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Summary 

In this dissertation some of the real world deviations from the assumptions 
made in the Black-Scholes option pricing framework is investigated. Special 
attention is paid to volatility, the standard deviation of stock price returns. 
Unlike the assumption of constant volatility of increments in Brownian mo
tion, volatility ill the market is stochastic. Market models allowing for sto
chastic volatility are no longer complete as in the Black-Scholes framework. 
Options in incomplete markets are harder to price since investors demand 
higher returns for taking additional risk. 

Duan (1995) proposed an option pricing measure for incomplete mar
kets, due to stochastic volatility, called the Local Risk-Neutral Valuation 
Relationship (LRNVR) . Under the LRNVR, the local risk neutral measure 
(Q) is equivalent to the real world measure (P), the conditional expected 
return under the Q measure equals the risk-free rate and the conditional 
one period ahead V"ariances under both measures are equal, P almost surely. 
The LRNVR holds for consumers with familiar utility functions. 

Stock returns are assumed to follow a Generalized Autoregressive Con
ditional Heteroscedastic (GARCH) process. This process is a discrete time 
statistical time serie.~ that is calibrated over stock returns. In this disserta
tion the LRl\'VR and related option pricing methodology is comprehensively 
investigated. 

Warrants traded on the JSE Securities Exchange violates the Black
Scholes assumptions in two additional ways, short selling is restricted and 
the market is somewhat illiquid. One of the results of these violations is 
that the standard deviation and the implied volatility, volatility implied by 
the market price of the option, are out of sync. The inlplied volatility tends 
to be higher than the volatility of stock market returns. 

In this dissertation the GARCH option pricing process is applied to the 
implied volatility of the warrant instead of the stock price process, as done 
by Duan. This method compares well with the use of implied volatility to 
price warrants. 
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Glossary of notation 

Glossary of frequently used notation: 

(n,F,p),7 
a.e., 9 
A(£),38 
B(£),38 
cdf, 14 (Culllulative distribution function) 
cor [X, Y], 13 
co"v [X, Y] ,12 
E (etX ) , 17 
E[X],9 
E [X I <1>], 10 
F (x), 14 (Culllulative distribution function) 
f (x) ,14 (Probability density function) 
~("V),20 
£1 (n, F, P) , 9 
Mx(t) , 17 
N (J1., ( 2) ,16 
pdf, 14 (Probability density [unction) 
Std[X] , 10 
a~,38 (GARCH process) 
u(x),66 
Var[X] , 10 
Var [X I H], 10 
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