

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

Chapter 1: Introduction

Formal Concept Analysis (FCA) is an established area of research in the computer
sciences with many areas of application especially in branches of artificial intelligence.
Central to FCA is the notion of a formal concept lattice (or concept lattice for short). A
concept lattice is a mathematically well-defined structure that comprises of a number of
concepts describing a context. Each concept has an extent consisting of a number of
objects from the context as well as the attributes that these objects have in common within
the context. The concepts are ordered in a partial order and form an order-theoretic
lattice. Chapter 2 defines and gives examples of concept lattices.

Concept lattices have been proposed and studied in a number of areas of application:

• 	 Data analysis (Vogt and Wille (1995)).

• 	 Discovery of association rules (Stumme et al. (1998, 2000), Pasquier et al.
(1999)).

• 	 Information retrieval (Godin et al. (1995a), Carpineto and Romano (1996a)).

• 	 Exploration of attributes and attribute relationships in data (Ganter (1999),
Duquenne (1999, 2001)).

• 	 Conceptual clustering and classification (Godin et al. (1991), Carpineto and
Romano (1996b)).

• 	 Machine learning (Oosthuizen (1994b), Mephu Nguifo and Njiwoua (2001), Xie
et al. (2002)).

• 	 Computer assisted human browsing and dissemination of data (Cole and
Stumme (2000), Cole and Eklund (2001)).

FCA was proposed in the early eighties by Wille (1982). Ganter and Wille (1999) now
serves as the foundation of FCA. FCA builds on the work of Birkhoff (1973) and Barbut
and Monjardet (1970). In FCA, the problem of generating the set of concepts of a concept
lattice and then constructing the line diagram to represent the concept lattice has been
well-studied (refer to Kuznetsov and Obiedkov (2002) for an overview and comparison).
Chapter 3 describes the basic challenges of this problem.

In the worst case, concept lattices are however exponential in size in terms of the input
context. Although, in general, natural data does not realize the worst case, in practical
applications very large lattices can still result. This creates time and space performance
issues for applications using lattices and therefore every effort should be made to more
effiCiently construct lattices. This dissertation approaches the efficiency problems from two
points of view and proposes complementary solutions for each. First a new lattice
construction algorithm, called AddAtom, unrelated to well known and published algorithms
is proposed. The algorithm efficiently constructs lattices and is proposed as a general
purpose lattice construction algorithm that outperforms other published algorithms in a
wide range of contexts (although not in all types of contexts). The second proposed
approach to managing the time taken to build the lattice is to construct sub-lattices instead
of the complete lattice of all concepts. A generic framework and the necessary operations
for building such lattices are proposed and defined. The resulting data structure is called a

6

compressed pseudo-lattice. Not only does this approach allows for the incremental scaling
of the lattice size in relation to the amount of time that an application can afford to spend
on constructing lattices, but initial evidence suggest a number of other advantages,
despite the removal of a large number of concepts from the lattice.

AddAtom

The AddAtom algorithm is explained and defined in chapter 4. When inserting a new
object into a lattice LnJ the basic strategy of the algorithm is to start at the zero concept in
Ln and then recursively search its parent concepts for generator concepts in an elegant
and tightly focussed search. After creating the required new concepts and arcs associated
with the generator concepts and modifying the relevant concepts a new lattice Ln+l is
produced.

The algorithm is characterised by a number of features that differentiates it from some of
the other construction algorithms. Firstly, it is an incremental lattice construction algorithm
and therefore constructs a lattice Ln+l from an input lattice Ln by adding an additional
object to the context of Ln. Secondly, it creates the set of concepts and the line diagram of
the lattice. Thirdly, it is defined on concept lattices as well as on concept sublattices,
which makes it suitable to be used in generating compressed pseudo-lattices.

Fourthly, AddAtom is defined in terms of a class of lattice operations, called the intent­
and extent representative operations of a lattice. These operations elegantly define the
nature of lattice construction and their use to traverse and inspect a lattice is significantly
different from most other approaches that use the supremum and infimum operations.
These operations are in some sense second order supremum and infimum operations and
are useful in situations where, for example, the infimum or supremum of a set of attributes
in a lattice is trivial (i.e. either unit or the zero concept). Throughout the dissertation it is
argued that these operations are very useful in traversing and searching the lattice for
areas of interest. This is underpinned by the fact that the intent- and extent representative
operations are key to the definition of AddAtom as well as compressed pseudo-lattices.
Chapter 6 also provides examples of how these operations may be useful in information
retrieval (IR) and machine learning.

During the past few decades a number of lattice construction algorithms have been
proposed and although not all the algorithms are directly comparable due to the fact that
all do not produce the same outputs (e.g. some generate the line diagrams while others
merely generate the set of concepts). In Chapter 5 a worst-case complexity bound of
AddAtom is established as O<IILlI.!lOW.max(1I0'1!)). This bound is cubic in nature relative to
the lattice size. Although this bound is not of the same order of magnitude as that of the
lowest known for lattice construction algorithms, this does not necessarily mean that the
algorithm has a worse performance.

The results of experimental comparisons of AddAtom with other lattice construction
algorithms (chapter 5) show that AddAtom is a very good lattice construction algorithm
and compares well with other algorithms from an experimental point of view. It does
however not perform the best across all types of contexts. In random contexts with either
very low or very high densities other algorithms perform slightly better than AddAtom. In
these contexts AddAtom is still the second best performer. These results are consistent
with the claim that the theoretical bound is not very sharp, confirming that the algorithmic
performance of AddAtom is very good and that it is a worthy candidate for use as a
general purpose lattice construction algorithm in that it is efficient (compared to other
algorithms) over the range of artificial and natural data sets albeit not over all types of
contexts.

Compressed pseudo-lattices

7

Compressed pseudo-lattices are defined in chapter 6 and provide a formal framework
within which concepts can be removed from lattices to create sublattices. The data
structure, essentially a bipartite graph that incorporates an embedded sublattice,
combines desirable features of concept lattices in a structure that allows for a flexible
mechanism of scaling the size of the embedded sublattice, using defined operations that
compress and expand it by removing or adding atoms and coatoms. A compressed
pseudo-lattice essentially represents a lattice from which a number of atoms and/or
coatoms have been removed. Additionally the relation of the sublattice to the context from
which it was derived is preserved. An application-dependent compression strategy or
criterion is required to guide this process. It is argued that the removal of concepts from a
concept lattice may hold advantages over traditional approaches.

The implementation of the algorithms developed for supporting the AddAtom and
compressed pseudo-lattice implementations are discussed in chapter 7. A number of
implementation issues and considerations as well as the strategies to deal with these are
also discussed.

Finally, chapter 8 summarise the findings of the dissertation and ends by identifying areas
of further research related to AddAtom and compressed pseudo-lattices.

8

Chapter 2: Order theoretic and FCA lattice
definitions and notation

This chapter defines the basic lattice terminology and notation used throughout this text.
The basic order-theoretic lattice definitions are well known and may be found in many
standard mathematical texts, for example in Gratzer (1971). Building on the order­
theoretic definitions the notation and definitions of Formal Concept Analysis (FCA) are
then introduced (Ganter and Wille (1999)) and the basic FCA building block, the formal
concept lattice, is defined.

Next an EA-Iattice is defined. An EA-Iattice is closely related to a FCA lattice and is
described as a substantially equivalent lattice to a formal concept lattice. EA-Iattices have
some desirable features that make it suitable for the use in compressed pseudo-lattices
(chapter 6). The different views of a lattice are also explored. Both the EA-Iattice and the
different views of a lattice are concepts that are frequently used in the rest of the chapters.

The chapter concludes by defining the intent- and extent representative operations on a
lattice.

An important aspect of the intent- and extent representative operations is that they are
defined specifically for use in concept sub-lattices, such as those formed by removing
atoms and/or coatoms from formal concept lattices. In chapter 6 the notion of removing
concepts from lattices is formalised and generalised into additional concept lattice
operations and the definition of a data structure called a compressed pseudo-lattice. The
removal of concepts from concept lattices have been proposed by other authors (refer to
chapter 8 for a discussion) but the approach taken here is more general. The concept of
an EA-Iattice (section 2.5) is defined and compared to a formal concept lattice (section
2.3).

2.1 LIST AND SET NOTATION

In this text, sets are denoted by capitals e.g. S. whilst the set elements are in lower case
e.g. x, y or z. A set is indicated by the notation {x, y, z} or {at. a2,···, an}.

The cardinality of set S is denoted by IiSIi.

Ordered lists are shown as (x, y, z).

2.2 ORDER THEORETIC LATTICE DEFINITIONS

A binary relation on a set is an association between pairs of elements of the set.

Consider a set S and arbitrary elements x, y and z in S. A partial ordering relation, . on S
is a binary relation that is reflexive (x';; x), antisymmetric (x';; y 1\ y';; X => X y) and
transitive (x';; y 1\ y';; z => x.;; z). The set S in conjunction with an associated partial

9

ordering relation, < , is called a partially ordered setl or poset and is denoted by (S, <).
For x, YES, x:t: y, x is said to covery, denoted by y < x when y < x and there is no Z E S,
Z :t: x, Z :t: y such that y < z and z <; x.

When y < x, some texts refer to x as the parent, predecessor, upper cover or upper
neighbour of y. Similarly y is referred to as the child, successor, lower cover or lower
neighbour of x.

One way of visually representing a poset is by means of a directed graph called a line
diagram in which elements of the poset form the nodes and a directed arc (or edge) is
drawn from node y to x iff y < x. line diagrams are often referred to as a Hasse
diagrams. They provide a natural data structure for visually representing posets. By
convention, instead of showing the direction of arcs explicitly in the line diagram, node x is
shown above node y if y < x. By virtue of the transitivity of the partial ordering relation,
line diagrams are directed acyclic graphs.

Two elements x, y of a poset (S, ~ >are called comparable if y ~ x or x ~ y. If these
conditions are not met they are said to be not comparable.

Consider a poset L. x E L is an upper bound of H ~ L iff y x for all y E H. Out of all the
upper bounds of H in L, the least upper bound of H (if it exists) is called its supremum and
is denoted by Sup(H) or Sup(L, H). likewise, x E L is a lower bound of a set H ~ L iff x <; y
for all y E H. The greatest lower bound of H (if it exists) is called its infimum and is
denoted by lnf(H) or lnf(L, H). A poset (L, <;) is a lattice iff Sup({x, y }) and lnf({x, y}) exist
for all pairs x, y E L. It is not difficult to show that if Sup(H) exists then it is unique, and
likewise for Inf(H). Some texts refer to a supremum as a join and the infimum as a meet.
Two or more elements of a poset are also said to meet at their infimum. A poset S is a
complete lattice if the supremum and infimum exist for all subsets of S. It can be shown
that all non-empty finite posets that are lattices are complete. A subset U of a complete
lattice V that is closed under both suprema and infima is called a complete sublattice.

A complete lattice L has a largest element called the unit element, denoted by l L , and a
smallest element called the zero element, denoted by OL' The elements in a lattice
covering the zero element are often called atoms whilst the elements covered by the unit
element are called coatoms.

The upward closure of any element c, indicated by UpwardClosure(L, c), is the set of
elements greater than or equal to c in terms of the partial order. The downward closure of
c is the set of elements that are less than or equal to c, and is indicated by
DownwardClosure(L, c).

Figure 2.1 is the line diagram of the poset ({I, 2, 3, 4, 6, 8, 12,24}, I) where min means that
m is a factor of (or divides) n. In the 'figure, 24 is the supremum of {3, 8} whilst 2 is the
infimum of {8, 2}. It is easy to verify that both the supremum and infimum of any pair of
elements exist, that in each case they are unique and this poset is therefore a lattice. The
upward closure of 6 is {6, l2, 24} whilst its downward closure is {I, 2, 3,6}. Since 24 is the
largest element of the poset it is the unit element whilst I, being the smallest element, is
the zero element of the poset. Elements 2 and 3 are the atoms of the lattice whilst 8 and 12
are the coatoms.

1 Ganter and Wille (1999) also refers to a partially ordered set as an ordered set but we avoid this terminology
since it may cause confusion with that of a completely ordered set in which all the elements can be ordered
from smallest to largest.

10

Figure 2.1: Lattice of (fl, 2, 3, 4. 6. 8, 12, 24j, i)) where min means m is a factor of (or
divides into) n

In what follows the direction of the arcs will not be shown since there is no loss of
generality in doing so.

Not all elements of a poset are necessarily related or comparable (hence the term partial
order). A subset, S, of a poset whose elements are all comparable (Le. x ~ y or y ~ x for
all x, y, E S, x ¢ y) is called a chain. A subset, S, of a poset, none of whose elements are
comparable is called an anti-chain.

The width of a finite poset is defined as the maximal size of an antichain in that poset. The
length of a poset is defined as the supremum of the sizes of chains in the poset.

In a line diagram of a lattice, the nodes above a given element x are said to be spanned
by x if there is a path from the x to the nodes. A node that spans a set of nodes is
therefore a lower bound of the set of nodes. If for a node y there is a set of nodes with
paths that end in y then y an upper bound of the set of lattice elements.

2.3 FCA DEFINITIONS

Consider a domain of discourse in which each element of a set of objects, 0 = {oj, 02, ... ,

OJ}, possesses one or more observable attributes from a set of attributes A = {aJ, a2, .. " ak}'
We also refer to objects as entities, whilst attributes are sometimes referred to as features
or descriptors. The triple C =(0, A, I), where I is a binary relation between 0 and A, I c;; 0
x A, is referred to as a context and denotes this domain of discourse. The binary relation I,
also called an incidence relation, identifies the attributes of each object. The notation oIa is
used to indicate that object 0 possesses the attribute a. For any E c;; 0 and F A the
following operators are defined:

E' = { a : A I(V 0 E E) ola} the set of attributes common to the objects in E

11

F' == { 0 : 0 I('II a E F) oIa} - the set of objects common to the attributes in F

FCA studies posets known as formal concept lattices (also referred to as Galois lattices)
that are induced by a binary relation over a pair of sets of objects and attributes. In FCA
the context C = (0, A, I) is known as a formal context. A formal concept of a formal context

is a couple (E, F) from 'P(O) x 'P(A) with E 0 and F ~ A (where 'P(X) is the power set of
the set X). In addition, the following property is satisfied:

F E' and E=F'

A formal concept (henceforth referred to simply as a concept) is thus a pair consisting of a
set of related objects having some attributes in common and the set of precisely those
attributes that all the objects have in common. E is also called the extent of the concept c
== (E, F) while F is called the concept's intent denoted by Extent(c) and Intent(c) respectively.
The set F with F ~ A is the intent of some concept if and only if (FT F, in which case the
concept of which F is the intent is precisely (F', F). Similarly E ~ 0 is the extent of a
concept (E, E') iff (E')' E. The support of a concept is defined as the number of objects
in its extent.

The set of all formal concepts in a context can be shown (according to the basic theorem
on concept lattices - see Ganter and Wille 1999) to constitute a lattice with respect to the
partial ordering relation defined as:

(Et, F1) ~ F2) iff El ~ (or equivalently iff Fl :2 F2) for two concepts Cl =
(E2' F2)

This lattice is known as a formal concept lattice in FCA. Since only formal concepts are
part of a concept lattice and since there is a direct relationship between E and E', and
therefore either extent or intent of a concept in a formal concept lattice uniquely identifies
the concept.

Incidence relation
nw Iw II nc 11g 21g mo Ib sk

LE J J J
BR J .(.(.(

FR J J J .(.(

DG J J .(.(.(

SW J J J J I
RD J J J .(J
BN J J .(J
MZ J .(.(J

Entities/ob' ects Attributes

LE Leech nw Needs water
BR Bream Iw Lives in water
FR Frog II Lives on land
DG Dog nc Needs chlorophyl

ISW Spike-weed 11g 1 leaf germination
:RD Reed 21g 2 leaf germination

IBN
Bean mo Is motile

MZ Maize Ib Has limbs
sk Suckles young

~ < 0, {nw,IW,11,nc, 1Ig,2\g,mo,lb,sk};.

Figure 2.2: Context and formal concept lattice of the Living Context

A context can easily be represented by a cross table, i.e. by a matrix where the rows are
labelled by the objects in the context and the columns by the attributes. A cross (or tick) in
row g and column m indicates that the object g possesses the attribute m.

Figure 2.2 is the formal concept lattice of a small context. This simple context, called the
Living Context, is taken from Ganter et al. (1986) and was originally used in a Hungarian
educational film. The context is a simple ecological description of some living organisms.

12

Although very simplistic, it is useful for illustrative purposes. Each concept in the figure is
numbered and is also labelled with its intent and extent.

The lattice shows a number of characteristics of the Living Context. For example the unit
concept h =({LE, BR, FR, DG, SW, RD, BN, MZ}, {nw}) has all the objects of the context
in its extent but also has {nw} as intent. This indicates that all the objects in the Living
Context possess the attribute nw. Alternatively it can be said that all living things/objects
(in the context) need water. By virtue of the partial ordering relation, it is clear that each
concept y that is covered by x possesses at least all the attributes of x and at least one
attribute in addition in its intent. Similarly the extent of x possesses at least the objects of
the intent of y and at least one object in addition. Since there is no concept in the lattice
above concept n6 that has llg in its intent and both nw and nc are also contained in n6's
intent it shows that any object with llg as an attribute also has nc and nw as attributes.
Concept n4 with intent {nw, nc} indicates that the converse is however not true, in that
there are objects with nw and nc as attributes but not possessing llg for example BN.

A formal concept lattice is a useful structure since the formal concept lattice of a particular
context contains encoded within its concepts all "meaningful" concepts in that only
combinations of objects that actually have a particular set of attributes in common are
grouped together in a concept. (This is as a result of the definition of formal concepts.)
Similarly all groupings of attributes that does have common objects are represented in the
lattice. Thus a set of attributes such as {nc, sk} is not a "meaningful" set since there is no
set of objects that has this particular and only this particular set of attributes in common.
Another way of viewing this is that there is no evidence in the context to suggest that {nc,
sk} is a meaningful concept in the context. (Note however, that if the context is expanded
in some way, this might not continue to be the case.) Similarly, the set of attributes F = {Il,
lw} is also not a grouping of attributes supported by the context. Using the operator
defined earlier F' = {FR, RD} and therefore the objects FR and RD are the only two having
11 and lw in common. However applying the operator (F'Y = {nw, 11, lw} we see that
whenever 11 and lw are present for an object of the context, the attribute nw is always
present. F is thus not a grouping of attributes supported by the evidence but {nw, 11, lw} is
and corresponds to concept ns of the lattice. This type of reasoning makes lattices a
particularly useful tool in machine learning and in knowledge discovery in databases
(KDD). Some of the many types of reasoning (e.g. abductive reasoning, inductive
reasoning, unsupervised learning, supervised learning etc.) supported by a lattice are
discussed in Oosthuizen (1994b).

2.4 WHY EA-LATTICES?

When algorithmically constructing formal concept lattices, for machine learning purposes
based on using "real" or natural data, there are however a number of drawbacks. These
drawbacks are the reason for defining EA-Iattices, a class of lattices closely related to
FCA lattices, in section 2.5.

• 	 The same concept may simultaneously represent different objects and attributes in
the context. This can happen when incrementally building the lattice and objects
already represented in the lattice do not sufficiently differentiate the attributes or
when there are duplicate objects (perhaps as a result of data errors or incomplete
data). It is desirable to have each object and attribute represented by a separate
concept because this correspond to the natural world where distinct objects are
indeed acknowledged as being different although the initial information about their
features might not be sufficient to indicate the precise nature of the differences.
The same can be said in regard to differentiating features of objects. A "real world"
example would be when two closely related books are described by a number of

13

keywords. Because the texts of the books are so closely related the list of
keywords describing each book could be the same for both books although they
are still two separate books. In this example a concept lattice of books will typically
be augmented with meta-information describing the location of the book in for
example a library. If more than one object are represented by one concept a
separate data structure needs to be created to store this meta-information. Should
the different books be represented by different concepts, the lattice data structure
could directly be used for this purpose without additional data structures. In the
Living Context, concept n14 is clearly the most precise representative of the object
DG. However, it is also the only representative of the attribute sk (sk occurs in no
concept higher up in the lattice). Thus, despite the fact that object DG and attribute
sk are different real-world concepts, they have the same representative in the
formal concept lattice. The problem could conceivably be avoided by carefully
choosing the attributes of each object or introducing more attributes, but this is not
always possible.

• 	 When incrementally building a lattice, the concepts corresponding to particular
objects or attributes change as the lattice grows. When numbering the concepts in
the data structure representing the lattice it is desirable to have the line diagram
node corresponding to the particular object or attributes stay the same throughout
the lifetime of the data structure. The node can then be used as an index into the
data structure. A concept corresponds to an object if the extent of the concept
contains only that object. A concept corresponds to an attribute if its intent
contains only that attribute.

• 	 The objects, attributes and so-called intermediate concepts of the lattice are not
clearly partitioned in a formal concept lattice. In figure 2.2 it is difficult identifying
the concepts corresponding to particular objects or attributes since they may be
located on any level of the lattice. Indeed, as was pointed out above a concept,
such as concept n14 may even "correspond" to both an object and an attribute.

• 	 Attributes that are not present in any of the objects are not represented in a formal
concept lattice. This can happen when the lattice is built incrementally and initially
contains only a few objects, none of which contain the particular attributes.
Similarly, if the lattice is being constructed by incrementally introducing new
attributes, the objects without any attributes introduced into the lattice to date will
not be represented in the lattice.

For the above reasons and for reasons related to the definition of a compressed pseudo­
lattice (chapter 6), a related lattice called an EA-Iattice or entity attribute lattice is defined.
(Oosthuizen (1994b) and Kourie and Oosthuizen (1998) previously made mention of such
lattices, but never formally defined them.) Each object and each attribute in an EA-Iattice
is represented as a separate concept that is not associated (or co-labelled with) with any
other object or attribute. (Note that this need not be true in general for a formal concept
lattice, as will be discussed below.) As a result, the concepts (excluding lL and ad in an
EA-Iattice can be partitioned into three sets: the attribute concepts, the object concepts
and the intermediate concepts respectively. (Note that such a partitioning is not
necessarily possible in a formal concept lattice as, for example, when the extent of one
attribute is a subset of another. The Living Context introduced in figure 2.2 is an example
of a context where such a partition is not possible.) This corresponds to the real world in
the sense that an object (or attribute) is acknowledged to be unique, even if there is
initially insufficient evidence to support its uniqueness in the light of the data examined up
until that time. Due to the one-to-one mapping from objects and attributes to concepts, it is
thus permissible in an EA-Iattice to talk of an object concept and an attribute concept.

14

2.5 EA-LAITICE DEFINITION

Assume that IIAII > 1, 11011 > 1. A concept (E, F), where E k 0 and F k A. is called an EA­
formal concept in a context (0, A, I) if anyone of the following conditions are satisfied:

1. /lEI! = 1 and F = E'

2. IIFII 1 and E = F'

3. E= 0andF A

4. E OandF=0

5. F=E' andE=F'

The set of all EA-formal concepts from 'P(O) x 'P(A) in a formal context C = (0, A, I), is
called an EA-formal concept lattice'! (or simply an EA-Iattice) with respect to the partial
ordering relation S;EA3 defined as:

(EJ, FI) S;EA (E2' F2) iff EI k E2 or FI d Fz for two concepts CI =(Ej, FI) and C2 =(Ez, Fz)

In such a lattice, L, the zero concept, denoted by OLI corresponds to the EA-formal
concept (0, A) (condition 3), whereas the unit concept, denoted by l L , corresponds to the
EA-formal concept (0, 0) (condition 4). Attributes are in the form (F', F) where F is a set
containing only one element of A (condition 2). Objects are in the form (E, E') where E is a
set containing only one element of 0 (condition 1).

The lattice below is the corresponding EA-Iattice of the Living Context applying the
definition of an EA-Iattice (for comparative purposes OL and lL are shown but will be
excluded from further lattice diagrams). The same concept numbering of corresponding
concepts in figure 2.2 is used to enable comparisons. Concepts that are exactly the same
(in terms of their intents and extents) to that of the formal concept lattice are shaded.

2 	 Note that some authors use the term 'lattice' interchangeably with 'formal concept lattices'. Here we
distinguish between the order-theoretic term 'lattice' and 'sub lattice' and the FCA terms 'formal concept
lattice' and 'concept lattice' both of which are special 'order-theoretic lattices'. An EA-Iattice is an order­
theoretic lattice but not necessarily a formal concept lattice.

3 It should be noted that is a partial ordering relation only on EA-formal concepts and not on all possible
concepts (this is also the case with and formal concepts).

15

Unit concept:

Attribute concepts:

Intermediate concepts:

Object concepts:

Zero concept:

Figure 2.3: EA-Iattice of the Living Context showing the partitioning of the concepts
(compare to figure 2.2)

Note that an EA-Iattice of a context differs only from the formal concept lattice if the
concepts of conditions 1-4 are not generated by condition 5. This happens for example in
a given context if an attribute f, is such that F" :1:- F, F = {f}. In such a case, (F', F) will be
included in the context's EA-Iattice, but not in the context's concept lattice in which case
the concept (F', F") will be labelled with the attribute f. Consider for example concepts MZ
or sk in the EA-Iattice in figure 2.3 and compare them to the formal concept lattice of the
same context of figure 2.2. The concepts in the EA-Iattice in figure 2.3 that correspond to
the formal concepts in figure 2.2 are shaded and are identified by the fact that they have
only one parent or child concept. In this example the zero concept is the same for the EA­
lattice and formal concept lattice but not the unit concept. The EA-Iattice is therefore
essentially a generalisation of a formal concept lattice in the sense that it possibly
contains a number of additional concepts. These additional concepts correspond only to
objects (condition 1), attributes (condition 2), the unit concept (condition 3) or the zero
concept (condition 4).

An intermediate concept of an EA-Iattice is defined as a concept with more than one
object in its extent and more than one attribute in its intent. Applying the same definition of
intermediate concepts to formal concept lattices it can be seen from the definitions of both
kinds of lattices of that the sets of intermediate concepts of the two types of lattices are
identical.

It is important to note that an EA-Iattice cannot use ordering relation since it is not
antisymmetric for the given set of concepts. In the example above the antisymmetric
property (x ~ yAy ~ X=> X y) does not hold for ~ in regard to the concept nc =({BN, MZ,
SW, RD}, {nc}) and n4 =({BN, MZ, SW, RD}, {nw, nc}). The slight modification of the partial
ordering relation (from to ~EA) is therefore due to the fact that, in an EA-Iattice, the intent
or the extent of some attribute concepts and object concepts may be the same as some
intermediate concepts. The supremum and infimum also need to be recomputed in terms
of the revised partial ordering and may thus differ from those of a formal concept lattice.
(The EA-Iattice may for example have a different unit element compared to its

16

corresponding formal concept lattice, as in the Living Context example). The EA-Iattice is
however for all practical purposes the same as a formal concept lattice (e.g. in lattice
construction algorithms where only slight modifications are required).

From the definition it is easy to show that an EA-Iattice has the following properties:

• 	 There is one concept associated with each object ej in the form (E, E') where E =
{ ej}. Similarly there is one associated concept for each attribute aj in the form (F',
F) where F = {aj}. These concepts are called the associated object concept and the
associated attribute concept respectively.

• 	 Zero concept, Q =(0, A) and unit concept, lL (0, 0) are distinct from the object
and attribute concepts and always have the same structure (Le. empty extent and
intent respectively).

• 	 The EA-Iattice, excluding the unit and zero concepts, can be partitioned into three
sets corresponding to objects, attributes and intermediate concepts. The three sets
correspond to the top, bottom and middle sections of the line diagram of a lattice
(refer to figure 2.3).

• 	 All EA-formal concepts in the formal concept lattice of a corresponding EA-Iattice
are contained in the EA-Iattice. An EA-Iattice thus has at least the same number of
concepts as a formal concept lattice. Since the number of concepts in a large
lattice is dominated by the intermediate concepts, the size of an formal concept
and EA-Iattice differs very little for large lattices. The difference in algorithmic
complexity for their respective construction is also negligible (refer to chapter 5).

• 	 The EA-Iattice may contain a number of concepts in addition to those of the
corresponding formal concept lattice. These additional concepts will correspond to
the objects, attributes, unit concept or zero concepts, but there are no additional
intermediate concepts.

• 	 Each intermediate concept in an EA-Iattice has at least two parent- and two
children concepts. (Note that this is also true for non-atom and non-coatom
concepts in boolean lattices but is not true in general for all FCA lattices such as
the lattice in figure 2.2). Attributes concepts have only one parent (ld and only the
attribute concepts generated by condition 5 have at least two child concepts. Other
attribute concepts have one child concept. Similar dual observations can be made
for object concepts.

• 	 Each attribute has no parent concepts other than lL'

• 	 Each object concept has no children concepts other than OL.

• 	 Attribute concepts in the EA-Iattice that do not correspond to a concept in the
formal concept lattice have only one child concept. (Note that the corresponding
concept in the formal concept lattice has only one parent.)

• 	 Object concepts in the EA-Iattice that do not correspond to a concept in the formal
concept lattice have only one parent concept. (Note that the corresponding
concept in the formal concept lattice has only one child concept.)

• 	 In an EA-Iattice the atoms and coatoms have a one-to-one relationship to the
object- and attribute concepts of that lattice respectively.

In drawing the EA-Iattice a number of conventions will be followed:

17

• 	 The IL and OL concepts and associated cover relationships will not be shown so
that the lattice is bounded from above by the attributes of the lattice and bounded
from below by the objects of the lattice.

• 	 The attribute and intermediate concepts are labelled with their intent only whilst
object concepts are labelled with the object identifier itself.

• 	 When convenient or to simplify the line diagram of a lattice, the labels of the
concepts (especially the intermediate concepts) will be substituted for a concept
number. From time-to-time a concept number and attribute list may also be used in
conjunction especially for labelling intermediate concepts.

These conventions do not impact on the generality of the discussions or line diagrams
since the complete line diagram and complete labels for concepts can be easily
determined by inspecting the lattice using the definition of an EA-Iattice (e.g. the intent of
a concept is all the attributes contained in its upward closure).

As can be expected from the similarity in the definitions of the formal concept- and EA­
lattices there is a direct mapping from the one to the other.

2.6 BOOLEAN LATTICES

A power-set lattice (Ganter and Wille (1999)) of a set of attributes A is the lattice ('P(A),
A Boolean lattice is a lattice that is isomorphic to some power-set lattice. The figure below
is the Boolean formal concept lattice of A = {a, b, c, d}. The corresponding incidence
relation shows that a Boolean lattice is formed when there are as many objects as
attributes and each object differs from each of the other objects by only one attribute.

Since a Boolean lattice contains all concepts from 'P(O) x 'P(A) it follows that a Boolean
lattice is both a formal concept- and an EA-Iattice. The converse is however not true in
general. Formal concept- and EA-Iattices are not in general Boolean lattices.

Since a Boolean lattice contains all the possible concepts that can be formed with a given
set of attributes, it also forms the theoretical upper limit of the size of a lattice with the
given set of attributes. A Boolean lattice has exactly the same number of concepts as the

elements of 'P(A). Since 'P(A) is exponential in terms of IIAII it follows that the number of
concepts in a Boolean lattice is exponential in terms of IIAII and has 211AII elements (refer to
chapter 5 for more formulas related to the various size aspects of a Boolean lattice).

18

Incidence relation
a b c d

.(.(.(

.(.(.(

.(.(.(

.(.(.(

Figure 2.4: Boolean lattice with four attributes and objects

2.7 AUGMENTED LATTICES

In applications such as machine learning and data mining that use formal concept lattices
and EA-Iattices it is common to augment or label the concepts of a lattice with additional
meta-information that can be used in the application. These lattices are called augmented
lattices (Kourie and Oosthuizen (1998)).

Examples of such meta-information could be:

• The support of a concept.

• A reference to a external database for object concepts.

• A name or descriptor for attribute and object concepts.

• Pre-computed upward and downward closures.

2.8 DIFFERENT VIEWS OF A LATTICE

In describing lattices, their properties and their construction, there are two different but
essentially equal "views" of a lattice. One view of a lattice is to describe the lattice from a
set theoretic point of view and the other from a graph theoretic point of view.

2.8.1 Set-theoretic view of lattices

The set-theoretic view of lattices emphasises the fact that a lattice consists of a set of
concepts. Using the convention that we refer to a concept only by its intent (and assuming
that there are no objects with the same intent), a formal concept- or an EA-Iattice is

19

essentially a set of sets (Le. a set of concepts in which each concept is a set of attributes).
In Kourie &Oosthuizen (1998), for example this view is taken.

Since concepts are merely sets, set operations such as union and intersection can be
performed directly on (the intents of) concepts. The supremum of two concepts with
intents A and B in a Boolean lattice is for example the concept with the intent A n B. The
cover relationship between concepts is defined by set containment. One of the key
aspects of the set-theoretic view is that the lattice is described in terms of its attributes
(sometimes the objects) and since there are far fewer attributes than other (intermediate)
concepts most computations are very efficient.

The disadvantage of the set-theoretic view is that we emphasise the set related properties
of lattice concepts in favour of the graph-related properties especially the child-parent
relationship of nodes in a graph. The advantage is however that lattice properties,
operations and theorems are more easily proved because the lattice is essentially a
construct defined in terms of sets, which have more easily manipulated mathematical
relationships.

2.8.2 Graph-theoretic view of lattices

The graph-theoretic view of lattices emphasises the lattice as a collection of nodes (as
opposed to sets of attributes) with the specific partial ordering relationship between them
depicted by the arcs in the graph. The lattice is thus described in terminology such as
"parent", "child", "upward closure", "downward link", "top", "bottom" etc. This greatly
increases the understanding of the lattice concepts by newcomers to the subject since it
refers to a graphic representation of the lattice namely the line diagram rather than the
more abstract concept of a set of partially ordered sets of sets. In this view the intent and
extent of concepts as well as the context can be inferred by closure operations. Although
this view describes exactly the same lattice, different aspects of the lattice (in this case the
line diagram representation) are promoted.

To distinguish between the two views we will follow the convention of referring to
"concepts" when using the set-theoretic view and to "nodes" when using the graph
theoretic view. Graph terminology such as "arcs", "parent node" and "child node" is also
freely used when taking a graph theoretic view.

Often the graph properties of the lattice are emphasised in that nodes are numbered and
referred to by number in-stead of their intent, extent or both. The intent and extent of the
node is often not explicitly shown and must then be derived by the graph properties using
closure operations.

The disadvantage of the graph-theoretic view is that the mathematical properties of the
lattice may be obscured and compared to the set-theoretic view the proving of theorems is
not straightforward (if one would be restricted to graph terminology only). An example of
this is to be seen in Oosthuizen (1994b) where both the construction and application of
lattices to machine learning from a graph-theoretic view are described. The graph­
theoretic view is essentially a description of the lattice as a data structure consisting of
nodes that have a number of node properties such as its extent, intent, child nodes and
parent nodes.

In the set-theoretic view, a set of concepts can be proven to be a lattice by verifying that a
unique infimum and supremum exist for any set of nodes. To do the same in the graph­
theoretic view, the line diagram of the lattice may be inspected and the arcs leading
upward or downward from a set of nodes are followed until they meet. If, for example, the
arcs leading upward join at two or more nodes that are unrelated (Le. the one is not a
parent of the other), there does not exist a unique smallest upper bound and therefore the

20

lattice property does not hold. A similar inspection should be done to verify the
uniqueness of the greatest lower bound of each set of nodes. In figure 2.5 below both n3
and ns are upper bounds for {n7, ns} as can be seen by following the arcs in bold.
However, n3 and n5 are unrelated. (In this example, it is of course assumed that there is in
fact no top element - i.e. the assumption previously mentioned that the top is implicit has
been lifted.) There is therefore not a unique least upper bound for {n7, n8} and the graph
therefore does not represent a lattice. Oosthuizen (1991) refers to the subgraph consisting
of ng, n5, n7, n3 and the connecting arcs as a quad and describe the problem of
algorithmically constructing a lattice as one in which an acyclic graph is constructed to
connect all objects and attributes without any quads (Le. every pair of nodes has a join
and meet and that these should necessarily be unique). Note that any number of
intermediate nodes can exist between the four "corner" nodes of a quad.

Figure 2.5: Example of a poset with non-unique infima and suprema of concepts n3, ns, n7,
n8 (also called a quad)

Although the two viewpoints are essentially the same and there are many ways to
combine the two views they represent the two main ways in which authors have chosen to
describe lattices and especially the construction and application thereof. Authors such as
Godin (1991) and Carpineto and Romano (1996b) tend to emphasise the set-theoretic
view whilst Oosthuizen (1991) has favoured the graph-theoretic view in the description of
their lattice construction algorithms.

Further on in this text it will be argued that the key to the AddAtom lattice construction
algorithm is was developed using a more graph-theoretic view. The graph-theoretic view
emphasises the use of the information that is contained in the lattice - the partial ordering
of nodes and therefore the characteristics of the context from which the lattice was
constructed.

In order to gain the advantages of both these views we will use both in various sections of
this text. The set-theoretic view will be used to formally describe the lattice and its
construction whilst the graph theoretic view will be used to informally describe the lattice
construction concepts.

2.9 INTENT AND EXTENT OPERATIONS

In this section we define the approximate intent representative set (AIR) as well as the
exact intent representative set (EIR) of a set of attributes with regards to a concept lattice
or complete concept sublattice. These operations define in some sense a 'second-order

meet operation' or 'second-order infimum' for concept lattices. The intent- and extent
representative operations were originally defined in the context of compressed pseudo­
lattices or concept sublattices where the infimum and supremum of some concepts in L
have been removed (such lattices are under consideration in chapter 6). Since the
removal of concepts from a lattice is the opposite of lattice construction there is a
relationship between the two concepts. This relationship is explored in section chapter 6.

Let Q !:: A be a set of attributes and H be the set of associated attribute concepts of Q in
an EA-Iattice L. The meet of the set of attribute concepts H, Meet(L, H) is a concept. If
Intent(Meet(L, H» =Q then the Meet(L, H) is called an exact meet (or exact infimum) of the
attributes in Q since it spans only the attribute concepts H and contains only elements of
Q in its intent. If the meet contains additional attributes in its intent or alternatively spans
attribute concepts other than H, then it is called an approximate meet (or approximate
infimum) of the attributes. Similarly an exact join (or exact supremum) and approximate
join (or approximate supremum) can be defined using a set G of object concepts
associated with a set R of objects in stead of the set H of attribute concepts associated
with the set Q.

Since the elements of the set of attributes, A, are not elements of an EA-Iattice or concept
lattice, L, the meet or infimum of a subset of A in L is not defined. Furthermore, since
lattices of which concepts have been removed will be considered it is useful to define
Inf(L, Q), Q!:: A as the maximal elements4 of the set {x: LI Intent(L, x) d Q} (I.e. the set of
greatest concepts that contains at least the attributes of Q in their intents). This function is
closely related to the infimum or meet of a set of associated attribute concepts. In an EA­
lattice Inf(L, Q) =Inf(L, H) where H is the set of attribute concepts associated with Q, but
this function is also defined on lattices of which concepts (e.g. the associated attribute
concepts themselves) have been removed and in which case Inf(L, Q) may not be a
single concept. Similarly Sup'(L, R) is the minimal elements of {x : LI Extent(L, x) d R}
where R is a set of objects.

Consider a concept lattice or -sublattice, L. Let Q be a set of attributes, Q !:: A. Let S be

the set of all elements of Inf(L, F), FE 'P(Q) (I.e. S = {x : L I :3 F E 'P(Q), x E Inf(L, F)}).
Exclude the zero concept from S. The set of approximate intent representatives of Q in L,
denoted by AIR(L, Q), is the set of minimal concepts in S.

Now let T be that subset of S whose elements have intents that are not subsets of Q. The
set of exact intent representatives of Q with respect to L, denoted by EIR(L, Q), is the set
of minimal elements in S T. If T == 0 then clearly EIR(L, Q) == AIR(L, Q).

From the definition it follows that the results of both AIR(L, Q) and EIR(L, Q) are anti­
chains. They are said to be infimum-denses and are therefore a concise way of
representing Q. In the case of the exact intent representative there is a close relationship
between Q and EIR(L, Q) since the intents of elements of EIR(L, Q) not only span the
associated attribute concepts of Q, they constitute in fact, the minimal set of meets that do
so. There is not necessarily such a direct mapping between Q and AIR(L, Q) in the sense
that concepts in the intents of elements of AIR(L, Q) possibly contain attributes in addition
to those in Q.

Dual extent operations for AIR(L, Q) and EIR(L, Q) can be defined as follows. R can be
seen as a set of objects (instead of Q, the set of attributes) and Inf and the maximal
operations can be substituted by Sup' and minimal operations in the above definitions

4 xES is minimal, iff S, y"* x; such that y :::EA x. Similarly xES is maximal, iff ily E S, Y "* x; such that x
:::EA y.

5 A set X (';;; Y is called infimum-dense in Y if every element from X can be represented as the infimum of a
subset of Y.

22

respectively. The zero concept is replaced by the unit concept. This defines the set of
approximate extent representatives, AER(L, R) and the set of exact extent
representatives, EER(L, R). In an EA-Iattice if Sup'(L, R) is non-trivial (i.e. if Sup'(L, R) is
not h), Sup'(L, R) = AER(L, R) = EER(L, R).

It is useful to define a further related set of operations, namely EIR(L, Q, c), c E L. This is
the set of exact intent representatives of Q not less than c. It corresponds identically to
EIR(L, Q), except that in determining the minimal elements of S above, the downward
closure of a designated concept, c, is specifically excluded from consideration. As a result,
if c is in EIR(L, Q), then EIR(L, Q, c) contains no concepts that are less than or equal to c.
In particular, if c = Meet(L, Q), then EIR(L, Q, c) is the set of concepts covering c in the
sublattice L. The set of exact extent representatives ofR not greater than c, EER(L, R, c) is
defined similarly. It is easy to see that EIR(L, Q) = EIR(L, Q, OL). Similarly EER(L, R) =
EER(L, R, lL). In the same way, the set of approximate intent representatives of Q not less
than c, AIR(L, Q, c) is defined. The set of approximate extent representatives ofR not less
than c is similarly defined.

The operations defined here are collectively referred to as the intent- or extent operations
of a concept lattice (or sublattice).

For example in figure 2.3 calculating AIR(L, {ow, oc, llg, 2lg}), S = {ow, 2lg, oc, llg, 04, 06,

BN}. {BN, 06} is the set of minimal elements of S and therefore AIR(L, {ow, oc, llg, 2lg}) =
{BN, 06}. In calculating EIR(L, {ow, oc, llg, 2lg}) we see that T = { BN } since BN also
spans 11 in addition. The minimal elements of S - T = { ow, 2lg, oc, llg, 04, 06 } is { 06, 2lg}
and therefore EIR(L, {ow, oc, llg, 2lg}) = { 06 }. Chapter 6 provides more examples.

2.10 SUMMARY

In this chapter the basic building blocks and definitions that are key to formal concept
analysis and that will be used in the rest of this text have been defined. This includes the
notion of a lattice, sublattice, formal concept lattice and EA-Iattice. A number of different
operations have also been defined on these structures, this include the intent- and extent
representative operations.

23

Chapter 3: Lattice construction

This chapter discuss the considerations when algorithmically constructing a concept
lattice or rather the line diagram of the concept lattice. This is done through the
formulation of an ineffective lattice construction algorithm.

3.1 ALGORITHMIC LATTICE CONSTRUCTION

Lattice construction algorithms use A, ° and I of a context C = (0, A, I) as input (or a
labelled version of cross table as shown in the incidence relation of the Living Context in
figure 2.2 in chapter 2). All the concepts are discovered and connecting arcs representing
the cover relationship are constructed between appropriate pairs of concepts. The basic
output of such an algorithm is thus a set containing the concepts of the lattice as well as a
set of arcs connecting these concepts.

3.2 INCREMENTAL VS. BATCH LATTICE CONSTRUCTION ALGORITHMNS

There are two basic strategies for algorithmically constructing a concept lattice form I. The
first is to consider the whole context and construct the lattice in a non-incremental or batch
way (Le. if more objects are added to the context, the whole lattice must be reconstructed
from the start). (Bordat (1986), Chein (1969), Ganter (1984), Kuznetsov (1993), Lindig
(1999, 2000), Zabezhailo et al. (1987» have followed this strategy. The second strategy is
to incrementally build the lattice, adding objects to the lattice until the lattice of the whole
context is constructed. In each invocation of an incremental algorithm an existing lattice Li
is used as input. The new object is added to the lattice along with any new concepts and
attributes that may be required to create a new lattice Li+l. Therefore unlike the non­
incremental strategy, a valid lattice exists after each iteration of the algorithm. The
incremental algorithm will also modify the arcs of Li to create L i+l . Godin (1991), Carpineto
and Romano (1993, 1996b), Oosthuizen (1991), Dowling (1993) and Norris (1978) have
followed an incremental lattice construction strategy (refer to section 5.1 for references to
more algorithms).

The main advantage of incremental lattice construction algorithms is that new objects can
efficiently be added to the lattice without rebuilding the whole structure and therefore the
incremental construction algorithms are often used. This may however be at some
expense since the algorithm cannot optimise across all objects in the context.

3.3 CONSTRUCTING THE LINE DIAGRAM

A number of published non-incremental lattice construction algorithms only generate the
set of concepts of the lattice and do not generate the line- or Hasse diagram that
represents the cover relationships between lattice elements. Although there are
applications such as the generation of all implication rules of a context in which only the
set of concepts is used, the majority of lattice-based applications do explicitly use the

24

ordering of concepts in terms of generalisation and specialisation. This ordering is after all
one of the primary benefits of lattice-based applications.

For the purposes of comparing the algorithmic performance of various lattice construction
algorithms a common framework is required and therefore it is argued that only
construction algorithms that do produce the line diagram of the lattice should be
considered since they have a more general application. Kuznetsov and Obiedkov (2002)
have adapted a number of the non-incremental algorithms that do not generate the line
diagram to generate it.

3.4 AN INEFFICIENT BATCH LAITICE CONSTRUCTION ALGORITHM

A simple way to demonstrate the basic considerations and challenges in concept lattice
construction algorithms is to consider a very inefficient construction algorithm which uses
the basic definition of an EA-Iattice to construct the lattice data structure. (Note that the
algorithm can be easily adapted to formal concept lattices by changing the conditions for
testing.)

The BruteForceEAConstruct algorithm below, "blindly" applies the deIinition of the EA-Iattice
in a very inefficient way. From the definition of EA-concepts it is clear that all the concepts
of an EA-Iattice can be discovered by enumerating and inspecting all possible

combinations of E k: 0 and F k: A (i.e. 'P(O) x 'P(A)) and then inspecting each couple (E, F)
to test whether it is EA-formal. Once all the lattice concepts have been discovered, the
definition of the cover relationship between concepts is used to test each pair of concepts
to determine whether they cover each other. As one might expect this algorithm is very
inefficient since it inspects all possible combinations of attributes and objects without
having any strategy to prune the search space.

25

11===
Function BruteForceEAConstruct (anObjSet, anAttrSet,

anlncidenceRelation) Return aLattice

11===================================== ==================
CreateNewLattice(L)

L. Concepts = 0

For V E ~(anObjSet)

For V F E ~(anAttrSet)

II Determine E'

E' = 0

For V 0 E E

For V a E anAttrSet
If oIa with I = anlncidenceRelation then E' E' U {a}

Rof
Rof
II 	Determine F'
F' 	 = 0

For V a E F

For V 0 E anEntSet
If oIa with I anlncidenceRelation then F' F' U {a}

Rof
Rof
II Test against EA-formal concept definition

If IIEII 1 and F=O' then L.Concepts L.Concepts U {(E, F)}

If II F II 1 and E=A' then L. Concepts L. Concepts U {(E, F)}

If E 0 and F = anAttrSet then L.Concepts =L.Concepts U {(E, }

If F 0 and E = anObjSet then L.Concepts L.Concepts U {(E, F)}

If F'= E and E' F then L.Concepts L.Concepts U {(E, F)}

Rof

Rof

II Discover the cover relationships
L.Cover 0 II L.Cover is a set of concepts in the form (b, c) this

II assumes a unique symbol is associated with each

For V x E L.Concepts II x and yare concepts in the form (E, F)

For V x E L. Concepts , x * y, x y

CoverFlag = True

For V Z E L.Concepts, Z * x, Z * Y

If X ~EA Z ~EA Y then CoverFlag = False

Rof

If CoverFlag then L.Cover L.Cover U {(x, y)}

Rof

Rof

Retrun L

End BruteForceEAConstruct

11===

Because of the non-specific and unfocussed way in which the algorithm creates concepts
and arcs it soon becomes hopelessly inefficient for all but the smallest of contexts.

This algorithm does however address the basic functions of a concept lattice construction
algorithm:

• 	 Generating all the concepts of the lattice and representing them in a data
structure.

26

• 	 Discovering the cover relationship between the concepts and representing it in a
data structure.

There is however a number of other issues that need to be addressed in order to be more
efficient:

• 	 Avoiding the generation of duplicate concepts or at least determining whether a
concept is generated for the first time.

• 	 Efficiently testing and/or generating the cover relationships.

• 	 Efficiently searching for concepts in the set of concepts that has been generated
up to that point.

• 	 Avoiding the generation of cover relationships that might be deleted later in the
algorithm.

One important property of the algorithm is that it is non-incremental in that we cannot
incrementally construct the lattice by starting with a lattice and adding a new object to
create a new lattice - the whole lattice needs to be constructed anew. With an incremental
algorithm we can create a lattice Ln+l with n + 1 objects by taking the lattice of n objects, Ln
and add the n + 1 'th object. The key to the incremental algorithm is the observation that
the generated lattice (Ln+1) always contains all the concepts of the original lattice (Ln) but
concepts were either added, modified or left unchanged. Such an algorithm will discover
and new concepts and arcs needed to create Ln+l as well as deleting arcs where the newly
created concepts redefine the cover relationship between specific concepts. This is the
strategy followed by the AddAtom algorithm defined in the next chapter.

Another important property of the algorithm is that it constructs the set of all concepts of
the lattice as well as the line diagram of the lattice. In applications such as those using
association rules where only the set of concepts are required, the last part of the algorithm
can be skipped. Section 5.1 lists a number of published lattice construction algorithms and
compare them with regards to their key characteristics.

Although this algorithm can be improved upon in a number of ways, we will not pursue this
further but will instead define a new algorithm using more elegant strategy in the next
chapter.

27

Chapter 4: The AddAtom lattice
construction algorithm

In this chapter we describe and define a concept lattice construction algorithm called
AddAtom. This is done in two parts. In the first, in section 4.1, we give an informal
description of the strategies used in the AddAtom lattice construction algorithm using a
graph theoretic view. Then, in section 4.2, we describe the relation of the intent- and
extent representative operations defined in chapter 2 to lattice construction and show that
these operations have a direct relationship to the structural properties of a lattice. In
section 4.3 the AddAtom algorithm is formally defined in pseudo code using a set theoretic
point of view. This is followed by an example of the execution of the algorithm (section
4.4). Since the algorithm defined in section 4.3 is very inefficient as stated, section 4.6
considers efficient implementations of the algorithm derived from an efficient algorithm for
determining the intent- and extent representative operations (section 4.5). The chapter
concludes with a general discussion of the algorithm (section 4.7).

4.1 INFORMAL DESCRIPTION

This section is an informal discussion of the AddAtom concept lattice construction
algorithm. The description incrementally builds an understanding of the algorithm by
describing the various strategies used in the algorithm. This approach is taken to give the
reader an intuitive understanding of lattice construction without trying to decipher the
concepts of a more formal description. In the next section a formal description of the
algorithm is given. Readers familiar with lattice construction may wish to skip this section.

As a starting point, an observation that can be made about the inefficient algorithm
defined in the previous chapter (BruteForceEAConstruct) is that it ignores the information
already contained in the lattice Ln. The algorithm computes all concepts and consider
each as possibilities regardless of whether there is a likelihood of finding any new EA­
formal concept or not. However by inspecting the nodes and arcs in L, the creation of a
number of concepts could have been avoided (e.g. generating only combinations of
attributes that actually occur in I). The process of creating arcs could also be significantly
improved by using the "information already contained in the lattice". This idea of using the
information already contained in the lattice is the key to the AddAtom algorithm. It is
therefore worthwhile to take a closer look at the lattice before defining the algorithm in
order to see how the lattice itself can be used to more efficiently construct Ln+1•

28

9

I

nB n9

Figure 4. 1: Nodes in a lattice are connected to the meet of subsets of their intents

In general, any node is always connected to the meet of some subset of the attributes in
its intent. For example node n9 in figure 4.1 has an intent of {nj, n2, n}, n4, ns}. In this case n9
is connected to n6 and n7, the meets of {nj, n2, nJ} and {n}, n4, ns} respectively. Since the
node itself is the meet of all the attributes in its intent it seems that if we want to insert a
new object node e into the lattice, we must find the meets mI" .mj of all subsets of n's
intent and connect the new node to some of these meets. However if such a meet is
spanned by another meet (not the unit concept), lower down in the lattice, it must be
ignored. Only the lowest, or minimal, meets should be taken.

In the figure 4.2 object node e with intent A = {a, b, c, d} was inserted into a lattice (in the
following, the intent attributes of all objects to be inserted are shaded in grey). The set of
the meets of all the subsets of A is {a, b, c, d, mJ, m2, m]}. Since a, b, c, d, m, are covered by
either m2 or m} they can be ignored and e only connected to m2 and m}. By inspection, it
can be verified that the resulting line diagram is indeed a lattice in that the supremum and
infimum of any pair of concepts are unique (keep in mind that the unit and zero nodes
were omitted in the figure but are implied).

Figure 4.2: node e with intent A = (a, b, c, dj was inserted into a lattice by connecting it to
m2 andm3

This observation suggests a possible lattice construction algorithm. The approach is to
find the minimal meets of Intent(o) (Le. all the meets of all possible subsets of Intent(o),
excluding the unit node, not spanned by another meet). This set of nodes can be found by
computing the set of meets of all possible subsets of Intent(o) and then removing the zero

29

node and any other node that is spanned by another node lower down in the lattice. Note
that this corresponds to the definition of the approximate intent representatives of Intent(o)
or AIR(L, Intent(o)) defined in chapter 2.

e

Figure 4.3: Lattice before inserting node m with intent lntent(m) = fa, b, c, d, ej to create
lattice in figure 4.4

This approach to a lattice construction algorithm does however not always function
correctly. Consider the lattice in figure 4.3 and suppose that the node m with intent
Intent(m) = {a, b, c, d, e} is inserted into the lattice. Using this approach it creates the lattice
in figure 4.4, Le. because the set of approximate intent representatives of {a, b, c, d, e} in
figure 4.3 is {n4, ns}, m is connected to both n4 and ns as shown in figure 4.4. (To aid the
readability of the figures, the newly inserted nodes are shown in black.) On closer
inspection, we see that m has now gained an extra attribute in its intent namely f via node
n4 (Le. instead of m's intent being {a, b, c, d, e} as was intended, it is in fact {a, b, c, d, e, f}
in figure 4.4). It thus seems as if this approach only works when the intent representative
concepts span only attributes in Intent(m) (Le. when they are exact). If not, then the intent
of the new node could unintentionally be extended.

e

Figure 4.4: Lattice after inserting node m with Intent(m) = fa, b, c, d, ej, but showing that m
now hasf in its intent in addition

Since n4 is not an exact meet of Intent(m) in figure 4.3, it cannot be connected directly to
the new node. We might be tempted to connect m to n" 02 and ns, leaving us with the

30

graph in figure 4.5 below. But as indicated using thick arcs, both m and n4 are lower
bounds of {n], nz}. Since the greatest lower bound of {n], nz} is non-unique, the lattice
property does not hold and this approach is therefore also not correct.

e

Figure 4.5: Connecting m to nJ and nz creates multiple greater lower bounds of {nJ, nz}

The solution to the problem lies in the creation of a new intermediate node n3 spanning nl
and nz and connecting n4 and m to n3 as in figure 4.6. In doing so arcs (n4' nl) and (n4' nz)
had to be removed and the new arcs (n3' nl), (n3' nz), (n4' n3) and (m, n3) had to be created.

Figure 4.6: To insert m into the lattice a new node n3 needs to be created

Although we define the AddAtom algorithm in a more formal way in the next section, the
key to the algorithm is that new nodes can be directly linked to their exact intent
representatives. Additional nodes must be inserted when the intent representatives are
approximate. By doing this, we are in effect creating the exact meets of the intent when
they do not already exist in the lattice.

The algorithm we are now informally defining needs one extra part: the process of
creating the exact meets must be recursively applied. This is demonstrated in the

31

following example where a new node m with intent {a, b, d, e, f, h, g} must be inserted into
the lattice in figure 4.7.

h

n1

Figure 4.7: A lattice where a new node m with intent (a, b, d, e, f, h, g) must be inserted

The meet of {a, b, d, e, f, h, g} in the lattice in figure 4.7 is {nd. Since n6 is approximate (it
spans c in addition to {a, b, d, e, f, h, g}), a new node (nlO) with intent {a, b, d, e, f, g, h} must
be created above n6' This node creates an exact meet to which m can be connect to.
However the same reasoning needs to be applied to nlO the insertion of itself - it should
also be connected the minimal meets of {a, b, d, e, f, g, h} and these meets should be
exact. However, when calculating the minimal meets of {a, b, d, e, f, g, h}, n6 and nodes
below it needs to be excluded from consideration. The set of minimal meets of {a, b, d, e, f,
g, h} excluding n6 is therefore {n4' n5}' Node n5 is an exact meet of {a, b, d, e, f, g, h} and nlO
can be directly connected to it. Node n4 is however not exact and an additional node
needs to be created above n4 in the same way nlO was created above n6 (refer to figure
4.8). The insertion of nlO can also be viewed as the insertion of an object with the intent of
{a, b, d, e, f, h, g} into the sublattice of which n6 is the zero node. In this context (Le. n6 is
considered to be the zero node of a sublattice) the set of approximate intent
representatives of {a, b, d, e, f, h, g} is {n4, n5}'

Recursively continuing with this process we see that n3 and n2 are also approximate
meets. Each time such approximate meets are encountered a node is created above the
approximate meet. The intent of the new node is that subset of the intent of the
approximate meet where only those attributes that are in the intent of the original object
(m) are kept. The nodes n9, ns and n7 are therefore created above the approximate meets
n4, n3 and n2 respectively resulting in the lattice in figure 4.8.

32

Figure 4.8: The lattice of figure 4.7 after inserting node m with intent (a, b, d, e, f, h, g)

4.2 INTENT- AND EXTENT REPRESENTATIVE OPERATIONS AND LATI"ICE
CONSTRUCTION

At a high level of abstraction, lattice construction algorithms may be thought of as

searching the space of all concepts (i.e. 'P(O) x 'P(A)) to find all formal or EA-formal
concepts. This can for example be done by intersecting the intents of the concepts and
searching for sets of attributes each of which are not already present as the intent of some
other concept. At a somewhat lower level of abstraction, an incremental lattice
construction algorithm that inserts a new object 0 into a lattice Li to create a new lattice
Li+1 may be described (Valtchev and Missaoui 2001) as a search for three sets of
concepts in L i : generator concepts, G(o), that give rise to new concepts; modified
concepts, M(o), whose arcs must be modified in order to integrate 0 into their extents; and
old concepts, U(o), that remain entirely unchanged. In addition, a set of new concepts N(o)
to be inserted into Li to give Li+1 must also be constructed.

The discussion below will indicate that the intent representative operations may be
deployed to identify generator, modified, old concepts and new concepts, and may
consequently be used to construct concept lattices.

The intent representative operations reflect some of the properties of a lattice and its line
diagram. For any concept c in a lattice L (potentially a concept sublattice), EIR(L, Intent(c),
c) is the set of parent concepts of c and therefore defines the cover relationships of c. This
property is due to EIR being the minimal meets, not spanning c, that span only contains
subsets of Intent(c) in their intents. Similarly EER(L, Extent(c), c) is the set of child concepts
of c.

However, this property only holds for concepts that already belong to an existing lattice,
Li. When inserting a new object, 0, into Li to create Li+l' it will not necessarily be true that
the set EIR(Li, Intent(o), Inf'(Intent(o))) represents al/ the parent concepts of 0 in Li+1•

Indeed, an incremental lattice construction algorithm will invariably have to construct (or
'spawn') additional intermediate concepts that are not yet part of L i . This is in order to
achieve the objective that EIR(Li+h Intent(o), 0) is the set of parent concepts of c in Li+1•

33

Furthermore, these additional intermediate concepts and their associated cover
relationships in the new structure also have to comply with the lattice property in that any
pair of concepts must have a unique infimum and supremum. Therefore in addition to
creating the parent concepts of 0, other concepts could be created recursively and
connected higher up in the lattice in order for this uniqueness property to hold.

It can be shown that an incremental lattice construction algorithm that inserts an object 0

into a lattice Li to give 1,+1> merely needs to intersect the intent of 0 with the intent of
current concepts in Li to determine the intent of concepts of Li+1• Any intents of derived in
this way that are not the intents of concepts in Li are that of new concepts that must be
added to Li to derive Li+1• Put differently, the intent of each of these new concepts
corresponds to the intersection of Intent(o) with one of the concepts in G(o), the generator
concepts for o. In fact, this property is precisely what determines a generator concept for 0

- that its intersection of its intent with Intent(o) gives the intent of a new concept. This is
however a computationally inefficient way to construct lattices and hence the search for
efficient construction algorithms.

For simplicity, we will not consider contexts and their corresponding lattices in which the
intent of an object is a subset of the intent of some other object (I.e. it is assumed that
objects are not comparable). Also assume that the extent of an attribute is not a subset of
the extent of any other attribute (I.e. it is assumed that attributes are not comparable). In
other words only contexts where the attributes and objects are the co-atoms and atoms
respectively of the FCA lattice, and where the FCA lattice is therefore isomorphic to the
EA-Iattice are considered. This will not detract from validity of the discussion but will
prevent the discussion from being cluttered by having to consider some exceptions
associated with such contexts.

Consider inserting an object 0 into L j • The trivial case is when there are no generator
concepts except for the zero concept, OL' In this case all concepts in AIR(Li • Intent(o), OL)
are exact meets. The object should be inserted, as an atom, above OL and connected to its
parent concepts as given by EIR(Li , Intent(o), OL)' OL is the object's only child concept.
(Note that this is by virtue of the simplification of the context as described in the previous
paragraph.) The extent of each concept in M(o) also needs to be updated as a result of
the insertion of o.

If EIR(Lj , Intent(o), Q) * AIR(Li , Intent(o), OL) then there is at least one concept in L j that is
the meet of a subset of Intent(o) that spans attributes other than those in Intent(o) (Le. the
meet is not exact). All non-exact meets are elements of the set T in the definition of EIR(Li ,

Intent(o), 0) (refer to section 2.9). For each such non-exact meet, a new concept must be
created whose intent corresponds to the intent of the generator concept less the additional
attributes. Each such meet is a concept in G(o). Therefore, if EIR(Lj , Intent(o), 0) * AIR(Li ,

Intent(o), 0), generator concepts of 0 do exist in L. Indeed the concepts in the set AIR(Li,
Intent(o), 0) - EIR(Li, Intent(o), 0) are all generator concepts, the intersection of the intent of
each of these generator concepts with Intent(o) does not represent the intent of any
concept already contained in L. (If it did, then that concept would be an element of EIR or
AIR.) (Note that these are not the only generator concepts as explained below.) An
incremental concept lattice construction algorithm can thus compute the minimal (but not
all) concepts in G(0) if it can compute the intent representative operations. For the
purposes of this discussion, it will be assumed that efficient algorithms to calculate AIR
and EIR are indeed available.

The next 'level' of the elements of G(o) can be found by using the intents of the minimal
concepts in G(o) restricted to Intent(o) as a generating set and then calculating their
respective EIR and AIR sets (i.e. using lntent(g) n Intent(o), g E G(o) for calculating ElR
and AIR}. This strategy can be recursively applied to calculate all elements of G(o).

34

If all concepts in G(o) are known, then the new concepts to be inserted can be determined
as follows. Each element g of G(o) gives rise to a new concept n E N(o) (N(o) being the set
of new concepts inserted in Li to yield Li+l) with Intent(n) =Intent(g) n Intent(o) and Extent(n)
= Extent(g) u {o}. Some of the parent concepts of n could be newly created concepts of
N(o) in Li+l higher up in the lattice whilst the others are elements of EIR(Li, Intent(o), g).
Before connecting n, all elements of N(o) must be generated since n might be connected
to one of them. The child concepts of n are given by EER(Li+h Extent(n), n). g will be one of
the c~lild concepts but it could have additional child concepts. Each of these child
concepts will be in N(o) corresponding to another generator concept lower down in the
lattice in a similar way as the parent concepts.

From this description it thus follows that the set of concepts in G(o) is partially ordered.
The concepts in M(o) are all the exact meets of subsets of Intent(o) in Lo. Elements of G(o)
are all approximate meets of Intent(o). The elements of U(o) are those concepts not in
either G(o) or M(o).

u2

g1 =meet(L, Intent(o»
Intent(g1)" Intent(o)

Figure 4.9: The relationship between C(o), M(o), U(o) and N(o) when inserting 0 with
lntent(0) ={a2' a3, a4, a5, a7. as, a9} into the lattice

Figure 4.9 shows the lattice concepts of Li as larger circles. They comprise of U(o), M(o)
and G(o). Membership of a particular set is indicated by the prefix u, m and g in the
concept labels respectively and attributes are prefixed by a. In the example, object 0 with
Intent(o) = {a2, a3, a4, as, a7, as, a9} is to be inserted. The elements of G(o) form a partial order,
indicated by the thick arcs, with gl as zero concept and IL as unit concept. The rest of the
lattice concepts are not shown and are indicated by thin arcs that do not end/start in
concepts. These concepts are members of U(o) and will remain unchanged. The elements
of M(o) are all located above the largest concepts of G(o). The elements of N(o) are
superimposed on the concepts in Li and shown as smaller, grey shaded, concepts
connected by dotted arcs. Each element of N(o) is shown above its respective generator
concept. Note that the concepts of N(o) are not yet properly connected into Li to form Li+l'
As explained, gl E G(o) and is in fact OL and nl E N(o) is in fact the object o.

35

These ideas are made more explicit in the formulation of the AddAtom lattice algorithm
defined in the next section.

4.3 DEFINITION OF THE ADDATOM ALGORITHM

In this section the algorithm hinted at in the two previous sections is formally defined using
pseudo code. For the purpose of reference we call the algorithm AddAtom since it inserts
an atom concept (Le. an object) above the zero concept into the lattice. As defined the
algorithm is conceptually simple but very inefficient. Efficient versions of the algorithm are
discussed and defined later on in the text. Once again we only consider contexts that
have objects that are unrelated to other objects and attributes that are completely
unrelated to other attributes as explained earlier. In the corresponding lattice all the
objects are thus atoms and the all attributes, coatoms.

The algorithm involves the recursive application of the ideas presented in the previous
section. The algorithm is initiated by a set of attributes representing the intent of the object
to be inserted (i.e. as a new atom) as well as the zero concept as the first generator
concept. Each recursive AddAtom call creates aNewConcept with Intent(aNewConcept) =
anAttributeSet. After each recursive call of the algorithm a new concept has been inserted
into the lattice above the generator concept. This newly inserted concept has also been
properly connected to its parent concepts (possibly involving further recursive AddAtom
calls to create the necessary concepts). The called function returns this newly created
concept and the calling function inserts this concept into the upper cover of its respective
aNewConcept. Thus the recursive calls construct the additional concepts required for the
insertion of the object. In this way there is no need to separately compute the covers of
the newly inserted and modi'fied concepts since the nature of the intent representative
sets as traversed by the recursive calls already indicate these relationships (as depicted in
the structure of G(o) in figure 4.9).

Using parameter names to imply types the AddAtom algorithm is defined as follows:

36

11===
Function AddAtom (L, anAttributeSet, aGeneratorConcept)

Return aNewConcept
11===
IIPre-condition:
II L is a partial order such that:
II 1) anAttributeSet is a set of attributes
112) UpwardClosure(L, aGeneratorConcept) is a complete sublattice
113) Meet(L, anAttributeSet) = aGeneratorConcept
114) aGeneratorConcept is a generator concept for
II anAttributeset and an approximate meet of anAttributeSet
11===
IIPost-condition: L is a minimally updated in such a way
II to ensure that:
II 1) UpwardClosure(L, aGeneratorConcept) remains a sublattice
112) Meet(L, anAttributeSet)= aNewConcept (an exact meet, AIR=EIR)
II 3) aNewConcept covers only aGeneratorConcept and nothing else
114) All generator concepts above aGeneratorConcept
II have been visited and the corresponding
II new concept has been created an appropriately
II linked into L
11===
ApproxMeets =

AIR(L, anAttributeSet, aGeneratorConcept) ­
EIR(L, anAttributeSet, aGeneratorConcept)

II Remove all elements of EIR from AIR
II Pre-condition 2 guarantees that the meets are unique
II Next, generate N(o)
Do While (ApproxMeets i 0)

Select and mark any x E ApproxMeets

SubAttr = anAttributeSet n x.Intent

bNewConcept = AddAtom(L, SubAttr, x)

Recompute ApproxMeets

Remove all marked concepts from ApproxMeets

Od
II Post-condition 4 achieved and AIR = EIR
aNewConcept = CreateConcept(L)
aNewConcept.Extent = aGeneratorConcept
aNewConcept.Intent = anAttributeSet
II Next, connect elements of N(o) to aNewConcept

For V x E EIR(L, anAttributeSet, aGeneratorConcept)
CreateArc(L, aNewConcept, xl
IIAssume no effect if arc already exists
DeleteArc(L, aGeneratorConcept, x)
IIAssume no effect if arc does not exist

Rof
II Next update the extents of N(o) and M(o)
If aGeneratorConcept = OL then

For V x E UpwardClosure(L, aNewConcept)
x.Extent = x.Extent U {aNewConcept}

Rof
Fi
II Post-condition 1 & 2 achieved
CreateArc(L, aGeneratorConcept, aNewConcept)
II Post-condition 3 & 5 achieved
Return aNewConcept
End AddAtom
11===

37

Thus, to incrementally insert a new object 0 into a lattice for the context (A, 0, I) the
function call AddAtom(L, Intent(o), OL) would be used. Note that L is passed as an in/out
parameter. It is assumed that the individual attributes of the object 0 are already present in
the lattice (i.e. as coatoms).

As indicated a list of marked concepts needs to be kept in order that such concepts are
not revisited in the Do While ...Od loop.

To operate on arbitrary contexts the AddAtom algorithm should be slightly extended to
consider the following cases:

• 	 The object is the first to be inserted into an empty Lo.

• 	 The object to be inserted into the lattice is in fact not an atom in L j (I.e. Intent(o) is a
subset of some other object's intent}.

• 	 The object has same intent as another object in the context.

• 	 The attributes of the object are not all coatoms.

• 	 More than one attribute may correspond to a single concept in L; (i.e. the extent of
two attributes is the same).

• 	 Some of the attributes in Intent(o) do not already exist in L j •

• 	 Some modifications are required for FCA lattices (since all objects are not atoms
and all attributes not coatoms).

In addition to these the AddAtom algorithm can be modified to operate on compressed
pseudo-lattices (refer to chapter 6) in that it respects the virtual arcs and compressed
pseudo-lattice properties and does not assume the existence of all formal concepts in L j •

38

4.4 ADDATOM EXAMPLE

AIR(l, {a, b, d, e, f}, n3) = {nS, n4, f}

EIR(l, {a, b, d, e, f}, n3) ={d, e, f,

AIR(l, {a, b, d, e, f, h}, n1) ={n3, h)

EIR(l, {a, b, d, e, t, h}, n1) ={d, e, t, h,

AIR(l, {a, b, d, e, f, 9, h), Dl) {n1, n2}

EIR(L, {a, b, d, e, t, 9, h), Dl) = {d, e, f. h, nS,n2}

Figure 4.10: A lattice before inserting 03 with Intent(oJ) = fa, b, d, e, f, g, h} indicating G(o) as
well as the AIR and EIR sets of elements of G(0)

As an example consider inserting object 03 with Intent(03) {a, b, d, e, f, g, h) into the lattice,
L, in figure 4.10. Since the algorithm does not consider and visit irrelevant concepts, only
the relevant part of L is shown the relationships to the rest of L are shown by arcs that
do not terminate in concepts.

L is an in/out parameter in the algorithm. Thus, throughout the algorithm, operations use L
as it exists at that point in the computation - not in its state when that given level of
recursion was invoked with L as a parameter.

The algorithm begins with the function call AddAtom(L, {a, b, d, e, f, g, hI, Od. ApproxMeets
has to be computed, and this requires that both AIR(L, {a, b, d, e, f, g, hI, Od and EIR(L, {a,
b, d, e, f, g, hI, 0L) have to be computed. In this case S ={iL' a, b, d, e, f, g, h, nj, n4, n3, n2, nd
(refer to section 2.9 for the definition of AIR and EIR). These concepts are shown in black
or grey in figure 4.10. Other concepts are in white. The concepts in black are generator
concepts as will become clear later. nj and n2 are the two minimal concepts in S, therefore
AIR(L, {a, b, d, e, f, g, h}, Od ={nj, n2}'

In order to find EIR(L, {a, b, d, e, f, g, h}, Od, we see that T {n4' n3, nd and therefore S - T
= {lL' a, b, d, e, f, g, h, nj, nz}. Thus, EIR(L, {a, b, d, e, f, g, h}, Od, (the set of minimal
concepts, excluding OL, in S - T) is {d, e, f, h, nj, n2l. As a result ApproxMeets (AIR EIR) is
{ n 1 }. n j is therefore a generator concept.

The first loop of the algorithm is thus executed, where x =nj. Intent(L, nJ) = {a, b, c, d, e, f,
h} and SubAttr ={a, b, d, e, f, hI. Thus, AddAtom(L, {a, b, d, e, f, h}, nl) is recursively called.
Note that nl is an approximate meet of {a, b, d, e, f, g, h} since it also spans the attribute c.
To create an exact meet that does not span the additional attribute, c. The algorithm
searches for any additional approximate meets above nJ and creates additional concepts
that will form exact meets.

39

In tracing the function call AddAtom(L, {a, b, d, e, f, h}, nl) we see that AIR(L, {a, b, d, e, f,
h}, nl) ={n3, h} and EIR(L, {a, b, d, e, f, g, h}, nl) ={d, e, f, h, ns, ll2} so that ApproxMeets =
{ll3}' SubAttr ={a, b, d, e, f} with n3 being an approximate meet of SubAttr, again spanning c
in addition. ll3 is thus a generator concept. AddAtom(L, {a, b, d, e, f}, n3) is therefore
recursively called to create an exact meet above n3'

AddAtom(L, {a, b, d, e, f}, ll3) calculates AIR(L, {a, b, d, e, f}, ll3) {f, ns, n4} and EIR(L, {a, b,
d, e, f}, n3) ={d, e, f, ns}, so that ApproxMeets ={n4}'

Once again ll4 is a generator node and AddAtom(L, {d, e}, n4) is called recursively. Since
AIR(L, {d, e}, ll4) = EIR(L, {d, e}, n4) = {d, e}, ApproxMeets 0 and the algorithm progress
past the while loop to create n6 whose intent is to become {d, e} (figure 4.11). Moving to
the next loop of AddAtom EIR(L, {d, e}, n4) ={d, e} and therefore arcs are created between
n6 and d and n6 and e. n4 disconnected from both d and e. Finally after completion of the for
loop an arc is created between n4 and n6 and AddAtom(L, {d, e}, n4) terminates with n6 as
the result which is passed back to AddAtom(L, {a, b, d, e, f}, n3)'

AddAtom(L, {a, b, d, e, f}, n3) now creates n7 and calculates EIR(L, {a, b, d, e, f}, n3) = {ll6' n5,
f} (n6 being the newly created exact meet). It then creates arcs from n7 to ns, n6 and f. The
arcs from ll3 to ns and f are deleted. An arc is created between n3 and n7 and the function
returns n7 as the result.

AddAtom(L, {a, b, d, e, f, g, h}, nl) creates ns and since EIR(L, {a, b, d, e, f, g, h}, nl) = {h, n7}
arcs from each to ng are created. The arc between nl and h is deleted. An arc between n)
and llg is created and AddAtom(L, {a, b, d, e, f, g, h}, nl) terminates with ns as result.

Finally AddAtom(L, {a, b, d, e, f, g, h}, Od creates 03 and create arcs between 03 and ll2 and
llg. Since 03 is a newly inserted opject it is added to the extent of all the concepts above it.
OL is connected to 03' This concludes the recursive AddAtom calls and AddAtom returns
the inserted object 03 to the calling function. Since L was an in/out parameter, it now refers
to the newly created lattice.

The resulting EA-Iattice is shown in figure 4.11 with the newly created concepts shown in
grey and their corresponding generator concepts in black. The AddAtom function calls are
also shown next to the respective generator concepts.

40

AddAtom(L, (a, b. d, e, fj, n3)

AddAtom(L, (a, b, d, e, f, g, h), al)

Figure 4.11: The AddAtom example after inserting 03 with Intent(03) = fa, b, d, e,/, g, hi, G(o)
and N(0) as well as the recursive AddAtom calls are indicated

AddAtom thus starts at the bottom of the lattice at the zero concept and traverses the
lattice upward, creating new concepts associated with 'approximate' meets. The new
concepts form exact meets of the intent of the object. The recursion terminates when
AddAtom encounters only 'exact' meets (Le. elements of M(o) to which the newly created
concepts are connected. In this way the recursive calls efficiently search the lattice for
generator concepts and, whilst dOing so, use the inherent structure of Lo to search for,
create and connect the concepts of L j •

The example also shows how the structure and ordering of concepts in Lo can be used to
efficiently eliminate many concepts in the lattice from consideration by using the AIR and
EIR operations. Some incremental lattice construction algorithms resort, in a sense, to a
more brute force approach in considering a much larger set of concepts in order to test for
generation concepts or in order to intersect the intent of the object with these concepts.

4.5 AN ALGORITHM FOR AIR AND EIR

It might be argued that the AddAtom algorithm is merely a restatement of an incremental
lattice construction algorithm in terms of AIR and EIR but that the calculation of AIR and
EIR is computationally inefficient. This research indicates that there are indeed efficient
algorithms for calculating AIR and EIR but these rely on the explicit representation of the
line diagram or cover relationship as a data structure.

One way of efficiently calculating AIR and EIR is to use the concept of marker propagation
in which so-called "markers" are propagated downward along all paths leading from each

41

of the attributes of the object o. Afterwards the number of markers that have accumulated
on each of the concepts is counted. The number of markers thus indicates how many
attributes of 0 a concept has in its intent. Concepts with zero markers therefore need not
be considered as candidates for being minimal meets in AIR or EIR. Concepts with a
higher number of markers are lower down in the lattice than those with a lower number of
markers. Furthermore, there will be many concepts that have the same number of
markers. The number of markers increases as one moves down in the lattice.

There are three key observations to finding AIR (and EIR) using marker propagation. The
first key observation is that any concept that has somewhere below it in the lattice another
concept with more markers than itself is not a candidate for AIR, since it can not be
minimal. The second key observation is that a concept is only a candidate if it does not
have a parent concept which has the same number of markers as itself (i.e. if it is the
highest concept with that number of markers and has no parent with the same number of
markers). This is because if any concept has a parent concept above it with the same
number of markers, it cannot be a greatest (i.e. highest) lower bound of a subset of
Illtellt(o). The third observation is that when searching for candidate concepts by starting
with those with the highest number of markers and eliminating all concepts above and
below them from consideration, all candidate concepts will be found.

Using markers one thus has to search for all concepts that have the largest number of
markers accumulated upon them but that have no concept below them with more
markers. All such concepts are candidate concepts, but only those that have no concept
above them with the same number of markers are elements of AIR.

Figure 4.12 is part of a lattice before inserting object 0 into it. Suppose Q is the set of
attributes associated with 0 and markers are propagated down from each attribute. The
concepts are labelled by the number of markers accumulated on them (i.e. the number of
attributes of Q it spans). Arcs to the rest of the lattice are shown as lines ending in small
circles without concept numbers. Those arcs ending in filled/solid circles indicate arcs to
attributes in Q and those to unfilled circles indicate arcs to unique attributes not in Q. The
marker count is therefore the number of filled small circles above each concept.

To search for AIR(Q) the set of concepts with the highest number of markers (5 markers)
is considered. In this case the set is {ll2], ll24, ll25, ll26}' ll25 and ll26 have a concept above
them with the same number of markers so they can be discarded from the set, leaving
{ll21> ll24}' Next we eliminate all the concepts in ll21 and ll24'S upward and downward closure
from consideration and continue searching for concepts with the highest number of
markers. In the remaining concepts, ll27 has the highest number of markers with 4. After
eliminating its upward and downward closures from consideration the only concepts with
more than zero markers that remain are ll12, lll7, lll8 and ll23 with three markers each. Since
lll7, lll8 and ll23 have concepts above them with the same number of markers, lll2 is the last
remaining element of AIR(Q). Therefore AIR(Q) = {lll2' ll21> ll24, ll27}' These concepts are
shown in black. They are all generator concepts of 0 but are not the only generator
concepts of 0 (the other generator concepts are ll4, ll6, ll7, ll8, lllO, lll4 and llI9)'

42

Figure 4. 12: Part of a lattice before inserting object 0 into it showing AIR(0) in black. Each
concept (n] to n27) is labeled with the number of markers / attributes of 0 that has
accumulated on it.

This process formalised in the following algorithm:

43

11======================================
Function AIR(L, anAttributeSet) Return aConceptSet
II ==
IIPre-condition:
II L is a concept lattice with anAttributeSet a non-empty subset of
II L's attributes
11===
IIPost-condition:
II aConceptSet contains the minimal (possibly) meets

II of anAttributeSet or AIR(L, anAttributeSet)

II ===

NotVisited = (/)
MaxAttr 0
Let attrCount[c] = 0 for all c E L

For ~ a E anAttributeSet

For ~ b E DownwardClosure(L, a)

attrCount[b] = attrCount[bl + 1

NotVisited = NotVisited u {b}

If attrCount [b] > MaxAttr then

MaxAttr = attrCount[b]
Fi

Rof
Rof
Candidates = (/)
Do While (NotVisited f (/) and MaxAttr > 0)

Let d be any c E NotVisited with attrCount[d] MaxAttr
If such a c does not exist then

MaxAttr = MaxAttr 1
Else

I I If d has concepts above it with the same number of markers
II find the one that is the greatest
Found = False
Do While Not Found

Found = True

For ~ p E Parents (d)

If attrCount attrCount[d] then

d = P

Found = False

Exit For

Fi

Rof

Od

Candidates = Candidates u {d}
II Remove the upward closure of d from further
II consideration - its elements can not be minimal meets
UCD UpwardClosure(L, d)
NotVisited = NotVisited UCD
II Remove any candidates that are greater
II than d - they can not be minimal
Candidates = Candidates UCD
II Remove all concepts below d since they have MaxAttr
II markers or have been considered
DCD = DownwardClosure(L, d)
NotVisited = NotVisited DCD

Fi
Od
Return Candidates
End AIR
II ==

44

The calculation of EIR can be done in a similar way but only concepts that are exact must
be considered as candidates. This process can be fast-tracked by eliminating the union of
the downward closure of all attributes not in Intent{0) from consideration before
propagating the markers. The calculation of AER and EER can be done using the same
strategy, but this time propagating markers in the opposite direction and appropriately
changing the direction of the relevant operators in the algorithm.

The algorithms of the intent- and extent operations were defined in terms of the closure
and set operations. When representing sets as strings of bits in memory, these operations
can be very efficiently performed on modern architectures using 32 or 64 bit words. The
calculation of AIR and EIR is therefore very efficient.

Since the intents and extents of the concepts in the lattice can be derived from the
upward- and downward closures of the concepts in the line diagram, these need not be
calculated explicitly.

It is also possible to have attrCount pre-computed when the AIR etc. will be computed for a
subset of A. This optimisation is considered in the efficient AddAtom algorithm defined in
the next section.

4.6 EFFICIENT ADDATOM ALGORITHM

The AddAtom algorithm as described in section 4.3 is not optimal in terms of efficiency. A
number of basic performance improvements can be made on the algorithm. Examples
include the possible avoidance of recalculation of ApproxMeet and the processing of the
generator concepts in the order of the size of their intent. The calculation of both the exact
and approximate intent representative sets can also be computationally inefficient and
may duplicate many operations due to the similarity between the two sets. The following
algorithm is an efficient version of the AddAtom algorithm of section 4.3. It builds on the
ideas of the calculation of AIR and avoids the repeated and calculations of AIR and EIR.

45

II
Function OptimisedAddAtom{aContext) Return aLattice
11==
L CreateEmptyLattice()

NewConcept(L)
OL NewConcept(L)
OL. Intent aContext.Attr

For V a E aContext.Attr
= NewConcept(L)

anAttributeConcept.Intent = {a}

CreateArc(L, OL, anAttributeConcept)

CreateArc(L, anAttributeConcept, lL)

Rof

For V 0 E aContext.Obj
II Calculate attrCount[x] , the number of attributes in o.Intent
II that occur in x.Intent
Let attrCount[x] = 0 for all x E L

For V x E L

attrCount[x] = I Ix. Intent n o.Intentl I

Rof
NewObject = AddAtom(L, o.Intent, OL, attrCount)

For V x E UpdwardClosure(NewObject)

x.Extent x.Extent U {oJ

Rof

Rof
Return L
End OptimisedAddAtom

II
Function GetMeet(L, target, 	aConcept, attrCount)

Return returnConcept
II
IIPre-condition:
II L is a concept lattice, attrCount[aConcept] = target
11===
IIPost-condition:
II returnConcept is the greatest upper bound/concept in L with
II attrCount[returnConcept] = target
II ==
returnConcept aConcept
ParentIsMeet True
Do While ParentIsMeet

ParentIsMeet False

For V Parent E ConceptParents(L, aConcept)

If attrCount[Parent] = target then

returnConcept = Parent

ParentIsMeet = True

Exit For

Fi

Rof

Od
Return returnConcept
End GetMeet

11===
Function AddAtom(L, anIntent, GeneratorConcept, attrCount)

Return aConcept
II
IIPre-condition:
II 1) 	 (L, GeneratorConcept) is a complete sublattice

46

II

II 2) is the meet of anIntent and is approximate

II 3) attrCount[c] Intent(c)nIntent(newObject)
/I
IIPost-condition:
1/ is the greatest upper bound/concept in L with
1/ attrCount[returnConceptl = target

=======================
CandidateParents = ConceptParents(L, GeneratorConcept)

NewConceptParents = 0

For V Candidate E CandidateParents

newIntent Candidate. Intent n anIntent
Xf newIntent # 0

Xf 	Candidate.Intent # newIntent then
aMeet GetMeet(L, I InewIntentl I, Candidate, attrCount)
Xf aMeet.Intent # newIntent

II If aMeet is approximate it is a generator concept and an
II exact meet needs to be created
aMeet = AddAtom(L, newlntent, aMeet, attrCount)

Fi
Else

aMeet Candidate
Fi
addMeet = True
For V g E NewConceptParents

Xf aMeet.Intent k g.Intent
addMeet = False
Exit For

Else Xf g.Intent c aMeet.lntent then
NewConceptParents = NewConceptParents {g}

Fi
Rof
Xf addMeet then

NewConceptParents NewConceptParents U {aMeet}
Fi

Fi
Rof
NewConcept CreateNewConcept(L)

NewConcept Extent GeneratorConcept.Extent

NewConcept.Intent anIntent

attrCount[NewConcept] = attrCount[GeneratorConcept]

For V 9 NewConceptParents
DeleteArc(L, GeneratorConcept, g)
CreateArc(L, NewConcept, g)

Rof
CreateArc(L, GeneratorConcept, NewConcept)
Return NewConcept
End AddAtom
11===

Some optimisations are still possible, but these do not change the basic structure of the
algorithm as stated above. Appendix A contains the pseudo code for one such optimised
version of AddAtom that amongst other strategies considers concept parents in
descending order of their attrCount value. This allows for the removal of many additional
concepts from consideration.

47

4.7 DISCUSSION

Initially some of the meets of subsets of Intent(o) are approximate meets (i.e. generator
concepts). After each completion of a recursive call, additional concepts have been
created that would now form the exact meets of those subsets of Intent(0) and replace the
approximate meets. The algorithm terminates when all meets of all subsets of Intent(0) are
exact with regards to Intent(o). Initially, L is a lattice but as new concepts are generated
that are not yet fully integrated to the lattice structure, some parts of L may violate the
lattice properties up until the completion of all levels of the recursion. When terminating,
the AddAtom algorithm ensures that all concepts in UpwardClosure(L, aGeneratorConcept)
form a lattice. Since the first AddAtom call uses OL as the generator concept, L will be a
lattice when that AddAtom call terminates.

The AddAtom algorithm generates the new concepts and cover relationships in one step
and therefore seems to be more focussed than incremental lattice construction algorithms
that first generate the concepts and then search and generate the upper covers of
concepts using a separate function such as Godin et al. (1991) and Carpineto and
Romano (1993, 1996b). Experiments to date (discussed in chapter 5) also suggest
AddAtom is more efficient.

The algorithm exploits the relationships between concepts already represented in the
lattice to efficiently search for the generator concepts using the intent representative
operations. To this extent the algorithm makes explicit use of the line diagram that
represents the original lattice structure when searching for G(o) by means of the ordering
relationship and the intent representative operations rather than considering all concepts
at once in a more brute force search. Indeed, the intent representative operations
themselves imply a ordering of the generator and new concepts in L!.

A very important property of the algorithm is that it can operate on sublattices where the
formal concept lattice of a context is not used as input. This is due to the fact that the
algorithm is entirely general in not requiring the lattice to have a specific set of atoms or
coatoms (Le. those representing the attributes and objects) but not necessarily that of the
formal concept lattice or EA-Iattice (similar to those concept sub lattices created in
compressed pseudo-lattices). Such lattices are not closed with respect to the intersection
of intents or the union of extents. The only requirement is that anAttributeSet consists only
of coatoms (and not necessarily attribute concepts of the context). The operations used
are therefore based on closure operations rather than intersections of intents. Such
lattices are for example under consideration in compressed pseudo-lattices where the
lattice is not closed with regards to the intersection of intents. Not all lattice construction
algorithms are suitable for applications using sub-lattices in this kind of way.

An optimised, object-oriented version of the algorithm was implemented and tested in C++
(chapter 7). In addition, the implementation also implements the concept of a compressed
pseudo-lattice (chapter 6). The algorithm therefore takes the existence of virtual- and
lattice arcs into consideration during its operation.

Since the direction of the operations can be reversed (e.g. meet replaced by join, EIR by
EER, atom by coatom, etc.) a dual for the AddAtom algorithm namely AddCoatom can be
defined. In the implementation this was achieved by adding an additional parameter
named aDirection to all lattice operations to indicate the direction in which the operation
should operate.

The next chapter (chapter 5) analyses the algorithmic performance of the algorithm by
comparing the performance of AddAtom to that of other lattice construction algorithms
both theoretically and experimentally.

48

Chapter 5: AddAtom algorithmic
performance

The AddAtom algorithmic performance was studied both theoretically (worst case
behaviour) and empirically. This chapter starts with a short survey of published concept
lattice construction algorithms (section 5.1) before deriving a theoretical upper bound to
the complexity of AddAtom (section 5.2). A theoretical worst-case performance bound of
AddAtom is 0(IILII.1I0112.max(1I0'1I». This performance upper bound is however a higher of
magnitude as the current best performer namely that of Nourine and Raynaud (1999,
2002) with an upper bound of 0«1I01l+IIAII).1I01i.IILII). Despite being cubic in nature relative
to the lattice size, it is argued that this bound of AddAtom is not a very sharp upper bound
and that the terms in the complexity expression are in practice, much more of an
overestimate than the 11011 and IIAII terms that appear in the upper bound estimates of
other construction algorithms. The performance is thus best confirmed via experimental
comparisons.

For the purposes of experimental comparison, a two-step approach was taken. Firstly, a
pilot study comparing the original AddAtom implementation in C++ (described in chapter
7) to implementations of two published construction algorithms, namely that of Godin
(1991) and Carpineto and Romano (1993, 1996b). The pilot comparison showed that
there is prima facie evidence that the algorithm performs very well and that wider study is
justified. The second study, involving a wider set of experimental comparisons across a
larger number of lattice construction algorithms, was conducted in collaboration with
another researcher. For the sake of reference, the first, smaller experimental comparison
will be referred to as the "pilot study" (section 5.3) and the second as the "wide
performance study" (section 5.4).

The results of both experimental comparisons indicate that the algorithmic performance of
AddAtom is very good, and often the best of the test bed of 11 concept lattice construction
algorithms. AddAtom performs especially well compared to other algorithms with "natural"
data sets (Le. non-random generated context). When the density of the cross table of the
context is either very high (i.e. every object possesses almost all attributes) or very low
(every object possesses only very few attributes) there are other concept lattice
construction algorithms that do outperform AddAtom. AddAtom is however still the next-to­
best performer in these circumstances and therefore a worthy candidate for a general-use
algorithm. AddAtom was the fastest incremental lattice construction algorithm in the study.
The experimental comparison results are therefore consistent with the argument that the
theoretical complexity bound of AddAtom derived here is not a very sharp upper bound for
AddAtom.

Note that the discussion of both the theoretical and empirical performance, is with
reference to the optimised version of the AddAtom algorithm (see section 4.6). In the
comparisons, performance issues are related to constructing both the set of all concepts
as well as the cover relationships (i.e. the line diagram).

49

5.1 A SURVEY OF CONCEPT LATTICE CONSTRUCTION ALGORITHMS

It is not the objective of this dissertation to analyse and describe other construction
algorithms. Readers are referred to recent comparative studies by Kuznetsov and
Obiedkov (2001, 2002) for a broad discussion and pseudo code of other algorithms. A
number of optimisations of these algorithms as well as adaptations to generate the line
diagram of concept lattices where the algorithm does not generate it already are also
described by Kuznetsov and Obiedkov. Unless otherwise stated, references to the
complexity or experimental performance of these algorithms refer to the improvements
and adaptations propose by Kuznetsov and Obiedkov. Although not exhaustive, the
following table lists a number of the published concept lattice construction algorithms and
briefly describes all the algorithms referred to in this chapter (adapted from Kuznetsov and
Obiedkov (2001, 2002)). The theoretical and experimental comparisons will be made to a
subset of these algorithms.

In each case an algorithm is classified as either incremental or batch (non-incremental)
and also whether it generates only the set of all concepts or the line diagram of the lattice.

Algorithm Incremental I
Batch

Notes

Chein Batch Chein (1969)
Concepts are represented as extent-intent pairs and
each new concept is generated as the intersection of
the intents of two existent concepts. Similar to AI-
tree.
Modifications were suggested by Kuznetsov and
Obiedkov (2002).
Generates the set of all concepts of the lattice.

Ganter, Batch Ganter (1984)
NextClosure Batch algorithm adding one object to earlier

generated extent and calculating closure. Generate
concepts in topological order using lexical order for
concept lookup and comparison.
Modifications were suggested by Kuznetsov and
Obiedkov (2002).
Generates the set of all concepts or the line diagram
of the lattice.

Bordat Batch Bordat (1986)
Batch algorithm intersecting the intent of concepts
with intents of objects that don't belong to concept.
Generate concepts in depth-first order using a tree
for concept lookup and comparison.
Modifications were suggested by Kuznetsov and
Obiedkov (2002).
Generates the set of all concepts or the line diagram
of the lattice.

AI-tree Batch
i

Zabezhailo et al. (1987)
A top-down batch algorithm that searches for

I concepts in the set of concepts generated thus far.
Similar to Chein.
Generates the set of all concepts of the lattice.

50

NotesIncremental IAlgorithm
Batch

BatchCbO,
Close by One

BatchLindig

Batch• Titanic

BatchYevtushenko

IncrementalNorris

IncrementalGodin,
GodinEx

Kuznetsov (1993)

Batch algorithm (similar to NextClosure) adding one

object to earlier generated extent and then

calculating the closure. Generate concepts in depth

first order using lexical order for concept lookup and

comparison. Also use an intermediate structure for

concept searches and the generation of the line

diagram.

Generates the set of all concepts or the line diagram

of the lattice.

Lindig (1999, 2000)

Bottom-up batch algorithm adding one attribute at a

time to the intent of generated concepts and then

calculating its closure. Generate concepts in a depth-

first order using tree for concept searches.

Generates the diagram of the lattice.

Stumme et al. (2000)

Yevtushenko (2002)

Norris (1978)

Incremental algorithm intersecting the new object

intent with that of concepts generated earlier. Keep

list of added objects, checking whether new concepts

can be generated using intersection of objects added

earlier. This has been described as being an

incremental version of the CbO algorithm.

Modifications were suggested by Kuznetsov and

Obiedkov (2002).

Generates the set of all concepts or the line diagram

of the lattice.

Godin et al. (1991, 1995b)

Incremental algorithm intersecting new object intent

with that of concepts generated earlier. Use a

heuristic hash function to sort the concepts when

generating and searching concepts.

There are two versions of the algorithm: GodinEx

refers to the version that uses the size of the extents

and Godin the size of the intents.

Modifications were suggested by Kuznetsov and

Obiedkov (2002).

Generates the set of all concepts or the line diagram

of the lattice.

I

51

Algorithm Incremental I
Batch

Notes

Grand Incremental . Oosthuizen (1991)
• Incremental algorithm using a graph theoretic

approach to insert an object into a lattice. Grand
connects objects attribute by attribute, to an
increasing subset of its intent until the object is

i connected to all the attributes in its intent. During the
process a function called transform ensures that the
uniqueness of suprema and infima is maintained
through the manipulation, addition and deletion of
concepts and arcs. Constructs EA-Iattices.
Generates the line diagram of the lattice.

Carpineto Incremental Carpineto and Romano (1993, 1996b)

Nourine Incremental Nourine and Raynaud (1999, 2002)
Incremental algorithm intersecting new object intent
with that of concepts generated earlier. Use a lexical
tree for concept lookup and comparison.
Generates the line diagram of the lattice.

Valtchev,
Divide
conquer

and
N/A Valtchev et al. (2000)

Algorithm based on the combination of two concept
SUb-lattices that are combined to construct the full
lattice. The context of each SUb-lattice is obtained by
splitting the cross table of the original context either
by objects or by attributes.
Generates the line diagram of the lattice.

AddAtom Incremental Described in chapter 4.
Incremental algorithm using the approximate and
exact intent representative (minimal meets) of the
object intent to find generator concepts and
recursively generate new concepts above these.
AddAtom use the lattice itself for concept lookup,
comparison and avoiding duplicate generation of
concepts.
Generates the line diagram of the lattice.

5.2 A THEORETICAL PERFORMANCE BOUND FOR ADDATOM

In this section the notation used for the description of the theoretical complexity (section
5.2.1) and a number of lattice size related formulae are given (section 5.2.2 and 5.2.3).
This will be used to derive an upper bound for the theoretical complexity of AddAtom
(5.2.4)

5.2.1 Notation

The following notation is used for the theoretical performance of constructing a formal
concept lattice of the context C =(0, A, I):

52

Notation 	 Description

11011 	 The number of objects in the context.

IIAII 	 The number of distinct attributes in the data set or context itself, not
the theoretical limit of the domain from which the context was taken.
As the number of objects increase, IIAII typically approaches the
theoretical limit (e.g. in the case of randomly generated contexts).

The number of "crosses" in the cross table of the context. It is
therefore the number of attribute-object pairs in the incidence
relation. The maximum number of crosses in the cross table is

IIOII·IIAII·
110'11 	 The average number of attributes per object in the context, i.e. the

average intent size of atoms in the EA-Iattice of the context. 110'11 = 11111
111011. For contexts with a varying number of attributes per object, the
maximum number of attributes per object the notation max(IIO'II) is
used to indicate the maximum number of objects per attribute.

IIA'I! 	 The average number of objects per attribute in the context, i.e. the
average extent size of co-atoms in the EA-Iattice of the context. IIA'II
=1I11I/1IAIi. For contexts with a varying number the maximum number
of attributes per object the notation max(IiA'11) is used to indicate the
maximum number of objects per attribute.

The number of concepts in the lattice of the context including the unit
and zero concepts. Lj indicates the lattice after the insertion of the j'th
object into the lattice.

11< II 	 The number of arcs in the line diagram of the lattice Ii< jli indicates
the number of arcs in lattice Lj .

1I0'II/I!AIi 	 This is referred to as the "density" of the cross table and is defined as
the proportion of crosses in the cross table relative to the total
number of possible crosses in the cross table (Le. 111111 (IIOII.IIAII) =
IIO'II/IIAII =IIA'Ii/IiOIl)· It can, of course, be specified as a percentage
and is useful as a normalised metric to compare contexts with a
different number of attributes.

5.2.2 Concept lattice size formulae

In this section a number of formulae and equations on concept lattice aspects related to
size are derived. These will be used in deriving complexity bounds for AddAtom. Before
deriving the actual lattice formulae, a number of generic equivalences are given. These
equivalences will be used to refine the lattice formulae.

The following two generic equivalences, found in many texts on algebra and
combinatorics (e.g. Cameron (1996)), can be proved by induction. The formulas are
derived from the Binominal theorem.

(5.1)

(5.2)

53

The next two equivalences. can be found in texts on mathematical analysis (e.g.
Clark(1931)). and are also proved via induction.

k
1 an+1

'" a = ;a:;tlL.. k=Olon 1 (5.3)a

(5.4)

Figures 5.1 and 5.2 show the Boolean lattices of contexts with 3 and 4 attributes
respectively. The discussion below refers to Boolean lattices Lj from a context
C = (0. A. I). These figures are included here to serve as an aid in explaining the
derivation of the lattice size equations 5.5 to 5.S.

Level i=O:

Level i=l:

Level i=2:

Level i=3:

Figure 5.1: A Boolean lattice with 3 attributes (only concept intents are shown; the level of
the concept is also shown)

54

Level i=O:

Level i=]:

Level i=2:

Level j=3:

Level i=4:

Figure 5.2: A Boolean lattice with 4 attributes (only concept intents are shown; the level of
the concept is also shown)

For the purpose of discussion, the concepts in the Boolean lattice will be divided into a
number of levels, where the number of attributes in the intent of the concept indicates its
level. The variable i will indicate the level. Where multiple, successive lattices are under
discussion, the variable j will indicate the j'th lattice in the sequence of lattices (Le. after
the insertion of the j'th object). The equations in the table below characterise important
aspects of Boolean lattices related to size. Note that for theoretical purposes an initial
lattice consisting only of a single concept with an empty intent and -extent called Lo with
IlLoIl = 1 and 11< II = 0 is included in the equations. For the sake of simplicity only IIAII is
used since 11011 =IIAII for Boolean lattices. The remarks indicate how these equations have
been derived. These equations hold for Boolean lattices. It is assumed that \lOll > 0 and
IIAII>O.

Equation 	 Remark Nr

The total number of concepts (5.5)
on each level i of a Boolean
lattice is the number of
distinct combinations of
subsets of A of size i. The
final result follows from
equation 5.1.

Inspecting figures 5.1 and 5.2 (5.6)
= /II~II\

11-<11 Li=OtOI!AII l 1 j 	 it can be seen that each
concept on any level i, has i=1/ A 11211AII-l
arcs leading to it's i parents.
Once again the number of =!.II A II./iLII

2 	 concepts on level i is the
number of distinct subsets of
A of size i. After counting the

55

total number of arcs,
equation 5.2 is used to
simplify the result.

The total number of concepts (5.7)L FOtoliA11 II Li II =L i=OlollAlI 2i
in all lattices Lj , j = 0 to IIAII= 211AII+1 -1
follows from combining

=2·IILII equation 5.5 and 5.3.

i 1 The total number of arcs in (5.8)L i=oloIIA1111-< ill =L i=OtollAIl j.2 ­
all lattices Lj , j =0 to IIAII cani =L i=OloIIAII_lj·2 + L i=OloIlAII_1 2i
be derived by combining

AI + 1=(11 A II-I).2" equations 5.6, 5.3 and 5.4.
=(II A 11-1).11 L II +1

Non-Boolean concept lattices

Boolean FCA lattices contain the maximum number of possible concepts (i.e. unique
combinations of intent and extent) for a given number of arcs and therefore contexts that
do not give rise to Boolean lattices have fewer concepts in their lattices. The size of
arbitrary lattices is therefore bound by the minimum of the unique number of extents or
intents possible, i.e. 2min(IIA II,1I0 1l).

The number of outbound arcs is bound by the unique combinations of attributes in the
intents of its parents and/or the unique combinations of objects in the extents of its
parents. In a Boolean lattice, the number of possible unique intents of the parents of a
concept c is IIIntent(c)11 - 1, but non-Boolean lattices may potentially have more (up to
(In~t::;:'~l2))' (Using the extents of the parent concepts provides a sharper bound to the

number of outward arcs. The parent concepts Pl'" Pn. of a concept c must be unique and
therefore have at least one object in their extents in addition to that of c, i.e. Extent(Pi) :J

Extent(c). Furthermore, for any two parent concepts, Pi and Pj, Pi :f.: Pj of c, Extent(Pi) n
Extent(pj) Extent(c). Parent concepts can therefore have no object in common with the
extent of any other parent concept except that of c. The extent of any concept must also
be unique in the lattice. Given these constraints, the maximum number of parent concepts
of any c is therefore 11011 IIExtent(c)11 since each parent concept will have one at least
additional concept of 0 in addition to Extent(c). A bound for the maximum number of
outbound (upward) arcs of any concept in a lattice is therefore 11011. In practice however
the maximum number of outbound arcs may be fewer.

Using a similar argument, but based on the intent of any concept IIAII is the maximum
number of inbound (downward) arcs into any concept in a lattice.

Using these bounds as a base it is clear that for non-Boolean lattices of any substantial
size the number of outbound arcs 11< Outbound II ~ IIOII·IILII· Using a similar argument 11< Inboundll

S IIAII.IIL1I. Since the number of outbound- and inbound arcs in any lattice should be equal
to the total number of arcs, 11< II s min(IIAII, IIOID·IILII.

Most contexts used in practical applications have IIAII < 11011. It is assumed that 11011 > 0 and
IIAII > O. The following inequalities hold in such cases:

Equation Nr

56

http:11-1).11

II L II 	 S2 min(lIAII,llo1D (5.9)

S 211AII

(5.10)11-<11 S min(11 A II, II 0 11)·11 L II
(5.11)Lj=OtollOlIlIL j II sIIOIl·IILII+l

(5.12)L j=otollollll-< j II 	 s min(11 A II, II 0 11)·11 0 11·11 L II +1
s II A II ' II 0 11.11 L II +1

From equation 5.6 it can be seen that a Boolean lattice contains, on average %,IIAII
outbound arcs per concept and also on average IAIIAII inbound arcs per concept since the
total number of outbound- and inbound arcs in a lattice are equal. It is therefore clear that
the above equations do not always provide very sharp upper bounds. Where IILlI is
exponential in terms of IIAII or 11011 it may be better to use equations 5.5 to 5.8 and
substitute IILI! = 211A1I.

5.2.3 Complexity of set operations

For the purposes of calculating complexity upper bounds, it is assumed that sets are
implemented as ordered lists defined using fixed length arrays. A linear order relationship
is assumed to be defined on all possible elements of the set (i.e. set is completely ordered
as opposed to partially ordered). This does not affect the result of the algorithms but will
avoid unnecessary iterations and searches through the unordered elements of a set. A
typical strategy is to number all concepts and implement sets as bit strings with set
membership in the set indicated by the bit that correspond to the concept number. This
takes advantage of modern CPU architectures with 32 and 64 bit, bitwise operations to
improve the efficiency of set operations. Effectively this means that the following
complexity bounds will be used on sets:

Operation Complexity

Set operations: union, copy/assignment, set O(IISettil + IISehll)
cardinality

Set operations: test for subset and proper subset (c 0(max(IISetdl,IISet211))
and ~), test for set equality, set intersection (n)

Single element insertions O(l)

Test for set membership for single element 0(1)

Set initialisation O(IISetlll)

Set cardinality O(IISetIID

For the union, copy/assignment, set cardinality operations on concept intents the bound
O(IIAII) is used whilst the bound 0(11011) is used for set operations on concept extents. For
subset and proper subset testing, test for set equality and set intersection operations on
concept intents O(max(IIO'II)) is used, whilst O(max(IIA'II)) is used for concept extents.

57

These bounds are however not very sharp since in implementation a single CPU
operation would for example perform 32 or 64 comparisons on set elements.

5.2.4 AddAtom theoretical performance

The theoretical (worst case) performance of lattice construction algorithms is expressed
using the input and output sizes of the algorithms. This is done in two ways: firstly, as the
time complexity associated with the construction of the complete lattice of the context.
Since the output size is exponential, a second complexity metric called the delay is also
used. An algorithm for listing a family of combinatorial structures is said to have
polynomial delay (Johnson et al. 1988) if it executes at most polynomially many
computational steps before either outputting each next structure or terminating. An
algorithm is said to have a cumulative delay d (Goldberg 1993) if at any point in any
execution of the algorithm with any input p the total number of computational steps that
have been executed is at most d(p) plus K.d(p) where K is the number of structures that
have been output so far. If d(p) can be bounded by a polynomial of p, the algorithm is said
to have a polynomial cumulative delay.

The number of concepts of the lattice is exponential in the worst case (i.e. a Boolean
lattice). Furthermore, the problem of determining the number of concepts in the lattice is
NP-complete (Kuznetsov 1989, 2001). In this sense, any lattice construction algorithm
unavoidably has intractable (i.e. exponential) worst case behaviour, both in time (since
each node has to be generated) and in space (since each node has to be stored). Lattice
construction algorithms are therefore differentiated in terms of their time delay
characteristics. An algorithm can therefore be considered efficient if it generates the lattice
with a polynomial time delay and space linear in the number of all concepts in the lattice.
Although "dense" contexts that approach this limit may not be used very often in practice,
the theoretical complexity of an algorithm nevertheless expresses an aspect of its
performance and is therefore relevant.

A bound for the theoretical worst-case time complexity of AddAtom will be shown below to
be O(IILlI.IIOI12.max(IIO'II)). (The discussion will be based on the optimised form of this
construction algorithm, as described in section 4.6.)

As an aid to the discussion, appendix B contains an outline of the algorithm, highlighting
its main loops and instructions that add to its complexity characteristics, assist in the
analysis of the complexity.

One approach to estimating an upper time bound for constructing the lattice, L, from
scratch, is to consider AddAtom_oj as the upper bound for inserting a single object, OJ, into
the lattice (including all the time required for all the recursive calls to AddAtom and all the
calls to GetMeet). Let Housekeeping_oj be the upper bound for doing the housekeeping in
preparation for inserting OJ into the existing lattice but excluding the calls to AddAtom. The
upper time bound for constructing L would then be:

O(Lj:1 toIiOIiAddAtom_oj+ Lj:1 to 11011 Housekeepin~oJ

However, instead of attempting to derive upper bounds on each AddAtom_oj" another
more global line of reasoning route will be followed.

To this end, let AddAtom_Total be the upper time bound on executing all instructions
relating to all calls to AddAtom, in order to insert all objects into L including the calls to
GetMeet. Let Housekeeping_Total be the upper bound for the total amount of time taken for
the housekeeping and preparation for the construction of the complete lattice. The
complexity of the algorithm would then be bounded by:

O(AddAtom_Total + Housekeepin~Total)

58

It will be shown below that an upper bound on Add Atom_Total is O(IILII.IIOfmax(IiO'II»,
and that an upper bound on Housekeeping_Total is O(IILII.IIOII.IIAID. Under these
assumptions, an upper bound on the algorithm to construct the lattice is then:

O(IILlI·(IIOfmax(IIO'II)+ 1101i·IiAII»

Since we are interested in order of magnitude estimates of the time for constructing a
lattice, L, the lesser term may be left out since it will be dominated by the greater when
constructing large lattices. A resulting upper bound (Le. worst case) estimate for
constructing L is thus O(IILlI.IIOW.max(jIO'II».

The following three subsections deal with the complexity of each of the three parts of the
algorithm.

AddAtom complexity

Looking at the functioning of AddAtom and its parameters, it is clear that there is only one
recursive call made to AddAtom for each concept in the lattice. This is since concepts are
only created within AddAtom and there are no concepts that are deleted or duplicated.
The maximum number of generator concepts for all the lattices Lj is in fact the total
number of concepts in the lattice (Le. IILIi). Furthermore, for each generator concept that is
used as parameter to AddAtom, the outer for loop (using candidate as variable) is executed
for each of its parent concepts (a maximum of 11011 times for each generator concept). The
maximum number of iterations of the outer for loop across all invocations of AddAtom
would therefore coincide with O(IILlI.ilOil).

Within the first and outer for loop of AddAtom, the maximum number of algorithmic steps is
determined by the maximum number of steps taken by GetMeet or the inner for loop (using
g as variable), whichever is biggest. NewConcept contain only concepts that are
prospective parents for the new concept and this list is reduced during each iteration.
NewConcept's number of elements is bound by the maximum number of parents of any
concept i.e. 0(11011). Within the inner for loop a number of set operations on sets of
concept intents are executed. The most complex of these operations is the subset and
proper subset tests which is bound by O(max(IIO'Ij). Therefore the number of steps taken
by the inner for loop during each iteration of the outer for loop is bound by
O(IIOII·max(IIO' II»·

The complexity of the last for loop is dominated by the others and therefore it is not
considered in the complexity bound.

Below it will be argued that the complexity of a single call to GetMeet is bound by
O(IIOII.max(IIO'II». The number of algorithmic steps taken by all invocations of AddAtom to
inset all objects into the lattice is therefore bound by O(IILlI.IIOII.(IIOII.max(IIO'II) +
1101I·max(ilO'II))) == O(IILII·IIOW·max(IIO'II»·

GetMeet complexity

GetMeet traces a path between the parent of a generator concept and a meet of a subset
of Intent(o) somewhere above it. The maximum number of iterations of the outer while loop
is bounded by the number of attributes in the intent of generator (Le. O(max(IIO'II». The
maximum number of times the for loop can be executed is bounded by the maximum
number of parents of a concept (i.e. 1I0lD since each parent has at least one attribute less
in its intent. Since the instructions within the while loop is of 0(1) complexity, the
complexity of a single call to GetMeet is O(IIOII.max(IIO'Ij).

HousekeepinQ_ Total complexity

The complexity bound of Housekeeping_Total is determined by the second and outer for
loop (with 0 as variable). Within it the two inner for loops are executed O(IILJII) times per

59

object - i.e. OCLj=1 to lIollllql) =: O(IILlI.IIOII) times for inserting all objects. Within these for
loops the number of algorithmic steps of set operations executed are bounded by O(IiAI!)
and 0(1) for the first and second for loops respectively. The complexity of
Housekeeping_Total is therefore bounded by O(IILII.IIOil.IiAII).

Theoretical complexity comparison

The following table summarises the algorithmic complexity for other construction
algorithms6

Algorithm Incremental I
Batch

Complexity

Bordat Batch Time complexity O(IIOIi.IIAW'.!ILIi)
Polynomial delay =O(IIIOII.IIAII)

CbO,
Kuznetsov

Batch Time complexity =ocIlOW.IiAIi.IILlD
Polynomial delay =0(1I01l3·IIAII)

Chein Batch Time complexity =0(I!OW.1IAII.IILI!)
Polynomial delay =0(111011' ·IIAII)

Dowling Incremental Time complexity = O(lIoW.IIAII.IiLII)

Godin Incremental Time complexity = OCllLln

Lindig Batch Time complexity =O(IIOW.IIAII.IILII)
Polynomial delay =O(IIOlfIiAII)

NextClosure,
Ganter

Batch Time complexity = O(lloW.ilAII.IILlI)
Polynomial delay = O(IiOW.IIAID

Norris Incremental Time complexity = O(IIOW.IIAII.IILII)

Nourine Incremental Time complexity =
0«11011 + IIAID·IIOII·IILII)

Valtchev N/A The complexity of the procedure assembling
lattices LJ and L2 into the global lattice L is
0«11011 + IIAII)(IiLdl·IILIIl + IILlI·IIAII))
LJ and L2 can however be built in parallel.

AddAtom Incremental Time complexity =0(IILIi.i1011".max(1I0'1i»

For the purpose of direct comparison and since 110'11 < IIAII, 110'11 can be substituted with
IIAII. A slightly less sharp complexity bound for AddAtom is therefore O(IILlI.IIOfIIAII).
The AddAtom complexity estimate is therefore cubic in nature relative to the lattice size.
This is a feature that it shares with most other algorithms. Since this estimate is not
quadratic relative to the number of concepts, as is the Nourine algorithm, it might seem
that AddAtom does not offer very much in terms of theoretical performance overall.

The complexity bound as stated is however not very sharp. One area where the
theoretical complexity is overstated is within GetMeet. The maximum length of a path in
GetMeet is stated as 110'11 but in general no path would stretch from OL to lL (implied by a

6 	 Where these algorithms have been improved as discussed in Kuznetsov and Obiedkov (2002), the
complexity of the improved algorithm is given.

60

I

path length of 110' II). It is interesting to note that if it could be proved that GetMeet return
each of the respective meet concepts above a particular generator concept only once, the
total combined length of all paths traced in calls to GetMeet to insert a single object would
not exceed the total number of concepts in the lattice. This is because none of such paths
can cross each other except at the meet of a subset of Intent(o). Under this assumption
the maximum number of iterations of inner for loop for each concept on the path is the
number of parents of that concept. The total number of iterations of the for loop across all
invocations for the insertion of one object is therefore the total number of arcs in the
lattice. Therefore O(Lj=l to 1101111< jlD :s; 0<lIAII.IIOII.IILlI) (or 0(Y21IAII.IILlD in the case of a Boolean
lattice) would be an upper bound on the complexity of all calls to GetMeet across all the
recursive calls to AddAtom to insert all objects of the context (for Boolean lattices that is).
For the algorithm as stated in section 4.6, used in the wide comparison study in section
5.4 this is not the case, but the version of the algorithm in appendix A makes use of this
optimisation. The complexity bound derived here is however still an upper bound for this
algorithm.

Another area where the theoretical complexity bound is not very sharp is in the AddAtom
part of the algorithm. The theoretical complexity bound assumes that the number of
iterations of the outer for loop is bounded by the number of arcs in the lattice. In the
algorithm itself however, only concepts with at least some attribute in common with the to­
be inserted object will be visited and therefore not all arcs will be "followed" during the
iterations of the for loop. For non-Boolean lattices with 110'11 « IIAW this will be a very
significant portion of the concepts in the lattice that will not be visited by the for loop. To
quantify this further, consider a Boolean lattice and an object intent 0'. There are in
general 211AIHlo'li concepts in the lattice that have no attribute in common with 0'. Clearly for
non-Boolean lattices this number will be significantly less, but for many contexts this is still
very significant, indicating an overestimation of the overall complexity.

The use of 11011 as the upper bound to the number of parents of a lattice leads to an
overestimate of the total number of arcs in a lattice. A case in point is the fact that
Boolean lattices have on average V2.IIAII inbound or outbound arcs per concept - far fewer
than the upper bound 11011 used here.

The AddAtom algorithm can be easily adapted to be symmetrical and insert attributes into
the lattice and link them to their extents instead of inserting objects into the lattice and
linking them to their intents. Using the same reasoning AddCoatom, the dual incremental
concept lattice construction algorithm would have a complexity bound of
O(IILII.IIAW.max(IIA'II» which may include smaller terms than that of AddAtom.

The best way to obtain clarity on this and other issues is via empirical studies. The next
two sections present the results of the pilot and wider empirical studies. The results of the
empirical studies support the claims on the over estimation of the theoretical complexity of
AddAtom and indicate that it does indeed perform very well and is often the best
performer of the algorithms surveyed.

5.3 EMPIRICAL PERFORMANCE: PILOT STUDY

The pilot study was conducted to establish the relative performance of AddAtom using the
code described in chapter 7 to seek prima facie evidence that would justify a wider study.
The basic strategy of the pilot study was to implement the incremental lattice construction

7 The notation a « b indicates that A is significantly smaller than b by some measure.

61

algorithms of Godin et al. (1995b)8 and Carpineto and Romano (1993) using the same
base code and data structures as AddAtom (described in chapter 7). The pseudo code of
the implemented algorithm can be found in appendix A (note that there are differences to
the algorithm in section 4.6). This would serve as a good indication of the relative
performance of the algorithm and clearly indicate if the time performance was worse (or
not) than that of the Godin or Carpineto algorithms, justifying the effort of a wider study.

Note that for the pilot study EA-Iattices were generated and the Godin and Carpineto
algorithms were modified to generate EA-Iattices.

In addition to the Godin and Carpineto algorithms, the Grand algorithm (Oosthuizen
(1991)) was also available for comparison but due to it using different data structures and
utility functions as well as being implemented in a different programming language (refer
to chapter 7 for further discussion), it was not included in the study since it would not
make a apples-with-apples comparison possible. The performance of Grand is however
worse than AddAtom in all types of contexts by a significant margin.

The pilot study comparison showed that AddAtom is indeed faster than the Godin and
Carpineto algorithms and this suggested that a more thorough study of the algorithm's
performance would be worth while. However, it also exposed the fact that the code base
and data structures were inefficient and that a wider study would require a revised
strategy towards the data structures and utility functions (also refer to chapter 7).

For the pilot study, care was taken to ensure a valid comparison. To this end, the
algorithms were implemented on the same base-code and performance tests run under
the same platform. However, any inefficiency in the particular implementation approach
and data structures could have negatively penalised the relative performance of the Godin
and Carpineto algorithms. This is because the data structures used could have
conceivably suited AddAtom better and could have given it an unfair advantage under the
experimental comparison. To avoid this situation from influencing the outcome, a number
of additional performance metrics, other than time, were collected. These metrics tracked
basic lattice operations such as lattice closures and set operations and did confirm the
trend of the time based results.

A number of artificial and "natural" data sets were used as contexts for the experimental
comparisons. The artificial data sets were randomly generated whilst the natural data sets
were taken from the well-known UCI Machine Learning Repository (Blake and Merz
1998).

The following table provides an overview of the data sets and describes the notation used
to identify the data sets.

Data set Description

Rnd-100-YY-XXX A random data set of XXX objects. Each object possesses
exactly YY attributes, randomly chosen from 100 possible
attributes. When referring to the data set as a whole, the
notation Rnd-100-YY is used.

I

Bool-XX A data set of XX objects. The data set has XX attributes. Every
object has XX - 1 attributes and differs from each of the other
objects in only one attribute. The resulting lattice of this
arrangement forms a Boolean lattice. When referring to the I
data set as a whole, the notation Bool is used.

8 The implementation follows the description in Godin et al. (1995b) and not the improvements suggested by
Kuzetnov and Obiedkov (2002).

62

Data set Description

SPECT A natural data set taken from the UCI repository called the
Single Proton Emission Computed Tomography (SPECT) set.
The dataset has 22 binary feature patterns and one overall
diagnosis attribute. When referring to the data set as a whole,
the notation SPECT is used.

BCW-XXX The Breast-Cancer-Wisconsin natural data set taken from the
UCI repository. XXX indicates the number of objects in the
context. Objects were randomly selected from the data set. The
set of discrete attributes was used unaltered. The total data set
consists of 698 objects, each object has 10 attributes, whilst
each of the 10 attributes could assume anyone of 10 values.
Some objects do not possess a value for a specific attribute
(the value is unknown). Such objects were still included in the
set and the unknown value was treated as an eleventh value of
that specific attribute. Each value of each attribute was treated
as a se arate attribute in the ex erimental results. Theoreticall p p y
there were thus 10 x 11 = 110 attributes, but in practice the
data set contained only 86 attributes since all attribute values
were not observed. When referring to the data set as a whole,
the notation BCW is used.

The key metrics describing the data sets that were used are as follows:

Set name 11011 IIAII 11111 I IILII 11< II 110'11 I IIAII

Rnd-1 00-1 0-40 40 98 379 312 871 10% I

I Rnd-1 00-1 0-45 45 100 434 351 990 10%

Rnd-1 00-1 0-50 50 98 477 413 1198 10%

Rnd-100-10-75 75 100 725 697 2197 10%

Rnd-1 00-1 0-1 00 100 100 975 1058 3425 10% .

Rnd-1 00-1 0-150 150 100 1433 1957 6567 10%

Rnd-1 00-1 0-200 200 100 1915 3031 10423 10% !

Rnd-100-30-15 15 100 392 426 1206 26% •
I

· Rnd-100-30-20 20 100 520 799 2588 26% !

Rnd-100-30-25 25 100 643 1313 4589 26%

Rnd-100-30-30 30 100 779 2183 7962 26%

Rnd-100-30-35 35 100 914 3329 12623 26% I

• Rnd-100-30-40 40 100 1039 4288 i 16652 26%

Bool-07 7 7 42 128 448 86% !

• Bool-08 8 8 56 256 1024 88%

63

Set name 11011 IIAII 11111 IILII 11< II 1I0'II/IIAII
Bool-09 9 9 72 512 2304 89%

Bool-10 10 10 90 1024 5120 90%

Bool-11 11 11 110 I 2048 11264 91%

Bool-12 12 12 132 4096 24576 92%

I BCW-030 30 69 300 240 564 14%

BCW-035 35 71 350 317 795 14%

BCW-040 40 75 400 312 751 13%

BCW-045 45 77 450 323 783 13%

BCW-OSO 50 84 500 499 1349 12%

BCW-075 75 84 750 701 1948 12%

BCW-100 100 I 84 1000 1091 3331 12%

BCW-200 200 86 2000 1704 5455 12%

Tests for the pilot study were performed on an Intel 110 mhz Pentium processor based
platform with 256 megabytes of memory under the Windows 2000 Professional operating
system. Note that EA-Iattices were generated for the pilot study.

The following graphs summarise the results.

64

Chapter 6: Compressed pseudo-lattices

'Everything should be made as simple as possible, but not simpler.'

Albert Einstein

In this chapter we define the notion of a compressed pseudo-lattice. A compressed
pseudo-lattice essentially consists of a sublattice embedded in a bipartite graph. This
allows for the reduction of the size of the lattice but allows control over the amount of
information that is lost in the process. The aim of this is to simplify the lattice but still retain
the essence of the context it represents.

The discussion starts by introducing and developing an I R (Information Retrieval) problem
and develops the problem domain into one where it is argued that a compressed pseudo­
lattice plays a Significant role. The properties and use of compressed pseudo-lattices are
discussed as well as their interpretation. It is argued that this approach may have
significant advantages over approaches using the complete lattice in particular areas.

6.1 A BIPARTITE DATABASE AND QUERY OPERATION

We now sketch an IR problem domain and do not consider lattices until the next section.
For this problem domain we define a database D =(S,';; >related to a context C =(0, A)
as conSisting of a set, S, of concepts which are partially ordered by the relation';; (this set
need not be a lattice although it is one of the possibilities). An incidence relation I can be
derived from the partial order that describes which objects possesses which attributes.
The database is restricted in that the maximal elements are the attribute concepts
(representing A) in C and the minimal elements are the object concepts (representing 0)
in C. In addition D may contain any number of intermediate concepts M (i.e. S = attribute
concepts u intermediate concepts u object concepts). The upward closure of any concept
c, denoted by UpwardClosure(D, c), is the set of all concepts greater than or equal to c in
terms of the partial order, .;; . The downward closure is the set of concepts that are less
than or equal to c, and is denoted by DownwardClosure(D, c). The extent of a concept is
defined as the set of objects in its downward closure. Similarly the intent of a concept is
the set of attributes in its upward closure.

We consider the problem of retrieving a set of objects relevant (in some abstract and as
yet undefined way) to a specific query. The query is formulated as a set of attributes in the
form Q {alo a2, ... , am} (i.e. Q ~ A). Different query operations, taking Q as a parameter,
can be defined on D. The result of a specific query operation 0 based on database D with
respect to query Q is denoted by OeD, Q). A query operation may return any number of
concepts from D, the objective being the identification of concepts relative to the query Q.

Notwithstanding the foregoing, we choose to interpret the final results in terms of objects,
namely those objects that are in the union of the extents of the concepts returned by the
query operation. As a consequence the results of a query can be interpreted as clusters of
objects represented or referenced by the concepts returned by the query operation.

Different query operations may be evaluated in terms of the well-known information
retrieval (lR) metrics, precision (the proportion of objects returned by OeD, Q) that are

77

relevant in relation to all objects returned by OeD, Q») and recall (the proportion of relevant
objects returned by OeD, Q) in relation to all relevant objects in the database, D) (Salton
1989). Conversely using the same query operation, different databases of the same
context can be evaluated against each other in terms of these metrics. Clearly only
concepts in a given database can be returned. Therefore it can be expected, for a given
query, that a database containing more 'meaningful' concepts will return concepts that
result in higher precision and recall values. We argue that a compressed pseudo-lattice
(as defined later on in this chapter) is a versatile data structure to represent various
databases of this type and could prove useful in researching information retrieval and
machine learning strategies.

Incidence relation
nw Iw II nc 11g 21g mo Ib sk

LE .(.(.(

BR .(.(.(.(

FR .(.(.(.(.(

DG .(.(.(.(.(

sw .(.(.(.(

RD .(.(.(.(.(

BN .(.(.(.(

MZ .(.(.(.(

Figure 6. 1: The Living Context and its associated bipartite graph

The simplest example of such a database is that of a bipartite graph (essentially
representing the incidence relation of the context) with objects at the bottom, attributes at
the top and arcs from each object to all the attributes it possesses in a specific context, as
illustrated in figure 6.1 .

Consider OBP(D, Q), a query operation on the bipartite database, D in figure 6.1. For a
query Q we define OBP(D, Q) =Q. As a trivial example we see that for Q ={mo, Iw} (where
the key of figure 6.1 indicates that mo means 'motile' and Iw means 'lives in water', etc.)
the query OBP(D, Q) would return {mo, lw}, effectively referencing the set of objects {LE,
BR, FR, DG, SW, RD} (Le. the extent of the concepts mo and lw). This can be verified by
inspecting the line diagram in figure 6.1 of the database for DownwardClosure(D, mo) =
{LE, BR, FR, DG} and DownwardClosure(D, lw) = {LE, BR, FR, SW, RD}.

A shortcoming of the bipartite database and of OBP is the fact that the query operation
returns a very general set of objects, each of which has any, but not all, of the attributes
speci'fied in the query Q. (Thus leech, bream, frogs, spike-weed and seeds are either
motile and/or live in water.) In IR terms the query operation has low precision but high
recall. One way of improving the precision is to introduce a new intermediate concept
called 'mo_lw' that groups all objects that possesses both mo and lw into the database.
This concept would be connected via upward arcs to mo and lw and all objects possessing
mo and lw would have upward arcs to the new concept. In this way, a query operation
might be able to use the new concept in arriving at the results of the query presumably
yielding better results.

Continuing this \ine of thought and introducing new 'useful' or 'meaningful' intermediate
concepts, the other end of the spectrum would be to use a formal concept lattice or EA­
lattice as the database. Databases of this type are discussed in the next section.

78

6.2 A CONCEPT LATTICE DATABASE AND QUERY OPERATION

RD .f
BN .f .f
MZ .f

Entities/objects Attributes

LE Leech nw Needs water
BR Bream Iw Lives in water
FR Frog Lives on land
DG Dog nc Needs chlorophyl
SW Spike-weed 11g 1 leaf germination
RD Reed 21g 2 leaf germination
BN Bean mo Is motile
MZ Maize Ib Has limbs

sk Suckles young

Figure 6.2: The EA-/attice of the Living Context (the unit- and zero concepts are not
shown)

Figure 6.2 shows an EA-Iattice for the Living Context. It has clearly partitioned sets of
attributes (top row of concepts), objects (bottom row) and intermediate concepts. The unit­
and zero concepts of the lattice have been excluded from the database. (They are,
however always implied.) The intents of some of the EA-formal concepts are shown as a
guide.

OMee,{D, Q) is a query operation on a lattice database and is defined as the meet or
infimum of the attributes of Q in the lattice (Le. the concept (Q', Q") corresponding to all
the objects that have the attributes Q in common and all the attributes this set of objects
have in common). For the query Q = {mo, lw} the resulting objects are therefore {BR, FR,
LE} since the meet of {mo, Iw} is concept n7 which has an extent of {BR, FR, LE} (Le.
objects possessing all of the attributes in Q are returned). Note that it is now possible to
obtain a result with a higher precision due to the fact that concepts lower down in the
database discern between objects in a more granular way. (Thus leeches, bream and
frogs are all both motile and live in water.)

6.3 AN ADAPTED SUBLATTICE DATABASE AND QUERY OPERATION

Assuming that we were looking for all the fish objects in the Living Context (in this case
only BR qualifies) with query Q = {mo, lw} (Le. all the living objects that can move and live
in water). The lattice-based query operation OMeet has a higher precision and recall than
OBP' OMee. has however the disadvantage that it is not tolerant of errors or ambiguity in
either the context or formulation of the query terms as indicated in the following example.

Assume, for example, that we are looking for all edible plants in the context using the
query Q {nw, ne, llg. 21g}. (The key of figure 6.1 indicates that nw means 'needs water',
ne means 'needs chlorophyll', llg means 'one leaf generation' and 2lg means 'two leaf
generation', all attributes being related to edible plants.) OMeet(D, Q) would not return any
relevant objects since the meet of Q is not in the database - the meet is in fact the zero
concept, OL, in the lattice. In this case the query was too specific and the query operation
was unable to find a concept corresponding to exactly Meet(D, Q). This is clearly not ideal
since the database did contain objects relevant to Q and the query operation should
ideally have coped with the situation.

79

{nw,nc,1Ig}

Figure 6.3: A database (compressed pseudo-lattice) with intermediate concepts with an
intent that has more than three attributes removed

One strategy that could help in this case and increase the tolerance for errors is to specify
a query operation for a context of n attributes that will return the minimal concepts that
have at most k :s; n attributes, all of which are in Q. Since the domain of discourse as
defined requires that queries only be formulated in terms of concepts already contained in
the database we can adopt one of two strategies. The first is to redefine the query
operation to examine all concepts and return the appropriate minimal concepts. In t~lis
case, the database D is kept the same. A second option is to modify the query operation
and the database. For reasons that will become clear, we will pursue the latter option.

Removing all intermediate concepts in the lattice in figure 6.2 that have more than k = 3
attributes creates the new database in figure 6.3. Where the original EA-Iattice concepts
have been removed, dashed arcs indicate successors defined by the partial ordering
relation. Note that a subset, L, of the database namely all the concepts except DG, BR,
FR, MZ, RD, SW and BN still forms a sublattice when the unit- and zero concepts are
appropriately inserted (i.e. it forms a poset of which the supremum and infimum of all pairs
of concepts exist and therefore a sublattice of the EA-Iattice in figure 6.2 - this may be
verified by inspection). This lattice (identified by all the concepts connected with solid arcs
as well as all attribute concepts plus the implied unit- and zero concepts) does not
correspond to either the formal concept lattice or EA-Iattice lattice for the given context but
is a sublattice of the EA-Iattice of the Living Context. A query operation on the database in
figure 6.3 now cannot discern between objects that have more than k attributes in
common and would therefore presumably still return objects even when the query is too
specific.

6.4 REMOVING CONCEPTS FROM A LATTICE

An EA-Iattice as defined in chapter 2 has a fixed set of concepts for a fixed context. It is
however possible to remove some of the concepts from the EA-Iattice and still have a
complete sublattice (albeit not a formal concept lattice or EA-Iattice) that is based on the
original partial ordering relationshiplO. For example, an EA-Iattice can clearly be reduced

1Q Throughout this discussion, it is assumed that the same ordering relationship is used. Thus the ordering x
y either holds in all lattices in which concepts x and y appear, or it holds in none of them.

80

to a formal concept lattice by removing EA-formal concepts defined by EA-formal
conditions 1 to 4 (section 2.5) if they are not generated by condition 5, but retaining EA­
formal concepts defined by condition 5. Appropriately removing even more concepts will
result in a set of concepts that constitute a lattice (Le. a complete sub lattice), but not a
formal concept lattice (as per example in section 6.3).

In order to ensure the retention of lattice properties, when removing concepts from a
lattice, steps must be taken to ensure that both the supremum and infimum of any two
remaining concepts exist and are unique (as required by the definition of a lattice). Should
this not be the case, the resulting set of concepts will not be a sublattice. Removing a
concept from a lattice thus involves not only the removal of the concept from the lattice's
set of concepts, but also the revision of the order relationship so that the parents and
children of the removed concept are partially ordered as per the original :::;EA ordering
relationship. Removing atoms or coatoms from an EA-Iattice is a particular case where
this is possible as formulated in the next theorem.

Theorem 6.1: Removing an atom or coatom from an EA-formal concept lattice or
sublattice results in a set of remaining concepts that is a complete sublattice with respect
to the partial ordering relation :S;EA.

Proof: Let Lo be the concept lattice and LI the set of concepts remaining after
removing an atom or coatom concept. To prove that LI is a lattice we need to
prove that two arbitrary concepts x, y E L J have a unique supremum and infimum
in relation to

We first prove that x and y have a unique infimum. By implication x, y E Lo. Let q
Inf(Lo, {x, y D. Two alternatives exist depending on whether q is in LJ (Le. whether it
was possibly an atom removed from Lo or not). If q is indeed in L j then q is a lower
bound of x and y because q :::;EA x and q y in L J since q was the infimum of x and
y in Lo and the partial ordering relationship of L j was rede'fined to preserve all the
transitive ordering relationships between the concepts of Lo in L j • Since q was also
the unique greatest lower bound of x and y in Lo and no other concepts have been
added to LI! q is therefore also the unique greatest lower bound of x and y in L j •

Thus, the infimum of x and y in LI exists and is unique.

If q is not in LJ then q must be an atom that was removed from Lo. (q can not be a
coatom since then x =q or y =q in which case either x or y will not be part of LI')
Furthermore, any possible lower bound of x and y in LJ must be a concept that is
smaller than q in Lo, since q was the unique greatest of all lower bounds of x and y
in Lo. But q is an atom in Lo and therefore it has only one child concept in Lo
namely OL' The OL is a lower bound of all concepts in LI and Lo including x and y.
Since q do not exits in L!J OL also is the only lower bound of x and y. The infimum
of x and y in LJ is therefore unique.

A similar argument can be used to prove that the supremum of x and y in LI is
unique with q possibly being a coatom. Since the supremum and infimum of x and
y in LI exist and are unique, LI is a sublattice.

Using this theorem it is therefore clear that atom or coatom concepts can be removed
from a lattice (or sublattice) without violating the lattice property. Since this theorem is
generic, it can be extended to apply to formal concept lattices. Removing any concept
does however mean that the resulting lattice is not the EA-formal concept lattice (or formal
concept lattice) of the specific context since all EA-formal concepts are not present. We
follow the convention of calling these derived lattices, sublattices and only refer to a lattice
as an EA-Iattice (or formal concept lattice) when it contains all the EA-formal concepts (or

81

formal concepts) of the context. Although some of the attributes or objects concepts may
have been removed from the lattice (but not from the context - the context remains
unchanged), the atoms and coatoms (i.e. concepts covering the zero concept or covered
by the unit concept, respectively) of the resulting sublattice may effectively be regarded as
its new objects and attributes respectively.

Theorem 6.1 can be generalised to removing whole areas of the lattice by progressively
removing one atom or coatom at a time whether it involves object concepts, attribute
concepts or intermediate concepts. The atoms and coatoms of the sublattice define it
sufficiently since the resulting lattice still only contains EA-formal concepts. The set of
atoms and coatoms of a sublattice is called a cut on the EA-Iattice and consists of two
(possibly overlapping) sets called the atomic cut and the coatomic cut. These latter sets
correspond to the set of atoms or of coatoms of the sublattice respectively and both sets
are therefore anti-chains. An EA-Iattice can be reduced to a given sublattice by removing
all concepts that are not comparable to elements of the atomic cut or the coatomic cut as
discussed below. That is, if y E atomic cut of the sublattice and x E coatomic cut of the
sublattice, then the following EA-formal concepts are retained in the sublattice: all EA-
formal concepts c such that y c x.

There are five conditions under which EA-formal concepts (excluding lL and Od are
removed to create a sublattice defined by its cut on an EA-Iattice:

• 	 A concept that is smaller than some concept in the atomic cut.

• 	 A concept that is larger than some concepts in the coatomic cut.

• 	 A concept that is smaller than some concept in the sublattice's coatomic cut but
not comparable to any concept in the atomic cut.

• 	 A concept that is larger than some concept in the sublattice's atomic cut but not
comparable to any concept in the coatomic cut.

• 	 A concept that is not comparable to any concept in either the sublattice's atomic
cut or the sUblattice's coatomic cut.

Note that the zero- and unit concepts are always part of the sublattice since only atoms
and coatoms may be removed. Due to the definition of an EA-Iattice, the definitions of the
zero- and unit concepts however remain constant and are not dependent on the elements
of the sublattice. (They are however not shown in the compressed pseudo-lattice figures
below).

All concepts not in the resulting sublattice (identified by the above conditions) can be
progressively removed from the original EA-Iattice. All these concepts and their relations
with the remaining concepts are effectively 'compressed' into either the unit concept or
zero concept. In figure 6.4, the relationship of the original EA-Iattice to the sublattice's cut
(formed by the atoms and coatoms of the sublattice) is schematically depicted.

82

J\
 Attribute concepts

Coatoms of the sublattice (representing

I \ "_~-:--..,....__ attributes of the
I '.,

context)\
~__","~:",---- Virtual-arcs x- ­

Embedded $ublattice
of the compressed
pseudo lattice
(concepts connected
via lattice-arcs)

x ­
, \c" Objects concepts

"'", :" "'",/>,,"' i _____ (representing objects
Atoms of the sublattice ',~ of the context)

(atomic cut)

The cut define a compressed pseudo­
lattice with the two anti-chains (the

atomic- and coatomic-cut) of the cut EA-Iattice of a context Two anti-chains form a

(all EA-formal concepts) cut on the EA-Iattice
 forming the atoms and coatoms of the

embedded sublattice

Figure 6.4: A cut on an EA-Iattice defines a compressed pseudo-lattice (with an
embedded sublattice) that can be created by the removal of atoms and coatoms of the
EA-Iattice

In the resulting compressed pseudo-lattice data structure we choose to keep the attribute
and object concepts, but indicate their relationship to concepts that were previously in
their upward or downward closure by using virtual arcs. The exact nature of these virtual
arcs will be defined later.

It is important to note that, as a result of the five different conditions under which concepts
can be removed from the original EA-Iattice with respect to the cut, the nature of the
removed concepts may be much more complex than depicted in figure 6.4. For example,
instead of compressing the EA-Iattice to a certain level (Le. removing concepts with the
same cardinality of the extent or intent), cuts may be defined to effectively remove entire
sets of attributes, objects or areas from the EA-Iattice. It is also worth noting that, in
general, an arbitrary sublattice cannot be generated via compress lattice operations since
removing non-atom concepts or non-coatom concepts can in certain circumstances also
yield sublattices - there are thus limitations to this approach of generating sublattices.

6.5 THE USE OF THE INTENT- AND EXTENT REPRESENTATIVE OPERATIONS

Removing concepts from an EA-Iattice has the effect of removing what was previously the
infima and suprema (meets and joins) of certain subsets of concepts of the EA-Iattice,
these effectively moving to the zero- and unit concepts respectively.

Repeating the query operation OMeet for Q = {nw, nc, ltg, 21g} in figure 6.3, we find that
there is no meet in the database (i.e. the meet is the zero concept in the sub lattice a
'trivial' meet). The intent- and extent representative operations defined in chapter 2
provides a logical solution for the problem and a revised query operation using these are
therefore considered. This operation will define a 'second-order meet' in the case of a
trivial meet.

Suppose a query operation, OAIR(D, Q), returns the approximate intent representatives
(AIR) of Q in the sublattice embedded in D in figure 6.3, i.e. OAIR(D, Q) = AIR(DEmbed, Q)
where DEmbed is the sublattice embedded in D (all concepts joined with normal arcs except
those with dashed arcs such as DO, BR, FR, MZ, RD and SW). If Q nw, nc, llg, 21g} then
S = {nw, 21g, nc, 11g, n4, n6, BN} and {n6, BN} is the set of minimal elements of S. Thus

83

OAIR(D, Q) returns AIR(DEmbed, Q) ={n6' BN}, assuming DEmbed is the sublattice in figure 6.3.
OAIR(D, Q) thus references the objects {BN, MZ, RD, SW} and therefore solves the
problem of a too specific query.

Inspecting the intents of the concepts in AIR(D, Q) we see that BN, for example, has the
attribute II in its intent that is not in Q. If we wish to restrict a query operation to find only
concepts possessing attributes in Q (i.e. exactly representing Q), then we need to use the
exact intent representative operation (EIR).

Let OEIR(D, Q) =EIR(DEmbed, Q). For Q = {nw, nc, llg, 21g} we saw that AIR(L, Q) = {n6, BN}
whilst EIR(L, Q) = {21g, n6} since T {BN} in the calculation of EIR. OEJR(D, Q) = EIR(DEmbed,
Q) = {2Ig, n6}' Thus, in the present example, OEIR(D, Q) references the same set of objects
as before, namely {BN, MZ, RD, SW}.

The OEIR and 0 AIR operations can however be applied to the database in figure 6.1, in
which the embedded sublattice is reduced to only the set of attributes. In that case, OBP(D,
Q) =OEIR(D, Q) =OAIR(D, Q). If D is the sublattice in figure 6.2, then OMeet(D, Q) =OEIR(D, Q)
for a non-trivial Meet(D, Q).

The point is that both the OAIR and OEiR operations are defined in terms of a sublattice and
should the sublattice be changed (keeping the same context) as in the examples for
figures 6.1 to 6.3, the representative sets also change. When Q has a non-trivial meet (i.e.
not the zero concept) in the lattice or sublattice then EIR(D, Q) = AIR(D, Q) = Meet(D, Q).
The representative sets of Q were defined to deal with situations when Q has a trivial meet
(as is often the case when working with sublattices) and yield better results. The
operations may be seen as extensions of the meet or join operations.

6.6 THE COMPRESSLATnCE OPERATION

Incidence
a n e

:0' .(

0; .(.(.(

,03,
04 ~ ~

0, = Compress(Do.{ol.o2.o3,04},Up) D, Compress(O"nl.Up)

a} ~b} (ole) (;'\d)r::'\e}
~ ~~>"/ e

f n4 b~'C,d)

f /9" "­i ..ib';C(,,2
; / ,/ d,e},/., ."3 I {a,e)

Figure 6.5: A CompressLattice example compressing EA-Iattice Do to a bipartite graph, D5

The CompressLattice operation removes an atom or coatom concept y from the sublattice
embedded in the database and replaces the concept with virtual arcs (indicated as
dashed arcs). The virtual arcs interconnect all the parent- with all the child concepts of y.
Figure 6.5 shows an example of a compressed pseudo-lattice structure where all the
intermediate concepts have been removed by successively using CompressLattice
operations. Similarly, figure 6.3 can be verified to be the result of successive

84

CompressLattice operations on the EA-Iattice in figure 6.2, removing the concepts DG, BR,
FR, MZ, RD, SW, Ow, Olb 0'2 and finally 013'

It is important to note that the CompressLattice operation works from a particular direction.
In the examples, the lattice was compressed in the upward direction, but the operation is
equally valid when compressing the lattice from the top downward (or any combination of
the two). Essentially, compression in the upward direction involves the removal of atoms,
while compression in the downward direction involves the removal of coatoms from a
sublattice.

The CompressLattice operation creates a data structure that is not an EA-Iattice but one
that does contain an embedded sublattice. This data structure is called a compressed
pseudo-lattice. A compressed pseudo-lattice consists of EA-formal concepts
interconnected by virtual- and lattice arcs. The concepts connected by lattice arcs (with OL
and lL implied) define a sublattice called the embedded sub/attice (of the compressed
pseudo-lattice). The virtual arcs represent the relationship between the sublattice and the
context. Using parameter names to imply types, the CompressLattice operation is defined
as follows in terms of its pre- and post-conditions:

I/==~======================~=~~~~============~==

CompressLattice(aCompressedLattice, aConcept, aDirection)

Return outCompressedLattice

//=============================~==~=~=========~~~========
//Pre-condition: aConcept is an atom or coatom in the embedded
//sublattice in aCompressedLattice, it has at least one lattice arc in
//aDirection and no lattice arcs in the opposite direction
I/(except to the unit or zero concept).
IIPost-condition: outCompressedlattice retains all the concepts
I/(except possibly aConcept) and arcs of aCompressedLattice, except in
I/the following respects. If aConcept is an attribute or object
I/concept, then lattice arcs connecting it to other concepts in
l/aCompressedLattice are replaced by virtual arcs in
//outCompressedLattice. Otherwise and its arcs are not in
//outCompressedLattice. Instead, virtual arcs link each of aConcept's
//parents to each of aConcept's children.
//============~===============~=~==~~~==~=~~=~~~~=~~~~==~

Note that the definition above is in functional terms and the definition changes slightly
when defined in an object-oriented fashion as discussed in chapter 7 where the
references to aCompressedLattice and outCompressedLattice fall away.

6.7 DEFINITION AND PROPERTIES OF COMPRESSED PSEUDO-LATTICES

A compressed pseudo-lattice essentially represents a sublattice of an EA-Iattice from
which a number of atoms and/or coatoms have been removed. Additionally the relation of
the sublattice to the context from which it was derived is preserved. As a data structure it
represents a particular context C = (0, A, I). The data structure consists of a number of
EA-formal concepts that are connected by one of two types of directed arcs: lattice arcs
and virtual arcs. Lattice arcs preserve the existence suprema and infima across the
concepts they interconnect; virtual arcs do not necessarily. The concepts are partitioned
into three sets: the attribute concepts (of the context), the object concepts (of the context)
and a number of intermediate concepts. A compressed pseudo-lattice contains an
embedded sublattice. The embedded sublattice is the set of all concepts complying with
one of the following:

85

• 	 The concept is an attribute concept with no incoming virtual- or lattice arcs.

• 	 The concept has at least one lattice arc connecting into or out of it.

• 	 The unit and zero concepts.

This corresponds to the set of concepts remalrung after reducing an EA-Iattice to a
sublattice by successive removal of atom and coatom concepts, as discussed previously.
The properties of the compressed pseudo-lattice are thus implied by the CompressLattice
operation. It is important to note that, for a given set of concepts, there may be more than
one compressed pseudo-lattices that can be defined upon that set of concepts using
different cuts on that lattice. This is due to the fact that concepts can be interconnected by
either virtual- or lattice arcs. Both the concepts and arcs thus uniquely define the
embedded sublattice. The context and the atoms and coatoms (i.e. the cut) of an
embedded sublattice (Le. the atomic and coatomic cut) also uniquely define a compressed
pseudo-lattice.

The following are the compressed pseudo-lattice properties. They define sufficient
conditions for a data structure to be a valid compressed pseudo-lattice. Note that the
conditions listed are not disjoint they may be related to or imply one another.

• 	 EA-formal concepts: All concepts are EA-formal concepts as defined in chapter
2.

• 	 Poset: Concepts in a compressed pseudo-lattice form a partially ordered set with
respect to the partial ordering relation (~EA) specified by the directed arcs {lattice or
virtual).

• 	 Object and attribute concepts: All objects, OJ, in the context have a
corresponding unique associated object concept in the form (E, E'), E = {OJ}.
Similarly, all attributes, ab in the context have a corresponding unique associated
attribute concept in the form (F', F), F = {ai}. All object- and attribute concepts are
not necessarily in the embedded sublattice. If some are, they form the atoms and
coatoms of the embedded-lattice. If they are not, they have only virtual arcs from
or to other concepts.

• 	 Context preservation: An object contains in its upward closure (following lattice
or virtual arcs) all the corresponding attribute concepts specified in the incidence
relation of the context, and no other attribute concepts. Similarly an attribute
contains in its downward closure all its corresponding object concepts specified in
the incidence rea Ition of the context, and no other object concepts.

• 	 Unconnected object- and attribute concepts: An attribute concept cannot have
any outgoing arcs to concepts other than the unit concept and similarly, an object
concept cannot have any incoming arcs from concepts other than the zero
concept. Object- and attribute concepts are therefore not represented as
generalisations or specialisations of each other.

• 	 Unique intermediate concepts: No two intermediate concepts may have the
same extent or the same intent. This property (as well as the above property)
implies that any intermediate concept has at least two upward and two downward
arcs (virtual or lattice). This does not preclude attribute- and object concepts from
having the same extent or intent respectively or sharing the same extent or intent
of an intermediate concept (in such cases one of the concepts will have only one
parent or child concept). Such attribute or object concepts are represented as
distinct concepts in a compressed pseudo-lattice.

86

• 	 Non-empty intent: No concept (other than IL and Q) may have an empty intent or
extent (i.e. all objects must possess at least one attribute but some attributes may
not have any object possessing the attribute). This limits the contexts for which a
valid compressed pseudo-lattice may be constructed. Although the property is not
strictly required, the practical benefits of contexts that do not conform to this
requirement are not immediately clear. Attribute concepts may have an empty
extent.

• 	 Embedded sublattice: The set of all concepts in the embedded sublattice
together with the partial ordering implied by the lattice arcs used in the embedded
sublattice, constitute a sub lattice when appropriately connected to the implied unit­
and the zero concepts (i.e. the supremum and infimum of any pair of concets exits
and are unique).

• 	 Supremum and infimum: Any set, S, of concepts in the embedded sublattice has
a supremum in the embedded sublattice itself. Similarly S has an in'fimum in the
embedded sublattice.

• 	 Intermediate virtual arcs: Intermediate concepts may not be connected to one
another via virtual arcs. Their virtual arcs must end in an attribute concept or start
at an object concept. This property is implied by the fact that only atoms and
coatoms of a sublattice are removed.

• 	 Exact representative connection: Virtual arcs in a compressed pseudo-lattice
are not to arbitrary intermediate concepts and respect the EIR and EER operations.
An object concept, 0, is only connected via virtual or lattice arcs to EIR(L, Intent(o),
0) (where L is the embedded sublattice) and no other concepts. A similar property
holds for any attribute a and EER(L, {a}, a). These dual properties are critical in
ensuring that the closure operations function as expected (e.g. that the downward
closure of a concept contains its extent either via lattice- or virtual arcs).

• 	 Arc duplication: A concept may only have one arc (either lattice or virtual) to any
concept that covers it.

• 	 Cover: A concept may not have an arc to any other concept to which it is indirectly
linked11 •

The compresses pseudo-lattice definition and properties show that a compressed pseudo­
lattice is essentially a bipartite graph (virtual arcs) that contains an embedded sub lattice
(lattice arcs). Furthermore, the compressed pseudo-lattice properties ensure a well­
defined and unique structure for a given context and a given sequence of
CompressedLattice operations. Various operations can be defined on a compressed
pseudo-lattice, but the most important are:

• 	 CompressLattice and ExpandLattice (described in the next section).

• 	 Closure and LatticeClosure, where LatticeClosure follows only lattice arcs when
discovering concepts whilst Closure follows any type of arc.

• 	 AddAtom, i.e. insert a new object into the context and embedded sublattice by
using a modified incremental lattice construction algorithm that operate under
compressed pseudo-lattices.

• 	 InsertVirtualObject, an alternative to AddAtom that does not use a computationally
expensive lattice construction algorithm to update the embedded sublattice (refer

11 Concept x is indirectly linked to concept y iff x has a path to y via one or more intermediate concepts.

87

to section 6.11). The object is inserted into the compressed pseudo-lattice by
simply creating virtual arcs to its exact intent representatives.

6.8 THE EXPANDLATTICE OPERATION

A complementary operation to CompressLattiee, namely ExpandLattiee, can be defined to
enlarge the embedded sublattice of a compressed pseudo-lattice by the insertion of new
atoms or coatoms into the embedded sublattice. ExpandLattiee essentially recreates
concepts removed by CompressLattiee. The operation works in a particular direction,
starting with a concept that is incident to at least one virtual arc. In general, a concept may
be incident to zero, one or more than one virtual arcs. Some virtual arcs may connect the
concept to objects while others may connect it to attributes. When invoking the
ExpandLattice operation, a 'direction' has to be specified. If the concept is an atom of the
embedded sublattice and it has virtual arcs connecting to it, then the direction is
designated 'downwards' and the operation will create new atoms in the lattice below the
concept. Alternatively, if the concept is a coatom of the embedded sublattice and it has
virtual arcs connecting to it, then the direction is designated 'upwards' and will create
coatoms above the concept. If the concept is both an atom and coatom, then the direction
may be specified as either downwards or upwards.

In the upward direction, starting with concept e, the ExpandLattiee operation determines the
minimal number of coatoms that must be inserted into the embedded sublattice to replace
the virtual arcs from e with lattice arcs to these inserted concepts. Concept e is directly
connected to these concepts by lattice arcs replacing e's virtual arcs. To comply with
compressed pseudo-lattice properties further generation of concepts and/or creation or
removal of arcs may be necessary. Similar remarks apply pari passu when expanding a
given concept in the downward direction.

Note that the CompressLattice and ExpandLattiee operations are not symmetric in that the
one does not reverse the other. In most instances ExpandLattiee does not recreate the
concepts removed via a single CompressLattiee operation. It is however always possible to
completely compress an EA-Iattice into a bipartite graph or to use ExpandLattice operations
to completely rebuild the EA-Iattice from a bipartite graph. Our implementation of this latter
series of operations indicates that it is computationally more expensive than using a
'traditional' incremental lattice construction algorithm to construct a lattice but it still
indicates the versatility of a compressed pseudo-lattice. The context preservation and
exact representative connection properties of a compressed pseudo-lattice play important
roles in the ability to rebuild the EA-Iattice from a compressed pseudo-lattice.

ExpandLattice is defined below in terms of its pre- and post conditions. Again, parameter
names imply their corresponding types.

88

/I
Function ice(ice, aConcept, aDirection)

Return outCompressedLattice

11============================== ============
I I Pre-condition: aConcept is a concept in aCompressedLattice that has
Ilvirtual arcs in aDirection.
IIPost-condition: outCompressedlattice retains all the concepts and
Ilarcs of aCompressedLattice, except in the following respects. If
IlaDirection is down (up), then the minimal number of new atom
II (coatom) concepts are inserted into outCompressedLattice's embedded
Iisublattice to cover aConcept and the its virtual arcs with
Illattice arcs. Additional concepts are created and arcs are created,
Ilremoved or relabelled if and if necessary to maintain
Ilcompressed lattice properties. If appropriate, object (attribute)
Ilconcepts are reconnected to the embedded sublattice via lattice arcs.
11===

As an ExpandLattice example, consider figure 6.5 with the compressed pseudo-lattices Do
to Ds. When starting with Ds, i.e. the bipartite graph, the following order of ExpandLattice
operations will reconstruct Do: D4 =ExpandLattice(Ds, c, Downward); D2 =ExpandLattice(D4,

e, Downward); Dl = ExpandLattice(D2, a, Downward) and finally Do is the result of successive
ExpandLattice calls that expand the concepts nJ, n2 and n3 in a downward direction. Note
that ExpandLattice(D4, e, Downward) does not produce D} because D3 does not contain all
the atoms created by ExpandLattice needed to replace the virtual arcs to e with lattice arcs
(this is a example of CompressLattice and ExpandLattice not being symmetrical).

6.9 INTERPRETATION OF COMPRESSED PSEUDO-LArnCES

Since the embedded sublattice of a compressed pseudo-lattice is indeed a sublattice, the
interpretation of the concepts in a compressed pseudo-lattice is analogous to that of
concepts in a concept lattice. In a concept lattice, concepts are partially ordered in terms
of generalisation and specialisation of their intents and extents. A parent concept, p, of a
concept, c, is (in a concept lattice) the smallest concept that is more general than c and
therefore moving upwards in a lattice involves the smallest increments of generalisation
supported by the 'evidence' in the context. In a compressed pseudo-lattice this continues
to be the case, except for the fact that concepts that were removed are not 'discovered' or
visited due to being 'uninteresting', not useful or insignificant in the application context in
which the compressed pseudo-lattice is being used. Algorithms based on compressed
pseudo-lattices are therefore not able to discern the relationships between objects that are
part of clusters referenced by removed or compressed concepts.

One may argue that this can be detrimental to such algorithms but it should be
remembered that classification algorithms based on other structures such as hierarchies
(for example Quinlan's (1986) ID3 decision trees and Fisher's (1987) COBWEB) do
precisely this: they minimise the clusters or concepts used to describe a context often with
greater classification accuracy than using more concepts. This is because at a certain
point the additional resolution obtained by using more concepts is used to approximate
and describe the noise inherent in the data rather than depicting the abstractions that hold
in the larger population from where the data was taken. These approaches have proved
successful in many areas of research, particularly in KDD and machine learning. The
compressed pseudo-lattice gives the researcher the ability to apply the ideas used in
other areas of research on concept lattices whilst still maintaining the benefits of the lattice
properties. In essence the removal of concepts restricts the vocabulary of concepts
available to KDD or machine learning algorithms in a controlled way without the loss of
many desirable features of concept lattices.

89

One way of viewing the removal of atoms or coatoms from a concept lattice is to see the
removal thereof as the change of the attributes and objects of a context. The context is
redefined in terms of the new attributes and objects defined by the atoms and coatoms of
the embedded sublattice. An embedded sublattice in which attributes are removed can
therefore be seen as an abstraction of the context where attributes are more specialised
by conjoining some of the original attributes. A removed object is 'replaced' by a more
general object, this being the next more general concept in the EA-Iattice. The virtual arcs
in the compressed pseudo-lattice in these cases indicate and preserve the relationship
between the original context and the new implied context with its specialised attributes
and generalised objects.

Figure 6.6 is an example in which the EA-Iattice of the Living Context has been
compressed (or reduced) to a hierarchy (or in 103 terms a decision tree) that describes
the context as a set of objects all of which need water. These objects are then divided into
those that live on land (II) and those that live in water (Iw) and so forth. This description or
classification of the context is not incorrect - it is just not the only description or
classification of the Living Context. The use of a compressed pseudo-lattice also has the
benefit that even though the embedded sublattice is essentially representing a hierarchy,
the fact that there are objects that belong to more than one branch of the hierarchy is
easily represented (e.g. concepts FR, RD).

MZ
//'/ ;

/,/ ;

S@)

Figure 6.6: A compressed pseudo-lattice structured to contain a hierarchy that implies the
context and EA-Iattice in figure 6.7

The embedded sublattice of a compressed pseudo-lattice implies a new context with more
specialised attributes and generalised objects. Figure 6.7 shows the incidence relation of
the new (implied) context as well as the EA-Iattice. Note that the attributes of this new
context are now conjunctions of the attributes of the previous context.

90

I Incidence relation

I
:s:
c:

= I:s: c

;;,
g'
~'

Q

~:
~

'" ~t

~:

01

~I ,
~t

~, I :,
~ : ~'

g'
~' co

~I

ins .(.(.(

:n8 .(.(.f .f
BN .f .(.f .f

In4 .f .f .(

In7 .f .(.fl
1

Figure 6.7: The EA-Iattice and context implied by the compressed pseudo-lattice in figure
6.6

6.10 WHY COMPRESSED PSEUDO-LATTICES?

'A little knowledge that acts is worth infinitely
more than much knowledge that is idle'

Kahlil Gibran

Key questions surrounding the use of compressed pseudo-lattices are: Why would we
remove formal concepts from a formal concept lattice in the first place? Is it not better to
work with all formal concepts? The answer to the question lies in the nature of the formal
concept lattice: a formal concept lattice contains a concept for all possible clusters of
objects supported by the incidence relation (Le. every possible grouping of objects that
have some attributes in common are represented by a formal concept). This results in a
data structure that is very large and, in the worst case, exponential in size. In addition, the
interpretation and use of this data may be obscured by the large amount of detail (often
caused by noise in the data). Authors such as Duquenne et al. (2001) have expressed the
difficulty in working with large concept lattices and have called for useful approximations
of lattices. Hereth and Stumme (2001) generate Iceberg Concept Lattices in which they
have purposefully removed concepts to reduce the lattice size. Iceberg Lattices are a
specialisation of compressed pseudo-lattices in the sense that only atoms are removed.
Mephu Nguifo (2001) also do not use the whole concept lattice in the context of machine
learning. Compressed pseudo-lattices allow one to retain the benefits of a lattice, but
allow for the selective and discretionary removal of concepts, thereby reducing the size of
the lattice. Should it be required, the EA-Iattice can be re-created using the ExpandLattice
operation.

Another observation regarding the nature of a concept lattice is that some of the concepts
may not, in some sense, represent 'meaningful' or 'useful' clusters of objects. An example
is when attributes in a context do not imply each other12. For example in the Living
Context, the occurrence of the attribute II always implies the attribute nw.

12 An implication rule is a rule in the form B --> C where Band C are sets of attributes. The support of a rule is
the number of objects in a context for which this rule holds whilst the confidence of the rule is the number of
times the rule holds in all objects that have B in their intent. A rule with a confidence of 100% indicates an
implication rule.

91

As another example, consider the concept lattice for the context in figure 6.8 showing a
simple context and its EA-Iattice. The incidence relation of figure 6.9 is an extension of
that of figure 6.8 in that the objects of figure 6.8 have been duplicated and an attribute f,
which is not implied by any other attribute(s), introduced in the intent of the duplicated
objects. The additional attribute, f, was added to the intent of each of the new duplicated
objects so that the new context has pairs of related objects that differ only in respect of
one attribute (e.g. olf has the same intent as 01 except for the additional attribute 1).
Figure 6.9 shows the EA-Iattice of this context. In this context, the attribute f is not implied
by any other attribute since any combination of the attributes, a to e, that occurs with f in
some set of objects in the context, also occurs without f in some other set of objects in the
context.

~
n4 \ Incidence relation

abc d e
.f .f .f .f
.f .f .f .f .f

.f .f .f .f
.f .f

03 04

Figure 6.8: The EA-Iattice of a simple context

Incidence relation
a b c d e f
.f .f .f .f

02 .f .f .f .f
03 .f .f .f
04 .f
01f .f .f .f
02f .f .f .f
03f .f .f
O4f .f

Figure 6.9: An attribute, j, not implied by any other attribute(s) introduced into the context
of figure 6.8 creates a large number of additional concepts

The attribute f is thus not implied by any combination of the other attributes. With regard to
deriving implication rules from the lattice, no implication rule based on f is possible and yet
the lattice explicitly represent all possible combinations of f and the other attributes in the
newly created concepts (newly created concepts are shaded). The effect of adding such
an attribute to a context can clearly be seen to significantly increase the number of
concepts in the lattice. This is in fact the worst-case example, where the addition of each
new attribute (or object) doubles the number of concepts in the lattice. We argue that such

92

structures and attributes are not very useful in machine learning and KDD and are best
not represented in the lattices used in these applications.

, ,

G0~

Incidence relation
a b c d e f

01 .{ .{ .{ .{

02 .{ .{ .{ .{ .{

03 .{ .{ .{ .{

04 .{ .{

01f .{ .{ .{ .{ .{

02f .{ .{ .{ .{ .{ .{

03f .{ .{ .{ .{ .{

04f .{ .{ .{

Figure 6.10: A compressed pseudo-lattice of the context in figure 6.8 in which the
embedded sublattice corresponds to that of figure 6.8

Concept n6 in the EA-Iattice (figure 6.9) has no implication rule associated with it and has
a very little support. It is thus doubtful whether it is useful in any KDD or machine learning
effort and would therefore worth removing by first using CompressLattice to remove the
objects underneath it and then the concept itself. The compressed pseudo-lattice in figure
6.10 shows how the creation of additional concepts can be avoided by using the
CompressLattice operation to remove the concepts involving f (Le. all shaded concepts in
figure 6.9) - these relations are not lost and are still indicated by the virtual arcs. The
embedded sublattice of this compressed pseudo-lattice corresponds to the EA-Iattice in
figure 6.S. The objects in the compressed pseudo-lattice therefore still have f in their
upward closure. The advantage of a compressed pseudo-lattice is that even tough most of
the information is not lost in figure 6.10, should it be required, the ExpandLattice operation
can be used to regenerate the lattice in figure 6.9.

This example may seem artificial but in KDD and machine learning, a large number of
objects are usually used to construct a lattice (e.g. a training set). If the sample is large
enough, statistically most combinations of attributes that are not implied by other
attribute(s) will occur in the set of objects. As a result, large number of concepts will be
created and parts of the lattice will resemble a Boolean lattice. Even if there are very clear
implication rules, if only one object does not conform to the rule (i.e. the confidence is not
exactly 100% due to noise or errors in the data) its insertion into the lattice will cause the
creation of all these additional concepts despite the low support for them. Put differently,
only one exception to the rule will cause an otherwise implied set of attributes to loose this
property, even though, statistically speaking, there is a high dependence correlation.

A typical approach in KDD and machine learning is to use the number of objects in the
extent of each concept as a measure of support for the implication rules on its attributes. It
is thus important to keep the objects in the data structure to calculate this measure. Since
this is exactly what happens in a compressed pseudo-lattice it is ideal for this purpose.

In the field of KDD and machine learning, the ability to remove concepts from large lattices
may prove beneficial in a number of respects. The reduced size of the lattice will improve
the efficiency of algorithms whilst the removal of erroneous or noise-induced concepts
with a small support may improve the results of such algorithms. A compressed pseudo­
lattice based on a suitable compression strategy, offers researchers the ability to reduce
the concepts in a lattice to those clusters that most accurately represent the context. This
is done by removing clusters closer to the top of the lattice that are too general to allow
meaningful classifications whilst also removing concepts that are too specific closer to the
bottom of the lattice.

93

Previously the meet and join operation on a lattice was used to find the concept that
represents objects that are relevant to a set of attributes. The introduction of the intent
representative sets now allows these to be used as approximate or 'rough' meets in
algorithms. This enhances the ability of algorithms to cope with noise in both the data as
well as in the query itself (as indicated in the IR examples earlier in this chapter). Clearly,
however, the results are dependent on the structure of the database. The purpose of KDD
and machine learning in such situations is then to search for or construct a database
(sublattice) that best typifies the inherent clusters, rules and implications of a context
instead of generating, by brute force, all possible rules and implications that can be
derived from a context. To paraphrase Einstein, the lattice should be as simple as
possible but not simpler. The benefit of using intent and extent representative sets are that
they are defined in terms of discrete operations and behave in a predictable fashion,
whereas operations using 'fuzzy' and other approximations often result in a number of
anomalies due to their inherently non-discrete nature.

It should be noted that the approaches described above are in general not appropriate for
all areas where concept lattices have been used. Some authors (e.g. Wille (2001» have
described numerous case studies where the line diagrams of concept lattices aid human
understanding of a context. Clearly compressed pseudo-lattices are less appropriate in
these areas of application.

Compressed pseudo-lattices are however an alternate method of supporting conceptual
views (Wille 2001, 2002). Conceptual views are formed when focussing on a particular
part of the context. In this case a certain number of columns (Le. attributes) in the cross
table of the context are selected and the conceptual view is then defined as the lattice
formed by only those columns. Each concept in the conceptual view is annotated with the
number of objects that are in the extent of the concept, in this way a human is able to
focus on a specific domain or view within the context which may assist in finding relevant
information. It is easy to see that the lattice for a particular conceptual view can be easily
extended using virtual arcs to form the compressed pseudo-lattice for which the
conceptual view is the embedded lattice. The advantage of this approach is that it is then
easier (from a data rather than a human perspective) relate the conceptual view back to
the original concept. In addition, compressed pseudo-lattices are not restricted to
sublattices defined by the columns of the cross table. Compressed pseudo-lattices
therefore provide a more flexible but still formal way of defining conceptual views.

6.11 COMPRESSION STRATEGIES AND CRITERIA

The start of this chapter defined a very specific domain of discourse of which there are
three components: the context, the database and the query operation. A compressed
pseudo-lattice may serve as such a database. The separation of the database and query
operation creates an interesting deviation from some traditional information retrieval
approaches: the organisation of the database co-determines the outcome of the of the
query operation. Given a context and a query, the result of the query depends on the
compressed pseudo-lattice used to represent the context. The question that arises is thus:
'Are there databases derived from compressed pseudo-lattice databases that, on
average, result in better retrieval for the same context and query operations?'

Although a full exploration of this question is beyond the scope of this text, limited
experimental results to date suggest that there are indeed better methods of organisation.
Specifically, it appears that a database consisting of the EA-Iattice or formal concept
lattice of a given context need not, in general, be the best database. In many instances
Significantly compressed EA-Iattices performed equally or better, hinting at an amount of
redundancy embedded in concept lattices. Further experimentation is required in order to

94

explore compression strategies and concept pruning criteria that are likely to lead to
optimal performance in various contexts.

In general, there are a number of possible compression strategies that seem to deserve
such exploration. The most obvious is the one stated above where a lattice is compressed
up to a specific level of above a support threshold.

It is useful to have a compression strategy combined with a threshold on the embedded
sublattice size. The embedded sublattice is then repeatedly compressed until the
embedded sublattice size is below the threshold. This can be combined with an adapted
incremental lattice construction algorithm where the pruning mechanism is invoked after
each individual object or batch of objects has been inserted into the compressed pseudo­
lattice. This has the added advantage of limiting the size of the lattice and therefore the
time taken to build a compressed pseudo-lattice.

Compression strategies that have been preliminarily tested use a combination of the
following:

• 	 Compress concepts with an extent of size smaller than t and larger than u. This is
a more general approach than just excluding concepts at the bottom of the lattice.
This approach is taken by Hereth and Stumme (2001). They call the resulting
structures iceberg lattices.

• 	 Compression based on the number of arcs to child or parent concepts in the
lattice.

• 	 Compression based on EP(c), an estimate of prior probability of the concept c.
EP(c) is the number of objects in the extent of c divided by the total number of
objects in the context. Refer to Oosthuizen (1994b) for a discussion and examples.

• 	 Compress, based on the difference between an estimate of the expected
probability EXP(C)13 and EP(c). This compression strategy performed the best in
most preliminary test results.

A useful variation on the insertion of an object into a lattice, that does not require the
search for and insertion of the necessary new concepts into a lattice, can be defined as
follows. Instead of the creation of concepts, the new object is simply connected to EIR(L,
Intent{o)) by means of virtual arcs to create a compressed pseudo-lattice. The example in
figure 6.11 shows such a compressed pseudo-lattice after the living has been extended
with the objects DF, SN and GR. Even though the context and example is relatively simple,
it does show that a number of operations were already avoided (e.g. the creation of an
intermediate EA-formal concept ({SN}, {mo, nw, lw})). When large lattices are involved,
this method of insertion saves much processing. This function is called InsertVirtualObject.

13 ExP(c) = EP(aj) x EP(az) x ... x EP(an), where ai is an attribute in the intent of c. This estimate assumes that
the attributes are independent.

95

nw Iw
lE .(.(

BR .(.(

FR .(.(.(

OG .(.(

SW .(

RO .(

BN .(

MZ .(

OF .(

SN .(

GR .(

n12,{nw,lI, n13i{nw,lw, LE Leech
Sf(nc,1Ig) nC,lIg} BR Bream

FR Frog

\ \ j
/1 ~ 1\ OG Dog

i /

'\ / ~ SW Spike-weed

-'
, e IRO Reed

FR @8 (I @ R~' SW

BN Bean
MZ Maize
OF Dolphin

nw Needs water
Iw Lives in waler
II Lives on land
nc Needs chlorophyl
119 1 leaf germination
219 2 leaf germination

,mo Is motile
!Ib Has limbs
sl< Suckles young

SN Snake
GR Grass

Figure 6. 11: A compressed pseudo-lattice after the living has been extended with the
objects DF, SN and GR by connecting the new objects via virtual arcs to EIR(L, lntent(o»)
using the InsertVirtualObject function

In this manner large numbers of objects can be inserted into a concept sublattice for the
purposes of KDD or machine learning without incurring the potentially exponential time
complexity of the creation of the EA-Iattice. Since the support of each concept in both the
EA-Iattice and the compressed pseudo-lattice is exactly the same, algorithms using these
statistical metrics will operate correctly on these lattices.

A related strategy is to insert an object into the lattice by the compressed pseudo-lattice
adapted AddAtom algorithm. Upon reaching a threshold on the lattice size, the lattice is
compressed to a size below this threshold using a suitable compression strategy and the
CompressLattice function. This procedure is repeated for all inserted objects. Since the size
of the lattice can be controlled, a compressed pseudo-lattice for a large number of objects
can be efficiently constructed. For an appropriate compression strategy this could
potentially prevent the degradation of the performance of KDD or machine learning
algorithms if it is assumed that 'uninteresting' or 'unnecessary' concepts are not
represented in the resulting lattice by being compressed. Note that in the process new
concepts would continuously be created by AddAtom. CompressLattice would remove
concepts but not necessarily the recently created ones if the compression strategy rates
the latter more important or 'meaningful'. In this manner the lattice size remains under
control. Experiments have shown that given sufficient data and an appropriate
compression strategy, the structure of the embedded lattice stabilise. Different data sets
from the same universe with objects presented in different sequences also resulted in
substantially similar embedded lattices hinting to the fact that this approach avoids the
problems created by hill-climbing searches that are very sensitive to the order in which
training sets are presented to these algorithms. This is a topiC for further research.

6.12 IMPLEMENTATION AND DISCUSSION OF PRELIMINARY RESULTS

The potential gain in computational efficiency of having a compressed pseudo-lattice
should be weighed against the advantages of having a larger and more complete set of
concepts available in a particular domain. Preliminary results however suggest that a
compressed pseudo-lattice may be a useful generic data structure for various IR
(information retrieval) and machine learning problem domains.

96

Chapter 7: AddAtom implementation

The AddAtom algorithm evolved over a number of years and eventually led to the notion
of a compressed pseudo-lattice. The author was responsible for modifying and
maintaining the implementation environment of the Grand algorithm of Oosthuizen (1991).
Originally, most of the utility data structures and supporting code for both AddAtom and
compressed pseudo-lattice implementation was derived from the Grand algorithm's
implementation environment but over time this was completely redeveloped since Grand
and AddAtom use completely different strategies. The code was initially developed in C
but was later completely re-written in an object-oriented fashion in C++. The most
important C++ classes used in the implementation are the set and lattice classes
respectively (sections 7.2 and 7.3). In addition to the basic functionality of lattice
construction, a number of other functionalities, such as the caching of the lattice structure
to disk, were also implemented.

This chapter outlines the class functions; the tradeoffs made when implementing the
algorithm; as well as important features of the code such as memory optimisation, caching
of results, etc. It ends with the discussion of several other implementation issues that were
addressed.

Note that the code used for the wider performance comparisons in chapter 5 is not
discussed here. The AddAtom implementation for that particular exercise relied on the
pre-existing code base of S. Obiedkov that had been used for prior comparative studies of
lattice construction algorithms (Kuznetsov and Obiedkov 2001 and 2002). Also note that
the algorithms for the pilot and wide experimental studies in chapter 5 were different. The
pilot study implementation used the additional optimisations of appendix A whereas the
wide study used the basic algorithm of section 4.6.

An object-oriented notation is used for functions and not the functional notation used in
previous chapters.

7.1 EVOLUTION OF CODE

The code from which the most recent implemented version of AddAtom emerged, has
evolved over a long period of time, from 1995 to 2001. The coded was used by various
researchers in areas of related to lattice construction, machine learning and machine
translation. Various additions and extensions were implemented during this period of time.
Three major versions of the code were produced:

Version 1: The original Grand algorithm was described in Oostuizen (1991). This
algorithm used heuristics to construct a lattice. The algorithm itself does not have much in
common with the AddAtom since the Grand algorithm used a number of heuristics and
consisted of a procedure that connected an object concept to each of the attribute
concepts in its intent, one attribute at a time, whereas AddAtom considers all attributes of
the object at once. A function called transform was used to ensure the integrity of the
lattice in having unique suprema and infima. Grand was implemented in C. This code was
maintained by the author and adapted for use in machine learning and other experiments.

Version 2: The AddAtom algorithm was implemented in C using the Grand data
structures, but with all the Grand lattice construction code completely replaced by the

98

AddAtom algorithm. The primary reasons for this was to modularise and clean up the
version 1 code. In addition, the compressed pseudo-lattice data structures and functions
such as virtual arcs, CompressLattice and ExpandLattice were also implemented. This all
extensions to the code (relative to version 1) were completely written the author.

Version 3: The object-oriented version of the version 2 code. All data structures were
completely rewritten and the option of optimising whether on time or space complexity
depending on the application. In order to provide the maximum flexibility a significant
amount of modularisation and encapsulation was used in the class design. Version 3 was
implemented in C++ by the author. A number of different compressed pseudo-lattice
operations such as ExpandLattice were also improved. The primary reason for this rewrite
was to obtain flexibility to use the code in many research projects.

7.2 SET CLASS

The most important class of the implementation (other than the lattice class itself) is the
set class. It contains implementations set operations such as union, intersection,
difference and set complement on sets of integers. These are the basic operations in the
implementation of AddAtom and other lattice related algorithms.

Each concept in the lattice is identified by a unique integer. A set may contain any number
of concepts. In addition, representation of infinite sets is also supported. (An infinite set
would be required to represent, for example, the complement of an empty set.)

The set class represents the set as a string of bits and set operations such as union (or)
and intersection (and) can therefore be very efficiently calculated using normal bitwise
processor operations that operate on 32 or 64 bits at a time.

The most important methods of the set class are (with parameter names implying types):

• Initialise(anlnitValue)

• And(aSet) Return aSet

• Or(aSet) Return aSet

• NotO Return aSet

• FirstElementO Return anElement

• NextElement(anElement) Return anElement

• AddElement(anElement)

• RemoveElement(anElement)

• TestIfSetContains(anElement) Return aBoolean

7.3 LATTICE CLASS

In the lattice class, the lattice is represented by a list of nodes. Each node is numbered
and this number serves as the index to that node. Each node has a number of attributes
such as its name and support (Le. the number of concepts in its extent). In addition, each
node has two sets that contain references to its parent and child nodes. This represents

99

the arcs associated with the node. In the case of compressed pseudo-lattices each node
has two additional sets that contain its virtual parent and child nodes.

In principle, a lattice can be represented as a set of sets (Le. a set of nodes where each
node is a set of attributes representing the associated concept's intent) without explicitly
representing the cover relationship (parents and children). Pragmatically, however, the
explicit representation of the cover relationship is irnportant for the efficiency of the
AddAtom lattice construction algorithm. Without it, cover relationships have to be
rediscovered/inferred each time the lattice is traversed.

Additionally, and also for efficiency reasons, the intent and extent sets of a node are
stored explicitly with each node, despite the fact that these sets can be derived from its
upward closure. The decision to explicitly store these sets represents a trade-off between
space and time efficiency: to save on time, the sets are precomputed and stored, costing
space. This developed into a lattice operation cache. The purpose of the cache was to
keep the results of lattice closure operations in memory or on disk and avoid. This cache
of pre-computed values significantly improved the performance of the lattice construction
algorithms as well as the browsing and traversing thereof.

The upward- and downward closure operations are important lattice operations. They
return all the nodes above or below a node, respectively, and include the node itself. In
addition to these standard closure operations, a number of variations were also
implemented. These involve, for example, returning nodes encountered in a given
direction (upwards or downwards) when:

• Following a maximum number of successive arcs.

• Following only lattice arcs in a compressed pseudo-lattice.

• Following only virtual arcs in a compressed pseudo-lattice.

The AddAtom function in the lattice class inserts a new object into the lattice. It
implements the AddAtom lattice construction algorithm described in chapter 4. It inserts
the object as a new node, creating and connecting the new intermediate nodes that are
required to retain lattice properties.

Due to the symmetry of lattices, all functions have duals that operate in the opposite
direction (e.g. UpwardClosure and DownwardClosure; AddAtom and AddCoAtom). Rather
than having separate functions for each of these, an additional parameter (aDirection) was
added to each of the methods. This parameter identifies the direction of the operation (Le.
either upwards or downwards).

A number of the functions have been overloaded so that the functions can be called either
with a single concept as parameter or with a set of concepts (e.g. instead of Closure
returning only the upward closure of a single node, it can return the union of the upward
closures of a set of nodes).

The following Lattice class methods were implemented:

• Closure(aNode, aMaximumLevel, aDirection) Returns aSet

• UpwardClosure(aNode) Returns aSet

• DownwardClosure(aNode) Returns aSet

• EIR(anAttrSet, aNode, aDirection) Return aSet

• AIR(anAttrSet, aNode, aDirection) Return aSet

100

• 	 AddAtom(aAttSet, anObject, RootNode, aDirection) Return aNode

• 	 AddCoatom(aObjSet, anAttr, RootNode, aDirection) Return aNode

• 	 CreateNewNode(aNodeType) Return aNode

• 	 Link(aNodel, aNode2, aDirection)

• 	 DeLink(aNodel, aNode2, aDirection)

• 	 GetNodeIntent(aNodel, aDirection) Return aSet

• 	 GetNodeExtent(aNodel, aDirection) Return aSet

• 	 GetNodeType(aNodel, aDirection) Return aNodeType (e.g. returns all attributes is
aDirection = upward)

• 	 GetAllAttributes(aDirection) Return aSet

• 	 GetAllObjects(aDirection) Return aSet

• 	 Join(Attrs, aDirection) Return aNode

• 	 Meet(Attrs, aDirection) Return aNode

• 	 GetMinimaIConcepts(aSet, aDirection) Return aSet

The PersistantLattice class was used to implement functionality such as persistency and
the caching of concepts and closures. Over the period of time the code was developed a
number of different lattice and other classes with various functionality and optimisations
were developed. Although this approach was beneficial for experimentation, it did
negatively affect the performance of the implementation. This was due to the increased
number of function calls which required a significant amount of parameter passing and
range checking.

Various additional utility methods were also implemented to perform a number of
commonly used basic functions. An exhaustive enumeration of these methods is not
appropriate here.

7.4 COMPRESSED PSEUDO-LATTICE IMPLEMENTATION

Due to the similarity between compressed pseudo-lattices and EA-Iattices, a single class
was used for the implementation of both. As was mentioned, this required the modification
of methods such as AddAtom, Closure, EIR, Link etc. to be able to cope with a data
structure in which both lattice- and virtual arcs can occur. In many of the lattice class
methods mentioned above, this required yet another parameter to indicate whether the
relevant operation (for example a closure operation) should follow lattice-, virtual- or both
types of arcs.

The following compressed pseudo-lattice related methods were added to the lattice class:

• 	 Closure(aNode, aMaximumLevel, FollowVirtualArcs, aDirection) Returns aSet

• 	 CompressLattice(aNode, aDirection) Return aSuccessIndicator

• 	 ExpandLattice(aNode, aDirection) Return aSuccessIndicator

• 	 InsertVirtuaIObject(anAttrSet, anObject, aDirection)

101

• Link(aNodel, aNode2, CreateVirtllalArc, aDirection)

• DeLink(aNodel, aNode2, CreateVirtllalArc, aDirection)

The extension of the AddAtom algorithm to operate on compressed pseudo-lattices
greatly increased its complexity since a large number of exceptions that would not occur
in EA-Iattices had to be tested and catered for (e.g. the removal of virtual arcs when
adding concepts at the top or bottom of the embedded lattice and maintenance of these
arcs).

As was mentioned earlier, the ExpandLattice algorithm can be used as a non-incremental
lattice construction algorithm that is an alternative to the AddAtom algorithm for
constructing lattices. The basic approach would be to start with a fully compressed
pseudo-lattice such as the bipartite graph in figure 6.1 and using successive ExpandLattice
calls, construct the complete lattice. However, this strategy proved to be very inefficient
and was ruled out as a useful lattice construction algorithm. Nevertheless, ExpandLattice is
a useful operation in manipulating and forming compressed pseudo-lattices.

7.5 IMPLEMENTATION ISSUES

The most important hurdles encountered during the implementation and testing of the
code stem from the exponential nature of a lattice as a data structure. This creates
problems both in terms of the time and memory size needed to build and represent the
lattice. A number of trade-offs thus presented themselves and had to be dealt with. Less
efficient implementations used too many resources or took a long time to execute and
test.

7.5.1 Time

To build a data structure that has an exponential number of elements, obviously and
unavoidably takes an exponential amount time to complete. However, even in this context,
inefficient coding can lead to even worse time inefficiencies than is necessary.

A number of different implementation options were evaluated by implementing each as a
different class and comparing the classes using test data sets. These options relate to the
use of different internal data structures such as hash tables combined with lists instead of
unordered sets. Different optimisations of the AddAtom algorithm as well as the
calculation of meets and generator concepts were also considered. A number of ways to
prevent the unnecessary consideration of concepts were also investigated. The algorithm
in appendix A documents the algorithm with the best time performance. The strategy of
caching closures of nodes was also implemented and did also improve the performance of
the algorithms.

7.5.2 Space I memory

The amount of memory available for data structures is an important limitation and will
always remain potentially problematic, since the worst-case number of lattice nodes is
exponential in the number of attributes. The problem is thus no less acute now than when
the first implementation of the AddAtom algorithm was developed (Le. in 1996) even
though the average PC of today could probably handle data sets were problematiC at the
time. To ameliorate the inherent problem of exponential space requirements, inefficient
memory use should therefore be avoided wherever possible.

102

Since the algorithm is generic, any number of objects or attributes can, in principle, be
added at any time. Thus, the maximum size of arrays and sets needed for a particular
lattice cannot be reliably calculated beforehand. The maximum size of many of the sets is
determined by the number of intermediate nodes, which is in turn determined by the data.
It is a catch-22 situation in that to determine the limits, the lattice must first be built.

Two alternative approaches were taken to address t~lis problem. The first approach
declared a fixed amount of memory for each node and set. This strategy is very memory­
inefficient since the maximum size required is only needed in a limited number of
instances. The second approach was to use variable length sets and lists. The first
approach had the benefit of not requiring the reorganisation and additional testing
required for variable length sets and lists used in the second approach and was therefore
very time efficient. Using this approach with a data structure that is already exponential in
size resulted in reaching the practical limit of memory very quickly on the smaller PC
based platforms.

The second approach is beneficial in terms of memory usage, but the increase in
computing overheads to manage the data structure slowed the performance down.

In the light of this time-space trade-off it was opted to retain both of the approaches as
alternative lattice classes. The appropriate class were then chosen based on the
availability of memory and computing time and power in the particular application.
Typically the fastest approach possible was used when building lattices (usually on UNIX
servers with large memories), whilst browsing lattices on smaller systems used a more
memory efficient approach.

Since many of the larger lattices built for testing could not be used in PCs running under
Windows a persistent data structure and cache was implemented. This has the capability
of keeping only a number of nodes in a memory cache and swapping them 'from disk as
needed. This slowed down the performance considerably, but had the benefit that very
large lattices could be traversed in a machine with a relatively small amount of memory.
This cache was further extended to cache the upward and downward closures of concepts
as they were calculated. This (pre-computed) closure cache improved the time efficiency
of the AddAtom algorithm.

7.5.3 Object-oriented implementation

A significant decrease in performance was noted when changing form C to object-oriented
and more modular C++ code (estimated at more than 30%). This was due to the
increased modularisation and looser coupling of different data structures and objects as
well as to the significantly increased number of function calls and parameter range
checking. This lead to an increase in the number of function calls to access variables and
data structures via formalised interfaces. It did have the benefit of making the
experimentation with different memory, caching and optimisation strategies much easier
since only small parts of the code needed to be changed. This was however at the
expense of efficiency (also refer to section 5.3).

7.5.4 UNIX and Windows

Testing and implementation was conducted on both Windows-based operating systems
as well as various flavours of UNIX. In order to minimise the problems of porting code
between operating systems, the basic program used a text-based interface. A small
number of operating system and hardware specific issues were dealt with using
conditional defines in the code. This enabled the code to be compiled under both

103

operating systems with no modification and allowed development under Windows whilst
large test runs were performed under UNIX.

As output, the program created lattice files (with a *.Iat extension). These files were
created in an operating system agnostic fashion which enabled the transferral between
operating systems.

For the purpose of constructing GUI-based interfaces, a Windows DLL library was created
that exposed all the lattice object interfaces to any Windows-based application.

7.5.5 Testing

The AddAtom algorithm in its present form was not discovered immediately and came
from an iterative process during which a number of refinements and optimisations have
been made. During this process an intensive testing procedure was used to determine
whether each resulting data structure was indeed a lattice, and to test the various
compressed lattice properties.

Some of the tests used were:

• 	 Validating the lattice property by brute force (i.e. testing that any two nodes have
only one supremum and infimum).

• 	 Concepts labelled as attributes have no parents and object concepts must have no
children whilst intermediate concepts must have both (the unit and empty concepts
are not stored as part of the data structure).

• 	 Objects are connected to the correct attributes after the building of the lattice and
have not gained or lost any attributes in their intent.

• 	 All node support values are correct.

• 	 No intermediate node has only one parenVchild node (EA-Iattice property).

• 	 Lattices built on the same context, but with objects in a different order resulted in
the equivalent lattices (i.e. the two resulting lattices were isomorphic).

• 	 No redundant links to nodes exist (i.e. there is not an direct and indirect arc
between two nodes).

• 	 All intermediate concepts have at least two parents and two children (EA-Iattice
property).

• 	 The attributes and objects of a concept is the same as all the attributes in its
upward and downward closures.

• 	 Any concept c was connected only to concepts in EIR(L, Intent(c), c) and EER(L,
Intent(c), c).

Using this intensive testing the correctness of the AddAtom algorithm and its variants
were proved empirically whilst problems were also identified early.

In addition, the pseudo code of the (inefficient) AddAtom algorithm as described in section
4.6 was re-implemented from scratch to verify that no mistakes had been made in its
formulation.

104

7.5.6 User interface

Due to the requirement of operating under both Windows, MS DOS and UNIX operating
systems, a text based user interface was developed that provided basic functionality.

Some of the user interface functions are:

• 	 Building lattices from a given incidence relation provided as a text-based file.

• 	 Saving and restoring lattices to binary *.Iat files.

• 	 Performing single lattice operations such as EIR, AIR, AddAtom, CompressLattice
and ExpandLattice.

• 	 Performing specific validity and consistency tests such as the comparison of
different lattices.

• 	 Obtaining performance metrics such as the time taken for an operation, the
number of certain basic lattice operations such as closures, concept references
and set operations performed to construct a lattice.

• 	 Interactively interrogating the lattice structure for debugging and other purposes.

• 	 Producing text based files suitable for human reading that describe the lattice
concepts and cover relationships (this was used for debugging purposes).

In addition the user interface allowed text-based script files to be executed that automate
the execution of a number of the above functions. This was used for testing, debugging
and performance measurement purposes.

7.5.7 Continued advances in hardware

As indicated, the majority of the code was written during 1995-1996 at a time when the
average server and personal computer hardware available was significantly slower and
had significantly less memory than at present, especially on Windows/Intel based
platforms. This factor was therefore a primary driver in the development of more advanced
code such as persistency, caching, variable length data structures etc. to cope with the
restrictions.

7.6 COMPARISON WITH OTHER LAITICE CONSTRUC'nON ALGORITHMS

For comparative purposes, both Godin et al. (1995b) and Carpineto and Romano (1993)
algorithms were implemented using the object oriented version 3 data structures, utility
functions and virtual classes. However, to ensure unbiased comparison with the newly
derived algorithm, certain changes in the data structures were necessary. This was
because both of these algorithms made extensive use of a node's intent which was not, at
the time, explicitly stored as an attribute of a node. The data structures and utility
operations were changed to be fair to both the algorithms before any time complexity
comparisons were made. The results of the comparisons mentioned in chapter 5 are
therefore on an "apples-with-apples" basis.

As was indicated in chapter 5 the results of the pilot stUdy were confirmed by the wider
study which used completely different and separate implementations.

105

Chapter 8: Summary and future work

In this dissertation efficiency problems associated with lattice-based approaches have
been ameliorated by two strategies: developing faster algorithms and using less concepts
in a lattice. The AddAtom algorithm was defined and shown to be a fast lattice
construction algorithm whereas the compressed pseudo-lattice data structure that was
introduced, support lattices with fewer concepts. The two approaches to more efficient
deployment of lattices are complementary.

The AddAtom algorithm efficiently constructs lattices using a tightly focussed search for
generator concepts. This search is performed through the use of intent- and extent
representative operations. The algorithmic performance of AddAtom is very good both
from a theoretical- and an experimental point of view. A worst-case performance bound is
O<lILII.IIOW.max(1I0'1i)). In experimental comparisons on artificial contexts AddAtom was the
best performer in all contexts except those with very high densities or very low densities in
which cases it was the second best performer. It was also the best performing incremental
algorithm. This indicates that the theoretical complexity bound as stated is not very sharp.
In natural contexts the performance advantage of AddAtom was even more pronounced.
Initial results suggests that AddAtom has the added advantage of having a relatively tight
performance range over contexts of different densities whereas the performance other
algorithms that offer good performance differ more significantly over different density
contexts.

The compressed pseudo-lattice data structure that was defined is closely related to the
line diagram of a lattice and its use as a computational tool in applications such as
machine learning, information retrieval and knowledge discovery in databases is
discussed. The data structure, essentially a bipartite graph that incorporates an
embedded sublattice, combines desirable features of concept lattices in a structure that
allows for a flexible mechanism of scaling the size of the embedded sublattice. The
scaling is done using defined operations that compress and expand it by removing or
adding atoms and coatoms. A compressed pseudo-lattice essentially represents a
complete sublattice from which a number of atoms and/or coatoms have been removed.
Additionally the relation of the sublattice to the context from which it was derived is
preserved. An application-dependent compression strategy or criterion is required to guide
this process. It was argued that the removal of concepts from a concept lattice may hold
advantages over traditional approaches. Compressed pseudo-lattice shows promise in
many field of research due to its close resemblance to that of a formal concept lattice.

The intent- and extent representative operations of a lattice were defined as substitutes
for the infimum and supremum operations in compresses pseudo-lattices since the
removal of concepts leads to trivial infima and suprema. In both of these areas the notion
of the intent- and extent representative operations were shown to be defining in nature.
AddAtom uses it to search for generator concepts and, in essence, it repeatedly insert
concepts into the lattice in order that AIR =EIR.

8.1 POSITIONING AND RELATED RESEARCH

The theoretical experimental comparison in chapter 5 included many of the well-known
lattice construction algorithms. The theoretical complexity of the Nourine and Raynaud

106

(2002) algorithm has the best theoretical complexity of 0«11011 + IIAII).IIOIl.IILII). Although
the cubic nature of the AddAtom theoretical complexity is higher than the quadratic nature
of that of Nourine, it is argued that the AddAtom theoretical performance bound is not very
sharp - this is confirmed by the experimental results.

The work of Kuznetsov and Obiedkov (2002) indicates that there is no single best
algorithm for constructing lattices. This is supported by the findings of chapter 5. A hybrid
approach that uses a number of criteria, such a context density, to select an algorithm that
would be best to construct the concept lattice is proposed.

Because of the very large data structures associated with lattices the interpretation and
use of this data may be obscured by the large amount of detail (often caused by noise in
the data). Authors such as Duquenne et al. (2001) have expressed the difficulty in working
with large concept lattices and have called for useful approximations of lattices. The
approach taken with compressed pseudo-lattices is however not the only approach. A
number of alternative approaches for dealing with large lattices have also been proposed:

• 	 Wille (2002) proposes conceptual views that are built using human assistance.
Each view represents a small part of the lattice. Since these views are defined by
a subset of attributes from the context, they can easily be structured as lattices
themselves. This approach supports the idea of browsing a larger lattice where a
user can select a conceptual view which is "zoomed" into.

• 	 Hereth and Stumme (2001) generate Iceberg Concept Lattices in which they have
purposefully removed nodes to reduce the lattice size. Iceberg Lattices are a
specialisation of compressed pseudo-lattices in the sense that a particular
compressions strategy is used.

• 	 Pernelle et al. (2002) uses a partial order called nesting. A nested concept lattice
is obtained by reducing (through projections) the original lattice. As a consequence
it makes the equivalence relation defined on the extents and intents of concepts
coarser.

• 	 Godin and Missaoui (1994), proposed ways of reducing concepts in a lattice called
a pruned concept lattice. In general, a compressed pseudo-lattice is not directly
comparable to a pruned concept lattice.

• 	 Mephu Nguifo (2001) use flexible concept lattices that also do not use the whole
concept lattice

• 	 Alternative ideas of reducing concepts are also discussed in (Oosthuizen 1994b).

In general, the first three of these approaches can be supported by compressed pseudo­
lattices since they rely on sublattices.

Other approaches focus on reducing or filtering the input context, either in terms of
attributes, objects or both such as commonly used in knowledge discovery in databases
and information retrieval (e.g. controlled document indexing in Salton (1989), explanation
based learning in Oosthuizen (1994b) and Oosthuizen and Avenant (1992» may also be
used to avoid contexts that contain irrelevant attributes and/or erroneous objects which
may lead to less effective concept lattice based approaches.

In most instances, FCA-based approaches to problem solving, such as those mentioned
in chapter 1, have competing non-lattice based techniques which do not suffer to the
same extent from the complexity and size issues as FCA approaches. The future success
of FCA-based approaches will thus depend on either having superior predictive or
classification performance that outweighs possible time performance issues. Alternatively,
approaches resulting in reduced lattice sizes may result in superior time performance.

107

8.2 FURTHER WORK

Many of the concepts put forward in this dissertation, especially those cantered on the use
of compressed pseudo-lattices require further investigation. Below are listed some
possible areas for further study related to both AddAtom and compressed pseudo-lattices.

Further work related to AddAtom:

• 	 Further experimental comparison of the AddAtom performance with that of other
algorithms not included in this study should be conducted.

• 	 AddAtom can easily be extended to operate on sub-lattices such as those in
compressed pseudo-lattices. As was stated in chapter 7, a version of AddAtom
with this capability was implementation, but the pseudo-code of the
implementation has not been fully documented.

• 	 The experimental comparison in chapter 5 suggests that the performance gap of
AddAtom in relation to other algorithms may be the most significant in natural data
sets. A wider study is required to support and generalise this observation.
Specifically, the extent to which the algorithmic performance of most algorithms
running natural data may differ from their performance in terms of artificial data set
should be investigated.

• 	 Hybrid approaches combining construction algorithms should be explored whereby
various criteria are used to predict a construction algorithm that is most likely to be
the best performer. This may even involve a per-object based decision, relying on
various incremental lattice construction algorithms to insert objects. Optimisations
such as the use of AddCoatom may also be considered.

• 	 As indicated in chapter 7, the developed code is not as efficient as it might be and
introduces too many overheads. As a result, there is the need to re-implement and
fine-tune the code.

Further work related to compressed pseudo-lattices:

Since the compressed pseudo-lattice is a generic data structure that in essence still uses
a lattice (albeit a sublattice), it lends itself to most approaches that rely on FCA. There are,
however, a number of areas of research and key research questions that seems most
promising. These are listed below.

• 	 In what areas of application are compressed pseudo-lattices beneficial?
Specifically, how do compressed pseudo-lattices (and the intent- and extent
representative operations) perform in comparison with a formal concept lattice
(with the meet and join operations) in areas where the latter has proven
successful?

• 	 What compression strategies and criteria should be used and in which areas of
application? Specifically, is there a universal compression strategy applicable to
many areas of application or are useful compression strategies domain specific?

• 	 What is the relationship of a compressed pseudo-lattice and associated operations
to other fields of research in databases, rough sets, etc., given its apparent ability
to deal with ambiguity?

• 	 How do various supervised machine learning algorithms perform using
compressed pseudo-lattices based on various compression strategies? Here the
approach and classifiers proposed in Xie et al. (2002) may be a useful start.

108

• 	 What is the relationship between the performance gained when fewer concepts
are processed, the predictive accuracy of algorithms and the size of the
compressed pseudo-lattice?

• 	 To what extent and in what ways may compressed pseudo-lattices be used to
support information retrieval?

• 	 A further exploration of the theoretical aspects associated with sublattices would
seem to be required.

• 	 A more complete comparison is required of compressed pseudo-lattices with other
methods that use sublattices and lattices with a reduced number of concepts.

• 	 There is a need to investigate how compressed pseudo-lattices may be combined
with other techniques and approaches.

The research into there and other related issues are on-going.

--------------------()()()-------------------­

109

References

Barbut, M., and Monjardet, B., 1970, Ordre et Classification. Algebre et Combinatoire,
Tome II. Hachette, Paris.

Birkhoff, B., Lattice Theory, volume 25. American Mathematical Society Colloquium Publ.,
Providence, revised edition, 1973.

Blake, C.L., and Merz, C.J., 1998, UCI Repository of machine learning databases
[http://www.ics.ucLedu/-mlearn/MLRepository.html].lrvine.CA: University of California,
Department of Information and Computer Science.

Bordat, J.P., 1986, Calcul pratique du treillis de Galois d'une correspondance. Math Sci.
Hum., 96, pp. 31-47.

Cameron, P.J., 1996, Combinatorics: topics, techniques, algorithms. University of
Cambridge Press.

Carpineto, C., and Romano, G., 1993, GALOIS: an order-theoretic approach to
conceptual clustering. Machine Learning, proceedings of the tenth International
conference, Amherst, MA, Morgan Kaufmann Publishers, pp. 33-40.

Carpineto, C., and Romano, G., 1996, Information retrieval through hybrid navigation of
lattice representations. International Journal of Human-Computer Studies, 45, pp. 553­
578.

Carpineto, C., and Romano, G., 1996, A lattice conceptual clustering system and its
application to browsing retrieval. Machine Learning Journal, 24, pp. 95-122.

Chein, M., 1969, Algorithme de recherche des sous-matrices premieres d'une matrice.
Bull. Math Soc. Sci. Math, R.S. Roumanie, 13, pp. 21-25.

Clark, C.W., 1931, Elementary mathematical analysis, second edition, Brooks/Cole
Publishing Company.

Cole, R., and Eklund, P., 2001, Browsing semi-structured web texts using formal concept
analysis. Proceedings of ICCS-2001 International workshop on concept lattices-based
theory, methods, and tools for knowledge discovery in databases (CLKDD'01),
Stanford University, Palo Alto, Springer, pp. 319-332.

Cole, R., and Stumme, G., 2000, CEM: A Conceptual Email Manager. Proceedings of the
8th International Conference on Conceptual Structures, ICCS'2000, Springer Verlag,
2000, LNAI1867, pp. 438-452.

Dowling, C.E., 1993, On the irredundant generation of knowledge spaces. J. Math.
Psych, 37(1}, pp. 49-62.

Duquenne, V., 1999, Lattical structures in data structures in data analysis. Theoretical
Computer Science, 217(2}, pp. 407-436.

Duquenne, V., Chabert, C., Cherfouh, A., Delebar, J.M., Doyen, A., and Pickering, D.,
2001, Structuration of Phenotypes / Genotypes through Galois Lattices and
Implications. Proceeding of the ICCS-2001 International workshop on concept lattices­

110

http:http://www.ics.ucLedu/-mlearn/MLRepository.html].lrvine.CA

based theory, methods, and tools for knowledge discovery in databases (CLKDD'01),
Stanford University, Palo Alto, Springer, pp. 21-32.

Fisher, D., 1987, Knowledge acquisition via incremental conceptual clustering. Machine
Learning, 2, pp. 139-172.

Ganter, B., 1984, Two Basic Algorithms in Concept Analysis, FB4-Preprint No. 831, TH
Darmstadt and supplemented with construction of the cover relationship via binary
search.

Ganter, B., Attribute exploration with background knowledge. Theoretical Computer
SCience, 217 (1999), 215-233.

Ganter, B., and Wille, R., 1999, Formal Concept Analysis, Mathematical Foundations,
Berlin, Springer-Verlag.

Ganter, B., Rindfrey, K., and Skorsky, M., 1986, Software for formal concept analysis. In
Classification as a tool of research, Elsevier Science.

Godin, R., and Missaoui, R., 1994. An Incremental Concept Formation Approach for
Learning from Databases. Theoretical Computer Science, Special Issue on Formal
Methods in Databases and Software Engineering, 133(2), pp. 387-419.

Godin, R., Missaoui, R., and Alaoui, H., 1991, Learning Algorithms using a Galois Lattice
Structure. In Proceedings of International Conference on Tools with Artificial
Intelligence (ICTAl), San Jose, CA, November, pp. 22-29.

Godin, R., Mineau, G. W., and Missaoui, R., 1995, Incremental structuring of knowledge
bases. In Proceedings of the first International Symposium on Knowledge Retrieval,
Use and Storage for Efficiency (KRUSE'95), Santa Cruz, CA, USA, pp. 179-198.

Godin, R., Missaoui, R., and Alaoui, H., 1995, Incremental concept formation algorithms
based on Galois lattices. Computation Intelligence, 11(2), pp. 246-267.

Goldberg, L.A., 1993, Efficient Algorithms for Listing Combinatorial Structures. Cambridge
University Press.

Gratzer, G., 1971, Lattice Theory: First Concepts and Distributive Lattices, W.H. Freeman
& Co.

Guemoche, A., 1990, Construction du treillis de Galois d'une relation binaire. Math. Inf.
Sci. Hum., 109, pp 41-53.

Hereth, J., and Stumme, G., 2001, Reverse pivoting in conceptual information systems.
Proceedings of the ICCS-2001 International workshop on concept lattices-based
theory, methods, and tools for knowledge discovery in databases (CLKDD'01),
Stanford University, Palo Alto, Springer, pp. 202-215.

Johnson, D.S., Yannakakis, M., and Papadimitriou, C.H., 1988, On generating all maximal
independent sets. Inf. Proc. Let., 27, pp 119-123.

Kourie, D.G., and Oosthuizen, G.D., 1998. Lattices in machine learning: complexity
issues. Acta Informatica, 35, pp. 269-292.

Kuznetsov, S.O., 1989, Interpretation on Graphs and Complexity Characteristics of a
Search for Specific Patterns, Nauch. Tekh. Inf., Ser. 2, no. 1, pp. 23-28.

Kuznetsov, S.O., 1993, A fast algorithm for computing all intersections of objects in a finite
semi-lattice. Automatic Documentation and Mathematical Linguistics, 27(5), pp. 11-21.

111

Kuznetsov, S.O., 2001, On computing the size of a lattice and related decision problems.
Order, 18(4), pp.13-21.

Kuznetsov, S.O, and Obiedkov, S.A., 2001, Comparing Performance of Algorithms for
Generating Concept Lattices. Proceedings of ICCS-2001 International workshop on
concept lattices-based theory, methods, and tools for knowledge discovery in
databases (CLKDD'OI), Stanford University, Palo Alto, Springer Verlag, pp. 35-47.

Kuznetsov, S.O., and Obiedkov, S.A., 2002, Comparing performance of algorithms for
generating concept lattices. In Journal of Experimental & Theoretical Artificial
Intelligence, Special issue on Concept Lattice-based theory, methods and tools for
knowledge Discovery in Databases, Volume 14, number 213 April-September 2002, pp.
189-216.

Lindig, C., Algorithmen zur begriffsanalyse und ihre anwendung bei softwarebibliotheken,
(Dr.-Ing.) Dissertation, Techn. Univ. Braunschweig.

Lindig, C., Fast Concept Analysis. In Gerhard Stumme, editors, Working with Conceptua.l
Structures - Contributions to ICCS 2000, Shaker Verlag, Aachen, Germany, 2000.
(http://www.eecs.harvard.edu/-lindig/papers/)

Mephu Nguifo, E., and Nijiwoua, P., 2001, IGLUE: a lattice-based constructive induction
system. Intelligent Data Analysis, 5(1), pp. 73-91.

Norris, E.M., 1978, An algorithm for computing the maximal rectangles in a binary relation.
Revue Roumaine de Mathematiques Pures et Appliquees, 23(2), pp. 243-250.

Nourine, L., and Raynaud, 0., 1999, A fast algorithm for building lattices. Information
Processing Letters, 71, pp. 199-204.

Nourine, L., and Raynaud, 0., A fast incremental algorithm for building lattices. In Journal
of Experimental & Theoretical Artificial Intelligence, Special issue on Concept Lattice­
based theory, methods and tools for knowledge Discovery in Databases, Volume 14,
number 213 April-September 2002, pp. 217-228.

Obiedkov, S.A., Personal communications 2001-2003. Russian State University for the
Humanities, Moscow, Russia.

Oosthuizen, G.D., 1991, Lattice-based Knowledge Discovery. In Proceedings of AAAI-91
Knowledge Discovery in Databases Workshop, Anaheim, pp. 221-235.

Oosthuizen, G.D., 1994, A Dynamic Indexing Mechanism for Memory-based Reasoning.
Proceedings of the international AMSE conference on 'intelligent systems', SMSE
Press, pp. 127-136.

Oosthuizen, G.D., 1994, The application of concept lattices to machine learning. Technical
Report CSTR 94/01 Department of Computer Science University of Pretoria.

Oosthu;zen, G.D., and Avenant, C., 1992, Integrating Similarity- based Learning and
Explanation-based learning. South African Computer Journal, 6, 1992, pp. 72-78.

Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L., 1999, Discovering frequent closed
itemsets for association rules. In Proceedings of 7th International Conference on
Database Theory (lCDT), Jerusalem, Israel, January, pp. 398-416.

Pernelle, N., Rousset, M.-C., Soldano, H., and V. Ventos, 2002. In Journal of
Experimental & Theoretical Artificial Intelligence, Special issue on Concept Lattice­
based theory, methods and tools for knowledge Discovery in Databases, Volume 14,
number 213 April-September 2002, pp. 157-188.

112

http://www.eecs.harvard.edu/-lindig/papers

Quinlan, J.R., 1986, Induction of decision trees. Machine Learning, 1(1): pp. 81-106.

Salton, G., 1989, Automatic Text Processing: The Transformation, Analysis, and Retrieval
of Information by Computer. Reading, MA: Addison-Wesley.

Stumme, G., Wille, R., and Wille, U., 1998, Conceptual Knowledge Discovery in
Databases Using Formal Concept Analysis Methods. In Proc. 2nd European
Symposium on Principles of Data Mining and Knowledge Discovery (PKDD'98),
Nantes, France, pp. 450-458.

Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., and Lakhal, L., 2000, Fast computation
of concept lattices using data mining techniques. In proceesings of 7th International
Workshop on Knowledge Representation meets Databases (KRDB 2000), Berlin,
Germany, August 21-22, pp. 129-139.

Valtchev, P., Missaoui, R., and Lebrun, P., 2000, A Partition-Based Approach Towards
Building Galois (Concept) Lattices, Rapport de recherche no. 2000-08, Departement
d'informatique, UQAM, Montreal, Canada.

Valtchev, P., and Missaoui, R., 2001, Building concept (Galois) lattices from parts:
generalizing the incremental methods. Conceptual structures: broadening the base, 9th
International conference on conceptual structures, ICCS 2001, Stanford, Springer, pp.
290-303.

Vogt, F., and Wille, R., TOSCANA - a graphical tool for analyzing and exploring data. In:
R. Tamassia, I. G. Tollis (eds.): Graph Drawing. Springer, Berlin-Heidelberg-New York
1995, pp. 193-205.

Wille, R., 1982, Restructuring lattice theory: an approach based on hierarchies of
concepts. In I. Rival (ed.) Ordered sets (Dordrecht & Boston: Reidel), pp. 445-470.

Wille, R., 2001, Why Can Concept Lattices Support Knowledge Discovery in Databases?
In proceedings of ICCS-2001 International workshop on concept lattices-based theory,
methods, and tools for knowledge discovery in databases (CLKDD '01), Stanford
University, Palo Alto, Springer, pp. 7-20.

Wille, R., 2002, Why can concept lattices support knowledge discovery in databases? In
Journal of Experimental & Theoretical Artificial Intelligence, Special issue on Concept
Lattice-based theory, methods and tools for knowledge Discovery in Databases,
Volume 14, number 213 April-September 2002, pp. 81-92.

Xie, Z., Hsu, W., Liu, Z., and Li Lee, M. 2002, Concept lattice based composite classifiers
for high predictability. In Journal of Experimental & Theoretical Artificial IntelJigence,
Special issue on Concept Lattice-based theory, methods and tools for knowledge
Discovery in Databases, Volume 14, number 213 April-September 2002, pp. 143-156.

Yevtushenko, S., 2002, BDD-based Algorithms for the construction of the Set of All
Concepts. In Contributions to ICCS 2002, Borovets, Bulgaria, pp. 61-73.

Zabezhailo, M.I., Ivashko, V.G., Kuznetsov, S.O., Mikheenkova, M.A., Khazanovskii, K.P.,
and Anshakov, a.M., Algorithms and Programs of the JSM-Method of Automatic
Hypothesis Generation, Nauch. Tekh.lnf., Ser. 2,1987, no. 10, pp. 1-14.

113

Appendix A: Further optimised AddAtom
algorithm

This appendix documents the variation of the AddAtom algorithm with the best time
performance. Other variations of the algorithm can be found in sections 4.3 and 4.6.

Note that for the sake of simplicity of the pseudo code, it is assumed that the context has
no comparable objects and attributes and the objects and attributes of the context form
the atoms and coatoms of the lattice. This is the case when FCA-Iattices are equal to EA­
lattices. Slight modifications and additional tests are necessary depending on which type
of lattice is to be built.

114

Input context (0, A,
IL NewConcept (L)
0L NewConcept(L)
0L. Intent A
For \:j a E A

aAttributeConcept NewConcept(L)

aAttributeConcept.Intent {a}

CreateArc(L, OL' aAttributeConcept)

CreateArc(L, aAttributeConcept, IL)

Rof

For \:j 0 E °
FastAddAtom (L, Intent(o) , 0, 0L)

Rof

//===
Function GetMeet(anIntent, aConcept, attrCount) Return aConcept
//===
// Determine the meet of anIntent by starting at Concept
parentIsMeet = True
Do While parentlsMeet

parentIsMeet False

Parents = ConceptParents(L, aConcept}

For \:j Parent E Parents

If 	attrCount[Parentj I I anlntent I I then

aConcept = Parent

parentlsMeet True

Exit For

Fi

Rof

Od
Return
End GetMeet

/1== ===============
Function AddAtomRecurse(L, anIntent, GeneratorConcept, attrCount,

ExactConcepts, DirtyConcepts, IgnoreConcepts)
Return aConcept

//===
CadidateParents = ConceptParents{L, GeneratorConcept)
ConceptParents = 0
UCConceptParents 0
DCConceptParents = 0
Exit = False

j = °
/1 Concepts in CandidateParents that have the number of
II attributes of anIntent in their intents should be considered first
1/ and therefore sorted in dec ending order of the number of attrCount

For \:j Candidate E CandidateParents
SortArray [j] Candidate
j = j + 1

Rof
Sort SortArray in decending order of attrCount[SortArray[jJl

For \:j k ° to j 1
// Get candidate with next highest number of markers
Candidate SortArray[kj

If (Candidate ~ IgnoreConcepts) and (Candidate ~ UCConceptParents)

and (Candidate ~ DCConceptParents) and Not Exit
// Candidates with at least one attribute of an Intent should
// be considered

115

newlntent Candidate. Intent n anlntent
Generator GetMeet(L, newlntent, Candidate, attrCount,

ExactConcepts, DirtyConcepts, IgnoreConcepts)

If Generator e ExactConcepts then
Generator = 	 AddAtomRecurse(L, newlntent, Generator,

attrCount, ExactConcepts, DirtyConcepts,
IgnoreConcepts)

Fi
II At this Generator is now an exact meet of anlntent
If newlntent anlntent then

Exit True
pi

If Generator e UCConceptParents and not Exit then
ConceptParents Concept Parents u {Generator}
If attrCount[Generatorl > 1 then

II If the Generator is not an attribute we can remove the
II concepts below and above it from consideration this
II is possible because all concepts that will be considered
II hereafter will have a smaller attrCount
UCGenerator UpwardClosure(L, Generator)
ConceptParents = ConceptParents UCGenerator
II Do not consider ConceptParents that are spanned by
II Generator
UCConceptParents UCConceptParents U UCGenerator
IIConcepts above need not be considered
DCGenerator DownwardClosure(L, Generator)
DCConceptParents = DCConceptParents U DCGenerator
IIConcepts below it will not be considered

Fi
Fi

Fi
Rof
NewConcept CreateNewConcept(L)

NewConcept.Extent GeneratorConcept.Extent

NewConcept.lntent anlntent

attrCount [NewConceptl = ! !anlntent!!

ExactConcepts ExactConcepts U {NewConcept}

For ~ ConceptMeet E ConceptParents
If ConceptMeet in CandidateParents then

DeleteArc(GeneratorConcept, ConceptMeet)
pi
CreateArc(NewConcept , ConceptMeet)

Rof
DeleteArc(GeneratorConcept , NewConcept)
Return NewConcept
End AddAtomRecurse
11===

11===
Function PastAddAtom(L, anlntent, 0, GeneratorConcept)
11===
DirtyAttrs = GetAttributes(L) - anlntent
DirtyConcepts = 0
II DirtyConcepts: contains intents with attributes other than Intent
II and therefore all the approximate meets of anlntent

For ~ attr E

DirtyConcepts DirtyConcepts U DownwardClosure(L, attr)
lilt is also possible to calculate DirtyConcepts using attrCount

Rof
CandidateConcepts 0

116

For V attr E anlntent
CandidateConcepts = CandidateConcepts U DownwardClosure(L, attr)

Rof
ExactConcepts = CandidateConcepts DirtyConcepts
II ExactConcepts have only attributes of anlntent in their intents
II and form exact meets of subsets of anlntent
IgnoreConcepts DirtyConcepts CandidateConcepts
II IgnoreConcepts have no attributes of anlntent in their intents
II and can be ignored when searching for GeneratorConcepts

II Calculate markers: attrCount[is the number
II of attributes of anlntent for that concept (i.e. markers
II accumulated)
Let attrCount [xl = 0 for all x E L

For V Concept E CandidateConcepts
attrCount [Concept 1 II Concept. intent n anlntent II

Rof
NewConcept = AddAtom2(L, anlntent, EmptyConcept(L), GeneratorConcept,

attrCount, ExactConcepts, DirtyConcepts, IgnoreConcepts)

For V Concept E UpwardClosure(L, NewConcept)
Concept.Extent = Concept.Extent u {g}

Rof
End FastAddAtom
11===

117

Appendix B: AddAtom algorithmic
complexity bounds

The algorithm outline below show complexity bounds of the steps or group of steps for
various parts of the AddAtom algorithm (documented in section 4.6). The complexity
column indicates the complexity bound or alternatively the maximum number of iterations
in the case of loops.

118

Step

Function OptimisedAddAtom

For a

Rof
For 0

For x

Rof
AddAtom()
For x

Rof
Rof

End OptimisedAddAtom

Function GetMeet ()
Do While ParentIsMeet

For Parent
If

Fi
Rof

Od
End GetMeet

Function AddAtom ()

For Candidat e

If '"
GetMeet ()
If

Fi
Else

Fi
For g

Rof
Rof

For g

Rof

AddAtom()

End AddAtom

Complexity

O(lIAII)
O(IIAII) limes
O(max(IIOII, IIAII»

0 (110 11) limes
O(IIL,II)
O(IIL,II) limes
O(max(IIAII»

O(lILjll) l imes
O(I)

O(max(lIO' II) 11011)
O(max(lIO'II» limes
0 (110 11) limes
O(I)
O(I)

0 (110 11)
0 (11011) limes
O(IIAII)
O(IIAII)
O(max(lIO' II),IIOII)

O(I)

O<llOlll l imes
O(max(IIO' II»

O(max(IIA'II, 110' II»
0 (11011) limes
O(I)

O (I)

11 9

