
Chapter 4: The AddAtom lattice 
construction algorithm 

In this chapter we describe and define a concept lattice construction algorithm called 
AddAtom. This is done in two parts. In the first, in section 4.1, we give an informal 
description of the strategies used in the AddAtom lattice construction algorithm using a 
graph theoretic view. Then, in section 4.2, we describe the relation of the intent- and 
extent representative operations defined in chapter 2 to lattice construction and show that 
these operations have a direct relationship to the structural properties of a lattice. In 
section 4.3 the AddAtom algorithm is formally defined in pseudo code using a set theoretic 
point of view. This is followed by an example of the execution of the algorithm (section 
4.4). Since the algorithm defined in section 4.3 is very inefficient as stated, section 4.6 
considers efficient implementations of the algorithm derived from an efficient algorithm for 
determining the intent- and extent representative operations (section 4.5). The chapter 
concludes with a general discussion of the algorithm (section 4.7). 

4.1 INFORMAL DESCRIPTION 

This section is an informal discussion of the AddAtom concept lattice construction 
algorithm. The description incrementally builds an understanding of the algorithm by 
describing the various strategies used in the algorithm. This approach is taken to give the 
reader an intuitive understanding of lattice construction without trying to decipher the 
concepts of a more formal description. In the next section a formal description of the 
algorithm is given. Readers familiar with lattice construction may wish to skip this section. 

As a starting point, an observation that can be made about the inefficient algorithm 
defined in the previous chapter (BruteForceEAConstruct) is that it ignores the information 
already contained in the lattice Ln. The algorithm computes all concepts and consider 
each as possibilities regardless of whether there is a likelihood of finding any new EA
formal concept or not. However by inspecting the nodes and arcs in L, the creation of a 
number of concepts could have been avoided (e.g. generating only combinations of 
attributes that actually occur in I). The process of creating arcs could also be significantly 
improved by using the "information already contained in the lattice". This idea of using the 
information already contained in the lattice is the key to the AddAtom algorithm. It is 
therefore worthwhile to take a closer look at the lattice before defining the algorithm in 
order to see how the lattice itself can be used to more efficiently construct Ln+1• 
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Figure 4. 1: Nodes in a lattice are connected to the meet of subsets of their intents 

In general, any node is always connected to the meet of some subset of the attributes in 
its intent. For example node n9 in figure 4.1 has an intent of {nj, n2, n}, n4, ns}. In this case n9 
is connected to n6 and n7, the meets of {nj, n2, nJ} and {n}, n4, ns} respectively. Since the 
node itself is the meet of all the attributes in its intent it seems that if we want to insert a 
new object node e into the lattice, we must find the meets mI" .mj of all subsets of n's 
intent and connect the new node to some of these meets. However if such a meet is 
spanned by another meet (not the unit concept), lower down in the lattice, it must be 
ignored. Only the lowest, or minimal, meets should be taken. 

In the figure 4.2 object node e with intent A = {a, b, c, d} was inserted into a lattice (in the 
following, the intent attributes of all objects to be inserted are shaded in grey). The set of 
the meets of all the subsets of A is {a, b, c, d, mJ, m2, m]}. Since a, b, c, d, m, are covered by 
either m2 or m} they can be ignored and e only connected to m2 and m}. By inspection, it 
can be verified that the resulting line diagram is indeed a lattice in that the supremum and 
infimum of any pair of concepts are unique (keep in mind that the unit and zero nodes 
were omitted in the figure but are implied). 

Figure 4.2: node e with intent A = (a, b, c, dj was inserted into a lattice by connecting it to 
m2 andm3 

This observation suggests a possible lattice construction algorithm. The approach is to 
find the minimal meets of Intent(o) (Le. all the meets of all possible subsets of Intent(o), 
excluding the unit node, not spanned by another meet). This set of nodes can be found by 
computing the set of meets of all possible subsets of Intent(o) and then removing the zero 
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node and any other node that is spanned by another node lower down in the lattice. Note 
that this corresponds to the definition of the approximate intent representatives of Intent(o) 
or AIR(L, Intent(o)) defined in chapter 2. 

e 

Figure 4.3: Lattice before inserting node m with intent lntent(m) = fa, b, c, d, ej to create 
lattice in figure 4.4 

This approach to a lattice construction algorithm does however not always function 
correctly. Consider the lattice in figure 4.3 and suppose that the node m with intent 
Intent(m) = {a, b, c, d, e} is inserted into the lattice. Using this approach it creates the lattice 
in figure 4.4, Le. because the set of approximate intent representatives of {a, b, c, d, e} in 
figure 4.3 is {n4, ns}, m is connected to both n4 and ns as shown in figure 4.4. (To aid the 
readability of the figures, the newly inserted nodes are shown in black.) On closer 
inspection, we see that m has now gained an extra attribute in its intent namely f via node 
n4 (Le. instead of m's intent being {a, b, c, d, e} as was intended, it is in fact {a, b, c, d, e, f} 
in figure 4.4). It thus seems as if this approach only works when the intent representative 
concepts span only attributes in Intent(m) (Le. when they are exact). If not, then the intent 
of the new node could unintentionally be extended. 

e 

Figure 4.4: Lattice after inserting node m with Intent(m) = fa, b, c, d, ej, but showing that m 
now hasf in its intent in addition 

Since n4 is not an exact meet of Intent(m) in figure 4.3, it cannot be connected directly to 
the new node. We might be tempted to connect m to n" 02 and ns, leaving us with the 
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graph in figure 4.5 below. But as indicated using thick arcs, both m and n4 are lower 
bounds of {n], nz}. Since the greatest lower bound of {n], nz} is non-unique, the lattice 
property does not hold and this approach is therefore also not correct. 

e 

Figure 4.5: Connecting m to nJ and nz creates multiple greater lower bounds of {nJ, nz} 

The solution to the problem lies in the creation of a new intermediate node n3 spanning nl 
and nz and connecting n4 and m to n3 as in figure 4.6. In doing so arcs (n4' nl) and (n4' nz) 
had to be removed and the new arcs (n3' nl), (n3' nz), (n4' n3) and (m, n3) had to be created. 

Figure 4.6: To insert m into the lattice a new node n3 needs to be created 

Although we define the AddAtom algorithm in a more formal way in the next section, the 
key to the algorithm is that new nodes can be directly linked to their exact intent 
representatives. Additional nodes must be inserted when the intent representatives are 
approximate. By doing this, we are in effect creating the exact meets of the intent when 
they do not already exist in the lattice. 

The algorithm we are now informally defining needs one extra part: the process of 
creating the exact meets must be recursively applied. This is demonstrated in the 
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following example where a new node m with intent {a, b, d, e, f, h, g} must be inserted into 
the lattice in figure 4.7. 

h 

n1 

Figure 4.7: A lattice where a new node m with intent (a, b, d, e, f, h, g) must be inserted 

The meet of {a, b, d, e, f, h, g} in the lattice in figure 4.7 is {nd. Since n6 is approximate (it 
spans c in addition to {a, b, d, e, f, h, g}), a new node (nlO) with intent {a, b, d, e, f, g, h} must 
be created above n6' This node creates an exact meet to which m can be connect to. 
However the same reasoning needs to be applied to nlO the insertion of itself - it should 
also be connected the minimal meets of {a, b, d, e, f, g, h} and these meets should be 
exact. However, when calculating the minimal meets of {a, b, d, e, f, g, h}, n6 and nodes 
below it needs to be excluded from consideration. The set of minimal meets of {a, b, d, e, f, 
g, h} excluding n6 is therefore {n4' n5}' Node n5 is an exact meet of {a, b, d, e, f, g, h} and nlO 
can be directly connected to it. Node n4 is however not exact and an additional node 
needs to be created above n4 in the same way nlO was created above n6 (refer to figure 
4.8). The insertion of nlO can also be viewed as the insertion of an object with the intent of 
{a, b, d, e, f, h, g} into the sublattice of which n6 is the zero node. In this context (Le. n6 is 
considered to be the zero node of a sublattice) the set of approximate intent 
representatives of {a, b, d, e, f, h, g} is {n4, n5}' 

Recursively continuing with this process we see that n3 and n2 are also approximate 
meets. Each time such approximate meets are encountered a node is created above the 
approximate meet. The intent of the new node is that subset of the intent of the 
approximate meet where only those attributes that are in the intent of the original object 
(m) are kept. The nodes n9, ns and n7 are therefore created above the approximate meets 
n4, n3 and n2 respectively resulting in the lattice in figure 4.8. 
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Figure 4.8: The lattice of figure 4.7 after inserting node m with intent (a, b, d, e, f, h, g) 

4.2 INTENT- AND EXTENT REPRESENTATIVE OPERATIONS AND LATI"ICE 
CONSTRUCTION 

At a high level of abstraction, lattice construction algorithms may be thought of as 

searching the space of all concepts (i.e. 'P(O) x 'P(A)) to find all formal or EA-formal 
concepts. This can for example be done by intersecting the intents of the concepts and 
searching for sets of attributes each of which are not already present as the intent of some 
other concept. At a somewhat lower level of abstraction, an incremental lattice 
construction algorithm that inserts a new object 0 into a lattice Li to create a new lattice 
Li+1 may be described (Valtchev and Missaoui 2001) as a search for three sets of 
concepts in L i : generator concepts, G(o), that give rise to new concepts; modified 
concepts, M(o), whose arcs must be modified in order to integrate 0 into their extents; and 
old concepts, U(o), that remain entirely unchanged. In addition, a set of new concepts N(o) 
to be inserted into Li to give Li+1 must also be constructed. 

The discussion below will indicate that the intent representative operations may be 
deployed to identify generator, modified, old concepts and new concepts, and may 
consequently be used to construct concept lattices. 

The intent representative operations reflect some of the properties of a lattice and its line 
diagram. For any concept c in a lattice L (potentially a concept sublattice), EIR(L, Intent(c), 
c) is the set of parent concepts of c and therefore defines the cover relationships of c. This 
property is due to EIR being the minimal meets, not spanning c, that span only contains 
subsets of Intent(c) in their intents. Similarly EER(L, Extent(c), c) is the set of child concepts 
of c. 

However, this property only holds for concepts that already belong to an existing lattice, 
Li. When inserting a new object, 0, into Li to create Li+l' it will not necessarily be true that 
the set EIR(Li, Intent(o), Inf'(Intent(o))) represents al/ the parent concepts of 0 in Li+1• 

Indeed, an incremental lattice construction algorithm will invariably have to construct (or 
'spawn') additional intermediate concepts that are not yet part of L i . This is in order to 
achieve the objective that EIR(Li+h Intent(o), 0) is the set of parent concepts of c in Li+1• 
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Furthermore, these additional intermediate concepts and their associated cover 
relationships in the new structure also have to comply with the lattice property in that any 
pair of concepts must have a unique infimum and supremum. Therefore in addition to 
creating the parent concepts of 0, other concepts could be created recursively and 
connected higher up in the lattice in order for this uniqueness property to hold. 

It can be shown that an incremental lattice construction algorithm that inserts an object 0 

into a lattice Li to give 1,+1> merely needs to intersect the intent of 0 with the intent of 
current concepts in Li to determine the intent of concepts of Li+1• Any intents of derived in 
this way that are not the intents of concepts in Li are that of new concepts that must be 
added to Li to derive Li+1• Put differently, the intent of each of these new concepts 
corresponds to the intersection of Intent(o) with one of the concepts in G(o), the generator 
concepts for o. In fact, this property is precisely what determines a generator concept for 0 

- that its intersection of its intent with Intent(o) gives the intent of a new concept. This is 
however a computationally inefficient way to construct lattices and hence the search for 
efficient construction algorithms. 

For simplicity, we will not consider contexts and their corresponding lattices in which the 
intent of an object is a subset of the intent of some other object (I.e. it is assumed that 
objects are not comparable). Also assume that the extent of an attribute is not a subset of 
the extent of any other attribute (I.e. it is assumed that attributes are not comparable). In 
other words only contexts where the attributes and objects are the co-atoms and atoms 
respectively of the FCA lattice, and where the FCA lattice is therefore isomorphic to the 
EA-Iattice are considered. This will not detract from validity of the discussion but will 
prevent the discussion from being cluttered by having to consider some exceptions 
associated with such contexts. 

Consider inserting an object 0 into L j • The trivial case is when there are no generator 
concepts except for the zero concept, OL' In this case all concepts in AIR(Li • Intent(o), OL) 
are exact meets. The object should be inserted, as an atom, above OL and connected to its 
parent concepts as given by EIR(Li , Intent(o), OL)' OL is the object's only child concept. 
(Note that this is by virtue of the simplification of the context as described in the previous 
paragraph.) The extent of each concept in M(o) also needs to be updated as a result of 
the insertion of o. 

If EIR(Lj , Intent(o), Q) * AIR(Li , Intent(o), OL) then there is at least one concept in L j that is 
the meet of a subset of Intent(o) that spans attributes other than those in Intent(o) (Le. the 
meet is not exact). All non-exact meets are elements of the set T in the definition of EIR(Li , 

Intent(o), 0) (refer to section 2.9). For each such non-exact meet, a new concept must be 
created whose intent corresponds to the intent of the generator concept less the additional 
attributes. Each such meet is a concept in G(o). Therefore, if EIR(Lj , Intent(o), 0) * AIR(Li , 

Intent(o), 0), generator concepts of 0 do exist in L. Indeed the concepts in the set AIR(Li, 
Intent(o), 0) - EIR(Li, Intent(o), 0) are all generator concepts, the intersection of the intent of 
each of these generator concepts with Intent(o) does not represent the intent of any 
concept already contained in L. (If it did, then that concept would be an element of EIR or 
AIR.) (Note that these are not the only generator concepts as explained below.) An 
incremental concept lattice construction algorithm can thus compute the minimal (but not 
all) concepts in G(0) if it can compute the intent representative operations. For the 
purposes of this discussion, it will be assumed that efficient algorithms to calculate AIR 
and EIR are indeed available. 

The next 'level' of the elements of G(o) can be found by using the intents of the minimal 
concepts in G(o) restricted to Intent(o) as a generating set and then calculating their 
respective EIR and AIR sets (i.e. using lntent(g) n Intent(o), g E G(o) for calculating ElR 
and AIR}. This strategy can be recursively applied to calculate all elements of G(o). 
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If all concepts in G(o) are known, then the new concepts to be inserted can be determined 
as follows. Each element g of G(o) gives rise to a new concept n E N(o) (N(o) being the set 
of new concepts inserted in Li to yield Li+l) with Intent(n) =Intent(g) n Intent(o) and Extent(n) 
= Extent(g) u {o}. Some of the parent concepts of n could be newly created concepts of 
N(o) in Li+l higher up in the lattice whilst the others are elements of EIR(Li, Intent(o), g). 
Before connecting n, all elements of N(o) must be generated since n might be connected 
to one of them. The child concepts of n are given by EER(Li+h Extent(n), n). g will be one of 
the c~lild concepts but it could have additional child concepts. Each of these child 
concepts will be in N(o) corresponding to another generator concept lower down in the 
lattice in a similar way as the parent concepts. 

From this description it thus follows that the set of concepts in G(o) is partially ordered. 
The concepts in M(o) are all the exact meets of subsets of Intent(o) in Lo. Elements of G(o) 
are all approximate meets of Intent(o). The elements of U(o) are those concepts not in 
either G(o) or M(o). 

u2 

g1 =meet(L, Intent(o» 
Intent(g1)" Intent(o) 

Figure 4.9: The relationship between C(o), M(o), U(o) and N(o) when inserting 0 with 
lntent( 0) ={a2' a3, a4, a5, a7. as, a9} into the lattice 

Figure 4.9 shows the lattice concepts of Li as larger circles. They comprise of U(o), M(o) 
and G(o). Membership of a particular set is indicated by the prefix u, m and g in the 
concept labels respectively and attributes are prefixed by a. In the example, object 0 with 
Intent(o) = {a2, a3, a4, as, a7, as, a9} is to be inserted. The elements of G(o) form a partial order, 
indicated by the thick arcs, with gl as zero concept and IL as unit concept. The rest of the 
lattice concepts are not shown and are indicated by thin arcs that do not end/start in 
concepts. These concepts are members of U(o) and will remain unchanged. The elements 
of M(o) are all located above the largest concepts of G(o). The elements of N(o) are 
superimposed on the concepts in Li and shown as smaller, grey shaded, concepts 
connected by dotted arcs. Each element of N(o) is shown above its respective generator 
concept. Note that the concepts of N(o) are not yet properly connected into Li to form Li+l' 
As explained, gl E G(o) and is in fact OL and nl E N(o) is in fact the object o. 
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These ideas are made more explicit in the formulation of the AddAtom lattice algorithm 
defined in the next section. 

4.3 DEFINITION OF THE ADDATOM ALGORITHM 

In this section the algorithm hinted at in the two previous sections is formally defined using 
pseudo code. For the purpose of reference we call the algorithm AddAtom since it inserts 
an atom concept (Le. an object) above the zero concept into the lattice. As defined the 
algorithm is conceptually simple but very inefficient. Efficient versions of the algorithm are 
discussed and defined later on in the text. Once again we only consider contexts that 
have objects that are unrelated to other objects and attributes that are completely 
unrelated to other attributes as explained earlier. In the corresponding lattice all the 
objects are thus atoms and the all attributes, coatoms. 

The algorithm involves the recursive application of the ideas presented in the previous 
section. The algorithm is initiated by a set of attributes representing the intent of the object 
to be inserted (i.e. as a new atom) as well as the zero concept as the first generator 
concept. Each recursive AddAtom call creates aNewConcept with Intent(aNewConcept) = 
anAttributeSet. After each recursive call of the algorithm a new concept has been inserted 
into the lattice above the generator concept. This newly inserted concept has also been 
properly connected to its parent concepts (possibly involving further recursive AddAtom 
calls to create the necessary concepts). The called function returns this newly created 
concept and the calling function inserts this concept into the upper cover of its respective 
aNewConcept. Thus the recursive calls construct the additional concepts required for the 
insertion of the object. In this way there is no need to separately compute the covers of 
the newly inserted and modi'fied concepts since the nature of the intent representative 
sets as traversed by the recursive calls already indicate these relationships (as depicted in 
the structure of G(o) in figure 4.9). 

Using parameter names to imply types the AddAtom algorithm is defined as follows: 
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11=================================================================== 
Function AddAtom (L, anAttributeSet, aGeneratorConcept) 

Return aNewConcept 
11=================================================================== 
IIPre-condition: 
II L is a partial order such that: 
II 1) anAttributeSet is a set of attributes 
112) UpwardClosure(L, aGeneratorConcept) is a complete sublattice 
113) Meet(L, anAttributeSet) = aGeneratorConcept 
114) aGeneratorConcept is a generator concept for 
II anAttributeset and an approximate meet of anAttributeSet 
11=================================================================== 
IIPost-condition: L is a minimally updated in such a way 
II to ensure that: 
II 1) UpwardClosure(L, aGeneratorConcept) remains a sublattice 
112) Meet(L, anAttributeSet)= aNewConcept (an exact meet, AIR=EIR) 
II 3) aNewConcept covers only aGeneratorConcept and nothing else 
114) All generator concepts above aGeneratorConcept 
II have been visited and the corresponding 
II new concept has been created an appropriately 
II linked into L 
11=================================================================== 
ApproxMeets = 

AIR(L, anAttributeSet, aGeneratorConcept) 
EIR(L, anAttributeSet, aGeneratorConcept) 

II Remove all elements of EIR from AIR 
II Pre-condition 2 guarantees that the meets are unique 
II Next, generate N(o) 
Do While (ApproxMeets i 0) 

Select and mark any x E ApproxMeets 

SubAttr = anAttributeSet n x.Intent 

bNewConcept = AddAtom(L, SubAttr, x) 

Recompute ApproxMeets 

Remove all marked concepts from ApproxMeets 


Od 
II Post-condition 4 achieved and AIR = EIR 
aNewConcept = CreateConcept(L) 
aNewConcept.Extent = aGeneratorConcept 
aNewConcept.Intent = anAttributeSet 
II Next, connect elements of N(o) to aNewConcept 

For V x E EIR(L, anAttributeSet, aGeneratorConcept) 
CreateArc(L, aNewConcept, xl 
IIAssume no effect if arc already exists 
DeleteArc(L, aGeneratorConcept, x) 
IIAssume no effect if arc does not exist 

Rof 
II Next update the extents of N(o) and M(o) 
If aGeneratorConcept = OL then 

For V x E UpwardClosure(L, aNewConcept) 
x.Extent = x.Extent U {aNewConcept} 

Rof 
Fi 
II Post-condition 1 & 2 achieved 
CreateArc(L, aGeneratorConcept, aNewConcept) 
II Post-condition 3 & 5 achieved 
Return aNewConcept 
End AddAtom 
11=================================================================== 
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Thus, to incrementally insert a new object 0 into a lattice for the context (A, 0, I) the 
function call AddAtom(L, Intent(o), OL) would be used. Note that L is passed as an in/out 
parameter. It is assumed that the individual attributes of the object 0 are already present in 
the lattice (i.e. as coatoms). 

As indicated a list of marked concepts needs to be kept in order that such concepts are 
not revisited in the Do While ...Od loop. 

To operate on arbitrary contexts the AddAtom algorithm should be slightly extended to 
consider the following cases: 

• 	 The object is the first to be inserted into an empty Lo. 

• 	 The object to be inserted into the lattice is in fact not an atom in L j (I.e. Intent(o) is a 
subset of some other object's intent}. 

• 	 The object has same intent as another object in the context. 

• 	 The attributes of the object are not all coatoms. 

• 	 More than one attribute may correspond to a single concept in L; (i.e. the extent of 
two attributes is the same). 

• 	 Some of the attributes in Intent(o) do not already exist in L j • 

• 	 Some modifications are required for FCA lattices (since all objects are not atoms 
and all attributes not coatoms). 

In addition to these the AddAtom algorithm can be modified to operate on compressed 
pseudo-lattices (refer to chapter 6) in that it respects the virtual arcs and compressed 
pseudo-lattice properties and does not assume the existence of all formal concepts in L j • 
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4.4 ADDATOM EXAMPLE 


AIR(l, {a, b, d, e, f}, n3) = {nS, n4, f} 

EIR(l, {a, b, d, e, f}, n3) ={d, e, f, 


AIR(l, {a, b, d, e, f, h}, n1) ={n3, h) 

EIR(l, {a, b, d, e, t, h}, n1) ={d, e, t, h, 


AIR(l, {a, b, d, e, f, 9, h), Dl ) {n1, n2} 

EIR(L, {a, b, d, e, t, 9, h), Dl ) = {d, e, f. h, nS,n2} 


Figure 4.10: A lattice before inserting 03 with Intent(oJ) = fa, b, d, e, f, g, h} indicating G(o) as 
well as the AIR and EIR sets of elements of G(0) 

As an example consider inserting object 03 with Intent(03) {a, b, d, e, f, g, h) into the lattice, 
L, in figure 4.10. Since the algorithm does not consider and visit irrelevant concepts, only 
the relevant part of L is shown the relationships to the rest of L are shown by arcs that 
do not terminate in concepts. 

L is an in/out parameter in the algorithm. Thus, throughout the algorithm, operations use L 
as it exists at that point in the computation - not in its state when that given level of 
recursion was invoked with L as a parameter. 

The algorithm begins with the function call AddAtom(L, {a, b, d, e, f, g, hI, Od. ApproxMeets 
has to be computed, and this requires that both AIR(L, {a, b, d, e, f, g, hI, Od and EIR(L, {a, 
b, d, e, f, g, hI, 0L) have to be computed. In this case S ={iL' a, b, d, e, f, g, h, nj, n4, n3, n2, nd 
(refer to section 2.9 for the definition of AIR and EIR). These concepts are shown in black 
or grey in figure 4.10. Other concepts are in white. The concepts in black are generator 
concepts as will become clear later. nj and n2 are the two minimal concepts in S, therefore 
AIR(L, {a, b, d, e, f, g, h}, Od ={nj, n2}' 

In order to find EIR(L, {a, b, d, e, f, g, h}, Od, we see that T {n4' n3, nd and therefore S - T 
= {lL' a, b, d, e, f, g, h, nj, nz}. Thus, EIR(L, {a, b, d, e, f, g, h}, Od, (the set of minimal 
concepts, excluding OL, in S - T) is {d, e, f, h, nj, n2l. As a result ApproxMeets (AIR EIR) is 
{ n 1 }. n j is therefore a generator concept. 

The first loop of the algorithm is thus executed, where x =nj. Intent(L, nJ) = {a, b, c, d, e, f, 
h} and SubAttr ={a, b, d, e, f, hI. Thus, AddAtom(L, {a, b, d, e, f, h}, nl) is recursively called. 
Note that nl is an approximate meet of {a, b, d, e, f, g, h} since it also spans the attribute c. 
To create an exact meet that does not span the additional attribute, c. The algorithm 
searches for any additional approximate meets above nJ and creates additional concepts 
that will form exact meets. 
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In tracing the function call AddAtom(L, {a, b, d, e, f, h}, nl) we see that AIR(L, {a, b, d, e, f, 
h}, nl) ={n3, h} and EIR(L, {a, b, d, e, f, g, h}, nl) ={d, e, f, h, ns, ll2} so that ApproxMeets = 
{ll3}' SubAttr ={a, b, d, e, f} with n3 being an approximate meet of SubAttr, again spanning c 
in addition. ll3 is thus a generator concept. AddAtom(L, {a, b, d, e, f}, n3) is therefore 
recursively called to create an exact meet above n3' 

AddAtom(L, {a, b, d, e, f}, ll3) calculates AIR(L, {a, b, d, e, f}, ll3) {f, ns, n4} and EIR(L, {a, b, 
d, e, f}, n3) ={d, e, f, ns}, so that ApproxMeets ={n4}' 

Once again ll4 is a generator node and AddAtom(L, {d, e}, n4) is called recursively. Since 
AIR(L, {d, e}, ll4) = EIR(L, {d, e}, n4) = {d, e}, ApproxMeets 0 and the algorithm progress 
past the while loop to create n6 whose intent is to become {d, e} (figure 4.11). Moving to 
the next loop of AddAtom EIR(L, {d, e}, n4) ={d, e} and therefore arcs are created between 
n6 and d and n6 and e. n4 disconnected from both d and e. Finally after completion of the for 
loop an arc is created between n4 and n6 and AddAtom(L, {d, e}, n4) terminates with n6 as 
the result which is passed back to AddAtom(L, {a, b, d, e, f}, n3)' 

AddAtom(L, {a, b, d, e, f}, n3) now creates n7 and calculates EIR(L, {a, b, d, e, f}, n3) = {ll6' n5, 
f} (n6 being the newly created exact meet). It then creates arcs from n7 to ns, n6 and f. The 
arcs from ll3 to ns and f are deleted. An arc is created between n3 and n7 and the function 
returns n7 as the result. 

AddAtom(L, {a, b, d, e, f, g, h}, nl) creates ns and since EIR(L, {a, b, d, e, f, g, h}, nl) = {h, n7} 
arcs from each to ng are created. The arc between nl and h is deleted. An arc between n) 
and llg is created and AddAtom(L, {a, b, d, e, f, g, h}, nl) terminates with ns as result. 

Finally AddAtom(L, {a, b, d, e, f, g, h}, Od creates 03 and create arcs between 03 and ll2 and 
llg. Since 03 is a newly inserted opject it is added to the extent of all the concepts above it. 
OL is connected to 03' This concludes the recursive AddAtom calls and AddAtom returns 
the inserted object 03 to the calling function. Since L was an in/out parameter, it now refers 
to the newly created lattice. 

The resulting EA-Iattice is shown in figure 4.11 with the newly created concepts shown in 
grey and their corresponding generator concepts in black. The AddAtom function calls are 
also shown next to the respective generator concepts. 
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AddAtom(L, (a, b. d, e, fj, n3) 

AddAtom(L, (a, b, d, e, f, g, h), al ) 

Figure 4.11: The AddAtom example after inserting 03 with Intent(03) = fa, b, d, e,/, g, hi, G(o) 
and N(0) as well as the recursive AddAtom calls are indicated 

AddAtom thus starts at the bottom of the lattice at the zero concept and traverses the 
lattice upward, creating new concepts associated with 'approximate' meets. The new 
concepts form exact meets of the intent of the object. The recursion terminates when 
AddAtom encounters only 'exact' meets (Le. elements of M(o) to which the newly created 
concepts are connected. In this way the recursive calls efficiently search the lattice for 
generator concepts and, whilst dOing so, use the inherent structure of Lo to search for, 
create and connect the concepts of L j • 

The example also shows how the structure and ordering of concepts in Lo can be used to 
efficiently eliminate many concepts in the lattice from consideration by using the AIR and 
EIR operations. Some incremental lattice construction algorithms resort, in a sense, to a 
more brute force approach in considering a much larger set of concepts in order to test for 
generation concepts or in order to intersect the intent of the object with these concepts. 

4.5 AN ALGORITHM FOR AIR AND EIR 

It might be argued that the AddAtom algorithm is merely a restatement of an incremental 
lattice construction algorithm in terms of AIR and EIR but that the calculation of AIR and 
EIR is computationally inefficient. This research indicates that there are indeed efficient 
algorithms for calculating AIR and EIR but these rely on the explicit representation of the 
line diagram or cover relationship as a data structure. 

One way of efficiently calculating AIR and EIR is to use the concept of marker propagation 
in which so-called "markers" are propagated downward along all paths leading from each 
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of the attributes of the object o. Afterwards the number of markers that have accumulated 
on each of the concepts is counted. The number of markers thus indicates how many 
attributes of 0 a concept has in its intent. Concepts with zero markers therefore need not 
be considered as candidates for being minimal meets in AIR or EIR. Concepts with a 
higher number of markers are lower down in the lattice than those with a lower number of 
markers. Furthermore, there will be many concepts that have the same number of 
markers. The number of markers increases as one moves down in the lattice. 

There are three key observations to finding AIR (and EIR) using marker propagation. The 
first key observation is that any concept that has somewhere below it in the lattice another 
concept with more markers than itself is not a candidate for AIR, since it can not be 
minimal. The second key observation is that a concept is only a candidate if it does not 
have a parent concept which has the same number of markers as itself (i.e. if it is the 
highest concept with that number of markers and has no parent with the same number of 
markers). This is because if any concept has a parent concept above it with the same 
number of markers, it cannot be a greatest (i.e. highest) lower bound of a subset of 
Illtellt(o). The third observation is that when searching for candidate concepts by starting 
with those with the highest number of markers and eliminating all concepts above and 
below them from consideration, all candidate concepts will be found. 

Using markers one thus has to search for all concepts that have the largest number of 
markers accumulated upon them but that have no concept below them with more 
markers. All such concepts are candidate concepts, but only those that have no concept 
above them with the same number of markers are elements of AIR. 

Figure 4.12 is part of a lattice before inserting object 0 into it. Suppose Q is the set of 
attributes associated with 0 and markers are propagated down from each attribute. The 
concepts are labelled by the number of markers accumulated on them (i.e. the number of 
attributes of Q it spans). Arcs to the rest of the lattice are shown as lines ending in small 
circles without concept numbers. Those arcs ending in filled/solid circles indicate arcs to 
attributes in Q and those to unfilled circles indicate arcs to unique attributes not in Q. The 
marker count is therefore the number of filled small circles above each concept. 

To search for AIR(Q) the set of concepts with the highest number of markers (5 markers) 
is considered. In this case the set is {ll2], ll24, ll25, ll26}' ll25 and ll26 have a concept above 
them with the same number of markers so they can be discarded from the set, leaving 
{ll21> ll24}' Next we eliminate all the concepts in ll21 and ll24'S upward and downward closure 
from consideration and continue searching for concepts with the highest number of 
markers. In the remaining concepts, ll27 has the highest number of markers with 4. After 
eliminating its upward and downward closures from consideration the only concepts with 
more than zero markers that remain are ll12, lll7, lll8 and ll23 with three markers each. Since 
lll7, lll8 and ll23 have concepts above them with the same number of markers, lll2 is the last 
remaining element of AIR(Q). Therefore AIR(Q) = {lll2' ll21> ll24, ll27}' These concepts are 
shown in black. They are all generator concepts of 0 but are not the only generator 
concepts of 0 (the other generator concepts are ll4, ll6, ll7, ll8, lllO, lll4 and llI9)' 
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Figure 4. 12: Part of a lattice before inserting object 0 into it showing AIR( 0) in black. Each 
concept (n] to n27) is labeled with the number of markers / attributes of 0 that has 
accumulated on it. 

This process formalised in the following algorithm: 
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11====================================== 
Function AIR(L, anAttributeSet) Return aConceptSet 
II ========================================================== 
IIPre-condition: 
II L is a concept lattice with anAttributeSet a non-empty subset of 
II L's attributes 
11============================================= 
IIPost-condition: 
II aConceptSet contains the minimal (possibly ) meets 

II of anAttributeSet or AIR(L, anAttributeSet) 

II ============================================================= 

NotVisited = (/) 
MaxAttr 0 
Let attrCount[c] = 0 for all c E L 

For ~ a E anAttributeSet 

For ~ b E DownwardClosure(L, a) 

attrCount[b] = attrCount[bl + 1 

NotVisited = NotVisited u {b} 

If attrCount [b] > MaxAttr then 


MaxAttr = attrCount[b] 
Fi 

Rof 
Rof 
Candidates = (/) 
Do While (NotVisited f (/) and MaxAttr > 0) 

Let d be any c E NotVisited with attrCount[d] MaxAttr 
If such a c does not exist then 

MaxAttr = MaxAttr 1 
Else 

I I If d has concepts above it with the same number of markers 
II find the one that is the greatest 
Found = False 
Do While Not Found 

Found = True 


For ~ p E Parents (d) 

If attrCount attrCount[d] then 


d = P 

Found = False 

Exit For 


Fi 

Rof 


Od 

Candidates = Candidates u {d} 
II Remove the upward closure of d from further 
II consideration - its elements can not be minimal meets 
UCD UpwardClosure(L, d) 
NotVisited = NotVisited UCD 
II Remove any candidates that are greater 
II than d - they can not be minimal 
Candidates = Candidates UCD 
II Remove all concepts below d since they have MaxAttr 
II markers or have been considered 
DCD = DownwardClosure(L, d) 
NotVisited = NotVisited DCD 

Fi 
Od 
Return Candidates 
End AIR 
II ============================================================== 
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The calculation of EIR can be done in a similar way but only concepts that are exact must 
be considered as candidates. This process can be fast-tracked by eliminating the union of 
the downward closure of all attributes not in Intent{0) from consideration before 
propagating the markers. The calculation of AER and EER can be done using the same 
strategy, but this time propagating markers in the opposite direction and appropriately 
changing the direction of the relevant operators in the algorithm. 

The algorithms of the intent- and extent operations were defined in terms of the closure 
and set operations. When representing sets as strings of bits in memory, these operations 
can be very efficiently performed on modern architectures using 32 or 64 bit words. The 
calculation of AIR and EIR is therefore very efficient. 

Since the intents and extents of the concepts in the lattice can be derived from the 
upward- and downward closures of the concepts in the line diagram, these need not be 
calculated explicitly. 

It is also possible to have attrCount pre-computed when the AIR etc. will be computed for a 
subset of A. This optimisation is considered in the efficient AddAtom algorithm defined in 
the next section. 

4.6 EFFICIENT ADDATOM ALGORITHM 

The AddAtom algorithm as described in section 4.3 is not optimal in terms of efficiency. A 
number of basic performance improvements can be made on the algorithm. Examples 
include the possible avoidance of recalculation of ApproxMeet and the processing of the 
generator concepts in the order of the size of their intent. The calculation of both the exact 
and approximate intent representative sets can also be computationally inefficient and 
may duplicate many operations due to the similarity between the two sets. The following 
algorithm is an efficient version of the AddAtom algorithm of section 4.3. It builds on the 
ideas of the calculation of AIR and avoids the repeated and calculations of AIR and EIR. 
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II 
Function OptimisedAddAtom{aContext) Return aLattice 
11================================================ 
L CreateEmptyLattice() 

NewConcept(L) 
OL NewConcept(L) 
OL. Intent aContext.Attr 

For V a E aContext.Attr 
= NewConcept(L) 


anAttributeConcept.Intent = {a} 

CreateArc(L, OL, anAttributeConcept) 

CreateArc(L, anAttributeConcept, lL) 


Rof 

For V 0 E aContext.Obj 
II Calculate attrCount[x] , the number of attributes in o.Intent 
II that occur in x.Intent 
Let attrCount[x] = 0 for all x E L 

For V x E L 

attrCount[x] = I Ix. Intent n o.Intentl I 


Rof 
NewObject = AddAtom(L, o.Intent, OL, attrCount) 


For V x E UpdwardClosure(NewObject) 


x.Extent x.Extent U {oJ 

Rof 

Rof 
Return L 
End OptimisedAddAtom 

II 
Function GetMeet(L, target, 	aConcept, attrCount) 

Return returnConcept 
II 
IIPre-condition: 
II L is a concept lattice, attrCount[aConcept] = target 
11=================================================================== 
IIPost-condition: 
II returnConcept is the greatest upper bound/concept in L with 
II attrCount[returnConcept] = target 
II ============================================== 
returnConcept aConcept 
ParentIsMeet True 
Do While ParentIsMeet 

ParentIsMeet False 


For V Parent E ConceptParents(L, aConcept) 

If attrCount[Parent] = target then 


returnConcept = Parent 

ParentIsMeet = True 

Exit For 


Fi 

Rof 

Od 
Return returnConcept 
End GetMeet 

11=================================================================== 
Function AddAtom(L, anIntent, GeneratorConcept, attrCount) 

Return aConcept 
II 
IIPre-condition: 
II 1) 	 (L, GeneratorConcept) is a complete sublattice 
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II 

II 2) is the meet of anIntent and is approximate 

II 3) attrCount[c] Intent(c)nIntent(newObject) 
/I 
IIPost-condition: 
1/ is the greatest upper bound/concept in L with 
1/ attrCount[returnConceptl = target 

======================= 
CandidateParents = ConceptParents(L, GeneratorConcept) 

NewConceptParents = 0 

For V Candidate E CandidateParents 

newIntent Candidate. Intent n anIntent 
Xf newIntent # 0 

Xf 	Candidate.Intent # newIntent then 
aMeet GetMeet(L, I InewIntentl I, Candidate, attrCount) 
Xf aMeet.Intent # newIntent 

II If aMeet is approximate it is a generator concept and an 
II exact meet needs to be created 
aMeet = AddAtom(L, newlntent, aMeet, attrCount) 

Fi 
Else 

aMeet Candidate 
Fi 
addMeet = True 
For V g E NewConceptParents 

Xf aMeet.Intent k g.Intent 
addMeet = False 
Exit For 

Else Xf g.Intent c aMeet.lntent then 
NewConceptParents = NewConceptParents {g} 

Fi 
Rof 
Xf addMeet then 

NewConceptParents NewConceptParents U {aMeet} 
Fi 

Fi 
Rof 
NewConcept CreateNewConcept(L) 

NewConcept Extent GeneratorConcept.Extent 

NewConcept.Intent anIntent 

attrCount[NewConcept] = attrCount[GeneratorConcept] 


For V 9 NewConceptParents 
DeleteArc(L, GeneratorConcept, g) 
CreateArc(L, NewConcept, g) 

Rof 
CreateArc(L, GeneratorConcept, NewConcept) 
Return NewConcept 
End AddAtom 
11=================================================================== 

Some optimisations are still possible, but these do not change the basic structure of the 
algorithm as stated above. Appendix A contains the pseudo code for one such optimised 
version of AddAtom that amongst other strategies considers concept parents in 
descending order of their attrCount value. This allows for the removal of many additional 
concepts from consideration. 
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4.7 DISCUSSION 

Initially some of the meets of subsets of Intent(o) are approximate meets (i.e. generator 
concepts). After each completion of a recursive call, additional concepts have been 
created that would now form the exact meets of those subsets of Intent(0) and replace the 
approximate meets. The algorithm terminates when all meets of all subsets of Intent(0) are 
exact with regards to Intent(o). Initially, L is a lattice but as new concepts are generated 
that are not yet fully integrated to the lattice structure, some parts of L may violate the 
lattice properties up until the completion of all levels of the recursion. When terminating, 
the AddAtom algorithm ensures that all concepts in UpwardClosure(L, aGeneratorConcept) 
form a lattice. Since the first AddAtom call uses OL as the generator concept, L will be a 
lattice when that AddAtom call terminates. 

The AddAtom algorithm generates the new concepts and cover relationships in one step 
and therefore seems to be more focussed than incremental lattice construction algorithms 
that first generate the concepts and then search and generate the upper covers of 
concepts using a separate function such as Godin et al. (1991) and Carpineto and 
Romano (1993, 1996b). Experiments to date (discussed in chapter 5) also suggest 
AddAtom is more efficient. 

The algorithm exploits the relationships between concepts already represented in the 
lattice to efficiently search for the generator concepts using the intent representative 
operations. To this extent the algorithm makes explicit use of the line diagram that 
represents the original lattice structure when searching for G(o) by means of the ordering 
relationship and the intent representative operations rather than considering all concepts 
at once in a more brute force search. Indeed, the intent representative operations 
themselves imply a ordering of the generator and new concepts in L!. 

A very important property of the algorithm is that it can operate on sublattices where the 
formal concept lattice of a context is not used as input. This is due to the fact that the 
algorithm is entirely general in not requiring the lattice to have a specific set of atoms or 
coatoms (Le. those representing the attributes and objects) but not necessarily that of the 
formal concept lattice or EA-Iattice (similar to those concept sub lattices created in 
compressed pseudo-lattices). Such lattices are not closed with respect to the intersection 
of intents or the union of extents. The only requirement is that anAttributeSet consists only 
of coatoms (and not necessarily attribute concepts of the context). The operations used 
are therefore based on closure operations rather than intersections of intents. Such 
lattices are for example under consideration in compressed pseudo-lattices where the 
lattice is not closed with regards to the intersection of intents. Not all lattice construction 
algorithms are suitable for applications using sub-lattices in this kind of way. 

An optimised, object-oriented version of the algorithm was implemented and tested in C++ 
(chapter 7). In addition, the implementation also implements the concept of a compressed 
pseudo-lattice (chapter 6). The algorithm therefore takes the existence of virtual- and 
lattice arcs into consideration during its operation. 

Since the direction of the operations can be reversed (e.g. meet replaced by join, EIR by 
EER, atom by coatom, etc.) a dual for the AddAtom algorithm namely AddCoatom can be 
defined. In the implementation this was achieved by adding an additional parameter 
named aDirection to all lattice operations to indicate the direction in which the operation 
should operate. 

The next chapter (chapter 5) analyses the algorithmic performance of the algorithm by 
comparing the performance of AddAtom to that of other lattice construction algorithms 
both theoretically and experimentally. 
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