

THE DEVELOPMENT OF ANALYTICAL METHODS FOR PBMR TRISO SIC CHARACTERIZATION

by

Noko Nepo Ngoepe

Submitted in partial fulfillment for the degree

Master of Engineering (Metallurgical Engineering)

In the Faculty of Engineering, the Built Environment and Information Technology,

University of Pretoria

2 June 2009

© University of Pretoria

ACKNOWLEDGEMENTS

- My Lord and Saviour, Jesus Christ for the purpose, abilities, prospects and life He has given me.
- My father, mother, sister and the rest of the extended family for your prayers, advice, support and encouragement.
- My supervisor Prof. Johan de Villiers for his guidance, encouragement, patience and tirelessness.
- Mr Dave Liles, Mr Werner Barnard and Dr Linda Prinsloo of the Department of Chemistry, University of Pretoria for assistance and inputs with the qualitative Raman spectroscopy work.
- Dr Bruce Anderson, Dr Jonathan Chetty and Dr Llewelyn Damoense of SASOL Technology (Pty) Limited, Research and Development in Sasolburg for availing and assisting with their Raman spectrometer for quantitative work.
- Mr Mpho Lekgoathi from TUT for availing the Department of Chemistry Raman spectrometer for quantitative work.
- Prof Sylvia Paul of the Department of Chemistry at UNISA for inputs regarding the quantitative Raman spectroscopy.
- Dr Sabine Verryn from the Department of Geology for assistance with analysis and interpretation of X-ray diffraction, including high temperature work.
- Mrs Alison Tuling of IMMRI (facilitated at the department of Materials Science and Metallurgical Engineering) for operation and inputs related to the TEM work.

- Dr Nic van der Berg of the department of Physics for issuing and preparing various samples and for inputs regarding the SEM.
- Mr Marko Claassen of the Department of Geology for sample preparation
- Mr Carel Coetzee and Mr Andre Botha of IMMRI and the Microscopy Unit respectively for assistance with the SEM and the high resolution SEM analyses.
- PBMR, NECSA and SANHARP for financial assistance and technical inputs
- The Department of Materials Science and Metallurgical Engineering, University of Pretoria whose staff and laboratory facilities made it possible to complete this study.

THE DEVELOPMENT OF ANALYTICAL METHODS FOR PBMR TRISO SIC CHARACTERIZATION

Candidate:	Noko Ngoepe
Supervisor:	Professor Johan P. R. de Villiers
Department:	Materials Science and Metallurgical Engineering, University of Pretoria
Degree:	Master of Engineering (Metallurgy)

ABSTRACT

This experimental work aims to characterize the SiC layer of various Tri-Structural Isotropic (TRISO) coated fuel particles. In the first part of the work, Raman spectroscopy is used to qualitatively characterize the SiC TRISO layer and to identify the presence of silicon from peak positions. Free silicon poses a significant threat to the integrity of the SiC layer because it melts at 1414°C, significantly lower than the maximum operating temperature of 1550°C. Crystalline silicon is characterized with qualitative Raman spectroscopy by a 520 cm⁻¹ peak. Silicon is found to be preferentially concentrated along the SiC layer close to the inner pyrolytic carbon (IPyC) layer. Samples that were only mounted and polished are compared with those that have in addition also been etched. Disordering of the crystals and peak splitting necessitated the use of peak de-convolution. The 3C, 6H and 15R polytypes of SiC were identified.

The second part of the Raman spectroscopy work involves the development of calibration curves using peak areas from known binary mixtures (5%, 25%, 50% and 75% Si) to quantify the amount of silicon found relative to SiC. Initially the SiC polytypes used in these mixtures are 3C, 4H and 6H. Reasonably good logarithmic calibration fits were obtained with R^2 values of 0.996, 0.966 and 0.988 respectively. However some error accompanied the calibration values and an average of ten analyses yielded a more reliable

average. The calibration curve results made it possible to estimate the silicon content throughout the SiC layer for each sample, when combining the results of the qualitative and quantitative Raman spectroscopic study. Samples PO6 and PO8 revealed high peaks of crystalline silicon. When peak areas were quantified and related to the 3C calibration curve, as much as 60% silicon was calculated for both samples. Etching was found to slightly lower the silicon to SiC ratio. The calibration accuracy for the binary mixtures was checked by plotting calculated values against weighed-off values, yielding 3C, 4H and 6H straight-line fits with R² values of 0.983, 0.941 and 0.981 respectively. These binary mixtures were analyzed with the SEM, which revealed variable particle size and segregation of silicon and SiC. Quantitative Raman spectroscopy is however known to be affected by a significant number of variables that are difficult to control. Attempts were made to decrease the scatter of the results from the calibration curve to yield more precise results. Two pure samples of silicon and SiC were studied separately, in attempts to better understand particle size and distortion effects. Distortion was found to have a greater impact on the scatter of peak area values than particle size. The scatter associated with pure sample peak areas casts doubt on the accuracy of the binary calibration curves.

Rietveld analysis using X-ray powder diffraction is used to further support the Raman spectroscopy work by qualitatively and quantitatively characterizing the phases involved in each TRISO particle, to a greater degree of accuracy than the Raman spectroscopy. Refinement components include 2H graphite, quartz, SiC (3C, 6H, 8H and 15R), silicon and tetragonal ZrO₂. Oxidized samples were compared with unoxidized samples. The outer pyrolytic carbon (OPyC) layer was oxidized (to improve the accuracy of quantitative measurements). Graphite percentages dominated the refinements with values ranging from 57% to 90% for unoxidized samples and 28% to 83% for oxidized samples. The 3C SiC polytype is the most abundant polytype and constitutes 78% to 83% of the SiC (unoxidized samples) and 82% to 90% (oxidized samples). Trace percentages of silicon were detected for PO6 (0.4%), PO8 (0.6%) and PO10 (0.1%) Quantitative XRD results are known to be accurate to around 1% at the 3 σ level. Calibration curves were also subsequently constructed from the same samples as those used for quantitative Raman spectroscopy by comparing the weighed-off values to the measured ones. The 3C, it is a subsequent of the same samples as those used for quantitative Raman spectroscopy by comparing the weighed-off values to the measured ones. The 3C, it is a subsequent of the same samples as those used for quantitative Raman spectroscopy by comparing the weighed-off values to the measured ones. The 3C, it is a subsequent of the same samples as those used for quantitative Raman spectroscopy by comparing the weight of the same samples as those used for quantitative results are known to be accurate to an around 1% at the 3 σ level.

4H and 6H R²-fits are 0.991, 0.978 and 0.984 respectively. All the milled samples contained significant α -Fe which contaminated the samples from the grinding process. After dissolving the α -Fe in HCl a sample was tested to check the effect of the α -Fe specifically on microabsorption. Microabsorption was found to be an insignificant effect.

The second part of the XRD work focused on the high-temperature stability of SiC up to 1400°C. Al₂O₃ was used as the standard and the instrument was calibrated using its two independent lattice parameter values along the a-axis and c-axis to make temperature corrections. Temperature corrected curves (of SiC and graphite) were constructed, which superimposed the theoretical Al₂O₃ curve along the a-axis and c-axis. The linear thermal expansion coefficients of SiC and graphite could then be determined from corrected lattice parameter values. The thermal expansion coefficients of G102 SiC had similar values to the literature values up to 800°C. Thereafter the experimental values had significantly higher thermal expansivity when compared to literature values. PO4 and PO9 thermal expansion coefficient values were higher below 500°C, but much closer as temperatures approached 1400°C. There was little correlation between G102, PO4 and PO9 graphite c-axis thermal expansion coefficient curves and literature values.

The third section of the work involves the characterization of the SiC layers of three of the samples by transmission electron microscopy using their selected area electron diffraction patterns. This facilitates the unequivocal characterization of the SiC polytypes. The 3C and 6H polytypes were identified. There is substantial disorder in the crystals. Planar defects of differing periodicity are seen along the [111] direction of the 3C polytype.

Keywords: SiC, silicon, characterization, Raman spectroscopy, X-ray powder diffraction, electron diffraction

DECLARATION

I hereby declare that this thesis is my own work and that I have not incorporated the work forming its basis in any thesis submitted for another degree.

Noko N Ngoepe

02 June 2009

TABLE OF CONTENTS

1.	INTR	ODUCTION	15
2.	LITE	RATURE REVIEW	17
	2.1.	TRISO PARTICLE PROPERTIES	17
	2.2.	SILICON CARBIDE – BASIC BACKGROUND	18
	2.3.	POLYTYPISM OF SIC	20
	2.3.1.	<i>Cubic 3C/(∞), β-SiC polytype</i>	22
	2.3.2.	Hexagonal $2H/(11)$, α -SiC polytype	23
	2.3.3.	Higher order a -SiC polytypes (unit cells larger than 3C)	23
	2.3.4.	Factors influencing polytypism	23
	2.4.	RAMAN THEORY	24
	2.4.1.	The Raman effect	24
	2.4.2.	Theoretical overview	26
	2.4.3.	Raman Spectroscopy of condensed phases	32
	2.4.4.	Quantitative Raman spectroscopy	35
	2.4.5.	Raman properties of SiC	38
	2.5.	X-RAY POWDER DIFFRACTION	42
	2.5.1.	General background	42
	2.5.2.	Rietveld method	45
	2.5.3.	Characterization of SiC by XRD	47
	2.6.	HIGH TEMPERATURE XRD - THERMAL EXPANSION	48
	2.6.1.	Factors influencing cell parameters	48
	2.6.2.	Thermal expansion properties of Al ₂ O ₃	48
	2.6.3.	Thermal expansion properties SiC polytypes	49
	2.6.4.	The thermal expansion of graphite	53
	2.7.	TRANSMISSION ELECTRON MICROSCOPY	56
	2.7.1.	Conventional transmission electron microscopes	56
	2.7.2.	Limitations of the TEM	59
	2.7.3.	Electron Diffraction	61
	2.7.4.	The reciprocal lattice	62
3	OBJE	CTIVES AND HYPOTHESIS	65
	ODUI		00
	3.1.	OBJECTIVES AND OUTCOMES	65
	3.2.	Hypothesis	65
4.	EXPI	CRIMENTAL PROCEDURE	66
	4.1.	RAMAN SPECTROSCOPY	66
	4.1.1.	Samples and labeling	66
	4.1.2.	Calibration	66
	4.1.3.	Oualitative analysis	69
	4.1.4.	\tilde{Q} uantitative analysis (calibration curve)	72
	4.1.5.	Improved calibration curve	74
	4.2.	X-RAY DIFFRACTION	75
	4.2.1.	Analysis of experimental samples from PBMR	75
	4.2.2.	Quantitative analysis (calibration curve)	76
	4.2.3.	$\tilde{X}RD$ analysis of sample with removed α -Fe	77
	4.2.4.	High temperature XRD	78
	4.3.	TEM EXPERIMENTAL PROCEDURE	79
5.	RESI	ILTS AND DISCUSSION	80
5.	5.1		80
	J.1.	VUALITATIVE NAWAN SPECTRUSCUPT	00

	5.1.1	. Characterization of PO samples	
	5.1.2	. Silicon to Silicon Carbide ratios of PO samples	
	5.1.3	. Silicon Carbide Peak Width Half Maximum measurements	
	5.1.4	. The Silicon to Silicon carbide ratio along the SiC layer cross-section	
	5.2.	QUANTITATIVE RAMAN SPECTROSCOPY	
	5.2.1	Calibration curves	
	5.2.2	. Quantitative silicon distribution	
	5.2.3	. Error Analysis	
	5.2.4	. Scanning electron microscopy analysis	
	5.2.5	. Particle size and distortion effects	
	5.2.6	. Quantitative Raman Spectroscopy discussion	
	5.3.	QUANTITATIVE X-RAY DIFFRACTION CHARACTERIZATION	
	5.3.1	. As-received (normal) samples	
	5.3.2	. Oxidized samples	
	5.3.3	. Calibration curve	
	5.4.	HIGH TEMPERATURE XRD THERMAL EXPANSION OF SIC AND GRAPHITE	
	5.4.1	. Experimental results	
	5.4.2	. Corrected Curves	
	5.4.3	. Thermal expansion coefficients of SiC	
	5.5.	TRANSMISSION ELECTRON MICROSCOPY	
	5.5.1	. Polytype characterization	
	5.5.2	. Disorder and twinning	
6.	CON	CLUSIONS & RECOMMENDATIONS	
	6.1.	RAMAN SPECTROSCOPY	
	6.1.1	. Qualitative Raman spectroscopy	
	6.1.2	. Quantitative Raman spectroscopy	
	6.2.	X-RAY POWDER DIFFRACTION	
	6.2.1	. Analysis of PO samples	
	6.2.2	. High temperature XRD	
	6.3.	TRANSMISSION ELECTRON MICROSCOPY	
7.	REF	ERENCES	160

LIST OF FIGURES

FIGURE 2.1 – SCHEMATIC DIAGRAM OF TRISO PARTICLES AND THE RESPECTIVE LAYER THICKNESSES 17	
FIGURE 2.2 – THE SI-C BINARY PHASE DIAGRAM SYSTEM AT P \leq 1 bar. The dotted line, square and	
DIAMOND SCATTER POINTS ALL SHOW DATA AVAILABLE FROM LITERATURE	
FIGURE 2.3 – SILICON CARBIDE POLYTYPE STRUCTURES. POLYTYPES OF SIC ARE FORMED BY PERIODIC	
STACKING SEQUENCES OF BILAYERS THAT PRODUCE TETRAHEDRAL SHEETS. ATOMIC MODELS OF THE	
SIX UNIQUE (FUNDAMENTAL) BILAYERS (BA , CA , AB , CB , AC , and BC) of SIC (top left) based on	
THREE PRINCIPAL CLOSE PACKED PLANES (A , B , and C) (LOWER LEFT) ARE SHOWN. BLUE ATOMS	
REPRESENT C AND ORANGE ATOMS REPRESENT SI. THE TWO BASIC STACKING ARRANGEMENTS, $A ext{-}B$	
AND A - C that form planes of vertex-sharing parallel and antiparallel tetrahedra,	
RESPECTIVELY, ARE SHOWN (LOWER LEFT). ATOMIC MODELS OF THE FOUR SIMPLEST, $3C/(\infty)$, $2H/(11)$,	
4H/(22), AND 6H/(33), POLYTYPES ARE SHOWN SUPERIMPOSED ON CALCULATED HR-TEM LATTICE	
IMAGES PRODUCED USING DEFOCUS CONDITIONS THAT REPRODUCE THE SYMMETRY OF THE PROJECTED	
LATTICE (CENTER COLUMN). SCHEMATIC ILLUSTRATIONS OF DIFFRACTION PATTERNS (INCLUDING	
FORBIDDEN REFLECTIONS IN SOME CASES) ARE ALSO SHOWN (RIGHT COLUMN)	
FIGURE 2.4 – ENERGY LEVEL DIAGRAM, ILLUSTRATING THE FUNDAMENTAL PROCESSES OF RAMAN	
SCATTERING, ADAPTED FROM GRASSELLI ET AL. (1981)	
FIGURE 2.5 – POLARIZATION (P) INDUCED IN A MOLECULE'S ELECTRON CLOUD INDUCED BY AN OPTIC	
ELECTRIC FIELD E. SHOWN FOR 90° AND 180° GEOMETRY	
FIGURE 2.6 – THE PRINCIPAL AXIAL COEFFICIENTS OF THERMAL EXPANSION FOR THE 3C, 4H AND 6H SIC	
POLYTYPES	
FIGURE 2.7 – LINEAR THERMAL EXPANSION VERSUS TEMPERATURE RELATION FOR B-SIC	
FIGURE 2.8 – THE COEFFICIENT OF THERMAL EXPANSION IN THE A-DIRECTION RESULTS AGAINST	
TEMPERATURE 55	
FIGURE 2.9 – THE COEFFICIENT OF THERMAL EXPANSION IN THE C-DIRECTION RESULTS AGAINST	
TEMPERATURE 56	
FIGURE 2.10 – SCHEMATIC RAY PATH FOR A TRANSMISSION ELECTRON MICROSCOPE FOUPPED FOR	
ADDITIONAL X-RAY AND ELECTRON ENERGY-LOSS SPECTROSCOPY. 57	
FIGURE 2.11 – RAY DIAGRAM FOR A TRANSMISSION ELECTRON MICROSCOPE IN (A) THE BRIGHT FIELD	
IMAGING MODE AND (B) THE SELECTED-AREA ELECTRON DIFFRACTION MODE 59	
FIGURE 2.12 – THE GEOMETRIC RELATIONSHIPS BETWEEN THE GEOMETRIC LATTICE VECTORS $\mathbf{a}^* \mathbf{b}^*$ and	
C AND THE REAL LATTICE VECTORS A, B, C	
FIGURE 2.13 – THE GEOMETRICAL RELATIONSHIP BETWEEN THE PLANE NORMAL AND G	
FIGURE 4.1 – INSTRUMENTAL ERROR ANALYSIS OF THE 4H SINGLE CRYSTAL WAFER (COHERENT INNOVA	
MACHINE)	
FIGURE 4.2 – SAMPLE ERRORS ANALYSIS OF THE 4H SINGLE CRYSTAL WAFER (COHERENT INNOVA	
MACHINE)	
FIGURE 4.3 – SAMPLE HOLDER DESIGN (SIDE VIEW). UNITS ARE IN MILLIMETERS	
FIGURE 4.4 – SAMPLE HOLDER DESIGN (TOP VIEW)	
FIGURE 4.5 – LABELING SYSTEM USED FOR QUALITATIVE MICRO RAMAN SPECTROSCOPY ANALYSES	
FIGURE 4.6 – SAMPLE HOLDER DESIGN. MANUFACTURING MATERIAL IS BRASS. UNITS ARE IN MILLIMETERS.	
/3	
FIGURE 4.7 – SAMPLE ARRANGEMENT UPON ANALYSIS WITH THE LEM FOR SAMPLE PO 9	
FIGURE 5.1 – OPTICAL MICROSCOPE IMAGES OF PO3 POLISHED COATED PARTICLES.	
FIGURE 5.2 – RAMAN SPECTRA OF THE SIC LAYER OF A PO3 POLISHED AND ETCHED COATED PARTICLE. A IS	
THE INNERMOST AND H IS THE OUTERMOST SPOT ALONG THE SIC CROSS-SECTION. THERE SEEMS TO BE	
A MIXTURE OF AMORPHOUS AND CRYSTALLINE SILICON THROUGHOUT THE ANALYSES. THE MOST	
INTENSE CRYSTALLINE SILICON PEAKS OCCUR IN THE MIDDLE OF THE SIC LAYER (ANALYSIS C TO E)	
PEAK SPLITTING IS CLEARLY EVIDENT, INDICATING THAT THE 3C POLYTYPE IS NOT THE ONLY ONE	
THAT IS PRESENT	

FIGURE 5.3 – RAMAN SPECTRA OF THE TO SIC PEAKS AFTER DECONVOLUTION FOR ANALYSIS 3A (ETCHED).
IT WAS ASSUMED THAT THERE WERE THREE COMPONENTS MAKING UP THE MAIN PEAK. THE PEAKS
INDICATE THE PRESENCE OF THE 3C, 6H AND 15R POLYTYPES
FIGURE 5.4 – RAMAN SPECTRA OF THE SIC COATING OF PO3 POLISHED (UNETCHED) COATED PARTICLE. A IS
THE INNERMOST AND K IS THE OUTERMOST SPOT ALONG THE SIC CROSS-SECTION. THERE SEEMS TO BE
PREDOMINANTLY AMORPHOUS SILICON, WITH SMALL CRYSTALLINE SILICON PEAKS EVIDENT FOR SOME
ANALYSES. PEAK SPLITTING IS CLEARLY EVIDENT, INDICATING THAT THE $3C$ polytype is not the
ONLY ONE THAT IS STABLE. THERE IS NO EVIDENCE OF GRAPHITE
FIGURE 5.5 – RAMAN SPECTRA OF THE TO SIC PEAKS AFTER DECONVOLUTION FOR ANALYSIS 3A
(POLISHED). IT WAS ASSUMED THAT THERE WERE THREE COMPONENTS MAKING UP THE MAIN PEAK.
THE PEAKS INDICATE THE PRESENCE OF THE 3C AND 6H POLYTYPES
FIGURE 5.6 – OPTICAL MICROSCOPE IMAGES OF PO5 POLISHED COATED PARTICLES
$FIGURE \ 5.7-RAMAN\ SPECTRA\ OF\ THE\ SIC\ COATING\ OF\ PO5\ ETCHED\ AND\ POLISHED\ COATED\ PARTICLE.\ A\ IS$
THE INNERMOST AND K IS THE OUTERMOST SPOT ALONG THE SIC CROSS-SECTION. NEITHER THE
AMORPHOUS NOR CRYSTALLINE SILICON IS SEEN THROUGHOUT THE SIC LAYER. THE SIC PEAKS DO
NOT SPLIT, HOWEVER PEAK DECONVOLUTION INDICATES THE PRESENCE OF A RELATIVELY SMALL $6{ m H}$
РЕАК
FIGURE 5.8 – RAMAN SPECTRA OF THE TO SIC PEAKS AFTER DECONVOLUTION FOR ANALYSIS 5A (ETCHED).
IT WAS ASSUMED THAT THERE WERE TWO COMPONENTS MAKING UP THE MAIN PEAK. THE PEAKS
INDICATE THE PRESENCE OF THE 3C AND 6H POLYTYPES
FIGURE 5.9 – RAMAN SPECTRA OF THE SIC COATING OF PO5 POLISHED (UNETCHED) COATED PARTICLE. A IS
THE INNERMOST AND I IS THE OUTERMOST SPOT ALONG THE SIC CROSS-SECTION. NEITHER THE
AMORPHOUS NOR CRYSTALLINE SILICON IS SEEN THROUGHOUT THE SIC LAYER. THE SIC PEAKS DO
NOT SPLIT, HOWEVER PEAK DECONVOLUTION INDICATES THE PRESENCE OF A RELATIVELY SMALL $6{ m H}$
PEAK. GRAPHITE IS ONLY SEEN AT ANALYSIS I AT 1360 CM ⁻¹
FIGURE 5.10 – RAMAN SPECTRA OF THE TO SIC PEAKS AFTER DECONVOLUTION FOR ANALYSIS 5A
(POLISHED). IT WAS ASSUMED THAT THERE WERE TWO COMPONENTS MAKING UP THE MAIN PEAK. THE
PEAKS INDICATE THE PRESENCE OF THE 3C AND 6H POLYTYPES
FIGURE 5.11 – OPTICAL MICROSCOPE IMAGES OF PO6 POLISHED COATED PARTICLES
FIGURE 5.12 – RAMAN SPECTRA OF THE SIC COATING OF PO6 POLISHED AND ETCHED COATED PARTICLE. A
IS THE INNERMOST AND H IS THE OUTERMOST SPOT ALONG THE SIC CROSS-SECTION. THE CRYSTALLINE
SILICON PROGRESSIVELY INCREASES FROM ANALYSIS A TO C BEFORE DECLINING AGAIN. THE SILICON
TO SIC RATIO OF PEAKS IS PARTICULARLY HIGH RELATIVE TO THAT OF OTHER SAMPLES.
CONSEQUENTLY, THERE IS VERY LITTLE THAT CAN BE SAID ABOUT THE SIC PEAKS. THERE IS A HINT OF
GRAPHITE DETECTED FROM THE SLIGHT CHANGE OF SLOPE FROM ANALYSIS B
FIGURE 5.13 – RAMAN SPECTRA OF THE TO SIC PEAKS AFTER DECONVOLUTION FOR ANALYSIS 6A (ETCHED).
IT WAS ASSUMED THAT THERE WERE TWO COMPONENTS MAKING UP THE MAIN PEAK. THE PEAKS
INDICATE THE PRESENCE OF THE 3C AND 6H POLYTYPES
FIGURE 5.14 – RAMAN SPECTRA OF THE SIC COATING OF PO6 POLISHED COATED PARTICLE. A IS THE
INNERMOST AND I IS THE OUTERMOST SPOT ALONG THE SIC CROSS-SECTION. THE CRYSTALLINE
SILICON INCREASES FROM ANALYSIS A TO B BEFORE PROGRESSIVELY DECLINING UP TO ANALYSIS I.
THE SILICON TO SIC RATIO OF SOME PEAKS IS PARTICULARLY HIGH RELATIVE TO THAT OF OTHER
SAMPLES THERE IS NO EVIDENCE OF GRAPHITE 92.
FIGURE 5.15 – RAMAN SPECTRA OF THE TO SIC PEAKS AFTER DECONVOLUTION FOR ANALYSIS 6A
(POLISHED) IT WAS ASSUMED THAT THERE WERE TWO COMPONENTS MAKING UP THE MAIN PEAK. THE
PEAKS INDICATE THE PRESENCE OF THE 3C AND 6H POLYTYPES 93
FIGURE 5.16 – MEAN VALUES OF THE PATIO OF THE CRYSTALLINE SILICON PEAK TO THE DOMINANT
TRANSVERSE OPTIC MODE SIC PEAK FOR BOTH ETCHED AND UNETCHED SAMPLES SAMPLES SAMPLES POG AND
POS CLEAD V HAVE HIGH EDEE SILICON CONTENTS IN THE SIC LAVED 94
FIGURE 5.17 – MEAN VALUES OF THE PEAK WIDTH HALE MAXIMUM OF THE TRANSVERSE OPTIC MODE SIC
THORE $J_1 I = WEAN VALUES OF THE FEAR WIDTH HALF MAXIMUM OF THE TRANSVERSE OF THE MODE SICDEAK. THERE IS SIGNIFICANT DIFFERENCE IN THE DEAK WIDTH VALUES, WITH THE DIGGEST DENIG$
EAR. THERE IS SIGNIFICANT DIFFERENCE IN THE FEAR WIDTH VALUES, WITH THE BIODEST BEIND $s_{AMD} = DOS$
FIGURE 5.18 – STANDARD DEVIATION VALUES OF THE DEAR WIDTH HALF MANNAUM OF THE TRANSVERSE
$\frac{1}{100 \text{ MODE}} = \frac{1}{2100 \text{ MODE}} =$
FIGURE 5.19 – The silicon to SiC ratio along the cross-section of the etched TO SiC rates 73
WHERE A DENOTES THE INNERMOST PART OF THE SIC AND J THE OUTERMOST. SAMPLES PO6 AND PO8

POSSIBLY HAVE UNACCEPTABLY HIGH FREE SILICON CONTENTS IN THE SIC LAYER. THE GENERAL
TREND IS THAT THE SILICON IS MAINLY CONCENTRATED ALONG THE INNER PARTS OF THE SIC LAYERS.
FIGURE 5.20 – THE SILICON TO SIC RATIO ALONG THE CROSS-SECTION OF THE (UNETCHED) POLISHED TO SIC
LAYER, WHERE A DENOTES THE INNERMOST PART OF THE SIC AND K THE OUTERMOST. ONCE MORE,
SAMPLES PO6 AND PO8 HAVE UNACCEPTABLY HIGH FREE SILICON CONTENTS IN THE SIC LAYER. THE
GENERAL TREND IS THAT THE SILICON IS MAINLY CONCENTRATED ALONG THE INNER PARTS OF THE SIC
FIGURE 5.21 \mathbf{P}_{AMAN} CALIDDATION CUDVE OF THE 3C DOL VIVDE 00
FIGURE 5.21 – RAMAN CALIBRATION CURVE OF THE 3C FOLTITIE $\frac{1}{2}$
FIGURE 5.22 – CALIBRATION CHECK OF THE 5C POLYTYPE
FIGURE 5.25 – RAMAN CALIBRATION CURVE OF THE 4H POLYTYPE
FIGURE 5.24 – CALIBRATION CHECK OF THE 4H POLYTYPE
FIGURE 5.25 – RAMAN CALIBRATION CURVE OF THE 6H POLYTYPE
FIGURE 5.26 – CALIBRATION CHECK OF THE 6H POLYTYPE
FIGURE 5.27 – PLOT OF THE INDIVIDUAL POINTS OF THE CALIBRATION CURVE, ILLUSTRATING THE SCATTER.
FIGURE 5.28 – QUANTITATIVE LINE PROFILE OF THE FRACTION OF SILICON ALONG THE SIC CROSS-SECTION
FIGURE 5.29 – PLOT OF RELATIVE RAMAN SPECTROSCOPY INTENSITIES FROM THE FIVE 50% SI-50% 3C SIC
MIXTURES
FIGURE 5.30 – BACKSCATTERED SEM IMAGES OF MIXTURE OF TWO RAMAN SPECTROSCOPY QUANTITATIVE
SAMPLES. THE SAMPLE ON THE LEFT (3C SIC- 50% SILICON) CONTAINS A-FE AFTER GRINDING. WHILE
THE A-FE OF THE SAMPLE ON THE RIGHT HAS BEEN DISSOLVED (4H SIC - 50% SILICON) 107
FIGURE 5.31 – BACKSCATTERED SEM IMAGE OF THE SIC LAYER OF SAMPLE PO10 108
FIGURE 5.31 BREASEAN TERED SERVICE OF THE SIZE DISTRIBUTION CURVE OF A MEDICAN ELEMENT'S HIGON DOWDER 100
FIGURE 5.32 – THE FARTICLE SIZE DISTRIBUTION ON CORVE OF AMERICAN ELEMENT SILICON TOWDER
TIOURE 5.55 – THE PARTICLE SIZE DISTRIBUTION BY SIZE FRACTION BINS, OF AMERICAN ELEMENTS SILICON
FOW DER.
FIGURE 5.54 – THE PARTICLE SIZE DISTRIBUTION CURVE OF AMERICAN ELEMENT SIC POWDER
FIGURE 5.35 – THE PARTICLE SIZE DISTRIBUTION BY SIZE FRACTION BINS, OF AMERICAN ELEMENTS' SIC
POWDER.
FIGURE 5.36 – RAMAN SPECTROSCOPY ANALYSIS OF SILICON PARTICLES SIZES: (A) >38 MICRONS, (B) 10-38
MICRONS AND (C) <10 MICRONS. THE Y-AXIS IS THE INTENSITY IN ARBITRARY UNITS, WHILE THE X-
AXIS IS THE WAVENUMBER IN CM ⁻¹
FIGURE 5.37 – RAMAN SPECTROSCOPY ANALYSIS OF SIC PARTICLES SIZES: (A) >38 MICRONS, (B) 10-38
MICRONS AND (C) < 10 MICRONS. THE Y-AXIS IS THE INTENSITY IN ARBITRARY UNITS, WHILE THE X-
AXIS IS THE WAVENUMBER IN CM ⁻¹
FIGURE 5.38 – RAMAN SPECTROSCOPY ANALYSIS OF SILICON PARTICLES ANNEALED FOR: (A) 2 HOURS, (B) 4
HOURS AND (C) 8 HOURS. THE Y-AXIS IS THE INTENSITY IN ARBITRARY UNITS, WHILE THE X-AXIS IS THE
WAVENUMBER IN CM ⁻¹
FIGURE 5.39 – RAMAN SPECTROSCOPY ANALYSIS OF SIC PARTICLES ANNEALED FOR: (A) 2 HOURS (B) 4
HOURS AND (C) 8 HOURS. THE Y-AXIS IS THE INTENSITY IN ARBITRARY UNITS. WHILE THE X-AXIS IS THE
WAVENUMBER IN CM ⁻¹
FIGURE 5.40 – OUANTITATIVE ANALYSIS OF PO SAMPLES BY X-RAY DIFFERANCION WITH ALL LAVERS INTACT
GP ADDITE IS BY FAD THE MOST ABLINDANT DHASE 123
EXAMPLE 5.41 OLIANTETATIVE ANALYSIS OF DO SAMPLES IN THE NORMAL (AS DECEMPED) CONDITION
FIGURE 5.41 – QUANTITATIVE ANALYSIS OF FO SAMPLES IN THE NORMAL (AS RECEIVED) CONDITION
CONSIDERING ONLY THE SIC POLYTYPES, NORMALIZED TO TOO%. THE SC POLYTYPE IS BY FAR THE
MOST ABUNDANT RANGING FROM /8% TO 85%
FIGURE 5.42 – QUANTITATIVE ANALYSIS OF PO SAMPLES BY X-RAY DIFFRACTION, WITH THE SAMPLES
OXIDIZED AT 850°C. EVEN AFTER OXIDIZING THE OPYC LAYER, GRAPHITE IS STILL THE MOST
ABUNDANT PHASE
FIGURE $5.43 - QUANTITATIVE$ ANALYSIS OF PO SAMPLES IN THE OXIDIZED CONDITION CONSIDERING ONLY
THE SIC POLYTYPES, NORMALIZED TO 100% . The 3C polytype is by far the most abundant
RANGING FROM 82% TO 90%126
FIGURE 5.44 – THE XRD CALIBRATION CURVE RELATING THE MASS FRACTION OF SILICON DETERMINED BY
AUTOQUAN VERSUS THE WEIGHED OFF MASS FRACTION OF SILICON. THE BINARY MIXTURES ARE OF
SILICON AND THE 3C, 4H AND 6H POLYTYPES OF SIC

FIGURE 5.45 – PLOTS OF THE UNCORRECTED EXPERIMENTAL A-AXES LATTICE PARAMETERS VERSUS
TEMPERATURE OF AL_2O_3 for G102, PO4 and PO9, compared with the theoretical AL_2O_3 A-axis
LATTICE PARAMETER. A MOLYBDENUM HEATING STRIP WAS USED FOR $ m G102$ whereas PO4 and PO9
WERE ANALYZED USING A GRAPHITE HEATING STRIP
FIGURE 5.46 – PLOTS OF THE EXPERIMENTAL A-AXES LATTICE PARAMETERS VERSUS TEMPERATURE OF
AL_2O_3 for G102, PO4 and PO9, compared with the theoretical AL_2O_3 c-axis lattice
PARAMETER. A MOLYBDENUM HEATING STRIP WAS USED FOR $G102$ and a graphite strip for PO4
AND PO9
FIGURE 5.47 – PLOT OF EXPERIMENTAL THE A-AXIS LATTICE PARAMETER FOR SIC
FIGURE 5.48 – PLOT OF THE EXPERIMENTAL A-AXIS LATTICE PARAMETER AT CORRECTED TEMPERATURES
FOR AL_2O_2 , SUPERIMPOSED ON THE THEORETICAL CURVE
FIGURE 5.49 – PLOT OF THE CORRECTED C-AXIS LATTICE PARAMETER AT CORRECTED TEMPERATURES FOR
AI_2O_2 134
FIGURE 5.50 – PLOT OF EXPERIMENTAL THE A-AXIS LATTICE PARAMETER FOR G102 PO4 AND PO9 SIC
LIPON HEATING UP AND COOLING DOWN (THE CORRECTION IS BASED ON A-AXIS VALUES OF AL_2O_2)
THERE IS VERY GOOD CORRESPONDENCE WITH THE DATA BY LLET AL [72]
FIGURE 5.51 – PLOT OF EVERYMENTAL THE A-AVIS LATTICE DAPAMETED FOR $G102$ POA and POQ SIC
1 IOONE 5.51 – 1 LOT OF EATENIMENTAL THE A-AXIS LATTICE TAXAMETER FOR $O(0.2, 1.04)$ and 1.07 SIC, LIDON HEATING UD AND COOLING DOWN (THE CODDECTION IS BASED ON C-AXIS VALUES OF $\Delta I_{10}O_{10}$) 136
FIGURE 5.52 THE DEST ET A AVIS SIC LATTICE DAD AMETED ETS FOR G102 DOM AND DOQ DASED ON THE
A AVIS AND C AVIS TEMPERATURE CORRECTED VALUES. THERE IS CONTRACT OF AND TO DASED ON THE
A-AAIS AND C-AAIS TEMPERATURE CORRECTED VALUES. THERE IS GENERALLT A GOOD CORRELATION DETWEEN THE A AVIS AND C AVIS DASED CODDECTION DATA
EI WEEN THE A-AAIS AND C-AAIS DASED CORRECTION DATA
FIGURE 5.55 – FLOT OF EXPERIMENTAL THE C-AXIS LATTICE PARAMETER FOR GTU2, FO4 AND FO9
GRAPHITE UPON HEATING UP AND COOLING DOWN (THE CORRECTION IS BASED ON A-AXIS VALUES OF 129
AL_2O_3)
FIGURE 5.54 – PLOT OF EXPERIMENTAL THE C-AXIS LATTICE PARAMETER FOR G102, PO4 AND PO9
GRAPHITE UPON HEATING UP AND COOLING DOWN (THE CORRECTION IS BASED ON C-AXIS VALUES OF
AL ₂ O ₃)
FIGURE 5.55 – PLOT OF THE A-AXIS SIC THERMAL EXPANSION COEFFICIENTS OF THE TRISO SAMPLES 141
FIGURE 5.56 – BEST FIT PLOT OF THE A-AXIS SIC THERMAL EXPANSION COEFFICIENTS OF THE TRISO
SAMPLES
FIGURE 5.57 – BRIGHT FIELD IMAGE OF PO5 IMAGE 5 (FROM THE APPENDIX C), ALONG WITH ITS
DIFFRACTION PATTERNS. THE TWO ORDERED DIFFRACTION PATTERNS REPRESENT THE 3C [100] AND
3C [111] ZONE AXES OF THE SAME TWINNED CRYSTAL. THE CENTRAL DIRECT BEAM DIFFRACTION SPOT
IS BLANKED OUT ON THE EXPERIMENTAL DIFFRACTION PATTERNS.
FIGURE 5.58 – BRIGHT FIELD IMAGE OF PO5 IMAGE 4 (FROM THE APPENDIX C) ALONG WITH ITS DIFFRACTION
pattern. The diffraction pattern represents the $3C[111]$ zone axis. The central direct
BEAM DIFFRACTION SPOT IS BLANKED OUT ON THE EXPERIMENTAL DIFFRACTION PATTERN 145
FIGURE 5.59 – BRIGHT FIELD IMAGE OF PO6 IMAGE 7 (FROM THE APPENDIX C) ALONG WITH ITS DIFFRACTION
PATTERN. THE DISORDERED DIFFRACTION PATTERNS REPRESENTS THE 3C $[111]$ ZONE AXIS. THE
CENTRAL DIRECT BEAM DIFFRACTION SPOT IS BLANKED OUT ON THE EXPERIMENTAL DIFFRACTION
PATTERNS
FIGURE 5.60 – BRIGHT FIELD IMAGE OF PO6 IMAGE 8 (FROM THE APPENDIX C) ALONG WITH ITS DIFFRACTION
PATTERN. THE TWO ORDERED DIFFRACTION PATTERNS REPRESENT THE 3C [211] AND 3C [110] ZONE
AXES OF THE SAME CRYSTAL. THE CENTRAL DIRECT BEAM DIFFRACTION SPOT IS BLANKED OUT ON THE
EXPERIMENTAL DIFFRACTION PATTERNS
FIGURE 5.61 – BRIGHT FIELD IMAGE OF PO 9 CRYSTAL 16 (FROM THE APPENDIX C) ALONG WITH ITS
DIFFRACTION PATTERN. THE DIFFRACTION PATTERN REPRESENTS THE 3C [100] ZONE AXIS. THE
CENTRAL DIRECT BEAM DIFFRACTION SPOT IS BLANKED OUT ON THE EXPERIMENTAL DIFFRACTION
PATTERN
FIGURE 5.62 – BRIGHT FIELD IMAGE OF PO 9 IMAGE 15 (FROM THE APPENDIX C) ALONG WITH ITS
DIFFRACTION PATTERN. THE DIFFRACTION PATTERN REPRESENTS THE 6H [100] OR [110] ZONE AXIS.
THE MAGNIFIED IMAGE SHOWS THE VARYING PERIODICITY OF THE STACKING DISORDER. THE CENTRAL
DIRECT BEAM DIFFRACTION SPOT IS BLANKED OUT ON THE EXPERIMENTAL DIFFRACTION PATTERN THE
SCALE BAR OF THE LOWER IMAGE IS 20 NM LONG

FIGURE 5.63 – A MAGNIFIED IMAGE OF THE DIFFRACTION PATTERN OF FIGURE 5.59, DEPICTING STREAKING
DUE TO STACKING DISORDER EVIDENT BETWEEN THE DIFFRACTION SPOTS. OVERLAPPING CRYSTALS
YIELD ADDITIONAL, WEAKER DIFFRACTION SPOTS

LIST OF TABLES

TABLE 2.1 – RAMAN FREQUENCIES OF FUNDAMENTAL SIC POLYTYPES. THE ASTERISK DENOTES THE FOURIER TRANSVERSE ACOUSTIC (FTA) AND FOURIER TRANSVERSE OPTIC (FTO) MODES WITH TH MAXIMUM INTENSITY IN EACH PHONON BRANCH. FLA AND FLO ARE ABBREVIATIONS FOR THE FOURIER LONGTEUDINAL ACOUSTIC AND FOURIER LONGTUDINAL OPTIC MODES. Q/Q. IS THE	HE
FOURIER LONGITUDINAL ACCUSTIC AND FOURIER LONGITUDINAL OFFIC MODES. Q/Q_B is the peduced wave vector of the corresponding phonon mode in 3C SiC	30
TABLE 2.2 – THE COEFEICIENTS DESCRIBING THE TEMPED ATURE DEDENDENCE OF THE CELL DAD AMETED	57 OF
TABLE 2.2 – THE COEFFICIENTS DESCRIBING THE TEMPERATURE DEFENDENCE OF THE CELL PARAMETER $^{\circ}$	49
TABLE 2 3 – THERMAL EXPANSION DATA OF SIC AND PYC	52
TABLE 2.5 THERMINE EXTRIBION DATA OF STO AND THE EXPRESSION OF α	52
TABLE 2.5 VARIOUS COEFFICIENTS IN THE EXPRESSION OF α_a	54
TABLE 2.5 – VARIOUS COEFFICIENTS IN THE EXPRESSION OF α_c	30
TABLE 4.1 – SAMPLE LAYER THICKNESSES IN MICRONS. SAMPLE PO / CONTAINS NO SIC LAYER AND THE	66
SAMPLE WITH THICKEST SIC LAYER IS Γ 09.	00
TABLE 4.2 – 4ft SINGLE CRYSTAL SIC STATISTICAL DATA OF THE INSTRUMENTAL ANALYSIS MEASURED A	AKEA
TADLE 4.2 AH SINCLE CONSTAL SIC STATISTICAL DATA OF THE MEASURED AREA VALUES OF THE	07
TABLE 4.3 – 411 SINULE CRISTAL SIC STATISTICAL DATA OF THE MEASURED AREA VALUES OF THE INSTRUMENTAL ANALYSIS (DENISHAW DM 2000 INVIA), USED FOR OLIANTITATIVE DAMAN	
SDECTDOSCODY DESLITS	68
SPECINOSCOPT RESULTS	00 г
INDUA MACHINE)	69
TABLE 5.1 – SUMMARY OF PEAK POSITIONS IDENTIFIED WITH OUAL ITATIVE RAMAN SPECTROSCOPY (LINI	07 TS
ARE IN WAVENUMBERS: CM ⁻¹) * ** AND *** DENOTE A LOW HIGH AND VERY HIGH CRYSTALLINE	15
SILICON PEAK, X INDICATES THE ABSENCE OF A PEAK.	
TABLE 5.2 – SETTLING RATES OF SILICON AND SIC PARTICLES ACCORDING TO STOKES' LAW FOR 38, 10 /	AND
1 MICRON PARTICLE SIZES	. 112
TABLE 5.3 – THE INDIVIDUAL PEAK AREA VALUES SHOWING VARIATIONS FOR >38 MICRONS, 10-38 MICR	ONS
AND <10 MICRONS SILICON PARTICLE SIZES	. 112
TABLE 5.4 – THE INDIVIDUAL PEAK AREA VALUES SHOWING VARIATIONS FOR >38 MICRONS, 10-38 MICR	ONS
AND <10 MICRONS SIC PARTICLE SIZES.	. 114
TABLE 5.5 – THE INDIVIDUAL PEAK AREA VALUES SHOWING VARIATIONS FOR 2 HOURS, 4 HOURS AND 8	
HOURS ANNEALING OF SILICON.	. 116
TABLE 5.6 – THE INDIVIDUAL PEAK AREA VALUES SHOWING VARIATIONS FOR 2 HOURS, 4 HOURS AND 8	
HOURS ANNEALING OF SILICON.	. 118
TABLE 5.7 – A SUMMARY OF THE AUTOQUAN REFINEMENTS, COMPARING THE ORIGINAL AND OXIDIZE	D
SAMPLES. THE 3C POLYTYPE IS THE SIGNIFICANTLY THE MOST ABUNDANT SIC POLYTYPE. SAMPLE	3
PO7 CONTAINS NO SIC LAYER AND HAS FOR THIS REASON BEEN EXCLUDED.	. 127
TABLE $5.8 - Summary$ of the interpreted diffraction patterns of PO5 included in the appendix of the second secon	IX
SECTION, SHOWING THAT THE 3C POLYTYPE IS THE MOST COMMONLY OCCURRING	. 143
TABLE $5.9 - Summary$ of the interpreted diffraction patterns of PO6 included in the appendix	IX
SECTION. THE 3C POLYTYPE IS THE MOST COMMONLY OCCURRING POLYTYPE OF SIC.	. 146
TABLE $5.10 - Summary$ of the interpreted diffraction patterns of PO9 included in the appendix	DIX
SECTION. THE 3C POLYTYPE IS ONCE MORE DOMINANT, AND $6H$ is the only other polytype th	AT
WAS DETECTED	. 148