
Chapter 3: Lattice construction 


This chapter discuss the considerations when algorithmically constructing a concept 
lattice or rather the line diagram of the concept lattice. This is done through the 
formulation of an ineffective lattice construction algorithm. 

3.1 ALGORITHMIC LATTICE CONSTRUCTION 

Lattice construction algorithms use A, ° and I of a context C = (0, A, I) as input (or a 
labelled version of cross table as shown in the incidence relation of the Living Context in 
figure 2.2 in chapter 2). All the concepts are discovered and connecting arcs representing 
the cover relationship are constructed between appropriate pairs of concepts. The basic 
output of such an algorithm is thus a set containing the concepts of the lattice as well as a 
set of arcs connecting these concepts. 

3.2 INCREMENTAL VS. BATCH LATTICE CONSTRUCTION ALGORITHMNS 

There are two basic strategies for algorithmically constructing a concept lattice form I. The 
first is to consider the whole context and construct the lattice in a non-incremental or batch 
way (Le. if more objects are added to the context, the whole lattice must be reconstructed 
from the start). (Bordat (1986), Chein (1969), Ganter (1984), Kuznetsov (1993), Lindig 
(1999, 2000), Zabezhailo et al. (1987» have followed this strategy. The second strategy is 
to incrementally build the lattice, adding objects to the lattice until the lattice of the whole 
context is constructed. In each invocation of an incremental algorithm an existing lattice Li 
is used as input. The new object is added to the lattice along with any new concepts and 
attributes that may be required to create a new lattice Li+l. Therefore unlike the non­
incremental strategy, a valid lattice exists after each iteration of the algorithm. The 
incremental algorithm will also modify the arcs of Li to create L i+l . Godin (1991), Carpineto 
and Romano (1993, 1996b), Oosthuizen (1991), Dowling (1993) and Norris (1978) have 
followed an incremental lattice construction strategy (refer to section 5.1 for references to 
more algorithms). 

The main advantage of incremental lattice construction algorithms is that new objects can 
efficiently be added to the lattice without rebuilding the whole structure and therefore the 
incremental construction algorithms are often used. This may however be at some 
expense since the algorithm cannot optimise across all objects in the context. 

3.3 CONSTRUCTING THE LINE DIAGRAM 

A number of published non-incremental lattice construction algorithms only generate the 
set of concepts of the lattice and do not generate the line- or Hasse diagram that 
represents the cover relationships between lattice elements. Although there are 
applications such as the generation of all implication rules of a context in which only the 
set of concepts is used, the majority of lattice-based applications do explicitly use the 

24 

 
 
 



ordering of concepts in terms of generalisation and specialisation. This ordering is after all 
one of the primary benefits of lattice-based applications. 

For the purposes of comparing the algorithmic performance of various lattice construction 
algorithms a common framework is required and therefore it is argued that only 
construction algorithms that do produce the line diagram of the lattice should be 
considered since they have a more general application. Kuznetsov and Obiedkov (2002) 
have adapted a number of the non-incremental algorithms that do not generate the line 
diagram to generate it. 

3.4 AN INEFFICIENT BATCH LAITICE CONSTRUCTION ALGORITHM 

A simple way to demonstrate the basic considerations and challenges in concept lattice 
construction algorithms is to consider a very inefficient construction algorithm which uses 
the basic definition of an EA-Iattice to construct the lattice data structure. (Note that the 
algorithm can be easily adapted to formal concept lattices by changing the conditions for 
testing.) 

The BruteForceEAConstruct algorithm below, "blindly" applies the deIinition of the EA-Iattice 
in a very inefficient way. From the definition of EA-concepts it is clear that all the concepts 
of an EA-Iattice can be discovered by enumerating and inspecting all possible 

combinations of E k: 0 and F k: A (i.e. 'P(O) x 'P(A)) and then inspecting each couple (E, F) 
to test whether it is EA-formal. Once all the lattice concepts have been discovered, the 
definition of the cover relationship between concepts is used to test each pair of concepts 
to determine whether they cover each other. As one might expect this algorithm is very 
inefficient since it inspects all possible combinations of attributes and objects without 
having any strategy to prune the search space. 

25 

 
 
 



11================================================================= 
Function BruteForceEAConstruct (anObjSet, anAttrSet, 


anlncidenceRelation) Return aLattice 

11===================================== ================== 
CreateNewLattice(L) 

L. Concepts = 0 

For V E ~(anObjSet) 

For V F E ~(anAttrSet) 


II Determine E' 


E' = 0 

For V 0 E E 


For V a E anAttrSet 
If oIa with I = anlncidenceRelation then E' E' U {a} 

Rof 
Rof 
II 	Determine F' 
F' 	 = 0 

For V a E F 

For V 0 E anEntSet 
If oIa with I anlncidenceRelation then F' F' U {a} 

Rof 
Rof 
II Test against EA-formal concept definition 

If IIEII 1 and F=O' then L.Concepts L.Concepts U {(E, F)} 

If II F II 1 and E=A' then L. Concepts L. Concepts U {(E, F)} 

If E 0 and F = anAttrSet then L.Concepts =L.Concepts U {(E, } 

If F 0 and E = anObjSet then L.Concepts L.Concepts U {(E, F)} 

If F'= E and E' F then L.Concepts L.Concepts U {(E, F)} 


Rof 

Rof 

II Discover the cover relationships 
L.Cover 0 II L.Cover is a set of concepts in the form (b, c) this 

II assumes a unique symbol is associated with each 

For V x E L.Concepts II x and yare concepts in the form (E, F) 

For V x E L. Concepts , x * y, x y 

CoverFlag = True 


For V Z E L.Concepts, Z * x, Z * Y 

If X ~EA Z ~EA Y then CoverFlag = False 


Rof 

If CoverFlag then L.Cover L.Cover U {(x, y)} 


Rof 

Rof 

Retrun L 

End BruteForceEAConstruct 

11=================================================================== 

Because of the non-specific and unfocussed way in which the algorithm creates concepts 
and arcs it soon becomes hopelessly inefficient for all but the smallest of contexts. 

This algorithm does however address the basic functions of a concept lattice construction 
algorithm: 

• 	 Generating all the concepts of the lattice and representing them in a data 
structure. 

26 

 
 
 



• 	 Discovering the cover relationship between the concepts and representing it in a 
data structure. 

There is however a number of other issues that need to be addressed in order to be more 
efficient: 

• 	 Avoiding the generation of duplicate concepts or at least determining whether a 
concept is generated for the first time. 

• 	 Efficiently testing and/or generating the cover relationships. 

• 	 Efficiently searching for concepts in the set of concepts that has been generated 
up to that point. 

• 	 Avoiding the generation of cover relationships that might be deleted later in the 
algorithm. 

One important property of the algorithm is that it is non-incremental in that we cannot 
incrementally construct the lattice by starting with a lattice and adding a new object to 
create a new lattice - the whole lattice needs to be constructed anew. With an incremental 
algorithm we can create a lattice Ln+l with n + 1 objects by taking the lattice of n objects, Ln 
and add the n + 1 'th object. The key to the incremental algorithm is the observation that 
the generated lattice (Ln+1) always contains all the concepts of the original lattice (Ln) but 
concepts were either added, modified or left unchanged. Such an algorithm will discover 
and new concepts and arcs needed to create Ln+l as well as deleting arcs where the newly 
created concepts redefine the cover relationship between specific concepts. This is the 
strategy followed by the AddAtom algorithm defined in the next chapter. 

Another important property of the algorithm is that it constructs the set of all concepts of 
the lattice as well as the line diagram of the lattice. In applications such as those using 
association rules where only the set of concepts are required, the last part of the algorithm 
can be skipped. Section 5.1 lists a number of published lattice construction algorithms and 
compare them with regards to their key characteristics. 

Although this algorithm can be improved upon in a number of ways, we will not pursue this 
further but will instead define a new algorithm using more elegant strategy in the next 
chapter. 

27 

 
 
 


