the lattice without rebuilding the whole structure and therefore the 
incremental construction algorithms are often used. This may however be at some 
expense since the algorithm cannot optimise across all objects in the context. 

3.3 CONSTRUCTING THE LINE DIAGRAM 

A number of published non-incremental lattice construction algorithms only generate the 
set of concepts of the lattice and do not generate the line- or Hasse diagram that 
represents the cover relationships between lattice elements. Although there are 
applications such as the generation of all implication rules of a context in which only the 
set of concepts is used, the majority of lattice-based applications do explicitly use the 
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ordering of concepts in terms of generalisation and specialisation. This ordering is after all 
one of the primary benefits of lattice-based applications. 

For the purposes of comparing the algorithmic performance of various lattice construction 
algorithms a common framework is required and therefore it is argued that only 
construction algorithms that do produce the line diagram of the lattice should be 
considered since they have a more general application. Kuznetsov and Obiedkov (2002) 
have adapted a number of the non-incremental algorithms that do not generate the line 
diagram to generate it. 

3.4 AN INEFFICIENT BATCH LAITICE CONSTRUCTION ALGORITHM 

A simple way to demonstrate the basic considerations and challenges in concept lattice 
construction algorithms is to consider a very inefficient construction algorithm which uses 
the basic definition of an EA-Iattice to construct the lattice data structure. (Note that the 
algorithm can be easily adapted to formal concept lattices by changing the conditions for 
testing.) 

The BruteForceEAConstruct algorithm below, "blindly" applies the deIinition of the EA-Iattice 
in a very inefficient way. From the definition of EA-concepts it is clear that all the concepts 
of an EA-Iattice can be discovered by enumerating and inspecting all possible 

combinations of E k: 0 and F k: A (i.e. 'P(O) x 'P(A)) and then inspecting each couple (E, F) 
to test whether it is EA-formal. Once all the lattice concepts have been discovered, the 
definition of the cover relationship between concepts is used to test each pair of concepts 
to determine whether they cover each other. As one might expect this algorithm is very 
inefficient since it inspects all possible combinations of attributes and objects without 
having any strategy to prune the search space. 
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11================================================================= 
Function BruteForceEAConstruct (anObjSet, anAttrSet, 


anlncidenceRelation) Return aLattice 

11===================================== ================== 
CreateNewLattice(L) 

L. Concepts = 0 

For V E ~(anObjSet) 

For V F E ~(anAttrSet) 


II Determine E' 


E' = 0 

For V 0 E E 


For V a E anAttrSet 
If oIa with I = anlncidenceRelation then E' E' U {a} 

Rof 
Rof 
II 	Determine F' 
F' 	 = 0 

For V a E F 

For V 0 E anEntSet 
If oIa with I anlncidenceRelation then F' F' U {a} 

Rof 
Rof 
II Test against EA-formal concept definition 

If IIEII 1 and F=O' then L.Concepts L.Concepts U {(E, F)} 

If II F II 1 and E=A' then L. Concepts L. Concepts U {(E, F)} 

If E 0 and F = anAttrSet then L.Concepts =L.Concepts U {(E, } 

If F 0 and E = anObjSet then L.Concepts L.Concepts U {(E, F)} 

If F'= E and E' F then L.Concepts L.Concepts U {(E, F)} 


Rof 

Rof 

II Discover the cover relationships 
L.Cover 0 II L.Cover is a set of concepts in the form (b, c) this 

II assumes a unique symbol is associated with each 

For V x E L.Concepts II x and yare concepts in the form (E, F) 

For V x E L. Concepts , x * y, x y 

CoverFlag = True 


For V Z E L.Concepts, Z * x, Z * Y 

If X ~EA Z ~EA Y then CoverFlag = False 


Rof 

If CoverFlag then L.Cover L.Cover U {(x, y)} 


Rof 

Rof 

Retrun L 

End BruteForceEAConstruct 

11=================================================================== 

Because of the non-specific and unfocussed way in which the algorithm creates concepts 
and arcs it soon becomes hopelessly inefficient for all but the smallest of contexts. 

This algorithm does however address the basic functions of a concept lattice construction 
algorithm: 

• 	 Generating all the concepts of the lattice and representing them in a data 
structure. 
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• 	 Discovering the cover relationship between the concepts and representing it in a 
data structure. 

There is however a number of other issues that need to be addressed in order to be more 
efficient: 

• 	 Avoiding the generation of duplicate concepts or at least determining whether a 
concept is generated for the first time. 

• 	 Efficiently testing and/or generating the cover relationships. 

• 	 Efficiently searching for concepts in the set of concepts that has been generated 
up to that point. 

• 	 Avoiding the generation of cover relationships that might be deleted later in the 
algorithm. 

One important property of the algorithm is that it is non-incremental in that we cannot 
incrementally construct the lattice by starting with a lattice and adding a new object to 
create a new lattice - the whole lattice needs to be constructed anew. With an incremental 
algorithm we can create a lattice Ln+l with n + 1 objects by taking the lattice of n objects, Ln 
and add the n + 1 'th object. The key to the incremental algorithm is the observation that 
the generated lattice (Ln+1) always contains all the concepts of the original lattice (Ln) but 
concepts were either added, modified or left unchanged. Such an algorithm will discover 
and new concepts and arcs needed to create Ln+l as well as deleting arcs where the newly 
created concepts redefine the cover relationship between specific concepts. This is the 
strategy followed by the AddAtom algorithm defined in the next chapter. 

Another important property of the algorithm is that it constructs the set of all concepts of 
the lattice as well as the line diagram of the lattice. In applications such as those using 
association rules where only the set of concepts are required, the last part of the algorithm 
can be skipped. Section 5.1 lists a number of published lattice construction algorithms and 
compare them with regards to their key characteristics. 

Although this algorithm can be improved upon in a number of ways, we will not pursue this 
further but will instead define a new algorithm using more elegant strategy in the next 
chapter. 
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Chapter 4: The AddAtom lattice 
construction algorithm 

In this chapter we describe and define a concept lattice construction algorithm called 
AddAtom. This is done in two parts. In the first, in section 4.1, we give an informal 
description of the strategies used in the AddAtom lattice construction algorithm using a 
graph theoretic view. Then, in section 4.2, we describe the relation of the intent- and 
extent representative operations defined in chapter 2 to lattice construction and show that 
these operations have a direct relationship to the structural properties of a lattice. In 
section 4.3 the AddAtom algorithm is formally defined in pseudo code using a set theoretic 
point of view. This is followed by an example of the execution of the algorithm (section 
4.4). Since the algorithm defined in section 4.3 is very inefficient as stated, section 4.6 
considers efficient implementations of the algorithm derived from an efficient algorithm for 
determining the intent- and extent representative operations (section 4.5). The chapter 
concludes with a general discussion of the algorithm (section 4.7). 

4.1 INFORMAL DESCRIPTION 

This section is an informal discussion of the AddAtom concept lattice construction 
algorithm. The description incrementally builds an understanding of the algorithm by 
describing the various strategies used in the algorithm. This approach is taken to give the 
reader an intuitive understanding of lattice construction without trying to decipher the 
concepts of a more formal description. In the next section a formal description of the 
algorithm is given. Readers familiar with lattice construction may wish to skip this section. 

As a starting point, an observation that can be made about the inefficient algorithm 
defined in the previous chapter (BruteForceEAConstruct) is that it ignores the information 
already contained in the lattice Ln. The algorithm computes all concepts and consider 
each as possibilities regardless of whether there is a likelihood of finding any new EA­
formal concept or not. However by inspecting the nodes and arcs in L, the creation of a 
number of concepts could have been avoided (e.g. generating only combinations of 
attributes that actually occur in I). The process of creating arcs could also be significantly 
improved by using the "information already contained in the lattice". This idea of using the 
information already contained in the lattice is the key to the AddAtom algorithm. It is 
therefore worthwhile to take a closer look at the lattice before defining the algorithm in 
order to see how the lattice itself can be used to more efficiently construct Ln+1• 
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I 

nB n9 

Figure 4. 1: Nodes in a lattice are connected to the meet of subsets of their intents 

In general, any node is always connected to the meet of some subset of the attributes in 
its intent. For example node n9 in figure 4.1 has an intent of {nj, n2, n}, n4, ns}. In this case n9 
is connected to n6 and n7, the meets of {nj, n2, nJ} and {n}, n4, ns} respectively. Since the 
node itself is the meet of all the attributes in its intent it seems that if we want to insert a 
new object node e into the lattice, we must find the meets mI" .mj of all subsets of n's 
intent and connect the new node to some of these meets. However if such a meet is 
spanned by another meet (not the unit concept), lower down in the lattice, it must be 
ignored. Only the lowest, or minimal, meets should be taken. 

In the figure 4.2 object node e with intent A = {a, b, c, d} was inserted into a lattice (in the 
following, the intent attributes of all objects to be inserted are shaded in grey). The set of 
the meets of all the subsets of A is {a, b, c, d, mJ, m2, m]}. Since a, b, c, d, m, are covered by 
either m2 or m} they can be ignored and e only connected to m2 and m}. By inspection, it 
can be verified that the resulting line diagram is indeed a lattice in that the supremum and 
infimum of any pair of concepts are unique (keep in mind that the unit and zero nodes 
were omitted in the figure but are implied). 

Figure 4.2: node e with intent A = (a, b, c, dj was inserted into a lattice by connecting it to 
m2 andm3 

This observation suggests a possible lattice construction algorithm. The approach is to 
find the minimal meets of Intent(o) (Le. all the meets of all possible subsets of Intent(o), 
excluding the unit node, not spanned by another meet). This set of nodes can be found by 
computing the set of meets of all possible subsets of Intent(o) and then removing the zero 
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node and any other node that is spanned by another node lower down in the lattice. Note 
that this corresponds to the definition of the approximate intent representatives of Intent(o) 
or AIR(L, Intent(o)) defined in chapter 2. 

e 

Figure 4.3: Lattice before inserting node m with intent lntent(m) = fa, b, c, d, ej to create 
lattice in figure 4.4 

This approach to a lattice construction algorithm does however not always function 
correctly. Consider the lattice in figure 4.3 and suppose that the node m with intent 
Intent(m) = {a, b, c, d, e} is inserted into the lattice. Using this approach it creates the lattice 
in figure 4.4, Le. because the set of approximate intent representatives of {a, b, c, d, e} in 
figure 4.3 is {n4, ns}, m is connected to both n4 and ns as shown in figure 4.4. (To aid the 
readability of the figures, the newly inserted nodes are shown in black.) On closer 
inspection, we see that m has now gained an extra attribute in its intent namely f via node 
n4 (Le. instead of m's intent being {a, b, c, d, e} as was intended, it is in fact {a, b, c, d, e, f} 
in figure 4.4). It thus seems as if this approach only works when the intent representative 
concepts span only attributes in Intent(m) (Le. when they are exact). If not, then the intent 
of the new node could unintentionally be extended. 

e 

Figure 4.4: Lattice after inserting node m with Intent(m) = fa, b, c, d, ej, but showing that m 
now hasf in its intent in addition 

Since n4 is not an exact meet of Intent(m) in figure 4.3, it cannot be connected directly to 
the new node. We might be tempted to connect m to n" 02 and ns, leaving us with the 
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graph in figure 4.5 below. But as indicated using thick arcs, both m and n4 are lower 
bounds of {n], nz}. Since the greatest lower bound of {n], nz} is non-unique, the lattice 
property does not hold and this approach is therefore also not correct. 

e 

Figure 4.5: Connecting m to nJ and nz creates multiple greater lower bounds of {nJ, nz} 

The solution to the problem lies in the creation of a new intermediate node n3 spanning nl 
and nz and connecting n4 and m to n3 as in figure 4.6. In doing so arcs (n4' nl) and (n4' nz) 
had to be removed and the new arcs (n3' nl), (n3' nz), (n4' n3) and (m, n3) had to be created. 

Figure 4.6: To insert m into the lattice a new node n3 needs to be created 

Although we define the AddAtom algorithm in a more formal way in the next section, the 
key to the algorithm is that new nodes can be directly linked to their exact intent 
representatives. Additional nodes must be inserted when the intent representatives are 
approximate. By doing this, we are in effect creating the exact meets of the intent when 
they do not already exist in the lattice. 

The algorithm we are now informally defining needs one extra part: the process of 
creating the exact meets must be recursively applied. This is demonstrated in the 
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following example where a new node m with intent {a, b, d, e, f, h, g} must be inserted into 
the lattice in figure 4.7. 

h 

n1 

Figure 4.7: A lattice where a new node m with intent (a, b, d, e, f, h, g) must be inserted 

The meet of {a, b, d, e, f, h, g} in the lattice in figure 4.7 is {nd. Since n6 is approximate (it 
spans c in addition to {a, b, d, e, f, h, g}), a new node (nlO) with intent {a, b, d, e, f, g, h} must 
be created above n6' This node creates an exact meet to which m can be connect to. 
However the same reasoning needs to be applied to nlO the insertion of itself - it should 
also be connected the minimal meets of {a, b, d, e, f, g, h} and these meets should be 
exact. However, when calculating the minimal meets of {a, b, d, e, f, g, h}, n6 and nodes 
below it needs to be excluded from consideration. The set of minimal meets of {a, b, d, e, f, 
g, h} excluding n6 is therefore {n4' n5}' Node n5 is an exact meet of {a, b, d, e, f, g, h} and nlO 
can be directly connected to it. Node n4 is however not exact and an additional node 
needs to be created above n4 in the same way nlO was created above n6 (refer to figure 
4.8). The insertion of nlO can also be viewed as the insertion of an object with the intent of 
{a, b, d, e, f, h, g} into the sublattice of which n6 is the zero node. In this context (Le. n6 is 
considered to be the zero node of a sublattice) the set of approximate intent 
representatives of {a, b, d, e, f, h, g} is {n4, n5}' 

Recursively continuing with this process we see that n3 and n2 are also approximate 
meets. Each time such approximate meets are encountered a node is created above the 
approximate meet. The intent of the new node is that subset of the intent of the 
approximate meet where only those attributes that are in the intent of the original object 
(m) are kept. The nodes n9, ns and n7 are therefore created above the approximate meets 
n4, n3 and n2 respectively resulting in the lattice in figure 4.8. 
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Figure 4.8: The lattice of figure 4.7 after inserting node m with intent (a, b, d, e, f, h, g) 

4.2 INTENT- AND EXTENT REPRESENTATIVE OPERATIONS AND LATI"ICE 
CONSTRUCTION 

At a high level of abstraction, lattice construction algorithms may be thought of as 

searching the space of all concepts (i.e. 'P(O) x 'P(A)) to find all formal or EA-formal 
concepts. This can for example be done by intersecting the intents of the concepts and 
searching for sets of attributes each of which are not already present as the intent of some 
other concept. At a somewhat lower level of abstraction, an incremental lattice 
construction algorithm that inserts a new object 0 into a lattice Li to create a new lattice 
Li+1 may be described (Valtchev and Missaoui 2001) as a search for three sets of 
concepts in L i : generator concepts, G(o), that give rise to new concepts; modified 
concepts, M(o), whose arcs must be modified in order to integrate 0 into their extents; and 
old concepts, U(o), that remain entirely unchanged. In addition, a set of new concepts N(o) 
to be inserted into Li to give Li+1 must also be constructed. 

The discussion below will indicate that the intent representative operations may be 
deployed to identify generator, modified, old concepts and new concepts, and may 
consequently be used to construct concept lattices. 

The intent representative operations reflect some of the properties of a lattice and its line 
diagram. For any concept c in a lattice L (potentially a concept sublattice), EIR(L, Intent(c), 
c) is the set of parent concepts of c and therefore defines the cover relationships of c. This 
property is due to EIR being the minimal meets, not spanning c, that span only contains 
subsets of Intent(c) in their intents. Similarly EER(L, Extent(c), c) is the set of child concepts 
of c. 

However, this property only holds for concepts that already belong to an existing lattice, 
Li. When inserting a new object, 0, into Li to create Li+l' it will not necessarily be true that 
the set EIR(Li, Intent(o), Inf'(Intent(o))) represents al/ the parent concepts of 0 in Li+1• 

Indeed, an incremental lattice construction algorithm will invariably have to construct (or 
'spawn') additional intermediate concepts that are not yet part of L i . This is in order to 
achieve the objective that EIR(Li+h Intent(o), 0) is the set of parent concepts of c in Li+1• 

33 

 
 
 



Furthermore, these additional intermediate concepts and their associated cover 
relationships in the new structure also have to comply with the lattice property in that any 
pair of concepts must have a unique infimum and supremum. Therefore in addition to 
creating the parent concepts of 0, other concepts could be created recursively and 
connected higher up in the lattice in order for this uniqueness property to hold. 

It can be shown that an incremental lattice construction algorithm that inserts an object 0 

into a lattice Li to give 1,+1> merely needs to intersect the intent of 0 with the intent of 
current concepts in Li to determine the intent of concepts of Li+1• Any intents of derived in 
this way that are not the intents of concepts in Li are that of new concepts that must be 
added to Li to derive Li+1• Put differently, the intent of each of these new concepts 
corresponds to the intersection of Intent(o) with one of the concepts in G(o), the generator 
concepts for o. In fact, this property is precisely what determines a generator concept for 0 

- that its intersection of its intent with Intent(o) gives the intent of a new concept. This is 
however a computationally inefficient way to construct lattices and hence the search for 
efficient construction algorithms. 

For simplicity, we will not consider contexts and their corresponding lattices in which the 
intent of an object is a subset of the intent of some other object (I.e. it is assumed that 
objects are not comparable). Also assume that the extent of an attribute is not a subset of 
the extent of any other attribute (I.e. it is assumed that attributes are not comparable). In 
other words only contexts where the attributes and objects are the co-atoms and atoms 
respectively of the FCA lattice, and where the FCA lattice is therefore isomorphic to the 
EA-Iattice are considered. This will not detract from validity of the discussion but will 
prevent the discussion from being cluttered by having to consider some exceptions 
associated with such contexts. 

Consider inserting an object 0 into L j • The trivial case is when there are no generator 
concepts except for the zero concept, OL' In this case all concepts in AIR(Li • Intent(o), OL) 
are exact meets. The object should be inserted, as an atom, above OL and connected to its 
parent concepts as given by EIR(Li , Intent(o), OL)' OL is the object's only child concept. 
(Note that this is by virtue of the simplification of the context as described in the previous 
paragraph.) The extent of each concept in M(o) also needs to be updated as a result of 
the insertion of o. 

If EIR(Lj , Intent(o), Q) * AIR(Li , Intent(o), OL) then there is at least one concept in L j that is 
the meet of a subset of Intent(o) that spans attributes other than those in Intent(o) (Le. the 
meet is not exact). All non-exact meets are elements of the set T in the definition of EIR(Li , 

Intent(o), 0) (refer to section 2.9). For each such non-exact meet, a new concept must be 
created whose intent corresponds to the intent of the generator concept less the additional 
attributes. Each such meet is a concept in G(o). Therefore, if EIR(Lj , Intent(o), 0) * AIR(Li , 

Intent(o), 0), generator concepts of 0 do exist in L. Indeed the concepts in the set AIR(Li, 
Intent(o), 0) - EIR(Li, Intent(o), 0) are all generator concepts, the intersection of the intent of 
each of these generator concepts with Intent(o) does not represent the intent of any 
concept already contained in L. (If it did, then that concept would be an element of EIR or 
AIR.) (Note that these are not the only generator concepts as explained below.) An 
incremental concept lattice construction algorithm can thus compute the minimal (but not 
all) concepts in G(0) if it can compute the intent representative operations. For the 
purposes of this discussion, it will be assumed that efficient algorithms to calculate AIR 
and EIR are indeed available. 

The next 'level' of the elements of G(o) can be found by using the intents of the minimal 
concepts in G(o) restricted to Intent(o) as a generating set and then calculating their 
respective EIR and AIR sets (i.e. using lntent(g) n Intent(o), g E G(o) for calculating ElR 
and AIR}. This strategy can be recursively applied to calculate all elements of G(o). 
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If all concepts in G(o) are known, then the new concepts to be inserted can be determined 
as follows. Each element g of G(o) gives rise to a new concept n E N(o) (N(o) being the set 
of new concepts inserted in Li to yield Li+l) with Intent(n) =Intent(g) n Intent(o) and Extent(n) 
= Extent(g) u {o}. Some of the parent concepts of n could be newly created concepts of 
N(o) in Li+l higher up in the lattice whilst the others are elements of EIR(Li, Intent(o), g). 
Before connecting n, all elements of N(o) must be generated since n might be connected 
to one of them. The child concepts of n are given by EER(Li+h Extent(n), n). g will be one of 
the c~lild concepts but it could have additional child concepts. Each of these child 
concepts will be in N(o) corresponding to another generator concept lower down in the 
lattice in a similar way as the parent concepts. 

From this description it thus follows that the set of concepts in G(o) is partially ordered. 
The concepts in M(o) are all the exact meets of subsets of Intent(o) in Lo. Elements of G(o) 
are all approximate meets of Intent(o). The elements of U(o) are those concepts not in 
either G(o) or M(o). 

u2 

g1 =meet(L, Intent(o» 
Intent(g1)" Intent(o) 

Figure 4.9: The relationship between C(o), M(o), U(o) and N(o) when inserting 0 with 
lntent( 0) ={a2' a3, a4, a5, a7. as, a9} into the lattice 

Figure 4.9 shows the lattice concepts of Li as larger circles. They comprise of U(o), M(o) 
and G(o). Membership of a particular set is indicated by the prefix u, m and g in the 
concept labels respectively and attributes are prefixed by a. In the example, object 0 with 
Intent(o) = {a2, a3, a4, as, a7, as, a9} is to be inserted. The elements of G(o) form a partial order, 
indicated by the thick arcs, with gl as zero concept and IL as unit concept. The rest of the 
lattice concepts are not shown and are indicated by thin arcs that do not end/start in 
concepts. These concepts are members of U(o) and will remain unchanged. The elements 
of M(o) are all located above the largest concepts of G(o). The elements of N(o) are 
superimposed on the concepts in Li and shown as smaller, grey shaded, concepts 
connected by dotted arcs. Each element of N(o) is shown above its respective generator 
concept. Note that the concepts of N(o) are not yet properly connected into Li to form Li+l' 
As explained, gl E G(o) and is in fact OL and nl E N(o) is in fact the object o. 
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These ideas are made more explicit in the formulation of the AddAtom lattice algorithm 
defined in the next section. 

4.3 DEFINITION OF THE ADDATOM ALGORITHM 

In this section the algorithm hinted at in the two previous sections is formally defined using 
pseudo code. For the purpose of reference we call the algorithm AddAtom since it inserts 
an atom concept (Le. an object) above the zero concept into the lattice. As defined the 
algorithm is conceptually simple but very inefficient. Efficient versions of the algorithm are 
discussed and defined later on in the text. Once again we only consider contexts that 
have objects that are unrelated to other objects and attributes that are completely 
unrelated to other attributes as explained earlier. In the corresponding lattice all the 
objects are thus atoms and the all attributes, coatoms. 

The algorithm involves the recursive application of the ideas presented in the previous 
section. The algorithm is initiated by a set of attributes representing the intent of the object 
to be inserted (i.e. as a new atom) as well as the zero concept as the first generator 
concept. Each recursive AddAtom call creates aNewConcept with Intent(aNewConcept) = 
anAttributeSet. After each recursive call of the algorithm a new concept has been inserted 
into the lattice above the generator concept. This newly inserted concept has also been 
properly connected to its parent concepts (possibly involving further recursive AddAtom 
calls to create the necessary concepts). The called function returns this newly created 
concept and the calling function inserts this concept into the upper cover of its respective 
aNewConcept. Thus the recursive calls construct the additional concepts required for the 
insertion of the object. In this way there is no need to separately compute the covers of 
the newly inserted and modi'fied concepts since the nature of the intent representative 
sets as traversed by the recursive calls already indicate these relationships (as depicted in 
the structure of G(o) in figure 4.9). 

Using parameter names to imply types the AddAtom algorithm is defined as follows: 
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11=================================================================== 
Function AddAtom (L, anAttributeSet, aGeneratorConcept) 

Return aNewConcept 
11=================================================================== 
IIPre-condition: 
II L is a partial order such that: 
II 1) anAttributeSet is a set of attributes 
112) UpwardClosure(L, aGeneratorConcept) is a complete sublattice 
113) Meet(L, anAttributeSet) = aGeneratorConcept 
114) aGeneratorConcept is a generator concept for 
II anAttributeset and an approximate meet of anAttributeSet 
11=================================================================== 
IIPost-condition: L is a minimally updated in such a way 
II to ensure that: 
II 1) UpwardClosure(L, aGeneratorConcept) remains a sublattice 
112) Meet(L, anAttributeSet)= aNewConcept (an exact meet, AIR=EIR) 
II 3) aNewConcept covers only aGeneratorConcept and nothing else 
114) All generator concepts above aGeneratorConcept 
II have been visited and the corresponding 
II new concept has been created an appropriately 
II linked into L 
11=================================================================== 
ApproxMeets = 

AIR(L, anAttributeSet, aGeneratorConcept) ­
EIR(L, anAttributeSet, aGeneratorConcept) 

II Remove all elements of EIR from AIR 
II Pre-condition 2 guarantees that the meets are unique 
II Next, generate N(o) 
Do While (ApproxMeets i 0) 

Select and mark any x E ApproxMeets 

SubAttr = anAttributeSet n x.Intent 

bNewConcept = AddAtom(L, SubAttr, x) 

Recompute ApproxMeets 

Remove all marked concepts from ApproxMeets 


Od 
II Post-condition 4 achieved and AIR = EIR 
aNewConcept = CreateConcept(L) 
aNewConcept.Extent = aGeneratorConcept 
aNewConcept.Intent = anAttributeSet 
II Next, connect elements of N(o) to aNewConcept 

For V x E EIR(L, anAttributeSet, aGeneratorConcept) 
CreateArc(L, aNewConcept, xl 
IIAssume no effect if arc already exists 
DeleteArc(L, aGeneratorConcept, x) 
IIAssume no effect if arc does not exist 

Rof 
II Next update the extents of N(o) and M(o) 
If aGeneratorConcept = OL then 

For V x E UpwardClosure(L, aNewConcept) 
x.Extent = x.Extent U {aNewConcept} 

Rof 
Fi 
II Post-condition 1 & 2 achieved 
CreateArc(L, aGeneratorConcept, aNewConcept) 
II Post-condition 3 & 5 achieved 
Return aNewConcept 
End AddAtom 
11=================================================================== 
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Thus, to incrementally insert a new object 0 into a lattice for the context (A, 0, I) the 
function call AddAtom(L, Intent(o), OL) would be used. Note that L is passed as an in/out 
parameter. It is assumed that the individual attributes of the object 0 are already present in 
the lattice (i.e. as coatoms). 

As indicated a list of marked concepts needs to be kept in order that such concepts are 
not revisited in the Do While ...Od loop. 

To operate on arbitrary contexts the AddAtom algorithm should be slightly extended to 
consider the following cases: 

• 	 The object is the first to be inserted into an empty Lo. 

• 	 The object to be inserted into the lattice is in fact not an atom in L j (I.e. Intent(o) is a 
subset of some other object's intent}. 

• 	 The object has same intent as another object in the context. 

• 	 The attributes of the object are not all coatoms. 

• 	 More than one attribute may correspond to a single concept in L; (i.e. the extent of 
two attributes is the same). 

• 	 Some of the attributes in Intent(o) do not already exist in L j • 

• 	 Some modifications are required for FCA lattices (since all objects are not atoms 
and all attributes not coatoms). 

In addition to these the AddAtom algorithm can be modified to operate on compressed 
pseudo-lattices (refer to chapter 6) in that it respects the virtual arcs and compressed 
pseudo-lattice properties and does not assume the existence of all formal concepts in L j • 
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4.4 ADDATOM EXAMPLE 


AIR(l, {a, b, d, e, f}, n3) = {nS, n4, f} 

EIR(l, {a, b, d, e, f}, n3) ={d, e, f, 


AIR(l, {a, b, d, e, f, h}, n1) ={n3, h) 

EIR(l, {a, b, d, e, t, h}, n1) ={d, e, t, h, 


AIR(l, {a, b, d, e, f, 9, h), Dl ) {n1, n2} 

EIR(L, {a, b, d, e, t, 9, h), Dl ) = {d, e, f. h, nS,n2} 


Figure 4.10: A lattice before inserting 03 with Intent(oJ) = fa, b, d, e, f, g, h} indicating G(o) as 
well as the AIR and EIR sets of elements of G(0) 

As an example consider inserting object 03 with Intent(03) {a, b, d, e, f, g, h) into the lattice, 
L, in figure 4.10. Since the algorithm does not consider and visit irrelevant concepts, only 
the relevant part of L is shown the relationships to the rest of L are shown by arcs that 
do not terminate in concepts. 

L is an in/out parameter in the algorithm. Thus, throughout the algorithm, operations use L 
as it exists at that point in the computation - not in its state when that given level of 
recursion was invoked with L as a parameter. 

The algorithm begins with the function call AddAtom(L, {a, b, d, e, f, g, hI, Od. ApproxMeets 
has to be computed, and this requires that both AIR(L, {a, b, d, e, f, g, hI, Od and EIR(L, {a, 
b, d, e, f, g, hI, 0L) have to be computed. In this case S ={iL' a, b, d, e, f, g, h, nj, n4, n3, n2, nd 
(refer to section 2.9 for the definition of AIR and EIR). These concepts are shown in black 
or grey in figure 4.10. Other concepts are in white. The concepts in black are generator 
concepts as will become clear later. nj and n2 are the two minimal concepts in S, therefore 
AIR(L, {a, b, d, e, f, g, h}, Od ={nj, n2}' 

In order to find EIR(L, {a, b, d, e, f, g, h}, Od, we see that T {n4' n3, nd and therefore S - T 
= {lL' a, b, d, e, f, g, h, nj, nz}. Thus, EIR(L, {a, b, d, e, f, g, h}, Od, (the set of minimal 
concepts, excluding OL, in S - T) is {d, e, f, h, nj, n2l. As a result ApproxMeets (AIR EIR) is 
{ n 1 }. n j is therefore a generator concept. 

The first loop of the algorithm is thus executed, where x =nj. Intent(L, nJ) = {a, b, c, d, e, f, 
h} and SubAttr ={a, b, d, e, f, hI. Thus, AddAtom(L, {a, b, d, e, f, h}, nl) is recursively called. 
Note that nl is an approximate meet of {a, b, d, e, f, g, h} since it also spans the attribute c. 
To create an exact meet that does not span the additional attribute, c. The algorithm 
searches for any additional approximate meets above nJ and creates additional concepts 
that will form exact meets. 
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In tracing the function call AddAtom(L, {a, b, d, e, f, h}, nl) we see that AIR(L, {a, b, d, e, f, 
h}, nl) ={n3, h} and EIR(L, {a, b, d, e, f, g, h}, nl) ={d, e, f, h, ns, ll2} so that ApproxMeets = 
{ll3}' SubAttr ={a, b, d, e, f} with n3 being an approximate meet of SubAttr, again spanning c 
in addition. ll3 is thus a generator concept. AddAtom(L, {a, b, d, e, f}, n3) is therefore 
recursively called to create an exact meet above n3' 

AddAtom(L, {a, b, d, e, f}, ll3) calculates AIR(L, {a, b, d, e, f}, ll3) {f, ns, n4} and EIR(L, {a, b, 
d, e, f}, n3) ={d, e, f, ns}, so that ApproxMeets ={n4}' 

Once again ll4 is a generator node and AddAtom(L, {d, e}, n4) is called recursively. Since 
AIR(L, {d, e}, ll4) = EIR(L, {d, e}, n4) = {d, e}, ApproxMeets 0 and the algorithm progress 
past the while loop to create n6 whose intent is to become {d, e} (figure 4.11). Moving to 
the next loop of AddAtom EIR(L, {d, e}, n4) ={d, e} and therefore arcs are created between 
n6 and d and n6 and e. n4 disconnected from both d and e. Finally after completion of the for 
loop an arc is created between n4 and n6 and AddAtom(L, {d, e}, n4) terminates with n6 as 
the result which is passed back to AddAtom(L, {a, b, d, e, f}, n3)' 

AddAtom(L, {a, b, d, e, f}, n3) now creates n7 and calculates EIR(L, {a, b, d, e, f}, n3) = {ll6' n5, 
f} (n6 being the newly created exact meet). It then creates arcs from n7 to ns, n6 and f. The 
arcs from ll3 to ns and f are deleted. An arc is created between n3 and n7 and the function 
returns n7 as the result. 

AddAtom(L, {a, b, d, e, f, g, h}, nl) creates ns and since EIR(L, {a, b, d, e, f, g, h}, nl) = {h, n7} 
arcs from each to ng are created. The arc between nl and h is deleted. An arc between n) 
and llg is created and AddAtom(L, {a, b, d, e, f, g, h}, nl) terminates with ns as result. 

Finally AddAtom(L, {a, b, d, e, f, g, h}, Od creates 03 and create arcs between 03 and ll2 and 
llg. Since 03 is a newly inserted opject it is added to the extent of all the concepts above it. 
OL is connected to 03' This concludes the recursive AddAtom calls and AddAtom returns 
the inserted object 03 to the calling function. Since L was an in/out parameter, it now refers 
to the newly created lattice. 

The resulting EA-Iattice is shown in figure 4.11 with the newly created concepts shown in 
grey and their corresponding generator concepts in black. The AddAtom function calls are 
also shown next to the respective generator concepts. 
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AddAtom(L, (a, b. d, e, fj, n3) 

AddAtom(L, (a, b, d, e, f, g, h), al ) 

Figure 4.11: The AddAtom example after inserting 03 with Intent(03) = fa, b, d, e,/, g, hi, G(o) 
and N(0) as well as the recursive AddAtom calls are indicated 

AddAtom thus starts at the bottom of the lattice at the zero concept and traverses the 
lattice upward, creating new concepts associated with 'approximate' meets. The new 
concepts form exact meets of the intent of the object. The recursion terminates when 
AddAtom encounters only 'exact' meets (Le. elements of M(o) to which the newly created 
concepts are connected. In this way the recursive calls efficiently search the lattice for 
generator concepts and, whilst dOing so, use the inherent structure of Lo to search for, 
create and connect the concepts of L j • 

The example also shows how the structure and ordering of concepts in Lo can be used to 
efficiently eliminate many concepts in the lattice from consideration by using the AIR and 
EIR operations. Some incremental lattice construction algorithms resort, in a sense, to a 
more brute force approach in considering a much larger set of concepts in order to test for 
generation concepts or in order to intersect the intent of the object with these concepts. 

4.5 AN ALGORITHM FOR AIR AND EIR 

It might be argued that the AddAtom algorithm is merely a restatement of an incremental 
lattice construction algorithm in terms of AIR and EIR but that the calculation of AIR and 
EIR is computationally inefficient. This research indicates that there are indeed efficient 
algorithms for calculating AIR and EIR but these rely on the explicit representation of the 
line diagram or cover relationship as a data structure. 

One way of efficiently calculating AIR and EIR is to use the concept of marker propagation 
in which so-called "markers" are propagated downward along all paths leading from each 
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of the attributes of the object o. Afterwards the number of markers that have accumulated 
on each of the concepts is counted. The number of markers thus indicates how many 
attributes of 0 a concept has in its intent. Concepts with zero markers therefore need not 
be considered as candidates for being minimal meets in AIR or EIR. Concepts with a 
higher number of markers are lower down in the lattice than those with a lower number of 
markers. Furthermore, there will be many concepts that have the same number of 
markers. The number of markers increases as one moves down in the lattice. 

There are three key observations to finding AIR (and EIR) using marker propagation. The 
first key observation is that any concept that has somewhere below it in the lattice another 
concept with more markers than itself is not a candidate for AIR, since it can not be 
minimal. The second key observation is that a concept is only a candidate if it does not 
have a parent concept which has the same number of markers as itself (i.e. if it is the 
highest concept with that number of markers and has no parent with the same number of 
markers). This is because if any concept has a parent concept above it with the same 
number of markers, it cannot be a greatest (i.e. highest) lower bound of a subset of 
Illtellt(o). The third observation is that when searching for candidate concepts by starting 
with those with the highest number of markers and eliminating all concepts above and 
below them from consideration, all candidate concepts will be found. 

Using markers one thus has to search for all concepts that have the largest number of 
markers accumulated upon them but that have no concept below them with more 
markers. All such concepts are candidate concepts, but only those that have no concept 
above them with the same number of markers are elements of AIR. 

Figure 4.12 is part of a lattice before inserting object 0 into it. Suppose Q is the set of 
attributes associated with 0 and markers are propagated down from each attribute. The 
concepts are labelled by the number of markers accumulated on them (i.e. the number of 
attributes of Q it spans). Arcs to the rest of the lattice are shown as lines ending in small 
circles without concept numbers. Those arcs ending in filled/solid circles indicate arcs to 
attributes in Q and those to unfilled circles indicate arcs to unique attributes not in Q. The 
marker count is therefore the number of filled small circles above each concept. 

To search for AIR(Q) the set of concepts with the highest number of markers (5 markers) 
is considered. In this case the set is {ll2], ll24, ll25, ll26}' ll25 and ll26 have a concept above 
them with the same number of markers so they can be discarded from the set, leaving 
{ll21> ll24}' Next we eliminate all the concepts in ll21 and ll24'S upward and downward closure 
from consideration and continue searching for concepts with the highest number of 
markers. In the remaining concepts, ll27 has the highest number of markers with 4. After 
eliminating its upward and downward closures from consideration the only concepts with 
more than zero markers that remain are ll12, lll7, lll8 and ll23 with three markers each. Since 
lll7, lll8 and ll23 have concepts above them with the same number of markers, lll2 is the last 
remaining element of AIR(Q). Therefore AIR(Q) = {lll2' ll21> ll24, ll27}' These concepts are 
shown in black. They are all generator concepts of 0 but are not the only generator 
concepts of 0 (the other generator concepts are ll4, ll6, ll7, ll8, lllO, lll4 and llI9)' 
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Figure 4. 12: Part of a lattice before inserting object 0 into it showing AIR( 0) in black. Each 
concept (n] to n27) is labeled with the number of markers / attributes of 0 that has 
accumulated on it. 

This process formalised in the following algorithm: 
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11====================================== 
Function AIR(L, anAttributeSet) Return aConceptSet 
II ========================================================== 
IIPre-condition: 
II L is a concept lattice with anAttributeSet a non-empty subset of 
II L's attributes 
11============================================= 
IIPost-condition: 
II aConceptSet contains the minimal (possibly ) meets 

II of anAttributeSet or AIR(L, anAttributeSet) 

II ============================================================= 

NotVisited = (/) 
MaxAttr 0 
Let attrCount[c] = 0 for all c E L 

For ~ a E anAttributeSet 

For ~ b E DownwardClosure(L, a) 

attrCount[b] = attrCount[bl + 1 

NotVisited = NotVisited u {b} 

If attrCount [b] > MaxAttr then 


MaxAttr = attrCount[b] 
Fi 

Rof 
Rof 
Candidates = (/) 
Do While (NotVisited f (/) and MaxAttr > 0) 

Let d be any c E NotVisited with attrCount[d] MaxAttr 
If such a c does not exist then 

MaxAttr = MaxAttr 1 
Else 

I I If d has concepts above it with the same number of markers 
II find the one that is the greatest 
Found = False 
Do While Not Found 

Found = True 


For ~ p E Parents (d) 

If attrCount attrCount[d] then 


d = P 

Found = False 

Exit For 


Fi 

Rof 


Od 

Candidates = Candidates u {d} 
II Remove the upward closure of d from further 
II consideration - its elements can not be minimal meets 
UCD UpwardClosure(L, d) 
NotVisited = NotVisited UCD 
II Remove any candidates that are greater 
II than d - they can not be minimal 
Candidates = Candidates UCD 
II Remove all concepts below d since they have MaxAttr 
II markers or have been considered 
DCD = DownwardClosure(L, d) 
NotVisited = NotVisited DCD 

Fi 
Od 
Return Candidates 
End AIR 
II ============================================================== 
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The calculation of EIR can be done in a similar way but only concepts that are exact must 
be considered as candidates. This process can be fast-tracked by eliminating the union of 
the downward closure of all attributes not in Intent{0) from consideration before 
propagating the markers. The calculation of AER and EER can be done using the same 
strategy, but this time propagating markers in the opposite direction and appropriately 
changing the direction of the relevant operators in the algorithm. 

The algorithms of the intent- and extent operations were defined in terms of the closure 
and set operations. When representing sets as strings of bits in memory, these operations 
can be very efficiently performed on modern architectures using 32 or 64 bit words. The 
calculation of AIR and EIR is therefore very efficient. 

Since the intents and extents of the concepts in the lattice can be derived from the 
upward- and downward closures of the concepts in the line diagram, these need not be 
calculated explicitly. 

It is also possible to have attrCount pre-computed when the AIR etc. will be computed for a 
subset of A. This optimisation is considered in the efficient AddAtom algorithm defined in 
the next section. 

4.6 EFFICIENT ADDATOM ALGORITHM 

The AddAtom algorithm as described in section 4.3 is not optimal in terms of efficiency. A 
number of basic performance improvements can be made on the algorithm. Examples 
include the possible avoidance of recalculation of ApproxMeet and the processing of the 
generator concepts in the order of the size of their intent. The calculation of both the exact 
and approximate intent representative sets can also be computationally inefficient and 
may duplicate many operations due to the similarity between the two sets. The following 
algorithm is an efficient version of the AddAtom algorithm of section 4.3. It builds on the 
ideas of the calculation of AIR and avoids the repeated and calculations of AIR and EIR. 
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II 
Function OptimisedAddAtom{aContext) Return aLattice 
11================================================ 
L CreateEmptyLattice() 

NewConcept(L) 
OL NewConcept(L) 
OL. Intent aContext.Attr 

For V a E aContext.Attr 
= NewConcept(L) 


anAttributeConcept.Intent = {a} 

CreateArc(L, OL, anAttributeConcept) 

CreateArc(L, anAttributeConcept, lL) 


Rof 

For V 0 E aContext.Obj 
II Calculate attrCount[x] , the number of attributes in o.Intent 
II that occur in x.Intent 
Let attrCount[x] = 0 for all x E L 

For V x E L 

attrCount[x] = I Ix. Intent n o.Intentl I 


Rof 
NewObject = AddAtom(L, o.Intent, OL, attrCount) 


For V x E UpdwardClosure(NewObject) 


x.Extent x.Extent U {oJ 

Rof 

Rof 
Return L 
End OptimisedAddAtom 

II 
Function GetMeet(L, target, 	aConcept, attrCount) 

Return returnConcept 
II 
IIPre-condition: 
II L is a concept lattice, attrCount[aConcept] = target 
11=================================================================== 
IIPost-condition: 
II returnConcept is the greatest upper bound/concept in L with 
II attrCount[returnConcept] = target 
II ============================================== 
returnConcept aConcept 
ParentIsMeet True 
Do While ParentIsMeet 

ParentIsMeet False 


For V Parent E ConceptParents(L, aConcept) 

If attrCount[Parent] = target then 


returnConcept = Parent 

ParentIsMeet = True 

Exit For 


Fi 

Rof 

Od 
Return returnConcept 
End GetMeet 

11=================================================================== 
Function AddAtom(L, anIntent, GeneratorConcept, attrCount) 

Return aConcept 
II 
IIPre-condition: 
II 1) 	 (L, GeneratorConcept) is a complete sublattice 
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II 

II 2) is the meet of anIntent and is approximate 

II 3) attrCount[c] Intent(c)nIntent(newObject) 
/I 
IIPost-condition: 
1/ is the greatest upper bound/concept in L with 
1/ attrCount[returnConceptl = target 

======================= 
CandidateParents = ConceptParents(L, GeneratorConcept) 

NewConceptParents = 0 

For V Candidate E CandidateParents 

newIntent Candidate. Intent n anIntent 
Xf newIntent # 0 

Xf 	Candidate.Intent # newIntent then 
aMeet GetMeet(L, I InewIntentl I, Candidate, attrCount) 
Xf aMeet.Intent # newIntent 

II If aMeet is approximate it is a generator concept and an 
II exact meet needs to be created 
aMeet = AddAtom(L, newlntent, aMeet, attrCount) 

Fi 
Else 

aMeet Candidate 
Fi 
addMeet = True 
For V g E NewConceptParents 

Xf aMeet.Intent k g.Intent 
addMeet = False 
Exit For 

Else Xf g.Intent c aMeet.lntent then 
NewConceptParents = NewConceptParents {g} 

Fi 
Rof 
Xf addMeet then 

NewConceptParents NewConceptParents U {aMeet} 
Fi 

Fi 
Rof 
NewConcept CreateNewConcept(L) 

NewConcept Extent GeneratorConcept.Extent 

NewConcept.Intent anIntent 

attrCount[NewConcept] = attrCount[GeneratorConcept] 


For V 9 NewConceptParents 
DeleteArc(L, GeneratorConcept, g) 
CreateArc(L, NewConcept, g) 

Rof 
CreateArc(L, GeneratorConcept, NewConcept) 
Return NewConcept 
End AddAtom 
11=================================================================== 

Some optimisations are still possible, but these do not change the basic structure of the 
algorithm as stated above. Appendix A contains the pseudo code for one such optimised 
version of AddAtom that amongst other strategies considers concept parents in 
descending order of their attrCount value. This allows for the removal of many additional 
concepts from consideration. 
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4.7 DISCUSSION 

Initially some of the meets of subsets of Intent(o) are approximate meets (i.e. generator 
concepts). After each completion of a recursive call, additional concepts have been 
created that would now form the exact meets of those subsets of Intent(0) and replace the 
approximate meets. The algorithm terminates when all meets of all subsets of Intent(0) are 
exact with regards to Intent(o). Initially, L is a lattice but as new concepts are generated 
that are not yet fully integrated to the lattice structure, some parts of L may violate the 
lattice properties up until the completion of all levels of the recursion. When terminating, 
the AddAtom algorithm ensures that all concepts in UpwardClosure(L, aGeneratorConcept) 
form a lattice. Since the first AddAtom call uses OL as the generator concept, L will be a 
lattice when that AddAtom call terminates. 

The AddAtom algorithm generates the new concepts and cover relationships in one step 
and therefore seems to be more focussed than incremental lattice construction algorithms 
that first generate the concepts and then search and generate the upper covers of 
concepts using a separate function such as Godin et al. (1991) and Carpineto and 
Romano (1993, 1996b). Experiments to date (discussed in chapter 5) also suggest 
AddAtom is more efficient. 

The algorithm exploits the relationships between concepts already represented in the 
lattice to efficiently search for the generator concepts using the intent representative 
operations. To this extent the algorithm makes explicit use of the line diagram that 
represents the original lattice structure when searching for G(o) by means of the ordering 
relationship and the intent representative operations rather than considering all concepts 
at once in a more brute force search. Indeed, the intent representative operations 
themselves imply a ordering of the generator and new concepts in L!. 

A very important property of the algorithm is that it can operate on sublattices where the 
formal concept lattice of a context is not used as input. This is due to the fact that the 
algorithm is entirely general in not requiring the lattice to have a specific set of atoms or 
coatoms (Le. those representing the attributes and objects) but not necessarily that of the 
formal concept lattice or EA-Iattice (similar to those concept sub lattices created in 
compressed pseudo-lattices). Such lattices are not closed with respect to the intersection 
of intents or the union of extents. The only requirement is that anAttributeSet consists only 
of coatoms (and not necessarily attribute concepts of the context). The operations used 
are therefore based on closure operations rather than intersections of intents. Such 
lattices are for example under consideration in compressed pseudo-lattices where the 
lattice is not closed with regards to the intersection of intents. Not all lattice construction 
algorithms are suitable for applications using sub-lattices in this kind of way. 

An optimised, object-oriented version of the algorithm was implemented and tested in C++ 
(chapter 7). In addition, the implementation also implements the concept of a compressed 
pseudo-lattice (chapter 6). The algorithm therefore takes the existence of virtual- and 
lattice arcs into consideration during its operation. 

Since the direction of the operations can be reversed (e.g. meet replaced by join, EIR by 
EER, atom by coatom, etc.) a dual for the AddAtom algorithm namely AddCoatom can be 
defined. In the implementation this was achieved by adding an additional parameter 
named aDirection to all lattice operations to indicate the direction in which the operation 
should operate. 

The next chapter (chapter 5) analyses the algorithmic performance of the algorithm by 
comparing the performance of AddAtom to that of other lattice construction algorithms 
both theoretically and experimentally. 
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Chapter 5: AddAtom algorithmic 
performance 

The AddAtom algorithmic performance was studied both theoretically (worst case 
behaviour) and empirically. This chapter starts with a short survey of published concept 
lattice construction algorithms (section 5.1) before deriving a theoretical upper bound to 
the complexity of AddAtom (section 5.2). A theoretical worst-case performance bound of 
AddAtom is 0(IILII.1I0112.max(1I0'1I». This performance upper bound is however a higher of 
magnitude as the current best performer namely that of Nourine and Raynaud (1999, 
2002) with an upper bound of 0«1I01l+IIAII).1I01i.IILII). Despite being cubic in nature relative 
to the lattice size, it is argued that this bound of AddAtom is not a very sharp upper bound 
and that the terms in the complexity expression are in practice, much more of an 
overestimate than the 11011 and IIAII terms that appear in the upper bound estimates of 
other construction algorithms. The performance is thus best confirmed via experimental 
comparisons. 

For the purposes of experimental comparison, a two-step approach was taken. Firstly, a 
pilot study comparing the original AddAtom implementation in C++ (described in chapter 
7) to implementations of two published construction algorithms, namely that of Godin 
(1991) and Carpineto and Romano (1993, 1996b). The pilot comparison showed that 
there is prima facie evidence that the algorithm performs very well and that wider study is 
justified. The second study, involving a wider set of experimental comparisons across a 
larger number of lattice construction algorithms, was conducted in collaboration with 
another researcher. For the sake of reference, the first, smaller experimental comparison 
will be referred to as the "pilot study" (section 5.3) and the second as the "wide 
performance study" (section 5.4). 

The results of both experimental comparisons indicate that the algorithmic performance of 
AddAtom is very good, and often the best of the test bed of 11 concept lattice construction 
algorithms. AddAtom performs especially well compared to other algorithms with "natural" 
data sets (Le. non-random generated context). When the density of the cross table of the 
context is either very high (i.e. every object possesses almost all attributes) or very low 
(every object possesses only very few attributes) there are other concept lattice 
construction algorithms that do outperform AddAtom. AddAtom is however still the next-to­
best performer in these circumstances and therefore a worthy candidate for a general-use 
algorithm. AddAtom was the fastest incremental lattice construction algorithm in the study. 
The experimental comparison results are therefore consistent with the argument that the 
theoretical complexity bound of AddAtom derived here is not a very sharp upper bound for 
AddAtom. 

Note that the discussion of both the theoretical and empirical performance, is with 
reference to the optimised version of the AddAtom algorithm (see section 4.6). In the 
comparisons, performance issues are related to constructing both the set of all concepts 
as well as the cover relationships (i.e. the line diagram). 
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5.1 A SURVEY OF CONCEPT LATTICE CONSTRUCTION ALGORITHMS 

It is not the objective of this dissertation to analyse and describe other construction 
algorithms. Readers are referred to recent comparative studies by Kuznetsov and 
Obiedkov (2001, 2002) for a broad discussion and pseudo code of other algorithms. A 
number of optimisations of these algorithms as well as adaptations to generate the line 
diagram of concept lattices where the algorithm does not generate it already are also 
described by Kuznetsov and Obiedkov. Unless otherwise stated, references to the 
complexity or experimental performance of these algorithms refer to the improvements 
and adaptations propose by Kuznetsov and Obiedkov. Although not exhaustive, the 
following table lists a number of the published concept lattice construction algorithms and 
briefly describes all the algorithms referred to in this chapter (adapted from Kuznetsov and 
Obiedkov (2001, 2002)). The theoretical and experimental comparisons will be made to a 
subset of these algorithms. 

In each case an algorithm is classified as either incremental or batch (non-incremental) 
and also whether it generates only the set of all concepts or the line diagram of the lattice. 

Algorithm Incremental I 
Batch 

Notes 

Chein Batch Chein (1969) 
Concepts are represented as extent-intent pairs and 
each new concept is generated as the intersection of 
the intents of two existent concepts. Similar to AI-
tree. 
Modifications were suggested by Kuznetsov and 
Obiedkov (2002). 
Generates the set of all concepts of the lattice. 

Ganter, Batch Ganter (1984) 
NextClosure Batch algorithm adding one object to earlier 

generated extent and calculating closure. Generate 
concepts in topological order using lexical order for 
concept lookup and comparison. 
Modifications were suggested by Kuznetsov and 
Obiedkov (2002). 
Generates the set of all concepts or the line diagram 
of the lattice. 

Bordat Batch Bordat (1986) 
Batch algorithm intersecting the intent of concepts 
with intents of objects that don't belong to concept. 
Generate concepts in depth-first order using a tree 
for concept lookup and comparison. 
Modifications were suggested by Kuznetsov and 
Obiedkov (2002). 
Generates the set of all concepts or the line diagram 
of the lattice. 

AI-tree Batch 
i 

Zabezhailo et al. (1987) 
A top-down batch algorithm that searches for 

I concepts in the set of concepts generated thus far. 
Similar to Chein. 
Generates the set of all concepts of the lattice. 

50 

 
 
 



NotesIncremental IAlgorithm 
Batch 

BatchCbO, 
Close by One 

BatchLindig 

Batch• Titanic 

BatchYevtushenko 

IncrementalNorris 

IncrementalGodin, 
GodinEx 

Kuznetsov (1993) 

Batch algorithm (similar to NextClosure) adding one 

object to earlier generated extent and then 

calculating the closure. Generate concepts in depth 

first order using lexical order for concept lookup and 

comparison. Also use an intermediate structure for 

concept searches and the generation of the line 

diagram. 

Generates the set of all concepts or the line diagram 

of the lattice. 


Lindig (1999, 2000) 

Bottom-up batch algorithm adding one attribute at a 

time to the intent of generated concepts and then 

calculating its closure. Generate concepts in a depth-

first order using tree for concept searches. 

Generates the diagram of the lattice. 


Stumme et al. (2000) 


Yevtushenko (2002) 


Norris (1978) 

Incremental algorithm intersecting the new object 

intent with that of concepts generated earlier. Keep 

list of added objects, checking whether new concepts 

can be generated using intersection of objects added 

earlier. This has been described as being an 

incremental version of the CbO algorithm. 

Modifications were suggested by Kuznetsov and 

Obiedkov (2002). 

Generates the set of all concepts or the line diagram 

of the lattice. 


Godin et al. (1991, 1995b) 

Incremental algorithm intersecting new object intent 

with that of concepts generated earlier. Use a 

heuristic hash function to sort the concepts when 

generating and searching concepts. 

There are two versions of the algorithm: GodinEx 

refers to the version that uses the size of the extents 

and Godin the size of the intents. 

Modifications were suggested by Kuznetsov and 

Obiedkov (2002). 

Generates the set of all concepts or the line diagram 

of the lattice. 


I 
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Algorithm Incremental I 
Batch 

Notes 

Grand Incremental . Oosthuizen (1991) 
• Incremental algorithm using a graph theoretic 

approach to insert an object into a lattice. Grand 
connects objects attribute by attribute, to an 
increasing subset of its intent until the object is 

i connected to all the attributes in its intent. During the 
process a function called transform ensures that the 
uniqueness of suprema and infima is maintained 
through the manipulation, addition and deletion of 
concepts and arcs. Constructs EA-Iattices. 
Generates the line diagram of the lattice. 

Carpineto Incremental Carpineto and Romano (1993, 1996b) 

Nourine Incremental Nourine and Raynaud (1999, 2002) 
Incremental algorithm intersecting new object intent 
with that of concepts generated earlier. Use a lexical 
tree for concept lookup and comparison. 
Generates the line diagram of the lattice. 

Valtchev, 
Divide 
conquer 

and 
N/A Valtchev et al. (2000) 

Algorithm based on the combination of two concept 
SUb-lattices that are combined to construct the full 
lattice. The context of each SUb-lattice is obtained by 
splitting the cross table of the original context either 
by objects or by attributes. 
Generates the line diagram of the lattice. 

AddAtom Incremental Described in chapter 4. 
Incremental algorithm using the approximate and 
exact intent representative (minimal meets) of the 
object intent to find generator concepts and 
recursively generate new concepts above these. 
AddAtom use the lattice itself for concept lookup, 
comparison and avoiding duplicate generation of 
concepts. 
Generates the line diagram of the lattice. 

5.2 A THEORETICAL PERFORMANCE BOUND FOR ADDATOM 

In this section the notation used for the description of the theoretical complexity (section 
5.2.1) and a number of lattice size related formulae are given (section 5.2.2 and 5.2.3). 
This will be used to derive an upper bound for the theoretical complexity of AddAtom 
(5.2.4) 

5.2.1 Notation 

The following notation is used for the theoretical performance of constructing a formal 
concept lattice of the context C =(0, A, I): 

52 

 
 
 



Notation 	 Description 

11011 	 The number of objects in the context. 

IIAII 	 The number of distinct attributes in the data set or context itself, not 
the theoretical limit of the domain from which the context was taken. 
As the number of objects increase, IIAII typically approaches the 
theoretical limit (e.g. in the case of randomly generated contexts). 

The number of "crosses" in the cross table of the context. It is 
therefore the number of attribute-object pairs in the incidence 
relation. The maximum number of crosses in the cross table is 

IIOII·IIAII· 
110'11 	 The average number of attributes per object in the context, i.e. the 

average intent size of atoms in the EA-Iattice of the context. 110'11 = 11111 
111011. For contexts with a varying number of attributes per object, the 
maximum number of attributes per object the notation max(IIO'II) is 
used to indicate the maximum number of objects per attribute. 

IIA'I! 	 The average number of objects per attribute in the context, i.e. the 
average extent size of co-atoms in the EA-Iattice of the context. IIA'II 
=1I11I/1IAIi. For contexts with a varying number the maximum number 
of attributes per object the notation max(IiA'11) is used to indicate the 
maximum number of objects per attribute. 

The number of concepts in the lattice of the context including the unit 
and zero concepts. Lj indicates the lattice after the insertion of the j'th 
object into the lattice. 

11< II 	 The number of arcs in the line diagram of the lattice Ii< jli indicates 
the number of arcs in lattice Lj . 

1I0'II/I!AIi 	 This is referred to as the "density" of the cross table and is defined as 
the proportion of crosses in the cross table relative to the total 
number of possible crosses in the cross table (Le. 111111 (IIOII.IIAII) = 
IIO'II/IIAII =IIA'Ii/IiOIl)· It can, of course, be specified as a percentage 
and is useful as a normalised metric to compare contexts with a 
different number of attributes. 

5.2.2 Concept lattice size formulae 

In this section a number of formulae and equations on concept lattice aspects related to 
size are derived. These will be used in deriving complexity bounds for AddAtom. Before 
deriving the actual lattice formulae, a number of generic equivalences are given. These 
equivalences will be used to refine the lattice formulae. 

The following two generic equivalences, found in many texts on algebra and 
combinatorics (e.g. Cameron (1996)), can be proved by induction. The formulas are 
derived from the Binominal theorem. 

(5.1 ) 

(5.2) 
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The next two equivalences. can be found in texts on mathematical analysis (e.g. 
Clark(1931 )). and are also proved via induction. 

k
1 an+1 

'" a = ;a:;tlL.. k=Olon 1 (5.3)a 

(5.4) 

Figures 5.1 and 5.2 show the Boolean lattices of contexts with 3 and 4 attributes 
respectively. The discussion below refers to Boolean lattices Lj from a context 
C = (0. A. I). These figures are included here to serve as an aid in explaining the 
derivation of the lattice size equations 5.5 to 5.S. 

Level i=O: 

Level i=l: 

Level i=2: 

Level i=3: 

Figure 5.1: A Boolean lattice with 3 attributes (only concept intents are shown; the level of 
the concept is also shown) 
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Level i=O: 

Level i=]: 

Level i=2: 

Level j=3: 

Level i=4: 

Figure 5.2: A Boolean lattice with 4 attributes (only concept intents are shown; the level of 
the concept is also shown) 

For the purpose of discussion, the concepts in the Boolean lattice will be divided into a 
number of levels, where the number of attributes in the intent of the concept indicates its 
level. The variable i will indicate the level. Where multiple, successive lattices are under 
discussion, the variable j will indicate the j'th lattice in the sequence of lattices (Le. after 
the insertion of the j'th object). The equations in the table below characterise important 
aspects of Boolean lattices related to size. Note that for theoretical purposes an initial 
lattice consisting only of a single concept with an empty intent and -extent called Lo with 
IlLoIl = 1 and 11< II = 0 is included in the equations. For the sake of simplicity only IIAII is 
used since 11011 =IIAII for Boolean lattices. The remarks indicate how these equations have 
been derived. These equations hold for Boolean lattices. It is assumed that \lOll > 0 and 
IIAII>O. 

Equation 	 Remark Nr 

The total number of concepts (5.5) 
on each level i of a Boolean 
lattice is the number of 
distinct combinations of 
subsets of A of size i. The 
final result follows from 
equation 5.1. 

Inspecting figures 5.1 and 5.2 (5.6)
= /II~II\

11-<11 Li=OtOI!AII l 1 j 	 it can be seen that each 
concept on any level i, has i=1/ A 11211AII-l 
arcs leading to it's i parents. 
Once again the number of =!.II A II./iLII

2 	 concepts on level i is the 
number of distinct subsets of 
A of size i. After counting the 
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total number of arcs, 
equation 5.2 is used to 
simplify the result. 

The total number of concepts (5.7)L FOtoliA11 II Li II =L i=OlollAlI 2i 
in all lattices Lj , j = 0 to IIAII= 211AII+1 -1 
follows from combining 

=2·IILII equation 5.5 and 5.3. 

i 1 The total number of arcs in (5.8)L i=oloIIA1111-< ill =L i=OtollAIl j.2 ­
all lattices Lj , j =0 to IIAII cani =L i=OloIIAII_lj·2 + L i=OloIlAII_1 2i 
be derived by combining 

AI + 1=(11 A II-I).2" equations 5.6, 5.3 and 5.4. 
=(II A 11-1).11 L II +1 

Non-Boolean concept lattices 

Boolean FCA lattices contain the maximum number of possible concepts (i.e. unique 
combinations of intent and extent) for a given number of arcs and therefore contexts that 
do not give rise to Boolean lattices have fewer concepts in their lattices. The size of 
arbitrary lattices is therefore bound by the minimum of the unique number of extents or 
intents possible, i.e. 2min(IIA II,1I0 1l). 

The number of outbound arcs is bound by the unique combinations of attributes in the 
intents of its parents and/or the unique combinations of objects in the extents of its 
parents. In a Boolean lattice, the number of possible unique intents of the parents of a 
concept c is IIIntent(c)11 - 1, but non-Boolean lattices may potentially have more (up to 
(In~t::;:'~l2))' (Using the extents of the parent concepts provides a sharper bound to the 

number of outward arcs. The parent concepts Pl'" Pn. of a concept c must be unique and 
therefore have at least one object in their extents in addition to that of c, i.e. Extent(Pi) :J 

Extent(c). Furthermore, for any two parent concepts, Pi and Pj, Pi :f.: Pj of c, Extent(Pi) n 
Extent(pj) Extent(c). Parent concepts can therefore have no object in common with the 
extent of any other parent concept except that of c. The extent of any concept must also 
be unique in the lattice. Given these constraints, the maximum number of parent concepts 
of any c is therefore 11011 IIExtent(c)11 since each parent concept will have one at least 
additional concept of 0 in addition to Extent(c). A bound for the maximum number of 
outbound (upward) arcs of any concept in a lattice is therefore 11011. In practice however 
the maximum number of outbound arcs may be fewer. 

Using a similar argument, but based on the intent of any concept IIAII is the maximum 
number of inbound (downward) arcs into any concept in a lattice. 

Using these bounds as a base it is clear that for non-Boolean lattices of any substantial 
size the number of outbound arcs 11< Outbound II ~ IIOII·IILII· Using a similar argument 11< Inboundll 

S IIAII.IIL1I. Since the number of outbound- and inbound arcs in any lattice should be equal 
to the total number of arcs, 11< II s min(IIAII, IIOID·IILII. 

Most contexts used in practical applications have IIAII < 11011. It is assumed that 11011 > 0 and 
IIAII > O. The following inequalities hold in such cases: 

Equation Nr 
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II L II 	 S2 min(lIAII,llo1D (5.9) 

S 211AII 

(5.10)11-<11 S min(11 A II, II 0 11)·11 L II 
(5.11 )Lj=OtollOlIlIL j II sIIOIl·IILII+l 

(5.12)L j=otollollll-< j II 	 s min(11 A II, II 0 11)·11 0 11·11 L II +1 
s II A II ' II 0 11.11 L II +1 

From equation 5.6 it can be seen that a Boolean lattice contains, on average %,IIAII 
outbound arcs per concept and also on average IAIIAII inbound arcs per concept since the 
total number of outbound- and inbound arcs in a lattice are equal. It is therefore clear that 
the above equations do not always provide very sharp upper bounds. Where IILlI is 
exponential in terms of IIAII or 11011 it may be better to use equations 5.5 to 5.8 and 
substitute IILI! = 211A1I. 

5.2.3 Complexity of set operations 

For the purposes of calculating complexity upper bounds, it is assumed that sets are 
implemented as ordered lists defined using fixed length arrays. A linear order relationship 
is assumed to be defined on all possible elements of the set (i.e. set is completely ordered 
as opposed to partially ordered). This does not affect the result of the algorithms but will 
avoid unnecessary iterations and searches through the unordered elements of a set. A 
typical strategy is to number all concepts and implement sets as bit strings with set 
membership in the set indicated by the bit that correspond to the concept number. This 
takes advantage of modern CPU architectures with 32 and 64 bit, bitwise operations to 
improve the efficiency of set operations. Effectively this means that the following 
complexity bounds will be used on sets: 

Operation Complexity 

Set operations: union, copy/assignment, set O(IISettil + IISehll) 
cardinality 

Set operations: test for subset and proper subset (c 0(max(IISetdl,IISet211)) 
and ~), test for set equality, set intersection (n) 

Single element insertions O(l) 

Test for set membership for single element 0(1) 

Set initialisation O(IISetlll) 

Set cardinality O(IISetIID 

For the union, copy/assignment, set cardinality operations on concept intents the bound 
O(IIAII) is used whilst the bound 0(11011) is used for set operations on concept extents. For 
subset and proper subset testing, test for set equality and set intersection operations on 
concept intents O(max(IIO'II)) is used, whilst O(max(IIA'II)) is used for concept extents. 
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These bounds are however not very sharp since in implementation a single CPU 
operation would for example perform 32 or 64 comparisons on set elements. 

5.2.4 AddAtom theoretical performance 

The theoretical (worst case) performance of lattice construction algorithms is expressed 
using the input and output sizes of the algorithms. This is done in two ways: firstly, as the 
time complexity associated with the construction of the complete lattice of the context. 
Since the output size is exponential, a second complexity metric called the delay is also 
used. An algorithm for listing a family of combinatorial structures is said to have 
polynomial delay (Johnson et al. 1988) if it executes at most polynomially many 
computational steps before either outputting each next structure or terminating. An 
algorithm is said to have a cumulative delay d (Goldberg 1993) if at any point in any 
execution of the algorithm with any input p the total number of computational steps that 
have been executed is at most d(p) plus K.d(p) where K is the number of structures that 
have been output so far. If d(p) can be bounded by a polynomial of p, the algorithm is said 
to have a polynomial cumulative delay. 

The number of concepts of the lattice is exponential in the worst case (i.e. a Boolean 
lattice). Furthermore, the problem of determining the number of concepts in the lattice is 
NP-complete (Kuznetsov 1989, 2001). In this sense, any lattice construction algorithm 
unavoidably has intractable (i.e. exponential) worst case behaviour, both in time (since 
each node has to be generated) and in space (since each node has to be stored). Lattice 
construction algorithms are therefore differentiated in terms of their time delay 
characteristics. An algorithm can therefore be considered efficient if it generates the lattice 
with a polynomial time delay and space linear in the number of all concepts in the lattice. 
Although "dense" contexts that approach this limit may not be used very often in practice, 
the theoretical complexity of an algorithm nevertheless expresses an aspect of its 
performance and is therefore relevant. 

A bound for the theoretical worst-case time complexity of AddAtom will be shown below to 
be O(IILlI.IIOI12.max(IIO'II)). (The discussion will be based on the optimised form of this 
construction algorithm, as described in section 4.6.) 

As an aid to the discussion, appendix B contains an outline of the algorithm, highlighting 
its main loops and instructions that add to its complexity characteristics, assist in the 
analysis of the complexity. 

One approach to estimating an upper time bound for constructing the lattice, L, from 
scratch, is to consider AddAtom_oj as the upper bound for inserting a single object, OJ, into 
the lattice (including all the time required for all the recursive calls to AddAtom and all the 
calls to GetMeet). Let Housekeeping_oj be the upper bound for doing the housekeeping in 
preparation for inserting OJ into the existing lattice but excluding the calls to AddAtom. The 
upper time bound for constructing L would then be: 

O(Lj:1 toIiOIiAddAtom_oj+ Lj:1 to 11011 Housekeepin~oJ 

However, instead of attempting to derive upper bounds on each AddAtom_oj" another 
more global line of reasoning route will be followed. 

To this end, let AddAtom_Total be the upper time bound on executing all instructions 
relating to all calls to AddAtom, in order to insert all objects into L including the calls to 
GetMeet. Let Housekeeping_Total be the upper bound for the total amount of time taken for 
the housekeeping and preparation for the construction of the complete lattice. The 
complexity of the algorithm would then be bounded by: 

O(AddAtom_Total + Housekeepin~Total) 
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It will be shown below that an upper bound on Add Atom_Total is O(IILII.IIOfmax(IiO'II», 
and that an upper bound on Housekeeping_Total is O(IILII.IIOII.IIAID. Under these 
assumptions, an upper bound on the algorithm to construct the lattice is then: 

O(IILlI·(IIOfmax(IIO'II)+ 1101i·IiAII» 

Since we are interested in order of magnitude estimates of the time for constructing a 
lattice, L, the lesser term may be left out since it will be dominated by the greater when 
constructing large lattices. A resulting upper bound (Le. worst case) estimate for 
constructing L is thus O(IILlI.IIOW.max(jIO'II». 

The following three subsections deal with the complexity of each of the three parts of the 
algorithm. 

AddAtom complexity 

Looking at the functioning of AddAtom and its parameters, it is clear that there is only one 
recursive call made to AddAtom for each concept in the lattice. This is since concepts are 
only created within AddAtom and there are no concepts that are deleted or duplicated. 
The maximum number of generator concepts for all the lattices Lj is in fact the total 
number of concepts in the lattice (Le. IILIi). Furthermore, for each generator concept that is 
used as parameter to AddAtom, the outer for loop (using candidate as variable) is executed 
for each of its parent concepts (a maximum of 11011 times for each generator concept). The 
maximum number of iterations of the outer for loop across all invocations of AddAtom 
would therefore coincide with O(IILlI.ilOil). 

Within the first and outer for loop of AddAtom, the maximum number of algorithmic steps is 
determined by the maximum number of steps taken by GetMeet or the inner for loop (using 
g as variable), whichever is biggest. NewConcept contain only concepts that are 
prospective parents for the new concept and this list is reduced during each iteration. 
NewConcept's number of elements is bound by the maximum number of parents of any 
concept i.e. 0(11011). Within the inner for loop a number of set operations on sets of 
concept intents are executed. The most complex of these operations is the subset and 
proper subset tests which is bound by O(max(IIO'Ij). Therefore the number of steps taken 
by the inner for loop during each iteration of the outer for loop is bound by 
O(IIOII·max(IIO' II»· 

The complexity of the last for loop is dominated by the others and therefore it is not 
considered in the complexity bound. 

Below it will be argued that the complexity of a single call to GetMeet is bound by 
O(IIOII.max(IIO'II». The number of algorithmic steps taken by all invocations of AddAtom to 
inset all objects into the lattice is therefore bound by O(IILlI.IIOII.(IIOII.max(IIO'II) + 
1101I·max(ilO'II))) == O(IILII·IIOW·max(IIO'II»· 

GetMeet complexity 

GetMeet traces a path between the parent of a generator concept and a meet of a subset 
of Intent(o) somewhere above it. The maximum number of iterations of the outer while loop 
is bounded by the number of attributes in the intent of generator (Le. O(max(IIO'II». The 
maximum number of times the for loop can be executed is bounded by the maximum 
number of parents of a concept (i.e. 1I0lD since each parent has at least one attribute less 
in its intent. Since the instructions within the while loop is of 0(1) complexity, the 
complexity of a single call to GetMeet is O(IIOII.max(IIO'Ij). 

HousekeepinQ_ Total complexity 

The complexity bound of Housekeeping_Total is determined by the second and outer for 
loop (with 0 as variable). Within it the two inner for loops are executed O(IILJII) times per 
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object - i.e. OCLj=1 to lIollllql) =: O(IILlI.IIOII) times for inserting all objects. Within these for 
loops the number of algorithmic steps of set operations executed are bounded by O(IiAI!) 
and 0(1) for the first and second for loops respectively. The complexity of 
Housekeeping_Total is therefore bounded by O(IILII.IIOil.IiAII). 

Theoretical complexity comparison 

The following table summarises the algorithmic complexity for other construction 
algorithms6 

Algorithm Incremental I 
Batch 

Complexity 

Bordat Batch Time complexity O(IIOIi.IIAW'.!ILIi) 
Polynomial delay =O(IIIOII.IIAII ) 

CbO, 
Kuznetsov 

Batch Time complexity =ocIlOW.IiAIi.IILlD 
Polynomial delay =0(1I01l3·IIAII) 

Chein Batch Time complexity =0(I!OW.1IAII.IILI!) 
Polynomial delay =0(111011' ·IIAII) 

Dowling Incremental Time complexity = O(lIoW.IIAII.IiLII) 

Godin Incremental Time complexity = OCllLln 

Lindig Batch Time complexity =O(IIOW.IIAII.IILII) 
Polynomial delay =O(IIOlfIiAII) 

NextClosure, 
Ganter 

Batch Time complexity = O(lloW.ilAII.IILlI) 
Polynomial delay = O(IiOW.IIAID 

Norris Incremental Time complexity = O(IIOW.IIAII.IILII) 

Nourine Incremental Time complexity = 
0«11011 + IIAID·IIOII·IILII) 

Valtchev N/A The complexity of the procedure assembling 
lattices LJ and L2 into the global lattice L is 
0«11011 + IIAII)(IiLdl·IILIIl + IILlI·IIAII))
LJ and L2 can however be built in parallel. 

AddAtom Incremental Time complexity =0(IILIi.i1011".max(1I0'1i» 

For the purpose of direct comparison and since 110'11 < IIAII, 110'11 can be substituted with 
IIAII. A slightly less sharp complexity bound for AddAtom is therefore O(IILlI.IIOfIIAII). 
The AddAtom complexity estimate is therefore cubic in nature relative to the lattice size. 
This is a feature that it shares with most other algorithms. Since this estimate is not 
quadratic relative to the number of concepts, as is the Nourine algorithm, it might seem 
that AddAtom does not offer very much in terms of theoretical performance overall. 

The complexity bound as stated is however not very sharp. One area where the 
theoretical complexity is overstated is within GetMeet. The maximum length of a path in 
GetMeet is stated as 110'11 but in general no path would stretch from OL to lL (implied by a 

6 	 Where these algorithms have been improved as discussed in Kuznetsov and Obiedkov (2002), the 
complexity of the improved algorithm is given. 
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path length of 110' II). It is interesting to note that if it could be proved that GetMeet return 
each of the respective meet concepts above a particular generator concept only once, the 
total combined length of all paths traced in calls to GetMeet to insert a single object would 
not exceed the total number of concepts in the lattice. This is because none of such paths 
can cross each other except at the meet of a subset of Intent(o). Under this assumption 
the maximum number of iterations of inner for loop for each concept on the path is the 
number of parents of that concept. The total number of iterations of the for loop across all 
invocations for the insertion of one object is therefore the total number of arcs in the 
lattice. Therefore O(Lj=l to 1101111< jlD :s; 0<lIAII.IIOII.IILlI) (or 0(Y21IAII.IILlD in the case of a Boolean 
lattice) would be an upper bound on the complexity of all calls to GetMeet across all the 
recursive calls to AddAtom to insert all objects of the context (for Boolean lattices that is). 
For the algorithm as stated in section 4.6, used in the wide comparison study in section 
5.4 this is not the case, but the version of the algorithm in appendix A makes use of this 
optimisation. The complexity bound derived here is however still an upper bound for this 
algorithm. 

Another area where the theoretical complexity bound is not very sharp is in the AddAtom 
part of the algorithm. The theoretical complexity bound assumes that the number of 
iterations of the outer for loop is bounded by the number of arcs in the lattice. In the 
algorithm itself however, only concepts with at least some attribute in common with the to­
be inserted object will be visited and therefore not all arcs will be "followed" during the 
iterations of the for loop. For non-Boolean lattices with 110'11 « IIAW this will be a very 
significant portion of the concepts in the lattice that will not be visited by the for loop. To 
quantify this further, consider a Boolean lattice and an object intent 0'. There are in 
general 211AIHlo'li concepts in the lattice that have no attribute in common with 0'. Clearly for 
non-Boolean lattices this number will be significantly less, but for many contexts this is still 
very significant, indicating an overestimation of the overall complexity. 

The use of 11011 as the upper bound to the number of parents of a lattice leads to an 
overestimate of the total number of arcs in a lattice. A case in point is the fact that 
Boolean lattices have on average V2.IIAII inbound or outbound arcs per concept - far fewer 
than the upper bound 11011 used here. 

The AddAtom algorithm can be easily adapted to be symmetrical and insert attributes into 
the lattice and link them to their extents instead of inserting objects into the lattice and 
linking them to their intents. Using the same reasoning AddCoatom, the dual incremental 
concept lattice construction algorithm would have a complexity bound of 
O(IILII.IIAW.max(IIA'II» which may include smaller terms than that of AddAtom. 

The best way to obtain clarity on this and other issues is via empirical studies. The next 
two sections present the results of the pilot and wider empirical studies. The results of the 
empirical studies support the claims on the over estimation of the theoretical complexity of 
AddAtom and indicate that it does indeed perform very well and is often the best 
performer of the algorithms surveyed. 

5.3 EMPIRICAL PERFORMANCE: PILOT STUDY 

The pilot study was conducted to establish the relative performance of AddAtom using the 
code described in chapter 7 to seek prima facie evidence that would justify a wider study. 
The basic strategy of the pilot study was to implement the incremental lattice construction 

7 The notation a « b indicates that A is significantly smaller than b by some measure. 
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algorithms of Godin et al. (1995b)8 and Carpineto and Romano (1993) using the same 
base code and data structures as AddAtom (described in chapter 7). The pseudo code of 
the implemented algorithm can be found in appendix A (note that there are differences to 
the algorithm in section 4.6). This would serve as a good indication of the relative 
performance of the algorithm and clearly indicate if the time performance was worse (or 
not) than that of the Godin or Carpineto algorithms, justifying the effort of a wider study. 

Note that for the pilot study EA-Iattices were generated and the Godin and Carpineto 
algorithms were modified to generate EA-Iattices. 

In addition to the Godin and Carpineto algorithms, the Grand algorithm (Oosthuizen 
(1991)) was also available for comparison but due to it using different data structures and 
utility functions as well as being implemented in a different programming language (refer 
to chapter 7 for further discussion), it was not included in the study since it would not 
make a apples-with-apples comparison possible. The performance of Grand is however 
worse than AddAtom in all types of contexts by a significant margin. 

The pilot study comparison showed that AddAtom is indeed faster than the Godin and 
Carpineto algorithms and this suggested that a more thorough study of the algorithm's 
performance would be worth while. However, it also exposed the fact that the code base 
and data structures were inefficient and that a wider study would require a revised 
strategy towards the data structures and utility functions (also refer to chapter 7). 

For the pilot study, care was taken to ensure a valid comparison. To this end, the 
algorithms were implemented on the same base-code and performance tests run under 
the same platform. However, any inefficiency in the particular implementation approach 
and data structures could have negatively penalised the relative performance of the Godin 
and Carpineto algorithms. This is because the data structures used could have 
conceivably suited AddAtom better and could have given it an unfair advantage under the 
experimental comparison. To avoid this situation from influencing the outcome, a number 
of additional performance metrics, other than time, were collected. These metrics tracked 
basic lattice operations such as lattice closures and set operations and did confirm the 
trend of the time based results. 

A number of artificial and "natural" data sets were used as contexts for the experimental 
comparisons. The artificial data sets were randomly generated whilst the natural data sets 
were taken from the well-known UCI Machine Learning Repository (Blake and Merz 
1998). 

The following table provides an overview of the data sets and describes the notation used 
to identify the data sets. 

Data set Description 

Rnd-100-YY-XXX A random data set of XXX objects. Each object possesses 
exactly YY attributes, randomly chosen from 100 possible 
attributes. When referring to the data set as a whole, the 
notation Rnd-100-YY is used. 

I 

Bool-XX A data set of XX objects. The data set has XX attributes. Every 
object has XX - 1 attributes and differs from each of the other 
objects in only one attribute. The resulting lattice of this 
arrangement forms a Boolean lattice. When referring to the I 
data set as a whole, the notation Bool is used. 

8 The implementation follows the description in Godin et al. (1995b) and not the improvements suggested by 
Kuzetnov and Obiedkov (2002). 
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Data set Description 

SPECT A natural data set taken from the UCI repository called the 
Single Proton Emission Computed Tomography (SPECT) set. 
The dataset has 22 binary feature patterns and one overall 
diagnosis attribute. When referring to the data set as a whole, 
the notation SPECT is used. 

BCW-XXX The Breast-Cancer-Wisconsin natural data set taken from the 
UCI repository. XXX indicates the number of objects in the 
context. Objects were randomly selected from the data set. The 
set of discrete attributes was used unaltered. The total data set 
consists of 698 objects, each object has 10 attributes, whilst 
each of the 10 attributes could assume anyone of 10 values. 
Some objects do not possess a value for a specific attribute 
(the value is unknown). Such objects were still included in the 
set and the unknown value was treated as an eleventh value of 
that specific attribute. Each value of each attribute was treated 
as a se arate attribute in the ex erimental results. Theoreticall p p y 
there were thus 10 x 11 = 110 attributes, but in practice the 
data set contained only 86 attributes since all attribute values 
were not observed. When referring to the data set as a whole, 
the notation BCW is used. 

The key metrics describing the data sets that were used are as follows: 

Set name 11011 IIAII 11111 I IILII 11< II 110'11 I IIAII 

Rnd-1 00-1 0-40 40 98 379 312 871 10% I 

I Rnd-1 00-1 0-45 45 100 434 351 990 10% 

Rnd-1 00-1 0-50 50 98 477 413 1198 10% 

Rnd-100-10-75 75 100 725 697 2197 10% 

Rnd-1 00-1 0-1 00 100 100 975 1058 3425 10% . 

Rnd-1 00-1 0-150 150 100 1433 1957 6567 10% 

Rnd-1 00-1 0-200 200 100 1915 3031 10423 10% ! 

Rnd-100-30-15 15 100 392 426 1206 26% • 
I 

· Rnd-100-30-20 20 100 520 799 2588 26% ! 

Rnd-100-30-25 25 100 643 1313 4589 26% 

Rnd-100-30-30 30 100 779 2183 7962 26% 

Rnd-100-30-35 35 100 914 3329 12623 26% I 

• Rnd-100-30-40 40 100 1039 4288 i 16652 26% 

Bool-07 7 7 42 128 448 86% ! 

• Bool-08 8 8 56 256 1024 88% 
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Set name 11011 IIAII 11111 IILII 11< II 1I0'II/IIAII 
Bool-09 9 9 72 512 2304 89% 

Bool-10 10 10 90 1024 5120 90% 

Bool-11 11 11 110 I 2048 11264 91% 

Bool-12 12 12 132 4096 24576 92% 

I BCW-030 30 69 300 240 564 14% 

BCW-035 35 71 350 317 795 14% 

BCW-040 40 75 400 312 751 13% 

BCW-045 45 77 450 323 783 13% 

BCW-OSO 50 84 500 499 1349 12% 

BCW-075 75 84 750 701 1948 12% 

BCW-100 100 I 84 1000 1091 3331 12% 

BCW-200 200 86 2000 1704 5455 12% 

Tests for the pilot study were performed on an Intel 110 mhz Pentium processor based 
platform with 256 megabytes of memory under the Windows 2000 Professional operating 
system. Note that EA-Iattices were generated for the pilot study. 

The following graphs summarise the results. 
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Chapter 6: Compressed pseudo-lattices 

'Everything should be made as simple as possible, but not simpler.' 

Albert Einstein 

In this chapter we define the notion of a compressed pseudo-lattice. A compressed 
pseudo-lattice essentially consists of a sublattice embedded in a bipartite graph. This 
allows for the reduction of the size of the lattice but allows control over the amount of 
information that is lost in the process. The aim of this is to simplify the lattice but still retain 
the essence of the context it represents. 

The discussion starts by introducing and developing an I R (Information Retrieval) problem 
and develops the problem domain into one where it is argued that a compressed pseudo­
lattice plays a Significant role. The properties and use of compressed pseudo-lattices are 
discussed as well as their interpretation. It is argued that this approach may have 
significant advantages over approaches using the complete lattice in particular areas. 

6.1 A BIPARTITE DATABASE AND QUERY OPERATION 

We now sketch an IR problem domain and do not consider lattices until the next section. 
For this problem domain we define a database D =(S,';; >related to a context C =(0, A) 
as conSisting of a set, S, of concepts which are partially ordered by the relation';; (this set 
need not be a lattice although it is one of the possibilities). An incidence relation I can be 
derived from the partial order that describes which objects possesses which attributes. 
The database is restricted in that the maximal elements are the attribute concepts 
(representing A) in C and the minimal elements are the object concepts (representing 0) 
in C. In addition D may contain any number of intermediate concepts M (i.e. S = attribute 
concepts u intermediate concepts u object concepts). The upward closure of any concept 
c, denoted by UpwardClosure(D, c), is the set of all concepts greater than or equal to c in 
terms of the partial order, .;; . The downward closure is the set of concepts that are less 
than or equal to c, and is denoted by DownwardClosure(D, c). The extent of a concept is 
defined as the set of objects in its downward closure. Similarly the intent of a concept is 
the set of attributes in its upward closure. 

We consider the problem of retrieving a set of objects relevant (in some abstract and as 
yet undefined way) to a specific query. The query is formulated as a set of attributes in the 
form Q {alo a2, ... , am} (i.e. Q ~ A). Different query operations, taking Q as a parameter, 
can be defined on D. The result of a specific query operation 0 based on database D with 
respect to query Q is denoted by OeD, Q). A query operation may return any number of 
concepts from D, the objective being the identification of concepts relative to the query Q. 

Notwithstanding the foregoing, we choose to interpret the final results in terms of objects, 
namely those objects that are in the union of the extents of the concepts returned by the 
query operation. As a consequence the results of a query can be interpreted as clusters of 
objects represented or referenced by the concepts returned by the query operation. 

Different query operations may be evaluated in terms of the well-known information 
retrieval (lR) metrics, precision (the proportion of objects returned by OeD, Q) that are 
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relevant in relation to all objects returned by OeD, Q») and recall (the proportion of relevant 
objects returned by OeD, Q) in relation to all relevant objects in the database, D) (Salton 
1989). Conversely using the same query operation, different databases of the same 
context can be evaluated against each other in terms of these metrics. Clearly only 
concepts in a given database can be returned. Therefore it can be expected, for a given 
query, that a database containing more 'meaningful' concepts will return concepts that 
result in higher precision and recall values. We argue that a compressed pseudo-lattice 
(as defined later on in this chapter) is a versatile data structure to represent various 
databases of this type and could prove useful in researching information retrieval and 
machine learning strategies. 

Incidence relation 
nw Iw II nc 11g 21g mo Ib sk 

LE .( .( .( 

BR .( .( .( .( 

FR .( .( .( .( .( 

DG .( .( .( .( .( 

sw .( .( .( .( 

RD .( .( .( .( .( 

BN .( .( .( .( 

MZ .( .( .( .( 

Figure 6. 1: The Living Context and its associated bipartite graph 

The simplest example of such a database is that of a bipartite graph (essentially 
representing the incidence relation of the context) with objects at the bottom, attributes at 
the top and arcs from each object to all the attributes it possesses in a specific context, as 
illustrated in figure 6.1 . 

Consider OBP(D, Q), a query operation on the bipartite database, D in figure 6.1. For a 
query Q we define OBP(D, Q) =Q. As a trivial example we see that for Q ={mo, Iw} (where 
the key of figure 6.1 indicates that mo means 'motile' and Iw means 'lives in water', etc.) 
the query OBP(D, Q) would return {mo, lw}, effectively referencing the set of objects {LE, 
BR, FR, DG, SW, RD} (Le. the extent of the concepts mo and lw). This can be verified by 
inspecting the line diagram in figure 6.1 of the database for DownwardClosure(D, mo) = 
{LE, BR, FR, DG} and DownwardClosure(D, lw) = {LE, BR, FR, SW, RD}. 

A shortcoming of the bipartite database and of OBP is the fact that the query operation 
returns a very general set of objects, each of which has any, but not all, of the attributes 
speci'fied in the query Q. (Thus leech, bream, frogs, spike-weed and seeds are either 
motile and/or live in water.) In IR terms the query operation has low precision but high 
recall. One way of improving the precision is to introduce a new intermediate concept 
called 'mo_lw' that groups all objects that possesses both mo and lw into the database. 
This concept would be connected via upward arcs to mo and lw and all objects possessing 
mo and lw would have upward arcs to the new concept. In this way, a query operation 
might be able to use the new concept in arriving at the results of the query presumably 
yielding better results. 

Continuing this \ine of thought and introducing new 'useful' or 'meaningful' intermediate 
concepts, the other end of the spectrum would be to use a formal concept lattice or EA­
lattice as the database. Databases of this type are discussed in the next section. 
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6.2 A CONCEPT LATTICE DATABASE AND QUERY OPERATION 


RD .f 
BN .f .f 
MZ .f 

Entities/objects Attributes 

LE Leech nw Needs water 
BR Bream Iw Lives in water 
FR Frog Lives on land 
DG Dog nc Needs chlorophyl 
SW Spike-weed 11g 1 leaf germination 
RD Reed 21g 2 leaf germination 
BN Bean mo Is motile 
MZ Maize Ib Has limbs 

sk Suckles young 

Figure 6.2: The EA-/attice of the Living Context (the unit- and zero concepts are not 
shown) 

Figure 6.2 shows an EA-Iattice for the Living Context. It has clearly partitioned sets of 
attributes (top row of concepts), objects (bottom row) and intermediate concepts. The unit­
and zero concepts of the lattice have been excluded from the database. (They are, 
however always implied.) The intents of some of the EA-formal concepts are shown as a 
guide. 

OMee,{D, Q) is a query operation on a lattice database and is defined as the meet or 
infimum of the attributes of Q in the lattice (Le. the concept (Q', Q") corresponding to all 
the objects that have the attributes Q in common and all the attributes this set of objects 
have in common). For the query Q = {mo, lw} the resulting objects are therefore {BR, FR, 
LE} since the meet of {mo, Iw} is concept n7 which has an extent of {BR, FR, LE} (Le. 
objects possessing all of the attributes in Q are returned). Note that it is now possible to 
obtain a result with a higher precision due to the fact that concepts lower down in the 
database discern between objects in a more granular way. (Thus leeches, bream and 
frogs are all both motile and live in water.) 

6.3 AN ADAPTED SUBLATTICE DATABASE AND QUERY OPERATION 

Assuming that we were looking for all the fish objects in the Living Context (in this case 
only BR qualifies) with query Q = {mo, lw} (Le. all the living objects that can move and live 
in water). The lattice-based query operation OMeet has a higher precision and recall than 
OBP' OMee. has however the disadvantage that it is not tolerant of errors or ambiguity in 
either the context or formulation of the query terms as indicated in the following example. 

Assume, for example, that we are looking for all edible plants in the context using the 
query Q {nw, ne, llg. 21g}. (The key of figure 6.1 indicates that nw means 'needs water', 
ne means 'needs chlorophyll', llg means 'one leaf generation' and 2lg means 'two leaf 
generation', all attributes being related to edible plants.) OMeet(D, Q) would not return any 
relevant objects since the meet of Q is not in the database - the meet is in fact the zero 
concept, OL, in the lattice. In this case the query was too specific and the query operation 
was unable to find a concept corresponding to exactly Meet(D, Q). This is clearly not ideal 
since the database did contain objects relevant to Q and the query operation should 
ideally have coped with the situation. 
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{nw,nc,1Ig} 

Figure 6.3: A database (compressed pseudo-lattice) with intermediate concepts with an 
intent that has more than three attributes removed 

One strategy that could help in this case and increase the tolerance for errors is to specify 
a query operation for a context of n attributes that will return the minimal concepts that 
have at most k :s; n attributes, all of which are in Q. Since the domain of discourse as 
defined requires that queries only be formulated in terms of concepts already contained in 
the database we can adopt one of two strategies. The first is to redefine the query 
operation to examine all concepts and return the appropriate minimal concepts. In t~lis 
case, the database D is kept the same. A second option is to modify the query operation 
and the database. For reasons that will become clear, we will pursue the latter option. 

Removing all intermediate concepts in the lattice in figure 6.2 that have more than k = 3 
attributes creates the new database in figure 6.3. Where the original EA-Iattice concepts 
have been removed, dashed arcs indicate successors defined by the partial ordering 
relation. Note that a subset, L, of the database namely all the concepts except DG, BR, 
FR, MZ, RD, SW and BN still forms a sublattice when the unit- and zero concepts are 
appropriately inserted (i.e. it forms a poset of which the supremum and infimum of all pairs 
of concepts exist and therefore a sublattice of the EA-Iattice in figure 6.2 - this may be 
verified by inspection). This lattice (identified by all the concepts connected with solid arcs 
as well as all attribute concepts plus the implied unit- and zero concepts) does not 
correspond to either the formal concept lattice or EA-Iattice lattice for the given context but 
is a sublattice of the EA-Iattice of the Living Context. A query operation on the database in 
figure 6.3 now cannot discern between objects that have more than k attributes in 
common and would therefore presumably still return objects even when the query is too 
specific. 

6.4 REMOVING CONCEPTS FROM A LATTICE 

An EA-Iattice as defined in chapter 2 has a fixed set of concepts for a fixed context. It is 
however possible to remove some of the concepts from the EA-Iattice and still have a 
complete sublattice (albeit not a formal concept lattice or EA-Iattice) that is based on the 
original partial ordering relationshiplO. For example, an EA-Iattice can clearly be reduced 

1Q Throughout this discussion, it is assumed that the same ordering relationship is used. Thus the ordering x 
y either holds in all lattices in which concepts x and y appear, or it holds in none of them. 
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to a formal concept lattice by removing EA-formal concepts defined by EA-formal 
conditions 1 to 4 (section 2.5) if they are not generated by condition 5, but retaining EA­
formal concepts defined by condition 5. Appropriately removing even more concepts will 
result in a set of concepts that constitute a lattice (Le. a complete sub lattice), but not a 
formal concept lattice (as per example in section 6.3). 

In order to ensure the retention of lattice properties, when removing concepts from a 
lattice, steps must be taken to ensure that both the supremum and infimum of any two 
remaining concepts exist and are unique (as required by the definition of a lattice). Should 
this not be the case, the resulting set of concepts will not be a sublattice. Removing a 
concept from a lattice thus involves not only the removal of the concept from the lattice's 
set of concepts, but also the revision of the order relationship so that the parents and 
children of the removed concept are partially ordered as per the original :::;EA ordering 
relationship. Removing atoms or coatoms from an EA-Iattice is a particular case where 
this is possible as formulated in the next theorem. 

Theorem 6.1: Removing an atom or coatom from an EA-formal concept lattice or 
sublattice results in a set of remaining concepts that is a complete sublattice with respect 
to the partial ordering relation :S;EA. 

Proof: Let Lo be the concept lattice and LI the set of concepts remaining after 
removing an atom or coatom concept. To prove that LI is a lattice we need to 
prove that two arbitrary concepts x, y E L J have a unique supremum and infimum 
in relation to 

We first prove that x and y have a unique infimum. By implication x, y E Lo. Let q 
Inf(Lo, {x, y D. Two alternatives exist depending on whether q is in LJ (Le. whether it 
was possibly an atom removed from Lo or not). If q is indeed in L j then q is a lower 
bound of x and y because q :::;EA x and q y in L J since q was the infimum of x and 
y in Lo and the partial ordering relationship of L j was rede'fined to preserve all the 
transitive ordering relationships between the concepts of Lo in L j • Since q was also 
the unique greatest lower bound of x and y in Lo and no other concepts have been 
added to LI! q is therefore also the unique greatest lower bound of x and y in L j • 

Thus, the infimum of x and y in LI exists and is unique. 

If q is not in LJ then q must be an atom that was removed from Lo. (q can not be a 
coatom since then x =q or y =q in which case either x or y will not be part of LI') 
Furthermore, any possible lower bound of x and y in LJ must be a concept that is 
smaller than q in Lo, since q was the unique greatest of all lower bounds of x and y 
in Lo. But q is an atom in Lo and therefore it has only one child concept in Lo 
namely OL' The OL is a lower bound of all concepts in LI and Lo including x and y. 
Since q do not exits in L!J OL also is the only lower bound of x and y. The infimum 
of x and y in LJ is therefore unique. 

A similar argument can be used to prove that the supremum of x and y in LI is 
unique with q possibly being a coatom. Since the supremum and infimum of x and 
y in LI exist and are unique, LI is a sublattice. 

Using this theorem it is therefore clear that atom or coatom concepts can be removed 
from a lattice (or sublattice) without violating the lattice property. Since this theorem is 
generic, it can be extended to apply to formal concept lattices. Removing any concept 
does however mean that the resulting lattice is not the EA-formal concept lattice (or formal 
concept lattice) of the specific context since all EA-formal concepts are not present. We 
follow the convention of calling these derived lattices, sublattices and only refer to a lattice 
as an EA-Iattice (or formal concept lattice) when it contains all the EA-formal concepts (or 
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formal concepts) of the context. Although some of the attributes or objects concepts may 
have been removed from the lattice (but not from the context - the context remains 
unchanged), the atoms and coatoms (i.e. concepts covering the zero concept or covered 
by the unit concept, respectively) of the resulting sublattice may effectively be regarded as 
its new objects and attributes respectively. 

Theorem 6.1 can be generalised to removing whole areas of the lattice by progressively 
removing one atom or coatom at a time whether it involves object concepts, attribute 
concepts or intermediate concepts. The atoms and coatoms of the sublattice define it 
sufficiently since the resulting lattice still only contains EA-formal concepts. The set of 
atoms and coatoms of a sublattice is called a cut on the EA-Iattice and consists of two 
(possibly overlapping) sets called the atomic cut and the coatomic cut. These latter sets 
correspond to the set of atoms or of coatoms of the sublattice respectively and both sets 
are therefore anti-chains. An EA-Iattice can be reduced to a given sublattice by removing 
all concepts that are not comparable to elements of the atomic cut or the coatomic cut as 
discussed below. That is, if y E atomic cut of the sublattice and x E coatomic cut of the 
sublattice, then the following EA-formal concepts are retained in the sublattice: all EA-
formal concepts c such that y c x. 

There are five conditions under which EA-formal concepts (excluding lL and Od are 
removed to create a sublattice defined by its cut on an EA-Iattice: 

• 	 A concept that is smaller than some concept in the atomic cut. 

• 	 A concept that is larger than some concepts in the coatomic cut. 

• 	 A concept that is smaller than some concept in the sublattice's coatomic cut but 
not comparable to any concept in the atomic cut. 

• 	 A concept that is larger than some concept in the sublattice's atomic cut but not 
comparable to any concept in the coatomic cut. 

• 	 A concept that is not comparable to any concept in either the sublattice's atomic 
cut or the sUblattice's coatomic cut. 

Note that the zero- and unit concepts are always part of the sublattice since only atoms 
and coatoms may be removed. Due to the definition of an EA-Iattice, the definitions of the 
zero- and unit concepts however remain constant and are not dependent on the elements 
of the sublattice. (They are however not shown in the compressed pseudo-lattice figures 
below). 

All concepts not in the resulting sublattice (identified by the above conditions) can be 
progressively removed from the original EA-Iattice. All these concepts and their relations 
with the remaining concepts are effectively 'compressed' into either the unit concept or 
zero concept. In figure 6.4, the relationship of the original EA-Iattice to the sublattice's cut 
(formed by the atoms and coatoms of the sublattice) is schematically depicted. 
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Figure 6.4: A cut on an EA-Iattice defines a compressed pseudo-lattice (with an 
embedded sublattice) that can be created by the removal of atoms and coatoms of the 
EA-Iattice 

In the resulting compressed pseudo-lattice data structure we choose to keep the attribute 
and object concepts, but indicate their relationship to concepts that were previously in 
their upward or downward closure by using virtual arcs. The exact nature of these virtual 
arcs will be defined later. 

It is important to note that, as a result of the five different conditions under which concepts 
can be removed from the original EA-Iattice with respect to the cut, the nature of the 
removed concepts may be much more complex than depicted in figure 6.4. For example, 
instead of compressing the EA-Iattice to a certain level (Le. removing concepts with the 
same cardinality of the extent or intent), cuts may be defined to effectively remove entire 
sets of attributes, objects or areas from the EA-Iattice. It is also worth noting that, in 
general, an arbitrary sublattice cannot be generated via compress lattice operations since 
removing non-atom concepts or non-coatom concepts can in certain circumstances also 
yield sublattices - there are thus limitations to this approach of generating sublattices. 

6.5 THE USE OF THE INTENT- AND EXTENT REPRESENTATIVE OPERATIONS 

Removing concepts from an EA-Iattice has the effect of removing what was previously the 
infima and suprema (meets and joins) of certain subsets of concepts of the EA-Iattice, 
these effectively moving to the zero- and unit concepts respectively. 

Repeating the query operation OMeet for Q = {nw, nc, ltg, 21g} in figure 6.3, we find that 
there is no meet in the database (i.e. the meet is the zero concept in the sub lattice a 
'trivial' meet). The intent- and extent representative operations defined in chapter 2 
provides a logical solution for the problem and a revised query operation using these are 
therefore considered. This operation will define a 'second-order meet' in the case of a 
trivial meet. 

Suppose a query operation, OAIR(D, Q), returns the approximate intent representatives 
(AIR) of Q in the sublattice embedded in D in figure 6.3, i.e. OAIR(D, Q) = AIR(DEmbed, Q) 
where DEmbed is the sublattice embedded in D (all concepts joined with normal arcs except 
those with dashed arcs such as DO, BR, FR, MZ, RD and SW). If Q nw, nc, llg, 21g} then 
S = {nw, 21g, nc, 11g, n4, n6, BN} and {n6, BN} is the set of minimal elements of S. Thus 
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OAIR(D, Q) returns AIR(DEmbed, Q) ={n6' BN}, assuming DEmbed is the sublattice in figure 6.3. 
OAIR(D, Q) thus references the objects {BN, MZ, RD, SW} and therefore solves the 
problem of a too specific query. 

Inspecting the intents of the concepts in AIR(D, Q) we see that BN, for example, has the 
attribute II in its intent that is not in Q. If we wish to restrict a query operation to find only 
concepts possessing attributes in Q (i.e. exactly representing Q), then we need to use the 
exact intent representative operation (EIR). 

Let OEIR(D, Q) =EIR(DEmbed, Q). For Q = {nw, nc, llg, 21g} we saw that AIR(L, Q) = {n6, BN} 
whilst EIR(L, Q) = {21g, n6} since T {BN} in the calculation of EIR. OEJR(D, Q) = EIR(DEmbed, 
Q) = {2Ig, n6}' Thus, in the present example, OEIR(D, Q) references the same set of objects 
as before, namely {BN, MZ, RD, SW}. 

The OEIR and 0 AIR operations can however be applied to the database in figure 6.1, in 
which the embedded sublattice is reduced to only the set of attributes. In that case, OBP(D, 
Q) =OEIR(D, Q) =OAIR(D, Q). If D is the sublattice in figure 6.2, then OMeet(D, Q) =OEIR(D, Q) 
for a non-trivial Meet(D, Q). 

The point is that both the OAIR and OEiR operations are defined in terms of a sublattice and 
should the sublattice be changed (keeping the same context) as in the examples for 
figures 6.1 to 6.3, the representative sets also change. When Q has a non-trivial meet (i.e. 
not the zero concept) in the lattice or sublattice then EIR(D, Q) = AIR(D, Q) = Meet(D, Q). 
The representative sets of Q were defined to deal with situations when Q has a trivial meet 
(as is often the case when working with sublattices) and yield better results. The 
operations may be seen as extensions of the meet or join operations. 

6.6 THE COMPRESSLATnCE OPERATION 

Incidence 
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Figure 6.5: A CompressLattice example compressing EA-Iattice Do to a bipartite graph, D5 

The CompressLattice operation removes an atom or coatom concept y from the sublattice 
embedded in the database and replaces the concept with virtual arcs (indicated as 
dashed arcs). The virtual arcs interconnect all the parent- with all the child concepts of y. 
Figure 6.5 shows an example of a compressed pseudo-lattice structure where all the 
intermediate concepts have been removed by successively using CompressLattice 
operations. Similarly, figure 6.3 can be verified to be the result of successive 
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CompressLattice operations on the EA-Iattice in figure 6.2, removing the concepts DG, BR, 
FR, MZ, RD, SW, Ow, Olb 0'2 and finally 013' 

It is important to note that the CompressLattice operation works from a particular direction. 
In the examples, the lattice was compressed in the upward direction, but the operation is 
equally valid when compressing the lattice from the top downward (or any combination of 
the two). Essentially, compression in the upward direction involves the removal of atoms, 
while compression in the downward direction involves the removal of coatoms from a 
sublattice. 

The CompressLattice operation creates a data structure that is not an EA-Iattice but one 
that does contain an embedded sublattice. This data structure is called a compressed 
pseudo-lattice. A compressed pseudo-lattice consists of EA-formal concepts 
interconnected by virtual- and lattice arcs. The concepts connected by lattice arcs (with OL 
and lL implied) define a sublattice called the embedded sub/attice (of the compressed 
pseudo-lattice). The virtual arcs represent the relationship between the sublattice and the 
context. Using parameter names to imply types, the CompressLattice operation is defined 
as follows in terms of its pre- and post-conditions: 

I/==~======================~=~~~~============~== 

CompressLattice(aCompressedLattice, aConcept, aDirection) 

Return outCompressedLattice 


//=============================~==~=~=========~~~======== 
//Pre-condition: aConcept is an atom or coatom in the embedded 
//sublattice in aCompressedLattice, it has at least one lattice arc in 
//aDirection and no lattice arcs in the opposite direction 
I/(except to the unit or zero concept). 
IIPost-condition: outCompressedlattice retains all the concepts 
I/(except possibly aConcept) and arcs of aCompressedLattice, except in 
I/the following respects. If aConcept is an attribute or object 
I/concept, then lattice arcs connecting it to other concepts in 
l/aCompressedLattice are replaced by virtual arcs in 
//outCompressedLattice. Otherwise and its arcs are not in 
//outCompressedLattice. Instead, virtual arcs link each of aConcept's 
//parents to each of aConcept's children. 
//============~===============~=~==~~~==~=~~=~~~~=~~~~==~ 

Note that the definition above is in functional terms and the definition changes slightly 
when defined in an object-oriented fashion as discussed in chapter 7 where the 
references to aCompressedLattice and outCompressedLattice fall away. 

6.7 DEFINITION AND PROPERTIES OF COMPRESSED PSEUDO-LATTICES 

A compressed pseudo-lattice essentially represents a sublattice of an EA-Iattice from 
which a number of atoms and/or coatoms have been removed. Additionally the relation of 
the sublattice to the context from which it was derived is preserved. As a data structure it 
represents a particular context C = (0, A, I). The data structure consists of a number of 
EA-formal concepts that are connected by one of two types of directed arcs: lattice arcs 
and virtual arcs. Lattice arcs preserve the existence suprema and infima across the 
concepts they interconnect; virtual arcs do not necessarily. The concepts are partitioned 
into three sets: the attribute concepts (of the context), the object concepts (of the context) 
and a number of intermediate concepts. A compressed pseudo-lattice contains an 
embedded sublattice. The embedded sublattice is the set of all concepts complying with 
one of the following: 
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• 	 The concept is an attribute concept with no incoming virtual- or lattice arcs. 

• 	 The concept has at least one lattice arc connecting into or out of it. 

• 	 The unit and zero concepts. 

This corresponds to the set of concepts remalrung after reducing an EA-Iattice to a 
sublattice by successive removal of atom and coatom concepts, as discussed previously. 
The properties of the compressed pseudo-lattice are thus implied by the CompressLattice 
operation. It is important to note that, for a given set of concepts, there may be more than 
one compressed pseudo-lattices that can be defined upon that set of concepts using 
different cuts on that lattice. This is due to the fact that concepts can be interconnected by 
either virtual- or lattice arcs. Both the concepts and arcs thus uniquely define the 
embedded sublattice. The context and the atoms and coatoms (i.e. the cut) of an 
embedded sublattice (Le. the atomic and coatomic cut) also uniquely define a compressed 
pseudo-lattice. 

The following are the compressed pseudo-lattice properties. They define sufficient 
conditions for a data structure to be a valid compressed pseudo-lattice. Note that the 
conditions listed are not disjoint they may be related to or imply one another. 

• 	 EA-formal concepts: All concepts are EA-formal concepts as defined in chapter 
2. 

• 	 Poset: Concepts in a compressed pseudo-lattice form a partially ordered set with 
respect to the partial ordering relation (~EA) specified by the directed arcs {lattice or 
virtual). 

• 	 Object and attribute concepts: All objects, OJ, in the context have a 
corresponding unique associated object concept in the form (E, E'), E = {OJ}. 
Similarly, all attributes, ab in the context have a corresponding unique associated 
attribute concept in the form (F', F), F = {ai}. All object- and attribute concepts are 
not necessarily in the embedded sublattice. If some are, they form the atoms and 
coatoms of the embedded-lattice. If they are not, they have only virtual arcs from 
or to other concepts. 

• 	 Context preservation: An object contains in its upward closure (following lattice 
or virtual arcs) all the corresponding attribute concepts specified in the incidence 
relation of the context, and no other attribute concepts. Similarly an attribute 
contains in its downward closure all its corresponding object concepts specified in 
the incidence rea Ition of the context, and no other object concepts. 

• 	 Unconnected object- and attribute concepts: An attribute concept cannot have 
any outgoing arcs to concepts other than the unit concept and similarly, an object 
concept cannot have any incoming arcs from concepts other than the zero 
concept. Object- and attribute concepts are therefore not represented as 
generalisations or specialisations of each other. 

• 	 Unique intermediate concepts: No two intermediate concepts may have the 
same extent or the same intent. This property (as well as the above property) 
implies that any intermediate concept has at least two upward and two downward 
arcs (virtual or lattice). This does not preclude attribute- and object concepts from 
having the same extent or intent respectively or sharing the same extent or intent 
of an intermediate concept (in such cases one of the concepts will have only one 
parent or child concept). Such attribute or object concepts are represented as 
distinct concepts in a compressed pseudo-lattice. 
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• 	 Non-empty intent: No concept (other than IL and Q) may have an empty intent or 
extent (i.e. all objects must possess at least one attribute but some attributes may 
not have any object possessing the attribute). This limits the contexts for which a 
valid compressed pseudo-lattice may be constructed. Although the property is not 
strictly required, the practical benefits of contexts that do not conform to this 
requirement are not immediately clear. Attribute concepts may have an empty 
extent. 

• 	 Embedded sublattice: The set of all concepts in the embedded sublattice 
together with the partial ordering implied by the lattice arcs used in the embedded 
sublattice, constitute a sub lattice when appropriately connected to the implied unit­
and the zero concepts (i.e. the supremum and infimum of any pair of concets exits 
and are unique). 

• 	 Supremum and infimum: Any set, S, of concepts in the embedded sublattice has 
a supremum in the embedded sublattice itself. Similarly S has an in'fimum in the 
embedded sublattice. 

• 	 Intermediate virtual arcs: Intermediate concepts may not be connected to one 
another via virtual arcs. Their virtual arcs must end in an attribute concept or start 
at an object concept. This property is implied by the fact that only atoms and 
coatoms of a sublattice are removed. 

• 	 Exact representative connection: Virtual arcs in a compressed pseudo-lattice 
are not to arbitrary intermediate concepts and respect the EIR and EER operations. 
An object concept, 0, is only connected via virtual or lattice arcs to EIR(L, Intent(o), 
0) (where L is the embedded sublattice) and no other concepts. A similar property 
holds for any attribute a and EER(L, {a}, a). These dual properties are critical in 
ensuring that the closure operations function as expected (e.g. that the downward 
closure of a concept contains its extent either via lattice- or virtual arcs). 

• 	 Arc duplication: A concept may only have one arc (either lattice or virtual) to any 
concept that covers it. 

• 	 Cover: A concept may not have an arc to any other concept to which it is indirectly 
linked11 • 

The compresses pseudo-lattice definition and properties show that a compressed pseudo­
lattice is essentially a bipartite graph (virtual arcs) that contains an embedded sub lattice 
(lattice arcs). Furthermore, the compressed pseudo-lattice properties ensure a well­
defined and unique structure for a given context and a given sequence of 
CompressedLattice operations. Various operations can be defined on a compressed 
pseudo-lattice, but the most important are: 

• 	 CompressLattice and ExpandLattice (described in the next section). 

• 	 Closure and LatticeClosure, where LatticeClosure follows only lattice arcs when 
discovering concepts whilst Closure follows any type of arc. 

• 	 AddAtom, i.e. insert a new object into the context and embedded sublattice by 
using a modified incremental lattice construction algorithm that operate under 
compressed pseudo-lattices. 

• 	 InsertVirtualObject, an alternative to AddAtom that does not use a computationally 
expensive lattice construction algorithm to update the embedded sublattice (refer 

11 Concept x is indirectly linked to concept y iff x has a path to y via one or more intermediate concepts. 
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to section 6.11). The object is inserted into the compressed pseudo-lattice by 
simply creating virtual arcs to its exact intent representatives. 

6.8 THE EXPANDLATTICE OPERATION 

A complementary operation to CompressLattiee, namely ExpandLattiee, can be defined to 
enlarge the embedded sublattice of a compressed pseudo-lattice by the insertion of new 
atoms or coatoms into the embedded sublattice. ExpandLattiee essentially recreates 
concepts removed by CompressLattiee. The operation works in a particular direction, 
starting with a concept that is incident to at least one virtual arc. In general, a concept may 
be incident to zero, one or more than one virtual arcs. Some virtual arcs may connect the 
concept to objects while others may connect it to attributes. When invoking the 
ExpandLattice operation, a 'direction' has to be specified. If the concept is an atom of the 
embedded sublattice and it has virtual arcs connecting to it, then the direction is 
designated 'downwards' and the operation will create new atoms in the lattice below the 
concept. Alternatively, if the concept is a coatom of the embedded sublattice and it has 
virtual arcs connecting to it, then the direction is designated 'upwards' and will create 
coatoms above the concept. If the concept is both an atom and coatom, then the direction 
may be specified as either downwards or upwards. 

In the upward direction, starting with concept e, the ExpandLattiee operation determines the 
minimal number of coatoms that must be inserted into the embedded sublattice to replace 
the virtual arcs from e with lattice arcs to these inserted concepts. Concept e is directly 
connected to these concepts by lattice arcs replacing e's virtual arcs. To comply with 
compressed pseudo-lattice properties further generation of concepts and/or creation or 
removal of arcs may be necessary. Similar remarks apply pari passu when expanding a 
given concept in the downward direction. 

Note that the CompressLattice and ExpandLattiee operations are not symmetric in that the 
one does not reverse the other. In most instances ExpandLattiee does not recreate the 
concepts removed via a single CompressLattiee operation. It is however always possible to 
completely compress an EA-Iattice into a bipartite graph or to use ExpandLattice operations 
to completely rebuild the EA-Iattice from a bipartite graph. Our implementation of this latter 
series of operations indicates that it is computationally more expensive than using a 
'traditional' incremental lattice construction algorithm to construct a lattice but it still 
indicates the versatility of a compressed pseudo-lattice. The context preservation and 
exact representative connection properties of a compressed pseudo-lattice play important 
roles in the ability to rebuild the EA-Iattice from a compressed pseudo-lattice. 

ExpandLattice is defined below in terms of its pre- and post conditions. Again, parameter 
names imply their corresponding types. 
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/I 
Function ice( ice, aConcept, aDirection) 


Return outCompressedLattice 

11============================== ============ 
I I Pre-condition: aConcept is a concept in aCompressedLattice that has 
Ilvirtual arcs in aDirection. 
IIPost-condition: outCompressedlattice retains all the concepts and 
Ilarcs of aCompressedLattice, except in the following respects. If 
IlaDirection is down (up), then the minimal number of new atom 
II (coatom) concepts are inserted into outCompressedLattice's embedded 
Iisublattice to cover aConcept and the its virtual arcs with 
Illattice arcs. Additional concepts are created and arcs are created, 
Ilremoved or relabelled if and if necessary to maintain 
Ilcompressed lattice properties. If appropriate, object (attribute) 
Ilconcepts are reconnected to the embedded sublattice via lattice arcs. 
11=================================================================== 

As an ExpandLattice example, consider figure 6.5 with the compressed pseudo-lattices Do 
to Ds. When starting with Ds, i.e. the bipartite graph, the following order of ExpandLattice 
operations will reconstruct Do: D4 =ExpandLattice(Ds, c, Downward); D2 =ExpandLattice(D4, 

e, Downward); Dl = ExpandLattice(D2, a, Downward) and finally Do is the result of successive 
ExpandLattice calls that expand the concepts nJ, n2 and n3 in a downward direction. Note 
that ExpandLattice(D4, e, Downward) does not produce D} because D3 does not contain all 
the atoms created by ExpandLattice needed to replace the virtual arcs to e with lattice arcs 
(this is a example of CompressLattice and ExpandLattice not being symmetrical). 

6.9 INTERPRETATION OF COMPRESSED PSEUDO-LArnCES 

Since the embedded sublattice of a compressed pseudo-lattice is indeed a sublattice, the 
interpretation of the concepts in a compressed pseudo-lattice is analogous to that of 
concepts in a concept lattice. In a concept lattice, concepts are partially ordered in terms 
of generalisation and specialisation of their intents and extents. A parent concept, p, of a 
concept, c, is (in a concept lattice) the smallest concept that is more general than c and 
therefore moving upwards in a lattice involves the smallest increments of generalisation 
supported by the 'evidence' in the context. In a compressed pseudo-lattice this continues 
to be the case, except for the fact that concepts that were removed are not 'discovered' or 
visited due to being 'uninteresting', not useful or insignificant in the application context in 
which the compressed pseudo-lattice is being used. Algorithms based on compressed 
pseudo-lattices are therefore not able to discern the relationships between objects that are 
part of clusters referenced by removed or compressed concepts. 

One may argue that this can be detrimental to such algorithms but it should be 
remembered that classification algorithms based on other structures such as hierarchies 
(for example Quinlan's (1986) ID3 decision trees and Fisher's (1987) COBWEB) do 
precisely this: they minimise the clusters or concepts used to describe a context often with 
greater classification accuracy than using more concepts. This is because at a certain 
point the additional resolution obtained by using more concepts is used to approximate 
and describe the noise inherent in the data rather than depicting the abstractions that hold 
in the larger population from where the data was taken. These approaches have proved 
successful in many areas of research, particularly in KDD and machine learning. The 
compressed pseudo-lattice gives the researcher the ability to apply the ideas used in 
other areas of research on concept lattices whilst still maintaining the benefits of the lattice 
properties. In essence the removal of concepts restricts the vocabulary of concepts 
available to KDD or machine learning algorithms in a controlled way without the loss of 
many desirable features of concept lattices. 
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One way of viewing the removal of atoms or coatoms from a concept lattice is to see the 
removal thereof as the change of the attributes and objects of a context. The context is 
redefined in terms of the new attributes and objects defined by the atoms and coatoms of 
the embedded sublattice. An embedded sublattice in which attributes are removed can 
therefore be seen as an abstraction of the context where attributes are more specialised 
by conjoining some of the original attributes. A removed object is 'replaced' by a more 
general object, this being the next more general concept in the EA-Iattice. The virtual arcs 
in the compressed pseudo-lattice in these cases indicate and preserve the relationship 
between the original context and the new implied context with its specialised attributes 
and generalised objects. 

Figure 6.6 is an example in which the EA-Iattice of the Living Context has been 
compressed (or reduced) to a hierarchy (or in 103 terms a decision tree) that describes 
the context as a set of objects all of which need water. These objects are then divided into 
those that live on land (II) and those that live in water (Iw) and so forth. This description or 
classification of the context is not incorrect - it is just not the only description or 
classification of the Living Context. The use of a compressed pseudo-lattice also has the 
benefit that even though the embedded sublattice is essentially representing a hierarchy, 
the fact that there are objects that belong to more than one branch of the hierarchy is 
easily represented (e.g. concepts FR, RD). 

MZ 
//'/ ; 

/,/ ;

S@) 

Figure 6.6: A compressed pseudo-lattice structured to contain a hierarchy that implies the 
context and EA-Iattice in figure 6.7 

The embedded sublattice of a compressed pseudo-lattice implies a new context with more 
specialised attributes and generalised objects. Figure 6.7 shows the incidence relation of 
the new (implied) context as well as the EA-Iattice. Note that the attributes of this new 
context are now conjunctions of the attributes of the previous context. 

90 

 
 
 



I Incidence relation 
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Figure 6.7: The EA-Iattice and context implied by the compressed pseudo-lattice in figure 
6.6 

6.10 WHY COMPRESSED PSEUDO-LATTICES? 

'A little knowledge that acts is worth infinitely 
more than much knowledge that is idle' 

Kahlil Gibran 

Key questions surrounding the use of compressed pseudo-lattices are: Why would we 
remove formal concepts from a formal concept lattice in the first place? Is it not better to 
work with all formal concepts? The answer to the question lies in the nature of the formal 
concept lattice: a formal concept lattice contains a concept for all possible clusters of 
objects supported by the incidence relation (Le. every possible grouping of objects that 
have some attributes in common are represented by a formal concept). This results in a 
data structure that is very large and, in the worst case, exponential in size. In addition, the 
interpretation and use of this data may be obscured by the large amount of detail (often 
caused by noise in the data). Authors such as Duquenne et al. (2001) have expressed the 
difficulty in working with large concept lattices and have called for useful approximations 
of lattices. Hereth and Stumme (2001) generate Iceberg Concept Lattices in which they 
have purposefully removed concepts to reduce the lattice size. Iceberg Lattices are a 
specialisation of compressed pseudo-lattices in the sense that only atoms are removed. 
Mephu Nguifo (2001) also do not use the whole concept lattice in the context of machine 
learning. Compressed pseudo-lattices allow one to retain the benefits of a lattice, but 
allow for the selective and discretionary removal of concepts, thereby reducing the size of 
the lattice. Should it be required, the EA-Iattice can be re-created using the ExpandLattice 
operation. 

Another observation regarding the nature of a concept lattice is that some of the concepts 
may not, in some sense, represent 'meaningful' or 'useful' clusters of objects. An example 
is when attributes in a context do not imply each other12. For example in the Living 
Context, the occurrence of the attribute II always implies the attribute nw. 

12 An implication rule is a rule in the form B --> C where Band C are sets of attributes. The support of a rule is 
the number of objects in a context for which this rule holds whilst the confidence of the rule is the number of 
times the rule holds in all objects that have B in their intent. A rule with a confidence of 100% indicates an 
implication rule. 
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As another example, consider the concept lattice for the context in figure 6.8 showing a 
simple context and its EA-Iattice. The incidence relation of figure 6.9 is an extension of 
that of figure 6.8 in that the objects of figure 6.8 have been duplicated and an attribute f, 
which is not implied by any other attribute(s), introduced in the intent of the duplicated 
objects. The additional attribute, f, was added to the intent of each of the new duplicated 
objects so that the new context has pairs of related objects that differ only in respect of 
one attribute (e.g. olf has the same intent as 01 except for the additional attribute 1). 
Figure 6.9 shows the EA-Iattice of this context. In this context, the attribute f is not implied 
by any other attribute since any combination of the attributes, a to e, that occurs with f in 
some set of objects in the context, also occurs without f in some other set of objects in the 
context. 

~ 
n4 \ Incidence relation 

abc d e 
.f .f .f .f 
.f .f .f .f .f 

.f .f .f .f 
.f .f 

03 04 

Figure 6.8: The EA-Iattice of a simple context 

Incidence relation 
a b c d e f 
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01f .f .f .f 
02f .f .f .f 
03f .f .f 
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Figure 6.9: An attribute, j, not implied by any other attribute(s) introduced into the context 
of figure 6.8 creates a large number of additional concepts 

The attribute f is thus not implied by any combination of the other attributes. With regard to 
deriving implication rules from the lattice, no implication rule based on f is possible and yet 
the lattice explicitly represent all possible combinations of f and the other attributes in the 
newly created concepts (newly created concepts are shaded). The effect of adding such 
an attribute to a context can clearly be seen to significantly increase the number of 
concepts in the lattice. This is in fact the worst-case example, where the addition of each 
new attribute (or object) doubles the number of concepts in the lattice. We argue that such 
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structures and attributes are not very useful in machine learning and KDD and are best 
not represented in the lattices used in these applications. 
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Figure 6.10: A compressed pseudo-lattice of the context in figure 6.8 in which the 
embedded sublattice corresponds to that of figure 6.8 

Concept n6 in the EA-Iattice (figure 6.9) has no implication rule associated with it and has 
a very little support. It is thus doubtful whether it is useful in any KDD or machine learning 
effort and would therefore worth removing by first using CompressLattice to remove the 
objects underneath it and then the concept itself. The compressed pseudo-lattice in figure 
6.10 shows how the creation of additional concepts can be avoided by using the 
CompressLattice operation to remove the concepts involving f (Le. all shaded concepts in 
figure 6.9) - these relations are not lost and are still indicated by the virtual arcs. The 
embedded sublattice of this compressed pseudo-lattice corresponds to the EA-Iattice in 
figure 6.S. The objects in the compressed pseudo-lattice therefore still have f in their 
upward closure. The advantage of a compressed pseudo-lattice is that even tough most of 
the information is not lost in figure 6.10, should it be required, the ExpandLattice operation 
can be used to regenerate the lattice in figure 6.9. 

This example may seem artificial but in KDD and machine learning, a large number of 
objects are usually used to construct a lattice (e.g. a training set). If the sample is large 
enough, statistically most combinations of attributes that are not implied by other 
attribute(s) will occur in the set of objects. As a result, large number of concepts will be 
created and parts of the lattice will resemble a Boolean lattice. Even if there are very clear 
implication rules, if only one object does not conform to the rule (i.e. the confidence is not 
exactly 100% due to noise or errors in the data) its insertion into the lattice will cause the 
creation of all these additional concepts despite the low support for them. Put differently, 
only one exception to the rule will cause an otherwise implied set of attributes to loose this 
property, even though, statistically speaking, there is a high dependence correlation. 

A typical approach in KDD and machine learning is to use the number of objects in the 
extent of each concept as a measure of support for the implication rules on its attributes. It 
is thus important to keep the objects in the data structure to calculate this measure. Since 
this is exactly what happens in a compressed pseudo-lattice it is ideal for this purpose. 

In the field of KDD and machine learning, the ability to remove concepts from large lattices 
may prove beneficial in a number of respects. The reduced size of the lattice will improve 
the efficiency of algorithms whilst the removal of erroneous or noise-induced concepts 
with a small support may improve the results of such algorithms. A compressed pseudo­
lattice based on a suitable compression strategy, offers researchers the ability to reduce 
the concepts in a lattice to those clusters that most accurately represent the context. This 
is done by removing clusters closer to the top of the lattice that are too general to allow 
meaningful classifications whilst also removing concepts that are too specific closer to the 
bottom of the lattice. 
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Previously the meet and join operation on a lattice was used to find the concept that 
represents objects that are relevant to a set of attributes. The introduction of the intent 
representative sets now allows these to be used as approximate or 'rough' meets in 
algorithms. This enhances the ability of algorithms to cope with noise in both the data as 
well as in the query itself (as indicated in the IR examples earlier in this chapter). Clearly, 
however, the results are dependent on the structure of the database. The purpose of KDD 
and machine learning in such situations is then to search for or construct a database 
(sublattice) that best typifies the inherent clusters, rules and implications of a context 
instead of generating, by brute force, all possible rules and implications that can be 
derived from a context. To paraphrase Einstein, the lattice should be as simple as 
possible but not simpler. The benefit of using intent and extent representative sets are that 
they are defined in terms of discrete operations and behave in a predictable fashion, 
whereas operations using 'fuzzy' and other approximations often result in a number of 
anomalies due to their inherently non-discrete nature. 

It should be noted that the approaches described above are in general not appropriate for 
all areas where concept lattices have been used. Some authors (e.g. Wille (2001» have 
described numerous case studies where the line diagrams of concept lattices aid human 
understanding of a context. Clearly compressed pseudo-lattices are less appropriate in 
these areas of application. 

Compressed pseudo-lattices are however an alternate method of supporting conceptual 
views (Wille 2001, 2002). Conceptual views are formed when focussing on a particular 
part of the context. In this case a certain number of columns (Le. attributes) in the cross 
table of the context are selected and the conceptual view is then defined as the lattice 
formed by only those columns. Each concept in the conceptual view is annotated with the 
number of objects that are in the extent of the concept, in this way a human is able to 
focus on a specific domain or view within the context which may assist in finding relevant 
information. It is easy to see that the lattice for a particular conceptual view can be easily 
extended using virtual arcs to form the compressed pseudo-lattice for which the 
conceptual view is the embedded lattice. The advantage of this approach is that it is then 
easier (from a data rather than a human perspective) relate the conceptual view back to 
the original concept. In addition, compressed pseudo-lattices are not restricted to 
sublattices defined by the columns of the cross table. Compressed pseudo-lattices 
therefore provide a more flexible but still formal way of defining conceptual views. 

6.11 COMPRESSION STRATEGIES AND CRITERIA 

The start of this chapter defined a very specific domain of discourse of which there are 
three components: the context, the database and the query operation. A compressed 
pseudo-lattice may serve as such a database. The separation of the database and query 
operation creates an interesting deviation from some traditional information retrieval 
approaches: the organisation of the database co-determines the outcome of the of the 
query operation. Given a context and a query, the result of the query depends on the 
compressed pseudo-lattice used to represent the context. The question that arises is thus: 
'Are there databases derived from compressed pseudo-lattice databases that, on 
average, result in better retrieval for the same context and query operations?' 

Although a full exploration of this question is beyond the scope of this text, limited 
experimental results to date suggest that there are indeed better methods of organisation. 
Specifically, it appears that a database consisting of the EA-Iattice or formal concept 
lattice of a given context need not, in general, be the best database. In many instances 
Significantly compressed EA-Iattices performed equally or better, hinting at an amount of 
redundancy embedded in concept lattices. Further experimentation is required in order to 
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explore compression strategies and concept pruning criteria that are likely to lead to 
optimal performance in various contexts. 

In general, there are a number of possible compression strategies that seem to deserve 
such exploration. The most obvious is the one stated above where a lattice is compressed 
up to a specific level of above a support threshold. 

It is useful to have a compression strategy combined with a threshold on the embedded 
sublattice size. The embedded sublattice is then repeatedly compressed until the 
embedded sublattice size is below the threshold. This can be combined with an adapted 
incremental lattice construction algorithm where the pruning mechanism is invoked after 
each individual object or batch of objects has been inserted into the compressed pseudo­
lattice. This has the added advantage of limiting the size of the lattice and therefore the 
time taken to build a compressed pseudo-lattice. 

Compression strategies that have been preliminarily tested use a combination of the 
following: 

• 	 Compress concepts with an extent of size smaller than t and larger than u. This is 
a more general approach than just excluding concepts at the bottom of the lattice. 
This approach is taken by Hereth and Stumme (2001). They call the resulting 
structures iceberg lattices. 

• 	 Compression based on the number of arcs to child or parent concepts in the 
lattice. 

• 	 Compression based on EP(c), an estimate of prior probability of the concept c. 
EP(c) is the number of objects in the extent of c divided by the total number of 
objects in the context. Refer to Oosthuizen (1994b) for a discussion and examples. 

• 	 Compress, based on the difference between an estimate of the expected 
probability EXP(C)13 and EP(c). This compression strategy performed the best in 
most preliminary test results. 

A useful variation on the insertion of an object into a lattice, that does not require the 
search for and insertion of the necessary new concepts into a lattice, can be defined as 
follows. Instead of the creation of concepts, the new object is simply connected to EIR(L, 
Intent{o)) by means of virtual arcs to create a compressed pseudo-lattice. The example in 
figure 6.11 shows such a compressed pseudo-lattice after the living has been extended 
with the objects DF, SN and GR. Even though the context and example is relatively simple, 
it does show that a number of operations were already avoided (e.g. the creation of an 
intermediate EA-formal concept ({SN}, {mo, nw, lw}) ). When large lattices are involved, 
this method of insertion saves much processing. This function is called InsertVirtualObject. 

13 ExP(c) = EP(aj) x EP(az) x ... x EP(an), where ai is an attribute in the intent of c. This estimate assumes that 
the attributes are independent. 
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Figure 6. 11: A compressed pseudo-lattice after the living has been extended with the 
objects DF, SN and GR by connecting the new objects via virtual arcs to EIR(L, lntent(o») 
using the InsertVirtualObject function 

In this manner large numbers of objects can be inserted into a concept sublattice for the 
purposes of KDD or machine learning without incurring the potentially exponential time 
complexity of the creation of the EA-Iattice. Since the support of each concept in both the 
EA-Iattice and the compressed pseudo-lattice is exactly the same, algorithms using these 
statistical metrics will operate correctly on these lattices. 

A related strategy is to insert an object into the lattice by the compressed pseudo-lattice 
adapted AddAtom algorithm. Upon reaching a threshold on the lattice size, the lattice is 
compressed to a size below this threshold using a suitable compression strategy and the 
CompressLattice function. This procedure is repeated for all inserted objects. Since the size 
of the lattice can be controlled, a compressed pseudo-lattice for a large number of objects 
can be efficiently constructed. For an appropriate compression strategy this could 
potentially prevent the degradation of the performance of KDD or machine learning 
algorithms if it is assumed that 'uninteresting' or 'unnecessary' concepts are not 
represented in the resulting lattice by being compressed. Note that in the process new 
concepts would continuously be created by AddAtom. CompressLattice would remove 
concepts but not necessarily the recently created ones if the compression strategy rates 
the latter more important or 'meaningful'. In this manner the lattice size remains under 
control. Experiments have shown that given sufficient data and an appropriate 
compression strategy, the structure of the embedded lattice stabilise. Different data sets 
from the same universe with objects presented in different sequences also resulted in 
substantially similar embedded lattices hinting to the fact that this approach avoids the 
problems created by hill-climbing searches that are very sensitive to the order in which 
training sets are presented to these algorithms. This is a topiC for further research. 

6.12 IMPLEMENTATION AND DISCUSSION OF PRELIMINARY RESULTS 

The potential gain in computational efficiency of having a compressed pseudo-lattice 
should be weighed against the advantages of having a larger and more complete set of 
concepts available in a particular domain. Preliminary results however suggest that a 
compressed pseudo-lattice may be a useful generic data structure for various IR 
(information retrieval) and machine learning problem domains. 
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Chapter 7: AddAtom implementation 

The AddAtom algorithm evolved over a number of years and eventually led to the notion 
of a compressed pseudo-lattice. The author was responsible for modifying and 
maintaining the implementation environment of the Grand algorithm of Oosthuizen (1991). 
Originally, most of the utility data structures and supporting code for both AddAtom and 
compressed pseudo-lattice implementation was derived from the Grand algorithm's 
implementation environment but over time this was completely redeveloped since Grand 
and AddAtom use completely different strategies. The code was initially developed in C 
but was later completely re-written in an object-oriented fashion in C++. The most 
important C++ classes used in the implementation are the set and lattice classes 
respectively (sections 7.2 and 7.3). In addition to the basic functionality of lattice 
construction, a number of other functionalities, such as the caching of the lattice structure 
to disk, were also implemented. 

This chapter outlines the class functions; the tradeoffs made when implementing the 
algorithm; as well as important features of the code such as memory optimisation, caching 
of results, etc. It ends with the discussion of several other implementation issues that were 
addressed. 

Note that the code used for the wider performance comparisons in chapter 5 is not 
discussed here. The AddAtom implementation for that particular exercise relied on the 
pre-existing code base of S. Obiedkov that had been used for prior comparative studies of 
lattice construction algorithms (Kuznetsov and Obiedkov 2001 and 2002). Also note that 
the algorithms for the pilot and wide experimental studies in chapter 5 were different. The 
pilot study implementation used the additional optimisations of appendix A whereas the 
wide study used the basic algorithm of section 4.6. 

An object-oriented notation is used for functions and not the functional notation used in 
previous chapters. 

7.1 EVOLUTION OF CODE 

The code from which the most recent implemented version of AddAtom emerged, has 
evolved over a long period of time, from 1995 to 2001. The coded was used by various 
researchers in areas of related to lattice construction, machine learning and machine 
translation. Various additions and extensions were implemented during this period of time. 
Three major versions of the code were produced: 

Version 1: The original Grand algorithm was described in Oostuizen (1991). This 
algorithm used heuristics to construct a lattice. The algorithm itself does not have much in 
common with the AddAtom since the Grand algorithm used a number of heuristics and 
consisted of a procedure that connected an object concept to each of the attribute 
concepts in its intent, one attribute at a time, whereas AddAtom considers all attributes of 
the object at once. A function called transform was used to ensure the integrity of the 
lattice in having unique suprema and infima. Grand was implemented in C. This code was 
maintained by the author and adapted for use in machine learning and other experiments. 

Version 2: The AddAtom algorithm was implemented in C using the Grand data 
structures, but with all the Grand lattice construction code completely replaced by the 
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AddAtom algorithm. The primary reasons for this was to modularise and clean up the 
version 1 code. In addition, the compressed pseudo-lattice data structures and functions 
such as virtual arcs, CompressLattice and ExpandLattice were also implemented. This all 
extensions to the code (relative to version 1) were completely written the author. 

Version 3: The object-oriented version of the version 2 code. All data structures were 
completely rewritten and the option of optimising whether on time or space complexity 
depending on the application. In order to provide the maximum flexibility a significant 
amount of modularisation and encapsulation was used in the class design. Version 3 was 
implemented in C++ by the author. A number of different compressed pseudo-lattice 
operations such as ExpandLattice were also improved. The primary reason for this rewrite 
was to obtain flexibility to use the code in many research projects. 

7.2 SET CLASS 

The most important class of the implementation (other than the lattice class itself) is the 
set class. It contains implementations set operations such as union, intersection, 
difference and set complement on sets of integers. These are the basic operations in the 
implementation of AddAtom and other lattice related algorithms. 

Each concept in the lattice is identified by a unique integer. A set may contain any number 
of concepts. In addition, representation of infinite sets is also supported. (An infinite set 
would be required to represent, for example, the complement of an empty set.) 

The set class represents the set as a string of bits and set operations such as union (or) 
and intersection (and) can therefore be very efficiently calculated using normal bitwise 
processor operations that operate on 32 or 64 bits at a time. 

The most important methods of the set class are (with parameter names implying types): 

• Initialise(anlnitValue) 

• And(aSet) Return aSet 

• Or(aSet) Return aSet 

• NotO Return aSet 

• FirstElementO Return anElement 

• NextElement(anElement) Return anElement 

• AddElement( anElement) 

• RemoveElement(anElement) 

• TestIfSetContains(anElement) Return aBoolean 

7.3 LATTICE CLASS 

In the lattice class, the lattice is represented by a list of nodes. Each node is numbered 
and this number serves as the index to that node. Each node has a number of attributes 
such as its name and support (Le. the number of concepts in its extent). In addition, each 
node has two sets that contain references to its parent and child nodes. This represents 
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the arcs associated with the node. In the case of compressed pseudo-lattices each node 
has two additional sets that contain its virtual parent and child nodes. 

In principle, a lattice can be represented as a set of sets (Le. a set of nodes where each 
node is a set of attributes representing the associated concept's intent) without explicitly 
representing the cover relationship (parents and children). Pragmatically, however, the 
explicit representation of the cover relationship is irnportant for the efficiency of the 
AddAtom lattice construction algorithm. Without it, cover relationships have to be 
rediscovered/inferred each time the lattice is traversed. 

Additionally, and also for efficiency reasons, the intent and extent sets of a node are 
stored explicitly with each node, despite the fact that these sets can be derived from its 
upward closure. The decision to explicitly store these sets represents a trade-off between 
space and time efficiency: to save on time, the sets are precomputed and stored, costing 
space. This developed into a lattice operation cache. The purpose of the cache was to 
keep the results of lattice closure operations in memory or on disk and avoid. This cache 
of pre-computed values significantly improved the performance of the lattice construction 
algorithms as well as the browsing and traversing thereof. 

The upward- and downward closure operations are important lattice operations. They 
return all the nodes above or below a node, respectively, and include the node itself. In 
addition to these standard closure operations, a number of variations were also 
implemented. These involve, for example, returning nodes encountered in a given 
direction (upwards or downwards) when: 

• Following a maximum number of successive arcs. 

• Following only lattice arcs in a compressed pseudo-lattice. 

• Following only virtual arcs in a compressed pseudo-lattice. 

The AddAtom function in the lattice class inserts a new object into the lattice. It 
implements the AddAtom lattice construction algorithm described in chapter 4. It inserts 
the object as a new node, creating and connecting the new intermediate nodes that are 
required to retain lattice properties. 

Due to the symmetry of lattices, all functions have duals that operate in the opposite 
direction (e.g. UpwardClosure and DownwardClosure; AddAtom and AddCoAtom). Rather 
than having separate functions for each of these, an additional parameter (aDirection) was 
added to each of the methods. This parameter identifies the direction of the operation (Le. 
either upwards or downwards). 

A number of the functions have been overloaded so that the functions can be called either 
with a single concept as parameter or with a set of concepts (e.g. instead of Closure 
returning only the upward closure of a single node, it can return the union of the upward 
closures of a set of nodes). 

The following Lattice class methods were implemented: 

• Closure(aNode, aMaximumLevel, aDirection) Returns aSet 

• UpwardClosure(aNode) Returns aSet 

• DownwardClosure(aNode) Returns aSet 

• EIR(anAttrSet, aNode, aDirection) Return aSet 

• AIR(anAttrSet, aNode, aDirection) Return aSet 
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• 	 AddAtom(aAttSet, anObject, RootNode, aDirection) Return aNode 

• 	 AddCoatom(aObjSet, anAttr, RootNode, aDirection) Return aNode 

• 	 CreateNewNode(aNodeType) Return aNode 

• 	 Link(aNodel, aNode2, aDirection) 

• 	 DeLink(aNodel, aNode2, aDirection) 

• 	 GetNodeIntent(aNodel, aDirection) Return aSet 

• 	 GetNodeExtent(aNodel, aDirection) Return aSet 

• 	 GetNodeType(aNodel, aDirection) Return aNodeType (e.g. returns all attributes is 
aDirection = upward) 

• 	 GetAllAttributes(aDirection) Return aSet 

• 	 GetAllObjects(aDirection) Return aSet 

• 	 Join(Attrs, aDirection) Return aNode 

• 	 Meet(Attrs, aDirection) Return aNode 

• 	 GetMinimaIConcepts(aSet, aDirection) Return aSet 

The PersistantLattice class was used to implement functionality such as persistency and 
the caching of concepts and closures. Over the period of time the code was developed a 
number of different lattice and other classes with various functionality and optimisations 
were developed. Although this approach was beneficial for experimentation, it did 
negatively affect the performance of the implementation. This was due to the increased 
number of function calls which required a significant amount of parameter passing and 
range checking. 

Various additional utility methods were also implemented to perform a number of 
commonly used basic functions. An exhaustive enumeration of these methods is not 
appropriate here. 

7.4 COMPRESSED PSEUDO-LATTICE IMPLEMENTATION 

Due to the similarity between compressed pseudo-lattices and EA-Iattices, a single class 
was used for the implementation of both. As was mentioned, this required the modification 
of methods such as AddAtom, Closure, EIR, Link etc. to be able to cope with a data 
structure in which both lattice- and virtual arcs can occur. In many of the lattice class 
methods mentioned above, this required yet another parameter to indicate whether the 
relevant operation (for example a closure operation) should follow lattice-, virtual- or both 
types of arcs. 

The following compressed pseudo-lattice related methods were added to the lattice class: 

• 	 Closure(aNode, aMaximumLevel, FollowVirtualArcs, aDirection) Returns aSet 

• 	 CompressLattice(aNode, aDirection) Return aSuccessIndicator 

• 	 ExpandLattice(aNode, aDirection) Return aSuccessIndicator 

• 	 InsertVirtuaIObject(anAttrSet, anObject, aDirection) 
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• Link(aNodel, aNode2, CreateVirtllalArc, aDirection) 

• DeLink(aNodel, aNode2, CreateVirtllalArc, aDirection) 

The extension of the AddAtom algorithm to operate on compressed pseudo-lattices 
greatly increased its complexity since a large number of exceptions that would not occur 
in EA-Iattices had to be tested and catered for (e.g. the removal of virtual arcs when 
adding concepts at the top or bottom of the embedded lattice and maintenance of these 
arcs). 

As was mentioned earlier, the ExpandLattice algorithm can be used as a non-incremental 
lattice construction algorithm that is an alternative to the AddAtom algorithm for 
constructing lattices. The basic approach would be to start with a fully compressed 
pseudo-lattice such as the bipartite graph in figure 6.1 and using successive ExpandLattice 
calls, construct the complete lattice. However, this strategy proved to be very inefficient 
and was ruled out as a useful lattice construction algorithm. Nevertheless, ExpandLattice is 
a useful operation in manipulating and forming compressed pseudo-lattices. 

7.5 IMPLEMENTATION ISSUES 

The most important hurdles encountered during the implementation and testing of the 
code stem from the exponential nature of a lattice as a data structure. This creates 
problems both in terms of the time and memory size needed to build and represent the 
lattice. A number of trade-offs thus presented themselves and had to be dealt with. Less 
efficient implementations used too many resources or took a long time to execute and 
test. 

7.5.1 Time 

To build a data structure that has an exponential number of elements, obviously and 
unavoidably takes an exponential amount time to complete. However, even in this context, 
inefficient coding can lead to even worse time inefficiencies than is necessary. 

A number of different implementation options were evaluated by implementing each as a 
different class and comparing the classes using test data sets. These options relate to the 
use of different internal data structures such as hash tables combined with lists instead of 
unordered sets. Different optimisations of the AddAtom algorithm as well as the 
calculation of meets and generator concepts were also considered. A number of ways to 
prevent the unnecessary consideration of concepts were also investigated. The algorithm 
in appendix A documents the algorithm with the best time performance. The strategy of 
caching closures of nodes was also implemented and did also improve the performance of 
the algorithms. 

7.5.2 Space I memory 

The amount of memory available for data structures is an important limitation and will 
always remain potentially problematic, since the worst-case number of lattice nodes is 
exponential in the number of attributes. The problem is thus no less acute now than when 
the first implementation of the AddAtom algorithm was developed (Le. in 1996) even 
though the average PC of today could probably handle data sets were problematiC at the 
time. To ameliorate the inherent problem of exponential space requirements, inefficient 
memory use should therefore be avoided wherever possible. 
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Since the algorithm is generic, any number of objects or attributes can, in principle, be 
added at any time. Thus, the maximum size of arrays and sets needed for a particular 
lattice cannot be reliably calculated beforehand. The maximum size of many of the sets is 
determined by the number of intermediate nodes, which is in turn determined by the data. 
It is a catch-22 situation in that to determine the limits, the lattice must first be built. 

Two alternative approaches were taken to address t~lis problem. The first approach 
declared a fixed amount of memory for each node and set. This strategy is very memory­
inefficient since the maximum size required is only needed in a limited number of 
instances. The second approach was to use variable length sets and lists. The first 
approach had the benefit of not requiring the reorganisation and additional testing 
required for variable length sets and lists used in the second approach and was therefore 
very time efficient. Using this approach with a data structure that is already exponential in 
size resulted in reaching the practical limit of memory very quickly on the smaller PC 
based platforms. 

The second approach is beneficial in terms of memory usage, but the increase in 
computing overheads to manage the data structure slowed the performance down. 

In the light of this time-space trade-off it was opted to retain both of the approaches as 
alternative lattice classes. The appropriate class were then chosen based on the 
availability of memory and computing time and power in the particular application. 
Typically the fastest approach possible was used when building lattices (usually on UNIX 
servers with large memories), whilst browsing lattices on smaller systems used a more 
memory efficient approach. 

Since many of the larger lattices built for testing could not be used in PCs running under 
Windows a persistent data structure and cache was implemented. This has the capability 
of keeping only a number of nodes in a memory cache and swapping them 'from disk as 
needed. This slowed down the performance considerably, but had the benefit that very 
large lattices could be traversed in a machine with a relatively small amount of memory. 
This cache was further extended to cache the upward and downward closures of concepts 
as they were calculated. This (pre-computed) closure cache improved the time efficiency 
of the AddAtom algorithm. 

7.5.3 Object-oriented implementation 

A significant decrease in performance was noted when changing form C to object-oriented 
and more modular C++ code (estimated at more than 30%). This was due to the 
increased modularisation and looser coupling of different data structures and objects as 
well as to the significantly increased number of function calls and parameter range 
checking. This lead to an increase in the number of function calls to access variables and 
data structures via formalised interfaces. It did have the benefit of making the 
experimentation with different memory, caching and optimisation strategies much easier 
since only small parts of the code needed to be changed. This was however at the 
expense of efficiency (also refer to section 5.3). 

7.5.4 UNIX and Windows 

Testing and implementation was conducted on both Windows-based operating systems 
as well as various flavours of UNIX. In order to minimise the problems of porting code 
between operating systems, the basic program used a text-based interface. A small 
number of operating system and hardware specific issues were dealt with using 
conditional defines in the code. This enabled the code to be compiled under both 
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operating systems with no modification and allowed development under Windows whilst 
large test runs were performed under UNIX. 

As output, the program created lattice files (with a *.Iat extension). These files were 
created in an operating system agnostic fashion which enabled the transferral between 
operating systems. 

For the purpose of constructing GUI-based interfaces, a Windows DLL library was created 
that exposed all the lattice object interfaces to any Windows-based application. 

7.5.5 Testing 

The AddAtom algorithm in its present form was not discovered immediately and came 
from an iterative process during which a number of refinements and optimisations have 
been made. During this process an intensive testing procedure was used to determine 
whether each resulting data structure was indeed a lattice, and to test the various 
compressed lattice properties. 

Some of the tests used were: 

• 	 Validating the lattice property by brute force (i.e. testing that any two nodes have 
only one supremum and infimum). 

• 	 Concepts labelled as attributes have no parents and object concepts must have no 
children whilst intermediate concepts must have both (the unit and empty concepts 
are not stored as part of the data structure). 

• 	 Objects are connected to the correct attributes after the building of the lattice and 
have not gained or lost any attributes in their intent. 

• 	 All node support values are correct. 

• 	 No intermediate node has only one parenVchild node (EA-Iattice property). 

• 	 Lattices built on the same context, but with objects in a different order resulted in 
the equivalent lattices (i.e. the two resulting lattices were isomorphic). 

• 	 No redundant links to nodes exist (i.e. there is not an direct and indirect arc 
between two nodes). 

• 	 All intermediate concepts have at least two parents and two children (EA-Iattice 
property). 

• 	 The attributes and objects of a concept is the same as all the attributes in its 
upward and downward closures. 

• 	 Any concept c was connected only to concepts in EIR(L, Intent(c), c) and EER(L, 
Intent( c), c). 

Using this intensive testing the correctness of the AddAtom algorithm and its variants 
were proved empirically whilst problems were also identified early. 

In addition, the pseudo code of the (inefficient) AddAtom algorithm as described in section 
4.6 was re-implemented from scratch to verify that no mistakes had been made in its 
formulation. 
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7.5.6 User interface 

Due to the requirement of operating under both Windows, MS DOS and UNIX operating 
systems, a text based user interface was developed that provided basic functionality. 

Some of the user interface functions are: 

• 	 Building lattices from a given incidence relation provided as a text-based file. 

• 	 Saving and restoring lattices to binary *.Iat files. 

• 	 Performing single lattice operations such as EIR, AIR, AddAtom, CompressLattice 
and ExpandLattice. 

• 	 Performing specific validity and consistency tests such as the comparison of 
different lattices. 

• 	 Obtaining performance metrics such as the time taken for an operation, the 
number of certain basic lattice operations such as closures, concept references 
and set operations performed to construct a lattice. 

• 	 Interactively interrogating the lattice structure for debugging and other purposes. 

• 	 Producing text based files suitable for human reading that describe the lattice 
concepts and cover relationships (this was used for debugging purposes). 

In addition the user interface allowed text-based script files to be executed that automate 
the execution of a number of the above functions. This was used for testing, debugging 
and performance measurement purposes. 

7.5.7 Continued advances in hardware 

As indicated, the majority of the code was written during 1995-1996 at a time when the 
average server and personal computer hardware available was significantly slower and 
had significantly less memory than at present, especially on Windows/Intel based 
platforms. This factor was therefore a primary driver in the development of more advanced 
code such as persistency, caching, variable length data structures etc. to cope with the 
restrictions. 

7.6 COMPARISON WITH OTHER LAITICE CONSTRUC'nON ALGORITHMS 

For comparative purposes, both Godin et al. (1995b) and Carpineto and Romano (1993) 
algorithms were implemented using the object oriented version 3 data structures, utility 
functions and virtual classes. However, to ensure unbiased comparison with the newly 
derived algorithm, certain changes in the data structures were necessary. This was 
because both of these algorithms made extensive use of a node's intent which was not, at 
the time, explicitly stored as an attribute of a node. The data structures and utility 
operations were changed to be fair to both the algorithms before any time complexity 
comparisons were made. The results of the comparisons mentioned in chapter 5 are 
therefore on an "apples-with-apples" basis. 

As was indicated in chapter 5 the results of the pilot stUdy were confirmed by the wider 
study which used completely different and separate implementations. 
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Chapter 8: Summary and future work 

In this dissertation efficiency problems associated with lattice-based approaches have 
been ameliorated by two strategies: developing faster algorithms and using less concepts 
in a lattice. The AddAtom algorithm was defined and shown to be a fast lattice 
construction algorithm whereas the compressed pseudo-lattice data structure that was 
introduced, support lattices with fewer concepts. The two approaches to more efficient 
deployment of lattices are complementary. 

The AddAtom algorithm efficiently constructs lattices using a tightly focussed search for 
generator concepts. This search is performed through the use of intent- and extent 
representative operations. The algorithmic performance of AddAtom is very good both 
from a theoretical- and an experimental point of view. A worst-case performance bound is 
O<lILII.IIOW.max(1I0'1i)). In experimental comparisons on artificial contexts AddAtom was the 
best performer in all contexts except those with very high densities or very low densities in 
which cases it was the second best performer. It was also the best performing incremental 
algorithm. This indicates that the theoretical complexity bound as stated is not very sharp. 
In natural contexts the performance advantage of AddAtom was even more pronounced. 
Initial results suggests that AddAtom has the added advantage of having a relatively tight 
performance range over contexts of different densities whereas the performance other 
algorithms that offer good performance differ more significantly over different density 
contexts. 

The compressed pseudo-lattice data structure that was defined is closely related to the 
line diagram of a lattice and its use as a computational tool in applications such as 
machine learning, information retrieval and knowledge discovery in databases is 
discussed. The data structure, essentially a bipartite graph that incorporates an 
embedded sublattice, combines desirable features of concept lattices in a structure that 
allows for a flexible mechanism of scaling the size of the embedded sublattice. The 
scaling is done using defined operations that compress and expand it by removing or 
adding atoms and coatoms. A compressed pseudo-lattice essentially represents a 
complete sublattice from which a number of atoms and/or coatoms have been removed. 
Additionally the relation of the sublattice to the context from which it was derived is 
preserved. An application-dependent compression strategy or criterion is required to guide 
this process. It was argued that the removal of concepts from a concept lattice may hold 
advantages over traditional approaches. Compressed pseudo-lattice shows promise in 
many field of research due to its close resemblance to that of a formal concept lattice. 

The intent- and extent representative operations of a lattice were defined as substitutes 
for the infimum and supremum operations in compresses pseudo-lattices since the 
removal of concepts leads to trivial infima and suprema. In both of these areas the notion 
of the intent- and extent representative operations were shown to be defining in nature. 
AddAtom uses it to search for generator concepts and, in essence, it repeatedly insert 
concepts into the lattice in order that AIR =EIR. 

8.1 POSITIONING AND RELATED RESEARCH 

The theoretical experimental comparison in chapter 5 included many of the well-known 
lattice construction algorithms. The theoretical complexity of the Nourine and Raynaud 
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(2002) algorithm has the best theoretical complexity of 0«11011 + IIAII).IIOIl.IILII). Although 
the cubic nature of the AddAtom theoretical complexity is higher than the quadratic nature 
of that of Nourine, it is argued that the AddAtom theoretical performance bound is not very 
sharp - this is confirmed by the experimental results. 

The work of Kuznetsov and Obiedkov (2002) indicates that there is no single best 
algorithm for constructing lattices. This is supported by the findings of chapter 5. A hybrid 
approach that uses a number of criteria, such a context density, to select an algorithm that 
would be best to construct the concept lattice is proposed. 

Because of the very large data structures associated with lattices the interpretation and 
use of this data may be obscured by the large amount of detail (often caused by noise in 
the data). Authors such as Duquenne et al. (2001) have expressed the difficulty in working 
with large concept lattices and have called for useful approximations of lattices. The 
approach taken with compressed pseudo-lattices is however not the only approach. A 
number of alternative approaches for dealing with large lattices have also been proposed: 

• 	 Wille (2002) proposes conceptual views that are built using human assistance. 
Each view represents a small part of the lattice. Since these views are defined by 
a subset of attributes from the context, they can easily be structured as lattices 
themselves. This approach supports the idea of browsing a larger lattice where a 
user can select a conceptual view which is "zoomed" into. 

• 	 Hereth and Stumme (2001) generate Iceberg Concept Lattices in which they have 
purposefully removed nodes to reduce the lattice size. Iceberg Lattices are a 
specialisation of compressed pseudo-lattices in the sense that a particular 
compressions strategy is used. 

• 	 Pernelle et al. (2002) uses a partial order called nesting. A nested concept lattice 
is obtained by reducing (through projections) the original lattice. As a consequence 
it makes the equivalence relation defined on the extents and intents of concepts 
coarser. 

• 	 Godin and Missaoui (1994), proposed ways of reducing concepts in a lattice called 
a pruned concept lattice. In general, a compressed pseudo-lattice is not directly 
comparable to a pruned concept lattice. 

• 	 Mephu Nguifo (2001) use flexible concept lattices that also do not use the whole 
concept lattice 

• 	 Alternative ideas of reducing concepts are also discussed in (Oosthuizen 1994b). 

In general, the first three of these approaches can be supported by compressed pseudo­
lattices since they rely on sublattices. 

Other approaches focus on reducing or filtering the input context, either in terms of 
attributes, objects or both such as commonly used in knowledge discovery in databases 
and information retrieval (e.g. controlled document indexing in Salton (1989), explanation 
based learning in Oosthuizen (1994b) and Oosthuizen and Avenant (1992» may also be 
used to avoid contexts that contain irrelevant attributes and/or erroneous objects which 
may lead to less effective concept lattice based approaches. 

In most instances, FCA-based approaches to problem solving, such as those mentioned 
in chapter 1, have competing non-lattice based techniques which do not suffer to the 
same extent from the complexity and size issues as FCA approaches. The future success 
of FCA-based approaches will thus depend on either having superior predictive or 
classification performance that outweighs possible time performance issues. Alternatively, 
approaches resulting in reduced lattice sizes may result in superior time performance. 
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8.2 FURTHER WORK 

Many of the concepts put forward in this dissertation, especially those cantered on the use 
of compressed pseudo-lattices require further investigation. Below are listed some 
possible areas for further study related to both AddAtom and compressed pseudo-lattices. 

Further work related to AddAtom: 

• 	 Further experimental comparison of the AddAtom performance with that of other 
algorithms not included in this study should be conducted. 

• 	 AddAtom can easily be extended to operate on sub-lattices such as those in 
compressed pseudo-lattices. As was stated in chapter 7, a version of AddAtom 
with this capability was implementation, but the pseudo-code of the 
implementation has not been fully documented. 

• 	 The experimental comparison in chapter 5 suggests that the performance gap of 
AddAtom in relation to other algorithms may be the most significant in natural data 
sets. A wider study is required to support and generalise this observation. 
Specifically, the extent to which the algorithmic performance of most algorithms 
running natural data may differ from their performance in terms of artificial data set 
should be investigated. 

• 	 Hybrid approaches combining construction algorithms should be explored whereby 
various criteria are used to predict a construction algorithm that is most likely to be 
the best performer. This may even involve a per-object based decision, relying on 
various incremental lattice construction algorithms to insert objects. Optimisations 
such as the use of AddCoatom may also be considered. 

• 	 As indicated in chapter 7, the developed code is not as efficient as it might be and 
introduces too many overheads. As a result, there is the need to re-implement and 
fine-tune the code. 

Further work related to compressed pseudo-lattices: 

Since the compressed pseudo-lattice is a generic data structure that in essence still uses 
a lattice (albeit a sublattice), it lends itself to most approaches that rely on FCA. There are, 
however, a number of areas of research and key research questions that seems most 
promising. These are listed below. 

• 	 In what areas of application are compressed pseudo-lattices beneficial? 
Specifically, how do compressed pseudo-lattices (and the intent- and extent 
representative operations) perform in comparison with a formal concept lattice 
(with the meet and join operations) in areas where the latter has proven 
successful? 

• 	 What compression strategies and criteria should be used and in which areas of 
application? Specifically, is there a universal compression strategy applicable to 
many areas of application or are useful compression strategies domain specific? 

• 	 What is the relationship of a compressed pseudo-lattice and associated operations 
to other fields of research in databases, rough sets, etc., given its apparent ability 
to deal with ambiguity? 

• 	 How do various supervised machine learning algorithms perform using 
compressed pseudo-lattices based on various compression strategies? Here the 
approach and classifiers proposed in Xie et al. (2002) may be a useful start. 
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• 	 What is the relationship between the performance gained when fewer concepts 
are processed, the predictive accuracy of algorithms and the size of the 
compressed pseudo-lattice? 

• 	 To what extent and in what ways may compressed pseudo-lattices be used to 
support information retrieval? 

• 	 A further exploration of the theoretical aspects associated with sublattices would 
seem to be required. 

• 	 A more complete comparison is required of compressed pseudo-lattices with other 
methods that use sublattices and lattices with a reduced number of concepts. 

• 	 There is a need to investigate how compressed pseudo-lattices may be combined 
with other techniques and approaches. 

The research into there and other related issues are on-going. 

--------------------()()()-------------------­
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Appendix A: Further optimised AddAtom 
algorithm 

This appendix documents the variation of the AddAtom algorithm with the best time 
performance. Other variations of the algorithm can be found in sections 4.3 and 4.6. 

Note that for the sake of simplicity of the pseudo code, it is assumed that the context has 
no comparable objects and attributes and the objects and attributes of the context form 
the atoms and coatoms of the lattice. This is the case when FCA-Iattices are equal to EA­
lattices. Slight modifications and additional tests are necessary depending on which type 
of lattice is to be built. 
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Input context (0, A, 
IL NewConcept (L) 
0L NewConcept(L) 
0L. Intent A 
For \:j a E A 

aAttributeConcept NewConcept(L) 

aAttributeConcept.Intent {a} 

CreateArc(L, OL' aAttributeConcept) 

CreateArc(L, aAttributeConcept, IL) 

Rof 

For \:j 0 E ° 
FastAddAtom (L, Intent(o) , 0, 0L) 

Rof 

//=================================================================== 
Function GetMeet(anIntent, aConcept, attrCount) Return aConcept 
//=================================================================== 
// Determine the meet of anIntent by starting at Concept 
parentIsMeet = True 
Do While parentlsMeet 

parentIsMeet False 

Parents = ConceptParents(L, aConcept} 


For \:j Parent E Parents 

If 	attrCount[Parentj I I anlntent I I then 


aConcept = Parent 

parentlsMeet True 

Exit For 


Fi 

Rof 

Od 
Return 
End GetMeet 

/1==================================================== =============== 
Function AddAtomRecurse(L, anIntent, GeneratorConcept, attrCount, 

ExactConcepts, DirtyConcepts, IgnoreConcepts) 
Return aConcept 

//=================================================================== 
CadidateParents = ConceptParents{L, GeneratorConcept) 
ConceptParents = 0 
UCConceptParents 0 
DCConceptParents = 0 
Exit = False 

j = ° 
/1 Concepts in CandidateParents that have the number of 
II attributes of anIntent in their intents should be considered first 
1/ and therefore sorted in dec ending order of the number of attrCount 

For \:j Candidate E CandidateParents 
SortArray [j] Candidate 
j = j + 1 

Rof 
Sort SortArray in decending order of attrCount[SortArray[jJl 

For \:j k ° to j 1 
// Get candidate with next highest number of markers 
Candidate SortArray[kj 

If (Candidate ~ IgnoreConcepts) and (Candidate ~ UCConceptParents) 

and (Candidate ~ DCConceptParents) and Not Exit 
// Candidates with at least one attribute of an Intent should 
// be considered 
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newlntent Candidate. Intent n anlntent 
Generator GetMeet(L, newlntent, Candidate, attrCount, 

ExactConcepts, DirtyConcepts, IgnoreConcepts) 

If Generator e ExactConcepts then 
Generator = 	 AddAtomRecurse(L, newlntent, Generator, 

attrCount, ExactConcepts, DirtyConcepts, 
IgnoreConcepts) 

Fi 
II At this Generator is now an exact meet of anlntent 
If newlntent anlntent then 

Exit True 
pi 

If Generator e UCConceptParents and not Exit then 
ConceptParents Concept Parents u {Generator} 
If attrCount[Generatorl > 1 then 

II If the Generator is not an attribute we can remove the 
II concepts below and above it from consideration this 
II is possible because all concepts that will be considered 
II hereafter will have a smaller attrCount 
UCGenerator UpwardClosure(L, Generator) 
ConceptParents = ConceptParents UCGenerator 
II Do not consider ConceptParents that are spanned by 
II Generator 
UCConceptParents UCConceptParents U UCGenerator 
IIConcepts above need not be considered 
DCGenerator DownwardClosure(L, Generator) 
DCConceptParents = DCConceptParents U DCGenerator 
IIConcepts below it will not be considered 

Fi 
Fi 

Fi 
Rof 
NewConcept CreateNewConcept(L) 

NewConcept.Extent GeneratorConcept.Extent 

NewConcept.lntent anlntent 

attrCount [NewConceptl = ! !anlntent!! 

ExactConcepts ExactConcepts U {NewConcept} 


For ~ ConceptMeet E ConceptParents 
If ConceptMeet in CandidateParents then 

DeleteArc(GeneratorConcept, ConceptMeet) 
pi 
CreateArc(NewConcept , ConceptMeet) 

Rof 
DeleteArc(GeneratorConcept , NewConcept) 
Return NewConcept 
End AddAtomRecurse 
11=================================================================== 

11=================================================================== 
Function PastAddAtom(L, anlntent, 0, GeneratorConcept) 
11=================================================================== 
DirtyAttrs = GetAttributes(L) - anlntent 
DirtyConcepts = 0 
II DirtyConcepts: contains intents with attributes other than Intent 
II and therefore all the approximate meets of anlntent 

For ~ attr E 

DirtyConcepts DirtyConcepts U DownwardClosure(L, attr) 
lilt is also possible to calculate DirtyConcepts using attrCount 

Rof 
CandidateConcepts 0 
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For V attr E anlntent 
CandidateConcepts = CandidateConcepts U DownwardClosure(L, attr) 

Rof 
ExactConcepts = CandidateConcepts DirtyConcepts 
II ExactConcepts have only attributes of anlntent in their intents 
II and form exact meets of subsets of anlntent 
IgnoreConcepts DirtyConcepts CandidateConcepts 
II IgnoreConcepts have no attributes of anlntent in their intents 
II and can be ignored when searching for GeneratorConcepts 

II Calculate markers: attrCount[ is the number 
II of attributes of anlntent for that concept (i.e. markers 
II accumulated) 
Let attrCount [xl = 0 for all x E L 

For V Concept E CandidateConcepts 
attrCount [Concept 1 II Concept. intent n anlntent II 

Rof 
NewConcept = AddAtom2(L, anlntent, EmptyConcept(L), GeneratorConcept, 

attrCount, ExactConcepts, DirtyConcepts, IgnoreConcepts) 

For V Concept E UpwardClosure(L, NewConcept) 
Concept.Extent = Concept.Extent u {g} 

Rof 
End FastAddAtom 
11=================================================================== 
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Appendix B: AddAtom algorithmic 
complexity bounds 

The algorithm outline below show complexity bounds of the steps or group of steps for 
various parts of the AddAtom algorithm (documented in section 4.6). The complexity 
column indicates the complexity bound or alternatively the maximum number of iterations 
in the case of loops. 
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Step 

Function OptimisedAddAtom 

For a 

Rof 
For 0 

For x 

Rof 
AddAtom( ) 
For x 

Rof 
Rof 

End OptimisedAddAtom 

Function GetMeet () 
Do While ParentIsMeet 

For Parent 
If 

Fi 
Rof 

Od 
End GetMeet 

Function AddAtom () 

For Candidat e 

If '" 
GetMeet () 
If 

Fi 
Else 

Fi 
For g 

Rof 
Rof 

For g 

Rof 

AddAtom( ) 

End AddAtom 

Complexity 

O(lIAII) 
O(IIAII) limes 
O(max(IIOII, IIAII» 

0 (110 11) limes 
O(IIL,II) 
O(IIL,II) limes 
O(max(IIAII» 

O(lILjll) l imes 
O( I ) 

O(max(lIO' II) 11011) 
O(max(lIO'II» limes 
0 (110 11) limes 
O( I ) 
O( I ) 

0 (110 11) 
0 (11011) limes 
O(IIAII) 
O(IIAII) 
O(max(lIO' II),IIOII) 

O( I ) 

O<llOlll l imes 
O(max(IIO' II» 

O(max(IIA'II, 110' II» 
0 (11011) limes 
O( I ) 

O ( I ) 
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