
Chapter 6: Compressed pseudo-lattices

'Everything should be made as simple as possible, but not simpler.'

Albert Einstein

In this chapter we define the notion of a compressed pseudo-lattice. A compressed
pseudo-lattice essentially consists of a sublattice embedded in a bipartite graph. This
allows for the reduction of the size of the lattice but allows control over the amount of
information that is lost in the process. The aim of this is to simplify the lattice but still retain
the essence of the context it represents.

The discussion starts by introducing and developing an I R (Information Retrieval) problem
and develops the problem domain into one where it is argued that a compressed pseudo
lattice plays a Significant role. The properties and use of compressed pseudo-lattices are
discussed as well as their interpretation. It is argued that this approach may have
significant advantages over approaches using the complete lattice in particular areas.

6.1 A BIPARTITE DATABASE AND QUERY OPERATION

We now sketch an IR problem domain and do not consider lattices until the next section.
For this problem domain we define a database D =(S,';; >related to a context C =(0, A)
as conSisting of a set, S, of concepts which are partially ordered by the relation';; (this set
need not be a lattice although it is one of the possibilities). An incidence relation I can be
derived from the partial order that describes which objects possesses which attributes.
The database is restricted in that the maximal elements are the attribute concepts
(representing A) in C and the minimal elements are the object concepts (representing 0)
in C. In addition D may contain any number of intermediate concepts M (i.e. S = attribute
concepts u intermediate concepts u object concepts). The upward closure of any concept
c, denoted by UpwardClosure(D, c), is the set of all concepts greater than or equal to c in
terms of the partial order, .;; . The downward closure is the set of concepts that are less
than or equal to c, and is denoted by DownwardClosure(D, c). The extent of a concept is
defined as the set of objects in its downward closure. Similarly the intent of a concept is
the set of attributes in its upward closure.

We consider the problem of retrieving a set of objects relevant (in some abstract and as
yet undefined way) to a specific query. The query is formulated as a set of attributes in the
form Q {alo a2, ... , am} (i.e. Q ~ A). Different query operations, taking Q as a parameter,
can be defined on D. The result of a specific query operation 0 based on database D with
respect to query Q is denoted by OeD, Q). A query operation may return any number of
concepts from D, the objective being the identification of concepts relative to the query Q.

Notwithstanding the foregoing, we choose to interpret the final results in terms of objects,
namely those objects that are in the union of the extents of the concepts returned by the
query operation. As a consequence the results of a query can be interpreted as clusters of
objects represented or referenced by the concepts returned by the query operation.

Different query operations may be evaluated in terms of the well-known information
retrieval (lR) metrics, precision (the proportion of objects returned by OeD, Q) that are

77

relevant in relation to all objects returned by OeD, Q») and recall (the proportion of relevant
objects returned by OeD, Q) in relation to all relevant objects in the database, D) (Salton
1989). Conversely using the same query operation, different databases of the same
context can be evaluated against each other in terms of these metrics. Clearly only
concepts in a given database can be returned. Therefore it can be expected, for a given
query, that a database containing more 'meaningful' concepts will return concepts that
result in higher precision and recall values. We argue that a compressed pseudo-lattice
(as defined later on in this chapter) is a versatile data structure to represent various
databases of this type and could prove useful in researching information retrieval and
machine learning strategies.

Incidence relation
nw Iw II nc 11g 21g mo Ib sk

LE .(.(.(

BR .(.(.(.(

FR .(.(.(.(.(

DG .(.(.(.(.(

sw .(.(.(.(

RD .(.(.(.(.(

BN .(.(.(.(

MZ .(.(.(.(

Figure 6. 1: The Living Context and its associated bipartite graph

The simplest example of such a database is that of a bipartite graph (essentially
representing the incidence relation of the context) with objects at the bottom, attributes at
the top and arcs from each object to all the attributes it possesses in a specific context, as
illustrated in figure 6.1 .

Consider OBP(D, Q), a query operation on the bipartite database, D in figure 6.1. For a
query Q we define OBP(D, Q) =Q. As a trivial example we see that for Q ={mo, Iw} (where
the key of figure 6.1 indicates that mo means 'motile' and Iw means 'lives in water', etc.)
the query OBP(D, Q) would return {mo, lw}, effectively referencing the set of objects {LE,
BR, FR, DG, SW, RD} (Le. the extent of the concepts mo and lw). This can be verified by
inspecting the line diagram in figure 6.1 of the database for DownwardClosure(D, mo) =
{LE, BR, FR, DG} and DownwardClosure(D, lw) = {LE, BR, FR, SW, RD}.

A shortcoming of the bipartite database and of OBP is the fact that the query operation
returns a very general set of objects, each of which has any, but not all, of the attributes
speci'fied in the query Q. (Thus leech, bream, frogs, spike-weed and seeds are either
motile and/or live in water.) In IR terms the query operation has low precision but high
recall. One way of improving the precision is to introduce a new intermediate concept
called 'mo_lw' that groups all objects that possesses both mo and lw into the database.
This concept would be connected via upward arcs to mo and lw and all objects possessing
mo and lw would have upward arcs to the new concept. In this way, a query operation
might be able to use the new concept in arriving at the results of the query presumably
yielding better results.

Continuing this \ine of thought and introducing new 'useful' or 'meaningful' intermediate
concepts, the other end of the spectrum would be to use a formal concept lattice or EA
lattice as the database. Databases of this type are discussed in the next section.

78

6.2 A CONCEPT LATTICE DATABASE AND QUERY OPERATION

RD .f
BN .f .f
MZ .f

Entities/objects Attributes

LE Leech nw Needs water
BR Bream Iw Lives in water
FR Frog Lives on land
DG Dog nc Needs chlorophyl
SW Spike-weed 11g 1 leaf germination
RD Reed 21g 2 leaf germination
BN Bean mo Is motile
MZ Maize Ib Has limbs

sk Suckles young

Figure 6.2: The EA-/attice of the Living Context (the unit- and zero concepts are not
shown)

Figure 6.2 shows an EA-Iattice for the Living Context. It has clearly partitioned sets of
attributes (top row of concepts), objects (bottom row) and intermediate concepts. The unit
and zero concepts of the lattice have been excluded from the database. (They are,
however always implied.) The intents of some of the EA-formal concepts are shown as a
guide.

OMee,{D, Q) is a query operation on a lattice database and is defined as the meet or
infimum of the attributes of Q in the lattice (Le. the concept (Q', Q") corresponding to all
the objects that have the attributes Q in common and all the attributes this set of objects
have in common). For the query Q = {mo, lw} the resulting objects are therefore {BR, FR,
LE} since the meet of {mo, Iw} is concept n7 which has an extent of {BR, FR, LE} (Le.
objects possessing all of the attributes in Q are returned). Note that it is now possible to
obtain a result with a higher precision due to the fact that concepts lower down in the
database discern between objects in a more granular way. (Thus leeches, bream and
frogs are all both motile and live in water.)

6.3 AN ADAPTED SUBLATTICE DATABASE AND QUERY OPERATION

Assuming that we were looking for all the fish objects in the Living Context (in this case
only BR qualifies) with query Q = {mo, lw} (Le. all the living objects that can move and live
in water). The lattice-based query operation OMeet has a higher precision and recall than
OBP' OMee. has however the disadvantage that it is not tolerant of errors or ambiguity in
either the context or formulation of the query terms as indicated in the following example.

Assume, for example, that we are looking for all edible plants in the context using the
query Q {nw, ne, llg. 21g}. (The key of figure 6.1 indicates that nw means 'needs water',
ne means 'needs chlorophyll', llg means 'one leaf generation' and 2lg means 'two leaf
generation', all attributes being related to edible plants.) OMeet(D, Q) would not return any
relevant objects since the meet of Q is not in the database - the meet is in fact the zero
concept, OL, in the lattice. In this case the query was too specific and the query operation
was unable to find a concept corresponding to exactly Meet(D, Q). This is clearly not ideal
since the database did contain objects relevant to Q and the query operation should
ideally have coped with the situation.

79

{nw,nc,1Ig}

Figure 6.3: A database (compressed pseudo-lattice) with intermediate concepts with an
intent that has more than three attributes removed

One strategy that could help in this case and increase the tolerance for errors is to specify
a query operation for a context of n attributes that will return the minimal concepts that
have at most k :s; n attributes, all of which are in Q. Since the domain of discourse as
defined requires that queries only be formulated in terms of concepts already contained in
the database we can adopt one of two strategies. The first is to redefine the query
operation to examine all concepts and return the appropriate minimal concepts. In t~lis
case, the database D is kept the same. A second option is to modify the query operation
and the database. For reasons that will become clear, we will pursue the latter option.

Removing all intermediate concepts in the lattice in figure 6.2 that have more than k = 3
attributes creates the new database in figure 6.3. Where the original EA-Iattice concepts
have been removed, dashed arcs indicate successors defined by the partial ordering
relation. Note that a subset, L, of the database namely all the concepts except DG, BR,
FR, MZ, RD, SW and BN still forms a sublattice when the unit- and zero concepts are
appropriately inserted (i.e. it forms a poset of which the supremum and infimum of all pairs
of concepts exist and therefore a sublattice of the EA-Iattice in figure 6.2 - this may be
verified by inspection). This lattice (identified by all the concepts connected with solid arcs
as well as all attribute concepts plus the implied unit- and zero concepts) does not
correspond to either the formal concept lattice or EA-Iattice lattice for the given context but
is a sublattice of the EA-Iattice of the Living Context. A query operation on the database in
figure 6.3 now cannot discern between objects that have more than k attributes in
common and would therefore presumably still return objects even when the query is too
specific.

6.4 REMOVING CONCEPTS FROM A LATTICE

An EA-Iattice as defined in chapter 2 has a fixed set of concepts for a fixed context. It is
however possible to remove some of the concepts from the EA-Iattice and still have a
complete sublattice (albeit not a formal concept lattice or EA-Iattice) that is based on the
original partial ordering relationshiplO. For example, an EA-Iattice can clearly be reduced

1Q Throughout this discussion, it is assumed that the same ordering relationship is used. Thus the ordering x
y either holds in all lattices in which concepts x and y appear, or it holds in none of them.

80

to a formal concept lattice by removing EA-formal concepts defined by EA-formal
conditions 1 to 4 (section 2.5) if they are not generated by condition 5, but retaining EA
formal concepts defined by condition 5. Appropriately removing even more concepts will
result in a set of concepts that constitute a lattice (Le. a complete sub lattice), but not a
formal concept lattice (as per example in section 6.3).

In order to ensure the retention of lattice properties, when removing concepts from a
lattice, steps must be taken to ensure that both the supremum and infimum of any two
remaining concepts exist and are unique (as required by the definition of a lattice). Should
this not be the case, the resulting set of concepts will not be a sublattice. Removing a
concept from a lattice thus involves not only the removal of the concept from the lattice's
set of concepts, but also the revision of the order relationship so that the parents and
children of the removed concept are partially ordered as per the original :::;EA ordering
relationship. Removing atoms or coatoms from an EA-Iattice is a particular case where
this is possible as formulated in the next theorem.

Theorem 6.1: Removing an atom or coatom from an EA-formal concept lattice or
sublattice results in a set of remaining concepts that is a complete sublattice with respect
to the partial ordering relation :S;EA.

Proof: Let Lo be the concept lattice and LI the set of concepts remaining after
removing an atom or coatom concept. To prove that LI is a lattice we need to
prove that two arbitrary concepts x, y E L J have a unique supremum and infimum
in relation to

We first prove that x and y have a unique infimum. By implication x, y E Lo. Let q
Inf(Lo, {x, y D. Two alternatives exist depending on whether q is in LJ (Le. whether it
was possibly an atom removed from Lo or not). If q is indeed in L j then q is a lower
bound of x and y because q :::;EA x and q y in L J since q was the infimum of x and
y in Lo and the partial ordering relationship of L j was rede'fined to preserve all the
transitive ordering relationships between the concepts of Lo in L j • Since q was also
the unique greatest lower bound of x and y in Lo and no other concepts have been
added to LI! q is therefore also the unique greatest lower bound of x and y in L j •

Thus, the infimum of x and y in LI exists and is unique.

If q is not in LJ then q must be an atom that was removed from Lo. (q can not be a
coatom since then x =q or y =q in which case either x or y will not be part of LI')
Furthermore, any possible lower bound of x and y in LJ must be a concept that is
smaller than q in Lo, since q was the unique greatest of all lower bounds of x and y
in Lo. But q is an atom in Lo and therefore it has only one child concept in Lo
namely OL' The OL is a lower bound of all concepts in LI and Lo including x and y.
Since q do not exits in L!J OL also is the only lower bound of x and y. The infimum
of x and y in LJ is therefore unique.

A similar argument can be used to prove that the supremum of x and y in LI is
unique with q possibly being a coatom. Since the supremum and infimum of x and
y in LI exist and are unique, LI is a sublattice.

Using this theorem it is therefore clear that atom or coatom concepts can be removed
from a lattice (or sublattice) without violating the lattice property. Since this theorem is
generic, it can be extended to apply to formal concept lattices. Removing any concept
does however mean that the resulting lattice is not the EA-formal concept lattice (or formal
concept lattice) of the specific context since all EA-formal concepts are not present. We
follow the convention of calling these derived lattices, sublattices and only refer to a lattice
as an EA-Iattice (or formal concept lattice) when it contains all the EA-formal concepts (or

81

formal concepts) of the context. Although some of the attributes or objects concepts may
have been removed from the lattice (but not from the context - the context remains
unchanged), the atoms and coatoms (i.e. concepts covering the zero concept or covered
by the unit concept, respectively) of the resulting sublattice may effectively be regarded as
its new objects and attributes respectively.

Theorem 6.1 can be generalised to removing whole areas of the lattice by progressively
removing one atom or coatom at a time whether it involves object concepts, attribute
concepts or intermediate concepts. The atoms and coatoms of the sublattice define it
sufficiently since the resulting lattice still only contains EA-formal concepts. The set of
atoms and coatoms of a sublattice is called a cut on the EA-Iattice and consists of two
(possibly overlapping) sets called the atomic cut and the coatomic cut. These latter sets
correspond to the set of atoms or of coatoms of the sublattice respectively and both sets
are therefore anti-chains. An EA-Iattice can be reduced to a given sublattice by removing
all concepts that are not comparable to elements of the atomic cut or the coatomic cut as
discussed below. That is, if y E atomic cut of the sublattice and x E coatomic cut of the
sublattice, then the following EA-formal concepts are retained in the sublattice: all EA-
formal concepts c such that y c x.

There are five conditions under which EA-formal concepts (excluding lL and Od are
removed to create a sublattice defined by its cut on an EA-Iattice:

• 	 A concept that is smaller than some concept in the atomic cut.

• 	 A concept that is larger than some concepts in the coatomic cut.

• 	 A concept that is smaller than some concept in the sublattice's coatomic cut but
not comparable to any concept in the atomic cut.

• 	 A concept that is larger than some concept in the sublattice's atomic cut but not
comparable to any concept in the coatomic cut.

• 	 A concept that is not comparable to any concept in either the sublattice's atomic
cut or the sUblattice's coatomic cut.

Note that the zero- and unit concepts are always part of the sublattice since only atoms
and coatoms may be removed. Due to the definition of an EA-Iattice, the definitions of the
zero- and unit concepts however remain constant and are not dependent on the elements
of the sublattice. (They are however not shown in the compressed pseudo-lattice figures
below).

All concepts not in the resulting sublattice (identified by the above conditions) can be
progressively removed from the original EA-Iattice. All these concepts and their relations
with the remaining concepts are effectively 'compressed' into either the unit concept or
zero concept. In figure 6.4, the relationship of the original EA-Iattice to the sublattice's cut
(formed by the atoms and coatoms of the sublattice) is schematically depicted.

82

J\
 Attribute concepts

Coatoms of the sublattice (representing

I \ "_~-:--..,....__ attributes of the
I '.,

context)\
~__","~:",---- Virtual-arcs x-

Embedded $ublattice
of the compressed
pseudo lattice
(concepts connected
via lattice-arcs)

x
, \c" Objects concepts

"'", :" "'",/>,,"' i _____ (representing objects
Atoms of the sublattice ',~ of the context)

(atomic cut)

The cut define a compressed pseudo
lattice with the two anti-chains (the

atomic- and coatomic-cut) of the cut EA-Iattice of a context Two anti-chains form a

(all EA-formal concepts) cut on the EA-Iattice
 forming the atoms and coatoms of the

embedded sublattice

Figure 6.4: A cut on an EA-Iattice defines a compressed pseudo-lattice (with an
embedded sublattice) that can be created by the removal of atoms and coatoms of the
EA-Iattice

In the resulting compressed pseudo-lattice data structure we choose to keep the attribute
and object concepts, but indicate their relationship to concepts that were previously in
their upward or downward closure by using virtual arcs. The exact nature of these virtual
arcs will be defined later.

It is important to note that, as a result of the five different conditions under which concepts
can be removed from the original EA-Iattice with respect to the cut, the nature of the
removed concepts may be much more complex than depicted in figure 6.4. For example,
instead of compressing the EA-Iattice to a certain level (Le. removing concepts with the
same cardinality of the extent or intent), cuts may be defined to effectively remove entire
sets of attributes, objects or areas from the EA-Iattice. It is also worth noting that, in
general, an arbitrary sublattice cannot be generated via compress lattice operations since
removing non-atom concepts or non-coatom concepts can in certain circumstances also
yield sublattices - there are thus limitations to this approach of generating sublattices.

6.5 THE USE OF THE INTENT- AND EXTENT REPRESENTATIVE OPERATIONS

Removing concepts from an EA-Iattice has the effect of removing what was previously the
infima and suprema (meets and joins) of certain subsets of concepts of the EA-Iattice,
these effectively moving to the zero- and unit concepts respectively.

Repeating the query operation OMeet for Q = {nw, nc, ltg, 21g} in figure 6.3, we find that
there is no meet in the database (i.e. the meet is the zero concept in the sub lattice a
'trivial' meet). The intent- and extent representative operations defined in chapter 2
provides a logical solution for the problem and a revised query operation using these are
therefore considered. This operation will define a 'second-order meet' in the case of a
trivial meet.

Suppose a query operation, OAIR(D, Q), returns the approximate intent representatives
(AIR) of Q in the sublattice embedded in D in figure 6.3, i.e. OAIR(D, Q) = AIR(DEmbed, Q)
where DEmbed is the sublattice embedded in D (all concepts joined with normal arcs except
those with dashed arcs such as DO, BR, FR, MZ, RD and SW). If Q nw, nc, llg, 21g} then
S = {nw, 21g, nc, 11g, n4, n6, BN} and {n6, BN} is the set of minimal elements of S. Thus

83

OAIR(D, Q) returns AIR(DEmbed, Q) ={n6' BN}, assuming DEmbed is the sublattice in figure 6.3.
OAIR(D, Q) thus references the objects {BN, MZ, RD, SW} and therefore solves the
problem of a too specific query.

Inspecting the intents of the concepts in AIR(D, Q) we see that BN, for example, has the
attribute II in its intent that is not in Q. If we wish to restrict a query operation to find only
concepts possessing attributes in Q (i.e. exactly representing Q), then we need to use the
exact intent representative operation (EIR).

Let OEIR(D, Q) =EIR(DEmbed, Q). For Q = {nw, nc, llg, 21g} we saw that AIR(L, Q) = {n6, BN}
whilst EIR(L, Q) = {21g, n6} since T {BN} in the calculation of EIR. OEJR(D, Q) = EIR(DEmbed,
Q) = {2Ig, n6}' Thus, in the present example, OEIR(D, Q) references the same set of objects
as before, namely {BN, MZ, RD, SW}.

The OEIR and 0 AIR operations can however be applied to the database in figure 6.1, in
which the embedded sublattice is reduced to only the set of attributes. In that case, OBP(D,
Q) =OEIR(D, Q) =OAIR(D, Q). If D is the sublattice in figure 6.2, then OMeet(D, Q) =OEIR(D, Q)
for a non-trivial Meet(D, Q).

The point is that both the OAIR and OEiR operations are defined in terms of a sublattice and
should the sublattice be changed (keeping the same context) as in the examples for
figures 6.1 to 6.3, the representative sets also change. When Q has a non-trivial meet (i.e.
not the zero concept) in the lattice or sublattice then EIR(D, Q) = AIR(D, Q) = Meet(D, Q).
The representative sets of Q were defined to deal with situations when Q has a trivial meet
(as is often the case when working with sublattices) and yield better results. The
operations may be seen as extensions of the meet or join operations.

6.6 THE COMPRESSLATnCE OPERATION

Incidence
a n e

:0' .(

0; .(.(.(

,03,
04 ~ ~

0, = Compress(Do.{ol.o2.o3,04},Up) D, Compress(O"nl.Up)

a} ~b} (ole) (;'\d)r::'\e}
~ ~~>"/ e

f n4 b~'C,d)

f /9" "i ..ib';C(,,2
; / ,/ d,e},/., ."3 I {a,e)

Figure 6.5: A CompressLattice example compressing EA-Iattice Do to a bipartite graph, D5

The CompressLattice operation removes an atom or coatom concept y from the sublattice
embedded in the database and replaces the concept with virtual arcs (indicated as
dashed arcs). The virtual arcs interconnect all the parent- with all the child concepts of y.
Figure 6.5 shows an example of a compressed pseudo-lattice structure where all the
intermediate concepts have been removed by successively using CompressLattice
operations. Similarly, figure 6.3 can be verified to be the result of successive

84

CompressLattice operations on the EA-Iattice in figure 6.2, removing the concepts DG, BR,
FR, MZ, RD, SW, Ow, Olb 0'2 and finally 013'

It is important to note that the CompressLattice operation works from a particular direction.
In the examples, the lattice was compressed in the upward direction, but the operation is
equally valid when compressing the lattice from the top downward (or any combination of
the two). Essentially, compression in the upward direction involves the removal of atoms,
while compression in the downward direction involves the removal of coatoms from a
sublattice.

The CompressLattice operation creates a data structure that is not an EA-Iattice but one
that does contain an embedded sublattice. This data structure is called a compressed
pseudo-lattice. A compressed pseudo-lattice consists of EA-formal concepts
interconnected by virtual- and lattice arcs. The concepts connected by lattice arcs (with OL
and lL implied) define a sublattice called the embedded sub/attice (of the compressed
pseudo-lattice). The virtual arcs represent the relationship between the sublattice and the
context. Using parameter names to imply types, the CompressLattice operation is defined
as follows in terms of its pre- and post-conditions:

I/==~======================~=~~~~============~==

CompressLattice(aCompressedLattice, aConcept, aDirection)

Return outCompressedLattice

//=============================~==~=~=========~~~========
//Pre-condition: aConcept is an atom or coatom in the embedded
//sublattice in aCompressedLattice, it has at least one lattice arc in
//aDirection and no lattice arcs in the opposite direction
I/(except to the unit or zero concept).
IIPost-condition: outCompressedlattice retains all the concepts
I/(except possibly aConcept) and arcs of aCompressedLattice, except in
I/the following respects. If aConcept is an attribute or object
I/concept, then lattice arcs connecting it to other concepts in
l/aCompressedLattice are replaced by virtual arcs in
//outCompressedLattice. Otherwise and its arcs are not in
//outCompressedLattice. Instead, virtual arcs link each of aConcept's
//parents to each of aConcept's children.
//============~===============~=~==~~~==~=~~=~~~~=~~~~==~

Note that the definition above is in functional terms and the definition changes slightly
when defined in an object-oriented fashion as discussed in chapter 7 where the
references to aCompressedLattice and outCompressedLattice fall away.

6.7 DEFINITION AND PROPERTIES OF COMPRESSED PSEUDO-LATTICES

A compressed pseudo-lattice essentially represents a sublattice of an EA-Iattice from
which a number of atoms and/or coatoms have been removed. Additionally the relation of
the sublattice to the context from which it was derived is preserved. As a data structure it
represents a particular context C = (0, A, I). The data structure consists of a number of
EA-formal concepts that are connected by one of two types of directed arcs: lattice arcs
and virtual arcs. Lattice arcs preserve the existence suprema and infima across the
concepts they interconnect; virtual arcs do not necessarily. The concepts are partitioned
into three sets: the attribute concepts (of the context), the object concepts (of the context)
and a number of intermediate concepts. A compressed pseudo-lattice contains an
embedded sublattice. The embedded sublattice is the set of all concepts complying with
one of the following:

85

• 	 The concept is an attribute concept with no incoming virtual- or lattice arcs.

• 	 The concept has at least one lattice arc connecting into or out of it.

• 	 The unit and zero concepts.

This corresponds to the set of concepts remalrung after reducing an EA-Iattice to a
sublattice by successive removal of atom and coatom concepts, as discussed previously.
The properties of the compressed pseudo-lattice are thus implied by the CompressLattice
operation. It is important to note that, for a given set of concepts, there may be more than
one compressed pseudo-lattices that can be defined upon that set of concepts using
different cuts on that lattice. This is due to the fact that concepts can be interconnected by
either virtual- or lattice arcs. Both the concepts and arcs thus uniquely define the
embedded sublattice. The context and the atoms and coatoms (i.e. the cut) of an
embedded sublattice (Le. the atomic and coatomic cut) also uniquely define a compressed
pseudo-lattice.

The following are the compressed pseudo-lattice properties. They define sufficient
conditions for a data structure to be a valid compressed pseudo-lattice. Note that the
conditions listed are not disjoint they may be related to or imply one another.

• 	 EA-formal concepts: All concepts are EA-formal concepts as defined in chapter
2.

• 	 Poset: Concepts in a compressed pseudo-lattice form a partially ordered set with
respect to the partial ordering relation (~EA) specified by the directed arcs {lattice or
virtual).

• 	 Object and attribute concepts: All objects, OJ, in the context have a
corresponding unique associated object concept in the form (E, E'), E = {OJ}.
Similarly, all attributes, ab in the context have a corresponding unique associated
attribute concept in the form (F', F), F = {ai}. All object- and attribute concepts are
not necessarily in the embedded sublattice. If some are, they form the atoms and
coatoms of the embedded-lattice. If they are not, they have only virtual arcs from
or to other concepts.

• 	 Context preservation: An object contains in its upward closure (following lattice
or virtual arcs) all the corresponding attribute concepts specified in the incidence
relation of the context, and no other attribute concepts. Similarly an attribute
contains in its downward closure all its corresponding object concepts specified in
the incidence rea Ition of the context, and no other object concepts.

• 	 Unconnected object- and attribute concepts: An attribute concept cannot have
any outgoing arcs to concepts other than the unit concept and similarly, an object
concept cannot have any incoming arcs from concepts other than the zero
concept. Object- and attribute concepts are therefore not represented as
generalisations or specialisations of each other.

• 	 Unique intermediate concepts: No two intermediate concepts may have the
same extent or the same intent. This property (as well as the above property)
implies that any intermediate concept has at least two upward and two downward
arcs (virtual or lattice). This does not preclude attribute- and object concepts from
having the same extent or intent respectively or sharing the same extent or intent
of an intermediate concept (in such cases one of the concepts will have only one
parent or child concept). Such attribute or object concepts are represented as
distinct concepts in a compressed pseudo-lattice.

86

• 	 Non-empty intent: No concept (other than IL and Q) may have an empty intent or
extent (i.e. all objects must possess at least one attribute but some attributes may
not have any object possessing the attribute). This limits the contexts for which a
valid compressed pseudo-lattice may be constructed. Although the property is not
strictly required, the practical benefits of contexts that do not conform to this
requirement are not immediately clear. Attribute concepts may have an empty
extent.

• 	 Embedded sublattice: The set of all concepts in the embedded sublattice
together with the partial ordering implied by the lattice arcs used in the embedded
sublattice, constitute a sub lattice when appropriately connected to the implied unit
and the zero concepts (i.e. the supremum and infimum of any pair of concets exits
and are unique).

• 	 Supremum and infimum: Any set, S, of concepts in the embedded sublattice has
a supremum in the embedded sublattice itself. Similarly S has an in'fimum in the
embedded sublattice.

• 	 Intermediate virtual arcs: Intermediate concepts may not be connected to one
another via virtual arcs. Their virtual arcs must end in an attribute concept or start
at an object concept. This property is implied by the fact that only atoms and
coatoms of a sublattice are removed.

• 	 Exact representative connection: Virtual arcs in a compressed pseudo-lattice
are not to arbitrary intermediate concepts and respect the EIR and EER operations.
An object concept, 0, is only connected via virtual or lattice arcs to EIR(L, Intent(o),
0) (where L is the embedded sublattice) and no other concepts. A similar property
holds for any attribute a and EER(L, {a}, a). These dual properties are critical in
ensuring that the closure operations function as expected (e.g. that the downward
closure of a concept contains its extent either via lattice- or virtual arcs).

• 	 Arc duplication: A concept may only have one arc (either lattice or virtual) to any
concept that covers it.

• 	 Cover: A concept may not have an arc to any other concept to which it is indirectly
linked11 •

The compresses pseudo-lattice definition and properties show that a compressed pseudo
lattice is essentially a bipartite graph (virtual arcs) that contains an embedded sub lattice
(lattice arcs). Furthermore, the compressed pseudo-lattice properties ensure a well
defined and unique structure for a given context and a given sequence of
CompressedLattice operations. Various operations can be defined on a compressed
pseudo-lattice, but the most important are:

• 	 CompressLattice and ExpandLattice (described in the next section).

• 	 Closure and LatticeClosure, where LatticeClosure follows only lattice arcs when
discovering concepts whilst Closure follows any type of arc.

• 	 AddAtom, i.e. insert a new object into the context and embedded sublattice by
using a modified incremental lattice construction algorithm that operate under
compressed pseudo-lattices.

• 	 InsertVirtualObject, an alternative to AddAtom that does not use a computationally
expensive lattice construction algorithm to update the embedded sublattice (refer

11 Concept x is indirectly linked to concept y iff x has a path to y via one or more intermediate concepts.

87

to section 6.11). The object is inserted into the compressed pseudo-lattice by
simply creating virtual arcs to its exact intent representatives.

6.8 THE EXPANDLATTICE OPERATION

A complementary operation to CompressLattiee, namely ExpandLattiee, can be defined to
enlarge the embedded sublattice of a compressed pseudo-lattice by the insertion of new
atoms or coatoms into the embedded sublattice. ExpandLattiee essentially recreates
concepts removed by CompressLattiee. The operation works in a particular direction,
starting with a concept that is incident to at least one virtual arc. In general, a concept may
be incident to zero, one or more than one virtual arcs. Some virtual arcs may connect the
concept to objects while others may connect it to attributes. When invoking the
ExpandLattice operation, a 'direction' has to be specified. If the concept is an atom of the
embedded sublattice and it has virtual arcs connecting to it, then the direction is
designated 'downwards' and the operation will create new atoms in the lattice below the
concept. Alternatively, if the concept is a coatom of the embedded sublattice and it has
virtual arcs connecting to it, then the direction is designated 'upwards' and will create
coatoms above the concept. If the concept is both an atom and coatom, then the direction
may be specified as either downwards or upwards.

In the upward direction, starting with concept e, the ExpandLattiee operation determines the
minimal number of coatoms that must be inserted into the embedded sublattice to replace
the virtual arcs from e with lattice arcs to these inserted concepts. Concept e is directly
connected to these concepts by lattice arcs replacing e's virtual arcs. To comply with
compressed pseudo-lattice properties further generation of concepts and/or creation or
removal of arcs may be necessary. Similar remarks apply pari passu when expanding a
given concept in the downward direction.

Note that the CompressLattice and ExpandLattiee operations are not symmetric in that the
one does not reverse the other. In most instances ExpandLattiee does not recreate the
concepts removed via a single CompressLattiee operation. It is however always possible to
completely compress an EA-Iattice into a bipartite graph or to use ExpandLattice operations
to completely rebuild the EA-Iattice from a bipartite graph. Our implementation of this latter
series of operations indicates that it is computationally more expensive than using a
'traditional' incremental lattice construction algorithm to construct a lattice but it still
indicates the versatility of a compressed pseudo-lattice. The context preservation and
exact representative connection properties of a compressed pseudo-lattice play important
roles in the ability to rebuild the EA-Iattice from a compressed pseudo-lattice.

ExpandLattice is defined below in terms of its pre- and post conditions. Again, parameter
names imply their corresponding types.

88

/I
Function ice(ice, aConcept, aDirection)

Return outCompressedLattice

11============================== ============
I I Pre-condition: aConcept is a concept in aCompressedLattice that has
Ilvirtual arcs in aDirection.
IIPost-condition: outCompressedlattice retains all the concepts and
Ilarcs of aCompressedLattice, except in the following respects. If
IlaDirection is down (up), then the minimal number of new atom
II (coatom) concepts are inserted into outCompressedLattice's embedded
Iisublattice to cover aConcept and the its virtual arcs with
Illattice arcs. Additional concepts are created and arcs are created,
Ilremoved or relabelled if and if necessary to maintain
Ilcompressed lattice properties. If appropriate, object (attribute)
Ilconcepts are reconnected to the embedded sublattice via lattice arcs.
11===

As an ExpandLattice example, consider figure 6.5 with the compressed pseudo-lattices Do
to Ds. When starting with Ds, i.e. the bipartite graph, the following order of ExpandLattice
operations will reconstruct Do: D4 =ExpandLattice(Ds, c, Downward); D2 =ExpandLattice(D4,

e, Downward); Dl = ExpandLattice(D2, a, Downward) and finally Do is the result of successive
ExpandLattice calls that expand the concepts nJ, n2 and n3 in a downward direction. Note
that ExpandLattice(D4, e, Downward) does not produce D} because D3 does not contain all
the atoms created by ExpandLattice needed to replace the virtual arcs to e with lattice arcs
(this is a example of CompressLattice and ExpandLattice not being symmetrical).

6.9 INTERPRETATION OF COMPRESSED PSEUDO-LArnCES

Since the embedded sublattice of a compressed pseudo-lattice is indeed a sublattice, the
interpretation of the concepts in a compressed pseudo-lattice is analogous to that of
concepts in a concept lattice. In a concept lattice, concepts are partially ordered in terms
of generalisation and specialisation of their intents and extents. A parent concept, p, of a
concept, c, is (in a concept lattice) the smallest concept that is more general than c and
therefore moving upwards in a lattice involves the smallest increments of generalisation
supported by the 'evidence' in the context. In a compressed pseudo-lattice this continues
to be the case, except for the fact that concepts that were removed are not 'discovered' or
visited due to being 'uninteresting', not useful or insignificant in the application context in
which the compressed pseudo-lattice is being used. Algorithms based on compressed
pseudo-lattices are therefore not able to discern the relationships between objects that are
part of clusters referenced by removed or compressed concepts.

One may argue that this can be detrimental to such algorithms but it should be
remembered that classification algorithms based on other structures such as hierarchies
(for example Quinlan's (1986) ID3 decision trees and Fisher's (1987) COBWEB) do
precisely this: they minimise the clusters or concepts used to describe a context often with
greater classification accuracy than using more concepts. This is because at a certain
point the additional resolution obtained by using more concepts is used to approximate
and describe the noise inherent in the data rather than depicting the abstractions that hold
in the larger population from where the data was taken. These approaches have proved
successful in many areas of research, particularly in KDD and machine learning. The
compressed pseudo-lattice gives the researcher the ability to apply the ideas used in
other areas of research on concept lattices whilst still maintaining the benefits of the lattice
properties. In essence the removal of concepts restricts the vocabulary of concepts
available to KDD or machine learning algorithms in a controlled way without the loss of
many desirable features of concept lattices.

89

One way of viewing the removal of atoms or coatoms from a concept lattice is to see the
removal thereof as the change of the attributes and objects of a context. The context is
redefined in terms of the new attributes and objects defined by the atoms and coatoms of
the embedded sublattice. An embedded sublattice in which attributes are removed can
therefore be seen as an abstraction of the context where attributes are more specialised
by conjoining some of the original attributes. A removed object is 'replaced' by a more
general object, this being the next more general concept in the EA-Iattice. The virtual arcs
in the compressed pseudo-lattice in these cases indicate and preserve the relationship
between the original context and the new implied context with its specialised attributes
and generalised objects.

Figure 6.6 is an example in which the EA-Iattice of the Living Context has been
compressed (or reduced) to a hierarchy (or in 103 terms a decision tree) that describes
the context as a set of objects all of which need water. These objects are then divided into
those that live on land (II) and those that live in water (Iw) and so forth. This description or
classification of the context is not incorrect - it is just not the only description or
classification of the Living Context. The use of a compressed pseudo-lattice also has the
benefit that even though the embedded sublattice is essentially representing a hierarchy,
the fact that there are objects that belong to more than one branch of the hierarchy is
easily represented (e.g. concepts FR, RD).

MZ
//'/ ;

/,/ ;

S@)

Figure 6.6: A compressed pseudo-lattice structured to contain a hierarchy that implies the
context and EA-Iattice in figure 6.7

The embedded sublattice of a compressed pseudo-lattice implies a new context with more
specialised attributes and generalised objects. Figure 6.7 shows the incidence relation of
the new (implied) context as well as the EA-Iattice. Note that the attributes of this new
context are now conjunctions of the attributes of the previous context.

90

I Incidence relation

I
:s:
c:

= I:s: c

;;,
g'
~'

Q

~:
~

'" ~t

~:

01

~I ,
~t

~, I :,
~ : ~'

g'
~' co

~I

ins .(.(.(

:n8 .(.(.f .f
BN .f .(.f .f

In4 .f .f .(

In7 .f .(.fl
1

Figure 6.7: The EA-Iattice and context implied by the compressed pseudo-lattice in figure
6.6

6.10 WHY COMPRESSED PSEUDO-LATTICES?

'A little knowledge that acts is worth infinitely
more than much knowledge that is idle'

Kahlil Gibran

Key questions surrounding the use of compressed pseudo-lattices are: Why would we
remove formal concepts from a formal concept lattice in the first place? Is it not better to
work with all formal concepts? The answer to the question lies in the nature of the formal
concept lattice: a formal concept lattice contains a concept for all possible clusters of
objects supported by the incidence relation (Le. every possible grouping of objects that
have some attributes in common are represented by a formal concept). This results in a
data structure that is very large and, in the worst case, exponential in size. In addition, the
interpretation and use of this data may be obscured by the large amount of detail (often
caused by noise in the data). Authors such as Duquenne et al. (2001) have expressed the
difficulty in working with large concept lattices and have called for useful approximations
of lattices. Hereth and Stumme (2001) generate Iceberg Concept Lattices in which they
have purposefully removed concepts to reduce the lattice size. Iceberg Lattices are a
specialisation of compressed pseudo-lattices in the sense that only atoms are removed.
Mephu Nguifo (2001) also do not use the whole concept lattice in the context of machine
learning. Compressed pseudo-lattices allow one to retain the benefits of a lattice, but
allow for the selective and discretionary removal of concepts, thereby reducing the size of
the lattice. Should it be required, the EA-Iattice can be re-created using the ExpandLattice
operation.

Another observation regarding the nature of a concept lattice is that some of the concepts
may not, in some sense, represent 'meaningful' or 'useful' clusters of objects. An example
is when attributes in a context do not imply each other12. For example in the Living
Context, the occurrence of the attribute II always implies the attribute nw.

12 An implication rule is a rule in the form B --> C where Band C are sets of attributes. The support of a rule is
the number of objects in a context for which this rule holds whilst the confidence of the rule is the number of
times the rule holds in all objects that have B in their intent. A rule with a confidence of 100% indicates an
implication rule.

91

As another example, consider the concept lattice for the context in figure 6.8 showing a
simple context and its EA-Iattice. The incidence relation of figure 6.9 is an extension of
that of figure 6.8 in that the objects of figure 6.8 have been duplicated and an attribute f,
which is not implied by any other attribute(s), introduced in the intent of the duplicated
objects. The additional attribute, f, was added to the intent of each of the new duplicated
objects so that the new context has pairs of related objects that differ only in respect of
one attribute (e.g. olf has the same intent as 01 except for the additional attribute 1).
Figure 6.9 shows the EA-Iattice of this context. In this context, the attribute f is not implied
by any other attribute since any combination of the attributes, a to e, that occurs with f in
some set of objects in the context, also occurs without f in some other set of objects in the
context.

~
n4 \ Incidence relation

abc d e
.f .f .f .f
.f .f .f .f .f

.f .f .f .f
.f .f

03 04

Figure 6.8: The EA-Iattice of a simple context

Incidence relation
a b c d e f
.f .f .f .f

02 .f .f .f .f
03 .f .f .f
04 .f
01f .f .f .f
02f .f .f .f
03f .f .f
O4f .f

Figure 6.9: An attribute, j, not implied by any other attribute(s) introduced into the context
of figure 6.8 creates a large number of additional concepts

The attribute f is thus not implied by any combination of the other attributes. With regard to
deriving implication rules from the lattice, no implication rule based on f is possible and yet
the lattice explicitly represent all possible combinations of f and the other attributes in the
newly created concepts (newly created concepts are shaded). The effect of adding such
an attribute to a context can clearly be seen to significantly increase the number of
concepts in the lattice. This is in fact the worst-case example, where the addition of each
new attribute (or object) doubles the number of concepts in the lattice. We argue that such

92

structures and attributes are not very useful in machine learning and KDD and are best
not represented in the lattices used in these applications.

, ,

G0~

Incidence relation
a b c d e f

01 .{ .{ .{ .{

02 .{ .{ .{ .{ .{

03 .{ .{ .{ .{

04 .{ .{

01f .{ .{ .{ .{ .{

02f .{ .{ .{ .{ .{ .{

03f .{ .{ .{ .{ .{

04f .{ .{ .{

Figure 6.10: A compressed pseudo-lattice of the context in figure 6.8 in which the
embedded sublattice corresponds to that of figure 6.8

Concept n6 in the EA-Iattice (figure 6.9) has no implication rule associated with it and has
a very little support. It is thus doubtful whether it is useful in any KDD or machine learning
effort and would therefore worth removing by first using CompressLattice to remove the
objects underneath it and then the concept itself. The compressed pseudo-lattice in figure
6.10 shows how the creation of additional concepts can be avoided by using the
CompressLattice operation to remove the concepts involving f (Le. all shaded concepts in
figure 6.9) - these relations are not lost and are still indicated by the virtual arcs. The
embedded sublattice of this compressed pseudo-lattice corresponds to the EA-Iattice in
figure 6.S. The objects in the compressed pseudo-lattice therefore still have f in their
upward closure. The advantage of a compressed pseudo-lattice is that even tough most of
the information is not lost in figure 6.10, should it be required, the ExpandLattice operation
can be used to regenerate the lattice in figure 6.9.

This example may seem artificial but in KDD and machine learning, a large number of
objects are usually used to construct a lattice (e.g. a training set). If the sample is large
enough, statistically most combinations of attributes that are not implied by other
attribute(s) will occur in the set of objects. As a result, large number of concepts will be
created and parts of the lattice will resemble a Boolean lattice. Even if there are very clear
implication rules, if only one object does not conform to the rule (i.e. the confidence is not
exactly 100% due to noise or errors in the data) its insertion into the lattice will cause the
creation of all these additional concepts despite the low support for them. Put differently,
only one exception to the rule will cause an otherwise implied set of attributes to loose this
property, even though, statistically speaking, there is a high dependence correlation.

A typical approach in KDD and machine learning is to use the number of objects in the
extent of each concept as a measure of support for the implication rules on its attributes. It
is thus important to keep the objects in the data structure to calculate this measure. Since
this is exactly what happens in a compressed pseudo-lattice it is ideal for this purpose.

In the field of KDD and machine learning, the ability to remove concepts from large lattices
may prove beneficial in a number of respects. The reduced size of the lattice will improve
the efficiency of algorithms whilst the removal of erroneous or noise-induced concepts
with a small support may improve the results of such algorithms. A compressed pseudo
lattice based on a suitable compression strategy, offers researchers the ability to reduce
the concepts in a lattice to those clusters that most accurately represent the context. This
is done by removing clusters closer to the top of the lattice that are too general to allow
meaningful classifications whilst also removing concepts that are too specific closer to the
bottom of the lattice.

93

Previously the meet and join operation on a lattice was used to find the concept that
represents objects that are relevant to a set of attributes. The introduction of the intent
representative sets now allows these to be used as approximate or 'rough' meets in
algorithms. This enhances the ability of algorithms to cope with noise in both the data as
well as in the query itself (as indicated in the IR examples earlier in this chapter). Clearly,
however, the results are dependent on the structure of the database. The purpose of KDD
and machine learning in such situations is then to search for or construct a database
(sublattice) that best typifies the inherent clusters, rules and implications of a context
instead of generating, by brute force, all possible rules and implications that can be
derived from a context. To paraphrase Einstein, the lattice should be as simple as
possible but not simpler. The benefit of using intent and extent representative sets are that
they are defined in terms of discrete operations and behave in a predictable fashion,
whereas operations using 'fuzzy' and other approximations often result in a number of
anomalies due to their inherently non-discrete nature.

It should be noted that the approaches described above are in general not appropriate for
all areas where concept lattices have been used. Some authors (e.g. Wille (2001» have
described numerous case studies where the line diagrams of concept lattices aid human
understanding of a context. Clearly compressed pseudo-lattices are less appropriate in
these areas of application.

Compressed pseudo-lattices are however an alternate method of supporting conceptual
views (Wille 2001, 2002). Conceptual views are formed when focussing on a particular
part of the context. In this case a certain number of columns (Le. attributes) in the cross
table of the context are selected and the conceptual view is then defined as the lattice
formed by only those columns. Each concept in the conceptual view is annotated with the
number of objects that are in the extent of the concept, in this way a human is able to
focus on a specific domain or view within the context which may assist in finding relevant
information. It is easy to see that the lattice for a particular conceptual view can be easily
extended using virtual arcs to form the compressed pseudo-lattice for which the
conceptual view is the embedded lattice. The advantage of this approach is that it is then
easier (from a data rather than a human perspective) relate the conceptual view back to
the original concept. In addition, compressed pseudo-lattices are not restricted to
sublattices defined by the columns of the cross table. Compressed pseudo-lattices
therefore provide a more flexible but still formal way of defining conceptual views.

6.11 COMPRESSION STRATEGIES AND CRITERIA

The start of this chapter defined a very specific domain of discourse of which there are
three components: the context, the database and the query operation. A compressed
pseudo-lattice may serve as such a database. The separation of the database and query
operation creates an interesting deviation from some traditional information retrieval
approaches: the organisation of the database co-determines the outcome of the of the
query operation. Given a context and a query, the result of the query depends on the
compressed pseudo-lattice used to represent the context. The question that arises is thus:
'Are there databases derived from compressed pseudo-lattice databases that, on
average, result in better retrieval for the same context and query operations?'

Although a full exploration of this question is beyond the scope of this text, limited
experimental results to date suggest that there are indeed better methods of organisation.
Specifically, it appears that a database consisting of the EA-Iattice or formal concept
lattice of a given context need not, in general, be the best database. In many instances
Significantly compressed EA-Iattices performed equally or better, hinting at an amount of
redundancy embedded in concept lattices. Further experimentation is required in order to

94

explore compression strategies and concept pruning criteria that are likely to lead to
optimal performance in various contexts.

In general, there are a number of possible compression strategies that seem to deserve
such exploration. The most obvious is the one stated above where a lattice is compressed
up to a specific level of above a support threshold.

It is useful to have a compression strategy combined with a threshold on the embedded
sublattice size. The embedded sublattice is then repeatedly compressed until the
embedded sublattice size is below the threshold. This can be combined with an adapted
incremental lattice construction algorithm where the pruning mechanism is invoked after
each individual object or batch of objects has been inserted into the compressed pseudo
lattice. This has the added advantage of limiting the size of the lattice and therefore the
time taken to build a compressed pseudo-lattice.

Compression strategies that have been preliminarily tested use a combination of the
following:

• 	 Compress concepts with an extent of size smaller than t and larger than u. This is
a more general approach than just excluding concepts at the bottom of the lattice.
This approach is taken by Hereth and Stumme (2001). They call the resulting
structures iceberg lattices.

• 	 Compression based on the number of arcs to child or parent concepts in the
lattice.

• 	 Compression based on EP(c), an estimate of prior probability of the concept c.
EP(c) is the number of objects in the extent of c divided by the total number of
objects in the context. Refer to Oosthuizen (1994b) for a discussion and examples.

• 	 Compress, based on the difference between an estimate of the expected
probability EXP(C)13 and EP(c). This compression strategy performed the best in
most preliminary test results.

A useful variation on the insertion of an object into a lattice, that does not require the
search for and insertion of the necessary new concepts into a lattice, can be defined as
follows. Instead of the creation of concepts, the new object is simply connected to EIR(L,
Intent{o)) by means of virtual arcs to create a compressed pseudo-lattice. The example in
figure 6.11 shows such a compressed pseudo-lattice after the living has been extended
with the objects DF, SN and GR. Even though the context and example is relatively simple,
it does show that a number of operations were already avoided (e.g. the creation of an
intermediate EA-formal concept ({SN}, {mo, nw, lw})). When large lattices are involved,
this method of insertion saves much processing. This function is called InsertVirtualObject.

13 ExP(c) = EP(aj) x EP(az) x ... x EP(an), where ai is an attribute in the intent of c. This estimate assumes that
the attributes are independent.

95

nw Iw
lE .(.(

BR .(.(

FR .(.(.(

OG .(.(

SW .(

RO .(

BN .(

MZ .(

OF .(

SN .(

GR .(

n12,{nw,lI, n13i{nw,lw, LE Leech
Sf(nc,1Ig) nC,lIg} BR Bream

FR Frog

\ \ j
/1 ~ 1\ OG Dog

i /

'\ / ~ SW Spike-weed

-'
, e IRO Reed

FR @8 (I @ R~' SW

BN Bean
MZ Maize
OF Dolphin

nw Needs water
Iw Lives in waler
II Lives on land
nc Needs chlorophyl
119 1 leaf germination
219 2 leaf germination

,mo Is motile
!Ib Has limbs
sl< Suckles young

SN Snake
GR Grass

Figure 6. 11: A compressed pseudo-lattice after the living has been extended with the
objects DF, SN and GR by connecting the new objects via virtual arcs to EIR(L, lntent(o»)
using the InsertVirtualObject function

In this manner large numbers of objects can be inserted into a concept sublattice for the
purposes of KDD or machine learning without incurring the potentially exponential time
complexity of the creation of the EA-Iattice. Since the support of each concept in both the
EA-Iattice and the compressed pseudo-lattice is exactly the same, algorithms using these
statistical metrics will operate correctly on these lattices.

A related strategy is to insert an object into the lattice by the compressed pseudo-lattice
adapted AddAtom algorithm. Upon reaching a threshold on the lattice size, the lattice is
compressed to a size below this threshold using a suitable compression strategy and the
CompressLattice function. This procedure is repeated for all inserted objects. Since the size
of the lattice can be controlled, a compressed pseudo-lattice for a large number of objects
can be efficiently constructed. For an appropriate compression strategy this could
potentially prevent the degradation of the performance of KDD or machine learning
algorithms if it is assumed that 'uninteresting' or 'unnecessary' concepts are not
represented in the resulting lattice by being compressed. Note that in the process new
concepts would continuously be created by AddAtom. CompressLattice would remove
concepts but not necessarily the recently created ones if the compression strategy rates
the latter more important or 'meaningful'. In this manner the lattice size remains under
control. Experiments have shown that given sufficient data and an appropriate
compression strategy, the structure of the embedded lattice stabilise. Different data sets
from the same universe with objects presented in different sequences also resulted in
substantially similar embedded lattices hinting to the fact that this approach avoids the
problems created by hill-climbing searches that are very sensitive to the order in which
training sets are presented to these algorithms. This is a topiC for further research.

6.12 IMPLEMENTATION AND DISCUSSION OF PRELIMINARY RESULTS

The potential gain in computational efficiency of having a compressed pseudo-lattice
should be weighed against the advantages of having a larger and more complete set of
concepts available in a particular domain. Preliminary results however suggest that a
compressed pseudo-lattice may be a useful generic data structure for various IR
(information retrieval) and machine learning problem domains.

96

