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ABSTRACT

This experimental work aims to characterize the SiC layer of various Tri-Structural
Isotropic (TRISO) coated fuel particles. In the first part of the work, Raman spectroscopy
is used to qualitatively characterize the SiC TRISO layer and to identify the presence of
silicon from peak positions. Free silicon poses a significant threat to the integrity of the
SiC layer because it melts at 14@4 significantly lower than the maximum operating
temperature of 158Q. Crystalline silicon is characterized with qualitative Raman
spectroscopy by a 520 €npeak. Silicon is found to be preferentially concentrated along
the SIiC layer close to the inner pyrolytic carbon (IPyC) layer. Samples that were only
mounted and polished are compared with those that have in addition also been etched.
Disordering of the crystals and peak splitting necessitated the use of peak de-convolution.
The 3C, 6H and 15R polytypes of SiC were identified.

The second part of the Raman spectroscopy work involves the development of calibration
curves using peak areas from known binary mixtures (5%, 25%, 50% and 75% Si) to
qguantify the amount of silicon found relative to SiC. Initially the SiC polytypes used in
these mixtures are 3C, 4H and 6H. Reasonably good logarithmic calibration fits were
obtained with R values of 0.996, 0.966 and 0.988 respectively. However some error

accompanied the calibration values and an average of ten analyses yielded a more reliable
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average. The calibration curve results made it possible to estimate the silicon content
throughout the SiC layer for each sample, when combining the results of the qualitative
and quantitative Raman spectroscopic study. Samples PO6 and PO8 revealed high peaks
of crystalline silicon. When peak areas were quantified and related to the 3C calibration
curve, as much as 60% silicon was calculated for both samples. Etching was found to
slightly lower the silicon to SiC ratio. The calibration accuracy for the binary mixtures
was checked by plotting calculated values against weighed-off values, yielding 3C, 4H
and 6H straight-line fits with Rvalues of 0.983, 0.941 and 0.981 respectively. These
binary mixtures were analyzed with the SEM, which revealed variable particle size and
segregation of silicon and SiC. Quantitative Raman spectroscopy is however known to be
affected by a significant number of variables that are difficult to control. Attempts were
made to decrease the scatter of the results from the calibration curve to yield more precise
results. Two pure samples of silicon and SiC were studied separately, in attempts to better
understand particle size and distortion effects. Distortion was found to have a greater
impact on the scatter of peak area values than particle size. The scatter associated with
pure sample peak areas casts doubt on the accuracy of the binary calibration curves.

Rietveld analysis using X-ray powder diffraction is used to further support the Raman
spectroscopy work by qualitatively and quantitatively characterizing the phases involved
in each TRISO particle, to a greater degree of accuracy than the Raman spectroscopy.
Refinement components include 2H graphite, quartz, SiC (3C, 6H, 8H and 15R), silicon
and tetragonal Zr@ Oxidized samples were compared with unoxidized samples. The
outer pyrolytic carbon (OPyC) layer was oxidized (to improve the accuracy of
guantitative measurements). Graphite percentages dominated the refinements with values
ranging from 57% to 90% for unoxidized samples and 28% to 83% for oxidized samples.
The 3C SiC polytype is the most abundant polytype and constitutes 78% to 83% of the
SIC (unoxidized samples) and 82% to 90% (oxidized samples). Trace percentages of
silicon were detected for PO6 (0.4%), PO8 (0.6%) and PO10 (0.1%) Quantitative XRD
results are known to be accurate to around 1% atdhlev&l. Calibration curves were

also subsequently constructed from the same samples as those used for quantitative
Raman spectroscopy by comparing the weighed-off values to the measured ones. The 3C,
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4H and 6H Rits are 0.991, 0.978 and 0.984 respectively. All the milled samples
contained significanti-Fe which contaminated the samples from the gringiragess.
After dissolving thea-Fe in HCI a sample was tested to check the effe¢ch@a-Fe
specifically on microabsorption. Microabsorption was found to be an insignificant effect.

The second part of the XRD work focused on the high-temperature stability of SiC up to
1400C. Al,O3 was used as the standard and the instrument was calibrated using its two
independent lattice parameter values along the a-axis and c-axis to make temperature
corrections. Temperature corrected curves (of SiC and graphite) were constructed, which
superimposed the theoretical,® curve along the a-axis and c-axis. The linear thermal
expansion coefficients of SiC and graphite could then be determined from corrected
lattice parameter values. The thermal expansion coefficients of G102 SiC had similar
values to the literature values up to 8DO Thereafter the experimental values had
significantly higher thermal expansivity when compared to literature values. PO4 and
PO9 thermal expansion coefficient values were higher beloRC5@ut much closer as
temperatures approached 19400 There was little correlation between G102, PO4 and

PO9 graphite c-axis thermal expansion coefficient curves and literature values.

The third section of the work involves the characterization of the SiC layers of three of
the samples by transmission electron microscopy using their selected area electron
diffraction patterns. This facilitates the unequivocal characterization of the SiC polytypes.
The 3C and 6H polytypes were identified. There is substantial disorder in the crystals.
Planar defects of differing periodicity are seen along the [111] direction of the 3C
polytype.

Keywords. SiC, silicon, characterization, Raman spectroscopy, X-ray powder

diffraction, electron diffraction
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