TEIT VAN PRETORIA

UNIVERSITE
UNIVERSITY OF PRETORIA
@ YUNIBESITHI YA PRETORIA

Chapter 5

Results

This chapter reports on the results of the initial solution algorithm, as
programmed in MATLAB. The chapter begins with a discussion on how
comparative data sets were established for computational purposes, along
with a motivation for modifying existing data sets. The results are presented
and discussed, focusing on the contribution of the time window compatibility
on both the computational burden, and the quality of the initial solution.

5.1 The basic Solomon sets

Solomon [46] discusses the generation of data sets for the Vehicle routing
and scheduling problems with time window constraints (VRPSTW), and in-
dicates that the design of these data sets highlight several factors that affects
the behavior of his routing and scheduling heuristics. The corresponding six
data sets, referred to as R1, R2, C1, C2, RC1, and RC2, are often used and
referred to in literature.

5.1.1 Geographical distribution

The data used for the customer coordinates and demands are based
on the work of Christofides et al. [13], and are classified into one of three
categories:

* Randomly distributed customers (denoted by an R prefix)
o Clustered customers (denoted by a C' prefix)
e Semi-clustered customers (denoted by an RC prefix)

By semi-clustered is implied a random mix of both randomly distributed
and clustered customers.

58




5.1.2 Scheduling horizon

The length of the route-time is regarded as a capacity constraint and,
along with the vehicle capacities, limit the number of customers serviced by
a specific vehicle. The short scheduling horizon problems are denoted by a
“1” as a suffix. The problems denoted by a “2” suffix, on the other hand,
have a large scheduling horizon, and along with the vehicle capacities, allow
a larger number of customers to be serviced by a single vehicle.

5.2 Test data

Solomon’s data sets have become a benchmark for vehicle routing prob-
lem variants, although the sets are often used with some modification due
to the specific variant’s particularity. The published data sets [47] assume
a homogeneous fleet, indicate a given vehicle capacity, and assume infinite
availability of vehicles. Furthermore the sets only indicate a single time
window for each geographically distributed customer.

The aim of the algorithm developed in this dissertation is to test the
feasibility of integrating multiple time windows, a heterogeneous fleet, and
double scheduling into an initial solution heuristic. As none of these three
specific variants are addressed by the Solomon data sets, it was necessary to
generate a unique data set to accommodate, and integrate, the problematic
variants, yet still have resemblance to the familiar benchmarks in literature.
The problem of developing an appropriate data set meant addressing both
multiple time windows, and a heterogeneous fleet. Double scheduling is a
function of the algorithm, and does not require any manipulation of the data
sets.

5.2.1 Incorporating multiple time windows

It originally seemed appropriate to use two of the Solomon sets for a
specific class of problem, each with 100 customers and a single, unique time
window, to create a new set of 100 customers with multiple time windows.
It turned out to be futile, as the time windows for different data sets of
the same classification, as presented by Solomon [47], had very similar, if
not exactly the same, time windows. The extended data sets presented by
Homberger [24] are developed in the same manner as Solomon’s sets, but
have sets with 200, 400, 600, 800, and 1000 customers.

For each of the six problem classes, an extended set with 200 customers
from Homberger’s sets is used to create a new set with 100 customers, but
with two time windows. Table 5.1 illustrates an excerpt from the data used
to create a new set for the C1 class. In the Homberger data sets, the cus-

59



P
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

tomer number, z-coordinate, y-coordinate, demand, service time, and the
start- and end times of a single time window, are given. Table 5.1 indicates

Table 5.1: Constructing data sets with multiple time windows

Customer Time window 1 Time window 2

(i) X y . e} 1} e? i

4 4 28 pivs 616 661 128 195
5 25 26 128 179 142 197
6 86 3T 478 531 754 814
i 1 109 616 630 583 647
3 6 135 351 386 1011 1077
9 32 79 e 655 721 950 1003

the case where the single time windows of customers 101 through 200 have
been used as second time windows for customers 1 through 100. For ex-
ample, the time window for customer 4 is given as (616, 661), measured in
minutes from 0 : 00am. Customer 104’s time window is given as (128, 195)
in the original data set. Customer 104’s time window now becomes the sec-
ond time window for customer 4, while all other data about customers 101
through 200 is disregarded. Observe, however, that the two time windows
specified for customer 5 overlap, and do not yield two unique time windows
as is the case for customer 4.

Procedure 1 indicates the procedure used to manipulate the time win-
dows from multiple sets into a single data set. Where time windows overlap,

Procedure 1 Creating a data set with multiple time windows
if either e} > I? or €? > I} then
Number of time windows is 2
E} = min{e}, e?
L} = min{i,1:
E? = max{e},e?}
L% = max{lil,l:?}
else
Number of time windows is 1
E! = min{e}, e?}
L] =max{l} 12
end if

the new, single time window, is defined to start at the opening of the earlier

60



time window, and end at the closing of the later time window. After the
manipulation of the data, the start of the first time window for customer ¢
is denoted by E}, and the end of the time window by L}. Where only one
time window exist, no second time window is specified. Alternatively, the
start of the second time window for customer i is denoted by E?, and the
end of the time window by L2.

5.2.2 Incorporating a heterogeneous fleet

Liu and Shen [31, 32] propose a specific fleet structure with the introduc-
tion of their insertion-based savings heuristic for a heterogeneous fleet. The
proposed cost structure sees the cost of a vehicle more than doubles when its
capacity doubles. Although Dullaert et al. [19] challenges the cost structure
presented by Liu and Shen, they did not propose a new cost structure. It was
therefor considered appropriate to use the given fleet composition as indi-
cated in Table 5.2. It should be noted that Liu and Shen assumed an infinite

Table 5.2: Heterogeneous fleet data

Problem class Rl Problem class R2
vehicle capacity cost vehicle capacity cost
A 30 50 A 300 450
B 50 80 B 400 700
C 80 140 C 600 1200
D 120 250 D 1000 2500
E 200 500
Problem class C1 Problem class C2
vehicle capacity cost vehicle capacity cost
A 100 300 A 400 1000
B 200 800 B 500 1400
C 300 1350 C 600 2000
D 700 2700
Problem class RC1 Problem class RC?2
vehicle capacity cost vehicle capacity cost
A 40 60 A 100 150
B 80 150 B 200 350
C 150 300 C 300 550
D 200 450 D 400 800
E 500 1100
F 1000 2500

number of each of the vehicles types. To accommodate the infinite number

61



of vehicles into the data sets generated for the algorithm, the number of
vehicles for each type is said to be the number of vehicles needed to service
the demand of all customers, if only that type of vehicle was available.

5.3 Results

Six data sets, one for each class of problem, were generated. The algo-
rithm was coded in MATLAB 6.5 release 13. The algorithm was executed
on three similar Pentium IV 1.6GHz computers, each with 256Mb RAM,
with each class being executed at least once on each of the computers. For
each class of problem, five runs of the algorithm were executed. The results
presented in this chapter is in each case the average of the five runs. Ap-
pendix C contains the solution details with respect to the specific customers
assigned to the various routes, the orphaned customers (if any), as well as
the total scheduling distance.

A summary of the initial solutions generated by the proposed algorithm
is presented in Table 5.3. The influence of the problem characteristics (de-

Table 5.3: Summary of computational results

Problem  Average Number Number Total scheduling

class CPU time of Tours of Routes distance
(seconds) (kilometers)
R1 3180 18 71 11260
R2 31730 5 T 8722
C1 2170 i 22 7330
C2 65650 4 6 7240
RC1 1120 26 48 8706
RC2 6960 12 19 7748

picted by the problem class) can be appreciated when comparing the average
number of customers per route for the type 1 and type 2 classes. The type 1
classes, with a narrow scheduling horizon, has an average of 2.13 customers
per route, while the type 2 classes with longer scheduling horizons have, on
average, 9.38 customers per route.

It should be noted, however, that the average CPU time is extremely
high. The reason for the computationally expensive CPU results is twofold:

e The algorithm was coded in MATLAB with the specific intent of the
candidate to learn the software package. The code structure may
therefore be inefficient, with numerous opportunity for code optimiza-
tion.

62



e The file format in which MATLAB was executed is a non-compiled
*.M file, which is, from a computational point of view, significantly
slower than a compiled *.dll file. The decision to not compile was
influenced by compiling software availability at the time of testing the
algorithm.

Although there is ample opportunity to improve the algorithms technical
performance, the results, in terms of number of tours, number of routes per
tour, as well as the actual scheduling distance, proves to have significant
contribution to the field of vehicle routing problem algorithms. Figures 5.1
through 5.6 indicate the cumulative CPU time for each class of problem.

5.4 Evaluating the contribution of TWC

It is important to evaluate the contribution that the proposed time win-
dow compatibility has on the results of the algorithm. For this purpose, a
comparative control algorithm is created. The control algorithm differs only
in two respects from the proposed algorithm:

e It does not evaluate nodes for time window compatibility when cal-
culating the insertion criteria, and therefore considers every node for
insertion on every edge of a partially constructed route.

e As no time window compatibility is calculated for any node, the initial-
ization criteria is changed to identify the seed customer as the unrouted
customer with the earliest deadline.

The control algorithm is executed for two extreme problem classes, namely
clustered customers with a short scheduling horizon (C1), and uniformly dis-
tributed customers with a long scheduling horizon (R2). Five runs for each
class were executed in a similar fashion to the proposed algorithm, with re-
gards to the computers used, and the distribution of runs on the computers.

Figure 5.7 illustrates the significant improvement that the time window
compatibility has on the computational burden for the C1 class of problems.
The average CPU time is down from 10950 seconds to 2170, an improvement
in excess of 80%. Not only did the time window compatibility reduce the
computational burden, but it also improved the quality of the initial solution
by almost 13%. By the quality of the solution is implied the total scheduling
distance. The comparative results summary is given in Table 5.4.

Figure 5.8 indicates a computational saving of more than 24% for the

R2 class problems, while the quality of the initial solution itself is improved
by almost 13%. The R2 results correspond with the expectation that the

63



&

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
@’ YUNIBESITHI YA PRETORIA

Problem class R1

3500 T T T T T T T T
S (I S
7Y | STTEOR ORRNSTS: SR e
w
2
2
o)
2
@ 2000f-----
E
2
o
(&}
£ 1500+
K]
=
E
10007 ........ .......... ......... SRR ,,,,,, -
oL 5SS N NURN PN WO SOV S N e
U‘_— | i I I ! i I I L
0 10 20 30 40 50 60 70 80 90 100

Number of customers routed

Figure 5.1: Cumulative progress for the R1 class problem

x10* Problem class R2
3.5 T T T T T T T

Cumulative CPU time (seconds)

1 1 1 1

. ' ; ‘ ,
0 10 20 30 40 50 60 70 80 90 100
Number of customers routed

Figure 5.2: Cumulative progress for the R2 class problem

64



Cumulative CPU time (seconds)

Cumulative CPU time (seconds)

P
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W YUNIBESITHI YA PRETORIA

Problem class C1
2500 T T T 1 T T

2000

1500

1000

500

9 ; ‘ ; i . | ; ; i
0 10 20 30 40 50 80 70 80 90 100
Number of customers routed

Figure 5.3: Cumulative progress for the C1 class problem

x 10* Problem class C2
7 T T T T T T T T T

1 I ! I 1 i 1 ! 1
0 10 20 30 40 50 60 70 80 90 100
Number of customers routed

Figure 5.4: Cumulative progress for the C2 class problem

65




Cumulative CPU time (seconds)

Figure 5.5:

Cumulative CPU time (seconds)

1200

1000

800

600

400

200

7000

6000

5000

4000

3000

2000

1000

&+
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

4

Problem class RC1

1 1 1 1

I
40 50 60 70
Number of customers routed

20 30

Cumulative progress for the RC1

Problem class RC2

80 S0 100

class problem

T T T T T T T

i i

1 !
40 50 60
Number of customers routed

20 30 70

Figure 5.6: Cumulative progress for the RC2 class problem

66




&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

Problem class C1 - TWC comparison

12000 ! ‘ ! T . ‘ ! T T
— With TWG : : i : i : :

= = Without TWG : f ; : ] L i, S
5 H 4 i . H I : .

10000 A S T e < R

8000

6000

Cumulative CPU time (seconds)

4000

2000

i I i I 1
] 10 20 30 40 50 60 70 80 90 100
Number of customers routed

0 1 1 1 i

Figure 5.7: The effect of time window compatibility on the C1 class

10" Prablem class R2 - TWG comparison
4.5 T T T T T T T T
— Wilh TWC : ‘ : : :
4L L= = Without TWG

3.5

Cumulative CPU time (seconds)

1 1 1 1 1 i I
0 10 20 30 40 50 60 70 80 90 100
Number of customers routed

Figure 5.8: The effect of time window compatibility on the R2 class

67




Pt
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA

Que#” YUNIBESITHI YA PRETORIA

Table 5.4: Summary of comparative results

Problem Average Number Number Total scheduling

class CPU time of Tours of Routes distance
(seconds) (kilometers)

C1 with TWC 2170 11 22 7330

C1 without TWC 10950 12 39 8876

R2 with TWC 31730 4 T 8722

R2 without TWC 41920 2 13 9990

time window compatibility will have less of an impact if the scheduling hori-
zon is relatively large, as is the case for the type 2 problems. Still, the
computational saving is significant.

5.5 Research agenda

Chapter 1 states the research question. The objective is to attempt
to create an initial solution that caters for multiple time windows, a het-
erogeneous fleet, as well as double scheduling. Although the results gener-
ated during this dissertation is computationally expensive, the aim has been
achieved, and with unexpectedly high returns. The concept of time window
compatibility has proved to have a staggering impact, especially for clustered
customers, and problem areas where tight time windows apply.

The issue of the computational burden of the algorithm, and technical
code optimization, will be addressed in future research to ensure that the
value that is obtained from this research is realized in implementable ap-
plications. As part of the code optimization, one option would be, after
evaluating for time window compatibility, to first evaluate for time feasibil-
ity before calculating the insertion and selection criteria. In the proposed
algorithm, time feasibility is only evaluated after the selection criteria have
been calculated.

Improving the initial solution into a final solution through meta heuris-
tics is also also required before the algorithms can be implemented. In
the development of the improvement heuristic, the concept of time window
compatibility should again be introduced as a potential performance im-
provement tool.

A number of minor parameters in the calculation of the insertion and
selection criteria have been taken directly from literature, based on their

63



&
UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

relative performance. These parameters could be challenged to ensure that
they contribute to the particularity of the proposed algorithm.

Initial solutions are only the first step in an optimization process such
as the vehicle routing problems. The next step would be to create a number
of unique (different) initial solutions. The value of having varying initial so-
lutions is that the Tubu Search improvement meta heuristic, which is often
used for vehicle routing problems, requires a set of unique initial solutions
before being invoked. It is envisaged that a single customer will be removed
from the original customer data list before invoking the initial solution algo-
rithm. A simple insertion heuristic will then be used to insert the omitted
customer into the generated solution after it is created. It is anticipated that
if the process is repeated for different customers, different solutions will be
generated.

5.6 Conclusion

City Logistics is concerned with the mobility of cities, and often aims
to establish best practices and initiatives to improve the state of transport
planning. The algorithm proposed in this dissertation contributes to the
process of optimizing urban logistics as it proves that initiatives such as
time windows and load factors can be planned for by shippers and carriers.
The results prove that multiple variants of the vehicle routing problem can
be integrated into the initial solution algorithm. The increased complexity
is addressed by the time saving concept of time window compatibility, which
proved to have a significant impact on both the computational burden, and
the quality of the initial solution.

69




	Scan0001
	Scan0002
	Scan0003
	Scan0004
	Scan0005
	Scan0006
	Scan0007
	Scan0008
	Scan0009
	Scan0010
	Scan0011
	Scan0012

