
Chapter 5: AddAtom algorithmic 
performance 

The AddAtom algorithmic performance was studied both theoretically (worst case 
behaviour) and empirically. This chapter starts with a short survey of published concept 
lattice construction algorithms (section 5.1) before deriving a theoretical upper bound to 
the complexity of AddAtom (section 5.2). A theoretical worst-case performance bound of 
AddAtom is 0(IILII.1I0112.max(1I0'1I». This performance upper bound is however a higher of 
magnitude as the current best performer namely that of Nourine and Raynaud (1999, 
2002) with an upper bound of 0«1I01l+IIAII).1I01i.IILII). Despite being cubic in nature relative 
to the lattice size, it is argued that this bound of AddAtom is not a very sharp upper bound 
and that the terms in the complexity expression are in practice, much more of an 
overestimate than the 11011 and IIAII terms that appear in the upper bound estimates of 
other construction algorithms. The performance is thus best confirmed via experimental 
comparisons. 

For the purposes of experimental comparison, a two-step approach was taken. Firstly, a 
pilot study comparing the original AddAtom implementation in C++ (described in chapter 
7) to implementations of two published construction algorithms, namely that of Godin 
(1991) and Carpineto and Romano (1993, 1996b). The pilot comparison showed that 
there is prima facie evidence that the algorithm performs very well and that wider study is 
justified. The second study, involving a wider set of experimental comparisons across a 
larger number of lattice construction algorithms, was conducted in collaboration with 
another researcher. For the sake of reference, the first, smaller experimental comparison 
will be referred to as the "pilot study" (section 5.3) and the second as the "wide 
performance study" (section 5.4). 

The results of both experimental comparisons indicate that the algorithmic performance of 
AddAtom is very good, and often the best of the test bed of 11 concept lattice construction 
algorithms. AddAtom performs especially well compared to other algorithms with "natural" 
data sets (Le. non-random generated context). When the density of the cross table of the 
context is either very high (i.e. every object possesses almost all attributes) or very low 
(every object possesses only very few attributes) there are other concept lattice 
construction algorithms that do outperform AddAtom. AddAtom is however still the next-to
best performer in these circumstances and therefore a worthy candidate for a general-use 
algorithm. AddAtom was the fastest incremental lattice construction algorithm in the study. 
The experimental comparison results are therefore consistent with the argument that the 
theoretical complexity bound of AddAtom derived here is not a very sharp upper bound for 
AddAtom. 

Note that the discussion of both the theoretical and empirical performance, is with 
reference to the optimised version of the AddAtom algorithm (see section 4.6). In the 
comparisons, performance issues are related to constructing both the set of all concepts 
as well as the cover relationships (i.e. the line diagram). 

49 

 
 
 



5.1 A SURVEY OF CONCEPT LATTICE CONSTRUCTION ALGORITHMS 

It is not the objective of this dissertation to analyse and describe other construction 
algorithms. Readers are referred to recent comparative studies by Kuznetsov and 
Obiedkov (2001, 2002) for a broad discussion and pseudo code of other algorithms. A 
number of optimisations of these algorithms as well as adaptations to generate the line 
diagram of concept lattices where the algorithm does not generate it already are also 
described by Kuznetsov and Obiedkov. Unless otherwise stated, references to the 
complexity or experimental performance of these algorithms refer to the improvements 
and adaptations propose by Kuznetsov and Obiedkov. Although not exhaustive, the 
following table lists a number of the published concept lattice construction algorithms and 
briefly describes all the algorithms referred to in this chapter (adapted from Kuznetsov and 
Obiedkov (2001, 2002)). The theoretical and experimental comparisons will be made to a 
subset of these algorithms. 

In each case an algorithm is classified as either incremental or batch (non-incremental) 
and also whether it generates only the set of all concepts or the line diagram of the lattice. 

Algorithm Incremental I 
Batch 

Notes 

Chein Batch Chein (1969) 
Concepts are represented as extent-intent pairs and 
each new concept is generated as the intersection of 
the intents of two existent concepts. Similar to AI-
tree. 
Modifications were suggested by Kuznetsov and 
Obiedkov (2002). 
Generates the set of all concepts of the lattice. 

Ganter, Batch Ganter (1984) 
NextClosure Batch algorithm adding one object to earlier 

generated extent and calculating closure. Generate 
concepts in topological order using lexical order for 
concept lookup and comparison. 
Modifications were suggested by Kuznetsov and 
Obiedkov (2002). 
Generates the set of all concepts or the line diagram 
of the lattice. 

Bordat Batch Bordat (1986) 
Batch algorithm intersecting the intent of concepts 
with intents of objects that don't belong to concept. 
Generate concepts in depth-first order using a tree 
for concept lookup and comparison. 
Modifications were suggested by Kuznetsov and 
Obiedkov (2002). 
Generates the set of all concepts or the line diagram 
of the lattice. 

AI-tree Batch 
i 

Zabezhailo et al. (1987) 
A top-down batch algorithm that searches for 

I concepts in the set of concepts generated thus far. 
Similar to Chein. 
Generates the set of all concepts of the lattice. 

50 

 
 
 



NotesIncremental IAlgorithm 
Batch 

BatchCbO, 
Close by One 

BatchLindig 

Batch• Titanic 

BatchYevtushenko 

IncrementalNorris 

IncrementalGodin, 
GodinEx 

Kuznetsov (1993) 

Batch algorithm (similar to NextClosure) adding one 

object to earlier generated extent and then 

calculating the closure. Generate concepts in depth 

first order using lexical order for concept lookup and 

comparison. Also use an intermediate structure for 

concept searches and the generation of the line 

diagram. 

Generates the set of all concepts or the line diagram 

of the lattice. 


Lindig (1999, 2000) 

Bottom-up batch algorithm adding one attribute at a 

time to the intent of generated concepts and then 

calculating its closure. Generate concepts in a depth-

first order using tree for concept searches. 

Generates the diagram of the lattice. 


Stumme et al. (2000) 


Yevtushenko (2002) 


Norris (1978) 

Incremental algorithm intersecting the new object 

intent with that of concepts generated earlier. Keep 

list of added objects, checking whether new concepts 

can be generated using intersection of objects added 

earlier. This has been described as being an 

incremental version of the CbO algorithm. 

Modifications were suggested by Kuznetsov and 

Obiedkov (2002). 

Generates the set of all concepts or the line diagram 

of the lattice. 


Godin et al. (1991, 1995b) 

Incremental algorithm intersecting new object intent 

with that of concepts generated earlier. Use a 

heuristic hash function to sort the concepts when 

generating and searching concepts. 

There are two versions of the algorithm: GodinEx 

refers to the version that uses the size of the extents 

and Godin the size of the intents. 

Modifications were suggested by Kuznetsov and 

Obiedkov (2002). 

Generates the set of all concepts or the line diagram 

of the lattice. 


I 

51 

 
 
 



Algorithm Incremental I 
Batch 

Notes 

Grand Incremental . Oosthuizen (1991) 
• Incremental algorithm using a graph theoretic 

approach to insert an object into a lattice. Grand 
connects objects attribute by attribute, to an 
increasing subset of its intent until the object is 

i connected to all the attributes in its intent. During the 
process a function called transform ensures that the 
uniqueness of suprema and infima is maintained 
through the manipulation, addition and deletion of 
concepts and arcs. Constructs EA-Iattices. 
Generates the line diagram of the lattice. 

Carpineto Incremental Carpineto and Romano (1993, 1996b) 

Nourine Incremental Nourine and Raynaud (1999, 2002) 
Incremental algorithm intersecting new object intent 
with that of concepts generated earlier. Use a lexical 
tree for concept lookup and comparison. 
Generates the line diagram of the lattice. 

Valtchev, 
Divide 
conquer 

and 
N/A Valtchev et al. (2000) 

Algorithm based on the combination of two concept 
SUb-lattices that are combined to construct the full 
lattice. The context of each SUb-lattice is obtained by 
splitting the cross table of the original context either 
by objects or by attributes. 
Generates the line diagram of the lattice. 

AddAtom Incremental Described in chapter 4. 
Incremental algorithm using the approximate and 
exact intent representative (minimal meets) of the 
object intent to find generator concepts and 
recursively generate new concepts above these. 
AddAtom use the lattice itself for concept lookup, 
comparison and avoiding duplicate generation of 
concepts. 
Generates the line diagram of the lattice. 

5.2 A THEORETICAL PERFORMANCE BOUND FOR ADDATOM 

In this section the notation used for the description of the theoretical complexity (section 
5.2.1) and a number of lattice size related formulae are given (section 5.2.2 and 5.2.3). 
This will be used to derive an upper bound for the theoretical complexity of AddAtom 
(5.2.4) 

5.2.1 Notation 

The following notation is used for the theoretical performance of constructing a formal 
concept lattice of the context C =(0, A, I): 

52 

 
 
 



Notation 	 Description 

11011 	 The number of objects in the context. 

IIAII 	 The number of distinct attributes in the data set or context itself, not 
the theoretical limit of the domain from which the context was taken. 
As the number of objects increase, IIAII typically approaches the 
theoretical limit (e.g. in the case of randomly generated contexts). 

The number of "crosses" in the cross table of the context. It is 
therefore the number of attribute-object pairs in the incidence 
relation. The maximum number of crosses in the cross table is 

IIOII·IIAII· 
110'11 	 The average number of attributes per object in the context, i.e. the 

average intent size of atoms in the EA-Iattice of the context. 110'11 = 11111 
111011. For contexts with a varying number of attributes per object, the 
maximum number of attributes per object the notation max(IIO'II) is 
used to indicate the maximum number of objects per attribute. 

IIA'I! 	 The average number of objects per attribute in the context, i.e. the 
average extent size of co-atoms in the EA-Iattice of the context. IIA'II 
=1I11I/1IAIi. For contexts with a varying number the maximum number 
of attributes per object the notation max(IiA'11) is used to indicate the 
maximum number of objects per attribute. 

The number of concepts in the lattice of the context including the unit 
and zero concepts. Lj indicates the lattice after the insertion of the j'th 
object into the lattice. 

11< II 	 The number of arcs in the line diagram of the lattice Ii< jli indicates 
the number of arcs in lattice Lj . 

1I0'II/I!AIi 	 This is referred to as the "density" of the cross table and is defined as 
the proportion of crosses in the cross table relative to the total 
number of possible crosses in the cross table (Le. 111111 (IIOII.IIAII) = 
IIO'II/IIAII =IIA'Ii/IiOIl)· It can, of course, be specified as a percentage 
and is useful as a normalised metric to compare contexts with a 
different number of attributes. 

5.2.2 Concept lattice size formulae 

In this section a number of formulae and equations on concept lattice aspects related to 
size are derived. These will be used in deriving complexity bounds for AddAtom. Before 
deriving the actual lattice formulae, a number of generic equivalences are given. These 
equivalences will be used to refine the lattice formulae. 

The following two generic equivalences, found in many texts on algebra and 
combinatorics (e.g. Cameron (1996)), can be proved by induction. The formulas are 
derived from the Binominal theorem. 

(5.1 ) 

(5.2) 

53 

 
 
 



The next two equivalences. can be found in texts on mathematical analysis (e.g. 
Clark(1931 )). and are also proved via induction. 

k
1 an+1 

'" a = ;a:;tlL.. k=Olon 1 (5.3)a 

(5.4) 

Figures 5.1 and 5.2 show the Boolean lattices of contexts with 3 and 4 attributes 
respectively. The discussion below refers to Boolean lattices Lj from a context 
C = (0. A. I). These figures are included here to serve as an aid in explaining the 
derivation of the lattice size equations 5.5 to 5.S. 

Level i=O: 

Level i=l: 

Level i=2: 

Level i=3: 

Figure 5.1: A Boolean lattice with 3 attributes (only concept intents are shown; the level of 
the concept is also shown) 

54 

 
 
 



Level i=O: 

Level i=]: 

Level i=2: 

Level j=3: 

Level i=4: 

Figure 5.2: A Boolean lattice with 4 attributes (only concept intents are shown; the level of 
the concept is also shown) 

For the purpose of discussion, the concepts in the Boolean lattice will be divided into a 
number of levels, where the number of attributes in the intent of the concept indicates its 
level. The variable i will indicate the level. Where multiple, successive lattices are under 
discussion, the variable j will indicate the j'th lattice in the sequence of lattices (Le. after 
the insertion of the j'th object). The equations in the table below characterise important 
aspects of Boolean lattices related to size. Note that for theoretical purposes an initial 
lattice consisting only of a single concept with an empty intent and -extent called Lo with 
IlLoIl = 1 and 11< II = 0 is included in the equations. For the sake of simplicity only IIAII is 
used since 11011 =IIAII for Boolean lattices. The remarks indicate how these equations have 
been derived. These equations hold for Boolean lattices. It is assumed that \lOll > 0 and 
IIAII>O. 

Equation 	 Remark Nr 

The total number of concepts (5.5) 
on each level i of a Boolean 
lattice is the number of 
distinct combinations of 
subsets of A of size i. The 
final result follows from 
equation 5.1. 

Inspecting figures 5.1 and 5.2 (5.6)
= /II~II\

11-<11 Li=OtOI!AII l 1 j 	 it can be seen that each 
concept on any level i, has i=1/ A 11211AII-l 
arcs leading to it's i parents. 
Once again the number of =!.II A II./iLII

2 	 concepts on level i is the 
number of distinct subsets of 
A of size i. After counting the 

55 

 
 
 



total number of arcs, 
equation 5.2 is used to 
simplify the result. 

The total number of concepts (5.7)L FOtoliA11 II Li II =L i=OlollAlI 2i 
in all lattices Lj , j = 0 to IIAII= 211AII+1 -1 
follows from combining 

=2·IILII equation 5.5 and 5.3. 

i 1 The total number of arcs in (5.8)L i=oloIIA1111-< ill =L i=OtollAIl j.2 
all lattices Lj , j =0 to IIAII cani =L i=OloIIAII_lj·2 + L i=OloIlAII_1 2i 
be derived by combining 

AI + 1=(11 A II-I).2" equations 5.6, 5.3 and 5.4. 
=(II A 11-1).11 L II +1 

Non-Boolean concept lattices 

Boolean FCA lattices contain the maximum number of possible concepts (i.e. unique 
combinations of intent and extent) for a given number of arcs and therefore contexts that 
do not give rise to Boolean lattices have fewer concepts in their lattices. The size of 
arbitrary lattices is therefore bound by the minimum of the unique number of extents or 
intents possible, i.e. 2min(IIA II,1I0 1l). 

The number of outbound arcs is bound by the unique combinations of attributes in the 
intents of its parents and/or the unique combinations of objects in the extents of its 
parents. In a Boolean lattice, the number of possible unique intents of the parents of a 
concept c is IIIntent(c)11 - 1, but non-Boolean lattices may potentially have more (up to 
(In~t::;:'~l2))' (Using the extents of the parent concepts provides a sharper bound to the 

number of outward arcs. The parent concepts Pl'" Pn. of a concept c must be unique and 
therefore have at least one object in their extents in addition to that of c, i.e. Extent(Pi) :J 

Extent(c). Furthermore, for any two parent concepts, Pi and Pj, Pi :f.: Pj of c, Extent(Pi) n 
Extent(pj) Extent(c). Parent concepts can therefore have no object in common with the 
extent of any other parent concept except that of c. The extent of any concept must also 
be unique in the lattice. Given these constraints, the maximum number of parent concepts 
of any c is therefore 11011 IIExtent(c)11 since each parent concept will have one at least 
additional concept of 0 in addition to Extent(c). A bound for the maximum number of 
outbound (upward) arcs of any concept in a lattice is therefore 11011. In practice however 
the maximum number of outbound arcs may be fewer. 

Using a similar argument, but based on the intent of any concept IIAII is the maximum 
number of inbound (downward) arcs into any concept in a lattice. 

Using these bounds as a base it is clear that for non-Boolean lattices of any substantial 
size the number of outbound arcs 11< Outbound II ~ IIOII·IILII· Using a similar argument 11< Inboundll 

S IIAII.IIL1I. Since the number of outbound- and inbound arcs in any lattice should be equal 
to the total number of arcs, 11< II s min(IIAII, IIOID·IILII. 

Most contexts used in practical applications have IIAII < 11011. It is assumed that 11011 > 0 and 
IIAII > O. The following inequalities hold in such cases: 

Equation Nr 

56 

 
 
 

http:11-1).11


II L II 	 S2 min(lIAII,llo1D (5.9) 

S 211AII 

(5.10)11-<11 S min(11 A II, II 0 11)·11 L II 
(5.11 )Lj=OtollOlIlIL j II sIIOIl·IILII+l 

(5.12)L j=otollollll-< j II 	 s min(11 A II, II 0 11)·11 0 11·11 L II +1 
s II A II ' II 0 11.11 L II +1 

From equation 5.6 it can be seen that a Boolean lattice contains, on average %,IIAII 
outbound arcs per concept and also on average IAIIAII inbound arcs per concept since the 
total number of outbound- and inbound arcs in a lattice are equal. It is therefore clear that 
the above equations do not always provide very sharp upper bounds. Where IILlI is 
exponential in terms of IIAII or 11011 it may be better to use equations 5.5 to 5.8 and 
substitute IILI! = 211A1I. 

5.2.3 Complexity of set operations 

For the purposes of calculating complexity upper bounds, it is assumed that sets are 
implemented as ordered lists defined using fixed length arrays. A linear order relationship 
is assumed to be defined on all possible elements of the set (i.e. set is completely ordered 
as opposed to partially ordered). This does not affect the result of the algorithms but will 
avoid unnecessary iterations and searches through the unordered elements of a set. A 
typical strategy is to number all concepts and implement sets as bit strings with set 
membership in the set indicated by the bit that correspond to the concept number. This 
takes advantage of modern CPU architectures with 32 and 64 bit, bitwise operations to 
improve the efficiency of set operations. Effectively this means that the following 
complexity bounds will be used on sets: 

Operation Complexity 

Set operations: union, copy/assignment, set O(IISettil + IISehll) 
cardinality 

Set operations: test for subset and proper subset (c 0(max(IISetdl,IISet211)) 
and ~), test for set equality, set intersection (n) 

Single element insertions O(l) 

Test for set membership for single element 0(1) 

Set initialisation O(IISetlll) 

Set cardinality O(IISetIID 

For the union, copy/assignment, set cardinality operations on concept intents the bound 
O(IIAII) is used whilst the bound 0(11011) is used for set operations on concept extents. For 
subset and proper subset testing, test for set equality and set intersection operations on 
concept intents O(max(IIO'II)) is used, whilst O(max(IIA'II)) is used for concept extents. 

57 

 
 
 



These bounds are however not very sharp since in implementation a single CPU 
operation would for example perform 32 or 64 comparisons on set elements. 

5.2.4 AddAtom theoretical performance 

The theoretical (worst case) performance of lattice construction algorithms is expressed 
using the input and output sizes of the algorithms. This is done in two ways: firstly, as the 
time complexity associated with the construction of the complete lattice of the context. 
Since the output size is exponential, a second complexity metric called the delay is also 
used. An algorithm for listing a family of combinatorial structures is said to have 
polynomial delay (Johnson et al. 1988) if it executes at most polynomially many 
computational steps before either outputting each next structure or terminating. An 
algorithm is said to have a cumulative delay d (Goldberg 1993) if at any point in any 
execution of the algorithm with any input p the total number of computational steps that 
have been executed is at most d(p) plus K.d(p) where K is the number of structures that 
have been output so far. If d(p) can be bounded by a polynomial of p, the algorithm is said 
to have a polynomial cumulative delay. 

The number of concepts of the lattice is exponential in the worst case (i.e. a Boolean 
lattice). Furthermore, the problem of determining the number of concepts in the lattice is 
NP-complete (Kuznetsov 1989, 2001). In this sense, any lattice construction algorithm 
unavoidably has intractable (i.e. exponential) worst case behaviour, both in time (since 
each node has to be generated) and in space (since each node has to be stored). Lattice 
construction algorithms are therefore differentiated in terms of their time delay 
characteristics. An algorithm can therefore be considered efficient if it generates the lattice 
with a polynomial time delay and space linear in the number of all concepts in the lattice. 
Although "dense" contexts that approach this limit may not be used very often in practice, 
the theoretical complexity of an algorithm nevertheless expresses an aspect of its 
performance and is therefore relevant. 

A bound for the theoretical worst-case time complexity of AddAtom will be shown below to 
be O(IILlI.IIOI12.max(IIO'II)). (The discussion will be based on the optimised form of this 
construction algorithm, as described in section 4.6.) 

As an aid to the discussion, appendix B contains an outline of the algorithm, highlighting 
its main loops and instructions that add to its complexity characteristics, assist in the 
analysis of the complexity. 

One approach to estimating an upper time bound for constructing the lattice, L, from 
scratch, is to consider AddAtom_oj as the upper bound for inserting a single object, OJ, into 
the lattice (including all the time required for all the recursive calls to AddAtom and all the 
calls to GetMeet). Let Housekeeping_oj be the upper bound for doing the housekeeping in 
preparation for inserting OJ into the existing lattice but excluding the calls to AddAtom. The 
upper time bound for constructing L would then be: 

O(Lj:1 toIiOIiAddAtom_oj+ Lj:1 to 11011 Housekeepin~oJ 

However, instead of attempting to derive upper bounds on each AddAtom_oj" another 
more global line of reasoning route will be followed. 

To this end, let AddAtom_Total be the upper time bound on executing all instructions 
relating to all calls to AddAtom, in order to insert all objects into L including the calls to 
GetMeet. Let Housekeeping_Total be the upper bound for the total amount of time taken for 
the housekeeping and preparation for the construction of the complete lattice. The 
complexity of the algorithm would then be bounded by: 

O(AddAtom_Total + Housekeepin~Total) 

58 

 
 
 



It will be shown below that an upper bound on Add Atom_Total is O(IILII.IIOfmax(IiO'II», 
and that an upper bound on Housekeeping_Total is O(IILII.IIOII.IIAID. Under these 
assumptions, an upper bound on the algorithm to construct the lattice is then: 

O(IILlI·(IIOfmax(IIO'II)+ 1101i·IiAII» 

Since we are interested in order of magnitude estimates of the time for constructing a 
lattice, L, the lesser term may be left out since it will be dominated by the greater when 
constructing large lattices. A resulting upper bound (Le. worst case) estimate for 
constructing L is thus O(IILlI.IIOW.max(jIO'II». 

The following three subsections deal with the complexity of each of the three parts of the 
algorithm. 

AddAtom complexity 

Looking at the functioning of AddAtom and its parameters, it is clear that there is only one 
recursive call made to AddAtom for each concept in the lattice. This is since concepts are 
only created within AddAtom and there are no concepts that are deleted or duplicated. 
The maximum number of generator concepts for all the lattices Lj is in fact the total 
number of concepts in the lattice (Le. IILIi). Furthermore, for each generator concept that is 
used as parameter to AddAtom, the outer for loop (using candidate as variable) is executed 
for each of its parent concepts (a maximum of 11011 times for each generator concept). The 
maximum number of iterations of the outer for loop across all invocations of AddAtom 
would therefore coincide with O(IILlI.ilOil). 

Within the first and outer for loop of AddAtom, the maximum number of algorithmic steps is 
determined by the maximum number of steps taken by GetMeet or the inner for loop (using 
g as variable), whichever is biggest. NewConcept contain only concepts that are 
prospective parents for the new concept and this list is reduced during each iteration. 
NewConcept's number of elements is bound by the maximum number of parents of any 
concept i.e. 0(11011). Within the inner for loop a number of set operations on sets of 
concept intents are executed. The most complex of these operations is the subset and 
proper subset tests which is bound by O(max(IIO'Ij). Therefore the number of steps taken 
by the inner for loop during each iteration of the outer for loop is bound by 
O(IIOII·max(IIO' II»· 

The complexity of the last for loop is dominated by the others and therefore it is not 
considered in the complexity bound. 

Below it will be argued that the complexity of a single call to GetMeet is bound by 
O(IIOII.max(IIO'II». The number of algorithmic steps taken by all invocations of AddAtom to 
inset all objects into the lattice is therefore bound by O(IILlI.IIOII.(IIOII.max(IIO'II) + 
1101I·max(ilO'II))) == O(IILII·IIOW·max(IIO'II»· 

GetMeet complexity 

GetMeet traces a path between the parent of a generator concept and a meet of a subset 
of Intent(o) somewhere above it. The maximum number of iterations of the outer while loop 
is bounded by the number of attributes in the intent of generator (Le. O(max(IIO'II». The 
maximum number of times the for loop can be executed is bounded by the maximum 
number of parents of a concept (i.e. 1I0lD since each parent has at least one attribute less 
in its intent. Since the instructions within the while loop is of 0(1) complexity, the 
complexity of a single call to GetMeet is O(IIOII.max(IIO'Ij). 

HousekeepinQ_ Total complexity 

The complexity bound of Housekeeping_Total is determined by the second and outer for 
loop (with 0 as variable). Within it the two inner for loops are executed O(IILJII) times per 

59 

 
 
 



object - i.e. OCLj=1 to lIollllql) =: O(IILlI.IIOII) times for inserting all objects. Within these for 
loops the number of algorithmic steps of set operations executed are bounded by O(IiAI!) 
and 0(1) for the first and second for loops respectively. The complexity of 
Housekeeping_Total is therefore bounded by O(IILII.IIOil.IiAII). 

Theoretical complexity comparison 

The following table summarises the algorithmic complexity for other construction 
algorithms6 

Algorithm Incremental I 
Batch 

Complexity 

Bordat Batch Time complexity O(IIOIi.IIAW'.!ILIi) 
Polynomial delay =O(IIIOII.IIAII ) 

CbO, 
Kuznetsov 

Batch Time complexity =ocIlOW.IiAIi.IILlD 
Polynomial delay =0(1I01l3·IIAII) 

Chein Batch Time complexity =0(I!OW.1IAII.IILI!) 
Polynomial delay =0(111011' ·IIAII) 

Dowling Incremental Time complexity = O(lIoW.IIAII.IiLII) 

Godin Incremental Time complexity = OCllLln 

Lindig Batch Time complexity =O(IIOW.IIAII.IILII) 
Polynomial delay =O(IIOlfIiAII) 

NextClosure, 
Ganter 

Batch Time complexity = O(lloW.ilAII.IILlI) 
Polynomial delay = O(IiOW.IIAID 

Norris Incremental Time complexity = O(IIOW.IIAII.IILII) 

Nourine Incremental Time complexity = 
0«11011 + IIAID·IIOII·IILII) 

Valtchev N/A The complexity of the procedure assembling 
lattices LJ and L2 into the global lattice L is 
0«11011 + IIAII)(IiLdl·IILIIl + IILlI·IIAII))
LJ and L2 can however be built in parallel. 

AddAtom Incremental Time complexity =0(IILIi.i1011".max(1I0'1i» 

For the purpose of direct comparison and since 110'11 < IIAII, 110'11 can be substituted with 
IIAII. A slightly less sharp complexity bound for AddAtom is therefore O(IILlI.IIOfIIAII). 
The AddAtom complexity estimate is therefore cubic in nature relative to the lattice size. 
This is a feature that it shares with most other algorithms. Since this estimate is not 
quadratic relative to the number of concepts, as is the Nourine algorithm, it might seem 
that AddAtom does not offer very much in terms of theoretical performance overall. 

The complexity bound as stated is however not very sharp. One area where the 
theoretical complexity is overstated is within GetMeet. The maximum length of a path in 
GetMeet is stated as 110'11 but in general no path would stretch from OL to lL (implied by a 

6 	 Where these algorithms have been improved as discussed in Kuznetsov and Obiedkov (2002), the 
complexity of the improved algorithm is given. 

60 

I 

 
 
 



path length of 110' II). It is interesting to note that if it could be proved that GetMeet return 
each of the respective meet concepts above a particular generator concept only once, the 
total combined length of all paths traced in calls to GetMeet to insert a single object would 
not exceed the total number of concepts in the lattice. This is because none of such paths 
can cross each other except at the meet of a subset of Intent(o). Under this assumption 
the maximum number of iterations of inner for loop for each concept on the path is the 
number of parents of that concept. The total number of iterations of the for loop across all 
invocations for the insertion of one object is therefore the total number of arcs in the 
lattice. Therefore O(Lj=l to 1101111< jlD :s; 0<lIAII.IIOII.IILlI) (or 0(Y21IAII.IILlD in the case of a Boolean 
lattice) would be an upper bound on the complexity of all calls to GetMeet across all the 
recursive calls to AddAtom to insert all objects of the context (for Boolean lattices that is). 
For the algorithm as stated in section 4.6, used in the wide comparison study in section 
5.4 this is not the case, but the version of the algorithm in appendix A makes use of this 
optimisation. The complexity bound derived here is however still an upper bound for this 
algorithm. 

Another area where the theoretical complexity bound is not very sharp is in the AddAtom 
part of the algorithm. The theoretical complexity bound assumes that the number of 
iterations of the outer for loop is bounded by the number of arcs in the lattice. In the 
algorithm itself however, only concepts with at least some attribute in common with the to
be inserted object will be visited and therefore not all arcs will be "followed" during the 
iterations of the for loop. For non-Boolean lattices with 110'11 « IIAW this will be a very 
significant portion of the concepts in the lattice that will not be visited by the for loop. To 
quantify this further, consider a Boolean lattice and an object intent 0'. There are in 
general 211AIHlo'li concepts in the lattice that have no attribute in common with 0'. Clearly for 
non-Boolean lattices this number will be significantly less, but for many contexts this is still 
very significant, indicating an overestimation of the overall complexity. 

The use of 11011 as the upper bound to the number of parents of a lattice leads to an 
overestimate of the total number of arcs in a lattice. A case in point is the fact that 
Boolean lattices have on average V2.IIAII inbound or outbound arcs per concept - far fewer 
than the upper bound 11011 used here. 

The AddAtom algorithm can be easily adapted to be symmetrical and insert attributes into 
the lattice and link them to their extents instead of inserting objects into the lattice and 
linking them to their intents. Using the same reasoning AddCoatom, the dual incremental 
concept lattice construction algorithm would have a complexity bound of 
O(IILII.IIAW.max(IIA'II» which may include smaller terms than that of AddAtom. 

The best way to obtain clarity on this and other issues is via empirical studies. The next 
two sections present the results of the pilot and wider empirical studies. The results of the 
empirical studies support the claims on the over estimation of the theoretical complexity of 
AddAtom and indicate that it does indeed perform very well and is often the best 
performer of the algorithms surveyed. 

5.3 EMPIRICAL PERFORMANCE: PILOT STUDY 

The pilot study was conducted to establish the relative performance of AddAtom using the 
code described in chapter 7 to seek prima facie evidence that would justify a wider study. 
The basic strategy of the pilot study was to implement the incremental lattice construction 

7 The notation a « b indicates that A is significantly smaller than b by some measure. 

61 

 
 
 



algorithms of Godin et al. (1995b)8 and Carpineto and Romano (1993) using the same 
base code and data structures as AddAtom (described in chapter 7). The pseudo code of 
the implemented algorithm can be found in appendix A (note that there are differences to 
the algorithm in section 4.6). This would serve as a good indication of the relative 
performance of the algorithm and clearly indicate if the time performance was worse (or 
not) than that of the Godin or Carpineto algorithms, justifying the effort of a wider study. 

Note that for the pilot study EA-Iattices were generated and the Godin and Carpineto 
algorithms were modified to generate EA-Iattices. 

In addition to the Godin and Carpineto algorithms, the Grand algorithm (Oosthuizen 
(1991)) was also available for comparison but due to it using different data structures and 
utility functions as well as being implemented in a different programming language (refer 
to chapter 7 for further discussion), it was not included in the study since it would not 
make a apples-with-apples comparison possible. The performance of Grand is however 
worse than AddAtom in all types of contexts by a significant margin. 

The pilot study comparison showed that AddAtom is indeed faster than the Godin and 
Carpineto algorithms and this suggested that a more thorough study of the algorithm's 
performance would be worth while. However, it also exposed the fact that the code base 
and data structures were inefficient and that a wider study would require a revised 
strategy towards the data structures and utility functions (also refer to chapter 7). 

For the pilot study, care was taken to ensure a valid comparison. To this end, the 
algorithms were implemented on the same base-code and performance tests run under 
the same platform. However, any inefficiency in the particular implementation approach 
and data structures could have negatively penalised the relative performance of the Godin 
and Carpineto algorithms. This is because the data structures used could have 
conceivably suited AddAtom better and could have given it an unfair advantage under the 
experimental comparison. To avoid this situation from influencing the outcome, a number 
of additional performance metrics, other than time, were collected. These metrics tracked 
basic lattice operations such as lattice closures and set operations and did confirm the 
trend of the time based results. 

A number of artificial and "natural" data sets were used as contexts for the experimental 
comparisons. The artificial data sets were randomly generated whilst the natural data sets 
were taken from the well-known UCI Machine Learning Repository (Blake and Merz 
1998). 

The following table provides an overview of the data sets and describes the notation used 
to identify the data sets. 

Data set Description 

Rnd-100-YY-XXX A random data set of XXX objects. Each object possesses 
exactly YY attributes, randomly chosen from 100 possible 
attributes. When referring to the data set as a whole, the 
notation Rnd-100-YY is used. 

I 

Bool-XX A data set of XX objects. The data set has XX attributes. Every 
object has XX - 1 attributes and differs from each of the other 
objects in only one attribute. The resulting lattice of this 
arrangement forms a Boolean lattice. When referring to the I 
data set as a whole, the notation Bool is used. 

8 The implementation follows the description in Godin et al. (1995b) and not the improvements suggested by 
Kuzetnov and Obiedkov (2002). 

62 

 
 
 



Data set Description 

SPECT A natural data set taken from the UCI repository called the 
Single Proton Emission Computed Tomography (SPECT) set. 
The dataset has 22 binary feature patterns and one overall 
diagnosis attribute. When referring to the data set as a whole, 
the notation SPECT is used. 

BCW-XXX The Breast-Cancer-Wisconsin natural data set taken from the 
UCI repository. XXX indicates the number of objects in the 
context. Objects were randomly selected from the data set. The 
set of discrete attributes was used unaltered. The total data set 
consists of 698 objects, each object has 10 attributes, whilst 
each of the 10 attributes could assume anyone of 10 values. 
Some objects do not possess a value for a specific attribute 
(the value is unknown). Such objects were still included in the 
set and the unknown value was treated as an eleventh value of 
that specific attribute. Each value of each attribute was treated 
as a se arate attribute in the ex erimental results. Theoreticall p p y 
there were thus 10 x 11 = 110 attributes, but in practice the 
data set contained only 86 attributes since all attribute values 
were not observed. When referring to the data set as a whole, 
the notation BCW is used. 

The key metrics describing the data sets that were used are as follows: 

Set name 11011 IIAII 11111 I IILII 11< II 110'11 I IIAII 

Rnd-1 00-1 0-40 40 98 379 312 871 10% I 

I Rnd-1 00-1 0-45 45 100 434 351 990 10% 

Rnd-1 00-1 0-50 50 98 477 413 1198 10% 

Rnd-100-10-75 75 100 725 697 2197 10% 

Rnd-1 00-1 0-1 00 100 100 975 1058 3425 10% . 

Rnd-1 00-1 0-150 150 100 1433 1957 6567 10% 

Rnd-1 00-1 0-200 200 100 1915 3031 10423 10% ! 

Rnd-100-30-15 15 100 392 426 1206 26% • 
I 

· Rnd-100-30-20 20 100 520 799 2588 26% ! 

Rnd-100-30-25 25 100 643 1313 4589 26% 

Rnd-100-30-30 30 100 779 2183 7962 26% 

Rnd-100-30-35 35 100 914 3329 12623 26% I 

• Rnd-100-30-40 40 100 1039 4288 i 16652 26% 

Bool-07 7 7 42 128 448 86% ! 

• Bool-08 8 8 56 256 1024 88% 

63 

 
 
 



Set name 11011 IIAII 11111 IILII 11< II 1I0'II/IIAII 
Bool-09 9 9 72 512 2304 89% 

Bool-10 10 10 90 1024 5120 90% 

Bool-11 11 11 110 I 2048 11264 91% 

Bool-12 12 12 132 4096 24576 92% 

I BCW-030 30 69 300 240 564 14% 

BCW-035 35 71 350 317 795 14% 

BCW-040 40 75 400 312 751 13% 

BCW-045 45 77 450 323 783 13% 

BCW-OSO 50 84 500 499 1349 12% 

BCW-075 75 84 750 701 1948 12% 

BCW-100 100 I 84 1000 1091 3331 12% 

BCW-200 200 86 2000 1704 5455 12% 

Tests for the pilot study were performed on an Intel 110 mhz Pentium processor based 
platform with 256 megabytes of memory under the Windows 2000 Professional operating 
system. Note that EA-Iattices were generated for the pilot study. 

The following graphs summarise the results. 

64 

 
 
 



 
 
 



 
 
 



 
 
 



 
 
 



 
 
 



 
 
 



 
 
 



 
 
 



 
 
 



 
 
 



 
 
 



 
 
 




