NIVERSITEIT VAN PRET
NIVERSITY OF PRET
UNIBESITHI YA PRET

u
<

cog

Chapter 5: AddAtom algorithmic
performance

The AddAtom algorithmic performance was studied both theoretically (worst case
behaviour) and empirically. This chapter starts with a short survey of published concept
lattice construction algorithms (section 5.1) before deriving a theoretical upper bound to
the complexity of AddAtom (section 5.2). A theoretical worst-case performance bound of
AddAtom is O([JLJ|.||O|I>. max(]|O’|])). This performance upper bound is however a higher of
magnitude as the current best performer namely that of Nourine and Raynaud (1999,
2002) with an upper bound of O((J|O|[+||A|D-||O]|.|ILI)- Despite being cubic in nature relative
to the lattice size, it is argued that this bound of AddAtom is not a very sharp upper bound
and that the terms in the complexity expression are in practice, much more of an
overestimate than the ||O|| and ||A]| terms that appear in the upper bound estimates of
other construction algorithms. The performance is thus best confirmed via experimental
comparisons.

For the purposes of experimental comparison, a two-step approach was taken. Firstly, a
pilot study comparing the original AddAtom implementation in C++ (described in chapter
7) to implementations of two published construction algorithms, namely that of Godin
(1991) and Carpineto and Romano (1993, 1996b). The pilot comparison showed that
there is prima facie evidence that the algorithm performs very well and that wider study is
justified. The second study, involving a wider set of experimental comparisons across a
larger number of lattice construction algorithms, was conducted in collaboration with
another researcher. For the sake of reference, the first, smaller experimental comparison
will be referred to as the “pilot study” (section 5.3) and the second as the “wide
performance study” (section 5.4).

The results of both experimental comparisons indicate that the algorithmic performance of
AddAtom is very good, and often the best of the test bed of 11 concept lattice construction
algorithms. AddAtom performs especially well compared to other algorithms with “natural”
data sets (i.e. non-random generated context). When the density of the cross table of the
context is either very high (i.e. every object possesses almost all attributes) or very low
(every object possesses only very few attributes) there are other concept lattice
construction algorithms that do outperform AddAtom. AddAtom is however still the next-to-
best performer in these circumstances and therefore a worthy candidate for a general-use
algorithm. AddAtom was the fastest incremental lattice construction algorithm in the study.
The experimental comparison results are therefore consistent with the argument that the
theoretical complexity bound of AddAtom derived here is not a very sharp upper bound for
AddAtom.

Note that the discussion of both the theoretical and empirical performance, is with
reference to the optimised version of the AddAtom algorithm (see section 4.6). In the
comparisons, performance issues are related to constructing both the set of all concepts
as well as the cover relationships (i.e. the line diagram).

49

&
W UNIVERSITEIT VAN PRETORIA

0 UNIVERSITY OF PRETORIA
Que” YUNIBESITHI YA PRETORIA

5.1 A SURVEY OF CONCEPT LATTICE CONSTRUCTION ALGORITHMS

It is not the objective of this dissertation to analyse and describe other construction
algorithms. Readers are referred to recent comparative studies by Kuznetsov and
Obiedkov (2001, 2002) for a broad discussion and pseudo code of other algorithms. A
number of optimisations of these algorithms as well as adaptations to generate the line
diagram of concept lattices where the algorithm does not generate it already are also
described by Kuznetsov and Obiedkov. Unless otherwise stated, references to the
complexity or experimental performance of these algorithms refer to the improvements
and adaptations propose by Kuznetsov and Obiedkov. Although not exhaustive, the
following table lists a number of the published concept lattice construction algorithms and
briefly describes all the algorithms referred to in this chapter (adapted from Kuznetsov and
Obiedkov (2001, 2002)). The theoretical and experimental comparisons will be made to a
subset of these algorithms.

In each case an algorithm is classified as either incremental or batch (non-incremental)
and also whether it generates only the set of all concepts or the line diagram of the lattice.

Algorithm Incremental / Notes
Batch
Chein Batch Chein (1969)

Concepts are represented as extent-intent pairs and
each new concept is generated as the intersection of
the intents of two existent concepts. Similar to Al-
tree.

Modifications were suggested by Kuznetsov and
Obiedkov (2002).

Generates the set of all concepts of the lattice.

Ganter, Batch Ganter (1984)

NextClosure Batch algorithm adding one object to earlier
generated extent and calculating closure. Generate
concepts in topological order using lexical order for
concept lookup and comparison.

Modifications were suggested by Kuznetsov and
Obiedkov (2002).

Generates the set of all concepts or the line diagram
of the lattice.

Bordat Batch Bordat (1986)

Batch algorithm intersecting the intent of concepts
with intents of objects that don’t belong to concept.
Generate concepts in depth-first order using a tree
for concept lookup and comparison.

Modifications were suggested by Kuznetsov and
Obiedkov (2002).

Generates the set of all concepts or the line diagram
of the lattice.

Al-tree Batch Zabezhailo et al. (1987)

A top-down batch algorithm that searches for
concepts in the set of concepts generated thus far.
Similar to Chein.

Generates the set of all concepts of the lattice.

50

e

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Algorithm Incremental / Notes
Batch

CbO, Batch Kuznetsov (1993)

Close by One Batch algorithm (similar to NextClosure) adding one
object to earlier generated extent and then
calculating the closure. Generate concepts in depth
first order using lexical order for concept lookup and
comparison. Also use an intermediate structure for
concept searches and the generation of the line
diagram.

Generates the set of all concepts or the line diagram
of the lattice.

Lindig Batch Lindig (1999, 2000)

Bottom-up batch algorithm adding one attribute at a
time to the intent of generated concepts and then
calculating its closure. Generate concepts in a depth-
first order using tree for concept searches.
Generates the diagram of the lattice.

Titanic Batch Stumme et al. (2000)

Yevtushenko | Batch Yevtushenko (2002)

Norris Incremental Norris (1978)

Incremental algorithm intersecting the new object
intent with that of concepts generated earlier. Keep
list of added objects, checking whether new concepts
can be generated using intersection of objects added
earlier. This has been described as being an
incremental version of the CbO algorithm.
Modifications were suggested by Kuznetsov and
Obiedkov (2002).

Generates the set of all concepts or the line diagram
of the lattice.

Godin, Incremental Godin et al. (1991, 1995b)

GodinEx Incremental algorithm intersecting new object intent

with that of concepts generated earlier. Use a
heuristic hash function to sort the concepts when
generating and searching concepts.

There are two versions of the algorithm: GodinEx
refers to the version that uses the size of the extents
and Godin the size of the intents.

Modifications were suggested by Kuznetsov and
Obiedkov (2002).

Generates the set of all concepts or the line diagram
of the lattice.

51

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

-
w UNIVERSITEIT VAN PRETORIA

Algorithm Incremental / Notes
Batch
Grand Incremental QOosthuizen (1991)

Incremental algorithm using a graph theoretic
approach to insert an object into a lattice. Grand
connects objects attribute by attribute, to an
increasing subset of its intent until the object is
connected to all the attributes in its intent. During the
process a function called transform ensures that the
uniqueness of suprema and infima is maintained
through the manipulation, addition and deletion of
concepts and arcs. Constructs EA-lattices.
Generates the line diagram of the lattice.

Carpineto Incremental Carpineto and Romano (1993, 1996b)

Nourine Incremental Nourine and Raynaud (1999, 2002)

Incremental algorithm intersecting new object intent
with that of concepts generated earlier. Use a lexical
tree for concept lookup and comparison.

Generates the line diagram of the lattice.

Valtchev, N/A Valtchev et al. (2000)
Divide and Algorithm based on the combination of two concept
conquer sub-lattices that are combined to construct the full

lattice. The context of each sub-lattice is obtained by
splitting the cross table of the original context either
by objects or by attributes.

Generates the line diagram of the lattice.

AddAtom Incremental Described in chapter 4.

Incremental algorithm using the approximate and
exact intent representative (minimal meets) of the
object intent to find generator concepts and
recursively generate new concepts above these.
AddAtom use the lattice itself for concept lookup,
comparison and avoiding duplicate generation of
concepts.

Generates the line diagram of the lattice.

5.2 A THEORETICAL PERFORMANCE BOUND FOR ADDATOM

In this section the notation used for the description of the theoretical complexity (section
5.2.1) and a number of lattice size related formulae are given (section 5.2.2 and 5.2.3).
This will be used to derive an upper bound for the theoretical complexity of AddAtom
(5.2.4)

5.2.1 Notation

The following notation is used for the theoretical performance of constructing a formal
concept lattice of the context C =(0, A, I):

52

o
w UNIVERSITEIT VAN PRETORIA
* UNIVERSITY OF PRETORIA
Q¥ VU

NIBESITHI YA PRETORIA

Notation Description
llo|] The number of objects in the context.
IIA]] The number of distinct attributes in the data set or context itself, not

the theoretical limit of the domain from which the context was taken.
As the number of objects increase, ||A|l typically approaches the
theoretical limit (e.g. in the case of randomly generated contexts).

|| The number of “crosses” in the cross table of the context. It is
therefore the number of attribute-object pairs in the incidence
relation. The maximum number of crosses in the cross table is
IOl

o]l The average number of attributes per object in the context, i.e. the
average intent size of atoms in the EA-lattice of the context. ||O’|| = ||Ij|
/ |lO]|. For contexts with a varying number of attributes per object, the
maximum number of attributes per object the notation max(]jO’])) is
used to indicate the maximum number of objects per attribute.

1Al The average number of objects per attribute in the context, i.e. the
average extent size of co-atoms in the EA-lattice of the context. ||A’||
= ||1]| / ||]A]- For contexts with a varying number the maximum number
of attributes per object the notation max(||A’|)) is used to indicate the
maximum number of objects per attribute.

L] The number of concepts in the lattice of the context including the unit
and zero concepts. L; indicates the lattice after the insertion of the j’th
object into the lattice.

1<l The number of arcs in the line diagram of the lattice L. ||< ||| indicates
the number of arcs in lattice L.

o1/ 11All This is referred to as the “density” of the cross table and is defined as
the proportion of crosses in the cross table relative to the total
number of possible crosses in the cross table (i.e. ||| / (lO|]AlD =
O]l 7 ||All = |A”|[7 llO]). It can, of course, be specified as a percentage
and is useful as a normalised metric to compare contexts with a
different number of attributes.

5.2.2 Concept lattice size formulae

In this section a number of formulae and equations on concept lattice aspects related to
size are derived. These will be used in deriving complexity bounds for AddAtom. Before
deriving the actual lattice formulae, a number of generic equivalences are given. These
equivalences will be used to refine the lattice formulae.

The following two generic equivalences, found in many texts on algebra and
combinatorics (e.g. Cameron (1996)), can be proved by induction. The formulas are
derived from the Binominal theorem.

2 k‘°‘°“@) =2 (5.1)
> Mmk[ﬂj =n.2"" (5.2)

53

Fug

i

gﬁ UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
Que” YUNIBESITHI YA PRETORIA

The next two equivalences, can be found in texts on mathematical analysis (e.g.
Clark(1931)), and are also proved via induction.

Figures 5.1 and 5.2 show the Boolean lattices of contexts with 3 and 4 attributes
respectively. The discussion below refers to Boolean lattices L, from a context

C = (0, A, I). These figures are included here to serve as an aid in explaining the
derivation of the lattice size equations 5.510 5.8.

Level i=0: (Q)

Level i=1:
Level i=2:

Level 1=3:

Figure 5.1: A Boolean lattice with 3 attributes (only concept intents are shown; the level of
the concept is also shown)

54

NIVERSITEIT VAN PRET
NIVERSITY OF PRET
UNIBESITHI YA PRET

cog

Level 1=0:

Level i=1:

Level i=2: °

Level i=3:

Level i=4:

Figure 5.2: A Boolean lattice with 4 attributes (only concept intents are shown; the level of
the concept is also shown)

For the purpose of discussion, the concepts in the Boolean lattice will be divided into a
number of levels, where the number of attributes in the intent of the concept indicates its
level. The variable i will indicate the level. Where multiple, successive lattices are under
discussion, the variable j will indicate the j’th lattice in the sequence of lattices (i.e. after
the insertion of the j'th object). The equations in the table below characterise important
aspects of Boolean lattices related to size. Note that for theoretical purposes an initial
lattice consisting only of a single concept with an empty intent and -extent called L, with
IILoll = 1 and ||< || = 0 is included in the equations. For the sake of simplicity only ||A] is
used since ||O]| = ||A|| for Boolean lattices. The remarks indicate how these equations have
been derived. These equations hold for Boolean lattices. It is assumed that ||O]| > 0 and
Al > 0.

Equation Remark Nr

B (| A m The total number of concepts (5.5)
L | = Zi:Um"A[} i on each level i of a Boolean
v lattice is the number of
distinct combinations of
subsets of A of size i. The
final result follows from
equation 5.1.

— oAl

(AN Inspecting figures 5.1 and 5.2 (5.6)
I~ = Zizm(,",\nlt i l it can be seen that each

_ JAI-1 / concept on any level i, has i

=l All2 arcs leading to it’s i parents.

= l Al L] Once again the number of
2 concepts on level i is the

number of distinct subsets of
A of size i. After counting the

55

UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4
g.a UNIVERSITEIT YAN PRETORIA
A 4

total number of arcs,
equation 5.2 is used to
simplify the result.

_ LI =Y _ 2 The total number of concepts (5.7)
Z j=0to]jAl ”] ” - %{\"1;10!0”;\“ in all lattices Ljaj =0to ”A”
- N follows from combining
=2.||L -1 equation 5.5 and 5.3.
g < =¥ _ i i The total number of arcs in (5.8)
Z J-Oto“:‘\ﬂ” il } Z i=oto]a] J .) all lattices L, j = 0 to [JA] can
- Z j=otofal-1 J-" F Z =0tof|AJ-1 be derived by combining
=(|Al-1).2" +1 equations 5.6, 5.3 and 5.4.
=(lAf-D.I L] +1

Non-Boolean concept lattices

Boolean FCA lattices contain the maximum number of possible concepts (i.e. unique
combinations of intent and extent) for a given number of arcs and therefore contexis that
do not give rise to Boolean lattices have fewer concepts in their lattices. The size of
arbitrary lattices is therefore bound by the minimum of the unique number of extents or
intents possible, i.e. 2™ WD,

The number of outbound arcs is bound by the unique combinations of attributes in the
intents of its parents and/or the unique combinations of objects in the extents of its
parents. In a Boolean lattice, the number of possible unique intents of the parents of a
concept ¢ is |[Intent(c)|| - 1, but non-Boolean lattices may potentially have more (up to

(m‘fe"ffg‘c(;jz)). (Using the extents of the parent concepts provides a sharper bound to the

number of outward arcs. The parent concepts p,...p,, of a concept ¢ must be unique and
therefore have at least one object in their extents in addition to that of ¢, i.e. Extent(p,) D
Extent(c). Furthermore, for any two parent concepts, p; and p;, p; # p; of ¢, Extent(p) N
Extent(p;) = Extent(c). Parent concepts can therefore have no object in common with the
extent of any other parent concept except that of ¢. The extent of any concept must also
be unique in the lattice. Given these constraints, the maximum number of parent concepts
of any c is therefore ||O]| - |[Extent(c)|| since each parent concept will have one at least
additional concept of O in addition to Extent(c). A bound for the maximum number of
outbound (upward) arcs of any concept in a lattice is therefore ||O|. In practice however
the maximum number of outbound arcs may be fewer.

Using a similar argument, but based on the intent of any concept ||A|| is the maximum
number of inbound (downward) arcs into any concept in a lattice.

Using these bounds as a base it is clear that for non-Boolean lattices of any substantial
size the number of outbound arcs {|< oupewd|| < [JO||IL]|. Using a similar argument ||< jboumndl|
< |JAJlIL|l. Since the number of outbound- and inbound arcs in any lattice should be equal
to the total number of arcs, ||< || < min(|Al}, |O])-IL{}-

Most contexts used in practical applications have ||A]| < ||O||. It is assumed that ||O]| > 0 and
||A]] > 0. The following inequalities hold in such cases:

Equation Nr

56

http:11-1).11

o
w UNIVERSITEIT VAN PRETORIA
* UNIVERSITY OF PRETORIA
Q¥ VU

NIBESITHI YA PRETORIA

” L ” Szmint[lx‘\lHiOlD (5.9)
< 2\[A?I

=<l < min(j A [[OD.[IL] (5.10)

Y o 1L 1 <TOI L] +1 511)

> oepop Il Smin(lALJOD. O JIL]+1 (5.12)
<fAflOf- L] +1

From equation 5.6 it can be seen that a Boolean lattice contains, on average %2.||A|
outbound arcs per concept and also on average Y4.||A|| inbound arcs per concept since the
total number of outbound- and inbound arcs in a lattice are equal. It is therefore clear that
the above equations do not always provide very sharp upper bounds. Where |L]| is
exponential in terms of ||A]| or ||O] it may be better to use equations 5.5 to 5.8 and
substitute ||L|| = 2*.

5.2.3 Complexity of set operations

For the purposes of calculating complexity upper bounds, it is assumed that sets are
implemented as ordered lists defined using fixed length arrays. A linear order relationship
is assumed to be defined on all possible elements of the set (i.e. set is completely ordered
as opposed to partially ordered). This does not affect the result of the algorithms but will
avoid unnecessary iterations and searches through the unordered elements of a set. A
typical strategy is to number all concepts and implement sets as bit strings with set
membership in the set indicated by the bit that correspond to the concept number. This
takes advantage of modern CPU architectures with 32 and 64 bit, bitwise operations to
improve the efficiency of set operations. Effectively this means that the following
complexity bounds will be used on sets:

Operation Complexity

Set operations: union, copy/assignment, set O(||Set;|] + ||Set,|)
cardinality

Set operations: test for subset and proper subset (¢ O(max(||Set,||, ||Sets||))
and C), test for set equality, set intersection ()

Single element insertions o(1)
Test for set membership for single element o
Set initialisation O(||Sety|)
Set cardinality O([[Set,[])

For the union, copy/assignment, set cardinality operations on concept intents the bound
O(||A])) is used whilst the bound O(J|O|}) is used for set operations on concept extents. For
subset and proper subset testing, test for set equality and set intersection operations on
concept intents O(max(||O’|])) is used, whilst O(max(]JA’[])) is used for concept extents.

57

=
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA

Que” YUNIBESITHI YA PRETORIA
These bounds are however not very sharp since in implementation a single CPU
operation would for example perform 32 or 64 comparisons on set elements.

5.2.4 AddAtom theoretical performance

The theoretical {(worst case) performance of lattice construction algorithms is expressed
using the input and output sizes of the algorithms. This is done in two ways: firstly, as the
time complexity associated with the construction of the complete lattice of the context.
Since the output size is exponential, a second complexity metric called the delay is also
used. An algorithm for listing a family of combinatorial structures is said to have
polynomial delay (Johnson et al. 1988) if it executes at most polynomially many
computational steps before either outputting each next structure or terminating. An
algorithm is said to have a cumulative delay d (Goldberg 1993) if at any point in any
execution of the algorithm with any input p the total number of computational steps that
have been executed is at most d(p) plus K.d(p) where K is the number of structures that
have been output so far. If d(p) can be bounded by a polynomial of p, the algorithm is said
to have a polynomial cumulative delay.

The number of concepts of the lattice is exponential in the worst case (i.e. a Boolean
lattice). Furthermore, the problem of determining the number of concepts in the lattice is
NP-complete (Kuznetsov 1989, 2001). In this sense, any lattice construction algorithm
unavoidably has intractable (i.e. exponential) worst case behaviour, both in time (since
each node has to be generated) and in space (since each node has to be stored). Lattice
construction algorithms are therefore differentiated in terms of their time delay
characteristics. An algorithm can therefore be considered efficient if it generates the lattice
with a polynomial time delay and space linear in the number of all concepts in the lattice.
Although “dense” contexts that approach this limit may not be used very often in practice,
the theoretical complexity of an algorithm nevertheless expresses an aspect of its
performance and is therefore relevant.

A bound for the theoretical worst-case time complexity of AddAtom will be shown below to
be O(||LI||.|JO|I*.max(JJO’|})). (The discussion will be based on the optimised form of this
construction algorithm, as described in section 4.6.)

As an aid to the discussion, appendix B contains an outline of the algorithm, highlighting
its main loops and instructions that add to its complexity characteristics, assist in the
analysis of the complexity.

One approach to estimating an upper time bound for constructing the lattice, L, from
scratch, is to consider AddAtom_o; as the upper bound for inserting a single object, o, into
the lattice (including all the time required for all the recursive calls to AddAtom and all the
calls to GetMeet). Let Housekeeping_o; be the upper bound for doing the housekeeping in
preparation for inserting o; into the existing lattice but excluding the calls to AddAtom. The
upper time bound for constructing L would then be:

O(Zjai w oyAddAtom_o+ Y., o joy Housekeeping_o;)

However, instead of attempting to derive upper bounds on each AddAtom_o;, another
more global line of reasoning route will be followed.

To this end, let AddAtom Total be the upper time bound on executing all instructions
relating to all calls to AddAtom, in order to insert all objects into L including the calls to
GetMeet. Let Housekeeping_Total be the upper bound for the total amount of time taken for
the housekeeping and preparation for the construction of the complete lattice. The
complexity of the algorithm would then be bounded by:

O(AddAtom_Total + Housekeeping_Total)
58

=
W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA

Que” YUNIBESITHI YA PRETORIA
It will be shown below that an upper bound on AddAtom_Total is O(||L||.||O|]* max(||O’|])),
and that an upper bound on Housekeeping_Total is O(L|.||O|.|Al). Under these
assumptions, an upper bound on the algorithm to construct the lattice is then:

O(ILI|- (IOl max([O° [+ [[Ol| Al

Since we are interested in order of magnitude estimates of the time for constructing a
lattice, L, the lesser term may be left out since it will be dominated by the greater when
constructing large lattices. A resulting upper bound (i.e. worst case) estimate for
constructing L is thus O(|[L||.|O|]*.max(||O’|}))-

The following three subsections deal with the complexity of each of the three parts of the
algorithm,

AddAtom complexity

Looking at the functioning of AddAtom and its parameters, it is clear that there is only one
recursive call made to AddAtom for each concept in the lattice. This is since concepts are
only created within AddAtom and there are no concepts that are deleted or duplicated.
The maximum number of generator concepts for all the lattices L; is in fact the total
number of concepts in the lattice (i.e. ||L||). Furthermore, for each generator concept that is
used as parameter to AddAtom, the outer for loop (using candidate as variable) is executed
for each of its parent concepts (a maximum of ||O]| times for each generator concept). The
maximum number of iterations of the outer for loop across all invocations of AddAtom
would therefore coincide with O(||L]|[.||Oj)).

Within the first and outer for loop of AddAtom, the maximum number of algorithmic steps is
determined by the maximum number of steps taken by GetMeet or the inner for loop (using
g as variable), whichever is biggest. NewConcept contain only concepts that are
prospective parents for the new concept and this list is reduced during each iteration.
NewConcept’s number of elements is bound by the maximum number of parents of any
concept i.e. O(]|O])). Within the inner for loop a number of set operations on sets of
concept intents are executed. The most complex of these operations is the subset and
proper subset tests which is bound by O(max(||0’|])). Therefore the number of steps taken
by the inner for loop during each iteration of the outer for loop is bound by
O(||Ofl-max([|O°[]))-

The complexity of the last for loop is dominated by the others and therefore it is not
considered in the complexity bound.

Below it will be argued that the complexity of a single call to GetMeet is bound by
O(]|0||-max(||O’|])). The number of algorithmic steps taken by all invocations of AddAtom to
inset all objects into the lattice is therefore bound by O(|L|.||O|.(||O]}. max(JjO’|p +
1O}l max([[O°[[))) = O(ILI O] max([|O"[]).

GetMeet complexity

GetMeet traces a path between the parent of a generator concept and a meet of a subset
of Intent(o) somewhere above it. The maximum number of iterations of the outer while loop
is bounded by the number of attributes in the intent of generator (i.e. O(max(]|O’|])). The
maximum number of times the for loop can be executed is bounded by the maximum
number of parents of a concept (i.e. ||O||) since each parent has at least one attribute less
in its intent. Since the instructions within the while loop is of O(1) complexity, the
complexity of a single call to GetMeet is O(J|O||-max(||O’|))).

Housekeeping_Total complexity

The complexity bound of Housekeeping_Total is determined by the second and outer for
loop (with o as variable). Within it the two inner for loops are executed O(J|L|)) times per

59

-
w UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA
object — i.e. O(Zi1 o ol = O(ILJ.lOl) times for inserting all objects. Within these for
loops the number of algorithmic steps of set operations executed are bounded by O(|[A[))
and O(l) for the first and second for loops respectively. The complexity of
Housekeeping_Total is therefore bounded by O(|[L|L.|[O|.[|AlD-

Theoretical complexity comparison

The following table summarises the algorithmic complexity for other construction
algorithms®

Algorithm Incremental / Complexity
Batch
Bordat Batch Time complexity = O(HOII.HAHZ.BL][)
Polynomial delay = O(|||O]|-|A|[")
CbO, Batch Time complexity = O([jO]|".||Al-ILID
Kuznetsov Polynomial delay = O(J|O]*.||A]])
Chein Batch Time complexity = O(HO||3.“A|[.|[L]|}
Polynomial delay = O(||O|*.J Al
Dowling Incremental Time complexity = O(|O[-JA[ILID
Godin Incremental Time complexity = O(L||")
Lindig Batch Time complexity = O(||O]*||A|l|ILI)
Polynomial delay = O(|O|.|[A])
NextClosure, | Batch Time complexity = O(|O]|*.|A[J-ILI)
Ganter Polynomial delay = O(||O|I*-|Al})
Norris Incremental Time complexity = O(JO|%[[A[[IL{D
Nourine Incremental Time complexity =
OOl + IAID-NO-[L{f)
Valichev N/A The complexity of the procedure assembling
lattices L, and L, into the global lattice L is
OOl + NAIDAMAJHTAl + (LI Al
L, and L, can however be built in parallel.
AddAtom Incremental Time complexity = O(|L||.||O]I*.max([|O’||»

For the purpose of direct comparison and since [|O’|| < ||A]], [JO’|| can be substituted with
lAll- A slightly less sharp complexity bound for AddAtom is therefore O(||L|L.|O]>.[|AlD.

The AddAtom complexity estimate is therefore cubic in nature relative to the lattice size.
This is a feature that it shares with most other algorithms. Since this estimate is not
quadratic relative to the number of concepts, as is the Nourine algorithm, it might seem
that AddAtom does not offer very much in terms of theoretical performance overall.

The complexity bound as stated is however not very sharp. One area where the
theoretical complexity is overstated is within GetMeet. The maximum length of a path in
GetMeet is stated as ||0’|| but in general no path would stretch from 0, to 1, (implied by a

® Where these algorithms have been improved as discussed in Kuznetsov and Obiedkov (2002), the
complexity of the improved algorithm is given.

60

-
w UNIVERSITEIT VAN PRETORIA

@, UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

path length of ||O’|]). It is interesting to note that if it could be proved that GetMeet return
each of the respective meet concepts above a particular generator concept only once, the
total combined length of all paths traced in calls to GetMeet to insert a single object would
not exceed the total number of concepts in the lattice. This is because none of such paths
can cross each other except at the meet of a subset of Intent(o). Under this assumption
the maximum number of iterations of inner for loop for each concept on the path is the
number of parents of that concept. The total number of iterations of the for loop across all
invocations for the insertion of one object is therefore the total number of arcs in the
lattice. Therefore O(X;.; o joill< JlI) < OIAJLIO|ILID (or OC2|A|L.|IL|) in the case of a Boolean
lattice) would be an upper bound on the complexity of all calls to GetMeet across all the
recursive calls to AddAtom to insert all objects of the context (for Boolean lattices that is).
For the algorithm as stated in section 4.6, used in the wide comparison study in section
5.4 this is not the case, but the version of the algorithm in appendix A makes use of this
optimisation. The complexity bound derived here is however still an upper bound for this
algorithm.

Another area where the theoretical complexity bound is not very sharp is in the AddAtom
part of the algorithm. The theoretical complexity bound assumes that the number of
iterations of the outer for loop is bounded by the number of arcs in the lattice. In the
algorithm itself however, only concepts with at least some attribute in common with the to-
be inserted object will be visited and therefore not all arcs will be “followed” during the
iterations of the for loop. For non-Boolean lattices with ||O’|] << ||A]f this will be a very
significant portion of the concepts in the lattice that will not be visited by the for loop. To
quantify this further, consider a Boolean lattice and an object intent o’. There are in
general 2"l concepts in the lattice that have no attribute in common with o’. Clearly for
non-Boolean lattices this number will be significantly less, but for many contexts this is still
very significant, indicating an overestimation of the overall complexity.

The use of ||0|| as the upper bound to the number of parents of a lattice leads to an
overestimate of the total number of arcs in a lattice. A case in point is the fact that
Boolean lattices have on average %2.||A]| inbound or outbound arcs per concept — far fewer
than the upper bound ||O|| used here.

The AddAtom algorithm can be easily adapted to be symmetrical and insert attributes into
the lattice and link them to their extents instead of inserting objects into the lattice and
linking them to their intents. Using the same reasoning AddCoatom, the dual incremental
concept lattice construction algorithm would have a complexity bound of
O(|L|.JJA]F - max(||A’[))) which may include smaller terms than that of AddAtom.

The best way to obtain clarity on this and other issues is via empirical studies. The next
two sections present the results of the pilot and wider empirical studies. The results of the
empirical studies support the claims on the over estimation of the theoretical complexity of
AddAtom and indicate that it does indeed perform very well and is often the best
performer of the algorithms surveyed.

5.3 EMPIRICAL PERFORMANCE: PILOT STUDY

The pilot study was conducted to establish the relative performance of AddAtom using the
code described in chapter 7 to seek prima facie evidence that would justify a wider study.
The basic strategy of the pilot study was to implement the incremental lattice construction

7 The notation a << b indicates that A is significantly smaller than b by some measure.

61

&
W UNIVERSITEIT VAN PRETORIA

0 UNIVERSITY OF PRETORIA
Que” YUNIBESITHI YA PRETORIA

algorithms of Godin et al. (1995b)® and Carpineto and Romano (1993) using the same
base code and data structures as AddAtom (described in chapter 7). The pseudo code of
the implemented algorithm can be found in appendix A (note that there are differences to
the algorithm in section 4.6). This would serve as a good indication of the relative
performance of the algorithm and clearly indicate if the time performance was worse (or
not) than that of the Godin or Carpineto algorithms, justifying the effort of a wider study.

Note that for the pilot study EA-lattices were generated and the Godin and Carpineto
algorithms were modified to generate EA-lattices.

In addition to the Godin and Carpineto algorithms, the Grand algorithm (Qosthuizen
(1991)) was also available for comparison but due to it using different data structures and
utility functions as well as being implemented in a different programming language (refer
to chapter 7 for further discussion), it was not included in the study since it would not
make a apples-with-apples comparison possible. The performance of Grand is however
worse than AddAtom in all types of contexts by a significant margin.

The pilot study comparison showed that AddAtom is indeed faster than the Godin and
Carpineto algorithms and this suggested that a more thorough study of the algorithm’s
performance would be worth while. However, it also exposed the fact that the code base
and data structures were inefficient and that a wider study would require a revised
strategy towards the data structures and utility functions (also refer to chapter 7).

For the pilot study, care was taken to ensure a valid comparison. To this end, the
algorithms were implemented on the same base-code and performance tests run under
the same platform. However, any inefficiency in the particular implementation approach
and data structures could have negatively penalised the relative performance of the Godin
and Carpineto algorithms. This is because the data structures used could have
conceivably suited AddAtom better and could have given it an unfair advantage under the
experimental comparison. To avoid this situation from influencing the outcome, a number
of additional performance metrics, other than time, were collected. These metrics tracked
basic lattice operations such as lattice closures and set operations and did confirm the
trend of the time based results.

A number of artificial and “natural” data sets were used as contexts for the experimental
comparisons. The artificial data sets were randomly generated whilst the natural data sets
were taken from the well-known UCI Machine Learning Repository (Blake and Merz
1998).

The following table provides an overview of the data sets and describes the notation used
to identify the data sets.

Data set Description

Rnd-100-YY-XXX A random data set of XXX objects. Each object possesses
exactly YY attributes, randomly chosen from 100 possible
attributes. When referring to the data set as a whole, the
notation Rnd-100-YY is used.

Bool-XX A data set of XX objects. The data set has XX attributes. Every
object has XX — 1 attributes and differs from each of the other
objects in only one attribute. The resulting lattice of this
arrangement forms a Boolean lattice. When referring to the
data set as a whole, the notation Bool is used.

8 The implementation follows the description in Godin et al. (1995b) and not the improvements suggested by
Kuzetnov and Obiedkov (2002).

62

NIVERSITEIT VAN PRET
NIVERSITY OF PRET
UNIBESITHI YA PRET

u
<

cog

Data set

Description

SPECT

A natural data set taken from the UCI repository called the
Single Proton Emission Computed Tomography (SPECT) set.
The dataset has 22 binary feature patterns and one overall
diagnosis attribute. When referring to the data set as a whole,
the notation SPECT is used.

BCW-XXX

The Breast-Cancer-Wisconsin natural data set taken from the
UCI repository. XXX indicates the number of objects in the
context. Objects were randomly selected from the data set. The
set of discrete attributes was used unaltered. The total data set
consists of 698 objects, each object has 10 attributes, whilst
each of the 10 attributes could assume any one of 10 values.
Some objects do not possess a value for a specific attribute
(the value is unknown). Such objects were still included in the
set and the unknown value was treated as an eleventh value of
that specific attribute. Each value of each attribute was treated
as a separate attribute in the experimental results. Theoretically
there were thus 10 x 11 = 110 attributes, but in practice the
data set contained only 86 attributes since all attribute values
were not observed. When referring to the data set as a whole,
the notation BCW is used.

The key metrics describing the data sets that were used are as follows:

Set name o1l lAll [l L] < | ol ilad
Rnd-100-10-40 40 98 379 312 871 10%
Rnd-100-10-45 45 100 434 351 990 10%
Rnd-100-10-50 50 98 477 413 1198 10%
Rnd-100-10-75 75 100 725 697 2197 10%
Rnd-100-10-100 100 100 975 1058 3425 10%
Rnd-100-10-150 150 100 1433 1957 6567 10%
Rnd-100-10-200 200 100 1915 3031 10423 10%
Rnd-100-30-15 15 100 392 426 1206 26%
Rnd-100-30-20 20 100 520 799 2588 26%
Rnd-100-30-25 25 100 643 1313 4589 26%
Rnd-100-30-30 30 100 779 2183 7962 26%
Rnd-100-30-35 35 100 914 3329 | 12623 26%
Rnd-100-30-40 40 100 1039 4288 @ 16652 26%
Bool-07 7 7 42 128 448 86%
Bool-08 8 8 56 256 1024 88%

63

&

W UNIVERSITEIT VAN PRETORIA
0 UNIVERSITY OF PRETORIA
QP VU

NIBESITHI YA PRETORIA

Set name o1l llAll |1l IILd < 1| o7l 7iiAd
Bool-09 9 9 72 512 2304 89%
Bool-10 10 10 90 | 1024 | 5120 90%
Bool-11 11 11 110 2048 | 11264 91%
Bool-12 12 12 132 4096 | 24576 92%
BCW-030 30 69 300 240 564 14%
BCW-035 35 71 350 317 795 14%
BCW-040 40 75 400 312 751 13%
BCW-045 45 77 450 323 783 13%
BCW-050 50 84 500 499 [1349 12%
BCW-075 75 84 750 701 | 1948 12%
BCW-100 100 84| 1000 1091| 3331 12%
BCW-200 200 86| 2000 1704 | 5455 12%

Tests for the pilot study were performed on an Intel 110 mhz Pentium processor based
platform with 256 megabytes of memory under the Windows 2000 Professional operating
system. Note that EA-lattices were generated for the pilot study.

The following graphs summarise the results.

64

Pilot study - time (Rnd-100-10)

800
700 A
600
500
400
300

200
100 e

ra
Y I —
1

Time (seconds)

0 0.5 15 2 2.5 3 3.5
lIL1I (*000)

—o— AddAtom —®— Godin —&— Carpineto

Figure5.3: Pilot study performance test results for the Rnd-100-10 data set plotting time
performance against lattice size (||O’||/||4|| = 10%)

Pilot study - time (Rnd-100-30)

1400
—~ 1200
B 1000 //
S 800 7
L 600 /
[«}]
£ 400 -

0 '“‘///ﬁ;—!”/glk T © |4‘>
0 1 2 3 4 5

lILII (‘000)

—o— AddAtom —®— Godin —— Carpineto

Figure 5.4: Pilot study performance test results for the Rnd-100-30 data set plotting time
performance against lattice size (||O’||/||4|| = 26%)

65

Pilot study - time (Bool)

1600
1400
1200
1000 A
800 L
W
600
400

200 L

Time (seconds)

lIL1] (*000)

—o— AddAtom —®— Godin —&— Carpineto

Figure 5.5: Pilot study performance test results for the Bool data set plotting time
performance against lattice size (||O’||/||4|| = 86-92%)

Pilot study - time (BCW)

1000
» 800 4
el
: /
S 600
3 /
< 400
: /
i= 200 -
0 -—Od,ée/ ﬂ#!fw‘/,j

lIL1l (000)

—o— AddAtom —=— Godin —— Carpineto

Figure 5.6: Pilot study performance test results for the BCW data set plotting time
performance against lattice size (||O’||/||A|| = 14-12%)

The following table summarise the relative algorithmic performance on the largest
contexts in the experimental comparison (the construction time is expressed as a
percentage of the time of the fastest algorithm for a particular context):

66

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo VYUNIBESITHI YA PRETORIA

Performance index (fastest algorithm = 100%)
Rnd-100-10 Rnd-100-30 Bool BCWwW

L] 1955 | 3029 | 2183 4288 | 2046 699 1702
Context 10% | 10% 26% 26% | 86-92% 14-12% | 14-12%
density

AddAtom 100% | 100% 100% 100% 100% 100% 100%
Godin 320% | 337% 360% 540% 804% 400% 738%
Carpineto 4753% 5840% 5717% 27067%

Discussion: The results clearly indicate that the Carpineto algorithm is not very efficient
in constructing lattices of any type of context. The AddAtom algorithm performance was
consistently better than that of the Godin algorithm. The relative performance was
however not the same across the different contexts. The Godin algorithm performed
worst, compared to AddAtom in the Boolean and BCW contexts.

Set operations are operations such as the union, intersection, subtraction etc. The graph
below compares the number of set operations used by each of the algorithms in the
construction of the lattices. (Similar results were obtained with all data sets.)

Pilot study - set operations (Bool)

_ 20
b3
83 15 A
o
58 /
g @ 10
£ 2
g 5
2 =
g - N
® o 2 . —
0 1 2 3 4 5
|IL{| ('000)

—o— AddAtom —®— Godin —— Carpineto

Figure 5.7: Pilot study performance test results for the Bool data set plotting the number of
set operations against lattice size (||0’||/||A]| = 86-92%)

Node references are instructions that require the reference to a member variable of a
concept object (e.g. its intent, extent or testing whether it is a concept that still exists in L).
The graph below compares the number of node operations used by each of the algorithms
in the construction of the lattices.

67

Pilot study - node references (Bool)

120
“’8 100 A
<)
go /
c o 80
5 /
= 60
28
= g 40
=
Z2 9 20 ¢
E 0--5*2-‘/; 7
0 1 2 3 4 5

|ILIl (‘000)

—o— AddAtom —%— Godin —— Carpineto

Figure 5.8: Pilot study performance test results for the Bool data set plotting the number of
node operations against lattice size (||O’|//||Al| = 86-92%)

The graph below compares the number of closure operations used by each of the
algorithms in the construction of the lattices.

Pilot study - closure operations (Bool)

1200
% g 1000 .
< 800
“é S 600
0 ®
_g g 400 /
3 & 200 =

0 -..&-‘;, : S : :

0 1 2 3 4 5

lILII (000)

—o— AddAtom —=— Godin —— Carpineto

Figure 5.9: Pilot study performance test results for the BCW data set plotting the number
of closure operations against lattice size (||0’||/||4|| = 86-92%)

For the sake of brevity, all performance test results are not included here. It is interesting
to note that the biggest performance gap was in the natural data set (BCW). The results
show that the number of operations in general follows the trend of the time-based results,
except that the Godin algorithm uses less closure operations. The use of less closure
operations is a feature of the Godin algorithm which is defined in terms of set operations
on intents and extents rather than closure operations and is therefore not inconsistent with
the results.

68

The results of the pilot experimental performance tests indicate that AddAtom indeed
performs very well compared to the Godin and Carpineto implementations. The relative
performance was good both from a time and number of basic operations perspective. This
result is in line with the relative theoretical performance of AddAtom.

However the time taken to construct the lattices was well outside that reported by other
authors such as Kuznetsov and Obiedkov (2001, 2002) when compensating for the
differences in CPU size. This issue is further discussed chapter 7 and is mainly due to
structural inefficiencies in the data structures and utility functions used. In addition, the
tests did not include comparisons with the current best incremental lattice construction
algorithms (e.g. that of Nourine with the best theoretical complexity). The performance
tests were therefore not conclusive and lead to a further set of wider experimental
comparisons.

In the wider performance comparison discussed in the next section it can be seen that the
relative performance of the Godin implementation is in line with the results obtained in the
pilot study and that AddAtom indeed perform better than other algorithms in most
contexts.

5.4 EMPIRICAL PERFORMANCE: WIDE STUDY

In the past number of years a number of lattice construction algorithms with improved
performance have been published. Meanwhile the computing power and memory capacity
of even personal computers are now sufficient for building very large lattices. The result of
these two factors is that the relative importance of fast and efficient construction
algorithms has decreased whilst making more advanced applications using larger concept
lattices possible. For practical purposes it is however still relevant to make use of the best
known algorithms wherever possible since computing resources are not infinite.

The first comparative study of several algorithms was Guénoche (1990) whilst more
recently Kuznetsov and Obiedkov (2001, 2002) have studied a large number of the most
well-known algorithms. Kuznetsov and Obiedkov (2002) is currently the most
comprehensive study of algorithmic performance and therefore provide a useful
benchmark with regards to the algorithmic performance of lattice construction algorithms.
The author has collaborated with S.A. Obiedkov (2003) and a version of the AddAtom
algorithm adapted to Obiedkov‘s base code and data structures was implemented and
included in Obiedkov’s on-going research. The results® show that AddAtom performs very
well in constructing lattices from most data sets compared to other incremental and non-
algorithms and is often the best performer.

The key metrics describing the data sets that were used are as follows:

Data setused | [[O] | [|A[l | [Il <1l 10711 /Il
Rnd-100-4-100 100 [100 400 2222 4936 4%
Rnd-100-4-200 200 [100 800 4256 9939 4%
Rnd-100-4-300 300 100 1200 6522 15496 4%
Rnd-100-4-400 400 [100 | 1600 9153 22050 4%

9 The author acknowledge contribution of S.A. Obiedkov in conducting the performance tests and making the
data available for inclusion in section 5.4.

69

&

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

Data setused | [[Of | [[All | [T [IL] 1<l 10711 7 11All
Rnd-100-4-500 500 | 100 2000 12032 29598 4%
Rnd-100-4-600 600 | 100 2400 15093 37943 4%
Rnd-100-4-700 700 | 100 2800 18213 46792 4%
Rnd-100-4-800 800 | 100 3200 21511 56601 4%
Rnd-100-4-900 900 | 100 3600 24816 66522 4%
Rnd-100-25-010 10| 100 250 1286 3568 25%
Rnd-100-25-020 20| 100 500 7057 23568 25%
Rnd-100-25-030 30| 100 750 18962 69122 25%
Rnd-100-25-040 40 | 100 1000 37296 143136 25%
Rnd-100-25-050 50| 100 1250 63118 251416 25%
Rnd-100-25-060 60 | 100 1500 95619 391827 25%
Rnd-100-25-070 70| 100 1750 135618 569250 25%
Rnd-100-25-080 80| 100 2000 181877 778487 25%
Rnd-100-25-090 90 | 100 2250 236729 1031820 25%
Rnd-100-25-100 100 | 100 2500 300257 1329793 25%
Rnd-100-50-10 10| 100 500 5537 22152 50%
Rnd-100-50-20 20| 100 1000 128748 644901 50%
Rnd-100-50-30 30| 100 1500 752491 4112730 50%
Rnd-100-50-40 40 | 100 2000 2493490 14388396 50%
Bool-10 10 10 90 1024 5120 90%
Bool-11 11 11 110 2048 11264 91%
Bool-12 12 12 132 4096 24576 92%
Bool-13 13 13 156 8192 53248 92%
Bool-14 14 14 182 16384 114688 93%
Bool-15 15 15 210 32768 245760 93%
Bool-16 16 16 240 65536 524288 94%
Bool-17 17 17 272 131072 1114112 94%
Bool-18 18 18 306 262144 2359296 94%
SPECT 267 23 2042 21549 110589 33%

70

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

The following set of algorithms that generate the line diagram of a (CFA) lattice were used
for the comparison. Note that these algorithms incorporate the improvements and
changes described in Kuznetsov and Obiedkov (2002) alluded to between brackets.

CbO.

Ganter (use binary search to find the canonical generation of a concept).
Norris (use a tree).

Bordat (not using a tree).

Godin (use heuristic based on the size of concept extents).

Lindig.

Nourine.

Valtchev (using horizontal splitting of the object set).

AddAtom (interpretation of Obiedkov (2003) similar to the algorithm in section 4.6
but using a different version of GetMeet that has a greater complexity bound
namely O(max([[0’[*.|[Ol])))-

Note that for the wide study, FCA-lattices rather than EA-lattices were generated.

Tests were performed on a Pentium 4-2GHz with 1 Gigabyte RAM. Also note that a much
faster processor was used than that used in the pilot study.

Wide performance study - time (Rnd-100-4)

A10 L = _
g, 7 7
s 0 7 z
g 2 o s
i= 0 = == T 1
0 5 10 15 20 25 30
[IL]| (‘000)
—e—CbO Ganter —&— Norris

—<¢—Bordat —%— Godin —&— Lindig
—+—Nourine —2—Valtchev =—6—AddAtom

Figure 5.10: Wide performance study test results for the Rnd-100-4 data set plotting the
time performance against lattice size (||0’||/||4|| = 4%)

Analysis: In random contexts with a very low density (4%) the Bordat algorithm performs
the best with AddAtom coming in second.

71

IT VAN PRETORIA
Y OF PRETORIA
HI YA PRETORIA

m
-
c
)
o
@
2,
O
E
=
350
[IL[] ("'000)
—e—CbO Ganter —A&— Norris

—>—Bordat —%—Godin —&— Lindig
—+— Nourine —&—Valtchev —6—AddAtom

Figure 5.11: Wide performance study test results for the Rnd-100-25 data set plotting the
time performance against lattice size (||0’||/||4|| = 256%)

Analysis: In random contexts with a relatively modest density (25%) the AddAtom
algorithm performs the best with Godin coming second.

Wide performance study - time (Rnd-100-50)

—~ 100 —

S 60 X/

[}

L 40

g 20 >
E

0] ! I
0 500 1000 1500 2000 2500 3000
liL il ('000)
——CbO Ganter —&— Norris

—*—Bordat —¥— Godin —&— Lindig
—+—Nourine —&—Valtchev ——AddAtom

Figure 5.12: Wide performance study test results for the Rnd-100-50 data set plotting the
time performance against lattice size (||0’||/||4|| = 50%)

Analysis: In random contexts with a relatively high density (50%) AddAtom is still the best
performer with Norris second and Nourine a close third.

2

EIT VAN PRETORIA
TY OF PRETORIA
THI YA PRETORIA

w
T
c
o
o
[}]
@
(]
=
[= 5 :
0 50 100 150 200 250 300
[IL]| ("000)
—e—CbO Ganter —a— Norris

—*—Bordat —%—Godin —e— Lindig
—+— Nourine —&—Valtchev —6— AddAtom

Figure 5.13: Wide performance study test results for the Bool data set plotting the time
performance against lattice size (||O’||/||4]| = 90-94%)

Analysis: In artificial contexts that create Boolean lattices (very high density 94%),
Valtchev performs the best with AddAtom second and Norris a close third. These contexts
can be described as the theoretical limit of random contexts in the sense that the
attributes in these contexts are functionally completely independent in that no association
rules can be formulated upon any of the attributes of these contexts whereas random
contexts of a similar density generated using random functions that are not exceedingly
large will always have at least some association rules on some of the attributes.

Wide performance study - time (SPECT)

160
140 [
120 |
100 —
80

60]
40 - —

28 .ﬁll—l,l_l,[_lllfﬂl |

PR SR NCR
(8 O O)
65?5’ Qo‘ 00 éo (@) 00,

Time (seconds)

Figure 5.14: Wide performance study test results for the SPECT data set plotting the time
performance for different algorithms (||0°|/||4|| = 33%)

Analysis: In a context taken from natural or “real life” data the performance gap between
AddAtom and the nearest best performers (in this case Bordat and Godin) even bigger
than with artificial contexts. This observation is however based on only one data point.

73

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qo VYUNIBESITHI YA PRETORIA

The table below summarise the performance of the algorithms relative to the best

performing algorithm in the largest of each type of context. The letters “B” and “I” are used
to indicate which of the algorithms are incremental and batch algorithms.
Performance index (fastest algorithm = 100%)
Rnd-100-4 | Rnd-100-25 | Rnd-100-50 Bool SPECT
L] 2222 300257 2493490 2493490 21549
Context 4% 25% 50% 90-94% 33%
density
CBo (B) 1884% 385% 182% 151% 1973%
Ganter (B) 3960% 445% 196% 164% 2462%
Norris (I) 1461% 320% 166% 119% 1743%
Bordat (B) 100% 162% 404% 374% 684%
Godin (I) 493% 164% 3057% 19431% 1457%
Lindig (B) 24636% 529% 206% 177% 4330%
Nourine (1) 4564% 465% 172% 133% 2606%
Valtchev (-) 3261% 5411% 2326% 100% 17304%
AddAtom (1) 341% 100% 100% 113% 100%

From the above table it is clear that the various algorithms perform differently across the
various context densities. Only AddAtom perform very well (albeit not always the best)
over the range of context densities. The graph below depicts this graphically but the data
points used are only that of the largest contexts. It shows the average time taken per
inserted concept for the various artificial contexts and plots it against the density of the
context. It clearly shows that both Bordat and Valtchev perform well at opposite ends of
the spectrum, but that each (especially Valtchev) performs relatively poorly at the other
end. In the graph Boolean contexts are seen as the extreme case of random contexts
since there is no implication rule on any of the attributes as would be expected in a
infinitely large random context with
A7l =10l = llAll - 1= O] - 1.

Based on the results and compared to the other algorithms AddAtom is more robust in
having less variation in its performance across the range of random contexts in that the
standard deviation of the time taken per concept to construct the lattice for these various
context were lower. Therefore should a heuristic be used to select the algorithm in a multi-
algorithm strategy and the incorrect algorithm be chosen, AddAtom could behave in a
more predictable and narrower range of performance that others.

The relative closeness of the AddAtom and Nourine performance confirms that the
theoretical performance upper bound of AddAtom as derived is overstated.

74

Wide performance study - time (largest
artificial contexts)

©c o o
> o
/j

o © o

= N W
1
L~

(miliseconds)

Average time taken
per concept

0 3= — .
0% 20% 40% 60% 80% 100%
Context density - [|O’||/||A]]

r—t— Norris —¢— Bordat —+—Nourine —=—Valtchev —6— AddAtom

Figure 5.15: Wide performance study test results for the largest of the artificial contexts
comparing the time taken per concept to the context density

It should be noted that the graph is constructed on very few data points on contexts of
different sizes and the picture it presents is therefore not conclusive. It does however lead
to a hypothesis: “for random or artificial contexts, the density of the context is a good
predictor of algorithm with the best algorithmic performance”.

When looking at the natural context, there is however a significant difference between the
time taken to build the lattice for the SPECT dataset compared to any of the random
contexts with similar sized lattices. Once again the data is insufficient to support any
conclusions, but the observation lead to a number of hypotheses such as “the algorithmic
performance of the various algorithms is significantly different between random and
‘natural’ contexts” and “context density is not a good predictor of algorithmic performance
for ‘natural’ contexts”. Investigating these hypotheses is an area for further study and will
be useful for a lattice construction strategy of using a combination of algorithms that
depend on the context and event the object to be inserted. Such a strategy is proposed by
Kuznetsov and Obiedkov (2002).

As was discussed in section 5.2.4, the theoretical complexity bound of AddAtom derived
here is not very sharp, especially for non-Boolean lattices and the actual performance of
the algorithm may be significantly better than what is suggested by the cubic nature of the
theoretical complexity. The experimental results support this claim and also indicate the
extent to which the performance is dependent on the nature of the context itself. It is also
interesting that the three best performing algorithms in this study namely Bordat, Valtchev
and AddAtom are not of the same type. Bordat is a batch algorithm, AddAtom incremental
whilst the approach of Valtchev can not be classified as either. AddAtom is however the
best performing incremental algorithm for the contexts included in the study.

The good performance of AddAtom can be attributed to the focussed way it traverses the
L., lattice to find generator concepts. Instead of visiting a substantial number of the
concepts in L, it focuses only on concepts that have at least some attributes in common
with the object to be inserted. At each generator concept, the search for additional
generator concepts higher up in the lattice is more and more focussed resulting in an
efficient algorithm.

Lastly, it should be noted that the AddAtom algorithm and not AddCoatom was in the
tests. As was indicated in section 5.2, AddCoatom has a smaller theoretical performance

75

&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Qo VYUNIBESITHI YA PRETORIA

bound. In preliminary tests an approximately 10% performance improvement (in terms of
the number of set and lattice operations) in all random contexts was noted on the code
used for the pilot performance study when using AddCoatom. Although this might reflect
inefficiencies in the implementation; it is likely that some improvement can be gained in
certain contexts by using AddAtom in stead of AddCoatom. Other algorithms may also
benefit from this approach. This is another area of further study.

5.5 CONCLUSIONS

From the results of the performance tests it is clear that AddAtom is a very good lattice
construction algorithm and compares well with other algorithms from a theoretic but
especially from an experimental point of view. It does however not perform the best
across all types of contexts. In contexts with either very low or very high densities other
algorithms (Bordat in low density contexts and Valtchev in high density contexts) perform
better than AddAtom. In these contexts AddAtom is still the second best performer.
AddAtom is however the best performing incremental lattice construction algorithm.
Further study is however required to better quantify the size and nature of the AddAtom
performance relative to other algorithms in especially non-random contexts.

Kuznetsov and Obiedkov (2001, 2002) have suggested that the choice of algorithm should
be based on the context. The study shows that the context density may be a good
predictor for such a test in the case of random contexts but due to the small number of
data points as well as the completely different performance on natural data sets it is clear
that this is a topics for further study. The density of a context can be pre-computed with
relatively little effort before building the concept lattice of a context and could be a very
useful tool in selecting an appropriate lattice construction algorithm for building a lattice.
This strategy may also benefit from using algorithms adapted to insert attributes (i.e.
construct the lattice column by column from the cross table) as well as objects (i.e.
constructs the lattice row by row from the cross table) into concept lattices.

On natural / “real world” contexts AddAtom performs particularly well compared to random
contexts. Although the performance tests in this study do not fully explore this, AddAtom
seems to be a prime contender, for the best performing algorithm for natural data
contexts, especially since its performance range was relatively limited compared to other
algorithms.

76

