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Abstract

Interactive narrative extends traditional story-telling techniques by enabling previously

passive observers to become active participants in the narrative events that unfold. A

variety of approaches have attempted to construct such interactive narrative spaces and

reconcile the goals of interactivity and dramatic story-telling. With the advent of the

linguistic variable in 1972, a means was established for modelling natural language words

and phrases mathematically and computationally. Over the past decade, the computa-

tional verb, first introduced in 1997, has been developed as a mathematical means of

modelling natural language verbs in terms of dynamic systems, and vice versa. Compu-

tational verb theory extends the initial concept of the linguistic variable beyond being

able to model adjectives, nouns, and passive states, into the realm of actions as denoted

by natural language verbs. This thesis presents the framework and implementation of a

system that generates interactive narrative spaces from narrative text. The concept of

interactive narrative is introduced and recent developments in the area of interactive nar-

rative are discussed. Secondly, a brief history of the development of the linguistic variable

and the computational verb are provided. With the context of the computational verb

(interactive) narrative generation (CVTNG) system presented, the underlying theoreti-

cal principles of the system are established. The CVTNG system principles are described

in terms of fuzzy set, computational verb, and constraint satisfaction theory. The fuzzy

set, computational verb, and constraint satisfaction principles are organised according

to a CVTNG architecture. The CVTNG architecture is then described in terms of its

subsystems, structures, algorithms, and interfaces. Each CVTNG system component

 
 
 



is related to the overall design considerations and goals. A prototype of the CVTNG

system is implemented and tested against a suite of natural language sentences. The

behaviour and performance of the CVTNG system prototype are discussed in relation

to the CVTNG system’s design principles. Results are calculated and stored as vari-

able values that are dynamically and generically associated with representational means,

specifically computer graphics, to illustrate the generation of interactive narrative spaces.

Plans for future work are discussed to show the immense development potential of this

application. The thesis concludes that the CVTNG system provides a solid and extend-

able base for the intuitive generation of interactive narrative spaces from narrative text,

computational verb models, and freely associated media.

Keywords: computational verb theory, fuzzy sets, interactive narrative, computational

linguistics, constraint satisfaction problems, fuzzy constraint satisfaction problems, com-

puter graphics.
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seconds (shown from left to right and top to bottom in time order stated) 291
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Chapter 1

Introduction

This chapter introduces the fields related to this work in terms of their applications and

background. The subject of this thesis is related to several fields through the latter’s

applications and background. The contributions of the current work are related to the

fields of research introduced. The objectives of this thesis and an outline of the content

are also set out.

1.1 Motivation and related work

Since the advent of computers in the 20th century and the conception of the first text-

based adventure game, Hunt the Wumpus (1972), and the better–known Zork I (1977-

1979), interactive fiction, also known as interactive narrative, has become an active

area of interest in the fields of computational linguistics, artificial intelligence (AI), and

computer graphics. Early works of interactive fiction were completely word-based in

terms of their input and output. As the quality of computer graphics and sound improved

and the popularity of arcade (video-based) games grew during the 1980s, word-based

narrative and interactive narrative became more disconnected [58]. This trend grew into

the modern-day standard of graphically constructing and representing narrative within

interactive fiction [36].

The fuzzy set [127], with its associated fuzzy logic, was introduced by Lotfi Zadeh

in 1965. Fuzzy sets provide a generalised means of representing approximate concepts,
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often expressed only in terms of words. Linguistic variables [128] [129] build upon the

power of fuzzy sets to represent approximate concepts and allow for the quantitative

interpretation of word types such as nouns, adjectives, and adverbs. Fuzzy logic [129]

enables logical reasoning by means of the fuzzy set models of nouns, adjectives, and

adverbs as a generalised extension of boolean and multi–valued logics. Over the last 30

years fuzzy sets and their associated fuzzy logic and fuzzy systems have remained an ac-

tive area of interest. Fuzzy sets, fuzzy logic, and fuzzy systems have been integrated into

multiple scientific research fields which deal with concepts that are inherently imprecise

or difficult to quantify. Applications of fuzzy set theory include control theory [25], data

analysis [8], and AI [50].

Yang introduced the computational verb as a means of solving engineering and dy-

namics problems by modelling them in relation to natural language verbs [102] [104]

[107]. Computational verb theory (CVT) extends fuzzy set theory to make verbs in

natural language measurable, quantifiable, and therefore computable. Fuzzy sets and

linguistic variables model nouns and their associated adjectives (noun phrases). CVT

models verbs, verb phrases, and their associated adverbs. It has been applied to the so-

lution of logical paradoxes [108], fuzzy dynamic systems [113], control theory [109] [116]

[111], image processing and understanding [115] [119], and the modelling of stock mar-

kets [118] [121]. Multiple commercial image recognition and financial modelling software

products are built on computational verb principles.

This work models natural language nouns, adjectives, verbs, and adverbs in terms

of CVT. CVT models for natural language verbs are constructed, and the CVT models

are subsequently evaluated to determine values that parameterise interactive narrative

space generation.

Constraint satisfaction problem (CSP) theory is applied within the scope of this thesis

and its associated computational verb theory interactive narrative generation (CVTNG)

prototype. Constraint satisfaction was first introduced by Huffman [44] and Clowes [18]

in the context of line labelling in visual scenes. The determination of the valid labellings,

given a set of constraints, forms the basis of the CSP. Ruttkay [79] defined the fuzzy

constraint satisfaction problem (FCSP) as a relaxation of the classic CSP by applying

the concept of fuzzy sets to CSPs. Fuzzy constraints are formed by measuring the degree
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to which a value tuple assignment corresponds to a constraint as a real number on the

interval [0, 1]. Fuzzy constraint satisfaction is applied within this work as a strategy

for the approximate resolution of the variable values present in models formed from

conflicting natural language statements.

1.2 Contribution of the current work to the related

fields of interest

The fields of fuzzy set theory, CVT, CSP theory, and computational linguistics are

applied and combined within this work in a strategy that allows for the translation of

narrative text to a representational means commonly used within interactive narrative.

The narrative space is generated by parameterising transformations on representational

means with values obtained from the evaluation of CVT models. The computational verb

models formed for natural language words are solved as a system of linear equations.

If such a system cannot be solved using linear resolution methods such as Gaussian

elimination, fuzzy constraint satisfaction techniques are applied to obtain an approximate

solution.

This thesis draws from and forms part of the field of computational linguistics [68].

It describes an architecture that allows for computational linguistics algorithms to be

incorporated into the procedure that forms word groupings. The groupings formed using

computational linguistics algorithms are converted to the aforementioned computational

verb models. Furthermore, this thesis presents a novel application of computational

linguistics to the field of interactive narrative, by serving not only as an interaction

input to an interactive narrative system, but as a creation tool for the interactive space.

The computational verb models dynamically constructed for natural language words

are organised according to hierarchies of interpretive contexts. This organisation of

computational verb models into hierarchies of interpretive contexts is a novel scheme

for organising and combining the interpretive contexts of computational verb sets. This

work presents a crisp variable resolution strategy for the resolution of the system of

equations that results from the formation of computational verb models for natural

language words. An alternative fuzzified variable resolution strategy is provided in cases
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where a single unique solution to a system of equations that results from computational

verb models does not exist. The fuzzy variable resolution strategy presents a novel

scheme for determining approximate values of conflicting evolving function equations

[106] in the field of CVT.

The variable values obtained from either resolution strategy are transferred to a dy-

namically generated interface that enables the free association of representational media

such as computer graphics, sound, and software agents with the system. The present

work offers novel applications of CVT and computational linguistics to interactive nar-

rative space creation, and presents a framework for the future development of CVT

narrative generation systems. It also presents the results of tests performed successfully

on a prototype implemented within the presented framework against a series of visual

narrative interpretation examples.

1.3 Thesis outline

Chapter 2 summarises recent work in the field of interactive narrative that highlights their

approach and contribution within the visual paradigm of interactive narrative construc-

tion and representation. Visually modelled interactive narrative systems are contrasted

with a word-based interactive narrative generation system to illustrate the advantage of

a system that enables natural language to interactive narrative space translation via the

re-use of representational means such as graphics, sound, and AI story agents.

Chapter 3 sets out the definitions of the computational verb, fuzzy set, and constraint

satisfaction theory concepts related to the principles applied within this work and its

associated interactive narrative generation system. Chapter 4 draws on the background

provided in chapter 3 to state the theoretical principles that enable natural language

sentences to be translated to alternative representational media such as graphics, sound,

and AI agents.

The interactive narrative generation systems architecture is discussed in detail in

chapter 5. Details of the parsing, variable resolution, and representation interfacing

subsystems are provided and discussed with regard to their structure, relationships, and

design considerations.
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Chapter 6 tests a prototype of the implemented architecture against a series of natural

language sentences. The sentences tested against the prototype represent a selection of

scenarios that a natural language translator such as the interactive narrative generation

system presented in this work should be able to handle in a robust and adaptable manner.

The tested examples serve to illustrate the ability of a computational verb-based system

to model natural language sentences dynamically as systems of equations obtained from

computational verb models. The tested examples in chapter 6 also demonstrate the

ability of the interactive narrative generation system’s architecture to interface the results

dynamically and freely to representational media such as graphics, sound, and AI agents.

Chapter 7 summarises the content of this thesis and presents conclusions arising out

of the work presented. The chapter also outlines plans for future work on the theoretical,

architectural, and application components of this work.
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Chapter 2

Related work

This chapter presents a summary of current work in the field of interactive narrative. The

discussion of interactive narrative takes place in light of recent research developments,

the application of interactive narrative to other areas of research and the application of

fuzzy set theory to interactive narrative. A comparison is presented between the cur-

rent visual paradigms of interactive narrative construction and the word-based narrative

construction paradigm proposed in this work. This comparison serves to highlight the

unique advantages of a word-based narrative construction paradigm.

2.1 Interactive narrative

This section discusses work in the field of interactive narrative related to the interactive

narrative concepts applied in this work. Recent research trends in the field of interactive

narrative are discussed in section 2.1.1. The application of interactive narrative to other

fields of research interest is discussed in section 2.1.2; of fuzzy set theory to interactive

narrative in section 2.1.3. This thesis presents a novel application of computational verb

theory (CVT) to interactive narrative, and therefore no discussion of the application of

CVT to interactive narrative is provided, as no such existing applications exist.
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2.1.1 Research trends in interactive narrative

The main focus of interactive narrative centres on the problem of balancing the conflicting

goals of interactivity, and the need to communicate a dramatic plot [94]. Recent work

in the field addresses these issues using a variety of approaches that draw on the fields

of computer science (artificial intelligence (AI) and multi–agent systems) and the arts

(literature and drama).

One area of focus is the visual modelling of dynamic and branching story arcs, por-

trayed using media such as video and sound. “Agent Stories” [13] enables writers of cin-

ematic narrative to structure a non-linear narrative visually, and then link the structure

to text or video–based outputs for computational execution and output of the defined

structure. “StorySpace” [96] presents a visual interface for representing collections of

new media, such as audio and video recordings, in a way that conveys narrative within a

classroom situation. Cavazza et al [16] have presented a system that relates multi–modal

input (speech, gesture) to a defined narrative structure to be interpreted as the overall

plot progresses.

Other systems approach the creation of interactive narrative more directly, repre-

senting the interactive narrative in real time by using a computer graphics engine and

AI story agents [61] [62] [75] [126]. One of the first and most influential systems of

this nature is the Oz system [61]. It fuses the goals of believable agents (characters

that act in an emotionally believable way) and interactive drama (the dramatic develop-

ment of a story arc). The objective of believable agents is achieved by developing story

agents that are believable in terms of their portrayal, behaviour, and interaction with

the user. The objective of presenting interactive drama is achieved through the use of a

“drama manager” that controls the flow of narrative from one plot point to another. The

Mimesis system [75] [126] integrates existing commercial 3D graphics technology with

a narrative engine that controls story arc by structuring player interaction and system

reaction. The narrative engine allows for the progression of a story plot in a meaningful

and affecting way. Timegraph [46] attempts to integrate narrative into virtual reality

representations, by allowing changes in the environment over time and in accordance

with user interaction. Facade [62] builds on the technologies of the Oz project [61] to

realise an interactive fiction game fully. Autonomous agents behave in accordance with
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the plot structure and natural language inputs from the user to create an interactive

drama. A notable point of contrast between existing interactive narrative systems and

the interactive narrative generation system presented in this work is the auxiliary role

of text within existing interactive narrative systems. Text is used within the majority

of interactive narrative systems as an annotation or a means of interaction, not as the

driver for interactive narrative creation.

Another active area of interest within the field of interactive narrative involves the

concept of narrative mediation [76]. This is a technique in which interactive narrative

system components such as AI story agents are used to guide the user should the user’s

actions threaten the integrity of the plot. Young et al [76] look more formally at the

branching story arcs within Oz, Mimesis, and Facade and then apply the concept of linear

narrative generation [63] by reconstructing the non-linear narratives of the Oz, Mimesis,

and Facade systems in terms of multiple linear narratives. The narrative mediation

scheme proposed by Young et al allows non-linear narrative to leverage some of the

advantages of linear narrative. The “Death Kitchen” [57] interactive narrative scenario

extends the principles of narrative mediation by story agents (non-user characters), as

in Oz, Mimesis, and Facade, to the virtual environment itself. The milieu is therefore

transformed into a plot shaping–device.

In contrast to the top–down approach of the systems presented above, FearNot!

[6] follows a bottom-up approach by creating an environment for emergent narratives

by employing “affectively driven” autonomous agents. The emergent narrative of the

FearNot! system is then applied to educating young children against bullying behaviour.

Steiner et al [88] attempt not to adapt narrative according to user interaction (narrative

mediation), but try instead to reshape the way in which the narrative is conveyed. The

way the narrative is conveyed is dynamically adjusted to user interaction to ensure that

the user is aware of the unfolding plot, thus preserving the narrative structure.

The main areas of research interest within interactive narrative have been presented

in terms of recent work. The section that follows briefly discusses the applications of

interactive narrative to other fields of research such as occupational therapy [21] and

education [96] [6].
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2.1.2 Applications of interactive narrative

Interactive narrative clearly has entertainment potential, as seen in Facade [62] and

commercial interactive fiction games such as Gabriel KnightTMand Monkey IslandTM.

FearNot! [6] and StorySpace [96] both show how interactive narrative can be used

within educational contexts. Robertson et al [36] show how the creation of interactive

narrative can serve as an educational process. A study was conducted in which children

constructed stories using the editing tools of a commercial computer game. Robertson

et al observed that the activity encouraged creativity and the acquisition of technical

skills in the children who participated. Davis et al [21] presented TouchStory, a game

that presents simple sequences of symbolic narratives called t-stories to encourage the

learning of narrative concepts in children with autism.

The state of the art in interactive narrative and examples of applications have been

presented. The next section presents related work in which fuzzy set theory was imple-

mented in the creation of interactive narrative systems or subsystems.

2.1.3 Fuzzy set theory applied to interactive narrative

Fuzzy set theory has found a wide range of uses in computer game AI [73], which in

turn serves as a form of interactive narrative. Fuzzy set theory has been applied directly

to interactive narrative in the form of fuzzy cognitive maps [5]. The fuzzification of

cognitive maps allows the behaviours and emotions of autonomous agents [22] [70] to be

modelled as fuzzy cognitive maps [49], which have also been applied to narrative control

as an alternative to hierarchal task networks [15]. The fuzzified narrative control system

allows for dynamic story branching in interactive narrative systems that require real–

time feedback [14]. Su et al [89] have implemented a multiple input, multiple output

fuzzy logic hierarchy for categorising story characters and story arcs. The categorisations

are used to determine the posturing and timing of character animations in interactive

narrative systems.
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2.1.4 Summary

This section discussed related work in the field of interactive narrative. Applications of

interactive narrative to other fields of interest were presented. Examples were given of

fuzzy set theory as applied to interactive narrative. The section that follows contrasts

current paradigms for the creation of interactive narrative with a paradigm that models

interactive narrative in terms of natural language words.

2.2 A word-centred paradigm

This section discusses the advantages of a top–down word-based approach to constructing

interactive narrative spaces. The interactive narrative generation system described in

this thesis generates interactive narrative depictions from natural language sentences.

A top–down approach to narrative generation is contrasted with the current bottom-up

approach to interactive narrative creation that directly constructs interactive narrative

spaces using narrative depictions such as graphics, sound, and AI agents.

Systems that follow the approach of modelling in terms of narrative depictions usually

relegate narrative text to the secondary role of representing dialogue in the absence of

sound [13]. Interactive narrative systems such as Facade [62] utilise natural language text

as an input to the system. The system presented in this work uses natural language text

as the basic modelling unit for describing interactive narrative spaces. A word-centric

approach presents unique advantages to narrative generation systems as presented in the

sections that follow.

Section 2.2.1 argues that narrative text is a natural means of representing shared

human experiences as conveyed in narrative. Section 2.2.2 shows that narrative text is

a concise means of representing narrative. Section 2.2.3 describes how a system that

generates narrative depictions from narrative text allows for the reinterpretation of a

fixed narrative to convey a new message. Section 2.2.4 argues that a system which

generates interactive narrative depictions from narrative text, opens up interactive nar-

rative creation to a wider audience than is possible using bottom-up interactive narrative

construction.
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2.2.1 Language captures shared human experiences

Natural language has been the basic means of communication between human beings for

thousands of years. Before the invention of writing, oral accounts served as a traditional

means of propagating knowledge from one generation to the next. With the invention of

writing and the subsequent invention of the printing press, natural language became the

world wide standard for capturing and preserving knowledge. Narrative is a natural fit

for language, since language itself evolved for the very purpose of transferring narrative

from one individual to another.

The value of visually modelling abstract concepts is undeniable for designing complex

systems, as can be seen by the success of modelling languages such as unified modelling

language (UML) [32]. It seems counter–intuitive, however, to apply visual models that

serve to capture abstract systemic knowledge to something as innately human and emo-

tional as narrative. If interactive narrative spaces are constructed from systemic visual

models such as UML, the value of thousands of years of collective tacit knowledge cap-

tured within natural languages is lost.

To illustrate the value of the tacit knowledge captured within natural language words,

consider the sentence “Tom loves Katie”. The sentence “Tom loves Katie” implies a host

of complex relationships between the narrative objects “Tom” and “Katie”. If the “love”

relationship were to be modelled visually, knowledge of visual model constructs such as

relationship arrows and object icons would be required to arrive at a correct interpreta-

tion. If the “love” relationship is modelled by the word “love” itself, its interpretation is

implicit, as we think, learn, and reason about such emotional concepts through words.

The overhead of relating narrative concepts using visual and programmatic modelling

tools is identified by Robertson et al [36] in a study that applied such tools to encourage

the creation of narrative. The study indicated that children spent more time getting

to grips with the Neverwinter NightsTMlevel editor used to construct their stories, than

telling the stories themselves. This editor uses graphical modelling tools and a scripting

engine to construct interactive narrative spaces. A word-driven system that leverages

the implicit understanding of natural language words would alleviate this problem while

still providing the encouraging immediate visual feedback from generated interactive

narrative spaces.
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2.2.2 Concise narrative representation

A second distinct advantage of generating interactive narrative spaces from natural lan-

guage sentences is that words are concise models for narrative concepts. A single sentence

can represent a large volume of visual narrative information. Consider the visualisation

of the word “forest”. When visualised this single word designates thousands of images

of trees, shrubs, and animals compiled into a single narrative concept. A system that

generates these images from this single word would be able to encapsulate vast amounts

of narrative depictions within a single–word model. If an adjective such as “dark” were

also modelled, the attributes that it would encapsulate could be applied to the narrative

depictions encapsulated within the noun “forest” by the simple natural language phrase

“dark forest”. Finally, if a verb such as “burn” were modelled the actions and occur-

rences it encapsulates could easily be applied to the narrative depictions encapsulated in

the word “forest” by stating the simple sentence “The dark forest burns.”. The complex

visual narrative depiction of a burning forest can therefore be quite simply stated in a

short sentence.

2.2.3 Reinterpretation

A third advantage of a system that generates interactive narrative depictions from natu-

ral language sentences stems from the fact that natural language as narrative construc-

tion medium affords us the luxury of reinterpretation. If the characters “Tom” and

“Katie” are directly depicted using fixed images of a boy and a girl, our interpretation

of the narrative surrounding them is narrowed by those depictions. If a paradigm of

modelling narrative using natural language sentences is followed, the narrative and its

representation may be decoupled. As an example, the natural language sentence “Tom

loves Katie” can be visually represented as “Tom” and “Katie” being badgers instead of

human beings. The alternative visual representation can be used to switch the theme of

the narrative from teenage romance to children’s fable. The narrative structure behind

the events that unfold is preserved, but interpreted in an entirely new way.
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2.2.4 Accessible

Natural language provides an easy way for a large majority of human beings to convey

narrative. An interactive narrative creation system that generates interactive narrative

depictions from natural language sentences, allows a wider audience to participate in

the creation of interactive narrative. Since existing graphical models, sounds, and AI

behaviours can be re-used in such a generation system, a user would not require in

depth knowledge of how the depictions themselves are constructed. The construction of

narrative depictions such as graphical models or software agents is typically a technically

complex task. Using a system that generates interactive narrative from existing narrative

depictions and natural language sentences, all that would be required for the creation of

interactive narrative, is the ability to convey narrative in natural language sentences. In

this way a widely accessible narrative creation system is achieved.

2.2.5 Summary

This section discussed the advantages of a word-based interactive narrative generation

paradigm. Language was shown to be a natural fit in modelling narrative concepts, and

words were shown to be concise models of narrative concepts. Narrative structure can be

decoupled from narrative representation in a word-based interactive narrative generation

paradigm which allows for narrative to be reinterpreted. Interactive narrative generation

driven by natural language and the re–use of existing narrative depictions was shown

to be an accessible method of interactive narrative creation. This section discussed the

contrasts between a word-based narrative generation paradigm and one that seeks to

construct interactive narrative directly from narrative depictions and abstract visual

and programmatic models. The section that follows indicates how interactive narrative

generation and direct interactive narrative creation may be combined to build full fledged

interactive narrative systems.
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2.3 Integrating narrative space generation with ex-

isting interactive narrative systems

The line separating a word-based paradigm for the generation of interactive narrative

spaces, being idealistic and fanciful, and a practical reality, is an ability to model natural

languages successfully in computable terms. Natural language is filled with vagueness

and ambiguity, and relies on the collective experience of human beings for its correct

interpretation. The construction of computable word models is therefore a difficult

task. The initial objective of a word-based paradigm for interactive narrative creation is

therefore to complement rather than replace other interactive narrative systems of the

kind specified in section 2.1.

As an example of complementing interactive narrative systems with an interactive

narrative generation system, consider the interactive drama game Facade [62]. Natural

language character descriptions could be used to generate AI scripts for agent behaviours

in as much detail as possible. The AI scripts could then be fleshed out to create a

believable interactive fiction experience. Doing so would enable creators of interactive

dramas such as Facade to create a greater variety of characters and scenarios more

efficiently.

A top–down approach to narrative generation [76] [85] requires a large amount of

narrative representation content to be created and recreated to account for the different

story permutations that could result from user interaction. The generation of content

from natural language sub-plot descriptions would allow users of a system such as Mime-

sis [126] to produce rapidly narrative representations corresponding to the plot permu-

tations. For emergent interactive narrative scenarios such as FearNot! [6], narrative

language models could efficiently describe subsequently generated agents and scenarios.

The generated content could be realised and combined in a variety of ways, leading to

an explosion of narrative possibility.
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2.4 Summary

This chapter presented related work in the field of interactive narrative, and presented

applications of interactive narrative in other fields of interest. It also described related

work that applies fuzzy set theory principles to interactive narrative spaces. A word-

centred interactive narrative generation approach was contrasted with approaches that

either directly construct interactive narrative space by building narrative depictions or

that model interactive narrative spaces in some other way. The high–level advantages

of a system that allows for the generation of an interactive narrative space from natural

language words were discussed. Finally, the integration potential of interactive narrative

generation and existing interactive narrative systems was discussed.
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Chapter 3

Fuzzy set theory, computational

verb theory, and constraint

satisfaction problem definitions

This chapter states the fuzzy set theory, computational verb theory, and constraint

satisfaction problem definitions referenced in this work. The definitions are provided for

self-containment and as a reference for the theoretical principles, architecture, and results

chapters that follow. Those definitions not referenced elsewhere within this work are also

provided here to allow for a sequential line of reasoning that leads to the definitions used

throughout the work. Readers familiar with the definitions in the fields of fuzzy set

theory, computational verb theory (CVT), and constraint satisfaction problems (CSPs)

may skip the relevant subsections. References to the definitions in this chapter are

provided in the chapters that follow, where applicable.

Section 3.1 contains fuzzy set theory definitions by defining crisp variables, extending

the definitions to fuzzy variables and defining linguistic variables. Section 3.2 contains

definitions related to computational verb theory. Section 3.3 contains the definitions

for a constraint satisfaction problem (CSP) and a fuzzy constraint satisfaction problem

(FCSP).
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3.1 Fuzzy set theory definitions

This section contains the fuzzy set theory definitions utilised within this work. Crisp

variable definitions are provided in section 3.1.1. Fuzzy sets are defined, and crisp vari-

able definitions are extended in terms of fuzzy set theory to fuzzy variable definitions in

section 3.1.2. Linguistic hedges are defined as modifying functions of the membership

functions related to fuzzy variables in section 3.1.2. Section 3.1.2 also defines linguistic

variables in terms of fuzzy variables.

3.1.1 Variable definitions

This subsection contains definitions related to crisp variables and to the relationhips

between crisp variables. Variables, restrictions, projections, and interactivity between

crisp variables are defined. The definitions are as follows:

Definition 3.1 (Crisp variable): Zadeh [128] characterises a variable as a triple

(X, U, R(X; u)) in which X is the name of the variable, U is the universe of discourse (a

finite or infinite set), u is a generic name for elements of U , and R(X; u) is a subset of U

which represents a restriction on the values of u imposed by X. Associated with every

variable is an assignment equation,

x = u : R(X), (3.1)

which can also be given as

x = u; u ∈ R(X). (3.2)

This represents the assignment of a value u to x under the restriction R(X).

More generally, X = (X1, X2, . . . , Xn) denotes an n-tuple of n variables X1, X2, . . . , Xn

with universes of discourse U1, U2, . . . , Un. (X1, X2, . . . , Xn) is called an n-ary composite

or joint variable. The universe of discourse for X is the Cartesian product

U1 × U2 × . . .× Un. (3.3)

The restriction, R(X1, X2, . . . , Xn), is an n-ary relation in U1, U2, . . . Un. This restriction
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may be defined by a characteristic function, µR : U1 × U2 × . . .× Un → {0, 1}, where

µ(u1, ..., un) =

{
1 if(u1, ..., un) ∈ R(X1, ..., Xn)

0 otherwise
(3.4)

and ui is the generic name for elements of U1, ..., Un. The associated n-ary assignment

takes the form

x1, . . . , xn = (u1, . . . , un) : R(X1), . . . , R(Xn), (3.5)

which is interpreted as

xi = ui; i = 1, . . . , n. (3.6)

u1, . . . , un ∈ R(X1, . . . , Xn) is a restriction. xi for i = 1, 2, . . . , n denotes generic names

for values of Xi.

Definition 3.2 (Marginal restriction): Zadeh [128] defines the restriction, R(X1, . . . , Xn),

imposed by (X1, . . . , Xn), as inducing marginal restrictions, R(Xi1 , . . . , Xik), imposed by

composite variables of the form (Xi1 , . . . , Xik), where the index sequence, q = (i1, . . . , ik),

is a subsequence of index sequence, (1, . . . , n). In effect, R(Xi1, . . . , Xik) is the smallest

restriction imposed by (Xi1 , . . . , Xik) that satisfies the implication

(u1, . . . , un) ∈ R(X1, . . . , Xn) ⇒ (ui1 , . . . , uik) ∈ R(Xi1 , . . . , Xik). (3.7)

Therefore a given k-tuple, u(q)
∆
= (ui1 , . . . , uik), is an element of R(Xi1 , . . . , Xik) if and

only if there exists an n-tuple, u
∆
= (u1, . . . , un) ∈ R(X1, . . . , Xn), whose i1-th, . . . , ik-th

components are equal to ui1 , . . . , uik respectively. Expressed in terms of the characteristic

functions of R(X1, . . . , Xn) and R(Xi1 , . . . , Xik), the restriction is given by:

µR(Xi1
,...,Xik

)(ui1 , . . . , uik) =
∨
u(q′)

µR(X1,...,Xn)(u1, . . . , un). (3.8)

q′ is the complement of index sequence (the indices that are not in the sequence), q =

(i1, . . . , ik), relative to (1, . . . , n). u(q′) is the complement of k-tuple, u(q)
∆
= (ui1 , . . . , uik),

relative to the n-tuple, u
∆
= (u1, . . . , un). X(q)

∆
= (Xi1 , . . . , Xik).

∨
u(q′)

denotes the

supremum of its operand over the u’s that are in u(q′).
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Definition 3.3 (Projection of a variable): Zadeh [128] defines the characteristic

function of the projection of R(X1, . . . , Xn) on Ui1 × . . .× Uik as

R(Xi1 , . . . , Xik) = ProjR(X1, . . . , Xn) on Ui1 × . . .× Uik , (3.9)

where i1, . . . , ik denotes a subsequence of 1, 2, . . . , n. More simply,

R(Xi1 , . . . , Xik) = PqR(X1, . . . , Xn), (3.10)

where Pq denotes the operation of projection on Ui1 , . . . , Uik with q = (i1, . . . , ik).

Definition 3.4 (Conditioned restriction): For the restriction, R(X1, . . . , Xn), viewed

as a relation in U1 × . . . × Un, let q′ = (j1, . . . , jm) denote the index sequence comple-

mentary to q = (i1, . . . , ik) and let R(Xi1 , . . . , Xik |uj1 , . . . , ujm) denote a restriction in

Ui1 × . . . × Uik which is conditioned on uj1 , . . . , ujm . The characteristic function of this

conditioned restriction is defined by

µR(Xi1
,...,Xik

|uj1
,...,ujm )(ui1 , . . . , uik) = µR(X1,...,Xn)(u1, . . . , un), (3.11)

on the understanding that the arguments, uj1 , . . . , ujm , are treated as parameters when

specified on the right-hand side of equation (3.11). If the definition above is taken into

consideration, the projection of the restriction, R(X1, . . . , Xn), onto Ui1 × . . .× Uik can

be expressed as

PqR(X1, . . . , Xn) =
⋃
u(q′)

R(Xi1 , . . . , Xik |uj1 , . . . , ujm), (3.12)

where
⋃

u(q′) denotes the union of the family of restrictions R(Xi1 , . . . , Xik |uj1 , . . . , ujm)

parameterised by u(q′)
∆
= (uj1 , . . . , ujm).

Definition 3.5 (Non-interactive and interactive variables): Variables X1, . . . , Xn

are non-interactive variables under R(X1, . . . , Xn) if and only if R(X1, . . . , Xn) is sepa-

rable, that is,

R(X1, . . . , Xn) = R(X1)× . . .×R(Xn), (3.13)
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where for i = 1, . . . , n

R(Xi) = ProjR(X1, . . . , Xn) on Ui

= ∪u(q′)
R(Xi|u(q′)), (3.14)

with u(q)
∆
= ui and u(q′)

∆
= complement of ui in (u1, . . . , un) [128].

If the restriction, R(X1, . . . , Xn), over the variables X1, . . . , Xn is not separable, then

X1, . . . , Xn are interactive variables. For interactive variables X1, . . . , Xn a sequence of

n unary assignment equations (refer to equation (3.6)) takes the form

x1 = u1 : R(X1),

x2 = u2 : R(X2|u1)
...

xn = un : R(Xn|u1, . . . , un−1), (3.15)

where ui : R(Xi|u1, . . . , ui−1) denotes the conditioned restriction induced on ui condi-

tioned on u1, . . . , ui−1. The characteristic function of the conditioned restriction is given

by

µR(Xi|u1,...,ui−1)(ui) = µR(X1,...,Xi)(u1, . . . , ui), (3.16)

on the understanding that the arguments, u1, . . . , ui−1, are treated as parameters when

specified on the right-hand side of equation (3.16).

3.1.2 Fuzzy variable definitions

This subsection extends the crisp variable definitions of the preceding section in terms

of fuzzy set theory. Definitions for a fuzzy set, fuzzy variable, linguistic hedge, and

linguistic variable are provided.

Definition 3.6 (Fuzzy set): A fuzzy set A in a space of points X, where x is a generic

member of X, is characterised by a membership or characteristic function µA(x) that

associates every point in X with a real-valued number on the interval [0, 1] [127]. The

value of µA(x) represents the grade of membership of x in A.
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Definition 3.7 (Fuzzy variable): A fuzzy variable is characterised by a

triple (X, U, R(X; u)), where X is the name of the variable, U is the universe of dis-

course (a finite or infinite set) of X, u is a generic name for the elements of U , R(X; u)

is a fuzzy subset of U which represents a fuzzy restriction on the values of u by X, and

u denotes the non-restricted non-fuzzy base variable for X [129]. Associated with the

fuzzy variable is an assignment equation,

x = u : R(x), (3.17)

which represents an assignment of x to a value u subjected to the restriction R(X). The

degree to which the restriction is satisfied is called the compatibility of u with R(X),

denoted by c(u), and is defined as

c(u)
∆
= µR(X)(u); u ∈ U, (3.18)

where µR(X) is the grade of membership of u in the restriction R(X).

More generally, if X1, . . . , Xn are variables in U1, . . . , Un respectively, then X
∆
=

(X1, . . . , Xn) is an n-ary composite or joint variable in U1× . . .×Un. The corresponding

n-ary assignment relation is

(x1, . . . , xn) = (u1, . . . , un) : R(X1, . . . , Xn), (3.19)

where xi, i = 1, . . . , n is a generic name for the values of Xi, ui is a generic name for the

elements of Ui and R(X)
∆
= R(X1, . . . , Xn) is an n-ary fuzzy relation in U which rep-

resents the restriction imposed by X
∆
= (X1, . . . , Xn). The compatibility of (u1, . . . , un)

with R(X1, . . . , Xn) is defined by

c(u1, . . . , un) = µR(X)(u1, . . . , un), (3.20)

where µR(X) is the membership function of the restriction on u
∆
= (u1, . . . , un).

Definition 3.8 (Linguistic hedge): A linguistic hedge is defined as a function f(·)
that acts upon a fuzzy set A to modify its associated membership function according to

the definition of f [130] [85]. A concentration is given by

CON(A)
∆
= g(A) = Aη; η ≥ 2 (3.21)
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whereas a dilation is given by

DIL(A)
∆
= g(A) = Aη; η ∈ (0, 1). (3.22)

Both concentrations and dilations are examples of linguistic hedges.

Definition 3.9 (Linguistic variable): A linguistic variable is characterised as a quin-

tuple (L, T (L), U , G, M). L is the name of the variable. T (L) denotes the term set of

L, the set of names of linguistic values for L. Each linguistic value is a fuzzy variable

denoted generically by X and ranges over a universe of discourse U associated with a

base variable u. G is a syntactic rule (usually in the form of a grammar) for generating

the names, X, of values of L. M is a semantic rule for associating with each X its

meaning, M(X), which is a fuzzy subset of U [129].

The meaning, M(X), of a term, X, is defined to be the restriction, R(X), on the

base variable, u, which is imposed by the fuzzy variable named X. Thus

M(X)
∆
= R(X), (3.23)

on the understanding that R(X) and thus M(X) may be viewed as a fuzzy subset of U

carrying the name X.

Assignment in the case of a linguistic variable (X) assumes the form

X = Term in T (L),

= name generated by G. (3.24)

Equation (3.24) implies that the meaning assigned to X is

M(X) = R(Term in T (L)). (3.25)

3.2 Computational verb theory definitions

This section provides an introduction to computational verb theory (CVT) and presents

the CVT definitions referenced within this work. A short history of the development

of CVT is presented in section 3.2.1. Computational verb definitions are provided in
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section 3.2.2. Section 3.2.3 defines a computational verb BE-transformation. Section

3.2.4 provides definitions related to computational verb sentences. Section 3.2.5 provides

definitions related to computational verb sets.

3.2.1 The development of computational verb theory

Computational verbs were first introduced as a means of solving engineering and dy-

namics problems by modelling them in terms of natural language verbs [102] [104] [107].

Computational verb concepts were further developed [101] [102] [106] [112] [107] into a

new design paradigm called “computational verb theory”.

Computational verb-based logical operations between verbs were defined by Yang

in [103]. Computational verb logics were applied to form computational verb-based

reasoning systems in [111] [104]. Verb sets and verb numbers which are computational

verb-based generalisations of their respective mathematical concepts were introduced in

[105] [110]. Decision trees were extended to computational verb decision trees in [123].

The link between fuzzy membership functions and computational verb collapses was

studied in [122].

The relationship between computational verbs and natural language was studied in

[114] [111]. The relationship between natural language adverbs and verbs as they relate

to computational verbs were defined in [100].

A theory for the unification of fuzzy and computational verb theories as the basis for

machine cognition was presented and studied in [117] [111]. The issues of implementing

cognition and simulating human emotion using CVT were presented in [120].

Zhang et al [131] have described an alternative way of computing verb similarity using

neural networks that more closely follows human thought processes. Yang et al [125]

have provided a measure of ambiguity between computational verbs by using Shannon

entropy [84]. Other work has been done in the field of CVT, but only the work applicable

in the context of this thesis is listed here.
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3.2.2 Computational verb definitions

This section defines evolving systems, trajectories of evolving systems, and equilibrium

points. The definition of an evolving system is applied in the definition of a computa-

tional verb. A simplified definition of a computational verb is supplied. Basic computa-

tional verbs are categorised as static verbs, focus verbs, centre verbs, and node verbs.

Definition 3.10 (Dynamic system): An nth-order continuous-time dynamic system

is represented by a state equation [106]:

.
x= f(x); x(t0) = x0, (3.26)

where
.
x

∆
=

∂x

∂t
. (3.27)

x(t) ∈ Rn is the state of the dynamic system at a time, t. f : Rn 7→ Rn is a vector field

that associates every point in Rn with a tangent vector that describes the change in the

dynamic system from that point. The solution to equation (3.26) is written as φt(x0).

Definition 3.11 (Trajectory): The family of mappings φt : Rn 7→ Rn is called a

“flow” [106]. A flow has the properties:

φt1 + t2 = φt1 ◦ φt2 ; φ0(x) = x. (3.28)

The set of points {φt(x0)| −∞ < t < +∞} is called “the trajectory through x0”. The

trajectory through x0 is calculated by setting x0 as the initial condition and obtaining

a solution to the dynamic system φt(x0). The solution to the dynamic system obtained,

φt(x0), is evaluated for the time values specified for the trajectory to obtain the trajectory

values.

Definition 3.12 (Equilibrium point): An equilibrium point (critical point) of an

nth-order continuous-time dynamic system (refer to definition 3.10) is a constant solution

of the equation (3.26). The constant solution of an equilibrium point is given by

x∗ = φt(x
∗) (3.29)

for all time, t.
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Definition 3.13 (Computational verb): Yang [111] defines a computational verb,

V , in terms of three dynamic systems (refer to definition 3.10) called the “evolving

system”, the “inner system”, and the “outer system”. The inner system is a dynamic

system that models the inner complexities of a human brain or another complex system.

An example of such a complex system is a thought in a human brain. The outer system

is a dynamic system that models the observation of a complex system. An example is

the outer system modelling the thought as understood by another person when the first

person communicates the thought to that other person using natural language words.

The evolving system is a dynamic system that models a complex system as a whole. The

evolving system encapsulates both the workings of the inner system and the observation

of the inner system in terms of the outer system.

The full definition of a computational verb, V , is given in terms of the evolving, inner,

and outer systems as follows:

1. The evolving system, EV , summarises the computational verb, V , as a whole, giving

EV = [T , Xs, Xp, IV ,FV ]. (3.30)

T ⊂ R is the time interval associated with the system. Xs ⊂ R3 represents the

physical space for the system as a whole. Xp ⊂ Rk is the space of reasoning for the

system defined in terms of real-valued functions in the space Rk. IV is the inner

system. FV is the outer system.

2. The inner system, IV , is given as

IV : T ×Xs ×Xp 7→ T ×Xs ×Xp (3.31)

and is used to model the inner workings of a complex system.

3. The outer system, FV , is given as

FV : T ×Xs ×Xp 7→ T ′ ×X ′
s ×X ′

p (3.32)

and is used to model the observation of the complex (inner) system. T ′ ⊂ R is

the perception of time in the system. X ′
s ⊂ R3 is the perception of the physical

space the system is located in. X ′
p ⊂ Rl is the space of reasoning for the observed

system in terms of real-valued functions in the space, Rl.
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Definition 3.14 (Simplified computational verb definition): A simplified defini-

tion of a computational verb, V , used in engineering applications is given in terms of an

evolving function [120] [122] [123] [124] [125]

EV : T × Ω → Ω, (3.33)

where T
⊂
= R and Ω

⊂
= Rn are the time and universe of discourse for the evolving function

respectively. A computational verb, V , defined within a discrete space is given by the

evolving function

EV : T × Ω → Ω, (3.34)

where T
⊂
= Z are the discrete time values for the evolving function EV .

This thesis uses this simplified definition of a computational verb. The evolving func-

tion, EV , represents the state of the dynamic systems modelled within a computational

verb (refer to definition 3.13) at a time, t. This thesis models natural language verbs in

terms of basic computational verbs. Basic computational verbs represent the trajectories

(refer to definition 3.11) between equilibrium points or around equilibrium points (refer

to definition 3.12). The basic computational verb types presented in this thesis are as

follows:

Definition 3.15 (Static computational verb): A static (computational) verb has

no dynamics [106]. Every initial condition is an equilibrium point (refer to definition

3.12) in the dynamic system(s) associated with the computational verb. An example of

this type of basic verb is the word “be”.

Definition 3.16 (Node computational verb): A node (computational) verb is gen-

erated in the vicinity of a node (equilibrium point) [106]. A node verb represents a

motion either towards or away from an equilibrium point. As an example, consider the

verb phrase “jumps onto”, which represents the motion of an object towards an equilib-

rium point. The equilibrium point for the example represents the top of an object where

the universe of discourse for the dynamic system is 3D space.

Definition 3.17 (Focus computational verb): A focus (computational) verb is

generated in the vicinity of a focus (equilibrium point) [106]. A focus verb represents
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either an indirect motion away from an equilibrium point or an indirect motion towards

an equilibrium point. An example of a focus verb is the verb “drawn” in the sentence

“The moth is drawn to the flame.”, if the verb “drawn” is modelled in terms of the

indirect motion of the moth towards the position of the flame.

Definition 3.18 (Centre computational verb): A centre (computational) verb is

generated in the vicinity of a centre (equilibrium point) [106]. A centre verb represents

a motion that keeps an object in the vicinity of an equilibrium point. The motion does

not push the object away from the equilibrium point or pull the object towards the

equilibrium point. An example of a centre verb is the verb “circle”.

3.2.3 Computational verb BE-transformation

This subsection provides the definition of a BE-transformation.

Definition 3.19 (BE-transformation): A verb statement, S, is given by:

S : [Ns, V ,No], (3.35)

where S, Ns, V , and No denote the verb statement, the optional subject noun, the verb,

and the optional object noun respectively.

A BE-transformation is given by

[Ns, V ,No]“BE word” (3.36)

with grammatical and contextual adjustment [107]. The “word” can be any noun, ad-

jective or equivalence. The BE-transformation transforms the verb statement S into a

BE-statement S ′ given by

S ′ : [Ns, V ,No] BE “word”. (3.37)

The “word” accounts for the differing contexts and interpretations that could possibly

be associated with a verb statement.

Computational verbs are interpreted in different contexts by calculating the degree

of “BE word” for the computational verb, V [107]. The degree of “BE word” is denoted
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by τword(V); it is calculated by applying the transformation function, ΦI
word, to the

inner system of a computational verb, V (refer to equation (3.31)), and by applying

the transformation function, ΦO
word, to the outer system of a computational verb, V

(refer to equation (3.32)). The result of the transformation of an evolving system, EV ,

by the transformation functions, ΦI
word and ΦO

word, is a function that calculates the degree

of “BE word”.

If the inner system of a computational verb, V , is known, the transformation, ΦI
word,

is applied to the inner system of the computational verb, V , and the degree of “BE

word”, τword(V), is given by

τword(V) = ΦI
word : T ×Xs ×Xp 7→ Rm. (3.38)

T ⊆ R, Xs ⊆ R3, and Xp ⊆ Rk are defined as for equation (3.31).

If the outer system of a computational verb, V , is known, the transformation, ΦO
word,

is applied to the outer system of the computational verb, V , and the degree of “BE

word”, τword(V), is given by

τword(V) = ΦO
word : T ′ ×X ′

s ×X ′
p 7→ Rm. (3.39)

T ′ ⊆ R, X ′
s ⊆ R3, and X ′

p ⊆ Rl are defined as for equation (3.32). Rm is the universe

of discourse for the function that calculates the degree of “BE word”.

If the sentence, “The man ages.”, is interpreted in the context “old”, the degree of

“BE old” is calculated by applying the transformations, ΦI
old and ΦO

old, to the evolving

system of the computational verb “ages”. If the evolving function, Eages, that represents

the evolving system of the computational verb “ages” (refer to definition 3.14) is given

by

x = EV(t) = t; t ∈ (0, 80], (3.40)

a BE-transformation for the phrase “BE old” is given by

µ(x) =
x

80
; x ∈ (0, 80]. (3.41)

µ(x) is the membership function of a fuzzy set “old” with a base variable, x, in years.

The time, t, in years of the evolving system is represented as a real-valued number on the

interval (0, 80]. The evolving function, Eages, evaluates to a larger value as the time value,
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t, that is passed to the evolving function, Eages, increases (refer to equation (3.40)). The

value of the evolving function, Eages, is stored in the base variable, x. If the value of x

increases to 80, the degree of “BE old”, as determined by the membership function, µ(x),

increases to 1.0. The BE-transformation for the phrase “BE old” therefore corresponds

to the perception of the man growing older as his age increases to 80. The man growing

old is modelled in turn by the computational verb “ages” and the corresponding evolving

function, Eages.

BE-transformations allow different computational verbs expressed in different con-

texts of interpretation to be combined into a single logical system for combined logical

operations and reasoning. The single logical system used is typically a fuzzy logic system.

3.2.4 Computational verb sentence definitions

This subsection defines both simple atomic verb sentences and molecular verb sentences.

Definition 3.20 (Atomic verb sentence): An atomic verb sentence consists of an

original process-symbol (the verb word that corresponds to a computational verb) and

an optional subject and/or object (noun) [107].

Definition 3.21 (Molecular verb sentence): A molecular or composite verb sen-

tence consists of atomic verb sentences, connectives, and adverbials, written in different

sentences and modes [107].

3.2.5 Verb set definitions

This section provides definitions related to verb sets by defining verb elements, compu-

tational verb collapses, and computational verb sets.

Definition 3.22 (Computational verb element): A (computational) verb element

is denoted by the ordered pair, (C , S ), and consists of a verb-statement, S, interpreted

in a context, C . The “birth time” – which is the start of time interval associated with

verb–element, (C ,S), – is denoted by T0. The “death time” – which is the end of the
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time interval associated with the verb–element, (C ,S), – is denoted by T0 + TC . TC is

the size of the time interval associated with the verb–element, (C ,S) [107].

Definition 3.23 (Collapse of a computational verb statement): If a (computa-

tional) verb statement has the structure “verb + statement”, a collapse of the computa-

tional verb statement, S, is given by “BE + statement” with grammatical and contextual

adjustments [107]. The computational verb collapse of verb statement, S, is denoted by

C(S).

Computational verb collapses map verb sentences to their end states.

BE-transformations transform verb sentences (statements) into static structures such

as fuzzy sets for unified logic operations between different verb sentences (statements)

in different contexts of interpretation. The end state of a verb sentence (statement) is

a language statement that represents the end state of the action named by the verb.

The sample sentence “He walks to school.” has an end state signified by the statement

“at school”. An example of a computational verb collapse for the verb sentence (state-

ment) “He walks to school.” in the context of interpretation “location” is given by the

statement “BE at school”. The computational verb collapse, “BE at school”, can be

expressed in terms of a crisp value, a crisp set, or a fuzzy set.

Definition 3.24 (Computational verb set): A computational verb set, SS ⊂ U , is

deduced from a computational verb sentence (statement), S, and a crisp or a fuzzy set,

S . The set, S , is a set of collapses for the computational verb sentence (statement),

S. The verb set, SS , is given by

SS = {(C ,S)|{C(FS(t,C ))} = S ; (C ,S) ∈ U ; t ∈ [0, TC]}. (3.42)

TC is the lifetime of the verb sentence S in context C . C(FS(t,C )) is the collapse of the

verb element, (C ,S) (refer to definitions 3.22 and 3.23). C(·) is a mapping function that

maps a verb sentence (statement) to a crisp value, crisp set, or a fuzzy set that represents

the collapse of the verb sentence (statement). {C(FS(t,C ))} is the set of collapses of the

outer observable system of S in context set, {C } [107]. The verb collapses are performed

in terms of the outer system, FS , of the verb sentence (statement), S. The outer system

is used for the verb collapse because a verb collapse corresponds to an end state, and
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the system that is collapsed must be observable to determine the end state (refer to

definition 3.13 and equation (3.32)).

3.3 Constraint satisfaction problem definitions

This section presents the definition of CSPs. After fuzzy constraints have been intro-

duced, CSPs are relaxed in terms of fuzzy constraints to define fuzzy constraint satisfac-

tion problems (FCSPs).

Definition 3.25 (Constraint satisfaction problem): A CSP [91] is defined as a

triple (Z,D,C), where Z is a finite set of variables x1, . . . , xn. D is a function that maps

every variable in Z to a finite set of objects of arbitrary type, D : Z 7→ finite set of

objects (any type). Dxi
denotes the set of objects mapped by D for variable xi. The

objects then form the values of xi, and Dxi
represents the domain of xi. C is a finite

(possibly empty) set of constraints on an arbitrary subset of variables in Z. In other

words, Z is a set of compound labels, where a label is the assignment of a value to a

variable and a compound label is the simultaneous assignment of n values to n variables.

The triple and therefore the CSP are denoted by csp(P), which is read as “P is a CSP”.

Definition 3.26 (Fuzzy constraint satisfaction problem): An FCSP is defined

as in definition 3.25, but the constraints are defined as fuzzy [79]. A fuzzy constraint

is a mapping from a domain, D = D1 × . . . ×Dk (corresponding to the domains of the

variables referred to by the constraint), to a real number on the interval [0, 1]. If Ci is

a fuzzy constraint, the number c(v1, . . . , vk) denotes how well the variable value tuple,

(v1, . . . , vk), satisfies the constraint, Ci. The number c(v1, . . . , vk) corresponds to the

membership function of a fuzzy set, as in definition 3.6.

3.4 Summary

This chapter focused on the definitions from fuzzy set theory, computational verb theory,

and constraint satisfaction problems that are applied in this work. The definitions in this
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chapter are provided to ensure that this work is self-contained; they serve as a reference

for the chapters that follow. In all instances where a definition is applicable reference

will be made to this chapter.
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Chapter 4

Computational verb theory and

constraint satisfaction problem

models for nouns, adjectives, verbs,

and adverbs

This chapter sets out to show how computational verb theory and constraint satisfaction

problem theory are applied in this work to model natural language nouns, adjectives,

verbs, and adverbs. These theoretical models form the basis of a system for interactive

narrative space generation from natural language words. A generic computational verb

model for adjectives and verbs is presented in section 4.1. The notion of interpretive

context, as applied to the computational verb-based word model presented in section 4.1,

is defined in section 4.2. Section 4.3 describes the fuzzy set theory and computational

verb theory models for nouns, adjectives, verbs, and adverbs. The computational verb

models are related to the generic computational verb model of section 4.1. Crisp and

fuzzy variable resolution strategies for determining variable values from the constructed

computational verb-based word models are described in section 4.4.
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4.1 A generic computational verb model for adjec-

tives and verbs

Yang [106] states that when natural language is used to model changes of measured

features over time, i.e. a dynamic process, three steps are involved:

• The continuous dynamic process is segemented into parts that have similar dy-

namics.

• A verb statement is assigned to every segmented piece of the dynamics.

• Verb statements in the form of a sentence or paragraph that encompasses the

dynamic process in its entirety are connected.

A system that generates interactive narrative space from narrative text provided

as input, however, requires a reversed process from the one listed above. In such a

system, narrative text is provided as input and is related to previously constructed

computational verb models. The computational verb models are in turn evaluated to

provide values that parameterise the transformation of representational features. The

transformed representational features serve to depict the narrative text in an alternative

representation such as graphics, sounds, and the behaviour of artificial intelligence (AI)

agents. An interactive narrative space is thus generated from natural language text.

A generic computational verb model is defined to allow the translation of narra-

tive text to interactive narrative space by means of computational verb theory (CVT).

The generic computational verb model enables evolving function word models to be dy-

namically constructed using the generic evolving function model as a template. The

constructed evolving function models are used to model natural language words in terms

of computational verb theory. The simplified definition of a computational verb defines

a computational verb in terms of an evolving function, EV (refer to definition 3.14). This

work models computational verbs in terms of the simplified definition of a computational

verb and ipso facto models computational verbs in terms of evolving functions. Natural

language sentences are modelled as verb sentences (statements) (refer to equation (3.35)).

Each natural language sentence is modelled as a verb sentence in a specific interpretive
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context, C . The pairing of a context of interpretation, C , and a verb sentence, S, forms

a verb element (refer to definition 3.22).

A time interval, T = [T0, T0 + TC], is associated with a verb element. The time

interval, T , corresponds to a segment of a dynamic system (refer to definition 3.10) that

is modelled by a computational verb, V . The computational verb, V , combined with

optional subject, Ns, and object, No, nouns form the verb sentence, S. An evolving

function model, EV , of a computational verb, V , by definition adopts the time interval,

T , of the verb element, (C,S), in this work. A birth time

Tb = T0 (4.1)

and a death time

Td = T0 + TC (4.2)

are therefore associated with every evolving function model. TC is the lifetime of verb

element, (C,S) (refer to definition 3.22).

This work models an evolving function, EV , in terms of the following generic equation:

EV = α1f1(t) + . . . + αnfn(t); t ∈ [Tb, Td], Tb ∈ R+, Td ∈ R+, αi ∈ R. (4.3)

The real-valued numbers, α1, . . . , αn, are scaling values of the amplitudes of functions

f1(t), . . . , fn(t) and are called “amplitude values” for short. The time value, t, is a non-

negative real number on the interval [Tb, Td]. Tb and Td indicate the birth and death

times of the evolving function model, EV , as defined in equations (4.1) and (4.2).

This work focuses on evolving functions that are specified over a single time interval

or repeat over a single time interval. An evolving function that repeats over a fixed

interval, T , has the form:

EV = α1f1(t− Tbj
) + . . . + αnfn(t− Tbj

); t ∈ [Tbj
, Tdj

], Tbj
∈ R+, Tdj

∈ R+, αi ∈ R. (4.4)

The evolving function has the form of equation (4.4) from the first repetition of the

evaluation of the evolving function over the time interval, T , onwards. The indices,

j = 1, . . . ,m, label the instances of the repetition of the evolving function, EV , over

intervals of the size of TC . Each time interval, Tj, has a birth time of Tbj
= (j − 1)TC

and a death time, Tdj
= jTC . The first instance of the evolving function, EV , over the
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time interval, T , corresponds to repetition index, j = 1. The first repetition of EV in the

form of equation (4.4) has the form of equation (4.3).

Equation (4.3) allows an evolving function, EV , to be expressed as the sum of func-

tions, f1(t), . . . , fn(t), scaled according to amplitude values, α1, . . . , αn. Specific choices

of functions, f1(t), . . . , fn(t), allow an evolving function, EV , to be expressed in terms

of the basic computational verb types. The basic computational verb types are static

verbs (see definition 3.15), node verbs (see definition 3.16), centre verbs (see definition

3.17), and focus verbs (see definition 3.18). The specification of the amplitude values,

α1, . . . , αn, allows the chosen functions, f1, . . . , fn, to be scaled according to the specific

dynamics (changes over time) modelled for the interpretation of a word in a context.

The function, fgrow, that forms part of the evolving function model of the sentence

“The tree grows.” is, for example, defined by the equation

fgrow = 1− eat; a < 0, t ∈ R+. (4.5)

If the growth of the tree is modelled as a node computational verb which is then scaled

by an amplitude value, α = 3.0, that represents the full-grown height of the tree, the

evolving function model for the sample sentence “The tree grows.” in the interpretive

context “height” is given by

EV = (3.0)(1− eat); a < 0, α ∈ R, t ∈ R. (4.6)

Equation (4.6) is specified in the form of equation (4.3), with f1 = fgrow and α = 3.0.

4.2 Context as applied to computational verb-based

word models

Natural language defines context as the part of text (sentence, paragraph) that surrounds

a word or passage and enables the meaning of the word to be determined [2]. The notion

of interpretive context applied to the computational verb-based word models presented in

this work is specific. An interpretive context is defined to denote a single interpretation of

the relationship between two words in a sentence. Adjectives and verbs in an interpretive
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context are defined in relation to nouns. Adverbs in a context of interpretation are

defined in relation to verbs and adjectives.

The objective of the present work is to translate natural language sentences into

an interactive narrative space. Interactive narrative space is realised by multiple rep-

resentational media such as graphics, sound, and the behaviour of AI agents. Multiple

interpretations of a sentence in terms of these representations are therefore required,

each of them defined in a context of interpretation. A further consideration for the

definition of an interpretive context is that a single interpretation of a sentence can be

further subdivided according to its constituent parts. The constituent parts of an inter-

pretive context, as defined by the models of this work, refer to the dynamics modelled by

computational verbs, and the variables whose values are determined by those dynamics.

The first division of an interpretive context subdivides an evolving function (refer

to equation (4.3)) to model every term that corresponds to a generic function, fi, in a

separate context, which is labelled a subcontext. The second division of an interpretive

context, labelled as a partial context, subdivides the amplitude value, αi, that corre-

sponds to a generic function, fi, of a term in equation (4.3). The partial contexts, C ′
i,

express the amplitude value, αi, of a term in equation (4.3) as a sum of values.

Equation (4.3) is expressed in terms of partial contexts by substituting amplitude

values, αi, with sums of values, αi1 + . . . + αin , which yields the equation

EV = (α11+. . .+α1k
)f1(t)+. . .+(αn1+. . .+αnm)fn(t); t ∈ [Tbj

, Tdj
], Tbj

∈ R+, Tdj
∈ R+, αij ∈ R.

(4.7)

Every αij is modelled in a separate partial context. A partial context is related to a

single subcontext.

For the computational verb-based word models that follow, interpretive context pairs

the computational verb models with variables whose values are determined by the com-

putational verb models. The variable values within an interpretive context therefore

serve as measurements of the associated computational verb model. A computational

verb model is measured by substituting a time value into the evolving function defined

for an interpretive context. The measurement value is then stored within the variable

associated with the computational verb model for the word in a context of interpreta-

tion. In the scope of this work, the variable that stores a measurement value is called an
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“attribute variable”. The computational verb model can be further subdivided in terms

of its function terms and amplitude values as defined for the subcontexts and partial

contexts described above.

The final function of a context of interpretation is to pair a word with the interactive

narrative space representation which serves to depict the word in the context of interpre-

tation. Interpretive context therefore groups computational verb models that describe

the dynamics implied by a word with a representational means in an interactive narra-

tive space. The measurement values that result from the computational verb models are

then used to parameterise the transformation of the representational means. The trans-

formed representational means serves to convey the dynamics of a word, for a context

of interpretation, within the interactive narrative space. In this way the translation of

narrative text to interactive narrative space is completed.

4.3 Computational verb theory models for nouns,

adjectives, verbs, and adverbs

This section defines natural language nouns, adjectives, verbs, and adverbs in terms

of the CVT set out in chapter 3. Models are constructed from CVT principles that

represent a noun, an adjective, a verb, or an adverb in a context of interpretation (refer

to section 4.2). Section 4.3.1 defines nouns in terms of natural language, fuzzy set theory,

CVT, and the models implemented in this work. Adjectives are defined in section 4.3.2

in terms of natural language, fuzzy set theory, CVT, and the computational verb models

of this work. Verbs are defined in terms of natural language and CVT in section 4.3.3.

Adverbs are defined in terms of natural language, fuzzy set theory, and CVT in section

4.3.4. The definition of adverbs in terms of CVT is then used to construct a model for

adverbs as applied in the present work.

4.3.1 Nouns

Natural language defines a noun as a part of speech that names a person, place, thing,

quality or (performed) action and functions as the subject or object of a verb [2]. Fuzzy
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set theory models nouns in terms of linguistic variables (refer to definition 3.9) where the

noun in a context of interpretation is associated with a linguistic variable, L. Linguistic

variables are assigned linguistic values, typically in the form of adjectives, from a term

set, T (L), as given by equation (3.24). CVT treats nouns as the subject or object of an

atomic (refer definition 3.20) or molecular (refer to definition 3.21) verb sentence.

The present work models nouns in terms of their relationship to adjectives and verbs.

A noun groups the values that result from the measurements obtained from computa-

tional verb models related to adjectives, verbs, and adverbs at a specific point in time.

The measurement values from computational verb models are stored in variables called

“attribute variables”. In relation to an adjective or a verb, a noun uniquely identifies

and groups the attribute variables defined for the computational verb models of an as-

sociated adjective or verb within a context of interpretation. A noun therefore uniquely

labels and identifies a group of attribute variables.

On a separate note, every noun defined in a context of interpretation is associated

with a narrative representation. Narrative representations are not dependent on CVT

models implemented for the interpretive context and serve to represent the noun within

the generated interactive narrative space. The values stored within attribute variables

are used to parameterise transformations of narrative representations. Narrative repre-

sentations and attribute variables are grouped according to unique instances of nouns

and the contexts of interpretation considered for a specific scenario. The transformed

narrative representations serve to depict the textual narrative within the interactive nar-

rative space by a representational artifact such as a graphic, sound, or the behaviour of

an AI agent.

4.3.2 Adjectives

Natural language defines an adjective as the part of speech that qualifies a noun by

limiting, qualifying, or specifying the noun [2]. Fuzzy theory models an adjective as a

linguistic value assigned to a linguistic variable, L, which is associated with a noun (refer

to definition 3.9) in a fixed context of interpretation. Every linguistic value is represented

by a fuzzy variable, X (refer to definition 3.7), that ranges over a universe of discourse,

U . The base variable of the universe of discourse, U , is denoted by u. A semantic rule,
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M(X), assigns a meaning to every linguistic value, L, in the form of a fuzzy variable,

X. By definition, the semantic meaning, M(X), is equal to the restriction on the fuzzy

variable, X (see equation (3.25)), denoted by R(X). According to the definition of a

fuzzy variable, the restriction, R(X), has a membership function, c(u), in terms of the

base variable, u.

As an example, consider the phrase “pink apple” that contains the noun “apple” and

the adjective “pink”. The noun “apple” in fuzzy set theory may be associated with a

linguistic variable “Red” for the fixed interpretive context of the similarity in colour of

an object to the colour red. The adjective “pink” represents a linguistic value in the

form of a fuzzy variable.

The fuzzy variable is called pink and ranges over a universe of discourse, U = [0, 100].

The universe of discourse, U , represents the redness of an object as a percentage. Let

u be a base variable of the universe of discourse, U . The meaning of the fuzzy variable,

pink, denoted by M(pink), is defined to be the restriction on the variable, pink, denoted

by R(pink) (refer to equation (3.25)). The restriction has an associated membership

function, cpink(u) ∈ [0, 1], in terms of the base variable, u.

For the adjective “pink” this membership function can be chosen as a function that

returns the highest membership degree to the value, u = 50 (if we accept that the

percentage of red in the colour pink is 50%). If the fuzzy variable assignment were to be

defuzzified by choosing the percentage value with the highest membership degree to the

restriction associated with the fuzzy variable, pink, a value of 50 would be assigned to

the linguistic variable “Red” [93].

CVT models adjectives as computational verbs whose dynamics have been lost [107].

The evolving system of the computational verb (see definition 3.14) is therefore no longer

producing a change in variable values over time. A computational verb whose dynamics

have been lost is called a “dead” verb, one that has already reached its end state. An end

state for a verb sentence (refer to definitions 3.20 and 3.21) can be described by a verb

statement such as “BE + statement”. According to the definition of a computational

verb collapse (refer to definition 3.23), a statement such as “BE + statement” can be

expressed in terms of a crisp or a fuzzy set.

This work distinguishes two cases when modelling adjectives:
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• The first case represents adjectives that are classified in natural language as an

adjective and describe a feature that does not change over time. Adjectives which

describe a feature that does not change over time are modelled in terms of CVT

by a static verb (see definition 3.15). An example of such an adjective is the word

“red”, which represents a static state over time. This first case of adjective usage

represents an adjective viewed in terms of CVT.

• The second distinguished case represents those adjectives that are classified as

adjectives in natural language, but which describe a feature that changes over

time. An example of such an adjective is the word “bleeding” [2]. The adjective

“bleeding” describes a feature that changes over time but is classified in natural

language as an adjective. CVT considers such an adjective as a verb that is typically

modelled by a centre verb [106] (see definition 3.18).

This work handles the two cases of adjective usage by specifying an adjective in

terms of a verb within a context of interpretation. An adjective within a context of

interpretation specifies an amplitude value, α, as defined for the equation (4.3) and a

verb whose evolving function model serves as the model for the word “BE” in the “BE

+ statement” phrase. The “BE + statement” phrase expresses an adjective in terms

of the end state of a verb sentence within CVT [107]. This work allows any verb to

be chosen to model the word “BE” and as a result the statement “BE + statement” is

generalised to the statement “verb + statement”, as is the case for a computational verb

collapse (refer to definition 3.23). The generalisation of “BE + statement” to “verb +

statement” allows a word classified as an adjective in natural language to be treated as a

verb in terms of CVT. This generalisation enables the second usage case of an adjective

to be modelled in terms of a computational verb while retaining the natural language

word-type classification.

An adjective is modelled within a context of interpretation by specifying an amplitude

value, α, a verb word, and an attribute variable. The function, f , of the evolving function

model for the specified verb in a context of interpretation is combined with the amplitude

value, α, to form a single term of equation (4.3). The specific instance of equation (4.3),

formed by choosing an amplitude value, alpha, and a function, f , serves to model the

adjective. A verb that repeats over a time interval may also be chosen, and in such a
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case the adjective is modelled by a single term of equation (4.4). A value retrieved from

substituting a specific time value, t, into the constructed model is stored in the specified

attribute variable. The attribute variable is unique to the adjective–noun pair for the

narrative text sentence modelled in a single context of interpretation.

4.3.3 Verbs

Natural language defines a verb as the part of speech that expresses actions, occurrences

or states of existence [2]. Fuzzy logic models natural language in terms of linguistic

variables (refer to definition 3.9) and focuses on the relationship between adjectives and

nouns [129] as modified by adverbs in terms of linguistic hedges (refer to definition 3.8).

Fuzzy set theory models are not based on dynamics (changes over time) and can therefore

not model actions as labelled by verbs. On the other hand, CVT does model words in

terms of their dynamics, that is, the changes in state over time that they describe and

is therefore able to model natural language verbs.

This thesis models a verb by means of CVT by specifying an evolving function in

terms of amplitude values and functions and attribute variables that receive values from

the constructed evolving functions. A single permutation of functions and amplitude

values defines an evolving function in the form of equation (4.3). The defined evolving

function models the dynamics of a verb in a single context of interpretation. The chosen

attribute variable stores the measurement values obtained from the constructed evolving

function at a point in time. The attribute variable is grouped with the evolving function

in an interpretive context.

The evolving function that models the dynamics of a verb within a context of in-

terpretation is further subdivided into subcontexts. Every subcontext of interpretation

(refer to section 4.2) relates to a term of the evolving function equation (4.3). The

subcontext enables the term to be named according to the role the term plays in the

interpretation of the dynamics of a verb. As an example, consider the sentence “The

frog jumps off the rock.”. The sentence can be modelled by an evolving function of the

form:

EV = α1(1.0) + α2(1− ebt); b < 0, αi ∈ R, t ∈ R+. (4.8)

The evolving function presented in equation (4.8) is subdivided according to the
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models in this work by defining the components of each term in a separate subcontext.

The first term relates to the starting position of the frog and may be modelled in a

subcontext labelled as “Start”. The second term models the change in position of the

frog and may be modelled in a subcontext labelled “Change”. This allows a complex

evolving function model to be decomposed into subcontexts. Each subcontext relates

to a subcomponent of the dynamics of a verb. The subcontexts may then be named in

non-mathematical terminology to ease further the modelling and understanding of the

dynamics of verbs.

The evolving function of equation (4.8) may be further subdivided in accordance with

the models presented in this work, by specifying the amplitude values, αi, as sums of

multiple values and/or variables. Partial contexts specified for the subcontext related

to a term of the evolving function equation (4.8) allow an amplitude value, αi, to be

expressed in terms of multiple attribute variables and/or real-valued numbers as a sum.

As an example, consider again the sentence “The frog jumps off the rock.”. The initial

height of the frog above the ground is modelled within the first term of the evolving

function of equation (4.8) in a subcontext labelled as “Start”. The initial height of the

frog above the ground may be expressed as a sum of the height of the rock and the

height of the frog. The “Start” subcontext may thus be further subdivided into two

partial contexts related to the height of the rock and the frog respectively. Each partial

amplitude value, αij , of equation (4.7) is thus modelled in a suitably labelled partial

context such as “Other” for the height of the rock and “Self” for the height of the frog.

The final component of a verb model within this work is the specification of attribute

variables. An attribute variable may be specified in two roles for a verb model within

a context of interpretation. The first role that an attribute variable may play in a verb

model is that of the storage variable. An attribute variable may store a measurement

value obtained from the constructed evolving function model of a verb in a context of

interpretation. A measurement value is obtained by evaluating the constructed evolving

function at a specific time.

The second role that an attribute variable may play in a verb model for a context of

interpretation is that of an amplitude value, αi. For an amplitude value, αi, specified

in terms of an attribute variable, V , the constant, κ, is introduced to serve as a scaling
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factor for the attribute variable, V . The amplitude value, αi, can therefore be expressed

as

αi = κV. (4.9)

An amplitude value, αi, expressed as a sum of values defined within partial contexts,

may be defined in terms of attribute variables, V1, . . . , Vn. An amplitude value, αi,

defined over multiple partial contexts is expressed as

αi = κ1V1 + . . . + κnVn; κi ∈ R. (4.10)

Note that every term, κiVi, in equation (4.10) may be substituted for a fixed amplitude

value, αij .

4.3.4 Adverbs

Natural language defines an adverb as the part of speech that modifies another verb,

adjective or adverb [2]. Fuzzy set theory defines adverbs in terms of linguistic hedges

[130] (refer to definition 3.8). Linguistic hedges are functions that manipulate the mem-

bership functions of fuzzy sets. Examples of such functions are concentrators, as in

equation (3.21), and dilators as in equation (3.22). CVT defines adverbs as modifiers

of computational verbs and therefore as modifiers of their associated evolving functions

[100].

Yang identifies three types of adverb within CVT, namely those that modify time,

space, and perception respectively. The transformation performed by an adverb of time,

βT , on the evolving system of a computational verb, V , (refer to definition 3.13) is

represented by the evolving system [100]:

Φβ ◦ EV = [T , Xs, Xp, IV ,FV , Φβ] (4.11)

with T , Xs, Xp, IV and FV defined as for equation (3.30) and Φβ ◦ EV read as the

mapping performed by the modifying system, Φβ, on the evolving system, EV . The

modifying system is given by

Φβ : T 7→ T Φ (4.12)
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T represents the time interval for the evolving system, EV . T Φ represents a transformed

time interval formed by applying the modifying system, Φβ, to the evolving system of

the computational verb, V (refer to definition 3.13).

The mapping performed by the modifying system, ϕβ, on the outer observable system,

FV , of the evolving system, EV , (refer to definition 3.13) is given by

ϕβ ◦ FV : T ′ ×X ′
s ×X ′

p 7→ T ϕ ×X ′
s ×X ′

p . (4.13)

T ′, X ′
s , X ′

p are defined as for equation (3.32). T ϕ represents a transformed perceived

time interval formed by applying the modifying system, ϕβ, to the outer observable

system, FV . ϕβ ◦ FV is read as the mapping performed on the outer system, FV , by the

modifying system, ϕβ. The modifying system is given by

ϕβ : T ′ 7→ T ϕ. (4.14)

The transformation performed by an adverb of space, βXs , on the evolving system of

a computational verb, V , (refer to definition 3.13) is represented by the evolving system

[100]:

Φβ ◦ EV = [T , Xs, Xp, IV ,FV , Φβ], (4.15)

with T , Xs, Xp, IV and FV defined as for equation (3.30) and Φβ◦EV read as the mapping

performed by the modifying system, Φβ, on the evolving system. The modifying system

is given by

Φβ : Xs 7→ X Φ
s . (4.16)

Xs represents the regular physical space for the evolving system. X Φ
s represents the

transformed physical space formed by applying the modifying system, Φβ, to the evolving

system of computational verb, V (refer to definition 3.13).

The mapping performed by the modifying system, ϕβ, on the outer observable system,

FV , (refer to definition 3.13) is given by

ϕβ ◦ FV : T ′ ×X ′
s ×X ′

p 7→ T ′ ×X ϕ
s ×X ′

p . (4.17)

T ′, X ′
s , X ′

p are defined as for equation (3.32). X ϕ
s represents a transformed perceived

physical space formed by applying the modifying system, ϕβ, to the outer observable
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system, FV (refer to definition 3.13). ϕβ ◦ FV is read as the mapping performed on the

outer system, FV , by the modifying system, ϕβ. The modifying system is given by

ϕβ : X ′
s 7→ X ϕ

s . (4.18)

Adverbs that modify the space of perception of a computational verb are more com-

plex in CVT. Adverbs that alter the perception space perform transformations on the

evolving function associated with a computational verb (refer to definition 3.14) [120].

Yang [120] generalises adverbs that modify the space of perception for a computational

verb into two cases. Adverbs of perception may modify the amplitude (first case) and/or

frequency (second case) of the evolving function of a computational verb (refer to defi-

nition 3.14).

1. An adverb, β, that acts as a modifier of the amplitude of an evolving function, EV ,

where EV is defined in a fuzzy space, can be applied to the fuzzy state of EV at a

point in time, t, yielding

EV(t) ◦Ψ = µ(x) ◦Ψ. (4.19)

µ(x) is a membership function (in terms of base variable x) that represents the

end state of EV as given by a computational verb collapse (refer to definition 3.23).

Ψ represents a modifying function applied to the end state of the computational

verb, V . An example of a transformation function that may be chosen as Ψ is a

concentrator (refer to equation (3.21)). An example of an adverb, β, that corre-

sponds to the choice of a concentrator as the transformation function of an adverb,

Ψ, is the adverb “very”.

An adverb, β, that acts as a modifier of the amplitude of an evolving function, EV ,

where EV is defined in a crisp space and the crisp states are later fuzzified, can be

applied to the amplitude of EV yielding

(EV ◦Ψ) ◦ µ = EV◦Ψ(t) ◦ µ. (4.20)

EV◦Ψ represents the transformed evolving function formed by the application of the

transformation function, Ψ, to the amplitude value, α, of EV . µ is the membership

function that serves to fuzzify the crisp state of the evolving function, EV . EV◦Ψ(t)◦µ
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represents the fuzzification of a crisp state of the transformed evolving function at

a point in time, t.

2. An adverb, β, that acts as a modifier of the perceived time of a computational

verb, V , modifies the phase of the associated evolving function, EV , yielding

EV ◦Ψ = EV(Ψ ◦ t). (4.21)

Ψ represents the modifying function applied to the time parameter, t, of the evolv-

ing function. An example of a choice for Ψ is

Ψ ◦ t = Ψ(t) = δt (4.22)

where δ ∈ R scales the time value.

This work treats natural language adverbs as adverbs that modify the space of per-

ception for a computational verb, V . Adverbs are modelled to modify the amplitude

and/or phase of the evolving function of a computational verb (refer to definition 3.14).

The mapping on the amplitude values of an evolving function, EV , in the form of equa-

tion (4.3) is similar to that of equation (4.20). The transformation function, Ψ, (as for

equation (4.20)) is applied directly to the EV that serves as the model for a verb or an

adjective. The state of an evolving function at a time, t, is not fuzzified within the scope

of this work as was the case for the evolving function of equation (4.20).

An adverb, β, that acts as a modifier of the amplitude of a constructed evolving

function (refer to (4.3)) is defined to perform a mapping on the amplitude values of the

individual terms. The amplitude values modified according to a specified transformation

function, Ψ, are determined by the context of interpretation (see section 4.2) that the

adverb is defined in. An adverb defined in a normal context of interpretation specifies

a transformation, Ψ, that is applied to the each amplitude value, αi, of the evolving

function equation.

An adverb defined in a subcontext (refer to section 4.2), specifies a transformation

function, Ψ, that is applied to the single amplitude value, αi, defined within that subcon-

text. A subcontext whose amplitude value is defined in terms of partial contexts (refer

to section 4.2), specifies a transformation function, Ψ, which is applied to all amplitude
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values, αij (refer to equation (4.7)). The amplitude values, αij , are specified in partial

contexts. The partial contexts relate to the subcontext that the adverb, β, is defined in.

An adverb defined in a partial context specifies a transformation function, Ψ, applied

to a single amplitude value, αij . The amplitude value, αij , transformed by the specified

transformation function, Ψ, corresponds to the same partial context that the adverb, β,

is defined in.

An adverb, β, that acts as a modifier of time is defined as a transformation of the

time value (phase) associated with the evolving function of a computational verb, V . An

adverb defined in a context of interpretation specifies a transformation function, Ψ, that

modifies the time value passed to the evolving function, EV (refer to equation (4.21)), as

a parameter. The evolving function, EV , is specified in the same context of interpretation

as the adverb, β.

For an adverb–verb or adverb–adjective pair, the evolving function, EVi
, defined in

the context of interpretation, Ci, is transformed by the transformation function, Ψi, that

is also specified in the context of interpretation, Ci. A transformed evolving function,

EΨ
Vi

, is obtained from the transformation and evaluated to obtain a measurement value

at a specific time, t. The measurement values calculated from all transformed (and non-

transformed) evolving functions, specified over all applicable contexts of interpretation,

are used to parameterise the transformation of narrative representation media. The

transformed narrative media (graphics, sounds, AI scripts) serve to convey the effect of

the adverbs in the generated interactive narrative space.

4.3.5 Summary

This section defined nouns, adjectives, verbs, and adverbs in terms of natural language,

fuzzy set theory, CVT, and the word models described in this work. Nouns were defined

as a grouping of attribute variables and narrative representations within a context of

interpretation. Adjectives were defined in terms of natural language, fuzzy set theory,

and CVT and modelled according to the computational verb models presented in section

4.1. Verbs were defined in terms of natural language and CVT, and the models for natural

language verbs in this work were presented in accordance with the computational verb

models described in section 4.1. Adverbs were defined in terms of natural language,
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fuzzy set theory, and CVT, and the adverb models in this work were related to CVT

models.

4.4 Variable resolution procedures

This section deals with variable resolution in the light of the inconsistencies and ambigu-

ities introduced when natural language sentences are modelled mathematically. Section

4.4.1 examines the considerations for a robust variable value resolution procedure. The

resolution procedure handles variable assignments that result from the evaluation of

natural language models.

Section 4.4.2 describes a crisp variable resolution procedure. The crisp variable res-

olution procedure treats the variable value assignments that result from the evaluation

of the computational verb models (see section 4.3) as a system of linear equations. Pro-

cedures for the resolution of the resulting system of linear equations are presented.

Section 4.4.3 presents a fuzzy variable resolution procedure. Variable assignments

resulting from the computational verb word models presented in section 4.3 are modelled

as fuzzy constraints. A literature study of constraint satisfaction problems (CSPs) in

relation to the variable resolution procedures described is reported on. Fuzzy constraint

satisfaction problems (FCSPs) are introduced as a relaxation of CSPs that allows for

approximate solutions to inconsistent systems of linear equations. To conclude, the

fuzzy constraint satisfaction procedures in this work are described.

4.4.1 Considerations for variable resolution

A variable value resolution procedure for assigning measurement values to attribute

variables has to consider three important factors. The formation of evolving function

equations from the substitution of time values into evolving function models of adjec-

tives and verbs, the assignment of measurement values to interactive attribute variables

(refer to definition 3.5), and conflicting assignments of measurement values to attribute

variables are all discussed under separate headings in this section 4.4.1.3.
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4.4.1.1 The formation of evolving function equations

The computational verb models presented for adjectives and verbs were modelled ac-

cording to the evolving function models defined in section 4.1. To obtain measurements

from the computational verb models, time values are substituted into the evolving func-

tion that corresponds to a verb or an adjective within a context of interpretation (refer

to sections 4.3.2 and 4.3.3). Before the time values are substituted, the evolving func-

tions are modified according to adverb transformation functions as presented in section

4.3.4. The adverb transformation functions correspond to the adverbs associated with

an adjective or verb in natural language text and defined in a corresponding context of

interpretation (refer to section 4.2).

The measurement values obtained from the substitution of time values into evolving

function models are assigned to attribute variables. Every attribute variable is specific to

an instance of a noun word in the natural language text modelled. Every adjective–noun

or verb–noun pair corresponds to a single assignment of an attribute variable for a single

context of interpretation. The evolving function that produces an attribute variable is

further subdivided according to subcontexts and partial contexts (refer to section 4.2).

For an adjective, the value assigned by an evolving function measurement to an

attribute variable is simple. The measurement value assigned depends on the specified

amplitude value and a chosen function. The chosen function corresponds to the single

term evolving function that represents the choice of verb for the adjective (refer to section

4.3.2).

For a verb, the value assigned by an evolving function measurement is more complex

(refer to section 4.3.3). The measurement value depends on an evolving function specified

over multiple terms with multiple amplitude values and multiple chosen functions. The

amplitude values may be comprised of a sum of multiple values. A verb may also have

both a subject and an object noun. A verb with a subject noun may have its amplitude

values expressed in terms of attribute variables grouped with another noun (refer to

section 4.3.1). An attribute variable may represent a single amplitude value (refer to

equation (4.3)) or form part of the sum that expresses an amplitude value over multiple

partial contexts (refer to equation (4.7)).
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4.4.1.2 Interactive variable assignments

An attribute variable variable used as an amplitude value of an evolving function may

be used concurrently to store the measurement value of another evolving function. The

second evolving function may be used to model an adjective–noun or verb–noun pair in a

context of interpretation. This creates a dependency between an attribute variable that

receives a measurement value from an evolving function and the attribute variable that

may represent the whole or part of an amplitude value in another evolving function.

The dependency between the two attribute variables means that any restriction

placed on both attribute variables cannot be separated into two separate restrictions. A

restriction placed on the possible values of one attribute variable will affect the value of

the other attribute variable. Thus the assignment of measurement values to attribute

variables should be treated as for interactive variables (refer to definition 3.5). For

multiple interdependent measurement value to attribute variable assignments that re-

sult from multiple noun–adjective and noun–verb pairs modelled in multiple contexts of

interpretation, assignment should be treated as for equation (3.15).

As an example, consider the sentences “The rock is small. The frog jumps onto the

rock.”. The attribute variable variable that receives a value from the evolving function

model of “jumps onto” in the context of height may be “Height”. The attribute variable

that receives a value from the evolving function model of “is small” in the context of

height may also be “Height”. Each attribute variable “Height” is unique to the nouns

“frog” and “rock” respectively (refer to section 4.3.1). For the example sentences, the

amplitude value of “jumps onto” may in part be determined by the attribute variable

“Height” of the noun “rock”. Thus a dependency exists between the two instances of

the attribute variable “Height” of the nouns “frog” and “rock”. An assignment to the

attribute variable “Height” of either the nouns “frog” or “rock” should therefore be

handled as an interactive variable assignment in the variable value resolution procedure

(refer to definition 3.5).

4.4.1.3 Inconsistent variable assignments

Separate noun–adjective and noun–verb pairs may assign a measurement value obtained

from the evaluation of their corresponding evolving function models to the same at-
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tribute variable. The attribute variable may also be grouped with the same instance of

a noun. The assignments of differing measurement values to the same instance of an

attribute variable may result either from separate assignments in the same context of

interpretation or from assignments in different contexts of interpretation. Both cases

have the result that an instance of an attribute variable receives multiple measurement

value assignments. If such assignments were to be represented as a system of equations,

the resulting system would have no unique solution and would therefore be inconsistent.

As an example, consider the sentences “The car is to the left of the house. The car is

to the right of the house.”. The attribute variable “Position” may represent the position

of the car in a context of interpretation “Placement”. The attribute variable “Position”

will be assigned a measurement value retrieved by evaluating the evolving functions that

correspond to the verb phrases “is to the left” and “is to the right” in the context of

interpretation “Placement” at a specific point in time. Two different measurement values

are thus assigned to the attribute variable “Position”. The same instance of the noun

“car” is implied because there are no other adjustments such as adjectives to distinguish

the two instances of the noun “car” and no additional context is provided. Different

measurement values are therefore assigned to the same instance of the attribute variable

“Position” grouped with the single instance of the noun “car” (refer to section 4.3.1).

A system of equations that represents the assignment of the measurement values to the

attribute variable “Placement” would therefore prove to be inconsistent as no single

unique value for the instance of the attribute variable “Position” exists.

4.4.1.4 Summary

This section presented important considerations for a variable value resolution procedure

that handles measurement value to attribute variable assignments. The measurement

value assignments occur when time values are substituted into the evolving function

models of adjectives and verbs in this work. The formation of evolving function equa-

tions was discussed in terms of evolving function models for adjectives and verbs. The

assignment of measurement values to interactive attribute variables was discussed. In-

teractive attribute variables resulted from the use of attribute variables, grouped under

object nouns, in the amplitude values of the evolving functions models of verbs in the
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present work. The occurrence of conflicting measurement value assignments to an at-

tribute variable was presented; the value assignments resulted from conflicting natural

language statements modelled within the computational verb models of this work. The

measurement value assignments retrieved when evaluating the models of conflicting nat-

ural language statements result in inconsistent systems of equations that have no precise

unique solution.

A robust procedure for variable resolution should address the stated considerations.

The sections that follow set out the details of two candidate attribute variable value res-

olution procedures: a crisp attribute variable measurement value assignment procedure

and a fuzzy attribute variable measurement value assignment procedure.

4.4.2 Crisp procedure for assigning measurement values to at-

tribute variables

A series of examples is presented in the form of diagrams to simplify the explanation of

a crisp procedure for assigning measurement values to attribute variables. Each exam-

ple corresponds to a consideration for an attribute variable value resolution system as

presented in section 5.1.

The diagrams that represent the examples depict nouns as circles, the associated

attribute variables, Vi, for a context of interpretation (refer to section 4.2 as rounded

squares, and amplitude values, αi, (refer to sections 4.3.2 and 4.3.3) as squares.

Solid lines in the example diagrams depict the association of an attribute variable

with a noun in an adjective–noun or verb–noun pair for a context of interpretation (refer

to section 4.3.2 and 4.3.3). Solid lines are labelled by the corresponding context (refer to

section 4.2) which groups the attribute variable with an evolving function. The evolving

function is evaluated to obtain a measurement value that is stored in the attribute

variable.

Solid arrows in the example diagrams depict the choice of an amplitude value specified

within a context, subcontext or partial context for an adjective–noun or verb–noun(s)

pair. The solid arrows are labelled by the corresponding context, subcontext, or partial

context which defines the choice of amplitude value if the amplitude value is defined

within a context of interpretation, subcontext, or partial context. Amplitude values
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that are set to the default values specified for a context, subcontext or partial context

are labelled by the word “default”. The context, subcontext or partial context that

defines the default amplitude value is provided in parenthesis. A default value obtained

from a representational element associated with the noun for a context of interpretation

(refer to section 4.3.1) is labelled by the word “default”. The noun associated with the

narrative representation for the context of interpretation is provided in parenthesis. A

dotted arrow indicates an amplitude value specified in a partial context of a subcontext

(refer to section 4.2).

Figure 4.1 depicts the relationship between the noun “fox” and the adjectives “quick”

and “brown” modelled in the interpretive contexts of “colour” and “attribute”. An

example of a natural language phrase that corresponds to the relationships is “... the

quick brown fox ...”. The context of interpretation “colour” is modelled in terms of

the classification of perceived colours of objects into numbered categories. The category

numbered as 2 is assigned to the colour labelled “brown” for this example. The category

number is specified in an amplitude value node. The amplitude value is specified within

the context “colour” for the adjective “brown”. The context of interpretation “attribute”

is modelled in terms of physical measurements of character attributes. The amplitude

value 10 may be interpreted as the maximum speed of a fox in metres per second. The

amplitude value 10 is assigned as a default retrieved from the representational element

associated with the noun “fox” in the context of interpretation “attribute”.

The crisp variable value resolution procedure presented in this work handles the ex-

ample shown in figure 4.1 by dynamically constructing evolving functions. The evolving

functions constructed are in the form of equation (4.3). The simple function

f1(t) = 1.0; t ∈ R+ (4.23)

may be chosen as the function, f1, of the evolving function model of both adjectives.

The adjectives “brown” and “quick” are thus modelled as static computational verbs

(refer to section 4.3.2).

The evolving function models for the adjectives “brown” and “quick” are specified in

their respective contexts of interpretation “colour” and “attribute”(refer to section 4.2).

The chosen function, f1, and the amplitude values of figure 4.1 are substituted into the

generic evolving function equation (4.3). The substitution of the chosen function and
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Figure 4.1: The association of attribute variables with amplitude values in contexts of inter-

pretation

amplitude values produces evolving functions that correspond to the adjectives “brown”

and “quick” for the contexts of interpretation “colour” and “attribute” respectively. The

evolving functions produced are evaluated at a specific time, t, to obtain measurement

values that are stored in the attribute variables “colour” and “speed”. In this manner

the attribute variable resolution procedure is completed.

Figure 4.2 shows the association of two attribute variables “Position (Y)” and “Height”

with the nouns “fox” and “dog” in a context of interpretation “space”. An example of

an English sentence that may relate to such associations is “The fox jumps over the big

dog.”. The attribute variable “Position (Y)” is interpreted as a measure of the height of

an object above the ground. The value of attribute variable “Position (Y)” is retrieved

from the evolving function model of a verb phrase “jumps over” in the context of inter-

pretation “space”. The attribute variable “Height” is interpreted as a measure of the

vertical size of an object labelled by an associated noun. The attribute variable “Height”

is assigned to the value “1.0” by the evolving function model for the adjective “big” in

the context of interpretation “space”. The value “1.0” is interpreted as a size in metres.
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Figure 4.2: Interactive attribute variables

The attribute variable “Position (Y)” is associated with the attribute variable “Height”

by choosing the value of “Height” as the amplitude value of a term in the evolving func-

tion model (refer to equation (4.3)). The evolving function term is modelled for the

verb phrase “jumps over” in a subcontext of the context of interpretation “space”. The

value of attribute variable “Position (Y)” therefore depends on the value of attribute

variable “Height”. The attribute variables “Position (Y)” and “Height” are interactive

as given by definition 3.5. The assignment of measurement values to the interactive at-

tribute variables “Position (Y)” and “Height” should therefore be handled as for equation

(3.15).

To allow for the assignment of measurement values to interactive attribute variables,

the crisp variable resolution procedure forms graphs similar to the diagram shown in

figure 4.2. A graph, Gi, is formed for every attribute variable, Vi, that should be assigned

a measurement value. Every Gi is traversed to solve for the unknown attribute variable

values and amplitude values. The traversal continues until an amplitude value, αi, is

reached. The amplitude value is substituted into the evolving function equation (refer
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to equation (4.3)) of its associated attribute variable Vj. If all amplitude values for the

evolving function, EVj
, associated with Vj are known, EVj

is evaluated for a time value, t.

The measurement value obtained from EVj
is propagated through the connected nodes of

the graph until an unknown attribute variable or amplitude value is once again reached.

For the example illustrated in figure 4.2, a graph, G1, will be constructed and tra-

versed for the attribute variable “Position (Y)” of the noun “fox”. The traversal of G1

reaches the amplitude node “1.0” and its value is propagated to the associated attribute

variable node “Height”. The amplitude value “1.0” is substituted into the evolving func-

tion, Ebe, associated with the attribute variable “Height” by the adjective “big” in the

context of interpretation “space”. The evolving function, Ebe, is defined by a choice of

a function f1 and the determined amplitude value α2. Ebe is evaluated for a time value,

t, to obtain a measurement value that is stored in the attribute variable “Height”.

The value of attribute variable “Height” is propagated to the attribute variable “Po-

sition (Y)” by substituting the measurement value of Ebe at a time, t, as an amplitude

value, α1, into the evolving function Ejumps over. The evolving function, Ejumps over,

is associated with the attribute variable “Position (Y)” in a subcontext of the context

of interpretation “space”. The evolving function, Ejumps over, is defined by the choice

of a function,

f2(t) = sin t, t ∈ [0, π] (4.24)

and the determined amplitude value, α1. Ejumps over is evaluated a time, t, and a

measurement value is obtained for the attribute variable “Position (Y)”. The crisp vari-

able resolution procedure is complete and all the attribute variables have been assigned

measurement values.

If a traversal of a Gi reaches an attribute variable, Vk, that has no associated ampli-

tude value, αk, a default value is retrieved from the context, subcontext or partial context

of interpretation, if available. If no default value is specified in the context, subcontext

or partial context of interpretation, a default value is retrieved from the narrative repre-

sentation associated with the noun in the main context of interpretation (refer to section

4.3.1). If no default value can be retrieved from the associated narrative representation,

both αk and Vk remain unresolved. If the traversal of Gi forms a cycle, the unresolved

amplitude values and attribute variables in the cycle are left unresolved. The traversal
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of the Gi continues from the node where the cycle started, along another edge.

Figure 4.3 shows the association of an attribute variable “Position (Y)” with the

noun “fox” in a context of interpretation “space”. The attribute variable is associated

with amplitude value “Height”, which in turn is associated with the nouns “fox” and

“dog”, and with the attribute variable “Position (Y)” of the noun “dog”. The attribute

variables are interpreted as for figure 4.2. The respective amplitude values in terms of the

attribute variables “Height” and “Position (Y)” are defined in the partial contexts “Self”,

“Other”, and “Reference”. The partial contexts are associated with a subcontext of a

context of interpretation. The instances of the attribute variable “Height” are assigned

default values from the respective narrative representations associated with the noun

“fox” and “dog” in the context of interpretation. The attribute variable “Position (Y)”

is assigned a default value specified within the partial context “Reference”.

For the example presented in figure 4.3, the crisp variable resolution procedure con-

structs a graph, G1, for the attribute variable “Position (Y)” associated with the noun

“fox” in the context of interpretation “space”. The graph G1 is traversed and the node

for attribute variable “Height” associated with the attribute variable “Position (Y)” of

the noun “fox” is reached. The association exists because the attribute variable “Height”

grouped with the noun “fox” is specified as an amplitude value, α11 , in the partial con-

text “Self”. “Self” in turn is defined as a partial context related to a subcontext for the

context of interpretation “space”.

The attribute variable “Height” associated with the noun “fox” has no other mea-

surement value assigned by an evolving function in a context of interpretation. A default

value is therefore retrieved from the narrative representation of the noun “fox” in the con-

text of interpretation “space”. The default value of “0.5” is substituted as an amplitude

value, α11 , into an evolving function, Ejumps over, which has the form of equation (4.7).

Ejumps over is the evolving function associated with the attribute variable “Position

(Y)” in the context of interpretation “space”.

The traversal of G1 continues until all amplitude values α11 , α12 , α13 are substituted

into the evolving function equation Ejumps over. Scaling factors of κ1, κ2, κ3 = 1.0

defined in the partial contexts “Self”,“Other”, and “Reference” are substituted into

Ejumps over. The scaled amplitude values of Ejumps over are calculated and the dy-
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namic construction of the evolving function for the verb–noun pairings is complete.

Ejumps over is evaluated at a time, t, to obtain a measurement value for the attribute

variable “Position (Y)” of the noun “fox”. The values of the instances of the attribute

variable “Height”, associated with the nouns “dog” and ‘fox”, and attribute variable

“Position (Y)” associated with the noun “dog” are all determined from the substitution

of default values. The default values are defined within their respective partial contexts

or within the narrative representations associated with the nouns “fox” and “dog” in the

context of interpretation “space”. All attribute variables have been assigned measure-

ment values and the crisp variable resolution procedure is complete.

If the graph, Gi, of every attribute variable, Vi, has been traversed and the related

attribute variable values calculated, the first step of the crisp variable resolution process

is complete. Unresolved attribute variables, Vk, may remain. The Vk may not be resolved

to a value due to default values for amplitude values that were not specified as explained

for figure 4.2. The Vk may also not be resolved to a value due to a cycle in the attribute

variable relationships of graph, Gk, as explained for figure 4.2.

The equation formed for an unresolved attribute variable, Vk, is obtained by substi-

tuting all the known attribute variable values and amplitude values (at the completion

of the graph traversal) into the evolving function equation associated with the attribute

variable, Vk, for the context of interpretation. The evolving function equation takes the

form of equation (4.3). The known amplitude values are substituted and the chosen

generic functions, fi, as defined in their respective subcontexts are evaluated for a time

value t. The substitution of known amplitude and generic function measurement values

into an assignment equation for the attribute variable, Vk, results in the linear equation

Vk = F1κ1α1 + . . . + Fnκnαn + K; κi ∈ R, K ∈ R, Fi ∈ R. (4.25)

F1, . . . , Fn are real-valued numbers obtained from the substitution of a time value, t,

into the generic functions, f1, . . . , fn. α1, . . . , αn are unresolved amplitude values defined

within subcontexts or partial contexts. κ1, . . . , κn are constant scaling factors defined

within subcontexts or partial contexts. K is a real-valued number that represents the

sum of terms in equation (4.27) whose amplitude values are known. The value of a term

in equation (4.27) with a known amplitude value is calculated from the product of the

scaling factors, generic function value, and the amplitude value.
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Let

ci = Fiκi (4.26)

then equation (4.25) can be stated more simply as

Vk = c1α1 + . . . cnαn + K; ci ∈ R, K ∈ R. (4.27)

If the evolving function associated with the unresolved attribute variable, Vk, has

subcontexts and those subcontexts have related partial contexts then the evolving func-

tions takes the form of equation (4.7). The known amplitude values are substituted and

the chosen generic functions, fi, are evaluated to produce a linear equation of the form

Vk = F1κ1 (α11 + . . . + α1k
) + . . . + Fnκn (αn1 + . . . + αnm) + K; κi ∈ R, K ∈ R, Fi ∈ R

(4.28)

which is stated more simply as

Vk = c1 (α11 + . . . + α1k
) + . . . + cn (αn1 + . . . + αnm) + K; ci ∈ R, K ∈ R. (4.29)

The αij are unresolved amplitude values expressed in terms of attribute variables as

defined within the respective partial contexts (refer to equation (4.7)). All resolved

amplitude values are added to the term K.

The equations formed for the unresolved attribute variables combine to form a system

of linear equations. The crisp variable value resolution process solves the resulting system

of linear equations to obtain the remaining attribute variable measurement values. An

equation associated with an attribute variable, Vk, is rewritten to isolate Vk and any

other term with an unresolved attribute variable on the left-hand side of the equation.

The real-valued term, K, remains on the right-hand side of the equation. The attribute

variable Vk within the rewritten form of equation (4.27) is viewed as having a coefficient

value c0 = 1.0. An equation associated with an attribute variable, Vk, which has the

form of equation (4.29) is distributively multiplied, yielding

c0Vk − c1α11 + . . . + cpαnm = K; ci ∈ R, K ∈ R. (4.30)

The coefficients, ci, of terms on the left hand sides of the rewritten equations as-

sociated with the unresolved attribute variables are grouped into a coefficient matrix
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Figure 4.4: Multiple measurement value assignments to the same attribute variable (incon-

sistency)

A. An augmented matrix, [A|K], is formed by adding the K values on the right-hand

side of the equations related to the Vk as a column vector to the coefficient matrix A.

The augmented matrix, [A|K], is reduced by the process of Gaussian elimination. If the

process of Gaussian elimination reduces [A|K] to upper triangular form, a single unique

solution of measurement values for the attribute variables is obtained by the process of

back substitution. The values in the right hand column of [A|K] are substituted into

equations corresponding to the reduced form of [A|K]. The substitution starts at the

bottom row and substitutes attribute variable values obtained into the equation corre-

sponding to the row above. The process is repeated until the first row of the reduced

augmented matrix, [A|K], is reached and the equation corresponding to the first row

is solved. The measurement values of the previously unresolved attribute variables are

obtained and the crisp variable resolution procedure is complete.

If the process of Gaussian elimination cannot reduce the augmented matrix, [A|K],

to upper triangular form, a single unique solution of attribute variables cannot be found.

If [A|K] has more unknown attribute variables than equations, only a general solution of
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[A|K] can be found and the attribute variables have an infinite number of measurement

value solutions. A linear system of equations with more unknown attribute variables

than equations is formed when the evolving function related to an attribute variable

is expressed in terms of amplitude values that are equal to unknown attribute variable

values. The attribute variable values are unknown because they are either not set by

other evolving function models of adjectives and/or verbs or do not have default values

specified.

Figure 4.4 shows the association of amplitude values “1.0” and “−1.0” with the

attribute variable “Position (X)”. The amplitude values correspond to the adjectives

“left” and “right” in the context of interpretation “space”. Attribute variable “Position

(X)” is interpreted as the position of an object on the x-axis of a 3D space. The amplitude

values of “−1.0” and “1.0” are interpreted as being left and right of the centre of the

x-axis in a 3D space. The chosen generic function, fi, for the evolving functions that

model the adjectives “left” and “right” in the context of interpretation “space”, is f1,

as given by equation (4.23). The adjectives “left” and “right” are therefore modelled in

terms of static computational verbs.

The crisp variable resolution process constructs and traverses the graph, G1, to de-

termine the measurement value for the attribute variable “Position (X)”. Two evolving

functions equations are formed from the substitution of amplitude values “1.0” and

“−1.0” respectively. A unique measurement value cannot be obtained by evaluating the

constructed evolving function equations a time value, t, since there are two separate

evolving functions that result in two measurement value assignments to “Position (Y)”.

If equations in the form of equation (4.27) are formed, the following system of linear

equations results:

V“Position (Y)” = −1

V“Position (Y)” = 1. (4.31)

The equations are represented in an augmented matrix in the form of [A|K] as[
1 -1

1 1

]
.
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If the matrix above is reduced by the Gaussian elimination procedure, the inconsis-

tency 0 = 2 results when the first row is subtracted from the second. The crisp variable

resolution procedure can therefore not obtain a unique solution for the attribute variable

“Position (Y)”. The crisp variable resolution procedure can also not obtain a unique

solution in the case of a linear system that has an infinite number of solutions, as dis-

cussed for figure 4.3 above. The section that follows details a fuzzy attribute variable

resolution procedure. The fuzzy attribute variable resolution procedure determines ap-

proximate measurement value solutions for attribute variables if a unique solution cannot

be obtained.

4.4.3 Fuzzy procedure for assigning approximate measurement

values to attribute variables

This section describes a fuzzy resolution procedure for assigning measurement values

to attribute variables. The equations that result from the evaluation of evolving func-

tion models for natural language nouns, adjectives, verbs, and adverbs (refer to sections

4.3.1 through 4.3.4) are interpreted as an fuzzy constraint satisfaction problem (FCSP).

The formulation of the equations obtained by evaluating evolving function models at a

specific time, t, in terms of fuzzy constraints, allows approximate solutions of measure-

ment values to be obtained. Approximate solutions for measurement values are required

when inconsistent linear equations result from modelling conflicting natural language

statements in terms of the models presented in this work (refer to section 4.4.2). The

formulation of conflicting evolving function equations as an FCSP presented in this sec-

tion, is a novel approach for the determination of approximate values for conflicting

evolving function equations in the field of CVT.

Section 4.4.3.1 introduces CSPs and explains how CSPs relate to the evolving function

models of this work. Constraint satisfaction resolution algorithms are studied in section

4.4.3.2 to provide insight toward the types of algorithms that may be applied to the

resolution of evolving function models formulated in terms of a CSP.

Section 4.4.3.3 introduces the FCSP as a means of relaxing the classic CSPs in cases

where a precise and unique solution is not possible. CSP relaxation frameworks are

discussed in section 4.4.3.4 to clarify the application of FCSPs within this work. Section
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4.4.3.5 specifies the equations that result from the evaluation of the evolving function

models of this work in terms of fuzzy constraints. FCSP resolution algorithms are studied

in section 4.4.3.6 to provide insight toward the types of algorithms that may be applied

in a fuzzy resolution strategy for the determination of measurement values of attribute

variables.

The considerations for a robust fuzzy resolution procedure for assigning measurement

values to attribute variables are stated in section 4.4.3.7. A genetic algorithm for the

resolution of FCSPs is evaluated in terms of the considerations for a fuzzy resolution

procedure for assigning measurement values to attribute variables.

Constraint satisfaction optimisation problems are shortly discussed and related to

the FCSP approach of this work in section 4.4.3.8.

4.4.3.1 Constraint satisfaction problems

CSPs consider the valid assignment of values to a collection of variables that each have

their own domain of valid values. The values of variables are further limited by a series

of constraints that create relationships between the variables and the values they may

take (refer to definition 3.25). Section 4.3.1 defined attribute variables within the models

of this work as storage variables for measurement values obtained from evolving function

models for adjectives and verbs (refer to sections 4.3.2 and 4.3.3). Attribute variables

also play the role of variable amplitude values within evolving function models in this

present work. Natural language sentences modelled according to the evolving function

models of this work result in a series of interdependent attribute variable assignments,

as shown in section 4.4.2.

An attribute variable is passed as a parameter for the generation of interactive nar-

rative depictions such as computer graphics. This places a constraint on the values that

an attribute variable may take for a specific context of interpretation. An example of

such a constraint is the domain of [0, 1] placed on colour values in the graphical render-

ing API, DirectX R©. The assignment of measurement values to interdependent attribute

variables enforces further constraints on the values that an attribute variable may take.

The assignment of measurement values to attribute variables under the constraint of

defined evolving functions can consequently be viewed as a CSP.
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A study of CSPs and the algorithms applied to solve CSPs is of benefit to this work, as

it provides insight into a method for determining correct measurement value assignments

for attribute variables.

4.4.3.2 Constraint satisfaction problem resolution

CSPs are widely used to model a great variety of real-world problems [11] [78] [92]. A

range of techniques has been proposed over years of research to solve the permutations

in which a CSP may occur [52]. Backtracking algorithms are traditionally used to solve

CSPs [54]. Such algorithms extend a partial solution to a full solution by continually

assigning a new variable to a value in a way that it is consistent with regard to the other

variables values assigned and the constraints imposed. A consistent variable assignment

is an assignment where the permutation of concurrently assigned variables does not vio-

late any of the problem’s constraints. Alternative CSP resolution techniques have been

built that utilise computational intelligence approaches such as evolutionary algorithms

[20], ant colony optimisations [82] [86], particle swarm optimisations [83], neural networks

[39], artificial immune systems [55], and stochastic search [53]. The most prevalent CSP

resolution algorithms that utilise computational intelligence are evolutionary algorithms.

Evolutionary algorithms are often applied to solve CSPs, as they provide a global

search alternative to the local searches performed by traditional backtracking algorithms

and can therefore more easily avoid local optima, if local optima are present in a search

space [67]. Evolutionary algorithms such as genetic algorithms can, however, still be

trapped in local optima [87]. Evolutionary algorithms provide a means of integrating

a global search strategy into a constraint satisfaction solver. Global search algorithms

such as evolutionary algorithms are often used in conjunction with local search techniques

and heuristics for the resolution of CSPs . A disadvantage of evolutionary algorithms in

comparison to local search algorithms is that the former does not perform a complete

search over the entirety of the search space [48].

The trade–off between a global search and a complete search drove some evolution-

ary algorithms applied to CSPs to incorporate classic backtracking techniques. Eiben

et al [29] utilised local search heuristics in the mutation and crossover steps of a stan-

dard genetic algorithm to increase the algorithm’s efficiency. Stuckey et al [90] applied
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the min-conflicts heuristic within the mutation step of a genetic algorithm. The min-

conflict’s heuristic increases the genetic algorithm’s efficiency by reducing the number of

constraint checks performed.

Other evolutionary algorithms integrate local search techniques beyond the use of

local search heuristics. Hybrid genetic algorithms include local search techniques within

the framework of a genetic algorithm. Marchiori et al [60] apply a local search algorithm

such as a hill climber to a set of candidate solutions as a preprocessing step. Standard

genetic algorithm operators are then applied to the population of locally optimised so-

lutions. Bahler et al [24] apply a hybrid genetic algorithm to evolve a population of hill

climbers. The population of hill climber algorithms then iterates to find an optimal solu-

tion using the iterative descent method. Kanoh et al [48] reverse the process followed by

Bahler et al. A population of solutions is evolved by a genetic algorithm. The best solu-

tion within the population is then set as the starting point of a min-conflict hill climbing

search. Cebrián et al [17] follow an approach by which a genetic algorithm, within its

genome population, evolves the parameters to a Greedy random adaptive search proce-

dure (GRASP) algorithm. The genes of the optimal solution in the population of the

genetic algorithm represent parameters that determine the order in which variables are

solved for in the GRASP algorithm. The variables are assigned values from their domain

in the order encoded within the fittest chromosome to form a solution.

Other approaches forgo the integration of classic local search procedures for a co-

evolutionary approach to solving CSPs. Hasegawa et al [47] propose a genetic algorithm

that evolves a population of “viruses” in parallel to a solution population. Traditional

mutation and crossover reproduction techniques are replaced by reproduction techniques

that mimic viral infection. Genes within a chromosome of the solution population are

replaced with genes of an individual in the virus population. Baba et al [40] follow a sim-

ilar co-evolutionary approach where a standard genetic algorithm population is evolved

in conjunction with a population that represents effective schemata (patterns) within ge-

netic information. The schemata are transcribed onto the chromosomes of the solution

population for fitness determination and reproduction purposes. Paredis [71] presents a

co-evolutionary approach where solutions and constraints co-evolve in a predator–prey

relationship. Individuals from either population are selected for “encounters” in which
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individuals from the solution population are awarded points for satisfying the constraint

and individuals from the constraint population are rewarded should the constraint not

be satisfied. Fitness is calculated by scoring these encounters in a life–time evaluation

scheme. A life–time evaluation scheme keeps track of only the most recent encounters for

fitness determination. The co-evolutionary approach of Paredis is a self-adaptive scheme

that guides the search towards the tougher constraints. Tougher constraints are repre-

sented by the fitter individuals in the constraints population, and are therefore selected

for encounters more frequently.

Some evolutionary algorithms are fine–tuned to a particular type of CSP. Bahler et

al [23] have presented a micro–genetic algorithm that has a very small population of less

than 20 individuals. The genetic operators applied to the population are feature–rich in

their search heuristics. The search heuristics allow the algorithm to utilise fully the search

potential of the smaller population. Some evolutionary algorithms are adapted to the

CSP’s structure. Riff [77] presents an algorithm that analyses the constraint network

to adapt the evolutionary algorithm to the constraint network in a way that reduces

the number of constraint checks performed. The reduced number of constraint checks

increases the efficiency of the search. Marchiori [59] presents a preprocessing approach

within the context of constraint specification languages. All constraints presented in

a constraint language are processed into a single type of primitive constraint. The

uniform simplified constraint allows for a uniform repair operation to be applied as

the reproduction operator of an associated evolutionary algorithm. The simplified and

uniform constraints increase the efficiency of the algorithm over standard evolutionary

algorithms.

Eiben et al [19] have presented variations on the step–wise adaptation of weights

algorithm (SAW), described in their earlier work. The SAW algorithm calculates a fit-

ness function composed of the weighted sum of the constraint violations or incorrectly

instantiated variables of an individual in the population. After a predetermined number

of fitness evaluations, the weights of the fitness calculation are adjusted according to

the incorrectly instantiated variables or constraint violations in the best individual of

the population. The adjustment of weights for fitness calculation creates a self-adapting

fitness function that drives the search towards solving the tougher constraints. Chromo-
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somes within the population represent variable orderings, as is the case with the hybrid

GRASP algorithm [17]. The chromosomes are decoded by assigning valid values from

the domains of the associated variables. The variable assignments maintain consistency

with other assigned variables and are assigned in the order encoded within the genes of

the chromosome.

Craenen et al [20] have presented a comprehensive performance comparison of all of

the algorithms above, based on an improved random binary CSP generation paradigm.

The SAW algorithm is shown to be the most efficient and successful in obtaining solutions

for the test suite. None of the genetic algorithms performed as well as a benchmark

algorithm using standard CSP solution methods. Eiben et al [30] have presented a

comparative study of the CCS, MID, and SAW algorithms as representatives of genetic

algorithms with self-adapting fitness functions. Once again the SAW algorithm is shown

to be the most robust. Cebrián et al [17] have shown that the hybrid GA-GRASP

algorithm was more efficient than the SAW algorithm for the test suite studied.

The CSPs of this section and their corresponding resolution algorithms are not ap-

plied in this present work. An overview of CSPs has been provided because the standard

CSP serves as a theoretical basis for the fuzzy CSP discussion that follows.

4.4.3.3 Fuzzy constraint satisfaction problems

CSPs that are based on real-world examples are often inconsistent and have no solution.

Inconsistent CSPs may result because conflicting constraints are present within the real-

world problem. Inconsistent CSPs are also formed when a problem is over–constrained

and no possible value assignment can satisfy all of the constraints. Two main paradigms

arose as a means of dealing with inconsistent CSPs.

Partial constraint satisfaction problems (PCSPs) were presented as a means of re-

laxing an inconsistent CSP to one that does have a solution [33]. An inconsistent CSP

can be relaxed with a variety of approaches that range from the removal of constraints

to an increase in the domain size of the variables. For each relaxation of the problem,

a metric is defined that specifies the distance between the original CSP and the relaxed

CSP. Resolution is performed via a standard branch-and-bound algorithm that relaxes

constraints if a dead end is reached in the search.
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FCSPs (refer to definition 3.26) were introduced as a means of relaxing inconsistent

CSPs, by defining fuzzy constraints and then specifying an inconsistent CSP in terms

of fuzzy constraints [79]. A fuzzy constraint associates a membership function with a

constraint. The value of the membership function indicates the degree to which a per-

mutation of variable values satisfies the associated constraint. FCSPs are a relaxation

of the classic CSP because they allow for constraints to be satisfied to a certain degree.

The classic CSP allows constraints to be satisfied either fully or not at all. Standard

constraint satisfaction heuristics can still be applied to FCSPs and a resolution algo-

rithm with a branch-and-bound approach is proposed. The proposed branch-and-bound

algorithm for FCSPs is defined not to follow a search path that yields a variable value

solution with a lower degree of membership to a fuzzy constraint than a variable value

solution that has already been found.

4.4.3.4 Frameworks for constraint relaxation

A variety of approaches have been adopted to unify the concepts of partial, soft, and

standard CSPs in a single framework. Pires et al [72] interpret fuzzy constraint sat-

isfaction problems in terms of a finite set of satisfaction degrees that are tied to crisp

constraints weighted in terms of their importance value. Guesgen [37] has hybridised the

concepts of soft constraints representing preference values for variable value assignments,

and as measures of constraint priority [27]. Soft constraint usage is hybridised by viewing

soft constraints as certainty–qualified assertions in terms of possibilistic logic. Bistarelli

et al [9] have proposed a framework by which multiple CSP types, such as classic, fuzzy,

weighted, partial, and other similar types of CSP, are viewed in terms of a mathematical

semi–ring structure. The set of the semi–ring represents a value associated with every

variable value assignment in the CSP. An example of a value association is 0 for an

unresolved constraint and 1 for a resolved constraint in the context of a classic CSP.

The two operators defined for the semi–ring structure allow constraint combination and

projection to be defined. The semi–ring classification of CSPs has been widely adopted

by researchers as a generic means of classifying constraint relaxation [12], [54].

The scheme adopted for constraint relaxation in the face of over–constrained or in-

consistent problems in the present work is that of fuzzy constraints, as presented in [37]
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[79]. Fuzzy constraints are defined as a relaxation of a classic constraint (refer to defini-

tions 3.25 and 3.26) that describes the preference value of one tuple of assigned variable

values over another. The preference value is expressed as a real-valued number on the

interval [0, 1] and describes the degree to which the tuple of assigned variable values

satisfies a given constraint. A preference value of 1 indicates that the constraint is fully

satisfied and a preference value of 0 indicates that the constraint is not satisfied at all.

The application of fuzzy constraints in this work is analogous to that of Bahler et

al [10]. They extend their relation of classic semantics to crisp constraint networks

presented in earlier work in order to relate fuzzy semantics to fuzzy constraint networks.

A set of interrelated constraints forms a constraint network. Constraints within a crisp

constraint network are related to the sentences specified in a predicate language. The

variables in the related CSP correspond to constant symbols in the predicate language.

The assignment of variables to values within the context of the CSP (refer to definition

3.25) corresponds to the assignment of meaning to constant symbols in a predicate

language. The crisp constraints are relaxed by defining constraints as fuzzy constraints

with preference values for value assignments. The use of fuzzy constraints then allows

fuzzy semantics to be related to fuzzy constraint networks.

The section that follows defines the computational verb models for natural language

specified in this work in terms of an FCSP. The relationship between attribute vari-

ables and CSP variables is defined. The relationship between constraints in a constraint

network and evolving function models is defined. The assignment of variable values in

the CSP is related to the assignment of attribute variables to measurement values. The

constructed constraints are relaxed in terms of a fuzzy CSP with fuzzy constraints to

allow for approximate solutions to the CSP and therefore for approximate measurement

value assignments to attribute variables.

4.4.3.5 Evaluated evolving function equations as fuzzy constraints

Constructed evolving functions are evaluated as part of the crisp variable value resolu-

tion procedure for assigning measurement values to attribute variables, as presented in

section 4.4.2. The equations formed from the evaluation of constructed evolving function

equations are denoted by evaluated evolving function equations (EEFEs). The ampli-
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tude values and attribute variables that are known after the evaluation of a formed

evolving function at a time, t, are treated as constant values. Attribute variables are

used either as storage variables or as amplitude values of constructed evolving functions

(refer to section 4.3.3). Attribute variables that are unknown after the evaluation of

the constructed evolving functions are treated as variables in subsequent measurement

value determination steps. The evaluation of the evolving function models of this work

at a time, t, therefore results in a system of equations in terms of the unknown attribute

variables.

The system of equations that is formed from the EEFEs that still contain unknown

attribute variables may be formulated as a CSP. The constraint variables are the un-

known attribute variables remaining after the constructed evolving functions have been

evaluated. The constraints themselves are the equations in terms of the constant values

and the unknown attribute variables after the evaluation of the constructed evolving

functions. The set of constraints related to EEFEs that contain unknown attribute vari-

ables form a CSP. The goal of the CSP is the assignment of measurement values to the

attribute variables whose values are unknown in a consistent way. A consistent assign-

ment of measurement values to attribute variables ensures that none of the constraints

are violated. Each constraint corresponds to a single equation and therefore a violation

occurs if the left-hand side of an EEFE is not equal to the right-hand side. The values

on the left-hand side and the right-hand side of the EEFE are compared when a tuple of

candidate measurement values is substituted into the corresponding unknown attribute

variables present within the EEFE.

The CSP presented above may be formulated as an FCSP if the constraints are

converted to fuzzy constraints (refer to definition 3.26). The challenge with modelling the

system of equations obtained from EEFEs as an FCSP lies in formulating the equations

that contain attribute variables whose values are unknown as membership functions of

fuzzy constraints. The membership function of a fuzzy constraint assigns to a tuple of

candidate measurement value assignments for attribute variables, a real-valued number

on the interval [0, 1]. A membership value is calculated by the membership function. The

membership value indicates how well a tuple of candidate measurement values assigned

to the unknown attribute variables present in an EEFE satisfies the fuzzy constraint
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associated with the EEFE.

One approach to solving the system of equations formed by a set of EEFEs that con-

tain unknown attribute variables is to formulate the solution of the system of equations

as an optimisation problem. The optimisation algorithm chosen to solve the optimisa-

tion problem would attempt to minimise the sum of absolute error values for all the

equations that contain unknown attribute variables. An optimisation approach would,

however, favour highly those equations that contain unknown attribute variables with

larger domains and have larger coefficient values (refer to equation (4.27)). The majority

of solutions obtained by an optimisation approach would therefore be skewed towards

local optima. The local optima would be the solutions that minimise the error value of

those equations that contain attribute variables with the largest domain size and equa-

tions that have the largest coefficient values. The attribute variables within the evolving

function models of natural language sentences presented in this work do not have a

uniform size. Solutions that favour local optima can be avoided by adjusting the error

values calculated for an equation according to the domain size of the variables present

and by the size of the coefficient values.

The local optima problem of an optimisation approach to solving EEFEs that contain

unknown attribute variables is addressed to a large degree by solving the EEFEs that

contain unknown attribute variables as an FCSP. Every fuzzy constraint in an FCSP

has a degree of satisfaction represented on the uniform scale of a real number on the

interval [0, 1]. If every EEFE that contains unknown attribute variables is formulated

as a fuzzy constraint, the assignment of measurement values to the unknown attribute

variables present within the EEFEs can be solved as an FCSP. The membership values

of the fuzzy constraints are measured as real-valued numbers on the interval [0, 1]. The

fuzzy constraints and their associated EEFEs are therefore treated uniformly and the

bias towards EEFEs with larger coefficients and domain values is reduced.

The formulation of the assignment of measurement values to attribute variables as an

FCSP requires the construction of membership functions for the fuzzy constraints. This

work formulates the membership function of fuzzy constraints by calculating an error

value. The error value represents the difference between the value calculated for an EEFE

when a tuple of candidate measurement values is substituted, and the expected value of
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the EEFE at a time, t. The error value is scaled according to the maximum error value

possible when candidate measurement values are substituted into the unknown attribute

variables of the EEFEs that correspond to the fuzzy constraints. The value used to scale

a calculated error value is called the “scaling factor”. The scaling factor maps an error

value to a real-valued number on the interval [0, 1].

The substitution of a measurement value tuple, x, into an EEFE rewritten in the

form of equation (4.30) yields

f(x) + ε = K. (4.32)

f(x) represents the substitution of the candidate measurement value tuple, x, into the

corresponding unknown attribute variables on the left-hand side of an EEFE that is

rewritten in the form of equation (4.30). The left-hand side of the EEFE in the form of

equation (4.30) is represented by the generic function, f . The error value, ε, represents

the difference between f and the value, K, when the candidate measurement value tuple,

x, is substituted into an EEFE rewritten in the form of equation (4.30).

The isolation of the error value, ε, on the right-hand side of equation (4.32) yields

f(x)−K = −ε. (4.33)

The absolute error value, |ε|, is given by

|ε| = f(x)−K. (4.34)

The calculated absolute error value, |ε|, is scaled according to the calculated scaling

factor, ε. The membership function, µC , of the fuzzy constraint, C, is therefore given by

µC(x) =
|f(x)−K|

ε
. (4.35)

The membership function, µC , calculates the degree to which the fuzzy constraint, C, is

satisfied. The fuzzy constraint, C, corresponds to an EEFE that contains at least one

unknown attribute variable.

The scaling factor, ε, is calculated by extending the evolving function models for

natural language verbs presented in section 4.3.3. The evolving function models are

extended to specify minimum, α−, and maximum, α+, values for the amplitude values,

αi, specified within an evolving function equation. The minimum, α−, and maximum,
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α+, values for an amplitude value, α, are specified when the amplitude value is defined

within a context of interpretation or subcontext. The minimum, α−
ij
, and maximum,

α+
ij
, values for a partial amplitude value, αij , are specified in a partial context. If a

constant or a partial amplitude value is specified, the minimum and maximum values

for the amplitude value should be defined as numbers equal to the constant amplitude

value or partial amplitude value. If an attribute variable, Vi, is used as an amplitude

value or a partial amplitude value, the minimum and maximum amplitude values or

partial amplitude values specified define a domain for the attribute variable, Vi. The

domain of an attribute variable used as an amplitude value in a context of interpretation,

subcontext, or partial context is given by Vi ∈ [α−, α+], Vi ∈ [α−
i , α+

i ], and Vi ∈ [α−
ij
, α+ij]

respectively. If no minimum and maximum values are specified for an amplitude or

partial amplitude value, default minimum and maximum amplitude values are used.

The default minimum and maximum amplitude values are the same for all evolving

function models specified.

The minimum size, d−, and the maximum size, d+, of an EEFE in the form of

equation (4.29) are calculated by the equations:

d− =

(
l∑

i=1

cid
−
i

)
+ K (4.36)

d+ =

(
m∑

i=1

cid
+
i

)
+ K (4.37)

where K is the constant term on the right-hand side of an EEFE in the form of equation

(4.29); d−i and d+
i are the defined minimum and maximum values for an amplitude value,

α−
i and α+

i , or partial amplitude value, α−ij and α+ij, on the right-hand side of an EEFE

in the form of equation (4.29). The ci are coefficient values on the right-hand side of an

EEFE in the form of equation (4.29); they are calculated as the product of the value of

a generic function, fi, for a time value, t, that is Fi = fi(t), and a scaling value, κ (refer

to equation (4.26)).

If the attribute variable, Vk, is defined as the storage variable (refer to section 4.3.3)

for the evolving function that corresponds to an EEFE, the calculated minimum, d−,

and maximum, d+, values of the EEFE define the domain of the attribute variable Vk.

The domain of Vk is therefore given by Vk ∈ [d−, d+].
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The domain of an unknown attribute variable, Vi, in the context of a single EEFE

that contains unknown amplitude values, is therefore calculated by equations (4.36) and

(4.37) or defined as the values d−i and d+
i , if the attribute variable is used as a storage

variable or an amplitude value, respectively. The attribute variable, Vi, may, however,

be used in multiple EEFEs that contain unknown amplitude variables. The attribute

variable, Vi, may also be used multiple times within a single EEFE that contains unknown

amplitude values. The global domain for the attribute variable, Vi, is therefore required

when the scaling factor, ε, of the error value, ε, is calculated.

This present work defines the global minimum value for an attribute variable, Vi, as

d−Vi
= minD−

Vi
. (4.38)

d−Vi
is the global minimum value for the attribute variable, Vi. D− is an ordered set of

all minimum values defined or calculated (refer to equations (4.36) and (4.37)) for the

attribute variable, Vi. The min operation returns the smallest member of an ordered set.

The global maximum value for an attribute variable, Vi, is defined as

d+
Vi

= maxD+
Vi

. (4.39)

d+
Vi

is the global maximum value for the attribute variable, Vi. D+
Vi

is an ordered set of all

the maximum values defined or calculated for attribute variable, Vi. The max operation

returns the largest member of an ordered set. The global domain of attribute variable,

Vi, is therefore given by Vi ∈ [d−Vi
, d+

Vi
].

The candidate measurement values for unknown attribute variables in an EEFE are

selected from the global domains determined for the respective attribute variables. The

attribute variable, V0, for example, is used as the storage variable of an EEFE. The

attribute variables, V1, . . . , Vn, are used as amplitude values. The values of all attribute

variables, V0, . . . , Vn, are unknown. If candidate measurement values are selected from

the global domains of attribute variable, V0, . . . , Vn, and substituted into an EEFE in

the form of equation (4.30), an error value, ε, is obtained (refer to equation (4.32)).

The boundaries of the error value, ε, are obtained when the maximum value for the

evolving function that corresponds to the EEFE is substituted as the value of the storage

variable, V0, while the minimum values from the global domains of the attribute variables,
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V1, . . . , Vn, are substituted as amplitude values and vice versa. The boundary value, d+
ε ,

is obtained for the maximum global storage variable value and minimum amplitude

values and is given by

d+
ε = d+

V0
−

(
n∑

i=1

cid
−
Vi

)
−K. (4.40)

The boundary value, d−ε , is obtained for the minimum global storage variable value and

minimum global amplitude values and is given by

d−ε = d−V0
−

(
n∑

i=1

cid
+
Vi

)
−K. (4.41)

The scaling factor, ε, for the absolute error value, |ε|, is simply calculated as

ε = |d+
ε − d−ε |. (4.42)

The absolute error value, |ε|, and the scaling factor, ε, are used to calculate the mem-

bership function value, µ(x), of a set of candidate measurement values, x, to the fuzzy

constraint, C (refer to equation (4.35)).

The accuracy of the scaling factor depends entirely on the maximum and minimum

values specified for the amplitude values of an EEFE. All fuzzy constraint membership

values are bounded on the interval [0, 1]. If the defined minimum and maximum am-

plitude values are not accurate, the calculated scaling factor, ε, of the error value, ε,

cannot be calculated accurately. The membership values are calculated according to

the absolute error value, |ε|, scaled by the scaling factor, ε (refer to equation (4.35)).

The membership values of value tuples to fuzzy constraints are consequently skewed if

incorrect amplitude value domain sizes are specified. A set of EEFEs that contain un-

known attribute variables forms a system of linear equations. The accuracy of a solution

determined for the formed system of linear equations therefore depends on the accuracy

of the defined amplitude value domain sizes.

The mapping scheme (specified in this section) between an EEFE and the membership

function of a fuzzy constraint allows the system of equations formed from a set of EEFEs

that contain unknown attribute variables to be formulated as an FCSP.

The section that follows discusses a series of techniques that have been applied to

solving FCSPs. The FCSP resolution methods presented can be applied to solving a
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system of equations formulated as an FCSP and are therefore of value to the present

work.

4.4.3.6 Fuzzy constraint satisfaction problem resolution

Ruttkay [79] generalised classic CSP resolution techniques such as heuristic search to

solve FCSPs. The heuristic search adopted to an FCSP is then replaced by a more

efficient branch-and-bound search. Guesgen proposes a set of consistency algorithms for

the resolution of FCSPs [37] [38]. An arc consistency algorithm is implemented as an

iterative version of the forward-checking algorithm. The arc consistency algorithm shows

an improvement over the fuzzy version of the AC3 arc consistency algorithm proposed

by Dubois et al [26].

Hsu et al [43] have proposed an FCSP resolution algorithm based on adaptive level

cuts. The algorithm attempts to reduce the amount of work done in the search by ap-

plying repair operations to a constraint. If the repair algorithm cannot find a solution

to the current constraint which has a higher membership degree than the current alpha

level-cut, the algorithm moves on to the next level-cut. An alpha level-cut refers to

all fuzzy constraints with membership degrees that are higher than a defined constant

[128]. The algorithm returns a solution once a level-cut has been found that supports all

constraints to the degree proposed by an alpha level-cut. Candidate solutions are deter-

mined by a repair operation. Miguel et al [66] propose another repair approach in terms

of a fuzzified version of the local changes algorithm [80]. The local changes algorithm

allows for the solution of dynamic CSPs where constraints are added and removed over

time. The fuzzy local changes algorithm divides variables into three groups (assigned

and fixed, assigned and not fixed, unassigned). The fuzzy local changes algorithm then

assigns the unassigned variables and repairs the non-fixed assigned variables to a previ-

ously achieved consistency level. The fuzzy local changes algorithm terminates when all

variables have been assigned and the consistency has been maximised.

Kowalczyk [51] has proposed a genetic algorithm for solving FCSPs. The genetic

algorithm performs an unconstrained optimisation of an objective function based on the

resolution of fuzzy constraints. The algorithm uses a genetic algorithm’s ability to opti-

mise functions, by formulating an objective function that maximises the min-aggregation
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of fuzzy constraint membership degrees (smallest membership degree in the set of fuzzy

constraints). Each chromosome represents a tuple of candidate value assignments to the

constraint satisfaction problem’s variables. The candidate values are then substituted

into the membership functions of fuzzy constraints to determine the membership degree

of the value assignment to the fuzzy constraint. The fitness of the chromosome is then

determined by the min-aggregation of the membership degrees and returns the mem-

bership degree of the least satisfied constraint as a single fitness value. The standard

genetic algorithm operations of mutation and crossover are applied to chromosomes for

reproduction. Each chromosome represents a candidate solution. The standard selection

pressure mechanics of parent selection and elitism based on fitness levels are applied. The

selection pressures ensure that only the fittest individuals, and therefore the most correct

variable value assignments, are carried over to the next generation of the chromosome

population.

4.4.3.7 Considerations for an FCSP resolution algorithm applied to the so-

lution approximation of evaluated evolving function equations

Three vital requirements should be considered when choosing a resolution algorithm for

the FCSPs formulated for EEFEs that contain unknown attribute variables:

• The first requirement for a resolution algorithm is that it is able to handle con-

straints of multiple variables. The constraints of the FCSP presented in section

4.4.3.5 are each related to an EEFE, which may contain multiple unknown at-

tribute variables (refer to section 4.4.2). It has been shown that all CSPs can be

rewritten into binary CSPs [7]. An algorithm based on binary restrictions involving

two variables would therefore be limited only in terms of the overhead required in

transforming a multiple variable CSP to a binary CSP.

• The second and more crucial requirement is the ability of the algorithm to operate

on variables that have an infinite domain. Classic constraint satisfaction heuristics

and algorithms, such as backtracking, are designed to operate on variables with

a discrete domain. Algorithms that operate on variables with a discrete domain

typically measure fitness in terms of the number of constraint violations. Algo-
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rithms that operate on variables with a discrete domain also select values from the

discrete domains of the constraint variables for candidate solutions.

If algorithms that typically operate on discrete variables are adopted to an FCSP,

a metric is developed to calculate partial membership. The variable selection pro-

cess remains a problem, however, as the algorithm would randomly select values

from a continuous domain. The variable selection problem also occurs for genetic

algorithms such as SAW [19] and the hybrid GA-GRASP algorithm [17], which

evolve parameters that dictate how variable value selection from the correspond-

ing discrete variable domains takes place.

The algorithm chosen for resolving the FCSPs in the present work should be able

to represent and handle variables of continuous domain easily. Optimisation algo-

rithms are better suited to CSPs that have variables of continuous domain, because

error values are calculated in terms of distance metrics between a candidate solu-

tion and an optimal solution.

• A third requirement that results from the construction of evolving function models

for natural language words is an ability to handle dynamic CSPs. Dynamic CSPs

are produced when validity periods are attached to the evolving function models

of natural language words. As a result, the evolving function model for a natural

language word may vary over its defined time intervals and therefore alter the

EEFEs produced. Altered EEFEs require changes to be made in the FCSP model

produced to resolve the system of equations that corresponds to a set of EEFEs.

A dynamic FCSP is produced as a result.

Schiex et al [81] propose an approach to solving dynamic CSPs that approximates the

search space. The search algorithm approximates the search space by recording nogoods

as it executes. Nogoods are value tuples that can never be altered to a consistent assign-

ment of values for the variables of the current CSP (which is determined by the current

set of constraints). If the search is repeated after constraints are added or removed,

the search can ignore the recorded nogood values. Miguel et al [66] have proposed a

fuzzy version of the local changes algorithm, as discussed in section 4.4.3.4. The stated

approaches are not applied within the context of this work. The stated algorithms may,
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however, form part of future work in adapting FCSP resolution algorithms to dynamic

changes in the computational verb models of this work.

Based on the considerations listed above, this work adopts the approach of Kowal-

czyk [51], who applied a genetic algorithm to solving FCSPs, as discussed in section

4.4.3.4. The proposed genetic algorithm treats an FCSP as an optimisation problem.

Genetic algorithms are well suited to optimisation problems and therefore present an

efficient approach to solving FCSPs that are formulated as optimisation problems [35]

[74]. Genetic algorithms are more generalised than classic CSP resolution algorithms

such as backtracking; as a result, they can accommodate a wide range of variable types.

Variables of infinite domain are easily encoded in a genetic algorithm as a chromosome

with real-valued genes.

Optimisation algorithms such as particle swarm optimisation algorithms [28] are also

effective at optimisation and are therefore able to handle multiple variables with con-

tinuous domains. A comparison between genetic and other optimisation algorithms is

required that compares the performance of genetic algorithms to other optimisation al-

gorithms in the context of FCSPs; however, such a comparison falls beyond the scope of

this work.

The genetic algorithm of Kowalczyk retains the FCSP formulation of its search space.

The pitfall of a solution skew to value tuples that produce optimal solutions for equations

which have larger error values (refer to section 4.4.3.5) is therefore avoided. An FCSP

approach handles all constraints and their associated equations in a uniform way. An

FCSP formulation also allows for the prioritisation of constraints, which in turn enables

an FCSP resolution algorithm to relax constraints in situations where the enforcement of

a constraint prevents the FCSP resolution algorithm from obtaining a consistent solution

for the remaining constraints.

4.4.3.8 Constraint satisfaction optimisation problems

A final consideration for the resolution of the system of equations produced by a set of

EEFEs is to solve the system of equations in terms of a constraint satisfaction optimi-

sation problem (CSOP) framework [91]. Constraint satisfaction optimisation problems

extend the standard CSP by optimising an objective function defined over the constraint
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variables. The optimised objective function is typically expressed in the form of either

a weighted function or a cost function. CSOPs formulate constraints as either equality

or inequality constraints. Equality constraints are a good fit for EEFEs.

EEFEs and the fuzzy constraints associated with them are formed dynamically, how-

ever, and no overarching objective is defined for the models of this work. The resolution

of the system of equations related to a set of EEFEs can therefore not be adopted to

a CSOP. The formulation of such a function in the context of a wider interpretation

of the events described in a sentence — for example, in the context of a paragraph or

story arc as described in [97] [98] [99] — is definitely useful. A CSOP approach to re-

solving the measurement values of attribute variables can also be applied to driving a

specific interpretation of a set of natural language sentences. The interpretation may be

determined by a greater context such as an overarching storyline. Alternatively, a set of

natural language sentences can be interpreted in terms of an objective function, which is

then specified as a weighted sum of attribute variables. No objective function has been

formulated in this work, however, and the fuzzy resolution procedure for determining

measurement values for attribute variables is formulated in terms of an FCSP instead.

4.4.3.9 Fuzzy variable resolution summary

A theoretical investigation of CSPs, FCSPs, and the resolution algorithms for CSPs and

FCSPs was presented in the subsection above. Soft constraint hierarchies were discussed

to illustrate how FCSPs are applied within this work. Fuzzy constraints were related

to the equations that result when evolving function equations are evaluated (EEFEs) as

part of the crisp variable resolution procedure (refer to section 4.4.2). A fuzzy variable

resolution approach formulated in terms of an FCSP is applied to solving the system of

equations related to a set of EEFEs. The fuzzy variable resolution procedure is applied

in the case where the crisp variable resolution procedure shows the system of equations

to be inconsistent. The fuzzy variable resolution approach presented in this subsection

allows approximate solutions to be determined for the measurement values assigned to

attribute variables. Approximate measurement values are required when conflicting nat-

ural language statements are modelled and the constructed evolving function equations

prove to be inconsistent. The considerations regarding a robust FCSP resolution algo-
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rithm in the context of this work were presented. A genetic algorithm for the resolution

of FCSPs as presented by Kowalczyk [51] was chosen as the resolution procedure for

FCSPs related to the system of equations produced by a set of EEFEs. Constraint sat-

isfaction optimisation problems were investigated as an alternative means of solving the

system of equations produced by a set of EEFEs.

4.4.4 Summary of variable resolution procedures

This section discussed the variable resolution procedures applied in this work. The

variable resolution procedures have the objective of assigning measurement values to

unknown attribute variables in the evolving function models constructed for natural

language words in the scope of this work. The considerations for a variable resolution

procedure were presented as the formation of evolving function equations, the assign-

ment of interactive attribute variables, and the ability to assign accurate measurement

values in the face of inconsistent evaluated evolving function equations. A crisp variable

resolution was presented as a series of natural language examples converted to evolving

function models. The crisp variable resolution procedure succeeds with regard to the

first two considerations but is not able to handle inconsistent EEFEs. A fuzzy variable

resolution procedure was proposed to formulate EEFEs in terms of fuzzy constraints

and the resolution of the system of equations produced by a set of EEFEs as an FCSP.

Resolution algorithms for FCSPs were studied and a genetic algorithm adapted for the

resolution of FCSPs was chosen as the resolution method for FCSPs in this work.

4.5 Chapter summary

This chapter presented the computational verb and the CSP principles used to model

natural language words within the scope of this work. A generic model for evolving

functions was specified as a base for the computational verb models of adjectives and

verbs. The concept of a context of interpretation was defined as applied within this

work as a means of organising computational verb models for natural language words. A

context of interpretation was subdivided into subcontexts and partial contexts in relation

to the generic computational verb model defined. Nouns, adjectives, verbs, and adverbs
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were defined in terms of fuzzy set theory, CVT, and the models in this work. Nouns,

adjectives, verbs, and adverbs were specified in terms of the generic evolving function

model. The evolving function models for nouns, adjectives, verbs, and adverbs were

organised according to contexts of interpretation, subcontexts, and partial contexts. A

crisp variable resolution procedure was presented with which to determine measurement

values for attribute variables as defined within the models in this work. A fuzzy variable

resolution procedure was investigated and formulated in terms of an FCSP. A genetic

algorithm was chosen as the FCSP resolution procedure applied in this work.

The models presented in this chapter serve as the theoretical basis of the system for

generating interactive narrative from natural language sentences by means of compu-

tational verb models. The system is discussed in detail in chapter 5. Chapter 5 also

references this chapter regarding the application of the computational verb models de-

fined in this chapter, where they are applicable to the interactive narrative generation

system presented.
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Chapter 5

The architecture of the

computational verb theory

interactive narrative generation

system

This chapter describes the architecture of a computational verb theory interactive nar-

rative generation (CVTNG) system in terms of its design principles, components, im-

plementation, and usage possibilities. The challenge of generating interactive narrative

from natural language sentences is stated in section 5.1 and is followed by a statement

of design principles for the CVTNG system in section 5.2. The design principles provide

a focus for the discussion of the architectural features of the CVTNG system.

The architectural features presented in this chapter are stated in terms of the compu-

tational verb-based word models of chapter 4. In section 5.3.2 the architectural features

related to the creation of contexts of interpretation (refer to section 4.2) are discussed

as a means of organising computational verb-based word models. The definition of com-

putational verb-based word models for the supported word types in the CVTNG system

(refer to sections 4.3.2 through 4.3.4) is discussed in section 5.4. In section 5.5 a parsing

framework and algorithm are discussed as a means of translating natural language pro-

vided as a text input to predefined computational verb models within a defined context
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of interpretation. The variable resolution procedures for assigning measurement values

to attribute variables (refer to sections 4.4.2 and 4.4.3) are presented in section 5.6 in

terms of the algorithms applied and the architectural features present in the CVTNG

system. A representation subsystem is discussed in section 5.4.6 that serves to integrate

the parsing and variable resolution subsystems of the CVTNG system with external

representational media.

5.1 Problem statement

The problems studied in computational linguistics are inherent to the nature of natu-

ral language. Natural language is a knowledge representation medium that is implicit,

inconsistent, and ambiguous [120] [125]:

• Natural language is implicit because it relies on collective human knowledge for

correct interpretation. The implicit nature of natural language as a knowledge rep-

resentation medium is difficult to encode in binary computers. Computational verb

theory (CVT) seeks to address the complexities of processing natural language, by

modelling natural language words and sentences in terms of the dynamics related

to the natural language words and sentences.

• Natural language can be inconsistent because multiple definitions can be attributed

to a single word or sentence. A sentence can also be structured in multiple ways

and still have the same meaning. Multiple exceptions also exist within the rules

of spelling and grammar. Language parsers need to be robust in the sense that

they can handle all of the possible exceptions and variants in natural language in

a generic and adaptable way.

• Natural language is ambiguous because multiple interpretations can be ascribed

to a single word or sentence. Context is required to resolve the ambiguities of

natural language and determine the true meaning of a natural language unit such

as a word, a sentence or a paragraph. Natural language needs to be modelled in

a way that allows multiple interpretations of a language unit yet with the correct

interpretation determined by the current context.
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A system that generates interactive narrative from natural language should also ad-

dress the challenges posed by narrative, and especially interactive narrative. An interac-

tive narrative generation system needs to identify the agents and areas in play. It should

also detect the changes that occur in the agents and areas as time progresses. The

CVTNG system therefore needs to allow changes over time in its narrative depictions.

The CVTNG system is therefore parameterised by time. Interactive narrative adds the

challenge of dynamic change, as introduced by human participants [75]. Consequently,

the interactive narrative system needs to adapt the narrative depictions at interactive

speeds. The CVTNG system has to be efficient and responsive in terms of its calcula-

tions to allow real-time feedback to user actions. Narrative text relies on the established

contexts and relationships set up by preceding narrative for correct interpretation [97]

[98] [99]. The CVTNG system has to keep track of such relationships, contexts, and

statuses in a consistent and re-usable way.

5.2 Design principles of the CVTNG system

This section describes the design principles of the CVTNG system in view of the chal-

lenges that arise from creating interactive narrative from parsed natural language sen-

tences. The design principles are to:

• encapsulate the complexities of modelling natural language and interactive narra-

tive representation;

• represent interactive narrative depictions in a correct and consistent way;

• separate the concerns of the different users in the interactive narrative generation

system;

• re-use artifacts such as word models and representations created inside or outside

the system.

The subsections that follow, each address one of the design principles above and

relate the design principles to the problem statement in section 5.1.
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Figure 5.1: Levels of interaction with the CVTNG system

5.2.1 Encapsulation of the complexities in word models and

interactive narrative generation

Figure 5.1 represents the approach the CVTNG system adopts to leverage and encap-

sulate the complexities of computational verb-based word models and narrative space

generation.

The highest level of interaction with the system is the creation of textual narrative.

A user who interacts with the system at the narrative text level requires only a work-

ing knowledge of natural language in order to realise interactive narrative spaces. The

creation of narrative text is the most accessible and natural level of modelling in the

CVTNG system: the majority of users are able to interact with the system at the level

of interactive narrative.

The second level of interaction in the CVTNG system comprises the actions involved

in building contexts of interpretation; they enable users to stipulate the contexts that

narrative text is interpreted in. Context of interpretation is specified by users who

know about the variables related to the observation of narrative text in a particular

context of interpretation. Creators of contexts of interpretation also need to know about

the relationship between observation variables and the parameters supplied to narrative

representations. Narrative representations depict the narrative text for a specific context

of interpretation within the generated interactive narrative space.
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The third level of interaction in the CVTNG system is the creation of the word

models themselves. Users who create word models define the computational verb models

of the supported word types (refer to sections 4.3.1 through 4.3.4) within a context of

interpretation. The creators of word models also stipulate the representation of nouns

in terms of external media such as graphics, sound files, and artificial intelligence (AI)

behaviours. The creators of word models should also know about evolving function

models as presented in chapter 4.

The fourth and lowest level of interaction with the CVTNG system involves the con-

struction of narrative depictions and the definition of mathematical functions. Narrative

depictions are constructed in the form of computer graphics, sound files, and AI be-

haviours. Mathematical functions are used in evolving functions (refer to section 4.1)

and transformation functions (refer to section 4.3.4). Users who construct narrative

depictions need to have a thorough knowledge of the representational means such as

computer graphics models, sound files, and AI scripts. Users who define mathematical

models need to have a knowledge of dynamic systems, functions, and computational verb

theory (CVT). The number of users who interact with the CVTNG system at this level

is significantly smaller than the number of users who will engage it at the higher levels

shown in figure 5.1. The reason for the lower number of users at the fourth level is the

specialised mathematical and narrative representation knowledge required.

5.2.2 Correct and consistent representation of narrative depic-

tions

The second design principle, and a high-priority one, is the accurate and consistent

representation of parsed narrative. The CVTNG system has to identify correctly the

narrative depictions that constitute the narrative space, the statuses of narrative depic-

tions, and the relationships between narrative depictions. The system must then allow

changes in the states and relationships of narrative depictions according to the narrative

flow. The narrative flow is provided in the form of narrative text. The representation of

the narrative space must remain consistent and continuous while changes in the narra-

tive depictions that indicate narrative flow are applied. The narrative depictions must

remain consistent in the face of changed inputs by the creator of the interactive narrative
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space and the interactive narrative participants.

5.2.3 Separation of system user concerns

The third design principle of the CVTNG system is to decouple its subsystems in terms

of the system architecture and user interaction. A creator of word models needs to have

a knowledge of the computational verb models presented in section 4.1, but should not

be required to define functions or build narrative representations in any way. Someone

who is interested in constructing interactive narrative should not be confronted with the

creation of computational verb-based word models and contexts of interpretation. A

black box approach is followed throughout the architecture, meaning that every subsys-

tem is encapsulated but is still able to interact freely with the other subsystems, in line

with the overall CVTNG system design principles.

5.2.4 Re-usability of artifacts

All artifacts created within a subsystem such as a context of interpretation, an evolving

function word model, or narrative depictions should be decoupled from other subsystems

and therefore be fully interchangeable. A single mathematical function can therefore be

used in multiple evolving function equations. A context of interpretation may be used

for multiple evolving function word models. A graphical model may be associated with

noun word definitions in multiple contexts. A unit of narrative text can be interpreted

according to multiple alternative word definitions and contexts of interpretation. The

examples listed should be possible within a system devised for interactive narrative

generation from natural language in order to realise its modelling potential fully.

5.3 Context of interpretation architecture

This section presents the implementation of architectural features in the CVTNG system

geared towards implementing the concept of a context of interpretation as presented

in section 4.2. Section 5.3.1 sets out the implementation of contexts of interpretation

(refer to section 4.2) within the architecture of the CVTNG system. The architectural
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features of the CVTNG system by which contexts of interpretation are created and

stored are presented in section 5.3.2. Variable sets and transformations are discussed

as architectural features that act as interfaces between CVTNG subsystems in sections

5.3.3 and 5.3.4 respectively.

5.3.1 Application of a context of interpretation in the CVTNG

architecture

Context serves as a means to organise and interpret natural language sentences. The

CVTNG system uses context to group the separate meanings that may be associated with

a natural language sentence, and then associates the grouped meanings with narrative

depictions. The meanings of the sentences are modelled in terms of CVT. External media

such as graphics, sound, and AI scripts are used as narrative depictions. The sentence

fragment “a bad apple” can be visualised as a rotten apple if the context is that of a

visual description. But the phrase “a bad apple” can also be interpreted as a person

with a negative influence on others in the context of a character description. A context

provides a point of view, a frame of mind, and a window through which to look at a

natural language sentence and then attach a meaning to it.

The notion of context is central to the natural language models of the CVTNG

system. Context of interpretation serves as a means of grouping narrative depictions

with computational verb models that determine the parameters for their representation.

Computational verb models are also subdivided in terms of their context of interpreta-

tion, subcontexts of a context of interpretation, and the partial contexts related to a

subcontext. The subdivision of computational verb models in terms of context of in-

terpretation allows the CVTNG system to break complex phenomena down into their

constituent parts. The constituent parts of a computational verb model can also be

re-used in other computational verb models.

Context of interpretation as a grouping mechanism within the CVTNG system allows

the CVTNG system to separate usage concerns by grouping narrative depictions with

computational verb word models (refer to section 5.2.3). The complexities of computa-

tional verb models are leveraged by subdividing evolving functions in terms of subcon-

texts and partial contexts (refer to section 5.2.1). In this way, context of interpretation
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enables the CVTNG system to adhere to two of its main design principles.

5.3.2 Representation of context of interpretation within the

CVTNG architecture

The CVTNG system stores contexts of interpretation as simple XML structures that

contain tags for the attributes that describe a context of interpretation. XML was

chosen as the storage format for contexts of interpretation for the following four reasons

[1]:

• XML is a standardised and open format that is frequently used for communication

between dissimilar systems, as is the case for the CVTNG subsystems.

• The XML structures are self-descriptive and word-based, and therefore align with

the philosophy of the CVTNG system of modelling by words.

• XML structures allow for complex and nested structures such as hierarchies that are

frequently used in the CVTNG system due to the subdivision of computational verb

models in terms of contexts of interpretation, subcontexts, and partial contexts.

• XML structures can easily be modified to allow for an additive design approach to

context and word model creation in the CVTNG system. New contexts can easily

be added to existing word models and new word models can easily be specified for

an existing context of interpretation.

XML as a storage format allows the CVTNG system to achieve the design goals of

encapsulating and leveraging the complexities of computational verb models and narra-

tive depictions (refer to section 5.2.1). XML also allows the re-use of artifacts created

within the CVTNG subsystems due to its open, human-readable, and reinterpretable

nature (refer to section 5.2.4).

The XML structure and the defined attributes of a CVTNG context of interpretation

are:

• the name of the context,
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• the name of the context this context forms part of in the case of a subcontext or

a partial context,

• nested tags containing the properties defined for the context,

• and flags that indicate whether the context is a subcontext or a partial context.

A property is a structure within the CVTNG system that groups three system fea-

tures:

• an attribute variable (refer to section 4.2);

• a transformation that describes how the attribute variable is applied to a narrative

depiction;

• a default value for the attribute variable within the specified context of interpre-

tation.

Attribute variables as defined within the computational verb models of chapter 4 are

generalised to properties within the CVTNG architecture. This generalisation enables

an attribute variable to be applied to a representational means in a variety of ways using

different transformations. Each transformation specified within a property has a unique

default value that corresponds to the transformation. For example, the words “skew” and

“move” act on the vertices that constitute a graphical model when represented visually

[56]. The effect of their respective computational verb models is, however, applied to

the graphical model in different ways. The parameter values used to transform narrative

depictions are therefore decoupled from the attribute variables of the computational

verb models and can be applied in different ways to the narrative depictions. The use of

properties and generic transformations is a basic implementation of the template method

design pattern [34], which enables the CVTNG system to separate the user concerns of

creating computational verb-based word models and narrative depictions. The template

method design pattern also enables the re-use of context of interpretation for different

narrative depictions. Adherence to these design principles allows the CVTNG system to

integrate flexibly with representational media.
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A context editor user interface within the CVTNG system, as shown in figure 5.2,

allows users to create contexts of interpretation, subcontexts, and partial contexts with-

out directly specifying the corresponding structures in the XML storage format. A user

specifies a context of interpretation by entering

• the name of the context,

• the name of a related context of interpretation or a subcontext (if applicable),

• whether the context is a subcontext or a partial context,

• a name for the context property,

• the name of the attribute variable,

• a transformation by which the attribute variable is applied to the narrative depic-

tion and,

• a default value for the attribute value within the defined context of interpretation.

An XML structure, as defined above, that contains the entered context attributes is

then saved. The user modifies the stored XML structure by saving modified attribute

values.

5.3.3 Variable sets

Variable sets are a CVTNG architecture feature that relates to the design principle of

separating system user concerns. A variable set provides a means for representational

media to integrate freely with the parsing and variable resolution subsystems. Variable

sets serve as a protocol for the interaction of computational verb models and their asso-

ciated attribute variables and external representational media such as computer graphics

and sound. A variable set specifies the list of variables exposed by a narrative depiction

to the evolving function models of the CVTNG. The narrative depictions utilise the vari-

able name listed in a variable set within their internal representations. The name of the

associated property (refer to section 5.3.2) is used as the name of the associated attribute
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Figure 5.2: The CVTNG context editor

variable within the evolving function models of the CVTNG system. A property there-

fore defines a mapping between an attribute variable used within the computational verb

models of the CVTNG system and a variable internal to a specific narrative depiction

for a defined context of interpretation. Creators of representational media may therefore

link their narrative depictions to the evolving function models of the CVTNG system by

using variables in the variable set.

A variable list that contains a list of variables related to the commonly adjustable

features of a narrative depiction allows the free integration of that type of narrative

depiction to a context of interpretation. A graphical model could prescribe to a list of

variables that specifies variables which parameterise the translation, scaling, and rotation

of vertices that constitute a graphical model. A context of interpretation may define

properties to map between its attribute variables and the internal variables specified

within a graphical model variable list. Computational verb models defined within the

defined context of interpretation are therefore able to interact with graphical models

that use internal variables on the variable list or provide aliases to the variables on the

variable list.
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Figure 5.3: The CVTNG variable set editor

Variable sets are stored as simple XML files. Tags are specified with the variable

set XML structure to annotate the name of the variable set as well as the names of

the supported variables. The flat list of variable names does not fully utilise the nested

nature of XML structures, but allows for additional metadata attributes to be specified.

Specifying metadata and corresponding protocols will allow a full-fledged protocol to be

specified for the interaction of CVTNG evolving function word models with representa-

tional media.

A variable set editor as shown in figure 5.3 was created within the CVTNG architec-

ture to define variable sets without the XML storage format having to be manipulated

directly. The variable set editor enables the creation and expansion of variable sets

that integrate with the context-creation features of the CVTNG system (refer to section

5.3.2).

5.3.4 Transformations

Transformations allow the measurement value stored in an attribute variable to be ap-

plied to an external narrative depiction in a way that is sensible for the narrative de-
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piction. A transformation on a graphical model may take the form of a transformation

matrix applied to the vertices of the graphical model [56]. A transformation applied to

an AI script may in turn take an entirely different form.

The encapsulation of transformations allows the creators of context of interpretation

to apply evolving function models defined within the context of interpretation to a nar-

rative depiction, without having to have knowledge of the internal representation of the

narrative depiction. The creators of narrative depictions can in turn publish a set of

transformations related to the internal variables of a variable list (refer to section 5.3.3)

that the narrative depiction ascribes to. A protocol is therefore defined on either side of

an interpretive context that allows the creators of narrative depictions to integrate with

evolving function word models. The creators of evolving function word models in turn

may apply their defined dynamics, as specified by evolving functions, to all narrative

depictions that ascribe to the supported variable list and transformations.

Transformations are created in the CVTNG system as a separate code assembly

(compiled library). The code for a transformation is specified in a class that implements

a simple transformation function interface. The interface contains methods for initialising

a transformation and for applying the transformation to a reference parameter altered

according to the implemented transformation.

5.4 Representation of computational verb-based word

models in the CVTNG system

This section describes the components of the CVTNG architecture used in the definition

of computational verb-based word models within a defined context of interpretation

(refer to section 5.3). The basics of word-in-context definitions are discussed and an

overview of the supported natural language word types is given in section 5.4.1. Sections

5.4.2 to 5.4.5 provide an in-depth look at the definition of noun, adjective, verb, and

adverb models in the CVTNG system. The models specified in the architecture relate

to the theoretical word models presented in sections 4.3.1 through 4.3.4. The structure

and generation of element classes are presented as a means of interfacing measurement

values to narrative depictions in section 5.4.6. Section 5.4.7 contains a discussion of a
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functions library used in the construction of evolving function models.

5.4.1 Word definition basics

The basic word types in the English language are as follows:

• Nouns: Natural language classifies nouns as the parts of speech that name a person,

object, place, quality, or occurrence [2]. Nouns form the subjects and objects to

which adjectives, verbs, and prepositions apply. In terms of CVT, nouns are seen

as the passive centre in the English language [112].

• Articles: Articles in (English) grammar are the part of speech that specifies a noun

(that is, makes a noun more specific). The articles in English are “a”, “an”, and

“the” [2].

• Pronouns: Natural language defines pronouns as the part of speech which substi-

tutes for a noun or noun phrase that names a person. A pronoun is substituted

for a noun in the context of sentences that have previously introduced the person

specified by the noun. An example of a pronoun substituting for a noun is “Jack

is a boy. His favourite colour is green.”. (“His” stands in the place of “Jack’s”.)

[2]

• Adjectives: Natural language defines adjectives as the part of speech that modifies

nouns and pronouns by limiting, qualifying, or specifying them [2].

• Verbs: Natural language defines a verb as the part of speech that expresses exis-

tence, action, or occurrence [2]. In terms of CVT, verbs form the active centre in

the English language [112].

• Prepositions: Natural language defines a preposition as a word or phrase that

precedes a noun or a pronoun (substantive) which relates the substantive to a verb

[2]. Examples of prepositions are “at”, “with”, and “on”. (In “The cat sits on the

mat”,“on” relates “mat” to the verb “sits”.)

• Adverbs: Natural language defines an adverb as the part of speech that modifies

an adjective, a verb, or another adverb [2].
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Figure 5.4: The CVTNG word definition storage structure (XML)

• Conjunctions: Natural language, in the context of grammar, defines conjunctions

as the part of speech that serves to connect words, phrases, and sentences [2].

• Numerals: Natural language defines numerals as words or symbols that represent

numbers [3].

• Interjections: Natural language defines an interjection as the part of speech that ex-

presses emotion. Interjections are capable of standing alone [2]. (“Aha!”,“Never!”,

“You’re joking!”)

Nouns, adjectives, adverbs, and verbs serve as the theoretical core of the CVTNG

system based on the theoretical models of chapter 4. In the CVTNG system, nouns are

used to model the passive centre of language and they have adjectives as their modifiers

or determiners; verbs form the active centre of language and they have adverbs as their

modifiers. Articles and conjunctions are not modelled in the present work but are treated

instead as modifiers of the parsing procedure. Pronouns are not discussed in this work

but are treated similarly to nouns. Prepositions combine with verbs to form verb phrases

and are therefore treated as verbs (refer to section 4.3.3) in this work. Numerals do not

fall within the scope of this work but are treated in similar fashion to verb numbers

[110]. Verb numbers are the CVT models for numbers and number words and are not

discussed within the scope of the current work. Interjections can be conjectured to be

modelled as self-perceptions of the internal system (refer to definition 3.13) that model

an individual’s emotional state. No such investigations are done within either the scope

of this work or the prototype CVTNG system.

The CVTNG system constructs a computational verb-based word model in terms

of defined contexts of interpretation (refer to section 5.3). A series of properties are
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Figure 5.5: The CVTNG word editor

defined for a context of interpretation. A word model within a context of interpretation

may utilise the defined properties as attribute variables. Evolving function models for

adjectives and verbs are specified in terms of a context of interpretation’s properties that

are used as attributed variables and specified functions (refer to section 4.1). Nouns are

defined within a context of interpretation by specifying a narrative depiction in the form

of a class file that serves as an interface with the associated narrative depiction. Adverbs

are specified in terms of mathematical functions within a context of interpretation.

Word models within a context of interpretation are stored within the CVTNG sys-

tem as XML structures (refer to figure 5.4). Word models are subdivided according to

contexts of interpretation, the subcontexts of a context of interpretation, and the partial

contexts related to a subcontext. Word models are further subdivided according to word

type. Within the XML structure of a word model a tag is created for every combination

of word type and context of interpretation. The tag for a word type and context of inter-

pretation pair contains tags that specify the attributes of the word within the associated

context of interpretation and word-type combination. A word editor, as shown in figure

5.5, was created in the CVTNG architecture to create word models within a context of

interpretation without the associated XML storage structure being created directly.
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A central store called the “dictionary” is updated when a word model is created or

modified in a context of interpretation. The dictionary serves as a central database of

the word models that exist. The “dictionary” also stores the word types associated with

the specified word models. It is stored as an XML structure.

The general aspects of word definitions have been presented. Sections 5.4.2 through

5.4.5 specify the specific architectural features of the supported word types. The at-

tributes, XML storage structure, related word editor interface elements, and class models

of the supported word types are described: the CVTNG architecture features related to

noun models are presented in section 5.4.2; those related to adjectives are presented in

section 5.4.3; the CVTNG architecture features related to verb and adverb models are

presented in sections 5.4.4 and 5.4.5 respectively.

5.4.2 Nouns

A noun model within a context of interpretation as specified in the CVTNG system is

specified by the following attributes: element type, input file, and output file.

• Element type: Categorises the associated representational means as a graphic, a

sound file, or an AI script. Graphics, sound files, and AI scripts by no means rep-

resent a comprehensive list of interactive narrative depictions. The element type

attribute, however, serves to group contexts during the generation of representa-

tional element interfaces.

• Input file: Contains the full path of a file that serves as the point of access for a

narrative depiction associated with the noun within the context of interpretation.

The word “tree”, modelled as a noun within a visual context of interpretation, will

point to a file containing the information of a graphical model as an example. The

word “tree”, in the context of sound, may point to a sound file of leaves blowing

in the wind.

• Output file: Contains the full path of a file in which a generated class that

implements the Element interface will be stored. The Element interface serves as

an adapter [34] and allows the evolving function models of the CVTNG system to

interface with the associated narrative depiction specified in the input file attribute.

101

 
 
 



The three listed attributes serve to represent a noun within a context of interpreta-

tion. The necessary data is stored to associate a noun with a narrative depiction in a

context of interpretation. A reference is also stored in the output file attribute for the

adapter that is generated to allow evolving function models of adjectives and verbs to

interface with a specified narrative depiction. Noun models are created using the word

editor illustrated in figure 5.5.

The noun “tree” can, for example, be specified in the “Visual” context of interpreta-

tion by specifying the following attribute values:

• Element type: Graphic

• Input file: The path of a graphical model of a tree.

• Output file: The path and file name of a file that a generated specification of the

Element class is stored in. The specification of the Element interface is referred

to as an element class within the CVTNG system architecture. The element class

acts as an interface between the CVTNG system and the representational system.

The representational system in the case of a graphical model may be a graphics

engine that renders the graphical model specified in the Input file attribute.

Nouns are significantly more complex within the CVTNG code base than is suggested

by their simple storage structures. Nouns serve as a grouping within the context of the

the parsing and variable value resolution procedures of the CVTNG system. Nouns act

as groupings of attribute variables as specified in section 4.3.1. Nouns also serve as

collectors for the references to a narrative depiction and groups a noun word with its

narrative depiction in a context of interpretation (refer to section 4.3.1).

Figure 5.6 shows a UML class diagram that represents the implementation of nouns

within the CVTNG system. The flyweight design pattern [34] is applied through the

introduction of NounInstance classes. Every instance of the NounInstance class stores

the information unique to the particular instance of a noun resultant from parsing natural

language. The NounInstance instances share common representational elements. The

shared representational elements are stored within a shared instance of the Noun class

to avoid duplication of large structures, such as graphical models that correspond to the

representational elements, in memory. The NounFactory class controls the instantiation
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of the Noun class. The Vocabulary class handles the parsing procedures and variable

resolution procedures (refer to section 4.4.2 and 4.4.3) of the CVTNG system. If the

Vocabulary class requests an instance of the Noun class, the NounFactory class checks

whether an instance should be created and passes a reference of the Noun class instance

to the Vocabulary class.

The structures of the representational element are created in memory and stored when

an instance of the Noun class is created. The stored representational elements correspond

to the narrative depictions related to the noun for the contexts of interpretation the noun

is modelled in.

The phrase “the blue house is next to the red house” contains two instances of the

noun “house”. Each instance of “house” has a unique colour attribute as described by an

adjective. The CVTNG system creates two instances of the NounInstance class when

the sentence is parsed. These instances relate to the “blue” and “red” descriptions of

the noun “house”. The representational element associated with the noun “house” for

the context of interpretation may be a graphical model of a house. A reference to the

structures in memory that contain the graphical model of a house is stored within the

Noun class instance. The two NounInstance class instances access the graphical model

via the instance of the Noun class in an implementation of the flyweight design pattern

[34].

The application of the flyweight design pattern allows the CVTNG system to store

large structures such as the vertices of a graphical model only once in memory. The

structure in memory that relates to the graphical model can still be accessed and re-

used as required. The shared representation stored within the instance of the Noun

class is then transformed as parameterised by attribute variables stored within every

NounInstance class instance. The NounInstance class instances represent the unique

occurrences of the noun in the narrative text; they therefore also store the attribute

variables unique to every unique occurrence of a noun in the narrative text. A unique

occurrence of a noun in the narrative text refers to a single use of a noun word in the

narrative text to designate an object or group of objects that can be distinguished from

other uses of the noun to designate other objects. The CVTNG system determines the

ability to distinguish between unique occurrences of a noun.
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5.4.3 Adjectives

The CVTNG system stores an adjective modelled within a context of interpretation as

the following set of attributes:

• Property: The property attribute stores the context property (refer to section

5.3) grouped with a noun as an attribute variable (refer to section 4.2). A unique

instance of the attribute variable is created for every unique occurrence of an

adjective–noun pair in the modelled narrative text.

• BE-verb: The BE-verb attribute contains a verb-based word definition specified

in the same context of interpretation as the adjective model. The associated verb

is flagged as a BE-verb and is implemented as a static verb (refer to definition

3.15). The BE-verb can also be modelled as another verb type if the modelled

adjective is not an adjective as defined for CVT (refer to section 4.3.2). The

generic function, fi, as defined for equation (4.3), is inherited from the specified

BE-verb. The maximum and minimum term sizes (refer to section 4.4.3.5) and the

validity period of the verb (refer to definition 3.14) are also inherited.

• Value: The amplitude value, α, defined for the evolving function model of the

adjective word (refer to section 4.3.2).

The attributes listed above are defined within every context of interpretation sup-

ported by the adjective. The adjective models within a context of interpretation are

specified using the word editor shown in figure 5.5.

The adjective “red”, for example, may be implemented within the context of inter-

pretation “RedColouring” by specifying the following attribute values:

• Property: Red.

• BE-verb: “be”.

• Value: 0.7

The attribute values specified define the evolving function model for the adjective “red”

by specifying that the generic function, f , and the scaling value, κ, from the evolving

105

 
 
 



function model of the verb “be” should be used. The generic function value, f(t), and

scaling value, κ, are multiplied by the amplitude value, 0.7, to calculate a measurement

value stored in the attribute variable “Red”. The attribute variable “Red” corresponds

to the property “Red” within evolving function models of the CVTNG system. If the

generic function value, f(t), and scaling value, κ, for the verb “be” are defined as f = 1.0

and κ = 1.0 respectively, the evolving function equation defined for the adjective “red”

in the context of interpretation “RedColouring” is defined as:

Red = (0.7)κf(t) = (0.7)(1.0)(1.0) = 0.7. (5.1)

Figure 5.7 shows a UML class diagram of the implementation of adjectives in terms of

the CVTNG code base. If the Vocabulary class requests an instance of the Adjective

class, an instance of the Adjective class is created by the AdjectiveFactory class

and a reference to the Adjective class instance is stored within the Vocabulary class.

An instance of the Adjective class is created for every context of interpretation the

adjective is modelled for. A Verb class instance is created for the BE-verb specified for

an adjective within a specific context of interpretation. A reference to the created Verb

class instance is stored within the Adjective class instance. The associated Verb class

instance is not shown in figure 5.7.

An instance of the Adjective class that associates with an instance of the NounInstance

class (an expanded class is shown) is created for every unique adjective–noun pair in the

narrative text. The instance of the NounInstance class created for the unique adjective–

noun pair stores the attribute variables specified in the evolving function model of the

adjective in a specific context of interpretation. The CVTNG system determines unique

occurrences of a noun in narrative text according to the adjectives associated with the

noun in the narrative text. If the adjectives associated with a noun are identical to those

of another adjective–noun pairing, the same NounInstance class references are returned

to the Vocabulary class. The CVTNG class therefore considers nouns with identical

associated adjectives as separate occurrences of the same noun instance.
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5.4.4 Verbs

A verb modelled within a context of interpretation is stored in the CVTNG system as

the following attributes:

• Verb type: The Verb type attribute indicates whether the verb model defined

for the context of interpretation specifies a static computational verb (refer to

definition 3.15) or a computational verb that models dynamics (changes over time).

• Subject property: The Subject property attribute stores the context property

(refer to section 5.3) that is grouped with a subject noun as an attribute variable.

The attribute variable is stored within an instance of the NounInstance class for

the defined context of interpretation. The instance of the NounInstance class for

the context of interpretation is determined by the adjectives associated with the

noun in the narrative text (refer to section 5.4.3).

• Function: The Function attribute contains the path of a Function class. The

Function class implements a function, f1, as specified for the evolving function

model of the verb within a context of interpretation (refer to equation (4.3)). The

Function class implements a function, fi, related to a term in the evolving function

model of a verb (refer to equation (4.3)) when specified for a subcontext (refer to

section 4.2).

• Object value: The Object value attribute stores the amplitude value, α, specified

for the evolving function model of a verb within a context of interpretation (refer to

equation (4.3)). The object value attribute stores an amplitude value, αi, related

to a term of the evolving function model of a verb (refer to equation (4.3)) when

specified for a subcontext (refer to section 4.2). The object value attribute stores

an amplitude value, αij , related to an amplitude value defined as a sum (refer to

equation (4.7)) when specified within a partial context.

• Period: The Period attributes stores the lifetime of the evolving function model

of a verb within a context of interpretation, TC (refer to definition 3.22).

• Infinite: The Infinite attribute is a flag that indicates whether the evolving

function model of a verb within the context of interpretation should repeat over
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a time interval, T . If the Infinite flag is set, the validity period of the evolving

function as specified in the period attribute is infinite. The evolving function takes

the form of equation (4.4) and it repeats over the time interval, T .

• Reflective: The Reflective attribute is a flag which indicates that the amplitude

value specified in the object values attribute should be obtained from the subject

noun in a verb sentence (refer to definition 3.20). The subject noun therefore acts

as the object noun for the verb sentence.

• Maximum: The Maximum attribute stores an upper bound, α+, for the amplitude

value, α, of an evolving function in a context of interpretation as well as for the

amplitude value, αi, of a term in an evolving function when specified within a

subcontext. The Maximum attribute also stores an upper bound, α+
ij
, for the partial

amplitude value, αij , if the attribute Maximum is specified for a partial context.

The partial amplitude value, αij , is summed with other partial amplitude values

to obtain the amplitude of a term in an evolving function that is defined in the

related subcontext.

• Minimum: The Minimum attribute stores a lower bound, α−, for the amplitude

value, α, of an evolving function in a context of interpretation as well as for the

amplitude value, αi, of a term in an evolving function when specified within a

subcontext. The Minimum attribute also stores a lower bound, α−
ij
, for the partial

amplitude value, αij , if the Minimum attribute is specified for a partial context.

The partial amplitude value, αij , is summed with other partial amplitude values

to obtain the amplitude value of a term in an evolving function that is defined in

the related subcontext.

• Scale: The Scale attribute stores the scaling factor, κ, for the amplitude value,

α, used in the evolving function model of a verb (refer to equation (4.3)) specified

for a context of interpretation as well as for an amplitude value, αi, of a term in

an evolving function model of a verb when defined in a subcontext. The scale

attribute stores the scaling factor, κij , of the partial amplitude value, αij , when

defined in a partial context (refer to equation (4.7)).
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The attributes above are specified using the word editor shown in figure 5.5. The at-

tributes Verb type, Subject property, Period, and Infinite are specified only within

a context of interpretation. The attribute function is specified only within a context of

interpretation or a subcontext. The remainder of the attributes listed above are specified

in contexts of interpretation, the subcontext related to a context of interpretation, and

the partial contexts related to a subcontext.

The evolving function model for the verb “jumps” may, for example, be defined

within the context of interpretation “Position above ground” by specifying the following

attributes:

• Verb type: Become. (The evolving function model specified is that of a dynamic

computational verb.)

• Subject property: YPosition (The attribute variable chosen to store the mea-

surement value calculated from the evolving function model is “YPosition”, which

refers to the height of an object above the ground.)

• Function: sin t. (The generic function chosen for the evolving function model is

f(t) = sin t.)

• Object value: 1.0 (The evolving function model is scaled by the amplitude value

1.0.)

• Period: π (The evolving function model is specified for a period of size π.)

• Infinite: False. (The evolving function model should not repeatedly be evalu-

ated.)

• Reflective: False. (The amplitude value is not retrieved from the subject noun.)

• Scale: 0.5. (The scaling factor for the evolving function model is 0.5.)

• Maximum: 0.5. (The maximum measurement value that can be obtained from the

evolving function model is 0.5.)

• Minimum: 1.0. (The minimum measurement value that can be obtained from the

evolving function model is 0.0.)
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The evolving function model specified for the verb “jump” when the attribute values

above are specified, is:

Y Position = Ejumps(t) = (0.5)(1.0) sin t = 0.5 sin t. (5.2)

Figure 5.8 shows a UML diagram that represents the relationships between the Verb

class in terms of the CVTNG code base. If the Vocabulary class requests an instance

of the Verb class, the VerbFactory class creates an instance and returns a reference to

the Vocabulary class. Attribute variables are created according to the evolving function

models specified for a verb in the specified contexts of interpretation. The attribute

variables are created for every unique grouping of a verb with a subject and/or object

noun in the narrative text. The attribute variables are stored within the NounInstances

class instances associated with the subject noun. An instance of the Verb class stores

the evolving function associated with the verb for a context of interpretation. A unique

instance of the Verb class is therefore created for every context of interpretation for every

verb modelled in the narrative text.

The relationship between the specifications of a Function interface and the Verb

class is not shown in figure 5.8. If an instance of the Verb class is created by the

VerbFactory class, instances of specifications of the Function interface are created.

The specifications of the Function interface correspond to the functions, fi, defined for

the evolving function models in the present work (refer to equation (4.3)). References to

the Function interface specifications are stored in the instance of the associated Verb

class.

Reflection is used to allow functions to be maintained within a separate library. A

reference to an instance of the Adverb class may also be stored within an instance of the

Verb class for a verb–adverb pair within the modelled narrative text.

5.4.5 Adverbs

An adverb modelled within a context of interpretation is stored in the CVTNG system,

as the following list of attributes:

• Transformation function: The function attribute stores the path of a class that

implements a specification of the Function interface. The Function interface
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specification implements the transformation function, Ψ, as defined for equations

(4.20) and (4.21).

• Apply to: The apply to attribute indicates whether the transformation function

specified in the function attribute should be applied to the frequency or amplitude

of an evolving function model of an associated verb.

The attributes above are specified using the word editor shown in figure 5.5.

The adverb “dark” may, for example, be specified within the “RedColouring” context

of interpretation by specifying the following attributes:

• Transformation function: Ψhalf = 0.5. (The transformation function specified

for the evolving function model is Ψhalf = 0.5.)

• Apply to: Amplitude. (The transformation function specified within the evolv-

ing function model for the adverb “dark” is an adverb of amplitude. An adverb

of amplitude is applied to transform an amplitude value in an evolving function

specified for an associated adjective or verb.)

If the adverb “dark” is defined by specifying the attribute values above and it is applied

to the adjective “red’ in the natural language phrase “dark red”, the following evolving

function model results:

Red = Ered(t) = (0.7)Ψhalf (1.0)fone(t) = (0.7)(0.5)(1.0)(1.0) = 0.35. (5.3)

Figure 5.9 shows a UML diagram that represents adverbs in terms of CVTNG

code base. If the Vocabulary class requests an instance of the Adverb class, the

AdverbFactory class creates an instance of the Adverb class and returns a reference

to the Vocabulary class. An instance of the Adverb class is created for every context

of interpretation, subcontext, or partial context the Adverb is defined for. The class

diagram in figure 5.9 shows the relationships between the Adverb class and the Verb

and Adjective classes. A reference to the Adverb class is stored within a Verb class

instance for a verb–adverb pair. A reference to the Adverb class is also stored within

the Verb class instance created as the BE-verb of an Adjective class instance for an

adjective–adverb pair. The relationship between an instance of the Adverb class and a
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class that serves as a specification of the Function interface is not shown. The speci-

fication of the Function interface serves as the transformation function applied to the

evolving function of any associated verb.

5.4.6 Element classes

Element classes are generated classes that implement specifications of the Element inter-

face within the CVTNG system. Element classes serve as adapters [34] between the mea-

surement value resolution subsystem and the representation subsystem of the CVTNG

system. The CVTNG system is decoupled from a specific representation system. A

representation subsystem was, however, developed for the CVTNG system prototype

related to this work. Accordingly, element classes are generated and compiled within

a separate assembly. The assembly of element classes serves as a reference library for

representational systems and the CVTNG measurement value resolution system. The

main reasons that element classes are compiled into a separate assembly are:

• Decoupling: Representations are typically developed in an environment decoupled

from the core CVTNG system. Interaction between a computational verb model

in the CVTNG system and an associated representational means is achieved via an

element class. The element class acts as an interface and allows a representational

element to be handled by a separate representation system such as a graphics en-

gine. The separate system can interact with the CVTNG system without changing

the core CVTNG system or requiring a change in the separated representational

system. The CVTNG system and the separate representational system are there-

fore independent with regard to change, though the two systems can still interact

with each another via the element class stored in an element class assembly. The

element class assembly acts as a library for both systems and also serves as a

communication interface.

• Integration possibilities: A representation system used by the CVTNG system

is decoupled from the evolving function models and measurement value resolu-

tion procedures. Third party representation systems such as graphics engines can

therefore interact with the CVTNG system without additional adjustment.
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The representation system used by the CVTNG system and the evolving function

models and measurement value procedures of the CVTNG system are decoupled. Com-

munication between representational elements and the measurement value resolution

subsystem takes place through generated specifications of the Element interface. The

Element interface specifies the following four methods that allow the interaction of a de-

coupled representation system with the CVTNG measurement value resolution system:

1. Initialize(): An implementation of the Initialize() method serves to ini-

tialise the representational element. An element class that implements the Element

interface for a graphical model will use this method to load the graphical model

into memory.

2. InitVars(): An implementation of the InitVars() method serves to initialise a

series of transformations as parameterised by the default values of attribute vari-

ables. The default values of the attribute variables and the transformations are

as specified within the properties of the specified contexts of interpretation (refer

to section 5.3). If an attribute variable is therefore not changed by the evolving

function word models of the modelled narrative text, the internal variable of the

representational element that corresponds to the attribute variable (refer to sec-

tion 5.3) will be transformed according to a default transformation. The default

transformation serves to set the internal variable to its default state. A property

“Position” not changed within the evolving function models of the modelled nar-

rative text is, for example, initialised to its default value by multiplying a zero

translation matrix with an array of vectors. The array of vectors is the internal

variable of the representational element and stores the vertices of a graphical model.

The zero translation matrix is initialised in an implementation of the InitVars()

method.

3. Transform(): An implementation of the Transform() method serves to apply

the transformations that correspond to all the properties of the specified contexts

of interpretation. If an attribute variable is not changed by the evolving function

models of the modelled narrative text, a default transformation as initialised in the

InitVars() is applied to the internal variable. If an attribute variable is changed
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Figure 5.10: The CVTNG element file architecture

by the evolving function models of the modelled narrative text, the transforma-

tion applied to the internal variable of the associated representational element is

initialised according to the attribute variable. The transformations applied to the

internal variables of the representational elements serve to reflect the statuses and

changes described in the narrative text. The statuses and changes described in the

narrative text are in turn modelled by evolving function models.

4. Invoke(): An implementation of the Invoke() method serves to perform the

representation of a representational element. A generated element class that cor-

responds to a representational element in the form of a graphical model would

contain a series of calls to a graphics API. Such calls serve to render the graphical

model onto a display.

A generator of element classes, which creates an element class according to the

Element interface specified above, was implemented for the CVTNG prototype. An ele-

ment class is created for every unique output file attribute specified within the contexts

of interpretation a noun is defined in. A generated element class contains the methods
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of the Element interface specified above applied to a list of supported properties (refer

to section 5.3). The list of supported properties is formed from the combination of all

properties specified within the contexts of interpretation a noun is modelled in.

The generator implemented within the CVTNG prototype generates a series of acces-

sor methods that correspond to the supported list of properties. The accessor methods

serve to initialise the transformations specified within the corresponding property of a

context of interpretation by a measurement value passed to the accessor method as a

parameter. A corresponding accessor method is also generated that returns the current

parameter value of the transformation specified with the associated context property.

The parameter value of a transformation in an element class is initialised by the default

value specified within a property and is altered by measurement values retrieved from

the variable value resolution subsystem of the CVTNG system. The accessor methods

enable measurement values to be passed between the element class and the CVTNG

system. The accessor methods also allow a separated representation system to access

measurement values determined from the evolving function models of the CVTNG sys-

tem.

Figure 5.10 shows the relationship between the Element interface and the corre-

sponding classes of the associated CVTNG subsystems. A single instance of the noun

class may have multiple references to instances of specifications of the Element inter-

face because a single noun may have multiple related representational elements across

multiple contexts of interpretation. A specific representational element in turn may be

used by multiple nouns. Nouns serve as an access point to element classes and their

corresponding representational elements.

5.4.7 Functions

Realisations of the Function interface are implemented in the CVTNG system within a

separate assembly called the “function library”. The Function interface and its specifica-

tions are separated from the other elements of the CVTNG system to allow mathematical

functions used in the CVTNG system to be developed independently. If an instance of

a specification of the Function interface is required, a reference is created by reflec-

tion. The function modelled within the Function interface specification is invoked by
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a reflection method call. The separated function library enables the CVTNG system to

adhere to the design principle of separating the user concerns of those users who specify

mathematical functions for use in the CVTNG system from other users in the system.

The creation of functions in a separated library also allows the re-use of functions

created for the function library by different evolving functions and transformation func-

tions within the CVTNG system. The function library enables the CVTNG system to

adhere to the design principle of the re-use of artifacts. The separation of the function

library from the main CVTNG system also allows functions to be specified in a different

programming language from the CVTNG system, if the functions can be compiled into

a common runtime with the CVTNG system.

The Function interface consists of a single method called the Evaluate method.

The Evaluate method receives an object value, which may be either a single value or

a collection of values, and returns a single double value. The double value returned is

the value the function evaluates to.

References to the Function interface are stored within instances of the Verb and

Adverb classes. The Function references correspond to specifications of the Function

interface that represent the functions, fi, chosen for the terms of an evolving function (re-

fer to equation (4.3)) within the context of an instance of the Verb class. The Function

reference corresponds to a specification of the Function interface that represents the

transformation function, Ψ, as given by equations (4.20) and (4.21) within the context

of an instance of the Adverb class.

5.4.8 Summary of representation of computational verb-based

models within the CVTNG architecture

This section has examined the architecture features of the CVTNG system that corre-

spond to the creation of evolving function word models. A summary of word types in

the English language has been provided and the word types have been related to their

implementation within the CVTNG system. The four main word types used in the CVTNG

system were identified as nouns, adjectives, verbs, and adverbs. The definition of evolv-

ing function word models within a context of interpretation has also been presented.

The components of the defined evolving function word models were related to the mod-

119

 
 
 



els presented in chapter 4. XML was identified as the storage structure for word models.

The XML storage format of word models was paired with a graphical user interface

editor that allows the attributes of a word model to be captured and stored. Evolving

function word models related to the main supported word types of nouns, adjectives,

verbs, and adverbs were specified in terms of their XML storage structure, related word

editor features, and their class representations within the CVTNG code base. Element

classes were presented as generated specifications of the Element interface. The Element

interface and its corresponding element classes allow the representational system used

by the CVTNG system to be decoupled from its other subsystems. A function library

was discussed that decouples the specification of mathematical function used within the

CVTNG system from other subsystems of the CVTNG system.

The section that follows utilises the word models created by the architectural fea-

tures of this section to parse natural language sentences to their corresponding evolving

function models.

5.5 Parsing

This section presents the parsing subsystem of the CVTNG system that draws on the

word definitions specified in section 5.4 to translate narrative text into evolving function

models. The steps of the parsing procedure are presented in relation to the system

design principles described in section 5.5.1. In section 5.5.2, the architecture of the

parsing subsystem is presented in terms of corresponding classes in the CVTNG code

base, the structure of the classes related to the parsing procedures, and the relationships

between classes that form part of the parsing procedure. The concept of parsing bins

as a key architectural component in the construction of a generic parsing framework is

presented in section 5.5.3. The parsing algorithm is presented, studied, and critiqued in

section 5.5.4.

5.5.1 Steps of the CVTNG parsing algorithm

The first objective of the CVTNG parsing subsystem and the first step of the CVTNG

parsing procedure is to retrieve the narrative text provided as input. Narrative text may
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be retrieved either by simple entry as text or by being read from a file. The retrieval of

narrative text becomes more complicated if the narrative is provided in a less machine–

friendly format such as voice. Voice recognition and other means by which voice is

converted to narrative text are not discussed as they fall outside the scope of the present

work.

The second step in the CVTNG parsing procedure is to divide the supplied narrative

text into individual words and phrases and establish the relationships between the words

and phrases. An example of a phrase that may be identified by the CVTNG parsing

procedure is a verb–preposition pair such as “jumps onto”. The CVTNG parsing subsys-

tem divides sentences into words or phrases because the CVTNG system models natural

language in terms of the computational verb model for a single word within a context

of interpretation. Narrative text is divided into sentences and the sentences are divided

into individual words or phrases.

The relationships between the words and phrases within a single sentence are then

determined within the implemented CVTNG system prototype in the scope of a sentence.

The unique instances of nouns, adjectives, verbs, and adverbs are determined over all

sentences. Word instances are maintained over the scope of all narrative text to allow

multiple verbs to act on the same object denoted by an instance of a noun. Sophisticated

approaches should be followed for longer units of text such as the paragraphs, chapters,

and volumes of books. Examples of such approaches are the subject-determination and

point-of-view tracking algorithms of Wiebe [97] [98] [99] and the narrative-segmentation

algorithms of Nakhimovsky et al [69]. The implemented CVTNG prototype does not

make use of either point-of-view tracking or a narrative-segmentation algorithm in its

current form.

The third and final step of the CVTNG parsing procedure is to translate words and

word relationships to evolving function models. The CVTNG parsing system constructs

evolving function models according to the word-in-context definitions created by the

architectural features presented in section 5.4. The constructed word in context models

correspond to the evolving function models for the supported word types as presented

in sections 4.3.1 through 4.3.4.

The word-in-context definitions are applied to the words and word relationships iden-
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tified in step one of the CVTNG parsing procedure. The words are constructed from

their stored definitions according to the contexts of interpretation chosen by the user.

The classes that correspond to the word types in the CVTNG code, as presented in

sections 5.4.2 to 5.4.5, are instanced. The steps of the CVTNG parsing procedure are

complete once the word definitions have been read from their XML storage structures

and the appropriate classes in the CVTNG code base have been instanced to contain the

relationships and evolving function models of the word in the supplied narrative text.

5.5.2 Parsing subsystem architecture

Figure 5.11 illustrates the architecture of the CVTNG parsing subsystem in terms of a

UML diagram. At the centre of the parsing subsystem (and, in fact, the entire CVTNG

system) lies the Vocabulary class. The Vocabulary class contains the methods that

retrieve narrative text, converts the words in the narrative text to their corresponding

evolving function models (refer to sections 4.3.1 through 4.3.4), and determines the

measurement values that are assigned to the attribute variables of the evolving function

models.

The Vocabulary class stores and manages the creation of instances of the Noun,

Adjective, Verb, and Adverb classes. The word classes and the evolving function

models and attribute variables stored within them are accessed by an associated repre-

sentation system via the Vocabulary class.

The following properties are defined within the Vocabulary class to access words and

the evolving function models and attribute variables stored within them:

1. Nouns: The Nouns property returns the list of instances of the Noun. Every instance

of the Noun class in turn refers to unique instances of the NounInstance class

that contain the attribute variables associated with the evolving function models

of corresponding adjectives and nouns within the narrative text (refer to section

5.4.2).

2. Verbs: The Verbs property returns a hash table that maps a sentence number and

context of interpretation name to a list of instances of the Verb class. The hash

table mapping enables multiple instances of the Verb class to be created where
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each Verb class instance is unique to a sentence and context of interpretation.

The mapping returns a list that enables multiple instances of the Verb class to

be created. Each Verb class instance corresponds to the instances of a verb word

in a single sentence defined in the same context of interpretation. The sentence

“Timmy kicked the ball after Timmy kicked the dog.” refers to two instances of

the “Verb” class within a visual context of interpretation that both occur in the

same sentence. Each instance of the Verb relates to the use of a verb in a sentence

within a single context of interpretation (refer to section 5.4.4).

3. Adjectives: The Adjectives property returns a hash table that maps the name

of a context of interpretation and a sentence number to a list of instances of

the Adjective class. The hash table mapping allows multiple instances of the

Adjective class to be created that are specific to certain sentences and contexts

of interpretation. The returned list allows multiple instances of the Adjective

class to be created within a single context of interpretation for a single sentence

within the narrative text. Each instance of the Adjective class relates to the

use of an adjective within a natural language sentence within a single context of

interpretation (refer to section 5.4.3).

4. Adverbs: The Adverbs property returns a hash table that maps the name of a

context of interpretation and a sentence number to a list of instances of the Adverb

class. The hash table mapping enables multiple instances of the Adverb class to

be created that are specific to certain sentences and contexts of interpretation.

The returned list allows multiple instances of the Adverb class to be created in

a single sentence for a specific context of interpretation. Each instance of the

Adverb class relates to a verb–adverb or adjective–adverb pairing with a context

of interpretation stored within the corresponding instance of the Verb class (refer

to section 5.4.5).

The properties of the Vocabulary class listed above and the specifications of the Word

class returned by the properties allow the Vocabulary class to manage all instances of

the Word class created by the parsing procedures of the CVTNG system. The Word class

is the base class for classes that contain word models such as the Noun,Adjective,Verb,
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and Adverb classes. The instances of specifications of the Word class are stored in a robust

manner that allows for multiple words, instances of words, and contexts of interpretation

to be stored concurrently. The instances of specifications of the Word class can be accessed

in a fast and simple manner by means of hash table mappings and list iterations.

Figure 5.11 illustrates the relationship between the Word class, the specifications of the

Word class, and the Vocabulary class. The parsing procedure implements the Abstract

Factory [34] design pattern by which a factory class relevant to a specification of the Word

class is instanced. The factory class contains code that creates the required instance(s)

of the Word class specification. The application of the Abstract Factory design pattern

enables the parsing procedure of the CVTNG system to treat all words in a dynamic and

generic fashion and makes it possible for the classes that contain the evolving function

models of the supported word types to be changed and extended easily.

The Vocabulary class associates with the ParseBin interface and its specifications.

Instances of specifications of the ParseBin interface provide a simplified means of parsing

narrative text to evolving function models. The specifications of the ParseBin interface

are also generic and allow the word types supported within the system and the parsing

procedures to be easily extended.

The ParseBin interface forms the backbone of the CVTNG parsing procedure; the

section that follows deals with the ParseBin interface in greater detail.

5.5.3 Parsing bins

Natural language is ambiguous, implicit, and inconsistent and as a result poses many

problems for the parsing of algorithms regardless of their final objectives. The purpose

of the parsing algorithm within the CVTNG system is to translate natural language

sentences into specifications of the Word class. The specifications of the Word class

contain the attribute variable and Function interface specifications that represent the

evolving function models of the supported natural language word types, as presented in

sections 4.3.1 to 4.3.4.

The complexities of natural language make it necessary to find a way of simplifying

the parsing procedure of natural language words to evolving function models. A natural

language sentence does not have a consistent structure and the relationships between
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words vary according to the structure of each and every natural language sentence. A

parsing algorithm that attempts to address the permutations and exceptions within a

natural language sentence will quickly become highly branched and convoluted.

The CVTNG system addresses this problem by introducing the concept of parse bins,

as represented by the ParseBin interface. The ParseBin interface is a generic means

of encapsulating the logic that determines the relationships between words in a natural

language sentence. A specification of the ParseBin interface groups words of similar type

(hence the “Bin” suffix). The methods of the ParseBin interface as implemented within

a specification class execute logic to determine whether another grouping of words within

another instance of a specification of the ParseBin interface should be associated with

the words grouped within the current specification instance of the ParseBin interface.

The ParseBin interface defines the following methods:

• AddToBin(Word): Implementations of the AddToBin() method serve to add a spec-

ification of the Word class to the collection of Word instances of similar type stored

in the ParseBin specification.

• GetBinWords(): Implementations of the GetBinWords() method serve to return

the collection of Word specifications instances of similar type stored within the

ParseBin specification.

• GetBinType(): Implementations of the GetBinType() method serve to return the

word type of the Word specification instances stored in the ParseBin specification

instance.

• IsBinType(Word): The IsBinType() method is a predicate method that returns a

“true” or “false” value which indicates whether the Word class parameter provided

is of the same specification type as the collection of Word class instances stored

within the ParseBin specification.

• IsResolveType(Word): The IsResolveType() method is a predicate method that

returns a “true” or “false” value which indicates whether the Word class parame-

ter is a resolve type for the collection of Word class specification instances stored

within the ParseBin specification. A Word class parameter of the resolve type
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indicates that a relationship between the natural language word type of the Word

class parameter and the natural language word type of the words stored within the

ParseBin specification instance may be formed.

The AdjectiveBin specification of the ParseBin interface, for example, returns

a “true” value for a parameter that is an instance of the Noun class when the

IsResolveType() method is invoked. The IsResolveType() method, as imple-

mented for the AdjectiveParseBin class, indicates that an association may be

formed between an adjective and a noun.

The IsResolveType() method provides a generic test that determines whether

two word types are allowed to form an association or not.

• AddSubjectAssociations(List<Word>): The AddSubjectAssociation() method

serves to add subject associations to the list of Word class specification instances

stored within the current specification of the ParseBin interface. Subject associa-

tions indicate that the attribute variables associated with the Word class instances

of the parameter act as storage variables. The storage variables are assigned mea-

surement values from the evolving function models of the Word class specification

instances stored within the current ParseBin interface specification.

An instance of the AdjectiveParseBin specification of the ParseBin interface,

for example, adds a single instance of the Noun class in a subject association to

an instance of the Adjective class when the AddSubjectAssociation() method

is called on the AdjectiveParseBin instance with a list containing the Noun in-

stance as parameter. The attribute variable associated with an adjective model in

a context of interpretation (refer to section 5.4.3) associated with the Adjective

instance stored within the AdjectiveParseBin specification will be stored in a

NounInstance class instance associated with the Noun instance passed as the pa-

rameter. The attribute variable stored within the NounInstance class instance

will receive a measurement value from the evolving function model stored in the

Adjective class instance for the same context of interpretation.

• AddObjectAssociations(List<Word>): The AddObjectAssociations() method

serves to add object associations to the list of Word class specification instances
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stored within the current ParseBin specification instance. Object associations in-

dicate that the attribute variables associated with the Word class specifications of

the parameter will be treated as amplitude values (refer to section 4.3.3). The

amplitude values are substituted into the evolving function models associated with

the Word class specifications stored in the current ParseBin interface specification

instance.

The VerbParseBin specification of the ParseBin interface, for example, adds an

instance of the Noun class in an object association to the Verb class instance stored

within the VerbParseBin instance when the AddObjectAssociations() method

is called with a list containing the Noun class instance as parameter.

The attribute variables stored within a NounInstance associated with the instance

of the Noun class will be substituted into the evolving function model stored within

the Verb class instance for the same context of interpretation.

• AddMetaData(object): The AddMetaData() method provides a means of specify-

ing additional data for use in the parsing procedure that is not related to the word

in a narrative text sentence. An example of such additional data is the contextual

information from the sentences or paragraphs that surround a narrative text sen-

tence. The contextual information may influence the parsing procedures defined

in the other methods of the ParseBin interface for a specification instance.

The AddMetaData() method is not used by any specifications of the ParseBin

interface in the context of the present work. Additional data will, however, be

required for any algorithms that use an existing context and additional information

to parse words in narrative text, as is the case in the work of Wiebe [97] [98] [99]

and Nakhimovsky et al [69].

• IsResolved(): The IsResolved() method is a predicate method that indicates

whether the current instance of a specification of the ParseBin interface has been

fully processed in terms of associations with other word groupings. If the associa-

tions between an instance of a specification of the ParseBin and other specification

instances of the ParseBin interface have been determined, the current ParseBin
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interface specification is not considered for further association checks by means of

the IsResolveType() method.

The ParseBin interface facilitates the creation of complex parsing procedures in a

simplified and uncluttered manner by isolating the parsing behaviours associated with a

word type. The ParseBin interface and its associated specifications enable the parsing

procedure of the CVTNG system to satisfy the overall system goal of separating user

concerns. The ParseBin interface enables creators of parsing algorithms to redefine ex-

isting parsing procedures without affecting evolving function word models and narrative

depictions.

The ParseBin interface also enables the CVTNG system to satisfy the design prin-

ciple of conquering complexity. The complexities of language parsing are encapsulated

in the specifications of the ParseBin interface and users who are interested in defin-

ing evolving function models and narrative depictions need not know the details of the

parsing procedure used.

5.5.4 Parsing procedure

Algorithm 1 states the parsing procedure of the CVTNG system. The parsing algorithm

of the CVTNG system divides narrative text into sentences and sentences into words. It

groups words of similar type and determines the subject and object associations between

the groupings and these are then resolved to evolving function models according to stored

word-in-context definitions (refer to section 5.4.2 through 5.4.5).

Evolving function models are the output of the CVTNG parsing procedure for nar-

rative text provided as input. If all the evolving function models for all the words in the

narrative text are formed for all the specified contexts of interpretation, the CVTNG

parsing procedure is complete.

• The narrative text is subdivided into sentences on line 1. Sentences are delimited

by checking for full stop “.” characters. The division of sentences can be extended,

however, to subdivide sentences when conjunctions or end-of-sentence indicators

are encountered. The CVTNG parsing algorithm treats narrative text sentences

as atomic verb sentences (refer to definition 3.20).
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Algorithm 1 The CVTNG parsing algorithm

for all sentences in input do

for all words in sentence do

if current bin = ∅ then

current bin = bin of word type

5: add word to bin

else

if current bin = type of word then

add word to bin

else

10: for all open bins do

if current bin is of bin resolve type then

set current bin as object association to bin

close bin

end if

15: end for

add bin to open bin list

current bin = bin of word type

add word to bin

for all open bins do

20: if current bin is of bin resolve type then

set bin as subject association to current bin

if bin is resolved then

close bin

end if

25: end if

end for

end if

end if

end for

30: end for
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• A check is performed on line 3 to determine whether an instance of a specification

of the ParseBin interface has been created within the scope of the current atomic

sentence.

• A new instance of a specification of the ParseBin interface is created on line 4;

this corresponds to the type of the word in the narrative text. A single word

in the narrative text may correspond to multiple word types. The word type is

determined by the structure of the sentence. The word “wave”, for example, may

refer to a noun that names a body of water or to a motion of the hand dependent

on the context of the word’s use and the sentence structure. Rules are specified

within implementations of the IsBinType() method of the ParseBin interface to

determine a word’s type according to sentence structure and context.

The current CVTNG parsing procedure uses the first word type specified for a nar-

rative text word in a context of interpretation (refer to section 5.4.1). The current

parsing algorithm is therefore consistent only for the interpretation of a word de-

fined for a single word type within a context of interpretation. The extension of the

IsBinType() and AddMetaData() methods of ParseBin specifications will make

more complex word-type determination procedures possible. A forward check is

performed to determine whether a verb or a preposition is part of a verb phrase.

If a group of words is determined to form a verb phrase, the group is treated as a

single verb.

• An instance of a specification of the Word class such as a Noun, a Verb, an Adverb,

or an Adjective instance is added on line 5 to the ParseBin interface specifica-

tion. The Word class specification is added by calling the AddToBin() method of the

ParseBin interface specification (refer to section 5.5.3). The Word class specifica-

tion instance is created by obtaining an appropriate instance of the AbstractFactory

class. The instance of the AbstractFactory class specification is used to create

either an instance or multiple instances of the associated Word class specification.

The Word class specification instances are created according to the specified con-

texts of interpretation and the stored word definitions described in sections 5.4.2

through 5.4.5.
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• On line 7 a check is performed via the IsBinType() method of the ParseBin in-

terface specification to determine whether the word type of the Word class instance

provided as a parameter matches that of the collection of Word class specification

instances stored within the ParseBin specification instance.

• An iteration is performed on line 10 over all ParseBin specification instances within

the scope of the current sentence that are awaiting an object association. The

ParseBin specification instances are therefore not resolved, as is determined by a

call to their corresponding IsResolved() method. For the remaining unresolved

ParseBin specification instances, the iteration is repeated at the end of the sen-

tence. If the current ParseBin specification instance is of the resolve type of a

ParseBin specification instance in the iteration, the current ParseBin specifica-

tion instance is added as an object association to the unresolved ParseBin spec-

ification instance in the iteration. A ParseBin specification instance is added as

an object association to another ParseBin specification instance by means of the

AddObjectAssociations() method.

• The resolve type of a ParseBin specification instance is compared with the word

type of a Word specification instance on line 11. The comparison is performed

via the IsResolveType() method of the ParseBin interface. The comparison

method can therefore vary between ParseBin specifications. The resolve types for

the supported word types are implemented in the current CVTNG prototype, as

follows:

– Adjective: Noun.

– Adverb: Adjective, Verb, Adverb.

– Verb: Noun.

• A list of Word specification instances is added as a subject association to the Word

specification instances contained within a ParseBin specification instance on line

21. The NounInstance class instances are added as subject associations by means

of the AddSubjectAssociations() method, which is implemented as discussed in

section 5.5.3.
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The CVTNG parsing procedure pre-processes the narrative text sentences supplied

as input to the algorithm above by grouping prepositions with verbs on the word string

level. The grouped prepositions and verbs are treated as a single verb phrase such as “is

left of” or “is above”. The grouping action also sorts the verb and preposition pairs into

an adverb–verb–preposition order. The narrative text string “is far above”, for example,

is preprocessed by the CVTNG parsing procedure to read “far is above”. The adverb

“far” is then added as a subject association to the verb phrase “is above”.

The parsing procedure of the CVTNG system prototype is designed to parse active–

tense sentences stated in the positive (all statements are deemed to be true) to an atomic

verb sentence form (refer to definition 3.20). The implementation of the template method

design pattern [34] by means of the ParseBin interface makes possible the procedures

by which word groupings and associations are determined to be redefined. The redefined

grouping and association checks will allow the CVTNG parsing procedure to handle

other sentence types such as sentences stated in the passive voice.

The CVTNG parsing procedure can be adapted to handle passive voice sentences by

setting a “passive” flag via the AddMetaData() method of the ParseBin interface. The

AddMetaData() method may be invoked to set the “passive” flag when a past tense form

of the word “be”, such as “was”, and a verb in the perfect tense, such as “kicked”, are

added to the same ParseBin specification instance. The “passive” flag can be checked

in the logic of the AddSubjectAssociations() and AddObjectAssociations() meth-

ods of the VerbBin class and the behaviour of the AddSubjectAssociations() and

AddObjectAssociations() methods can be altered accordingly. The behaviour of the

AddSubjectAssociations() and AddObjectAssociations() methods should change to

reverse the subject and object associations formed between the VerbBin instance and

other ParseBin specification instances in accordance with the English grammar rules for

passive voice sentences. The implementation of such behaviour was not necessary within

the scope of the CVTNG prototype and was therefore not implemented.

As stated in section 5.5.3, the ParseBin interface makes it possible for the behaviour

of the CVTNG parsing procedure to be freely extended.

The completion of the CVTNG parsing procedure, as formulated in algorithm 1

above, results in the creation of Word specification class instances that contain evolving
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function models specified in terms of attribute variables and functions. The attribute

variables are stored within instances of the NounInstance class in accordance with the

grouping function of nouns within the evolving function models of this work (refer to sec-

tion 4.3.1). The functions are represented by instances of specifications of the Function

interface and are stored as references within instances of the Verb class in accordance

with the evolving function models of adjectives and verbs within this work (refer to sec-

tions 4.3.2 and 4.3.3). Functions are also stored within instances of the Adverb class for

functions specified as transformation functions according to the evolving function models

of this work (refer to section 4.3.4).

The relationships between word groupings are stored as references between specifi-

cations of the Word class. An instance of the Verb class stores references to associated

instances of the Noun class. The associated instances of the Noun class correspond to

the subject and object nouns of the verb within a narrative text sentence for a context

of interpretation. An instance of the Adjective class stores references to Verb class

instances according to the evolving function word models of section 4.3.2 and the class

architecture discussed in section 5.4.3. An instance of the Adjective class also stores

a reference to an instance of the Noun class. The instance of the Noun class relates to

the noun in the adjective–noun pair within the supplied narrative text for a context of

interpretation (refer to section 4.3.2). A reference to an Adverb class instance is stored

within an instance of the Verb class for an adverb–verb or adverb–adjective pair in a

narrative text sentence for a context of interpretation (refer to section 4.3.4). The Verb

class instance that stores the Adverb class instance relates to the BE-verb specified for

an adjective or to a verb directly.

5.5.5 Sequencing

A story is defined as “An account or a recital of an event, or series of events ...” [2].

The CVTNG system represents textual narrative in terms of media such as graphics and

sounds to depict a story. A story is successfully related if a “... series of events ...” is

depicted correctly using the alternative media that constitute the interactive narrative

space. Every action or event denoted by a verb in the narrative text should therefore

be ordered with regard to the other actions and events related to other verbs in the
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narrative text. The correct ordering of events allows the narrative text to represent the

story correctly in the interactive narrative space.

An observer of an interactive narrative space is immersed if discrete actions are

distinguishable and the individual actions are continuous over the period they occur in.

Immersion is achieved within the CVTNG system by a sequencing algorithm that ensures

the correct depiction of actions. The CVTNG sequencing algorithm must ensure that a

series of distinguishable actions are represented within the interactive narrative space as

a series of distinguishable changes in the representation. The algorithm must also ensure

that each individual action is continuously and smoothly represented in the interactive

narrative space. An action represented by a sound must not skip when played and an

action represented by a graphical animation must be represented by a smooth animation

without large jumps between frames.

The CVTNG sequencing algorithm must sequence actions in a way that not only

allows immersion, but also integrates easily with the existing evolving function models

(refer to sections 4.3.1 through 4.3.4) and measurement value resolution procedures (refer

to sections 4.4.2 and 4.4.3). The algorithm easily integrates with the existing evolving

function models and measurement value resolution procedures of the CVTNG system

by representing the sequencing of actions as transformations on the time period (refer to

definition 3.14) of evolving function models. The evolving function models correspond to

a verb over contexts of interpretation (refer to section 4.3.3). The verb in turn represents

an action within the narrative text.

Temporal reasoning is a field of research that formalises the notion of time to provide

a means of representing temporal knowledge and of reasoning according to temporal logic

[95]. Allen [4] has modelled time in terms of temporal intervals organised in a hierarchy.

The temporal intervals correspond to actions or events that are related to one another

and so Allen proposes a relative view of time as opposed to an absolute view. An absolute

view of time disconnects the dimension of time from the events or actions that occur

over a stretch of time [95]. The temporal intervals that correspond to related actions or

events are arranged by means of reference intervals. Temporal intervals that do not act

as reference intervals are arranged to occur before, after, or during a reference interval,

or to overlap the reference interval in some way. Allen’s temporal interval hierarchy
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approach and other similar approaches allow for complex action or event sequences to

be modelled. Temporal models can easily become complicated and require resolution

schemes such as a constraint satisfaction problem (CSP) formulation [4].

A full-fledged temporal reasoning algorithm falls beyond the scope of this work and

an algorithm is proposed that forms a sequence of terminate events and actions that may

occur in tandem with indefinite actions or events. An interval within the context of the

CVTNG algorithm refers to the time interval, T , of an evolving function model of a verb

within a context of interpretation. A verb modelled within the CVTNG system (refer

to section 4.3.3) is associated with multiple intervals over multiple contexts of interpre-

tation. The intervals related to a verb are ordered to start once all of the terminate

intervals associated with the previous verb have ended. Infinite intervals or evolving

function models that repeat over a fixed interval (refer to equation (4.4)) are not con-

sidered when the end of a verb’s intervals is determined. Evolving function models that

have infinite or repeated intervals may therefore be evaluated in tandem with evolving

function models that have a fixed period and no repetition. The CVTNG sequencing

algorithm allows only evolving function models with terminate intervals to be executed

simultaneously if the evolving function models correspond to the same verb over different

contexts of interpretation.

The CVTNG sequencing algorithm is executed in two distinct phases. The detailed

steps of the phases of the CVTNG sequencing algorithm are presented in algorithms 2

and 3 respectively. The first phase of the CVTNG algorithm, as presented in algorithm

2, serves to group the evolving function models associated with verbs in a context of

interpretation. The evolving function models are the result of the parsing procedure

presented in section 5.5. Evolving function models whose evaluation starts at the same

time receive the same number from an integer sequence. The number of evolving function

models that have a terminate period and are associated with the verbs grouped by a

sequence number are also stored.

The second phase of the CVTNG sequencing algorithm is executed during the repre-

sentation of the interactive space for a specific time, t. The verbs that correspond to the

current sequence number are obtained and the evaluation of the evolving function models

associated with the verbs are started. The evolving functions are evaluated to obtain
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Algorithm 2 The CVTNG narrative sequencing algorithm (Phase one)

Current sequence number = 1

for all Verbs in narrative text do

for all Evolving function models in context of interpretation do

if Period of evolving function model is terminate then

5: current verb is terminate

increase number of terminate evolving functions for current sequence number

end if

if current verb is terminate then

increase current sequence number

10: end if

assign current sequence number to verb

store number of terminate evolving functions for current sequence number

N(terminate)

end for

end for

measurement values to be passed to the representation system for the transformation of

the interactive narrative space. The birth time, Tb, and death time, Td, for an evolving

function are recorded when the evaluation of the evolving function is started (refer to

equation (4.3)).

If the current time, t, is greater than the death time determined for an evolving

function and the evaluation of the evolving function was started in a previous iteration

of the sequencing algorithm, the evaluation of the evolving function ends. If, therefore,

an evolving function has a period of 0 seconds, the evolving function will be evaluated

for a minimum period. The length of the minimum period is determined by the actual

time that passes between the start of the evaluation of the evolving function and the

next iteration of phase two of the CVTNG sequencing algorithm.

A sequence number is initialised to a value of one as for the first phase of the CVTNG

sequencing algorithm. The evolving functions of the verbs associated with sequence

number one by the CVTNG sequencing algorithm are therefore evaluated first. If the
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Algorithm 3 The CVTNG narrative sequencing algorithm (Phase two)

if interactive narrative space is initialised then

Current sequence number = 1

end if

At refresh of interactive narrative space for time t

5: Obtain verbs for current sequence number

for all Verbs of sequence number do

for all Evolving function models of verb in context of interpretation do

if Evaluation of evolving function model not started then

Start evaluation of evolving function model

10: Evolving function birth time, Tb, = current time t

Evolving function death time, Td, = current time t + evolving function period

Tx

else

if t > Td then

Increase N(ended) (Terminate evolving functions ended)

15: end if

end if

end for

end for

if N(ended) = N(terminate) then

20: Increase current sequence number

end if
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evaluation of all evolving functions of terminate length has ended, the sequence number

is increased. If the second phase of the CVTNG is executed again, the evaluation of the

evolving functions associated with the verbs grouped with the new sequence number is

started. The execution continues until all assigned sequence numbers assigned in the first

phase of the CVTNG sequencing algorithm are used by the second phase of the CVTNG

sequencing algorithm. The evaluation of evolving functions of infinite or repeated period

continues indefinitely.

5.6 CVTNG system procedures for assigning mea-

surement values to attribute variables

The section describes the CVTNG subsystem dedicated to assigning measurement values

to the attribute variables found within the evolving function models of natural language

words presented in sections 4.3.1 to 4.3.4. The evolving function models were imple-

mented as part of the CVTNG system in sections 5.4.2 through 5.4.5. The evolving

function models are formed as a result of the CVTNG parsing procedure presented in

section 5.5. The measurement values obtained by the procedures presented in this section

are used to generate an interactive narrative space.

The objectives and challenges of the subsystem for assigning measurement values

to attribute variables are stated in section 5.6.1. The architecture of the subsystem

attribute variable measurement value resolution system in relation to other subsystems

within the CVTNG system is presented in section 5.6.2. The procedure for assigning

measurement values to attribute variables in the CVTNG system is presented in section

5.6.3.

5.6.1 Objectives of the CVTNG subsystem for assigning mea-

surement values to attribute variables

The CVTNG parsing procedure as described in section 5.5.4 produces a collection of

evolving function models that correspond to the words of the narrative text provided as

input. The evolving functions correspond to the models specified for the words (refer
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to sections 5.4.2 through 5.4.5) within the specified contexts of interpretation (refer to

section 5.3). The evolving function models are stored in terms of attribute variables

(refer to section 4.3.1) and functions (refer to section 4.3.3). The attribute variables are

stored within instances of the NounInstance class (refer to section 5.4.2). The functions

are implemented as specifications of the Function interface (refer to section 5.4.7) and

are stored within instances of the Verb and Adverb classes (refer to sections 5.4.4 and

5.4.5).

The CVTNG subsystem for assigning measurement values to attribute variables re-

ceives the output of the CVTNG parsing subsystem as input. The objectives of the

CVTNG subsystem are:

• to combine attribute variables and functions into the evolving function models;

• to evaluate the formed evolving function equations for a specified time value to

obtain measurement values for the attribute variables;

• to process the unsolved attribute variables into a format applicable to a variable

solution algorithm (Gauss-Jordan or genetic algorithm);

• to execute the measurement value assignment algorithm to obtain measurement

values for previously unresolved attribute variable values.

The attribute variable solution procedure chosen for the determination of unknown

attribute variable values depends on the system of equations formed when evolving func-

tion models are evaluated for a specific time value. If a system of equations cannot be

solved to a single exact solution by means of the Gauss–Jordan reduction algorithm, the

equations are formulated as fuzzy constraints and resolved using a genetic algorithm that

attempts to obtain the most accurate approximate solution. The approach of the vari-

able resolution procedures presented is guided by the overall system goal of consistent

and accurate representation of narrative depictions.

5.6.2 Attribute variable resolution architecture

The Vocabulary class is central to the process of assigning measurement values to at-

tribute variables (refer to figure 5.11). The steps of the attribute variable resolution
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procedure are implemented within the Resolve() method of the Vocabulary class. The

measurement values determined by the attribute variable resolution procedure are stored

within instances of the NounInstance class. The instances of the NounInstance class

contain the attribute variables assigned the determined measurement values. The mea-

surement values are stored as value assignments to the attribute variables stored within

the NounInstance class instances.

The representation system for the interactive narrative spaces utilises the Vocabulary

class as an access point to the evolving function models of the CVTNG system. The

Vocabulary class is initialised and provided with an input of narrative text. The pars-

ing procedure (refer to section 5.5) is applied to the narrative text to produce evolving

function models for the word in the narrative text within the specified contexts of inter-

pretation.

The variable resolution procedures are applied to determine the measurement val-

ues for all attribute variables at a specific point in time. The representation system

is able to access the determined measurement values of attribute variables by means

of specifications of the Element interface. The specifications of the Element interface

contain methods that allow the measurement values to be passed to the specification of

the Element interface (refer to section 5.4.6). The measurement values are used within

the specification of the Element interface to parameterise transformations applied to a

narrative depiction when the Transform method of the Element interface is called.

The narrative depiction is stored either within the instance of the Element interface

specification or in an external representation system. The narrative depiction is specified

within the context of interpretation model for the nouns present within the narrative

text. The narrative depiction is realised within the interactive narrative system when

the Invoke method is called as transformed by the transformations stored within the

specification of the Element interface and parameterised by the measurement values

retrieved from the CVTNG system. The representation of the transformed narrative

depiction within the interactive narrative space completes the generation of interactive

narrative space from narrative text.
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5.6.3 Attribute variable resolution procedure

This section presents the implementation of attribute variable resolution procedures

within the CVTNG system. The attribute variable resolution procedure serves to obtain

measurement values for the attribute variables present in evolving function equations

formed from the CVTNG parsing procedures presented in section 5.5.4. The CVTNG

attribute variable resolution procedure attempts to obtain a unique and precise assign-

ment of measurement values to all attribute variables. The precise and unique measure-

ment value assignment is obtained by means of a crisp variable resolution procedure, as

initially presented in section 4.4.2. If a unique and precise measurement value assign-

ment cannot be obtained for all attribute variables, an approximate measurement value

assignment for attribute variables is obtained. The approximate measurement value

assignment for attribute variables is obtained by means of a fuzzy variable resolution

procedure as initially presented in section 4.4.3.

The main steps of the CVTNG procedure for assigning measurement values to at-

tribute steps are:

• substituting default amplitude values into evolving function equations;

• evaluating formed evolving function equations at a specific point in time;

• determining a precise and unique assignment of measurement values to attribute

variables;

• determining an approximate assignment of measurement values to attribute vari-

ables should no precise and unique solution be available.

Section 5.6.3.1 presents a recursive substitution algorithm for substituting default

amplitude values to form evolving function equations. The algorithm evaluates the

formed evolving functions equations at a specific time to obtain measurement value

assignments for attribute variables. The measurement values are recursively substituted

into other evolving function equations in order to obtain further measurement values

until all evolving function equations are evaluated.

Section 5.6.3.2 presents the procedures within the CVTNG system that serve to

process evaluated evolving function equations which contain attribute variables that
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were not assigned measurement values by the recursive substitution algorithm presented

in section 5.6.3.1. The procedures serve to process the unresolved evolving function

equations into a coefficient matrix to be reduced by a Gaussian elimination algorithm

presented in section 5.6.3.3.

A genetic algorithm is described in section 5.6.3.4; it treats unresolved evolving func-

tion equations as a series of fuzzy constraints to obtain an approximate measurement

value assignment for attribute variables. The attribute variables involved are those not

assigned measurement values by the algorithms presented in sections 5.6.3.1 and 5.6.3.3.

The measurement values obtained for attribute variables by means of the procedures

that follow are passed as parameters to specifications of the Element interface. The

specifications of the Element interface transform their associated narrative depictions

according to the supplied measurement values. The representation system depicts the

transformed narrative depictions in order to complete the transformation of narrative

text to interactive narrative space.

5.6.3.1 Recursive substitution

This section discusses the CVTNG recursive substitution algorithm (refer to algo-

rithm 4) in terms of the

• relation to theoretical components of the crisp variable resolution procedure pre-

sented in section 4.4.2;

• implementation of the recursive substitution algorithm within the CVTNG system

architecture;

• behaviour of the recursive substitution algorithm when applied to an evolving

function model specified in a context of interpretation (refer to section 4.2);

• behaviour of the recursive substitution algorithm when applied to an evolving

function model containing multiple terms specified in subcontexts (refer to section

4.2);

• behaviour of the recursive substitution algorithm when applied to an evolving

function model containing amplitude values specified in multiple partial contexts
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Algorithm 4 The CVTNG recursive variable value substitution algorithm

1: for all nouns class instances do

2: for all instances of noun do

3: for all attribute variables, Vi, stored in a noun instance do

4: if attribute variable, Vi, is already assigned a measurement value then

5: set attribute variable value as unknown

6: return to line 3 for next attribute variable

7: end if

8: if measurement value of Vi is assigned by evolving function model E then

9: PerformSubstitutions(Vi)

10: if all amplitude values αi and partial amplitude values αij of E are known

then

11: apply transformation function, ΨT , to time value, t, (refer to equation

4.21), if applicable

12: Vi = E(t)

13: end if

14: end if

15: end for

16: end for

17: end for

(refer to section 4.2);

• determination of time values for the recursive substitution algorithm;

• treatment of adverbs of time;

• treatments of adverbs of amplitude;

• procedure for the substitution of default values;

• scenarios that lead to attribute variables not being assigned measurement values

by the recursive substitution algorithm.
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Algorithm 5 The PerformSubstitutions() procedure of the CVTNG recursive substitu-

tion algorithm

1: for all amplitude values αi or partial amplitude values αij in E do

2: if amplitude value, αi, or partial amplitude value αij = Vj then

3: if unknown attribute variable, Vj, not in processed list then

4: add variable, Vj, to processed list

5: return to line 4 of algorithm 4 for attribute variable Vj

6: else

7: {cycle in attribute variable relationships detected}
8: flag attribute variable, Vi, as unknown

9: exit procedure PerformSubstitutions()

10: end if

11: if amplitude value, αi, or partial amplitude value αij = constant value a ∈ R

then

12: αi = a {or αij}
13: end if

14: if context has default amplitude value aC ∈ R then

15: αi = aC {or αij}
16: end if

17: if representational element associated with noun in context has default mea-

surement value ar ∈ R then

18: αi = ar {or αij}
19: end if

20: if amplitude value, αi, or partial amplitude value, αij , are unknown then

21: calculate generic function value fi(t)

22: set measurement value of attribute variable, Vi, as unknown

23: else

24: apply transformation function, ΨA, to amplitude value, αi, or partial ampli-

tude value αij (refer to equation 4.20), if applicable

25: end if

26: end if

27: end for
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Theoretical components of the recursive substitution algorithm: Algorithm

4 sets out the implementation of the crisp variable resolution procedure presented in

section 4.4.2 and illustrated in figures 4.1 to 4.4 in terms of the CVTNG system. The

evolving function models of natural language words are specified in the CVTNG system

in terms of contexts of interpretation (refer to section 4.2). An evolving function word

model for an adjective, verb, or adverb is specified in terms of a word pair in a subject or

object relation for a specific context of interpretation (refer to sections 4.3.2, 4.3.3, and

4.3.4). The evolving function word models are specified in terms of defined functions,

amplitude values, and attribute variables. An amplitude value may be specified either as

a fixed real-valued number or in terms of an attribute variable. The generic functions are

functions over time implemented in an external library as specifications of the Function

interface (refer to section 5.4.7).

The combinations of attribute variables, generic functions, and amplitude values to

specify evolving function models for word pairs create a graph of attribute variable

dependencies as discussed in section 4.4.2 and illustrated in figures 4.1 through 4.4. The

depth-first traversal described in section 4.4.2 is implemented in the CVTNG system as

the recursive substitution algorithm stated in algorithm 4.

CVTNG architecture components of the recursive substitution algorithm:

The algorithm iterates over all evolving function models specified for the words of the

narrative text within the specified contexts of interpretation. The evolving functions

are stored as relationships in instances of the NounInstance class. The instances of the

NounInstance class are grouped as references within an instance of the Noun class. The

algorithm therefore iterates over all instances of the Noun class at line 1 of algorithm 4.

The instances of the Noun class are created by the parsing algorithm stated in section

5.5.4. The algorithm iterates over the references of the NounInstance stored within the

instance of the Noun class at line 2 of algorithm 4. The algorithm iterates over all the

attribute variable relationships stored within a specific instance of the NounInstance

class at line 3 of algorithm 4.

Recursive substitution algorithm applied to a word definition in a context

of interpretation: An evolving function model specified for a word in a context of
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interpretation is defined in terms of a single attribute variable, V1, that receives a mea-

surement value calculated by an evolving function. The evolving function is specified in

terms of a single function, f1, and an amplitude value, α1. The amplitude value, α1, is

specified in terms of a real-valued number or another attribute variable. The function,

f1, is evaluated for a specific time, t, and multiplied by the amplitude value, α1, if known.

The product of f1(t) and α1 is assigned to the original attribute variable, V1, as a mea-

surement value. If the amplitude value is specified in terms of another attribute variable,

V2, the algorithm is recursively called for the attribute variable, V2, resuming at line 4 of

algorithm 4. The attribute variable, V2, is added to a list of processed attribute variables.

V2 is added to a list of processed attribute variables to prevent the repeated execution

of the algorithm for an attribute variable. The repeated execution of the algorithm for

an attribute variable is caused by a cycle in the graph of attribute variable relationships.

The graph of attribute variable relationships, G1, is formed for the evolving function

models of the word in the specified contexts of interpretation (refer to section 4.4.2).

If the attribute variable, V2, is assigned a measurement value, the measurement value

is propagated up the recursive call chain within the substitution algorithm. The mea-

surement value would therefore be substituted as an amplitude value, α1, and allow the

measurement value of the original attribute variable, V1, to be calculated.

Recursive substitution algorithm applied to word definition over multiple

subcontexts: An evolving function model specified in a context of interpretation that

is subdivided in terms of multiple subcontexts is defined by an attribute variable, V1,

that receives a measurement value calculated by an evolving function of multiple terms.

Each term of the evolving function is specified in terms of a generic function fi, and an

amplitude value, αi, specified within a subcontext related to the context of interpretation

the evolving function model is specified for. The algorithm iterates over all of the terms

of the evolving function model and calculates a term value by evaluating the generic

function, fi, for a specific time value, t, and multiplying fi(t) by the amplitude value,

αi. The calculated term value is added to a constant value, K (refer to section 4.4.2).

If all term values are calculated, the value, K, is assigned as the measurement value

of the attribute variable, V1. If an amplitude value, αi, is specified in terms of other
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attribute variables, Vk, the substitution algorithm is recursively called for each variable

resuming at line 4 of algorithm 4. If the measurement value for the attribute variables,

Vk, is calculated the measurement values are propagated through the chain of recursive

calls within the substitution algorithm. The measurement values are substituted as the

amplitude values, αi, which allow the term values to be calculated and summed and

therefore the measurement value of attribute variable, V1, to be calculated.

Recursive substitution algorithm applied to word definitions specified over

subcontexts divided into multiple partial contexts: If the recursive substitu-

tion algorithm reaches an attribute variable that receives a measurement value from an

evolving function equation whose amplitude values are specified as a sum of multiple

amplitude values, the algorithm iterates over all amplitude values at line 1 of algorithm

5 and sums the individual amplitude values, αij , to obtain a single amplitude value,

αi. The individual amplitude values, αij , are specified within partial contexts related

to a subcontext of a context of interpretation. The single calculated amplitude value,

αi, is multiplied by a value obtained by evaluating a function, fi, at a specific time, t.

The product of the calculated αi and fi constitutes a measurement value assigned to an

attribute variable or a term value summed with other term values to determine a mea-

surement value assigned to an attribute variable, V1. If a partial amplitude value, αij ,

is specified as another attribute variable, Vk, the algorithm is recursively called for the

attribute variable, Vk. If the measurement value for Vk is determined, the measurement

value is propagated as a partial amplitude value to the evolving function associated with

attribute variable, V1. If all amplitude values are determined for the evolving function

equation associated with attribute variable, V1, in a specific context of interpretation, the

term values are calculated, and summed to obtain a measurement value that is assigned

to the attribute variable, V1.

Determination of time values in the recursive substitution algorithm: The

generic functions, fi, specified for evolving function models defined within contexts of

interpretation and subcontexts of interpretation have time, t, as a parameter. The value

of t, passed to a generic function, fi, is determined by a time value retrieved from the

representation system, the sequencing algorithm, the period of evaluation defined for the
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evolving function, and adverbs of time (refer to section 4.3.4).

A time value is obtained from the independent time system of the representation

system that interfaces with the CVTNG subsystem for the determination of measurement

values (refer to section 5.6.2). The CVTNG sequencing algorithm determines whether

an evolving function model should be evaluated based on the calculated birth time and

death time of the evolving function model (refer to section 5.5.5).

An evolving function model defined within a terminate period of evaluation is spec-

ified in the form of equation (4.3). An evolving function model defined to repeat over

a terminate period is specified in the form of equation (4.4). An evolving function de-

fined to have an infinite period is specified in the form of equation (4.3) with no death

time specified. The transformed time value is passed to an evolving function equation

of the appropriate form and a value is calculated. The calculated value is scaled by an

amplitude value, αi, to determine a measurement value or term values that are summed

to determine a measurement value.

Treatment of adverbs of time within the recursive substitution algorithm:

If an evolving function model is determined to be active and the parsing procedure

has determined that the adjective or verb associated with the evolving function model

is associated with an adverb defined as an adverb of time (refer to sections 4.3.4 and

5.4.5), the provided time value is transformed by the transformation function defined for

the adverb within the same context of interpretation as the adjective or verb (refer to

equation (4.21)).

Treatment of adverbs of amplitude within the recursive substitution algo-

rithm: If an adjective or a verb is associated with an adverb of amplitude (refer to

sections 4.3.4 and 5.4.5), an amplitude value is transformed by the transformation func-

tion of the adverb, if the amplitude value is specified in the same context of interpretation,

subcontext, or partial context as the amplitude value. The transformation is performed

at line 12 of algorithm 4 and line 24 of algorithm 5 (refer to equation (4.20)). The value

of the transformation function, ΨA, is calculated with the amplitude value, αi or αij ,

that forms part of the evolving function model of an adjective or a verb as input. The

value calculated for the transformation function, ΨA, represents a transformed ampli-
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tude value. The transformed amplitude value is subsequently used within an evolving

function model to calculate a measurement value.

Substitution of default measurement values within the recursive substitution

algorithm: Algorithm 4 performs a depth-first traversal over a graph structure, G,

formed from the relationships between attribute variables as determined by the parsing

procedure (refer to section 5.5.4) of the CVTNG system. If the algorithm reaches an

attribute variable that is not associated with any other node in the graph of attribute

variable relationships, the attribute variable is assigned a default value. An attribute

variable is not associated with another node in the graph, G, of attribute variable rela-

tionships if it is not assigned a measurement value by an evolving function. The evolving

function in turn is specified in terms of functions, fi, and amplitude values, αi, within

a context of interpretation. The functions and amplitude values, if specified, form edges

and nodes respectively within the graph, G.

If the CVTNG recursive substitution algorithm determines that an attribute variable

is not assigned a measurement value, the recursive substitution algorithm attempts to

assign the attribute variable a default measurement value. The algorithm attempts

to retrieve a default measurement value specified for the attribute variable from the

definition of the context of interpretation (refer to section 5.3) at line 15 of algorithm 5.

If no default measurement value is specified within the context of interpretation,

subcontext, or partial context the attribute variable is specified in, the recursive substi-

tution algorithm of the CVTNG system attempts to retrieve a measurement value from

the narrative depiction of the associated noun that the attribute variable is grouped

under (refer to section 4.3.1) at line 18 of algorithm 5.

The narrative depiction is the narrative depiction specified for the noun within the

same context of interpretation as the attribute variable whose default measurement value

is assigned.

If no default measurement value is determined for an attribute variable, the attribute

variable is marked as “unknown” and the recursive call of the recursive substitution al-

gorithm is ended. The recursive substitution algorithm returns to the level of the call

stack that invoked the algorithm for the attribute variable determined to be unknown.
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If the unknown attribute variable causes the amplitude value of a term in an evolving

function equation to be unknown, the associated generic function, fi, is calculated and

stored. The attribute variable assigned a measurement value by the evolving function is

also marked as unknown and propagated up the recursive call chain. The unknown mea-

surement values for attribute variables are therefore propagated through the attribute

variable graph, G.

Scenarios that cause the recursive substitution algorithm to assign no mea-

surement value to an attribute variable: Three scenarios may arise during the

execution of the recursive substitution algorithm for assigning measurement values to

attribute variables that render the algorithm unable to assign a measurement value to

an attribute variable. The CVTNG recursive substitution algorithm for assigning mea-

surement values to attribute variables is unable to assign a measurement value to an

attribute variable if the attribute variables is:

• used as an amplitude value in an evolving function, but is not assigned a measure-

ment value by another evolving function and no default can be obtained;

• part of a cycle of attribute references within the graph of attribute variable relations

formed by the parsing procedure (refer to section 5.5.4);

• assigned a measurement value by multiple evolving function models.

The first exception arises when an attribute variable is not assigned a measurement

value by an evolving function and no default value was specified within the context of

interpretation that the attribute variable is specified in or within the narrative depiction

connected to an associated noun within the same context of interpretation. The mea-

surement value of the attribute variable remains unknown after the conclusion of the

recursive substitution algorithm. Any attribute variable related to the attribute variable

whose measurement value is unknown will also not be assigned a measurement value as

detailed in the previous subsection on the substitution of default values.

The second exception arises when attribute variables form a cycle due to the na-

ture of their relationships within the graph of attribute variable relationships formed by

the parsing procedure (refer to section 5.5.4). If the recursive substitution procedure
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is called for an attribute variable, the attribute variable is added to a processed list

at line 4 of algorithm 5. If the attribute variable is assigned as an amplitude value in

the same recursive call chain, the attribute variable is part of a cycle in the graph of

attribute variable relationships. The CVTNG recursive substitution algorithm for as-

signing measurement values to attribute variables determines cycles in attribute variable

relationships by checking whether an attribute variable is part of the processed list at

line 3 of algorithm 5. If the attribute variable is not part of the processed list, the algo-

rithm is recursively invoked for the attribute variable. If the attribute variable is part

of the processed list, the cycle is avoided and no measurement value is assigned to the

attribute variable. As a result, the algorithm returns up the call chain and the unknown

measurement value is propagated through the graph of attribute variable relationships.

If an evolving function term has an unknown amplitude value due to an attribute vari-

able whose measurement value is unknown, the function value is calculated and stored.

The measurement value of the attribute variable that receives a measurement value from

the evolving function with unknown amplitude values remains unknown.

The third and final exception occurs if an attribute variable is assigned measurement

values by multiple evolving function models. The evolving function models may relate to

different verb or adjective words with the same determined subject and/or object nouns

or from the same verb or adjective word within different contexts of interpretation. If

the recursive substitution algorithm for assigning measurement values to attribute values

determines at line 4 of algorithm 4 that an attribute variable has already been assigned

a measurement value, and the current assignment has not resulted from an evolving

function specified within the same word instance and context of interpretation, then the

measurement value of the assigned attribute variable is set as unknown.

The different evolving functions that assign measurement value to the attribute vari-

able are recorded for further processing by the fuzzy algorithm for assigning approximate

measurement values to attribute variables.

5.6.3.2 Equations from assignments

Four possibilities exist for assigning a measurement value to an attribute variable upon

completion of the recursive substitution algorithm of the CVTNG system for assigning
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measurement values to attribute variables (refer to algorithm 4). The attribute variable

may have:

• no measurement value assignment;

• a single measurement value assignment in the form of a real-valued number;

• a measurement value assignment from an evolving function equation that con-

tains unknown amplitude values, calculated function values, and calculated terms

summed to a constant, K;

• multiple measurement value assignments in the form of real-valued numbers or

evolving function with unknown amplitude values.

An attribute variable that has no measurement value assignment is the result of an

attribute variable used as an amplitude value in an evolving function equation that is

not assigned a measurement value. The attribute variable is not assigned a measurement

value if:

• the parsing of the natural language text does not associate the attribute variable

with an evolving function model;

• the attribute variable is not assigned a default value within the context of inter-

pretation in which the attribute variable is specified (refer to section 5.3);

• the narrative depiction of the subject or object noun associated with the adjective

or verb whose evolving function contains the attribute variable specifies no default

value for the attribute variable in its element class (refer to section 5.4.6).

The CVTNG system for assigning measurement values to attribute variables assigns

no equation to attribute variables that have no measurement value assignment. The at-

tribute variables are variables within equations associated with other attribute variables.

An attribute variable assigned to a single measurement value in the form of a real-

valued number is resolved and considered as a constant in further attribute variable

resolution steps. The real-valued number assigned as the measurement value may be the

result of
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• a single-termed evolving function specified in a context of interpretation;

• a sum of term values, K, calculated from known function evaluations at a point

in time, fi(t), and known amplitude values, αi, for an evolving function specified

over multiple terms in multiple subcontexts and partial contexts;

• a default value specified within a context of interpretation or the element class of

an associated narrative depiction.

An attribute variable, Vk, assigned a measurement value by an evolving function, EVk
,

that contains undetermined amplitude values, αi, is processed by the CVTNG subsystem

for assigning measurement values to attribute variables into an assignment equation. The

left-hand side of the equation consists of the assigned attribute variable, Vk. The right-

hand side of the equation consists of coefficient values, unknown attribute variables, and

a constant value, K. The coefficient values, ci, are determined by multiplying function

values, Fi = fi(t), in the original evolving function, EVk
, with scaling values, κi (refer to

equation (4.29)), for terms with undetermined amplitude values in the form of unknown

attribute variables. Known amplitude values are multiplied by function values, Fi, and

scaling values, κi, and summed to obtain a constant value, K (refer to equation (4.29)).

An evolving function specified within a context of interpretation only may contain

a single unknown amplitude value whilst an evolving function specified over multiple

subcontexts may contain multiple unknown attribute variables. The formed assignment

equation may therefore have multiple unknown variables on the right-hand side. An

amplitude value specified as a sum of amplitude values within multiple partial contexts

that relate to a subcontext is determined by summing the specified amplitude values. If

a partial amplitude value, αij , is unknown, the function value, Fi = fi(t), for a specific

time of evaluation, t, is multiplied by all of the specified partial amplitude values, and

the scaling value, κi, to obtain multiple terms on the right-hand side of the formed

assignment equation. The known partial amplitude values are multiplied by the scaling

value, κi, and function value, Fi, of the term and summed to the constant value, K, of the

formed assignment equation. The unknown partial amplitude values become unknown

variables on the right-hand side of the assignment equation. The unknown variables that

correspond to unknown partial amplitude values have the product of the scaling value,
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κi, and function value, Fi, that are specified for the ith term in the evolving function,

EVk
, as coefficients, ci.

The formed assignment equations that correspond to evolving functions with un-

known amplitude values have the form of equation (4.29). The CVTNG subsystem

for assigning measurement values to attribute variables rearranges the formed assign-

ment equations to isolate the constant, K, on the right-hand side. A coefficient value

of c0 = 1.0 is multiplied with the attribute variable, Vk. The rearranged assignment

equation has the form of equation (4.30).

A coefficient matrix, A, is formed in memory for the terms on the left-hand side of all

the rearranged assignment equations formed from all the evolving functions containing

unknown amplitude values. A column is formed in the coefficient matrix, A, for every

unknown variable that corresponds to an unknown amplitude value within an evolving

function. A row is formed in the coefficient matrix, A, for every rearranged assignment

equation that corresponds to an evolving function with unknown amplitude values. The

coefficient values are placed into the columns that match the unknown variables for the

rearranged assignment equation for which the row is formed. The constant value, K, on

the right-hand side of every equation is grouped into a column vector. The formed column

vector is added as a column to the coefficient matrix, A, to form an augmented matrix,

[A|K]. The augmented matrix, [A|K], is supplied as input to a Gaussian elimination

algorithm, to be reduced to upper triangular form.

An attribute variable determined by the parsing procedure (refer to section 5.5) to

be assigned multiple measurement values by multiple evolving functions is not assigned

a specific measurement value and remains unresolved. The attribute variable assign-

ments to measurement values determined as single real-valued numbers are processed

by the CVTNG subsystem for assigning measurement values to attribute variables into

assignment equations. The assignment equations have the attribute variable, Vk, on

the left-hand side and real-valued numbers as constant values, K, on the right-hand

side. The attribute variable assignment(s) in the form of a measurement value deter-

mined by an evolving function equation with unknown amplitude values are processed

into assignment equations as specified above. The assignment equations are once again

rearranged to have unknown variables, Vi, with coefficient values, ci, on the left-hand
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side and a constant value, K, on the right-hand side. Multiple assignment equations

are therefore formed for the attribute variable assigned multiple measurement values.

The equations are not processed into a coefficient matrix as the application of a matrix

reduction algorithm will show inconsistencies (refer to section 4.4.2).

The assignment equations are processed by a fuzzy algorithm for assigning measure-

ment values to attribute variables that calculates an approximate measurement value

assigned to the attribute variable.

5.6.3.3 Gaussian elimination

Algorithm 6 The Gaussian elimination algorithm

1: for all rows i of matrix M do

2: for all columns j in matrix row M[i] do

3: if M[i, j] = 0 then

4: Swap matrix row M[i] with matrix row M[k] that has non-zero entry of value

p in M[k, j]

5: end if

6: for all non-zero matrix rows M[l] of value r below matrix row M[i] do

7: {Obtain a zero value in M[l, j]}
8: matrix row M[l] = matrix row M[l] + −r/p(matrix row M[i])

9: end for

10: end for

11: end for

Algorithm 6 specifies a Gaussian elimination algorithm that is implemented as part

of the CVTNG subsystem for assigning measurement values to attribute variables. The

Gaussian elimination algorithm is applied to an augmented matrix, [A|K], formed by

the attribute variable resolution procedures of the CVTNG system (refer to section

5.6.3.2) to reduce the augmented matrix, [A|K], to upper triangular form (also called

row–echelon form). If an upper triangular form of [A|K] is obtained after the Gaussian

elimination algorithm completes itself, the variables that correspond to the columns are

determined by solving the equations that correspond to the upper triangular form of
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[A|K]. The process of back substitution starts with the equation that corresponds to the

bottom row of the upper triangular form of [A|K] and substitutes the value in the final

(augmented) column as the value of the variable that corresponds to the second to last

column. The value determined for the variable that corresponds to the second to last

column is substituted into an equation that corresponds to the row above the bottom

row in the upper triangular form of [A|K]. The value of the third to last column is

determined from the formed equation. The process continues until the top of the upper

triangular form of [A|K] is reached an all variable values are determined.

The Gaussian elimination algorithm iterates over the rows of a matrix from the top

row to the bottom row. The algorithm maintains a counter, j, called the “pivot column”

which corresponds to the column on the diagonal for the current matrix row, i. The

algorithm exchanges one row for another with a non-zero value, p, in the pivot column,

if required. Once a non-zero value, p, is found in the pivot column, j, for the current

row, i, the algorithm proceeds to reduce all other values in the pivot column, j, that are

below the current row, i, to zero values. The algorithm reduces a value, r, below the

current row in the pivot column to zero by subtracting a multiple of the current row, i,

from the row below the current row, l. The multiple is calculated as r
p
. If no pivot value

is found for the current pivot counter, j, the algorithm proceeds to the next pivot value.

The matrix does not reduce to upper triangular form if a pivot is not found for every

value of the pivot counter, j. The algorithm terminates when the final row and a pivot

value equal to the number of columns minus one are reached.

If the Gaussian elimination algorithm is unable to reduce the augmented matrix,

[A|K], to upper triangular form, the crisp procedure for assigning measurement values

to attribute variables is unable to determine unique and accurate measurement values

for all attribute variables (refer to section 4.4.2). If the reduced form of [A|K] contains

rows that have only zero values, an infinite number of solutions exists for the assignment

equations that correspond to the augmented coefficient matrix [A|K]. If the reduction

process of the matrix [A|K] shows an inconsistency, no unique and accurate solution to

the system of assignment equations exists. An inconsistency occurs when all the columns

of a row have zero values, except for the augmented column that contains a non-zero

value. The row therefore corresponds to an equation that states 0 = K, where K is
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a non-zero value and the left-hand side could as a result not possibly be equal to the

left-hand side.

An inconsistency arises when multiple measurement values are assigned to the same

attribute variable. The CVTNG system avoids the formation of the augmented matrix,

[A|K], if multiple values are assigned to a single attribute variable as no solution can be

found using the Gaussian elimination algorithm.

The next section specifies an algorithm that treats the system of assignment equations

as a fuzzy constraint satisfaction problem (FCSP) in cases where no accurate and unique

assignment of measurement values to attribute variables can be found using the process

of recursive substitution (refer to algorithm 4) followed by coefficient matrix formation

and Gaussian elimination (refer to algorithm 6) with back substitution. The FCSP

is resolved to obtain an approximate assignment of measurement values to attribute

variables.

5.6.3.4 Genetic algorithm for fuzzy constraint satisfaction

Algorithm 7 The genetic algorithm for the resolution of fuzzy constraints

1: Initialise the population

2: Evaluate fitness of individuals

3: repeat

4: Select fittest individuals from the population

5: Perform crossover to produce offspring

6: Perform mutation on offspring

7: Calculate fitness of offspring

8: Replace least fit individuals with offspring

9: until termination condition

10: Return the fittest individual as the result

Algorithm 7 sets out the steps of a genetic algorithm implemented within the CVTNG

system as a resolution method for a fuzzy constraint satisfaction formulation of attribute

variable assignment equations. The attribute variable assignment equations are formed

by the evaluation of evolving function models constructed for words according to word-
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in-context definitions (refer to sections 5.5.4 and 5.6.3.1 respectively). The specific as-

signment equations solved as FCSPs relate to attribute variables whose values cannot

be determined by the recursive substitution (refer to section 5.6.3.1) and Gaussian elim-

ination algorithms (refer to section 5.6.3.3). The recursive substitution and Gaussian

elimination algorithm are implemented as part of the crisp variable resolution procedure

(refer to section 4.4.2) of the CVTNG subsystem for assigning measurement values to

attribute variables.

FCSPs were chosen as the formulation of evaluated evolving function equations

(EEFEs) containing unknown variable values for three main reasons (refer to section

4.4.3):

• FCSPs are not skewed, in terms of their solutions, towards equations containing

large coefficients and variables, as is the case for standard optimisation problems.

• FCSPs provide a means by which priority can be attached to certain fuzzy con-

straints, and therefore to certain equations, evolving functions, contexts of inter-

pretation, and words. The prioritisation of words and contexts of interpretation

does not form part of the CVTNG system and therefore does not fall within the

scope of this work.

• Fuzzy constraint satisfaction problems are a good fit for the resolution of evolving

functions that operate in a fuzzy space [122] [113]. However, evolving functions

defined within a fuzzy space do not form part of the current implementation of the

CVTNG system and therefore do not fall within the scope of the present work.

A genetic algorithm was chosen to solve the FCSP constructed from EEFEs because

(refer to section 4.4.3):

• FCSPs are solved as optimisation problems and genetic algorithms are proven at

optimisation;

• genetic algorithms are able to represent constraints of multiple variables easily;

• genetic algorithms can easily handle variables of infinite domains as chromosomes

with real-valued genes;
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• genetic algorithms can be adopted to dynamic CSPs.

Algorithm 7 represents candidate solutions for assigning measurement values to at-

tribute variables in terms of chromosomes. A chromosome is a vector of real-valued

numbers within the scope of algorithm 7. A population of chromosomes is created by

the CVTNG subsystem for assigning measurement values to attribute variables by iter-

ating over all the attribute variables present in EEFEs that contain unknown amplitude

values (refer to section 5.6.3.2). If an attribute variable of unknown value, Vi, is present

within an EEFE, and is encountered for the first time, a new gene, gi, is added to

the chromosomes of the population of candidate solutions in algorithm 7. If the set of

EEFEs that contain attribute variables of unknown value contains the unique attribute

variables, V1, . . . , Vk, every chromosome contains the genes, g1, . . . , gk where gene, gi, cor-

responds to attribute variable, Vi. An assignment of values to genes, g1, . . . , gk, therefore

corresponds to an assignment of measurement values to attribute variables, V1, . . . , Vk.

A genetic algorithm is able to optimise a solution by operating on a population

of chromosomes that contain within them candidate solutions as indicated above. The

genetic algorithm enhances the population by applying a process of elitism by which new

chromosomes are introduced into the population by reproduction operators and only the

fittest individuals are retained for the next generation. The genetic algorithm therefore

requires a means of calculating the fitness of a chromosome in the population to determine

the chromosomes selected for reproduction and to determine the chromosomes retained

in the population for the next generation. The fitness of a chromosome in algorithm 7 is

calculated as a min-aggregate of membership degrees to the fuzzy constraints that the

algorithm is attempting to satisfy [51].

The first step towards calculating the membership degree of a fuzzy constraint is to

substitute the values of the genes, g1, . . . , gk, into a function, f . The function, f , repre-

sents the left-hand side of an EEFE rearranged to isolate the constant value, K, on the

right-hand side of the equation, as is the case for equation (4.30). The constant value, K,

is then subtracted from the value calculated by substituting the gene values, g1, . . . , gk,

as a value tuple, x, into the function representing the left-hand side of the EEFE, f .

|f(x)−K| represents an absolute error value, |ε|, for the value tuple substituted, x. The

absolute error value, |ε|, is scaled by dividing the absolute error value by a scaling factor,
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ε. The global domains of attribute variables, V1, . . . , Vk, that correspond to the genes,

g1, . . . , gk, are determined and substituted into equations (4.40) and (4.41) to calculate

the bounds of the error value, ε. The scaling factor, ε, is subsequently calculated from

equation (4.42) as the size of the domain for the error value, ε. The membership degree

to the fuzzy constraint that corresponds to the EEFE is equal to the absolute error value,

|ε|, scaled according to the scaling factor, ε (refer to equation (4.35)).

The first step to calculating the fitness of a chromosome is to determine the mem-

bership degree of all fuzzy constraints present within the FCSP. The fuzzy constraints

of the FCSP correspond to the EEFEs that contain variables whose values could not

be determined by crisp variable resolution procedures (refer to section 5.6.3.2). The

membership degrees are calculated according to the values of the genes in the chromo-

some, as explained above. The membership value of the fuzzy restriction with the lowest

membership degree is used as the fitness value of the chromosome. The min-aggregation

obtained for fuzzy constraint membership degrees therefore forms the objective function

that the genetic algorithm attempts to optimise.

Figure 5.12 illustrates the relationship between EEFEs, the genes of chromosomes in

algorithm 7, the domain sizes of evolving function terms, the constant value, K, within

EEFEs, and the calculation of the membership function values of fuzzy constraints.

Algorithm 7 calculates the fitness of all chromosomes in the population as described

above and selects the chromosomes that are used for reproduction operations by means

of a roulette wheel selection scheme. Roulette wheel selection builds a range that is the

sum of the fitness of all chromosome values and then partitions the range according to

the percentage of a specific chromosome’s fitness in relation to the total fitness value.

A chromosome whose fitness constitutes 10% of a total fitness of 100 and is the first

chromosome to be assigned a partition will be related to the values 1 through 10, for

example. The next chromosome partitioned that constitutes only 4% of the total fitness

value will be related to the values 11 to 14. A uniform random number is selected and

if the uniform random number falls within the partition associated with a chromosome,

that chromosome is selected for reproduction operations. The roulette wheel selection

scheme has a high selection pressure that leads to the rapid conversion of chromosome

gene values to the same or similar values.
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Figure 5.12: The relationships between EEFEs, chromosomes, and fuzzy membership func-

tions

The genetic algorithm for resolving fuzzy constraint satisfaction problems proposed

by Kowalczyk uses a binary gene coding with uniform crossover and mutation operators

for reproduction [51]. Algorithm 7 uses real-coded genes because a real-coded genetic

algorithm:

• has lower computational overhead because no encoding and decoding operations

are required to convert binary representations of variable values in the genetic

algorithm to real-valued numbers used as measurement values in the CVTNG

system and vice versa [42];

• has been shown to be more accurate than binary encoded genetic algorithms for

optimising functions on large continuous and possibly infinite intervals as is the

case for evolving functions [42];
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• has been shown to be more efficient for optimising functions over large continuous

and possibly infinite intervals [45] [65];

• is a more natural representation of problem variables, and crossover and mutation

operators specific to the problem can more easily be engineered [42].

The real-valued coding of genes in algorithm 7 requires alternative mutation and

crossover operators that are suited to real-coded genes. The blended crossover (BLX-α)

operation initially proposed by Eshelman et al [31] was selected as the crossover oper-

ator. The BLX-α operator is a proven and popular crossover operator for real-coded

genetic algorithms [41] [42] that allows for the parameterisation of a genetic algorithm’s

exploitation and exploration behaviour over a continuous interval. The BLX-α crossover

operation selects from two genes, g1
i and g2

i , of parent chromosomes, p1 and p2, respec-

tively, a gene value, g3
i . The gene value g3

i forms part of the offspring chromosome p3.

The value selected for g3
i is a uniform random value from the interval [g−−I ·α, g++I ·α],

where g− = min(g1
i , g

2
i ), g+ = max(g1

i , g
2
i ), and I = g+ − g−. A crossover probability of

1.0 was chosen to allow the exploitation and exploration behaviour of algorithm 7 to be

fully determined by the value α.

A value of α = 0.5 provides a balance in the levels of exploitation and exploration

for a real-coded genetic algorithm that uses the BLX-α operator. An α higher than 0.5

causes a higher level of exploration in the genetic algorithm so that a larger portion of the

search space is covered. An α value lower than 0.5 causes a higher level of exploitation

within the associated genetic algorithm and the chromosomes within the population more

quickly converge to an optimum for the objective function of the genetic algorithm. The

optimum obtained by the genetic algorithm with a high exploitation level may, however,

not be the global optimum for the objective function.

A high rate of convergence to a local optimum within the chromosome population of

algorithm 7 is not a completely undesirable feature when the nature of the underlying

FCSP is considered.

Algorithm 7 is invoked within the CVTNG system when approximate measurement

value assignments are required for attribute variables in EEFEs. Approximate measure-

ment value assignments are required because no unique and exact measurement value

assignments exist as determined by the crisp procedures for assigning measurement values
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to attribute variables (refer to sections 4.4.2 and 5.6.3.1). An approximate measurement

value that represents some aggregation of the multiple measurement values assigned to

an attribute variable is therefore a favourable measurement value assignment. A gene

value assigned by the BLX-α crossover operator with an α value lower than 0.5 has

a higher probability of falling between the gene values of its two parents. The values

assigned to the genes of offspring will therefore tend to move towards the centre of the

search space, where more aggregated solutions reside. An attribute variable assigned no

measurement value by an evolving function or default is not affected by the measurement

value assigned and can therefore take any value within the search space that leads to

the highest min-aggregation of membership degrees to the fuzzy constraints related to

undetermined EEFEs. A high level of exploration within the search space is therefore

not necessarily required for the attribute variables processed by algorithm 7.

The value of α is supplied as an input to the CVTNG subsystem for assigning

measurement values to attribute variables. The α used for BLX-α crossover was exper-

imentally configured for CVTNG system applications within the scope of this work.

Random mutation [64] was chosen as the mutation operator for algorithm 7. Random

mutation changes the value of a gene, gi, by selecting a uniform random number from

the domain of the associated attribute variable Vi.

Herrera et al [41] have shown that random mutation achieves good results within

the first 100–500 generations of a genetic algorithm applied to object function optimisa-

tion. The reason for the large number of favourable results within the initial generations

is ascribed to a high exploration rate. The ability to reach good solutions within a

low number of generations is important in the CVTNG subsystem for assigning mea-

surement values to attribute variables because the subsystem typically interfaces with a

representation system that requires updated measurement values within real time.

The mutation rate of algorithm 7 is provided as an input to the CVTNG subsystem

for assigning measurement values to attribute variables. The mutation rate was experi-

mentally configured for the applications of the CVTNG system within the scope of this

work, but typically kept lower than 0.1 as rapid convergence to optima was favoured

above the retrieval of a globally optimal solution.

The initialisation and mutation of genes in algorithm 7 require a means by which the
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domain of a gene, dgi
, can be determined. The domain size of a gene, gi, associated with

an attribute variable, Vi, where Vi is used as an amplitude value, αi, has the predefined

size, α+
i − α−

i . The domain size of a gene, gi, associated with an attribute variable, Vi,

where Vi is used as partial amplitude value, αij , has the predefined size, α+
ij
− α−

ij
. The

domain of a gene, gi, is defined by the Minimum and Maximum values specified in the

context of interpretation, the subcontext, or the partial context that defines an attribute

variable as an amplitude value or a partial amplitude value (refer to section 5.4.4). If no

values are specified for the Minimum and Maximum attributes associated with an attribute

variable used as an amplitude value, a global default domain size is used for the attribute

variable, Vi, and the associated gene, gi.

The domain size of a gene, gk, associated with an attribute variable, Vk, where Vk

stores a measurement value from an evolving function, is calculated as a step in the

scaling factor calculations of a fuzzy restriction. The minimum and maximum values for

the domain of, gk, are calculated by equations (4.41) and (4.40) respectively. If a gene,

gi, is associated with an attribute variable, Vj, that occurs in multiple EEFEs, the largest

domain size determined for attribute variable, Vj, is used (refer to equations (4.38) and

(4.39)). The domain size of attribute variable, Vj, may be determined as for an attribute

variable used as an amplitude value or a storage variable for a value determined from

an evolving function. The gene values of chromosomes in algorithm 7 are selected once

the domain sizes of all attribute variables, V1, . . . , Vn, associated with genes, g1, . . . , gn,

have been determined. If a gene is selected for mutation, a uniform random value from

the domain of the associated attribute variable, Vi, is selected as the new mutated value

of the gene, gi.

Algorithm 7 executes within the fuzzy procedure for assigning measurement values to

attribute variables until the fitness of the fittest chromosome in the population changes

by less than a predetermined value, pvar, or reaches a maximum number of iterations,

pgen. The values of pvar and pgen are provided as input to the CVTNG subsystem for

assigning measurement values to attribute variables. The values of pvar and pgen are

configured experimentally for optimal results within the applications of the CVTNG

system presented in this work. The values of genes, gi, of the fittest chromosome are set

as the approximate measurement values of the associated attribute variables, Vi. The
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substitution of the gene values of the fittest chromosome, as determined by algorithm

7 as approximate measurement values of the associated unresolved attribute variables,

completes the fuzzy procedure for assigning approximate measurement values to attribute

variables.

5.7 Chapter summary

This chapter presented the architectural features of the CVTNG system implemented

for the generation of interactive narrative space from natural language sentences. The

CVTNG system utilises the computational verb-based evolving function models of nat-

ural language words presented in chapter 4 to obtain measurement values that param-

eterise the generation of interactive narrative space. The interactive narrative space

is realised in terms of external media such as graphics, sound files, and AI behaviours

transformed according to parameter values obtained from evolving function model mea-

surement values.

The challenges posed to the creation of a computational model for natural lan-

guage were stated, because natural language is an implicit, inconsistent, and ambiguous

medium of knowledge transfer that is difficult to model computationally. The design

principles of the CVTNG architecture were presented in the light of the challenges to

modelling natural language as the encapsulation of complexity in evolving function mod-

els, the correct and consistent depiction of narrative representations, the separation of

system user concerns, and the re-use of artifacts created within the system.

The architectural components of the CVTNG system that relate to a context of

interpretation as presented in chapter 4 were described. The application of context of

interpretation as a grouping mechanism for evolving function models was stated. The

representation of contexts of interpretation within the CVTNG system was stated in

terms of their storage as XML files, their representative classes in the CVTNG code base,

and the related interface features. Transformations were presented as a subcomponent of

contexts of interpretation as a means whereby the results determined from the evolving

function models of words are transferred to the interactive narrative space.

The architectural components of the CVTNG system that relate to the evolving
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function models of words presented in chapter 4 were discussed. The grouping of evolving

function models for words in terms of contexts of interpretation was presented.

The subdivision of the evolving function models of words was presented. Subcontexts

serve to subdivide evolving function models among function terms. Partial contexts serve

to expand single amplitude values into a sum of partial amplitude values.

The XML storage structure and class representation of nouns, adjectives, verbs, and

adverbs were presented. Element classes were presented as an architectural feature that

serve as an adapter between the evolving function models of the CVTNG system and

the representational system used to realise the interactive narrative space. The ele-

ment classes are generated to perform transformations on an associated representational

feature as parameterised by measurement values retrieved from the evolving function

models of the CVTNG system. The function interface was presented as a subcomponent

utilised within evolving function models of the CVTNG system. The function interface

allows for the independent and generic implementation of functions utilised within the

evolving function models of words.

The architectural features and algorithms of the CVTNG parsing system were pre-

sented. The system receives narrative text as input and constructs evolving function

models according to the evolving function models defined for the words in the narrative

texts and the contexts of interpretation specified. The steps in the parsing procedure

were presented as the subdivision of narrative text in terms of words, the determination

of the subject and object relationships between words, and the construction of evolving

function models based on word relationships and the evolving function models defined

for words. The architectural features of the CVTNG parsing system were presented

in terms of storage of the relationships between specifications of the Word class for the

word types supported. Parse bins implemented in terms of the ParseBin interface were

presented as an implementation of the template method design pattern that allows the

intricacies of language parsing to be captured within implementations of the ParseBin

interface to define the parsing behaviour followed for a specific word type.

The parsing procedure implemented within the CVTNG parsing subsystem was pre-

sented as an algorithm that groups words of similar types, determines the relationships

between different word groupings, and constructs evolving function models for the rela-
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tionships between word groupings. A sequencing algorithm was discussed that sequences

terminate actions as described by verbs and adjectives that have evolving functions of a

terminate period. The sequencing algorithm ensures that terminate actions are initiated

in the sequence specified within the narrative text provided to the parsing procedure as

input.

The CVTNG subsystem for assigning measurement values to attribute variables was

presented. The objectives of the procedures for assigning measurement values to at-

tribute values were presented as the formation of evolving function equations, the evalu-

ation of evolving function equations to obtain measurement values, process the evolving

function equations that contain unresolved attribute variables into a format applicable to

a variable resolution algorithm, and execute the variable resolution algorithm applicable

to obtain measurement values for the remaining unresolved attribute variables.

The architectural features of the CVTNG system related to assigning measurement

values to attribute variables were presented in relation to the representation and parsing

subsystems. The steps in the procedure for assigning measurement values to attribute

variables were set out as the substitution of default values for amplitude values in the

formed evolving functions, the evaluation of formed evolving function models by means

of a recursive substitution algorithm, the formation and reduction of a coefficient matrix

representing unresolved attribute variables to determine their exact and unique mea-

surement values, and the execution of a genetic algorithm to determine approximate

measurement values for remaining unresolved attribute variables.

The details were presented of the implementation of the recursive substitution al-

gorithm for the evaluation of evolving functions, as was the procedure for forming a

coefficient matrix. The coefficient matrix relates to attribute variables that remain un-

resolved after the recursive substitution algorithm is executed. The details were given

of a Gaussian elimination algorithm that reduces the formed coefficient matrix to upper

triangular form. The reduction of the coefficient to upper triangular form makes it pos-

sible to determine measurement values for the unresolved attribute variables related to

the columns of the coefficient matrix.

The details of a genetic algorithm were presented: it allows for the determination of

approximate measurement values for attribute variables. The algorithm is executed for
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attribute variables that cannot be assigned exact measurement values due to conflicting

measurement value assignments, the absence of defaulted or determined amplitude values

in evolving functions, and cyclical relationships between attribute variables.

The architectural features of the CVTNG system have been discussed in terms of

their design considerations, storage structures, class representations, relationships, and

integration with external components.

Chapter 6 presents and discusses empirical results determined by the application of

the CVTNG system to a series of English natural language sentences to generate an

interactive narrative space.
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Chapter 6

Empirical results of applying the

CVTNG system to natural language

sentences

The backdrop, goals, theoretical principals, and architecture for a system that enables

interactive narrative space to be generated from narrative text has been presented. This

chapter tests the computational verb theory interactive narrative generation (CVTNG)

system against a series of natural language sentences to empirically demonstrate that the

system is able to generate interactive narrative space from natural language sentences

by means of computational verb theory (CVT) models and freely associated media. The

chapter provides basic examples of natural language sentences stating objects in static,

periodic, and dynamic relationships and describes the actions of the CVTNG system for

every example. The examples are then extended by introducing modifiers in the form of

adverbs, inconsistencies, and examples on a larger scale. The extension of the illustrative

examples serves to prove empirically that the CVTNG system is a robust tool for the

generation of interactive narrative space from natural language sentences.

Section 6.1 presents natural language sentences that relate objects in static relation-

ships. The sentences are translated to a visual representation of the static relationships

stated to exist between the objects in the natural language sentences provided as input.

The static relationships between objects are modelled as static computational verbs (refer
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to definition 3.15).

The implementation of evolving function models for the supported word types (nouns,

adjectives, verbs, adverbs) are described in terms of their grouping and subdivision

according to contexts of interpretation, subcontexts, and partial contexts. The behaviour

of the parsing subsystem, the system for assigning measurement values to attribute

variables, and interaction with the representation system are described.

The static examples are extended by the addition of adverbs to the natural language

sentences to show the effect of modifiers on the computational verb models of the asso-

ciated natural language words. Inconsistencies are introduced to the natural language

sentences to illustrate how approximate measurement values are determined within the

subsystem for assigning measurement values to attribute variables whose exact measure-

ment value cannot be determined.

Section 6.2 presents natural language sentences that relate objects in relationships

which repeat over a period of time. The sentences are translated to a visual interpretation

that varies over time to reflect the stated relationships between the object in the provided

natural language sentences. The periodic actions described by the natural language

sentences are modelled as centre computational verbs (refer to definition 3.18). The

grouping and subdivision of the evolving function models for the supported word types

are stated in terms of contexts of interpretation, subcontexts, and partial contexts. The

actions of the parsing subsystem, the subsystem for assigning measurement values to

attribute variables, and the interaction of the CVTNG system with the representation

system are described once again. The periodic examples are extended by the addition of

adverbs to the associated natural language sentences that illustrate the effect of modifiers

on the evolving function models of periodic actions. Inconsistencies are added to the

natural language sentences that describe periodic actions to illustrate the determination

of approximate measurement values for attribute variables that cannot be assigned exact

measurement values.

Section 6.3 presents natural language statements that describe dynamic actions and

relationships between objects over time. The sentences are translated to a visual repre-

sentation of the changes in the objects over time as described in the provided natural

language sentences. The dynamic actions described by the natural language sentences
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are modelled as node computational verbs (refer to definition 3.16). The grouping and

subdivision of the evolving function models for the supported word types are stated

according to contexts of interpretation, subcontexts, and partial contexts. The actions

of the parsing subsystem, the subsystem for assigning measurement values to attribute

variables, and the interaction between the CVTNG system and the representation sys-

tem are discussed in relation to the dynamic examples. The examples are once again

extended by the introduction of adverbs to the natural language sentences to illustrate

the effect of modifiers on the associated evolving function models of the dynamic actions

described. Inconsistencies are introduced into the natural language sentences that de-

scribe dynamic actions in order to illustrate how approximate measurement values are

determined for attribute values that cannot be assigned exact measurement values.

6.1 Static example

The first example applies the CVTNG system to the simple natural language sentence,

“The red cube is on the blue cube.”. The sentence is modelled in terms of static com-

putational verbs (refer to definition 3.15) within the CVTNG system that relate to the

adjectives “red” and “blue” and the verb phrase “is on”. The words are represented in

the interactive narrative space by 3D model associated with the noun “cube”.

Section 6.1.1 states the contexts of interpretation, subcontexts, and partial contexts

defined for the static examples presented in this section. The contexts are defined in

terms of property definitions (refer to section 5.3). The context definitions are stated in

terms of context, attribute variable definitions, and function definitions. Section 6.1.2

states the evolving function models of the words “red”, “blue”, and the verb phrase

“is on” in terms of context of interpretation, subcontexts, and partial contexts. The

actions of the parsing procedure as implemented in the CVTNG parsing subsystem are

described in section 6.1.3. The action of the subsystem for assigning measurement values

to attribute variables are described in section 6.1.4. The interaction between the evolving

function models of the CVTNG system and the representation system are described

in section 6.1.5. In section 6.1.6, adverbs are introduced to the sample sentences of

this section to illustrate the effect of modifiers on the evolving function models of the
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static relationships described. Section 6.1.7 introduces inconsistent natural language

statements in order to describe how approximate measurement values are assigned to

attribute variables whose exact measurement values cannot be determined.

6.1.1 Contexts

The sample sentences in this section are modelled in five contexts of interpretation:

• The first is labelled “SpatialX” and serves to model the displacement of an object

in a 3D visual space along the x-axis.

• The context of interpretation labelled as “SpatialY” serves to model the displace-

ment of an object in a 3D visual space along the y-axis.

• The “GreenColour”, “BlueColour”, and “RedColour” contexts of interpretation

models the colour of an object in a visual space with regard to the green, blue, and

red colour channels respectively. These channels correspond to the representation

of colour within graphics rendering APIs such as R© DirectX R©.

The “SpatialX” and “SpatialY” contexts have a single related subcontext labelled

“Start” as the evolving function models of this section are implemented as static com-

putational verbs with a single function term.

The “Start” subcontext is so labelled because the function term specified in the

subcontext models the starting position of an object in a visual space. The examples

of this section are static and no additional terms are required in the evolving function

models.

The subcontext “Start” has six related partial contexts labelled “SelfX”, “SelfY”,

“ReferenceX”, “ReferenceY”, “OtherX”, and “OtherY”. The “SelfX” and “SelfY” partial

contexts serve to model partial amplitude values related to the width and depth of an

object that forms the subject in a natural language sentence. The “ReferenceX” and

“ReferenceY” partial contexts serve to model partial amplitude values related to the

point of reference for the displacement of an object along the x-axis and y-axis of a visual

space. The “OtherX” and “OtherY” partial contexts serve to model partial amplitude

values related to the width and height of an object that forms the object in a natural
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language sentence. The contexts of interpretation, subcontexts, and partial contexts

specified above allow the visual displacement relationship between objects in a visual

space to be modelled in terms of evolving functions.

The objects whose relationships are described by the evolving function models are

the subject and object nouns of a natural language sentence. The visual displacement

relationships modelled between the objects are specified by natural language adjectives

or verbs.

The contexts are implemented by specifying context relationships and properties. A

context relationship is defined as the relationship between a context of interpretation

and its subcontexts, and also between a subcontext and the partial contexts related to

it (refer to section 5.3). The properties defined within a context of interpretation, a

subcontext, or a partial context are specified in terms of an attribute variable and an

associated representation transformation (refer to section 5.3.4).

The attribute variables defined within context properties are utilised in the construc-

tion of evolving function models by the parsing subsystem. Attribute variables are used

within the CVTNG subsystem for assigning measurement values to attribute variables

in order to store measurement values calculated from the evolving function models of

adjectives and verbs. Attribute variables also store amplitude values, if the attribute

variable in question is used as an amplitude value, α, in an evolving function model.

Transformations provide a means by which the measurement values determined from

evolving function models are transferred to narrative representations. The transforma-

tions are implemented as specifications of the Transformation interface in a separated

assembly.

Figure 6.1 illustrates the relationships between the contexts defined above and the

properties defined for the contexts of interpretation, subcontexts, and partial contexts.

Contexts of interpretation, subcontexts, and partial contexts are shown as squares. Prop-

erties defined for the contexts, subcontexts, and partial contexts are shown as rounded

squares. The contexts, subcontexts, and partial contexts were implemented as discussed

above and illustrated in figure 6.1. The next section describes the implementation of

evolving function models for the words of the example sentences within the defined con-

texts, subcontexts, and partial contexts.
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Figure 6.1: The contexts, subcontexts, partial contexts, and properties specified for the

grouping and subdivision of evolving function models for the sample sentence, “The red cube

is on the blue cube.”
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6.1.2 Words

This section sets out the evolving function models implemented for the static sample

sentences in this section. The evolving function models for the supported word types

are also presented. The article “the” is not supported by the CVTNG system and is

therefore not treated within the scope of the present work. The article “the” does not

affect the relationships between the objects in the natural language sentences that are

presented as examples and is consequently not considered further.

Table 6.1 summarises the definitions of the words “Red” and “Blue” and the verb

phrase “is on” in the contexts, subcontexts, and partial contexts presented in section

6.1.1:

• The “Word” column lists the individual natural language words whose evolving

function model components are listed in the remaining columns.

• The “Context” column lists the context of interpretation, the subcontext, or the

partial context in which the evolving function components specified in the remain-

ing columns are defined. The abbreviation “SS” is short form of “SpatialStart” for

the context names stated in table 6.1.

• The “Storage variable” column lists the attribute variable (if applicable) that stores

the measurement value obtained from an evolving function model whose details are

specified in the remaining columns of table 6.1 for the same table row.

• The “BE-verb” column lists a verb word (if applicable) whose evolving function

model is used as the evolving function model of the associated adjective listed in

the “Word” column of the same table row.

• The “Scaling factor” column lists the scaling value, κ, applicable to the evolv-

ing function term whose components are specified on the same table row in the

remaining columns.

• The “Generic function” column lists the generic function, f , that forms part of a

term specified for an evolving function model. The term of the evolving function
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model corresponds to the context of interpretation or subcontext listed on the same

table row as the generic function, f .

• The “Amplitude value” column lists an amplitude value, α, specified as an ampli-

tude value or a partial amplitude value for an evolving function model term. The

evolving function term corresponds to the subcontext or partial context listed in

the “Context” column on the same table row as the amplitude value, α.

• The “Transformation function” column lists a transformation function, Ψ, that

corresponds to the adverb word specified in the “Word” column of the same table

row and the context of interpretation, subcontext, or partial context listed in the

“Context” column of the same table row. The transformation function, Ψ, is

applied to the generic value, x, supplied in the form of an amplitude or time value.

The annotation “**” indicates an amplitude value, α, specified within the evolving

function model of a verb whose subject and object noun are the same noun word. If a

default value is retrieved for the amplitude value, α, from a representational element,

the default value is obtained from the representational element associated with a subject

noun (refer to section 5.6.3.1). The subject noun corresponds to the verb whose evolving

function model components are listed in the same table row as the amplitude value,

α, that has the annotation “**”. The annotation “**” is specified by the attribute

Reflective within the CVTNG system (refer to section 5.4.4).

The evolving function word models specified in table 6.1 were implemented with

the “Word Editor” user interface component of the CVTNG system presented in sec-

tion 5.4.1. The functions stated in table 6.1 were implemented as specifications of the

Function interface in the function assembly described in section 5.4.7.

The amplitude values, αi, that are tagged with the “**” symbol in the variable defi-

nitions tables of this chapter are defined as reflective amplitude values in their respective

evolving function models (refer to section 5.4.4). The amplitude values are defined as re-

flective amplitude values by setting the Reflective property when the amplitude value

is specified in a context of interpretation, a subcontext, or a partial context. If an am-

plitude value is flagged as a reflective amplitude value, the Reflective flag serves as an

indication that the subject noun of the associated verb word also serves as the object
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noun of the verb word in the narrative text. If a default value is required for an am-

plitude value flagged as a reflective amplitude value and no default is specified within

the context of interpretation, the default value is retrieved from the narrative depiction

associated with the subject noun of the atomic verb sentence (refer to definition 3.20).

The noun “cube” was associated with a representational element in the form of a 3D

graphical model in the “SpatialX”,“SpatialY”, “RedChannel”, “GreenChannel”, and

“BlueChannel” contexts of interpretation (refer to section 5.4.2). A single element class

was generated to correspond to the noun “cube” that served as the access point of the

CVTNG system to the representation system. The Inialize and Invoke methods of

the Element interface were implemented in the generated element class to define and

display the vertices of a 3D cube, and in this way, serve as a representational element

in the interactive narrative space. The remaining methods of the Element class were

implemented by code generated as part of the generation of the element class.

6.1.3 Parsing

The parsing procedure specified by algorithm 1 processes the words of the sentence “The

red cube is on the blue cube.” sequentially. The parsing procedure, as applied to every

word modelled in the CVTNG system, is described and the parsing procedure detailed

in algorithm 1 is referenced throughout the steps detailed:

• The adjective “red” is implemented as a static computational verb in the “Red-

Channel” context. The parsing algorithm creates an instance of the Adjective

class (refer to section 5.4.3) and stores a reference to the instance of the Adjective

class within an AdjectiveParseBin specification of the ParseBin (refer to section

5.5.3) interface.

• The second word processed in sequential order by the parsing procedure is the

noun “cube”. The noun “cube” is defined within the “SpatialX”, “SpatialY”,

“RedChannel”, “GreenChannel”, and “BlueChannel” contexts of interpretation.

The word “cube” is determined to be of a noun type and therefore not similar to the

words of the adjective type stored within the instance of the AdjectiveParseBin

class. The instance of the AdjectiveParseBin is flagged as “closed”.
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An instance of the Noun class is created and a reference to the instance of the

Noun class is stored in a newly created instance of the NounParseBin specification

of the ParseBin interface. An instance of the NounInstance class is created and

a reference is stored within the instance of the Noun class. A generated element

class is instanced and stored within the instance of the Noun class for every context

of interpretation the noun is defined in. The contexts of interpretation stated

above share the same element file and consequently multiple references to the

same element file are stored within the newly created instance of the Noun class.

The instance of the NounParseBin class is determined by the parsing procedure to

be of the resolve type for the AdjectiveParseBin class (refer to section 5.5.3). A

reference to the NounInstance class instance is stored as a subject relation to the

instance of the Adjective class stored within the AdjectiveParseBin instance.

The instance of the NounInstance class is stored within the instance of the Noun

class which in turn is stored in the NounParseBin instance.

• The next iteration of the parsing procedure encounters the word “is” and deter-

mines that no definition for the word is specified (refer to table 6.1). The parsing

procedure scans forward and finds the word “on”. The parsing procedure deter-

mines that the verb phrase “is on” is modelled as a verb within the contexts of

interpretation “SpatialX” and “SpatialY” respectively. The evolving function mod-

els defined for the verb phrase “is on” within the contexts of interpretation “Spa-

tialX” and “SpatialY” are created and stored within newly created instances of the

Verb class. The instances of the Verb class relate to the evolving function models

specified in the “SpatialX” and “SpatialY” contexts of interpretation specifically.

The function, fone, used in the subcontexts “SpatialStartX” and “SpatialStartY”

and implemented as a specification of the Function interface, is instanced. Refer-

ences to the specification instance of the Function interface that implements the

function, fone, are stored within the instances of the Verb class that relate to the

contexts “SpatialX” and “SpatialY” respectively.

The parsing procedure determines that the instance of the Verb class is not of the

word type stored within the NounParseBin specification instance of the ParseBin
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interface. The NounParseBin instance is flagged as “closed” and an instance

of the VerbParseBin specification of the ParseBin interface is created. Refer-

ences to the Verb class instances are stored in the newly created instance of the

VerbParseBin class. The VerbParseBin is determined to be of the resolve type of

the NounParseBin instance. A reference to the instance of the Noun class stored

within the NounParseBin instance is added as a subject relation in the Verb class

instance stored within the VerbParseBin instance.

• The parsing procedure reaches the second adjective of the sample sentence, “blue”,

defined in the context of interpretation “BlueChannel”. An instance of the Adjective

class is created that stores the evolving function model defined in the context

of interpretation “BlueChannel”. The instance of the Adjective class is deter-

mined not to be of the word type stored in the open VerbParseBin instance. The

VerbParseBin class instance is not flagged as closed because verbs may have both

subject and object associations. An instance of the AdjectiveParseBin class is

created and marked as the current parsing bin.

• The second instance of the noun “cube” is reached by the parsing procedure. A

new instance of the NounInstance class is created and a reference is stored in the

original instance of the Noun class. A new instance of the NounParseBin class is cre-

ated and the newly created instance of the NounInstance class is stored within the

NounParseBin instance. The parsing procedure determines that the NounParseBin

instance is of the resolve type of the VerbParseBin awaiting an object association.

A reference to the newly created instance of the NounInstance class is added as an

object relation to the instance of the Verb class stored within the VerbParseBin

instance. The parsing procedure also determines that the NounParseBin instance

is of the resolve type of the AdjectiveParseBin instance. The instance of the

NounInstance class stored within the instance of the NounParseBin class is added

as a subject association to the Adjective instance stored within the

AdjectiveParseBin instance.

Figure 6.2 illustrates the relationships that exist between parse bins at the completion

of the parsing procedure. The final step of the parsing procedure constructs the evolving
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Figure 6.2: The parse bin relationships produced for the sample sentence, “The red cube is

on the blue cube.”

function models illustrated in figure 6.3. Attribute variables specified in the definition of

the evolving function models illustrated are stored within instances of the NounInstance

class. Functions specified in the definition of the evolving function models illustrated are

stored as references to specifications instances of the Function interface. The references

to specifications of the Function interface are stored in instances of the Verb class created

during the parsing procedure.

A relationship between attribute variables “YPosition(Red)” and “ObjectHeight(Blue)”

is created by specifying the attribute variable, “ObjectHeight(Blue)”, as an amplitude

value in the evolving function of the verb phrase “is on”. The evolving function model

of the verb phrase “is on” assigns a measurement value to the attribute variable “YPo-

sition(Red)”. The relationship between the attribute variables “YPosition(Red)” and

“ObjectHeight(Blue)” is stored in the NounInstance class instance that stores the at-
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tribute variable “YPosition(Red)”. Other attribute variable relationships created by the

formation of the specified evolving function models are stored in a similar fashion.

The parsing procedure completes with the formation of the evolving function models

instanced and stored as described above. The CVTNG system passes the structure

illustrated in figure 6.3 to the CVTNG subsystem for assigning measurement values to

attribute variables.

6.1.4 Variable resolution

The CVTNG subsystem for assigning measurement values to attribute variables receives

the structure illustrated in figure 6.3 as input and is tasked with the evaluation of the

formed evolving function equations for a specific time value. The function, f1, the

amplitude values, α = 0.7, and the scaling factor, κ = 1.0, are substituted into the

template evolving function equation (refer to equation (4.3)) to obtain evolving function

equations for assigning measurement values to the attribute variables “Red” and “Blue”

in the “RedChannel” and “BlueChannel” contexts of interpretation respectively.

The evolving function equations are:

Red(Red) = fone(t)κα

= (1.0)(1.0)(0.7)

= 0.7

Blue(Blue) = fone(t)κα

= (1.0)(1.0)(0.7)

= 0.7.

(6.1)

The annotation (Blue) refers to an attribute variable stored in the NounInstance

class instance associated with the noun “cube” described by the adjective “blue” in the

natural language text. The annotation (Red) refers to an attribute variable stored in

the NounInstance class instance associated with the noun “cube” that is described by

the adjective “red” in the natural language text. fone = 1.0 is a generic function used

in the evolving function equations associated with the adjectives “red” and “blue”. The
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Figure 6.3: The attribute variable relationships formed by resolving the parse bins in figure

6.2
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generic function, fone, is as defined for equation (4.3) and specified in table 6.1. κ = 1.0

is a scaling factor as defined for equation (4.3) and specified in table 6.1. α = 0.7 is an

amplitude value that serves to scale the evolving function equations associated with the

adjectives “red” and “blue”. The amplitude value, α, is as defined for equation (4.3)

and specified in table 6.1.

The attribute variable “YPosition(Red)” is assigned a measurement value by an

evolving function equation defined in the context of interpretation “SpatialY”, the sub-

context “SpatialStartY”, and the partial contexts “SpatialStartSelfY”,

“SpatialStartOtherY”, and “SpatialStartReferenceY”. The functions, partial amplitude

values, and scaling factors defined for the evolving function in table 6.1 are substituted

into the template evolving function equation with partial amplitude values (refer to

equation 4.7) and the evolving function:

Y Position(Red) = κ1Y Position(Blue)fone(t)

+ κ2ObjectHeight(Red)fone(t)

+ κ3ObjectHeight(Blue)fone(t)

= ((1.0)(0.0) + (0.5)(1.0) + (0.5)(1.0)) (1.0)

= 1.0 (6.2)

is obtained.

Algorithm 4 is executed and the attribute variables in the evolving functions equa-

tions (6.1) and (6.2) are processed and resolved recursively. The attribute variables

“Red(Red)” and “Blue(Blue)” are both assigned a measurement value of “0.7” that is

obtained by evaluating the function, fone, and multiplying the obtained values of 1.0

with the scaling factor, κ = 1.0, and the amplitude value, α = 0.7 specified (refer to

equation (6.1)).

The recursive substitution algorithm performs a depth-first traversal over the graph

of attribute variable relationships formed for the evolving function equation related to

the verb phrase “is on”. The traversal reaches the leaf nodes associated with the at-

tribute variables “YPosition(Blue)”, “Height(Red)”, and “Height(Blue)”. The attribute

variables associated with the leaf nodes are not assigned measurement values by another

evolving function and are therefore assigned default values. The default values are spec-
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ified within the partial contexts that specify “YPosition(Blue)”, “ObjectHeight(Red)”,

and “ObjectHeight(Blue)” as partial amplitude values for equation (6.2). The attribute

variables “YPosition(Blue)”, “ObjectHeight(Red)”, and “ObjectHeight(Blue)” are as-

signed default measurement values of 0.0, 1.0, and 1.0 respectively. The recursive call

that visits each of the leaf nodes terminates and the substituted partial amplitude values

are multiplied by their respective scaling values, κ1, κ2, κ3, and summed to obtain an

amplitude value for evolving function equation (6.2). The evolving function is evalu-

ated by multiplying the obtained amplitude values with the evaluated function value,

fone(t) = 1.0, and a measurement value of “1.0” is obtained for the attribute variable

“YPosition(Red)”.

The evolving function equations related to the sample sentence “The red cube is on

the blue cube.” are simple and the matrix formation (refer to section 5.6.3.2) and Gaus-

sian elimination (refer to section 5.6.3.3) steps of the crisp procedure for assigning mea-

surement values to attribute variables are not required. The determined measurement

values for the attribute variables obtained from the substitution of default measurement

values and the calculation of measurement values from evolving function equations are

passed as parameters to the representation system.

6.1.5 Representation

The measurement values obtained by the CVTNG subsystem for assigning measurement

values to attribute variables allows the representation system to transform the narrative

depictions according to the measurement values obtained. The transformed interactive

narrative space serves to depict the narrative text within the interactive narrative space.

The first step performed for representing natural language text in an interactive narra-

tive space is the initialisation of the representational means. It is initialised by calling the

Initialize method of the Element interface (refer to section 5.4.6). The Initialize

method is implemented in the element class generated for the noun “cube” as speci-

fied in the contexts of interpretation “RedChannel”, “GreenChannel”, “BlueChannel”,

“SpatialX”, and “SpatialY”. The Initialize method was implemented to initialise a

series of vertices and buffers associated with rendering a 3D cube in the Microsoft R©

DirectX R© graphics rendering API. The Initialize method is invoked once and the
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initialised buffers and vertices are stored within the instance of the generated element

class for re-use by the representation system. If an external representation system is

used, the appropriate buffers and vertices are stored within the external representation

system and the instance of the generated element class stores the appropriate references

to the external representation system.

The next step towards representing narrative text in the interactive narrative space

is performed by invoking the InitVars method of the generated element class. The

InitVars method serves to initialise the transformations applied to the representational

means. The transformations serve to transform the narrative depiction associated with

the generated element class. The transformed narrative depictions serves to depict the

narrative text provided as input to the CVTNG system within the interactive narra-

tive space. The transformations are initialised according to default parameter values

specified for the properties that group the transformations with attribute variables in

the definition of a context of interpretation (refer to section 5.3). If the actions of the

CVTNG subsystem for assigning measurement values to attribute variables does not al-

ter the measurement value of an attribute variable, the transformation defaulted in the

InitVars method is applied to the narrative depiction associated with the generated

element class.

The third step towards representing narrative text in the interactive narrative space

passes measurement values obtained from the CVTNG subsystem for assigning measure-

ment values to attribute variables to transformations that are applied to the narrative

depictions that constitute the interactive narrative space. The measurement values are

transferred by calling the necessary accessor methods created as part of the generation

of the element class. The accessor methods receive the real-valued numbers representing

measurement values as an input and initialises a transformation according to the input

received. The accessor method called to pass a measurement value to the element class

corresponds to a property of a context of interpretation, subcontext, or partial context.

The specific property is determined to be the property that specifies the attribute vari-

able whose measurement value is passed as a parameter to the accessor method (refer

to section 5.3). The transformation initialised by the parameter value received from

the passed measurement value is defined in the same context property as the attribute
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Figure 6.4: The visual output produced for the sample sentence, “The red cube is on the blue

cube.”

variable. If a transformation is initialised by a measurement value passed as a parameter

to an accessor method, the default transformation initialised in the InitVars method is

no longer applied to the narrative depiction.

The fourth step towards representing narrative text in the interactive narrative space

transforms the narrative depiction related to an element class according to the transfor-

mations stored in the element class. The transformations are performed by invoking the

Transform method of the Element interface (refer to section 5.4.6). The transformations

act on the underlying storage structure of a representational medium.

The final step for the representation of narrative text in the interactive narrative

space invokes the transformed narrative depiction to realise the narrative text within

the interactive narrative space. The narrative depiction is invoked by calling the Invoke

method implemented in the generated element class. The program code specified for the

Invoke method issues the necessary commands to the Microsoft R© DirectX R© graphics

rendering API, which renders the transformed graphical model of a cube to a graphical

display. Figure 6.4 illustrates the graphical output produced when sample sentence,

“The red cube is on the blue cube.”, is processed by the CVTNG system prototype.

6.1.6 Adverbs

This section describes the actions of the CVTNG when the CVTNG system is applied to

a version of the sample sentence, “The red cube is on the blue cube.”, altered to include

adverbs of amplitude (refer to sections 4.3.4 and 5.4.5). The sample sentence, “The red
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cube is on the blue cube.”, is changed to the sentence “The dark red cube is far above

the light blue cube.”. The altered sample sentence includes the adverbs “dark”, “far”,

and “light”.

Table 6.1 specifies the details of the models defined for the adverbs “dark”, “light”,

and “far” in the “RedChannel”, “BlueChannel”, and “GreenChannel” contexts of in-

terpretation and in the partial contexts, “SpatialStartSelfY” and “SpatialStartOtherY”.

The definition of the verb phrase “is above” in the contexts of interpretation “Spa-

tialX” and “SpatialY”, the subcontexts “SpatialStartX” and “SpatialStartY”, and the

partial contexts “SpatialStartSelfX”, “SpatialStartOtherX”, “SpatialStartReferenceX”,

“SpatialStartSelfY”, “SpatialStartOtherY”, and “SpatialStartReferenceY” partial con-

texts is provided in table 6.1. The additional word definitions were specified using the

“Word Editor” CVTNG system interface component presented in section 5.4.1.

The verb phrase “is above” was substituted for the verb phrase “is on” for the ex-

ample presented in this section because the phrase “far is on” does not make sense

linguistically. The CVTNG system will still process the statement, however, since no

language based restrictions are placed on the natural language sentences provided as

input to the CVTNG system. The sentence, “The red cube is far on the blue cube”,

produces a graphical rendering of a red cube slightly above a blue cube when provided

as input to the CVTNG system. Checks for linguistic correctness do not fall within the

scope of this work and all natural language sentences are processed in the same way.

The parsing procedure produces the parse bin relationships illustrated in figure 6.5

when applied to the sentence, “The dark red cube is far above the light blue cube.”.

Figure 6.5 shows adverb parse bins containing the words “dark”, “light”, and “far”.

The adverb parse bins are associated parse bins that contain the adjectives “red” and

“blue” and the verb phrase “is above”. The evolving function models formed from

the parse bin relationships illustrated in figure 6.5 are illustrated in figure 6.6. The

relationships between the adverb parse bins and the parse bins containing the adjectives

and verb phrase of the sample sentence are modelled as transformation functions (refer to

sections 4.3.4 and 5.4.5). The adverbs “dark”, “light”, and “far” are defined as adverbs

of amplitude (refer to sections 4.3.4 and 5.4.5). The transformation functions associated

with the adverbs in the sample sentence are therefore applied to the evolving function
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Figure 6.5: The parse bin relationships produced for the sample sentence, “The dark red cube

is far above the light blue cube.”
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amplitude values specified in the same context, subcontext, or partial context that the

adverbs are defined in.

The following evolving functions are produced by the CVTNG parsing procedure for

the sample sentence, “The dark red cube is far above the light blue cube.”:

Red(Red) = fone(t) (Ψhalf ◦ 0.7) κ

= (1.0)(0.5)(0.7)(1.0)

= 0.35

Blue(Blue) = fone(t) (Ψtwo ◦ 0.7) κ

= (1.0)(2.0)(0.7)(1.0)

= 1.4

Y Position(Red) = fone(t)[κ1Y Position(Blue)

+ (Ψoneandhalf ◦ κ2ObjectHeight(Blue))

+ (Ψoneandhalf ◦ κ3ObjectHeight(Red))]

= (1.0) ((1.0)(0.0) + (1.5)(1.0)(1.0) + (1.5)(1.0)(1.0))

= 3.0

(6.3)

The transformation functions Ψhalf , Ψoneandhalf , and Ψtwo are defined as in equation

(4.20) and specified in table 6.1. The composition operation, ◦, was performed by cal-

culating the values of the transformation functions Ψhalf , Ψoneandhalf , and Ψtwo with the

respective amplitude values that the transformation functions apply to as input. All

other symbols of the equations above are defined as for equations (6.1) and (6.2).

The measurement values assigned to the attribute variables “Red(Red)”, “Blue(Blue)”,

and “YPosition(Red)” and the default measurement values substituted for the attribute

variables “YPosition(Blue)”, “ObjectHeight(Blue)”, and “ObjectHeight(Red)” are de-

termined by the recursive substitution procedure. The operation of the recursive substi-

tution procedure is the same as that described for equation (6.2) with the exception that

the default measurement values of the attribute variables “ObjectHeight(Blue)”, and

“ObjectHeight(Red)” are transformed by the transformation function, Ψoneandhalf . The

default amplitude value specified for the evolving functions of the adjectives “red” and
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Figure 6.6: The attribute variable relationships produced by resolving the parse bins in figure

6.5
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Figure 6.7: The visual output produced for the sample sentence, “The dark red cube is far

above the light blue cube.”

“blue” are transformed by the transformation functions, Ψhalf and Ψtwo, respectively

before the measurement value from the associated evolving function equations are cal-

culated as specified for equation (6.2). The maximum colour value within the Microsoft
R© DirectX R© API is 1.0. A measurement value assignment of 1.4 to the blue colour

component of a representational element has the same effect as an assignment of 1.0.

The adverbs introduced have no effect on the generated element class. The measure-

ment values obtained from the evolving function models specified by the equations above

are transferred to the representation system in the same way as the measurement values

obtained in section 6.1.5. The graphical output that results when the CVTNG system

processes the sample sentence “The dark red cube is far above the blue cube.” is shown

in figure 6.7.

6.1.7 Inconsistency handling

This section describes the operation of the CVTNG system when applied to the sam-

ple sentences, “The red cube is to the left of the blue cube. The red cube is to the

right of the blue cube.”. The discussion of the example serves to illustrate the handling

of inconsistent natural language statements that describe static relationships between

objects. The sentences are once again represented visually in an interactive narrative

space. The inconsistency is introduced by the conflicting natural language statements

regarding the position of the red cube. The definition of the verb phrases “is to the

left of” and “is to the right of” in the contexts of interpretation “SpatialX” and “Spa-
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Figure 6.8: The parse bin relationships produced for the sample sentences, “The red cube is

to the left of the blue cube. The red cube is to the right of the blue cube.”

tialY”, the subcontext “SpatialStartX” and “SpatialStartY”, and the partial contexts

“SpatialStartSelfX”, “SpatialStartSelfY”, “SpatialStartOtherX”, “SpatialStartOtherY”,

“SpatialStartReferenceX”, and “SpatialStartReferenceY” is stated in table 6.1.

The parsing algorithm (refer to algorithm 1) processes the sample sentences in se-

quence. The words in each sentence are also parsed in sequential order. The parsing

algorithm produces the parse bin relationships illustrated in figure 6.8, which shows

two clear subgraphs related to the two sentences of the example. Figure 6.9 illustrates

the evolving function models formed from the parse bin relationships shown in figure

6.8 in terms of attribute variable relationships. Figure 6.9 clearly shows two separate

measurement value assignments to the attribute variable, “XPosition(Red)”.

If the crisp strategy for assigning measurement values to attribute variables is ap-

plied to the sample sentences, two evolving function equations are produced that assign

measurement values to the attribute variable, “XPosition(Red)”. The evolving function
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Figure 6.9: The attribute variable relationships produced by resolving the parse bins in figure

6.8

equations formed for the sample sentences are:

Red(Red) = foneκ0.7

Blue(Blue) = foneκ0.7

XPosition(Red) = foneκ1XPosition(Blue) + fone(κ2Width(Blue) + κ3Width(Red))

XPosition(Red) = foneκ1XPosition(Blue)− fone(κ2Width(Blue) + κ3Width(Red))

Y Position(Red) = foneκ(Y Position(Blue))

Y Position(Red) = foneκ(Y Position(Blue))

. (6.4)

The annotations (Blue) and (Red), the function, fone, and the scaling values, κ, κ1, κ2, κ3,

are defined as they were for equations (6.1) and (6.2).
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The recursive substitution algorithm produces the following set of measurement value

assignments when executed for the evolving function equations above:

Red(Red) = (1.0)(1.0)(0.7)

= 0.7

Blue(Blue) = (1.0)(1.0)(0.7)

= 0.7

XPosition(Red) = (1.0)(1.0)(0.0) + (1.0)(1.0)(1.0) + (1.0)(1.0)(1.0)

= 2.0

XPosition(Red) = (1.0)(1.0)(0.0)− (1.0)(1.0)(1.0)− (1.0)(1.0)(1.0)

= −2.0

Y Position(Red) = (1.0)(1.0)(0.0)

= 0.0

(6.5)

The measurement value assignments above show that two separate measurement

values of 2.0 and −2.0 are assigned to the attribute variable, “XPosition(Red)”. The

CVTNG subsystem for assigning measurement values to attribute variables therefore

determines that the fuzzy procedure for assigning measurement values to attribute vari-

ables is to be used for assigning an approximated measurement value to the attribute

variable, “XPosition(Red)”. The measurement value assignments of the other attribute

variables are correctly determined and not considered further.

The chromosomes of algorithm 7 used in the fuzzy procedure for assigning measure-

ment values to attribute variables are formed by adding a gene to the chromosomes

for every variable not assigned an exact and a unique measurement value. The chro-

mosomes of the population of algorithm 7, as applied to the single unknown attribute

variable, “XPosition(Red)”, have a single gene that corresponds to the attribute variable,

“XPosition(Red)”.

A set of fuzzy constraints is formed for a subset of the evaluated evolving function

equations (EEFEs) (refer to equation (6.5)) which involve attribute variables that are
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not assigned measurement values. The fuzzy constraints formed are:

C1 : XPosition(Red) = 2.0

C2 : XPosition(Red) = −2.0

(6.6)

Ci, i = (1, 2) are fuzzy constraints formed for the EEFEs related to the attribute variable

“XPosition(Red). The membership degrees of the Ci, µCi
(x), are calculated by substi-

tuting the right-hand side of the Ci (in this case 2.0 and −2.0) as the constant value,

K, and the gene values of a chromosome as the value tuple, x, into equation (4.35).

The scaling factors, d1 and d2, were calculated by equation (4.42) as 4.0. The domain

of attribute variable “XPosition(Red)” was determined as specified in section 4.4.3.5 as

[−2.0, 2.0].

Algorithm 7 was executed for the fuzzy constraints, C1 and C2, with a population of

constructed chromosomes that contain a single gene, g1, related to the attribute variable,

“XPosition(Red)”. A population size of 16 was determined experimentally to provide

optimal results averaged over 30 iterations of algorithm 7 for population sizes ranging

from 2 to 20. The crossover probability of 1.0 and the mutation probability of 0.1 specified

in section 5.6.3.4 were retained. The value, α, used by the BLX-α crossover operator

was experimentally determined to provide optimal solutions at α = 0.7. The value of α

was experimentally determined over 30 repetitions of algorithm 7 for α values between

0.0 and 1.0 in increments of 0.1. The optimal population size and blending factor were

determined in tandem and the experiments were repeated 30 times for every combination

of blending factor and population size. Algorithm 7 was set to terminate after 500

generations (pgen = 500) to allow comparison between different runs of the algorithm

and also for the experimental determination of the other parameters of algorithm 7.

Figure 6.10 illustrates the accuracy of algorithm 7 as measured in terms of the fitness

of the fittest individual in the population. A fitness value of 0.5 is the maximum fitness

attainable in the case of an inconsistent system such as the one presented in this example.

The fittest chromosome in the initial population had a fairly high fitness value and

the fittest chromosome over the subsequent generations rapidly reached a near-optimal

solution. The averaged fitness of the entire chromosome population was not initialised
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Figure 6.10: The solution accuracy of the genetic algorithm for fuzzy constraint satisfaction

when applied to the sample sentences, “The red cube is to the left of the blue cube. The red

cube is to the right of the blue cube.”

as high as the fittest chromosome which shows a fair exploration of the search space.

The averaged and best fitness values quickly converge, however, which shows that the

population very quickly becomes homogeneous.

The visual output for a near-optimal approximate measurement value assignment

to the attribute variable “XPosition(Red)” is displayed in figure 6.11. The approximate

measurement value was determined by algorithm 7 when applied to the sample sentences,

“The red cube is to the left of the blue cube. The red cube is to the right of the blue

cube.”.
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Figure 6.11: The visual output produced for the sample sentences, “The red cube is to the

left of the blue cube. The red cube is to the right of the blue cube.”

6.2 Periodic example

This section applies the CVTNG system to a series of natural language sentences that

describe the actions of objects which repeat over time. The repetitive actions described

by adjectives and verbs are modelled as centre computational verbs (refer to definition

3.19). The examples serve to illustrate the CVTNG system’s handling of evolving func-

tion models parameterised by time.

Section 6.2.1 states the contexts of interpretation, subcontexts, and partial contexts

that group and subdivide the evolving function models defined for the sample sentences

of this section. The evolving function models of the adjectives and verbs of the sample

sentences are stated.

The actions of the CVTNG system on sentences which describe actions that repeat

over a time interval are described in section 6.2.2. The actions of the parsing subsys-

tem, the subsystem for assigning measurement values to attribute variables, and the

interaction between the CVTNG system and the representation system are described.

The effect of adverbs of amplitude and adverbs of period on natural language sen-

tences that describe actions that repeat over a period of time is described in section

6.2.3. The modified evolving function models are presented and the actions of the pars-

ing, measurement value assignment, and representations systems are described.

The effect of inconsistencies in natural language statements that describe periodic

actions over time are examined in section 6.2.4. The evolving function models of the

sample sentences that contain inconsistencies are presented. Finally, the actions of the

CVTNG subsystem are described for the examples that contain inconsistencies.
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6.2.1 Modeling

Here the sample sentence “The green rotating cube orbits the yellow cube.” is examined.

The sentence ascribes the periodic adjective, “rotating”, to an instance of the noun

“cube” and describes a periodic action by means of the word “orbit”. The example

enables us to examine the actions of the CVTNG system on adjectives and verbs of a

periodical nature. The adjectives and verbs are applied to the noun “cube” represented

as a 3D model to convey the actions and properties of the adjectives and verbs within

the interactive narrative space.

Table 6.2 specifies the definition details of the implementation of the adjectives “yel-

low” and “green” in the contexts of interpretation “RedChannel” and “GreenChannel”.

The definition details of the adjective “rotating” in the context of interpretation “Spa-

tialX” are specified as are those of the verb “orbit” for the “SpatialX” and “SpatialZ”

contexts of interpretation. The column definitions of table 6.2 are the same as those for

table 6.1. The column “Time Interval”, if applicable, of table 6.2 lists the time interval

of the evolving function model for the word listed in the “Word” column as modelled in

the context of interpretation listed in the “Context” column. The applicable context of

interpretation and natural language word are listed in the same table row as the time

interval specified.

The annotation “*” specified for the “Time interval” column of table 6.2 indicates

a time interval of an evolving function model defined to repeat over the specified time

interval and is specified by the Infinite attribute in the CVTNG system (refer to section

5.4.4).

Figure 6.12 illustrates the new contexts of interpretation, subcontexts, and partial

contexts introduced for the examples of this section. The attribute variables specified for

the newly introduced contexts of interpretation, subcontexts, and partial contexts are

also shown. The attribute variables are either assigned measurement values by evolving

functions in the related contexts of interpretation or are used as attribute variables in

related subcontexts and partial contexts.

The “SpatialX” and “SpatialZ” contexts of interpretation are related to the “Spatial-

StartX”, “SpatialStartZ”, “SpatialChangeX”, and “SpatialChangeZ” subcontexts that

serve to define the terms of the evolving functions related to the verb “orbits”. The
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subcontexts “SpatialChangeX” and “SpatialChangeZ” serve to model the terms of the

evolving function equations that in turn model the change in the position of an object

along the x-axis and the z-axis respectively.

The partial contexts “SpatialStartSelfX”, “SpatialStartOtherX”, and “SpatialStartRe-

ferenceX” are related to the subcontext “SpatialStartX” and serve to model the partial

amplitude values related to the width of a subject noun, the width of an object noun,

and the position of an object noun respectively. The partial contexts “SpatialStart-

SelfZ”, “SpatialStartOtherZ”, and “SpatialStartReferenceZ” are related to the subcon-

text “SpatialStartZ” and serve to model the partial amplitude values related to the

depth of a subject noun, the depth of an object noun, and the position of an object

noun respectively. The partial contexts “SpatialChangeSelfZ”, “SpatialChangeOtherZ”,

“SpatialChangeReferenceZ”, “SpatialChangeSelfX”, “SpatialChangeOtherX”, and “Spa-

tialChangeReferenceX” are similar to the partial contexts related to the “SpatialStartX”

subcontexts, but serve to model partial amplitude values related to the displacement of

an object along the z-axis in a 3D space.

The contexts of interpretation, subcontexts, and partial contexts stated above were

implemented in the “Context Editor” interface component of the CVTNG system (refer

to section 5.3). The words of the sample sentence specified in table 6.2 were implemented

within the stated contexts of interpretation, subcontexts, and partial contexts in the

“Word Editor” interface component of the CVTNG system. The noun “cube” was

implemented in the newly introduced contexts of interpretation, subcontexts, and partial

contexts illustrated in figure 6.12. The element class associated with the noun “cube” was

regenerated to accommodate the additional properties (refer to section 5.3.2) specified

in the contexts of interpretation, subcontexts, and partial contexts illustrated in figure

6.12.

A YRotation property which corresponds to a rotation around the y-axis (horizon-

tally) of the coordinate system within the Microsoft R© DirectX R© graphics rendering API

was implemented in the “SpatialX” context of interpretation and the “SpatialStartX”

subcontext. A corresponding rotation transformation was implemented within the trans-

formation library (refer to section 5.3.4). The rotation transformation is defined as a

matrix multiplied with the vectors that contain the vertices of a 3D graphical model.
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Figure 6.13: The parse bin relationships produced for the sample sentence, “The green ro-

tating cube orbits the yellow cube.”

The transformed vertices correspond to a transformed version of the graphical model

rotated around the y-axis by a specified degree equal to the measurement value of the

associated attribute variable. The associated attribute variable “YRotation” is specified

within the YRotation property.

6.2.2 Parsing, resolution, and representation

The actions of the CVTNG parsing subsystem applied to the sample sentence “The green

rotating cube orbits the yellow cube.” are similar to the sequence of actions described

in section 6.1.3. The parse bin relationships illustrated in figure 6.13 are produced. The

attribute variable relationships of the evolving function models formed from the parse

bin relationships illustrated in figure 6.13 are shown in figure 6.14.

The difference between the evolving function models of section 6.1 and those defined

for “The green rotating cube orbits the yellow cube.” are that the evolving function mod-

els of the latter evaluate to different values over time. The evolving function equations

produced for the sample sentence, “The green rotating cube orbits the yellow cube.”,
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are:

Green(Green) = fone(t)κ1(0.7)

Red(Y ellow) = fone(t)κ1(0.7)

Green(Y ellow) = fone(t)κ1(0.7)

Y Rotation(Green) = fLinear(t)κ12π

XPosition(Green) = fone(t)κ1Width(Green) + fone(t)κ2Width(Y ellow)

+ fMinusHalfCosP lusHalf (t)κ3Width(Green)

+ fMinusHalfCosP lusHalf (t)κ4Width(Y ellow)

+ fone(t)κ5Y Position(Y ellow)

ZPosition(Green) = fone(t)κ1Depth(Green) + fone(t)κ2Depth(Y ellow)

+ fHalfSinP lusHalf (t)κ3Depth(Green)

+ fHalfSinP lusHalf (t)κ4Depth(Y ellow)

+ fone(t)κ5ZPosition(Y ellow)

. (6.7)

The annotation, (Green), refers to the instance of the noun “cube” described by

the adjective “green”. The annotation, (Yellow), refers to the instance of the noun

“cube” described by the adjective “yellow”. fone(t), fLinear, fMinusHalfCosP lusHalf , and

fHalfSinP lusHalf are generic functions, as defined for equation (4.3), and their are specified

in table 6.2. The κi ∈ R are scalars as defined for equation (4.3) and the values of the

scalars are specified in table 6.2. t designates the current value of a timer in seconds.

t = 0 corresponds to the first iteration of the procedures for assigning measurement

values to attribute variables.

The evolving function equations (refer to equation (6.7)) for the sample sentence,

“The green rotating cube orbits the yellow cube.”, in contrast to the evolving function

equations of the sample sentence, “The red cube is on the blue cube.”, produce different

measurement values over time. The sample sentence, “The red cube is on the blue cube.”,

was modelled in terms of static computational verbs (refer to definition 3.15) while the

sample sentence of this section, “The green rotating cube orbits the yellow cube.”, was

modelled in terms of centre computational verbs (refer to definition 3.19).
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Figure 6.14: The attribute variable relationships produced by resolving the parse bins in

figure 6.13
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The generic functions fHalfSinP lusHalf , fMinusHalfCosP lusHalf , and fLinear evaluate to

different values for different time values, however, and the measurement values obtained

by the crisp procedure for assigning measurement values to attribute variables (refer to

section 4.4.2) therefore produces different measurement values over a period of time. The

measurement values are assigned to the corresponding attribute variables. The equations

stated in equation (6.7) are accordingly left unevaluated within this discussion, because

the equations may evaluate to different measurement values for different values of the

time parameter, t.

The CVTNG subsystem for assigning measurement values to attribute variables ex-

ecutes the recursive substitution algorithm (refer to section 5.6.3.1) for a specific time

value and obtains the measurement values for the attribute variables “Green(Green)”,

“Red(Yellow)”, “Green(Yellow)”, “YRotation(Green)”,“ XPosition(Green)”, and “ZPo-

sition(Green)”.

The measurement values for a specific instance of the noun “cube” (Green or Yellow)

are passed to the element class generated for the noun “cube”. The transformations

applied to the vertices of the 3D model of a cube are instanced as parameterised by the

measurement values obtained. The transformations are instanced by the obtained mea-

surement values when the appropriate accessor methods of the element class generated

(refer to section 5.4.6) are called.

The instanced transformations are applied to the vertices of the 3D model of the

cube when the Transformation method of the generated element class is invoked. The

transformed vertices of the cube are rendered by calls to the Microsoft R© DirectX R© API

as implemented in the Invoke method of the element class generated. The transformed

image of the cube represents the natural language noun “cube” within the interactive

narrative space as described by the natural language adjectives and verbs of the sample

sentence, “The green rotating cube orbits the yellow cube.”, at a specific point in time.

The steps above are performed for both instances of the noun “cube” and therefore two

separate cubes are rendered to the graphical display.

The measurement values obtained from the evolving function equations (refer to

equation (6.7)) vary over time and so the transformations applied to the vertices of the

cube models will also vary over time. The sequence of images rendered for the varying
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Figure 6.15: The visual output produced for the sample sentence, “The green rotating cube

orbits the yellow cube.”, for time values, t = π
2 , t = π

transformations on the graphical models of the cubes serves to represent the natural

language adjectives and verbs of the periodic sample sentence, “The green rotating cube

orbits the yellow cube.”, over a time period. Figure 6.15 depicts the visual representation

of the sentence “The green rotating cube orbits the yellow cube.” for time values of

t = π/2 and t = π respectively. The images form part of an animation which shows that

the green cube rotates around its own y-axis while it simultaneously orbits around the

yellow cube.

6.2.3 Adverbs

This section examines the actions of the CVTNG system when applied to the sample

sentence, “The green quickly rotating cube slowly orbits the yellow cube.”. The sam-

ple sentence extends the sample sentence, “The green rotating cube orbits the yellow

cube.”, with the addition of the natural language adverbs “quickly” and “slowly” that

are implemented as adverbs of period within the CVTNG system (refer to sections 4.3.4

and 5.4.5).

Table 6.2 contains the implementation details of the adverbs “quickly” and “slowly”

within the “SpatialX” and “SpatialZ” contexts of interpretation. The transformation

functions Ψhalf and Ψtwo used within the evolving function models of the adverbs “quickly”

and “slowly” were implemented as specifications of the Function interface (refer to sec-

tion 5.4.7). The specifications of the Function interface that correspond to the trans-

formation functions Ψhalf and Ψtwo were implemented as part of the function library

described in section 5.4.7.
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Figure 6.16: The parse bin relationships produced for the sample sentence, “The green quickly

rotating cube slowly orbits the yellow cube.”

The actions of the CVTNG parsing subsystem on the sample sentence, “The green

quickly rotating cube slowly orbits the yellow cube.”, are similar to those described

in section 6.1.3. The parse bin relationships produced for the sample sentence, “The

green quickly rotating cube slowly orbits the yellow cube.”, are shown in figure 6.16.

The attribute variable relationships of the evolving function models formed from the

parse bin relationships shown in figure 6.16 are similar to those shown in figure 6.14 and

are therefore not shown. Figure 6.16 shows that the adverbs “quickly” and “slowly”

are associated with the adjective “rotating” and the verb “orbits” respectively. The

transformation functions, Ψtwo and Ψhalf , are applied to the time value, t, passed as

parameter to the generic functions, fi, specified for the evolving function models of the

adjective “quickly” and the verb “orbits” (refer to section 4.3.4 and equation (4.21)).

The adverbs “quickly” and “slowly” were not defined in the contexts of interpretation
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“RedChannel” and “GreenChannel” and therefore the transformation functions, Ψtwo

and Ψhalf , are not applied to the generic functions specified in the evolving function

models of the adjectives “green” and “yellow”.

The CVTNG subsystem for assigning measurement values to attribute variables forms

a series of evolving function equations that correspond to the parse bin relationships

illustrated in figure 6.16. The evolving function equations are formed from the evolving

function models specified for the natural language words of the sample sentence, “The

green quickly rotating cube slowly orbits the yellow cube.”. The evolving function models

defined are specified in table 6.2 for the applicable contexts of interpretation, subcontexts,

and partial contexts.

The evolving function equations formed for the parse bin relationships from the de-

fined evolving function models are:

Green(Green) = fone(t)κ1(0.7)

Red(Y ellow) = fone(t)κ1(0.7)

Green(Y ellow) = fone(t)κ1(0.7)

Y Rotation(Green) = fLinear(ΨDouble(t) ◦ t)κ12π

XPosition(Green) = fone(t)κ1Width(Green)

+ fone(t)κ2Width(Y ellow)

+ fMinusHalfCosP lusHalf (ΨHalf (t) ◦ t)κ3Width(Green)

+ fMinusHalfCosP lusHalf (ΨHalf (t) ◦ t)κ4Width(Y ellow)

+ fone(t)κ5Y Position(Y ellow)

Y Position(Green) = fone(t)κ1Depth(Green)

+ fone(t)κ2Depth(Y ellow)

+ fHalfSinP lusHalf (ΨHalf (t) ◦ t)κ3Depth(Green)

+ fHalfSinP lusHalf (ΨHalf (t) ◦ t)κ4Depth(Y ellow)

+ fone(t)κ5ZPosition(Y ellow)

(6.8)

The annotations (Green) and (Yellow), the generic functions fone, fLinear,

fMinusHalfCosP lusHalf , and fHalfSinP lusHalf , and the scaling factors, κi, are defined as for
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equation (6.7). The transformation functions, ΨHalf and ΨDouble, are applied to the

period of the generic functions, fone, fLinear, fMinusHalfCosP lusHalf , and fHalfSinP lusHalf .

The transformation functions are applied to the generic functions, fi, defined in the same

context of interpretation or subcontext as the transformation functions. The transfor-

mations functions are applied to the generic functions, fi, as specified by equation (4.21)

for adverbs of period. The details of the transformation functions, ΨHalf and ΨDouble,

are stated in table 6.2.

The evolving function equations for the sample sentence, “The green quickly rotating

cube slowly orbits the yellow cube.”, are similar to those of the sample sentence, “The

green rotating cube orbits the yellow cube.”. The difference between the two sets of

evolving function equations is that the evolving function equations of the former sam-

ple sentence are transformed by adverbs of period. The time parameters of the generic

functions, fi, specified in the evolving function equations that assign measurement val-

ues to the attribute variables “YRotation(Green)”, “XPosition(Green)”, and “YPosi-

tion(Green)” are transformed by the transformation functions, ΨHalf and ΨDouble. The

transformations are applied by means of the composition operation, ◦, performed by eval-

uating the transformation functions, ΨHalf and ΨDouble, for the time value, t, provided

as input to obtain a transformed time value.

The transformed time values are used to calculate the values of the generic func-

tions, fone, fLinear, fLinearDown, fMinusHalfCosP lusHalf , and fHalfSinP lusHalf . The calculated

values of the generic functions are used when the measurement values of the evolving

function equations that correspond to the sample sentence, “The green quickly rotat-

ing cube slowly orbits the yellow cube.”, are determined by the recursive substitution

algorithm (refer to section 5.6.3.1). The remainder of the linear procedure for assigning

measurement values to attribute variables occurs as for the sample sentence, “The green

rotating cube orbits the yellow cube.”. The measurement values determined by the lin-

ear procedure for assigning measurement values to attribute variables are passed to a

representation system by means of a generated element class. The measurement values

are transferred as described for the sample sentence in section 6.2.

Figure 6.17 shows the visual representation of the sentence, “The green quickly ro-

tating cube slowly orbits the yellow cube.”, for time values of t = π/2 and t = π. The
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Figure 6.17: The visual output produced for the sample sentence, “The green quickly rotating

cube slowly orbits the yellow cube.”, for time values t = π
2 , t = π

images shown in figure 6.17 can be compared with those shown in figure 6.15 to observe

the effect of the adverbs of time in this sample sentence.

6.2.4 Inconsistency handling

This section describes the actions of the CVTNG system when applied to natural lan-

guage sentences which describe actions that repeat over a period of time where the

periodic actions described are in conflict with one another. The sample sentences, “The

red cube slowly rotates clockwise. The red cube quickly rotates anticlockwise.”, are ex-

amined. Table 6.2 states the evolving function model details of the adverbs “clockwise”

and “anticlockwise” in the “SpatialX” context of interpretation. The transformation

function, ΨMinusOne, was implemented as a specification of the Function interface in the

function library (refer to section 5.4.7).

The actions of the CVTNG parsing system are similar to those described in section

6.1.3 and the parse bin relationships illustrated in figure 6.18 are produced. The at-

tribute variable relationships of the evolving function equations that correspond to the

sample sentences, “The red cube slowly rotates clockwise. The red cube quickly rotates

anticlockwise.”, are illustrated in figure 6.19. The attribute variable relationships illus-

trated in figure 6.19 are produced from the evolving function models specified in table

6.2 and the parse bin relationships shown in figure 6.18.

Figure 6.18 shows that the adverbs “clockwise” and “anticlockwise” are related to

two instances of the verb “rotate”. The instances of the noun “cube” in the two sample

sentences cannot be distinguished from each other by their associated adjectives (refer

212

 
 
 



Figure 6.18: The parse bin relationships produced for the sample sentences, “The red cube

slowly rotates clockwise. The red cube quickly rotates anticlockwise.”

to section 5.4.3). The attribute variable relationships illustrated in figure 6.19 therefore

clearly show two separate measurement value assignments to the attribute variable,

“YRotation(Red)”, by the evolving functions that correspond to the two instances of

the verb, “rotate”. The evolving functions that correspond to instances of the verb

“rotate” are transformed by the transformation functions associated with the adverbs,

“clockwise” and “anticlockwise”, respectively.

The evolving function equations produced by the parsing subsystem of the CVTNG

system, when applied to the sample sentences, “The red cube slowly rotates clockwise.

The red cube quickly rotates anticlockwise.”, are:

Red(Red) = 0.7

Y Rotation(Red) = fLinear(Ψhalf ◦ t)κ1(Ψminusone ◦ 2π)

Y Rotation(Red) = fLinear(ΨDouble ◦ t)κ1(Ψone ◦ 2π)

. (6.9)
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Figure 6.19: The attribute variable relationships produced by resolving the parse bins of 6.18

The annotation (Red) is as defined for equation (6.1). The generic function, fLinear,

the transformation functions ΨHalf and ΨDouble, the scaling values, κi, and the time

parameter, t, are defined as for equation (6.8).

The evolving function equations (refer to equation (6.9)) clearly show two conflict-

ing measurement value assignments to the attribute variable “YRotation(Red)”. The

linear procedure for assigning measurement values to attribute variables is therefore

unable to assign a single exact measurement value to the attribute variable, “YRota-

tion(Red)”. The two evolving function equations that contain the attribute variable,

“YRotation(Red)”, are therefore formulated as fuzzy constraints in the fuzzy procedure

for assigning approximate measurement values to attribute variables.

The actions of the fuzzy procedure for assigning approximate measurement values

to attribute variables are similar to those presented in section 6.1.7. The chromosomes

in the population of algorithm 7 have a single gene that corresponds to the attribute

variable, “YRotation(Red)”. The constraints of the fuzzy constraint satisfaction problem

(FCSP) resolved by algorithm 7 correspond to the evolving function equations that
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assign measurement values to the attribute variable, “YRotation(Red)” (refer to equation

(6.9)). A population size of 6 was experimentally determined to provide optimal fitness

values averaged over 30 iterations of algorithm 7. A blending factor of α = 0.4 was

experimentally determined to provide optimal solution values averaged over 30 iterations

of algorithm 7.

The optimal blending factor and population size were determined in tandem for

different permutations of population size and blending factor. The population sizes

ranged between 2 and 20 in increments of 1 and the blending factor ranged between

0.0 and 1.0 in increments of 0.1. All fitness values were averaged over 30 iterations of

algorithm 7 for a specific population size and blending factor combination. The mutation

and crossover probabilities were fixed at 0.1 and 1.0 respectively, as was the case for the

sample sentences, “The red cube is to the left of the blue cube. The red cube is to the

right of the blue cube.”, discussed in section 6.1.7.

Figure 6.20 shows the average and best averaged fitness values within the chromo-

some population of algorithm 7 over 500 generations. The averaged fitness values are

calculated over 30 repetitions of algorithm 7 for the parameter values specified above.

The experiment was repeated for time values of t = π/2 and t = π. The average and best

fitness values within the chromosome population initialise to fairly high fitness values and

quickly converge towards a near-optimal fitness value of 0.5 for both time values. The

fitness value of 0.5 corresponds to a near-optimal measurement value assignment for the

attribute variable “YRotation(Red)” due to the conflicting fuzzy constraints. The con-

flicting fuzzy constraints correspond to the conflicting measurement value assignments

from the evolving function models of the sample sentences, “The red cube slowly rotates

clockwise. The red cube quickly rotates anticlockwise.” (refer to equation (6.9)).

The approximate measurement values that correspond to the averaged fitness values

illustrated in figure 6.20 are passed to a representation system by means of a generated

element class. The CVTNG subsystem for assigning measurement values to attribute

variables and the representation system interact as described in section 6.2. Figure

6.21 illustrates the graphical output produced for time values t = π/2 and t = π when

the CVTNG system is applied to the sample sentences, “The red cube slowly rotates

clockwise. The red cube quickly rotates anticlockwise.”.
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Figure 6.20: The solution accuracy of the genetic algorithm for fuzzy constraint satisfaction

when applied to the sample sentences, “The red cube slowly rotates clockwise. The red cube

quickly rotates anticlockwise.”

6.3 Dynamic examples

This section discusses the actions of the CVTNG system when applied to represent

visually natural language sentences that describe changes in the state of an object. The

dynamic actions that correspond to verbs in natural language sentences are modelled

according to node computational verbs (refer to definition 3.16). The nouns of the natural

language sentences are modelled in terms of 3D graphical models. The adjectives of the

sample sentence are modelled as static (refer to definition 3.15) or centre computational

verbs (refer to definition 3.19). The adverbs of the natural language sentences presented
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Figure 6.21: The visual output produced for the sample sentences, “The red cube slowly

rotates clockwise. The red cube quickly rotates anticlockwise.”, for time values t = π/2 and

t = π

as examples are modelled as adverbs of amplitude and adverbs of period that correspond

to the transformations of the amplitude and period of evolving functions defined in the

same context of interpretation, subcontext, or partial context.

Section 6.3.1 discusses the evolving function models of the words of the sample sen-

tence presented in this section. The actions of the sequencing algorithm introduced in

section 5.5.5 as applied to the sample sentences of this section, are also discussed.

The actions of the parsing subsystem, the subsystem for the assigning measurement

values to attribute variables, and the interaction between the CVTNG system and a

representation system are discussed in section 6.3.2. The basic examples presented in

section 6.3.1 are extended in section 6.3.3 by the introduction of adverbs of amplitude

and adverbs of period to the evolving function models of verbs that describe changes

in state. The actions of the CVTNG system are discussed in section 6.3.4, when the

CVTNG system is applied to sample sentences that describes conflicting changes in

state.

6.3.1 Modeling

This section describes the evolving function models of natural language verbs that de-

scribe changes in the state of objects. The objects correspond to the subject and object

nouns of the natural language verbs in the sample sentences, “The red cube is to the

left of the blue cube. The red cube moves onto the blue cube.”, that are provided as

input to the CVTNG system. The evolving function models of the natural language
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verbs in the sample sentences, “The red cube is to the left of the blue cube. The red

cube moves onto the blue cube.”, are also described in terms of the CVTNG sequencing

algorithm (refer to section 5.5.5). The CVTNG sequencing algorithm determines the

time interval for the evolving function model of a natural language verb in relation to

the time intervals of other natural language verbs. The natural language verbs whose

time intervals are determined by the CVTNG sequencing algorithm are parts of natural

language sentences provided as input to the CVTNG system.

The details of the evolving function models of the verb phrases “is left of” and

“moves onto” used in the sample sentences, “The red cube is to the left of the blue

cube. The red cube moves onto the blue cube.”, are provided in table 6.3. The verb

phrase “is left of” describes a static relationships between two objects named by its

subject and object nouns. The verb phrase “is left of” is therefore modelled as a static

computational verb (refer to definition 3.15) in the context of interpretation “SpatialX”,

the subcontexts “SpatialStartX”, and the partial contexts “SpatialStartReferenceX”,

“SpatialStartSelfX”, “SpatialStartOtherX”.

The verb phrase, “is left of”, is also modelled within the newly introduced “Se-

quenceX” context of interpretation. The “SequenceX” context of interpretation serves

as a grouping for evolving function models that describe the state and change of state for

a point of reference along the x-axis of a 3D visual space. The point of reference modelled

corresponds to the perceived starting point of a movement in a 3D visual space. The

movement is a change of position for an object named by a natural language noun. The

natural language noun serves as the subject and object noun of the natural language

verb that names the movement. The movement is modelled by the evolving function

model of the corresponding natural language verb.

The “SequenceY” context of interpretation described models the state and changes

of state for a point of reference along the y-axis of a 3D space. The subcontexts “Se-

quenceStartX” and “SequenceStartY” serve to group the component of an evolving

function model that describes the start state of a point of reference along the x-axis

and y-axis of a 3D visual space respectively. The subcontexts “SequenceChangeX”, and

“SequenceChangeY” serve to group the component of an evolving function model that

describes the change in state of a point of reference along the x-axis and y-axis of a 3D
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visual space respectively.

The “SequenceX” and “SequenceY” contexts of interpretation with their associated

subcontexts and partial contexts allow a sequence of movements in a 3D space to be

modelled. The “SequenceX” and “SequenceY” contexts of interpretation allow evolv-

ing function models to be specified for a point of reference along the x-axis and y-axis

respectively. The measurement values determined by evolving function models speci-

fied within the “SequenceX” and “SequenceY” contexts of interpretation are stored in

the attribute variables “StartXPosition” and “StartYPosition” respectively. The use of

the attribute variables “StartPositionX” and “StartPositionY” as amplitude values or

partial amplitude values in the evolving function models specified in the contexts of in-

terpretation “SpatialX” and “SpatialY” allow movements to be modelled in relation to

a point of reference determined by other movements. The evolving function models of

verbs that model movements in a 3D visual space are therefore able to model sequences

of movements. The sequences of movements are named by natural language verbs that

occur in a set of related natural language sentences that are provided as input to the

CVTNG system.

The verb phrase,“moves onto”, is modelled in the contexts of interpretation “Spa-

tialX”, “SpatialY”, “SequenceX”, and “SequenceY”. Figure 6.22 illustrates the contexts

of interpretation, subcontexts, and partial contexts that the verb phrase “moves onto” is

modelled in. The evolving function models for the verb phrases “is left of” and “moves

onto” were specified using the “Word Editor” interface component of the CVTNG system

(refer to section 5.4.1). The newly introduced contexts of interpretation, “SequenceX”

and “SequenceY”, along with their associated subcontexts and partial contexts were de-

fined using the “Context editor” interface component of the CVTNG system (refer to

section 5.3). The generic functions specified in table 6.3 were implemented as specifica-

tions of the Function interface in the function library (refer to section 5.4.7).

Table 6.3 indicates the time intervals associated with the evolving function models

specified. The time intervals are specified in seconds and are either instant, terminate, or

indefinite. The time intervals specified for the evolving function models are used by the

sequencing algorithm (refer to algorithms 2 and 3) discussed in section 5.5.5 to determine

the validity periods of the associated evolving function models. The validity period of
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an evolving function model dictates the time values at which the evolving function is

evaluated to retrieve measurement value for attribute variables.

Evolving function models with instant time intervals are specified by intervals of,

t = 0, in table 6.3. Evolving function models that have an instant time interval are

evaluated a single time within the CVTNG system. The measurement value retrieved

from an evolving function model at a single time instant is stored within the associated

attribute variable. The attribute variable retains the measurement value assigned by the

evolving function model evaluated for the single time instant until the attribute variable

is assigned a measurement value by another evolving function model.

An evolving function model that has an infinite time interval is specified in table 6.3

by the time period t > 0. Evolving function models that have an infinite time interval

have a start time determined by the CVTNG sequencing algorithm (refer to section

5.5.5). An evolving function model with an infinite time interval is evaluated for all time

values after the start time determined by the CVTNG sequencing algorithm.

Table 6.3 specifies a finite time interval for an associated evolving function model as

0 < t < x. The value x is a real-valued number that specifies the size of the time interval

specified for an associated evolving function model. An evolving function model with a

finite time period has its start time determined by the CVTNG sequencing algorithm.

An evolving function model with a finite time interval is evaluated from a start time

determined by the CVTNG sequencing algorithm to determine a measurement value

for the associated attribute variable. The evolving function model with a finite time

period is evaluated up to an end time determined by the CVTNG sequencing algorithm.

The CVTNG system evaluates an evolving function model with a finite time period

at the start and end times determined by the CVTNG sequencing algorithm to ensure

continuity in the associated representational media (refer to section 5.5.5). If the actual

time, t, that an evolving function model with finite period is evaluated at is greater

than the end time determined by the sequencing algorithm of the CVTNG system for

that evolving function model, a modified time value, t∗, is passed as a parameter to

the evolving function model and it is equal to the end time determined for the evolving

function model.

An evolving function model defined to be repeatedly evaluated over a specified time
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interval is annotated with an asterisk (*). Evolving functions defined to be repeatedly

executed over the same time interval take the form of equation (4.4). The actual time

parameter, t, is adapted for evolving function models of the form of equation (4.4) to

fall within the time interval specified for the evolving function model.

The time intervals specified for the evolving function models with a finite time interval

(refer to table 6.3) are static. An evolving function model with a time interval of static

size is always evaluated for the same time interval. The movement in a 3D visual space

that is modelled by means of the evolving function model with a finite period of static size

will therefore also always occur over the same time period. The evolving function models

specified in table 6.3 and the CVTNG system will therefore model and subsequently

represent actions over a fixed period of time. An action in the representative space

will occur over the time interval specified for the associated evolving function regardless

of the amplitude values that scale the associated evolving functions and therefore the

representation of the actions in the 3D space. The visual representation of the verb

phrase, “moves onto”, will, for example, depict the movement of the visual representation

of the subject noun onto the object noun within the representational space over the same

period of time, regardless of the starting position of the visual depiction of the subject

noun. The limitation of modelling evolving functions over static-sized intervals can be

overcome by dynamically scaling the interval sizes of evolving function models based

on external factors such as amplitude values. The dynamic determination of evolving

function time intervals does not fall within the scope of this work.

6.3.2 Parsing, variable resolution, and representation

The actions of the CVTNG parsing procedure applied to the sample sentences, “The red

cube is to the left of the blue cube. The red cube moves onto the blue cube.”, are similar

to those described in section 6.1.3. Figure 6.23 illustrates the parse bin relationships

produced for the sample sentences, “The red cube is to the left of the blue cube. The

red cube moves onto the blue cube.”. The attribute variable relationships produced from

the parse bin relationships illustrated in figure 6.23 and the evolving function models

specified in table 6.3 are shown in figure 6.24. The edges that connect the attribute

variables are not only annotated by the generic functions, fi, and scaling factors, κi,
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Figure 6.23: The parse bin relationships produced for the sample sentences, “The red cube

is to the left of the blue cube. The red cube moves onto the blue cube.”

associated with the attribute variables in the specified evolving function models. The

edges are also annotated with a time interval that specifies the validity periods for the

attribute variable relationship illustrated by a particular edge. The validity periods are

determined by the sequencing algorithm within the CVTNG system (refer to section

5.5.5). The validity periods determined are based on the time intervals that are specified

for the evolving function models containing the attribute variable relationships shown in

figure 6.24.

The evolving function equations produced by the parsing subsystem of the CVTNG

system when applied to the sample sentences,“The red cube is to the left of the blue

cube. The red cube moves onto the blue cube.”, are:

Red(Red) = 0.7foneκ; t ≥ 0

Blue(Blue) = 0.7foneκ; t ≥ 0

(6.10)
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XPosition(Red) = fone(t)κ1Width(R) + fone(t)κ2Width(B)

+ fone(t)κ3XPosition(B), t = 0

Y Position(Red) = fone(t)κ1Y Position(B), t = 0

StartXPosition(Red) = fone(t)κ1XPosition(R), t = 0

StartY Position(Red) = fone(t)κ1Y Position(R), t = 0

(6.11)

XPosition(Red) = fLinearDown(t)κ1StartXPosition(R)

+ fLinear(t)κ2XPosition(B), 0 < t < 1

Y Position(Red) = fLinearDown(t)κ1StartY Position(R) + fLinear(t)κ2Height(B)

+ fLinear(t)κ3Height(R) + fLinear(t)κ4Y Position(B), 0 < t < 1

StartXPosition(Red) = fStepUpAt1(t)κ1XPosition(R)

+ fStepDownAt1(t)κ2StartXPosition(R), 0 < t < 1

StartY Position(Red) = fStepUpAt1(t)κ1Y Position(R)

+ fStepDownAt1(t)κ2StartY Position(R), 0 < t < 1

. (6.12)

The annotation “(R)” refers to the instance of the noun “cube” that is described by the

adjective “red” in the natural language text provided as input to the CVTNG system.

The annotation “(B)” refers to the instance of the noun “cube” that is described by

the adjective “blue” in the natural language text provided as input to the CVTNG

system. The generic functions, fone,fLinear, fLinearDown, fStepUpAt1, and fStepDownAt1 are

defined as for equations (4.3) and (4.4). The details of the generic functions, fone,fLinear,

fLinearDown, fStepUpAt1, and fStepDownAt1, are specified in table 6.3. The scaling factors,

κi, are defined as they are for equations (4.3) and (4.4). The scaling factors, κi, have

values as specified in table 6.3 for the evolving function models of the natural language

words that the scaling factors correspond to. The time value, t, is a real-valued number

provided by a clock in the CVTNG system.
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If the evolving function model of a natural language word for a specific context of

interpretation is defined to repeat over a specified time interval, the evolving function

equation takes the form of equation (4.4) and the time value, t, is transformed to fall

within the interval specified for the evolving function equation. The time value, t, is

specified in seconds. The time value, t, has a value of t = 0 at the first iteration of the

algorithms within the CVTNG subsystem for assigning measurement values to attribute

variables.

The system of evolving function equations (refer to equations (6.10) through (6.12))

produced for the sample sentences, “The red cube is to the left of the blue cube. The red

cube moves onto the blue cube.”, is similar to the systems of evolving function equations

produced for the static and periodic sample sentences of the previous sections. The

system of evolving function equations given by equations (6.10) through (6.12) differs

from the other systems of evolving function equations associated with previous examples,

with respect to the validity period attached to the evolving function equations.

The set of evolving function equations given by equation (6.11) is instantaneous with

regard to the time interval specified for them. The time interval determined for the

set of evolving function equations given by equation (6.11) by the CVTNG sequencing

algorithm is t = 0. The set of evolving function equations given by equation (6.11),

therefore only holds for the first iteration of the algorithms within the CVTNG subsystem

for assigning measurement values to attribute variables.

The set of evolving functions equations given by equation (6.12) have an associated

time interval of static size. The set of evolving function equations given by equation

(6.12) is determined by the CVTNG sequencing algorithm to be valid in the time interval

0 < t ≤ 1.

The set of the evolving function equations given by equation (6.10) are valid for all

time values. The time interval determined for the set of evolving function equations

given by equation (6.10) is t ≥ 0 as determined by the CVTNG sequencing algorithm.

The algorithms within the CVTNG subsystem for assigning measurement values

to attribute variables are executed once the valid evolving function models have been

determined. The recursive substitution, Gaussian elimination, and genetic algorithm

for the resolution of FCSPs are executed for the evolving functions determined to be
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valid for the current time value. The evolving functions that are valid for a specific time

value are those evolving functions whose time intervals contain the current time value.

Evolving functions determined to repeat over a specific time interval are valid for all

time values after start time determined by the CVTNG sequencing algorithm. Evolving

function equations that repeat over a specified time interval take the form of equation

(4.4) and therefore modify the time value to fall within the time period specified for the

evolving function model.

Evolving function models that are defined to have a finite time interval are evaluated

at least at the start time and then end time determined for the evolving function models

by the CVTNG sequencing algorithm. The evolving function models for the attribute

variables, “StartXPosition” and “StartYPosition”, depend on the feature of the CVTNG

system that evaluates an evolving function model at the determined start and end times.

The attribute variables “StartXPosition” and “StartYPosition” specified within the “Se-

quenceX” and “SequenceY” contexts of interpretation serve to model a point of reference

for a movement along the x-axis and the y-axis with respect to the position of the point

of reference along the x-axis and y-axis respectively. If the movement over the x-axis and

the y-axis has concluded, the point of reference shifts and the position of the point of

reference changes along both the x-axis and the y-axis. The end positions of a movement

along the x-axis and y-axis become the new reference point for the next movement.

The instantaneous jump of a reference point when one observed movement transi-

tions into another discernible observed movement is modelled by means of the generic

functions, fStepUpAt1 and fStepDownAt1. The generic functions, fStepUpAt1 and fStepDownAt1,

evaluate to values of 1 and 0 respectively at the end time defined for the evolving function

model. The evolving function models associated with the attribute variables, “StartX-

Position” and “StartYPosition”, are defined to repeat over the interval 0 ≥ t ≤ 1. If

the generic functions, fStepUpAt1 and fStepDownAt1, are scaled by amplitude values equal

to the starting position and current position of an object whose movement is modelled

within another evolving function model, the reference point is modelled to shift from

the starting position of the modelled movement to the current position of the modelled

movement.

The generic function, fStepUpAt1, evaluates to a value of 1 only at the end of the time

228

 
 
 



intervals associated with the evolving function models that assign measurement values

to the attribute variables, “StartXPosition”, and “StartYPosition”. The inverse of the

previous statement holds true for the generic function, fStepDownAt1, which evaluates to

0 only at the end of the time intervals defined for the evolving function equations that

assign measurement values to the attribute variables, “StartXPosition” and “StartYPo-

sition”. The point of reference for a movement therefore shifts to the current position

of a movement only at the end of the time intervals specified for the evolving function

equations defined in terms of the generic functions, fStepUpAt1 and fStepDownAt1. The

point of reference for a movement is therefore modelled as shifting from the start point

to the end point of the movement. The evolving function equations associated with the

attribute variables, “StartXPosition” and “StartYPosition”, evaluate to measurement

values equal to the current position of a reference point along the x-axis and the y-axis if

the time value is not equal to the determined end time of the respective evolving function

models.

Figure 6.24 illustrates the cyclical relationships from the attribute variables, “StartX-

Position” and “StartPosition”, to themselves. The cyclical attribute variable relation-

ships are created by the parsing subsystem of the CVTNG system when the sample

sentences, “The red cube is to the left of the blue cube. The red cube moves onto

the blue cube.”, are processed. The recursive substitution algorithm cannot determine

the value of the attribute variables, “StartXPosition” and “StartYPosition”, because the

cyclical call of the recursive substitution algorithm for the attribute variable relationships

to themselves are pre-empted by the recursive substitution algorithm (refer to section

5.6.3.1). Termination of the algorithm when a cycle is detected in the attribute vari-

able relationships prevents an endless loop from occurring in the recursive substitution

algorithm. The measurement values of the attribute variables, “StartXPosition” and

“StartYPosition”, are therefore undetermined when the recursive substitution algorithm

terminates. The evolving functions that assign measurement values to the attribute

variables “XPosition” and “YPosition” use the attribute variables, “StartXPosition”

and “StartYPosition”, as amplitude values respectively. The recursive substitution al-

gorithm can, as a result, not calculate the measurement value of the attribute variables,

“XPosition” and “YPosition”, from the evolving functions that use “StartXPosition”
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and “StartYPosition” as amplitude values. The measurement values of the attribute

variables “XPosition” and “YPosition” are therefore undetermined when the recursive

substitution algorithm terminates.

The evolving function equations that contain the attribute variables “XPosition”,

“YPosition”, “StartXPosition”, and “StartYPosition” are evaluated for a specific time

value to form evaluated evolving function equations (refer to section 5.6.3.2). The EEFEs

are rewritten into a form that isolates the determined values as a single constant, K,

on the right-hand side of the rewritten EEFE. Coefficient values are determined from

the products of generic functions, fi, that are evaluated at the specific time value and

scalar values, ki, specified for the terms of the corresponding evolving function models.

The coefficients, ci, on the left-hand side of the EEFEs are grouped into a coefficient

matrix A. The rows of the coefficient matrix A correspond to the evolving function

equations that contain attribute variables “XPosition”, “YPosition”, “StartXPosition”,

and “StartYPosition”. The coefficient matrix, A, is augmented with a column vector, K,

of the constant, K, values on the right hand sides of the EEFEs that correspond to the

attribute variables “XPosition”, “YPosition”, “StartXPosition”, and “StartYPosition”.

The Gaussian elimination algorithm (refer to section 5.6.3.3) reduces the augmented ma-

trix, [A|K], to upper triangular form. The measurement values of the attribute variables

“XPosition”, “YPosition”, “StartXPosition”, and “StartYPosition” are determined by

back substitution (refer to section 5.6.3.3).

The measurement values determined for the attribute variables in figure 6.24 at a

specific time value are passed as parameters to transformations applied to a representa-

tional element by means of an element class. The interaction between the subsystem for

assigning measurement values to attribute variables and the representational elements

associated with the noun “cube” occur as described in section 6.1.5. Figure 6.25 illus-

trates the visual output produced when the sample sentences, “The red cube is to the

left of the blue cube. The red cube moves onto the blue cube.”, are processed by the

CVTNG system and the resulting measurement values are applied to a representational

element in a 3D visual space. If the measurement–value calculation and the visual out-

put are repeated for a sequence of time values, an animation is produced that initially

shows the red cube to the left of the blue cube and then moves the red cube onto the
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Figure 6.25: The visual output produced for the sample sentences, “The red cube is to the

left of the blue cube. The red cube moves onto the blue cube.”, for time values of t = 0.5 and

t = 1.0

blue cube.

6.3.3 Adverbs

This section discusses the effect of adverbs on the behaviour of the CVTNG system when

the CVTNG system is applied to natural language sentences that described changes in

state. The adverbs are modelled as adverbs of period and adverbs of time in terms the

computational verb models of the CVTNG system (refer to section 4.3.4). The sample

sentences, “The red cube is to the left of the blue cube. The red cube moves onto the

blue cube.”, are extended by the introduction of the adverbs “far” and “quickly” to form

the sample sentences, “The red cube is far to the left of the blue cube. The red cube

quickly moves onto blue cube.”.

The evolving function models for the adverbs “far” and “quickly” were retained and

are specified in tables 6.2 and 6.3 respectively. The evolving function models were spec-

ified by means of the “Word editor” graphical user interface component of the CVTNG

system. The generic functions utilised with the evolving function word models of the

sample sentences were implemented within the Function library (refer to section 5.4.7).

The actions of the CVTNG parsing subsystem are similar to those described in section

6.1.3. The parse bin relationships illustrated in figure 6.26 are produced by the CVTNG

parsing algorithm. The attribute variable relationships produced from the parse bin

relationships shown in figure 6.26 and the evolving function models specified in table 6.3

are similar to those illustrated in figure 6.24. The evolving function models produced
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Figure 6.26: The parse bin relationships produced for the sample sentences, “The red cube

is far to the left of the blue cube. The red cube quickly moves onto the blue cube.”

for the sample sentences, “The red cube is far to the left of the blue cube. The red

cube quickly moves onto blue cube.”, differ from the evolving function models produced

for the sample sentences, “The red cube is to the left of the blue cube. The red cube

moves onto blue cube.”, in terms of transformation functions applied to certain period

values and amplitude values. The period of the generic functions, fLinear and fLinearDown,

are transformed by the transformation function, ΨDouble, specified within the evolving

function model of the adverb, “quickly”. The partial amplitude values, α11 and α12 ,

of the evolving function model for the verb phrase, “is left”, are transformed by the

transformation function, ΨOneAndHalf , specified within the evolving function model of

the adverb, “far”.

The CVTNG system produces the following set of evolving function equations when

the evolving function models specified in table 6.3 are applied to model the natural

language sentences “The red cube is far to the left of the blue cube. The red cube
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quickly moves onto blue cube.”:

Red(Red) = 0.7, t ≥ 0

Blue(Blue) = 0.7, t ≥ 0

XPosition(Red) = fone(t)κ1(ΨDouble(t) ◦Width(R))

+ fone(t)κ2(ΨDouble(t) ◦Width(B))

+ fone(t)κ3XPosition(B), t = 0

Y Position(Red) = fone(t)κ1Y Position(B), t = 0

StartXPosition(Red) = fone(t)κ1(ΨDouble ◦XPosition(R)), t = 0

StartY Position(Red) = fone(t)κ1Y Position(R), t = 0

XPosition(Red) = fLinearDown(ΨDouble(t) ◦ t)κ1StartXPosition(R)

+ fLinear(ΨDouble(t) ◦ t)κ2XPosition(B), 0 < t < 1

Y Position(Red) = fLinearDown(ΨDouble(t) ◦ t)κ1StartY Position(R)

+ fLinear(ΨDouble(t) ◦ t)κ2Height(B)

+ fLinear(ΨDouble(t) ◦ t)κ3Height(R)

+ fLinear(ΨDouble(t) ◦ t)κ4Y Position(B), 0 < t < 1

StartXPosition(Red) = fStepUpAt1(ΨDouble(t) ◦ t)κ1XPosition(R)

+ fStepDownAt1(ΨDouble(t) ◦ t)κ2StartXPosition(R), 0 < t < 1

StartY Position(Red) = fStepUpAt1(ΨDouble(t) ◦ t)κ1Y Position(R)

+ fStepDownAt1(ΨDouble(t) ◦ t)κ2StartY Position(R), 0 < t < 1

(6.13)

The annotation “(R)” refers to the instance of the noun “cube” described by the adjective

“red” in the natural language text. The annotation “(B)” refers to the instance of the

noun “cube” described by the adjective “blue” in the natural language text. The generic

functions fLinear,fLinearDown,fStepUpAt1, and fStepDownAt1 are defined as in section 6.3.2.

The transformation function, ΨDouble, is used to transform time values and amplitude

values when specified in the definition of an adverb of period (refer to equation 4.21)

and an adverb of amplitude (refer to equation 4.20) respectively. The scaling values, κi,

and the time value, t, are defined in section 6.1.4.
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The actions of the CVTNG system for assigning measurement values to attribute

variables for the sample sentences, “The red cube is far to the left of the blue cube.

The red cube quickly moves onto blue cube.”, are similar to those for the sample sen-

tences, “The red cube is to the left of the blue cube. The red cube moves onto blue

cube.”, discussed in section 6.3.2. The time values passed to the generic functions,

fLinear, fLinearDown, fStepUpAt1, and fStepDownAt1, are transformed by the transformation

function, ΨDouble. The transformations are performed by forming a composition of the

transformation function, ΨDouble, and the time value passed to an associated generic func-

tion. The composition operation is performed by evaluating the transformation function,

ΨDouble, for the time value passed to the respective associated generic functions, fLinear,

fLinearDown, fStepUpAt1, and fStepDownAt1, to obtain a transformed time value.

If the generic function is defined over an infinite time interval, it is evaluated for

double the current time value, t. The dynamics modelled by the evolving function with

an infinite time interval therefore appear to occur at double the speed and as a result the

transformation function, ΨDouble, serves to model the adverb “quickly” when applied to

the time value passed to a generic function. The generic function is specified as part of

an evolving function model of an adjective or verb associated with the adverb “quickly”.

If the evolving function model is specified to repeat over a specific time interval, it

takes the form of equation (4.4). The time value, t, transformed by the transformation

function, ΨDouble, to become 2t is transformed by an evolving function in the form of

equation (4.4) to fall within the time interval specified for the evolving function. If

consecutive time values are t = 1, t = 1.25, t = 1.5, they are transformed by the

transformation function, ΨDouble, to t = 2, t = 2.5, and t = 3 respectively. If the evolving

function to which the transformed time values, t = 2, t = 2.5, and t = 3, are passed to

is defined to repeat over the interval, 0 ≥ t ≤ 1, then the generic functions within the

evolving function are calculated for transformed time values of t = 0, t = 0.5, and t = 0

respectively. The transformed time values of t = 0, t = 0.5, and t = 0 correspond to a full

repetition of the evolving function over its defined time interval. The actual time values

of t = 1, t = 1.25, t = 1.5, correspond only to half a repetition over the specified time

interval if not transformed by function ΨDouble. The transformation function, ΨDouble,

causes the evolving function defined to repeat over a specific time interval to repeat more
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frequently over a specific time period. The dynamics modelled by an evolving function

that is defined to repeat over a specific period therefore appear to repeat at double the

speed and the transformation, ΨDouble, once again serves to model the adverb “quickly”.

If an evolving function model is specified for a interval of a fixed size, the effect

of the transformation function, ΨDouble, is similar to the effect on an evolving function

defined to repeat over a specific time interval. The transformed time value, 2t, more

quickly reaches the end value defined for the evolving function model and therefore the

dynamics modelled by the evolving function with a fixed time interval occur at double

the speed. The transformation function, ΨDouble, once again serves as a model for the

adverb “quickly” when applied to an evolving function with a fixed time interval. The

evolving function model defined for the verb phrase “moves onto” in table 6.3 serves as

an example of an evolving function model defined over an interval with a fixed size.

The use of the transformation function, ΨDouble, in the evolving function model of the

adverb of amplitude (refer to equation 4.20) “far” is as described in section 6.1.6. The

remainder of the processes within the CVTNG subsystem for assigning measurement

values to attribute variables are the same as the actions described in section 6.3.2. The

measurement values determined from the transformed evolving function models that

correspond to the natural language sentences, “The red cube is far to the left of the blue

cube. The red cube quickly moves onto blue cube”, are passed to a representation system

by means of the element class associated with the noun “cube”. Figure 6.27 illustrates

the visual output produced when the sample sentences are processed by the CVTNG

system and the resulting measurement values are used to transform a representational

means in a 3D visual space.

6.3.4 Inconsistency handling

This section examines the actions of the CVTNG system when natural language sen-

tences are processed that describe changes in a conflicting or inconsistent manner. The

actions of the CVTNG system are described for the sample sentences, “The red cube

slowly moves left. The red cube quickly moves right.”. The verb phrases, “moves left”

and “moves right”, are modelled as node computational verbs (refer to definition 3.16)

implemented as evolving functions that have infinite validity periods. If the evolving
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Figure 6.27: The visual output produced for the sample sentences, “The red cube is far to

the left of the blue cube. The red cube quickly moves onto the blue cube.” for time values of

t = 0.5 and t = 1.0

function models of the verb phrases, “moves left” and “moves right”, are implemented

as evolving functions with a fixed validity interval, the CVTNG sequencing algorithm

(refer to section 5.5.5) assigns consecutive validity intervals to the corresponding evolv-

ing function models. The evolving functions that correspond to the verb phrases “moves

left” and “moves right” would therefore not assign conflicting measurement values to the

same attribute variable, because they are not evaluated for the same time values. The

visual representation of the noun “cube” would move to the left and then subsequently

move to the right and no inconsistencies with regard to interpretation and representation

would occur.

The verb phrases “moves left” and “moves right” were implemented in the context of

interpretation, “SpatialX”, and the subcontext, “SpatialChangeX”, as specified in table

6.3. The word definitions were created by the “Word editor” graphical user interface

component of the CVTNG system. The generic functions, fLinear and fLinearDown, are

defined as in section 6.3.2. The transformation functions, ΨDouble and ΨHalf , are defined

as in section 6.2.3. The functions were implemented as specifications of the Function

interface (refer to section 5.4.7).

The actions of the CVTNG sequencing algorithm are as described in section 6.3.2.

The evolving function models of the verb phrases “moves to the left” and “moves to the

right” are defined as having infinite validity periods. The evolving function models that

correspond to the verb phrases “moves left” and “moves right” are therefore evaluated

for all time values that the natural language sentences, “The red cube slowly moves left.
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Figure 6.28: The parse bin relationships produced for the sample sentences, “The red cube

slowly moves left. The red cube quickly moves right.”

The red cube quickly moves right.”, are processed for, by the CVTNG system.

The actions of the CVTNG parsing subsystem are similar to those described in sec-

tion 6.1.3. The parse bin relationships illustrated in figure 6.28 are produced when the

CVTNG parsing algorithm is applied to the natural language sentences “The red cube

slowly moves left. The red cube quickly moves right.”. The parse bin relationships illus-

trated in figure 6.28 are combined with the evolving function models specified in table

6.3 to form evolving function models that have the attribute variable relationships shown

in figure 6.29.

The CVTNG parsing subsystem produces the following evolving function equations

when applied to the natural language sentences, “The red cube slowly moves left. The

red cube quickly moves right.”:

Red(Red) = 0.7

XPosition(Red) = fLinear(t)κ1(1.0); t ≥ 0

XPosition(Red) = fLinearDown(t)κ1(1.0); t ≥ 0

(6.14)

The annotations, “(Red)” and “(Blue)”, the scaling values, κi, and the time value, t, are
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Figure 6.29: The attribute variable relationships produced by resolving the parse bins in

figure 6.28

defined as in section 6.1.4. The generic functions, fLinear and fLinearDown, are defined

as in section 6.3.2. The transformations functions, ΨDouble and ΨHalf , are defined as in

section 6.2.3.

The evolving function models given by equation (6.14) clearly show that two conflict-

ing measurement value assignments are made to the same instance of the “XPosition”

attribute variable when the corresponding evolving functions are evaluated for a specific

time value. The evolving functions that assign measurement values to the attribute vari-

able ,“XPosition”, are formulated as fuzzy constraints and so the fuzzy procedure for

assigning measurement values to attribute variables is initiated.

The actions of the fuzzy procedure for assigning approximate measurement values to

attribute variables were similar to those discussed in section 6.1.7 when applied to the

sample sentences, “The red cube slowly moves left. The red cube quickly moves right.”.

The chromosomes of the genetic algorithm population (refer to algorithm 7) have a single

gene that corresponds to the attribute variable, “XPosition(Red)”. The population size

for algorithm 7 was experimentally determined to provide optimal fitness values for a

population of size 4. A blending factor of α = 0.4 was experimentally determined to

238

 
 
 



provide optimal fitness values for algorithm 7.

The optimal blending factor and population size were determined in tandem for

different permutations of population size and blending factor. The population sizes

ranged between 2 and 20 in increments of 1 and the blending factor ranged between

0.0 and 1.0 in increments of 0.1. All solution values were averaged over 30 iterations of

algorithm 7 for a specific population size and blending factor combination. The mutation

and crossover probabilities were fixed at 0.1 and 1.0 respectively as discussed in section

6.1.7.

Figure 6.30 shows the averaged and best fitness values for solutions determined by

algorithm 7. The average and best fitness values are aggregated over 30 runs of algo-

rithm 7. The aggregated fitness values were determined for time values of t = 1.5 and

t = 3.0 respectively. The best and average fitness values of solutions determined by

algorithm 7 are both shown to converge quickly to a near-optimal fitness value. The

fuzzy constraints which correspond to the evolving functions that assign measurement

values to the attribute variable, “XPosition”, are in conflict and therefore only a fitness

value of 0.5 is possible and optimal. The fitness of solutions determined for the time

value, t = 3.0, start at a higher averaged fitness value but converge more slowly to a

near-optimal fitness value than the fitness values of solutions determined for the time

value, t = 1.5. The slower convergence can be ascribed to the larger measurement values

assigned to the attribute variable, “XPosition”, for the time value, t = 3.0. The larger

assigned measurement values of 3.0 and −3.0 increase the domain size of the gene that

corresponds to attribute variable “XPosition”. The larger domain size of the gene con-

stitutes a larger search space for algorithm 7 and a lower rate of fitness value convergence

occurs for the chromosomes in the population.

The approximate measurement values determined by the fuzzy procedure for assign-

ing measurement values to attribute variables are passed to a representational medium

by means of an element class. The interaction between the representational element and

the CVTNG subsystem for assigning measurement values to attribute variables is similar

to the actions described in section 6.1.5. Figure 6.31 illustrates the visual output pro-

duced when the sample sentence, “The red cube slowly moves left. The red cube quickly

moves right.”, are processed by the CVTNG system and the approximate measurement
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Figure 6.30: The solution accuracy of the genetic algorithm for the resolution of fuzzy con-

straints when applied to the sample sentences, “The red cube slowly moves left. The red cube

quickly moves right.”

values determined are used to transform a representational means associated with the

noun “cube” in a 3D visual space. The visual output is illustrated for measurement

values determined at time values of t = 1.5 and t = 3 respectively.

The visual output animates the slow movement of a 3D cube to the left, with slight

deviation in position along the x-axis of the 3D space. The deviation in the overall pat-

tern of movement is dependent on the accuracy and consistency of the solutions obtained

by algorithm 7. The deviations are not desirable, because the correct and consistent rep-

resentation of the interactive narrative space is one of the main goals of the CVTNG
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Figure 6.31: The visual output produced when interpreting “The red cube slowly moves left.

The red cube quickly moves right.” when interpreted in the “Visual” context hierarchy, at

times t = 1.5 and t = 3.0

system (refer to section 5.2). The deviations can be addressed by utilising previously

determined approximate measurement values when approximate measurement values are

determined by the fuzzy procedure for assigning measurement values to attribute vari-

ables. The previously determined approximate measurement values can be compared to

the approximate measurement value determined by the current iteration of algorithm 7,

and adjusted to ensure consistency with previously obtained results. The near-optimal

values obtained for the sample sentences, “The red cube slowly moves left. The red

cube quickly moves right.”, do not make the deviations visible. The introduction of

large variable counts or large variable domains will, however, make any deviations more

noticeable.

6.3.5 Chapter Summary

This chapter has set out and described the empirical results obtained when the CVTNG

system was applied to a series of natural language sentences that describe objects in

static, periodic, and dynamic relationships. The words of the natural language sen-

tences were modelled in terms of computational verb models within the CVTNG sys-

tem. The computational verb models were processed by the CVTNG system to obtain

measurement values. The measurement values were passed to a representational means

as parameters. These parameters were used to transform a representational means in an

interactive narrative space. The transformed representational means served to represent

the natural language sentences within the interactive narrative space and they therefore

completed the narrative text to interactive narrative space translation.
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The contexts of interpretation, subcontexts, and partial contexts used to group and

subdivide the evolving function models of natural language words that describe static

spatial relationships were discussed. The implementation details of the contexts of in-

terpretation, subcontexts, and partial contexts were discussed in relation to CVTNG

architecture and graphical user interface components. The evolving function models

of the words in the natural language sentence, “The red cube is on the blue cube.”,

were discussed with respect to theoretical models and implementation details within the

CVTNG system. The CVTNG implementation details for the evolving function models

of the sample sentence, “The red cube is on the blue cube.”, were discussed with respect

to the architecture and CVTNG graphical user interface components of the CVTNG

system.

The actions of the CVTNG parsing subsystem were discussed in relation to the

sample sentence, “The red cube is on the blue cube.”. The formation of parsing bins

from the relationships between natural language words in this sample sentence were

discussed as were the attribute variable relationships formed from the construction of

evolving function models for the same sample sentence. The evolving function models

are formed from the evolving function models specified for the words within the sample

sentence, “The red cube is on the blue cube.”, and the parse bin relationships formed

by the parsing algorithm of the CVTNG parsing subsystem. The actions and behaviour

of the CVTNG parsing subsystem discussed in relation to the sample sentence served as

a reference for the discussion of the CVTNG parsing subsystem in relation to the other

examples presented in the chapter.

The actions of the CVTNG subsystem for assigning measurement values to attribute

variables were discussed in relation to the evolving function models for the sample sen-

tence, “The red cube is on the blue cube.”. The actions of the recursive substitution

algorithm (refer to algorithm 5.6.3.1) were discussed in detail as an interation over a

graph of attribute relationships with default measurement values substitutions and mea-

surement value calculations as required. The measurement value calculations of the at-

tribute variables in the evolving function models of the sample sentence were discussed

in detail. The actions of the recursive substitution algorithm upon the evolving function

models of the sample sentence served as a base reference for the accounts of the actions

242

 
 
 



of the recursive substitution algorithm on other examples in the chapter.

The interaction between the CVTNG subsystem for assigning measurement values to

attribute variables and a representational system by means of a generated element class

were discussed. An element class is a generated class that implements methods of the

Element interface (refer to section 5.4.6). The Element interface facilitates the transfor-

mation of a representational means such as a graphical model or sound in an interactive

narrative space according to measurement values obtained from evolving function mod-

els. The initialisation of a 3D graphical model that corresponds to the noun “cube”

was discussed, as implemented in the Initialize method of the Element interface.

The initialisation of default values to transform the graphical model (should no mea-

surement values be assigned) was discussed, as implemented in the InitVars method

of the Element interface. The transfer of measurement values to the element class was

discussed, as implemented in the generated accessor methods of the element class. The

accessor methods receive a measurement value as a parameter and reinitialise a trans-

formation according to the measurement value parameter received. The application

of transformations to the representational means was discussed as implemented in the

Transformation method of the Element interface. The transformations applied were

implemented as specifications of the Transformation interface in a separate assembly.

The display of the transformed 3D model was discussed, as implemented in the Invoke

method of the Element interface within the generated element class. The display of

the transformed 3D model completes the translation of narrative text to computational

verb models, and to depictions in an interactive narrative space. The discussion of the

interactions between the CVTNG subsystem for assigning measurement values to at-

tribute variables and the representational system served as a reference for discussions

with respect to representation for the other examples presented in the chapter.

The actions of the CVTNG system were discussed when the sample sentence, “The

dark red cube is far above the light blue cube.”, is processed by the CVTNG system.

This sample sentence contains adverbs that transform the evolving function models of

associated adjectives and verbs. The contexts of interpretation, subcontexts, and partial

contexts that group and subdivide the evolving function models of the words in the

sample sentence were stated. The evolving function models of the sample sentence were
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stated, as implemented within the specified contexts, subcontexts, and partial contexts.

The effect of the adverbs introduced in the sample sentence were discussed in relation to

the actions of the CVTNG parsing subsystem. The parse bin relationships and attribute

variable relationships produced by the CVTNG parsing subsystem were presented. The

amplitude value transformations performed on the evolving function models of the sample

sentence were discussed. The amplitude value transformations correspond to the adverbs

in the sample sentence. The amplitude values correspond to the evolving function models

of the adjectives “red” and “blue” and the evolving function model of the verb phrase “is

above”. The representation of the sample sentence within a 3D visual space was briefly

discussed and illustrated.

The sample sentences, ”The red cube is to the left of the blue cube. The red cube is

to the right of the blue cube.”, were introduced to examine the actions of the CVTNG

system when natural language that contain conflicting statements with regard to the

static relationships between objects is processed. The required contexts of interpreta-

tion, subcontexts, and partial contexts were introduced and evolving function models

were specified within the context, subcontext, and partial context groupings. The ac-

tions of the CVTNG parsing subsystem were discussed and the resulting parse bins,

attribute variable relationships and evolving function equations were presented. The

evolving function models clearly showed conflicting measurement value assignments to

the attribute variable, “XPosition(Red)”, from two distinct evolving functions. The

evolving functions related to the verb phrases “is to the left of” and “is to the right of”

respectively. The evolving functions that corresponded to the conflicting measurement

value assignments to the “XPosition(Red)” attribute variable were formulated as fuzzy

constraints. The fuzzy procedure for assigning approximate measurement values to at-

tribute variables was discussed in terms of the genetic algorithm for the resolution of

fuzzy constraints. The parameters of the genetic algorithm for the resolution of fuzzy

constraints were experimentally determined, stated, and discussed in relation to the ex-

ploration and exploitation behaviour of algorithm 7. The optimal fitness values attained

for solutions determined by algorithm 7 were stated and briefly discussed. The approxi-

mate measurement values that correspond to the optimal fitness values for algorithm 7

were interfaced to a representational element in the form of a 3D model, and the visual
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output was illustrated.

The sample sentence, “The green rotating cube orbits the yellow cube.”, was intro-

duced to examine the actions of the CVTNG system when natural language sentences

which describe relationships between objects in terms of actions that repeat over time

are processed. Additional contexts, subcontexts, and partial contexts were introduced:

these allowed evolving function models to be specified for changes in the position and

rotation of objects along the x-axis, y-axis, and z-axis of a 3D space.

The evolving function models of the words in the sample sentence, “The green ro-

tating cube orbits the yellow cube.”, were stated. The actions of the CVTNG parsing

subsystem were similar to those of previous examples and the parse bins and attribute

variable relationships produced were presented. The evolving function models produced

by the CVTNG parsing subsystem for the sample sentence differed from those of previous

examples because the evolving function models were parameterised by time. The actions

of the CVTNG subsystem for assigning measurement values to attribute variables were

discussed to describe the calculation of measurement values at a specific point in time.

The visual output produced for this sample sentence were shown for transformations

according to measurement values determined at specific time values. Different measure-

ment values that are calculated over a time interval result in different transformations

of an associated representational means. The transformations applied to a 3D model of

a cube over a period time, yields an animation of the periodic actions described within

the sample sentence.

The sample sentence, “The green rotating cube orbits the yellow cube.”, was then

altered to the sample sentence, “The green quickly rotating cube slowly orbits the yellow

cube.”, in order to examine the effect of adverbs of period, “quickly” and “slowly”, on

the evolving function models of the adjective, “rotating”, and the verb, “orbits”. The

transformations associated with the computational verb models of the adverbs “quickly”

and “slowly” were discussed in terms of their computational verb models, their effect

on the actions of the CVTNG parsing subsystem, and their effect on the actions of

the CVTNG subsystem for assigning measurement values to attribute variables. The

measurement values determined from the transformed evolving functions associated with

the sample sentence were used to transform a representational element in the form of
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a 3D model of a cube. The visual output of a 3D cube transformed by measurement

values determined from the evolving function models of the new sample sentence was

contrasted with the visual output produced for the sample sentence, “The green quickly

rotating cube slowly orbits the yellow cube.”.

Yet other sample sentences, “The red cube slowly rotates clockwise. The red cube

quickly rotates anticlockwise.”, were introduced to examine the behaviour of the CVTNG

system when natural language sentences that describe inconsistent periodic actions are

processed. The necessary contexts of interpretation, subcontexts, and partial contexts

were stated. The implementation of computational verb models for the sample sentences,

“The red cube slowly rotates clockwise. The red cube quickly rotates anticlockwise.”,

were stated. The actions of the CVTNG parsing subsystem and the recursive substitu-

tion algorithm were briefly discussed with reference to previous examples. The evolving

function equations produced for these sample sentences included conflicting measurement

values assignments to the attribute variable, “YRotation(Red)”. The conflicting mea-

surement value assignments corresponded to two instances of the verb “rotates” that

were transformed by the adverbs “slowly” and “clockwise” and “quickly” and “anti-

clockwise” respectively. The evolving function models that correspond to the conflicting

measurement value assignments of the attribute variable, “YRotation(Red)”, were for-

mulated as fuzzy constraints. The fuzzy constraints were processed by algorithm 7. The

parameters for algorithm 7 as applied to these sample sentences were experimentally de-

termined and stated. The fitness values of solutions obtained by algorithm 7 were stated

and discussed. A 3D model of a cube was transformed according to the approximate

measurement values determined by algorithm 7 for the sample sentences and the visual

output for specific time values was provided.

The actions of the CVTNG system were examined when applied to a series of ex-

ample natural language sentences that describe changes in the state of an object over

time. The sample sentences, “The red cube is to the left of the blue cube. The red

cube moves onto the blue cube.”, were introduced and discussed with respect to evolv-

ing function models, the actions of the CVTNG parsing subsystem, and the CVTNG

subsystem for assigning measurement values to attribute variables. Additional contexts

of interpretation, subcontexts, and partial contexts were introduced to allow evolving
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function models to be specified for a point of reference for a movement in a 3D space.

The evolving function models associated with a point of reference were subsequently

discussed in depth in relation to the actions of the CVTNG subsystem for assigning

measurement values to attribute variables. The evolving function models specified for

the sample sentences above included time interval information. The effect of the time

interval information on evolving function models was discussed for the CVTNG sequenc-

ing algorithm, the CVTNG parsing subsystem, and the CVTNG subsystem for assigning

measurement values to attribute variables.

The evolving function models of the sample sentences contain cyclical attribute vari-

able references and therefore some measurement values for attribute variables were de-

termined by the Gaussian elimination algorithm. The measurement values determined

from the active evolving function models at a point in time were once again transferred

to a representational system. The visual output produced for the sample sentences, “The

red cube is to the left of the blue cube. The red cube moves onto the blue cube.”, was

illustrated.

The sample sentences, “The red cube is to the left of the blue cube. The red cube

moves onto the blue cube.”, were then modified to the sample sentences, “The red cube is

far to the left of the blue cube. The red cube quickly moves onto the blue cube.”, in order

to examine the effect of adverbs of period and amplitude on the actions of the CVTNG

system. The actions of the CVTNG parsing subsystem and the CVTNG subsystem for

assigning measurement values to attribute variables were discussed in relation to the

sample sentences, “The red cube is far to the left of the blue cube. The red cube quickly

moves onto the blue cube.”. The effect of the adverb of period, “quickly”, on the time

interval information of evolving functions with infinite and terminate interval sizes was

discussed. The visual output produced from the measurement values calculated by the

CVTNG system for these latest sample sentences was presented.

The actions of the CVTNG system were examined when natural language sentences

that describe inconsistent changes in the state of an object are presented as input. An-

other set of sample sentences, “The red cube slowly moves left. The red cube quickly

moves right.”, was discussed in relation to its CVTNG evolving function models, the

CVTNG parsing subsystem, and the CVTNG subsystem for assigning measurement
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values to attribute variables. The evolving function models contained duplicate mea-

surement value assignments to the attribute variable, “XPosition(Red)”. The evolving

functions that assigned measurement values to the attribute variable, “XPosition(Red)”,

were formulated as fuzzy constraints. The parameters and optimised fitness values for

solutions attained by algorithm 7 were discussed in relation to the fuzzy constraints

related to the attribute variable “XPosition(Red)”. The visual output produced from

the approximate measurement values calculated by the CVTNG system for the sample

sentences, “The red cube slowly moves left. The red cube quickly moves right.”, was

presented.

In this chapter, the empirical results obtained when the CVTNG system was tested

against a series of natural language sentences that describe relationships between ob-

jects, have been stated and discussed. The theoretical models, implementation, and

empirical verification of the CVTNG system have been stated in their entirety. Chapter

7 summarises the content of this thesis with regard to the aspects presented, discusses

the findings, and proposes future work based on the findings.
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Chapter 7

Summary, conclusions, and future

work

This chapter comprises a summary of the work presented in chapters 1 to 6, a number

of conclusions reached with regard to the theoretical principles and architecture under-

lying interactive narrative generation using computational verb theory (CVT), and the

empirical results drawn from the present study. It goes on to outline the possibilities for

future work based on the conclusions reached. Section 7.1 consists of a brief summary

of the contents of chapters 1 to 6 followed by a set of conclusions drawn from aspects

of this work. Section 7.2 contains a number of topics for future work that the present

writer considers necessary for improving and extending the theoretical concepts, system

architecture, and application examples presented in this work.

7.1 Content, summary, and conclusions

Chapter 1 introduced the fields of interest and main concepts presented in this work.

The fields of interactive narrative, computational verb theory, computational linguistics,

and constraint satisfaction problems (CSPs) were introduced and the background to each

field was briefly discussed. At the outset the concept of a system for the generation of in-

teractive narrative from narrative text by means of computational verb theory as covered

within the ambit of this work was presented. The novel contributions and applications

249

 
 
 



described in this work were stated in relation to the fields of interactive narrative, com-

putational linguistics, computational verb theory, and constraint satisfaction problems.

Chapter 1 concluded by providing an outline of the remainder of the thesis.

In chapter 2 research trends in the related field of interactive narrative were dis-

cussed, as was the application of fuzzy set theory to interactive narrative. In addition,

the paradigm of a system that generates interactive narrative from narrative text was

constrasted with the approaches of existing interactive narrative systems in order to high-

light the advantages of a system able to generate interactive narrative from narrative

text.

The discussion of interactive narrative in chapter 2 in particular showed that the

interactive narrative generation system presented is both a novel approach towards the

creation of interactive narrative and a complementary addition to existing interactive

narrative systems. Narrative text was shown to be a natural and concise representation

format for narrative. The generation of interactive narrative also makes it possible for

multiple interpretations to be associated with the same narrative text. A system that

generates interactive narrative from natural language text was put forward as being an

accessible medium for interactive narrative generation, because a larger percentage of

the population is able to phrase narrative in terms of natural language sentences than

re-create narrative using complex modelling tools and programs.

Chapter 3 went on to state the fuzzy set theory, CVT, and constraint satisfaction

problem (CSP) definitions that are applied within this work. The background and de-

velopment of CVT was provided together with an outline of some existing applications

of CVT. The definitions provided in chapter 3 served as an important reference for the

chapters that followed.

Fuzzy set theory and the development of the linguistic variable provide a means

whereby natural language nouns, adjectives, and adverbs that modify adjectives can be

quantified and computed. CVT extends the possibilities of fuzzy set theory by offering a

way for natural language verbs, and the adverbs that apply to them, to be quantified and

computed. CVT models natural language verbs in terms of dynamic systems, and vice

versa: if a dynamic system model can be constructed for a natural language verb, a CVT

model can be constructed for the natural language verb. Following from this, a dynamic
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system model can be constructed for any observable feature that can be measured over

a period of time. CVT is therefore a very powerful tool for enabling many — and

possibly all — natural language verbs to be modelled. Constraint satisfaction problems

(CSPs) and their relaxation to fuzzy constraint satisfaction problems (FCSPs) provide a

framework with which the solution of variables within multiple concurrent computational

verb models can be framed and resolved.

Chapter 4 presented in detail the CVT and CSP models constructed and applied

within this work. A computational verb model was described that models computational

verbs in terms of generic evolving function models. The unique instances of evolving func-

tion models are constructed from a template evolving function model through choosing

generic functions of time, amplitude values, and scaling values. The evolving function

models were made specific to contexts of interpretation, and were further subdivided in

terms of function terms and amplitude values within subcontexts and partial contexts

respectively. The computational verb models of nouns, adjectives, verbs, and adverbs

were presented and the role of each word type within the evolving function models de-

scribed in this work was stated. In addition, the variable resolution procedures that can

be applied to determine measurement values for attribute variables within the context

of this work were discussed.

A crisp procedure for assigning exact measurement values to attribute variables was

also discussed. The crisp variable resolution procedure was shown to be unable to provide

exact crisp measurement value assignments in the face of conflicting natural language

statements. As an alternative solution, a fuzzy procedure for assigning approximate

measurement values to attribute variables was introduced and discussed. A background

study of CSP and FCSP principles and resolution schemes was presented, followed by a

discussion in which the evolving function models of this work were framed in terms of an

FCSP. A genetic algorithm for resolving fuzzy constraints was chosen as the resolution

method for the FCSP formulation of the evolving function models presented in this work.

These generic evolving function models are able to model basic computational verbs

that are either defined over a single time interval or repeat over a single time interval. The

majority of computational verbs can be constructed from basic computational verbs by

applying transformations and the verb extension principle [106]. This principle combines
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known computational verb models to form a computational verb model for computational

verbs that are unknown [111]. A complex dynamic system related to a complex verb

such as “dream” or “think” can be segmented into components that are modelled in

terms of basic computational verbs. The generic evolving function models particular to

this work can be extended to enable multiple evolving functions that relate to multiple

time intervals to be specified. The multiple evolving functions and multiple time periods

all relate to the same computational verb in a context of interpretation. Furthermore, if

the proper evolving function is selected according to the current time value, the generic

function models of this work are able to model the majority of complex computational

verbs. Any extensions of evolving function models over multiple time periods falls beyond

the scope of this work.

The crisp procedure for assigning measurement values to attribute variables presented

is able to determine the measurement values of attribute variables that are present in

evolving function equations, if the evolving function models do not assign conflicting

measurement values to the same attribute variable. The inability of the crisp proce-

dure for assigning measurement values to attribute variables to assign precise measure-

ment values to attribute variables if conflicting measurement value assignments exist,

necessitated a procedure that is able to assign approximate measurement values to at-

tribute variables. The fuzzy procedure for assigning approximate measurement values

to attribute variables presented is able to assign approximate measurement values to at-

tribute variables present in evolving functions. The fuzzy procedure for the assignment

of approximate measurement values to attribute variables formulates evaluated evolving

function equations that contain unknown attribute variables as an FCSP. The genetic

algorithm presented to solve the resulting FCSPs was able to provide near-optimal ap-

proximated values for the attribute variables present in the evolving function models of

the sample sentences presented in this work. Appendix B presents further examples that

test the scalability of the crisp and fuzzy procedures for assigning measurement values

to attribute variables.

Chapter 5 presented the architecture and algorithms implemented in the compu-

tational verb theory interactive narrative generation (CVTNG) system for generating

interactive narrative space from natural language sentences. The challenges presented
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by the generation of interactive narrative from natural language sentences were stated in

terms of the inconsistency, implicitness, and ambiguity of natural language. The overall

system goals of the CVTNG system were presented as the encapsulation of model com-

plexity, the correct and consistent representation of the narrative space, the separation

of concerns for users that interact with the system in different ways, and the re-use of

artifacts produced by the system in other interactive narrative spaces. The architectural

features used to represent contexts of interpretation, subcontexts, and partial contexts

within the CVTNG system were also described. In addition, the architectural features

used to represent the evolving function models for words in the CVTNG system were

described. The algorithms and class structure of the parsing subsystem of the CVTNG

system were described in conjunction with the sequencing algorithm present within the

CVTNG system. The crisp and fuzzy procedures for assigning measurement values to

attribute variables were described in terms of the class structures and algorithms related

to the respective procedures.

The architectural features presented for the CVTNG system combine to create a

system that generates interactive narrative spaces from natural language sentences. The

architectural components implemented realise the main system goal of narrative space

generation whilst adhering to the system principles of encapsulation, separation of con-

cerns, consistent representation, and the re-use of artifacts. The architectural features

related to contexts of interpretation and word models allow the evolving function models

presented in chapter 4 to be defined and subdivided in terms of contexts of interpretation,

subcontexts, and partial contexts. The architectural features of the word models allow

nouns, adjectives, verbs, and adverbs to be modelled in terms of computational verb

models that are specific to a context of interpretation and a time period. The parsing

algorithm presented translates natural language sentences into verb sentences by forming

groupings of similar word types and determining the subject and object relationships be-

tween the word groupings. The sequencing algorithm presented allows the time periods

associated with computational verb models to be sequenced so that a sequence of actions

described by natural language sentences in narrative text can be modelled in terms of

computational verb models with sequential validity periods. The architectural features

described for the crisp procedure for assigning measurement values to attribute variables
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enable the CVTNG system to calculate exact measurement values for attribute variables.

If one or more attribute variables are assigned conflicting measurement values by a set

of evolving function models, the architectural features of the CVTNG system that relate

to the fuzzy procedure for assigning measurement values to attribute variables allow the

CVTNG system to calculate approximate measurement values for the attribute variables

in question.

Chapter 6 tested the CVTNG system and the evolving function models presented in

this work against a series of natural language sentences that describe objects in static,

periodic, and dynamic relationships. The static, periodic, and dynamic object relation-

ships were modelled in terms of static (refer to definition 3.15), centre (refer to definition

3.18), and node (refer to definition 3.16) computational verbs respectively. The evolving

function models for the computational verbs were presented for a context that interprets

the sample sentence visually. The actions of the parsing subsystem and the actions

of the crisp measurement value assignment procedure were described in relation to the

evolving function models presented for the static, periodic, and dynamic examples. The

static, periodic, and dynamic examples were extended in terms of adverbs of amplitude

and period to examine the effect of the adverbs on the corresponding evolving func-

tion models, the parsing subystem, and procedures for assigning measurement values to

attribute variables. Sentences that state conflicting static, periodic, and dynamic rela-

tionships were introduced to examine the calculation of approximate measurement values

from the associated evolving function models. The parameters and performance of the

genetic algorithm for resolving the FCSP used in the fuzzy procedure for assigning ap-

proximate measurement values to attribute variables was discussed. Three-dimensional

models illustrated the interactive narrative space generated for all of the sample sen-

tences presented. The actions of the CVTNG sequencing algorithm (refer to algorithm

2) were discussed in relation to the dynamic examples presented.

The empirical results obtained by testing the CVTNG system against natural lan-

guage sentences that describe static, periodic, and dynamic relationships illustrate that

the evolving function models presented in this work are able to model natural language

words in terms of computational verbs. The actions of the parsing subsystem as illus-

trated prove that the CVTNG system is able to dynamically construct evolving function
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models from predefined evolving function and context models of natural language words.

The actions of the CVTNG crisp and fuzzy procedures for assigning measurement values

to attribute variables prove that the CVTNG system is able to determine precise and

approximate measurement values for attribute variables present in constructed evolving

function models. The 3D models produced as output prove that the CVTNG system is

able to generate interactive narrative spaces from natural language sentences.

This work presented generic computational verb models for nouns, adjectives,verbs,

and adverbs. The supported word types were modelled in terms of evolving functions or

as modifiers of evolving function models. A CVTNG system was presented that dynam-

ically constructs evolving function models for natural language sentences provided as

input. The evolving function models are constructed from stored evolving function defi-

nitions for words in specified contexts of interpretation. The evolving function models for

a specific context are dynamically scaled in terms of amplitude and period according to

the natural language sentences provided as input. The CVTNG system dynamically cal-

culates the validity periods for the evolving functions and calculates measurement values

from the valid evolving function models at a particular point in time. If inconsisten-

cies exist in the measurement value assignments within the evaluated evolving function

models, the CVTNG system is capable of calculating approximate measurement values

results. The CVTNG system generates interface (element) classes according to the word

definitions specified within the CVTNG system. The element classes allow measurement

values calculated within the CVTNG system to be interfaced to an external represen-

tation system, as may be found in an interactive narrative space. The element classes

transform the representational elements by transformations that are parameterised by

the calculated measurement values. The transformed representational elements form the

interactive narrative space generated from natural language text when invoked.

This work concludes by stating that the CVTNG system is a robust and extendable

framework for generating interactive narrative spaces from natural language sentences

by means of computational verb models. The section that follows examines key aspects

of this work and proposes extensions and enchancements that will allow the evolving

function models, systems, and algorithms presented in this work to be applied to a

greater variety of natural language sentences, and to generate more complex interactive
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narrative spaces.

7.2 Future work

This section examines aspects of the work presented and identifies research topics for fu-

ture work. The research topics identified will expand the models, systems, and algorithms

presented in this work to incorporate new types of natural language words and sentences,

generate more complex interactive narrative spaces, and perform narrative text to inter-

active narrative space translation more efficiently and accurately. Section 7.2.1 examines

the evolving function models presented in this work. It also proposes extensions that will

allow complex computational verbs to be modelled within the CVTNG system. Section

7.2.2 examines the parsing subsystem of the CVTNG system and proposes research in

the field of computational linguistics that will allow the CVTNG system to process more

complex natural language sentences into verb sentences and evolving function models.

Section 7.2.3 discusses the procedures for assigning measurement values to attribute

variables presented in this work and proposes research that will compare the algorithms

presented in this work against other constraint satisfaction and optimisation algorithms.

Research that examines the formal aspects of a genetic algorithm applied to an FCSP

as employed in this work is also proposed. The interaction of the CVTNG system with

representations used typically in interactive narrative systems is examined in section

7.2.4 to highlight future applications of the CVTNG system in the fields of interactive

narrative and education.

7.2.1 Word models

This work models natural language adjectives and verbs in terms of basic computational

verb models. The basic computational verb models are expressed in terms of an evolving

function that is specific to a context of interpretation. A time period is associated with

the evolving function and the context of interpretation to form a verb element (refer to

definition 3.22).

The verb elements formed within this work associate a single evolving function with

a single time period within a context of interpretation. The evolving function models
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adequately model basic verbs and adjectives as illustrated in chapter 6 and further illus-

trated in Appendix B. If the verb elements of this work are extended to allow multiple

evolving functions with multiple validity periods to associate with a single computational

verb in a context of interpretation, the extension principle of computational verbs states

that more complex computational verb models can be formed from the recombination of

the simpler models presented in this work [111]. If complex computational verb models

are implemented within the CVTNG system, and the CVTNG is able to select the evolv-

ing function that corresponds to a time value from the list of evolving function models

that segment the dynamics of a complex computational verb, the CVTNG system will

be capable of modelling complex natural language verbs such as “think”, “understand”,

and “dream”.

The evolving function models presented in this work allow an amplitude value to

be calculated as the sum of a collection of partial amplitude values. The partial am-

plitude value concept can be generalised in further work to specify a generic function,

αi = f(αi1 , . . . , αij), that allows an amplitude value, αi, to be calculated from any math-

ematical combination of partial amplitude values. The generalisation is not required

within the scope of this work and has not been implemented in the CVTNG system pro-

totype. The generalisation would allow more complex amplitude scaling calculations to

occur within the CVTNG system and therefore to more accurately scale the amplitude

values of evolving function models for complex verbs and adjectives.

The evolving function models of this work are defined within a crisp space. If exact

measurement values cannot be calculated for attribute variables, the evaluated evolving

function equations that contain the attribute variables are treated as fuzzy constraints

to allow approximate measurement values to be calculated for the attribute variables

involved. The evolving function models of this work can be extended to a fuzzy space by

associating a membership function, µ, with an evolving function, EV . The membership

function, µ, calculates the membership value of a measurement value to the fuzzy set,

A, associated with µ. The measurement value is calculated from the evolving function,

EV . Extending the evolving function models in this work to a fuzzy space would allow

adjectives and verbs to be modelled that have a measure of uncertainty such as “around”

or “more or less”. The fuzzy procedure for determining approximate measurement values
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for attribute variables can be adjusted to accomodate evolving functions in a fuzzy space

by using the membership function, µ, as the membership function of a fuzzy constraint.

The fuzzy constraint in question corresponds to the evaluated evolving function equation

of the evolving function, EV . The extension of the fuzzy procedure for determining

approximate measurement values for attribute variables would allow the CVTNG system

to model and process natural language sentences which contain adjectives and verbs that

have a measure of uncertainty.

7.2.2 Parsing

This work presented a parsing algorithm that forms verb sentences by grouping simi-

lar word types and determining the subject and object relationships between the word

groupings. The parsing algorithm was presented in terms of a parse bin framework (refer

to section 5.5.3) that abstracted the formation of word groupings and the determination

of relationships among word groupings. The parse bin architecture allows the parsing

operations of the CVTNG system to be extended easily in terms of new computational

linguistics algorithms. New parsing operations and algorithms would allow the CVTNG

system to process more complex natural language word relationships and sentences.

The current CVTNG parsing algorithm processes atomic verb sentences (refer to defi-

nition 3.20). Additional computational linguistics algorithms can be incorporated within

the parsing behaviour of the CVTNG system as part of future work. The new algorithms

can be implemented by means of the parse bin interface to allow more complex natural

language sentences that contain conjunctions and other connectives to be processed into

word groupings with subject and object relations.

The CVTNG parsing algorithm processes subject and object relationships individu-

ally. If multiple subject nouns are specified, as for the sample sentence, “The red cube

and the blue cube are on the yellow cube.”, the CVTNG parsing algorithm interprets

the sentence as “The red cube is on the yellow cube. The blue cube is on the yellow

cube.” and a conflict occurs. The CVTNG parsing algorithm can process the sample

sentence, “The red cube and the blue cube are on the yellow cube.”, correctly if the

noun phrase, “red cube and blue cube”, is implemented as a single noun within the word

models specified for the sample sentence. The relationships between the red and the blue
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cube would be handled implicitly by the narrative depiction associated with the noun

phrase, “red cube and blue cube”. Future work on the CVTNG parsing subsystem may

incorporate work such as that of Wiebe [97] to identify subjects within natural language

sentences and dynamically construct collective nouns and noun groupings with adapted

evolving function models and narrative depictions.

Improved subject determination algorithms will also improve the ability of the CVTNG

parsing subsystem to detect unique occurrences of nouns. The examples presented within

the main body of this work determined unique instances of nouns according to their as-

sociated adjectives. Appendix B provides examples of improved subject determination

procedures that also factor in the adverbs that describe the adjectives associated with a

noun when determining a unique instance. Subject determination algorithms from the

field of computational linguistics will improve this aspect of the CVTNG system even

further.

The current CVTNG parsing algorithm considers all contexts of interpretation active

when the evolving function models for narrative text provided as input are formed. The

parsing algorithm may be extended by point of view tracking algorithms such as that

of Wiebe et al [98] to determine the point of view for a natural language sentence and

select the applicable context (first, second, or third person) accordingly.

A future development of the CVTNG parsing subsystem that cannot be incorporated

via the parse bin interface alone is the ability to alter the parsing process according to

measurement values determined from the CVTNG subsystem for assigning measurement

values to attribute variables. If the behaviour of the CVTNG parsing algorithm can be

altered according to measurement values, conditional statements such as, “If the cube

is on the blue cube, the cube is red.”, and questions such as, “The cube is on the blue

cube. What is the colour of the cube?”, can be processed by the CVTNG system.

The final proposal for future work with regard to the expansion of the CVTNG pars-

ing subsystem is the enhancement of the CVTNG sequencing algorithm. The current

CVTNG sequencing algorithm does not allow terminate actions to occur simultaneously.

Further research in the field of temporal reasoning needs to be performed to allow com-

plex event sequencing to be performed for narrative text provided as input to the CVTNG

system. Event sequencing algorithms such as that of Allen [4] can be adopted as the
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sequencing algorithm of the CVTNG system, and the sequencing of time intervals can

be handled as a CSP. A complex sequencing algorithm would allow the CVTNG system

to handle concurrent actions as indicated by the example of the natural language word

“while”.

Another development of the CVTNG sequencing behaviour would be to allow adverbs

of period to shift the time interval associated with an evolving function according to the

tense of a natural language sentence and other indicators of time.

7.2.3 Measurement value assignment

The crisp and fuzzy procedures for the asssignment of measurement values to attribute

variables allow the CVTNG system to determine exact measurement values for attribute

variables and approximate measurement values if exact measurement values cannot be

determined. The FCSP formulation of evaluated evolving function equations (EEFEs)

that contain attribute variables whose measurement values cannot be determined allows

the CVTNG system to attach priorities to the EEFEs [27]. If the priority values are

factored into the determination of approximate measurement values, and certain EEFEs

can be deprioritised, the CVTNG system would have the ability to “ignore” conflicting

statements. The CVTNG subsystem for assigning measurement values to attribute vari-

ables would be able to calculate approximate measurement values as if either side of a

conflicting statement were true. The sample sentences, “The red cube is to the left of

the blue cube. The red cube is to the right of the blue cube.”, could be processed as

“The red cube is to the left of the blue cube”. if the evolving function(s) associated with

the second sentence were deprioritised.

A real-coded genetic algorithm is implemented in the CVTNG system to solve the

FCSPs associated with EEFEs that contain attribute variables whose measurement val-

ues cannot be determined (refer to algorithm 7). A comparison of algorithm 7 to other

optimisation algorithms such as particle swarm optimisation and stochastic search within

the context of FCSP solution is required to determine the optimal strategy for assigning

approximate measurement values to attribute variables in the CVTNG system.

The parameters of algorithm 7 were experimentally determined for optimal results

within the scope of this work. A formal study of the parameters of the optimisation al-
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gorithm chosen for the resolution of FCSPs with the CVTNG could form part of future

work. If the exploration and exploitation behaviour of the chosen optimisation algorithm

is predictable for all parameter settings, parameter values may be dynamically chosen to

obtain optimal approximated measurement values at speeds that allow real-time inter-

facing to representational systems such as a graphics engine. Chapter 6 examined basic

examples of conflicting statements and Appendix B provides more complex examples of

conflicting statements. A full study of the scalability of algorithm 7 to FCSPs of high

dimensionality should form part of future work.

7.2.4 Application of the CVTNG system

Section 5.4.6 presented element classes as a means whereby measurement values cal-

culated by the CVTNG system can be transferred to external representations that are

typically used in interactive narrative such as graphics, sound, and artificial intelligence

(AI) agents. Future work will associate the CVTNG system with a standalone interac-

tive narrative system to generate interactive narrative spaces that can be used by the

standalone interactive narrative system. The application would allow interactive narra-

tive spaces to be constructed for all facets of the standalone interactive narrative system

by simply entering narrative text.

Another application of the CVTNG system could be realised if the input to the

CVTNG system were to be simplified from the input of narrative text to the selection

of available words through a simple interface such as a touch screen. The application

would allow children to select word combinations and have the CVTNG render a visual

depiction of the word combination.

The CVTNG system can achieve this by calculating measurement values for preset

contexts of interpretation and interfacing the calculated measurement values to a render-

ing system. The rendering system subsequently draws the transformed images associated

with the word combination. If the definition of words were furthermore simplified to the

drawing of images for nouns and the specification of adjectives and verbs in terms of

arrows rather than mathematical formulas, the system would allow children to construct

their own words. The proposed system could be tested on children with varying lev-

els of reading and spatial reasoning skills to determine whether the sentence and word
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construction activities facilitate the development of reading and spatial reasoning skills.
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Acronyms

This appendix lists the acronyms used in this paper. The acronyms are listed alphabeti-

cally in bold text, with the meaning of each acronym given alongside. If the meaning of

an acronym is explained by a definition or section within the thesis, a reference to the

appropriate definition or section is made.

AI Artificial Intelligence is a branch of computer

science that attempts to recreate human intel-

ligence in machines.

CSP Constraint satisfaction problems formulate

problems in terms of the assignment of values

to variables without the violation of specified

constraints (refer to definition 3.25 in chapter

3).

CVT Computational verb theory models natural

language verbs in terms of dynamic systems

and vice versa (refer to section).

CVTNG The computational verb theory interactive

narrative generation system presented in this

work accepts natural language sentences as

inputs and generates interactive narrative

spaces such as graphical models as output (re-

fer to chapter 5).
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EEFE Evaluated evolving function equations are

formed when the evolving function models in

this work are evaluated for a specific time

value.

FCSP Fuzzy constraint satisfaction problems are a

relaxation of CSPs that uses fuzzy constraints

which have associated membership functions

that indicate the degree to which a constraint

is satisfied (refer to definition 3.26 of chapter

3).
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Appendix A

Symbols

This chapter defines the symbols used throughout this work. The symbols are listed

for the chapter the symbol first appeared in. A brief description of every symbol is

given next to the symbol. If a definition or equation within the work defines the symbol

further, a reference to the definition or equation is given. The symbols are listed in the

order of their first appearance.

A.1 Chapter 3: Fuzzy set theory, computational verb

theory, and constraint satisfaction problem def-

initions

X The name of a variable (crisp or fuzzy).

Xi The ith variable name.

x The generic name for the value of a variable X.

xi The generic name for the value of a variable Xi.

U The universe of discourse for a variable X.

Ui The universe of discourse for the ith variable.

u The generic name for a member of the universe of discourse U .

ui The generic name for a member of the universe of discourse Ui.
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R(X; u) The subset of U that represents the restriction of the values for u by variable

X.

R(X) The subset (restriction) of domain values associated with the variable named X.

µR The characteristic function associated with the restriction R (refer to equation (3.4)).

q A sequence of index numbers 1, . . . , k that designates a subset in a sequence of variables

or domains.

q′ The index values not in the index sequence q.∨
An operator that returns the supremum of its operand (a set) over its subscript (also

a set).

Pq An operator that designates the projection its operand (variables) over a subsequence

of domains, U1, . . . , Uk, identified by the index sequence q.⋃
An operator that returns the union of its operand and subscript, which is a set

containing the elements of both.

A A fuzzy set (refer to definition 3.6).

X A space of points i.e. a discrete or continuous domain.

x The generic name for a member of X.

c A function returning the compatibility of a domain value, u, with a restriction R(X)

(refer to equation (3.18)).

CON A linguistic hedge function that acts as a concentrator of a fuzzy set (refer to

equation (3.21)).

DIL A linguistic hedge function that acts as a dilator of a fuzzy set (refer to equation

(3.22)).

g A function used as a linguistic hedge function.

η A constant value used as an exponent in linguistic hedge functions.

L The name of a linguistic variable.

T (L) The term set for a linguistic variable L.

G A syntactic rule that generates names for linguistic variables.

M A semantic rule that associates a meaning with a variable in terms of a restriction R

(refer to equation (3.23)).
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t A time value.
.
x The change in value of a variable, x, over time.

x(t) The state of a dynamic system at a time value t.

f A generic mathematical function.

x0 The initial value of a variable x in a dynamic system.

φt(·) A function that returns the solution of a dynamic system (a function) for the

specified initial value parameter.

x∗ A critical point in a dynamic system that returns a constant solution to the dynamic

system for all time values.

V A computational verb (refer to definition 3.13 of chapter 3).

EV The evolving system of a computational verb V (refer to equation (3.30)).

IV The inner system of a computational verb V (refer to equation (3.31)).

FV The outer system of a computational verb V (refer to equation (3.32)).

T The time interval associated with an inner system.

Xs The physical space of an inner system.

Xp The perception space of an inner system.

T ′ The perceived time interval associated with an outer system.

X ′
s The perceived physical space of an outer system.

X ′
p The perceived space of perception of an outer system.

EV The evolving function associated with the computational verb V .

T The time domain associated with an evolving function.

Ω The universe of discourse for an evolving function.

S A verb statement (refer to equation (3.35)).

Ns A subject noun in a verb statement (refer to equation (3.35)).

No An object noun in a verb statement (refer to equation (3.35)).

τword(V) The degree of “BE word” for a computational verb V .

ΦI A transformation applied to the inner system of a computational verb.

ΦO A transformation applied to the outer system of a computational verb.

C A context of interpretation.
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T A time interval associated with a verb–element (refer to definition 3.22 of chapter 3).

T0 The birth time of a verb element (refer to definition 3.22 of chapter 3).

TC The lifetime of a verb element (refer to definition 3.22 of chapter 3).

C(S) The collapse, C, of a computational verb sentence (statement) S.

S A set of collapses for a computational verb sentence (statement) S.

SS A computational verb set for the verb sentence (statement) S (refer to equation

(3.42)).

C(·) A collapsing system.

Z A finite set of variables in a constraint satisfaction problem (CSP).

D A function that maps a variable x in a CSP to a finite set of objects.

C A set of constraints in a CSP.

A.2 Chapter 4: Computational verb theory and

constraint satisfaction problem models for nouns,

adjectives, verbs, and adverbs

Tb The birth time of an evolving function (refer to equation (4.3).

Td The death time of an evolving function (refer to equation (4.3).

Tbj
The birth time of the jth repetition of an evolving function (refer to equation (4.4)).

Tdj
The death time of the jth repetition of an evolving function (refer to equation (4.4)).

α A scaling value for the amplitude of a generic function, f , (amplitude value) used in

an evolving function in the form of equation (4.3).

αi The amplitude value of the ith term in an evolving function.

αij The jth (partial) amplitude value summed to obtain the amplitude value of the ith

term of an evolving function in the form of equation (4.7).

V An attribute variable used as a storage variable or amplitude value in an evolving

function.

Vi The ith attribute variable used as an amplitude value in an evolving function.
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Vij The jth attribute variable used as a partial amplitude value for the ith term of an

evolving function.

κ The scaling value of an attribute variable, V , used as an amplitude value in an evolving

function.

κi The scaling value of the ith attribute variable, Vi, used as an amplitude value in an

evolving function.

κij The scaling value of the jth attribute variable used as a partial amplitude value for

the ith term of an evolving function.

β An adverb in the context of computational verb theory.

βT An adverb of time.

βA An adverb of amplitude.

Φβ A modifying system (mapping) applied to the evolving system of a computational

verb by the adverb β.

ϕβ A modifying system (mapping) applied to the outer system of a computational verb

by the adverb β.

Ψ A transformation(modifying) function applied to the period or amplitude of an evolv-

ing function by an adverb.

δ A scaling factor of a time value t.

G A graph, related to an attribute variable V , that consists of attribute variable nodes

and attribute variable relationship edges (graph of attribute variable relationships).

Gi A graph of attribute variable relationships related to the ith attribute variable Vi.

Fi The value obtained by evaluating the ith generic function, fi, for a time value, t, in

an evolving function EV .

K A real-valued constant number obtained by summing the known values in an evalu-

ated evolving function equation (EEFE).

K A column vector of the K values in all EEFEs with unknown amplitude values.

ci The coefficient of the ith term in an EEFE that contains at least one unkown amplitude

value (refer to equation (4.27)).

A A coefficient matrix formed from the coefficients, ci, in EEFEs containing unknown

amplitude values.
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[A|K] An augmented matrix formed from the coefficient matrix, A, and the column

vector K.

x A tuple of candidate values for variables in an fuzzy constraint satisfaction problem

(FCSP).

ε An error value that corresponds to the subsitution of a candidate measurement value

value tuple, x, into the corresponding unknown attribute variables of an EEFE in

the form of equation (4.30).

ε The calculated scaling factor for an error value ε.

C A (fuzzy) constraint in a constraint satisfaction problem (CSP) or FCSP.

µC The membership function associated with the fuzzy constraint C in an FCSP.

α+ The defined maximum value for an amplitude value α.

α+
i The defined maximum value for the ith amplitude value αi.

α+
ij

The defined maximum value for the jth partial amplitude value summed to obtain

the ith αi.

α− The defined minimum value for an amplitude value α.

α−
i The defined minimum value for the ith amplitude value αi.

α−
ij

The defined minimum value for the jth partial amplitude value summed to obtain

the ith αi.

d− The minimum size of an EEFE that contains attribute variables whose values are

unknown.

d+ The maximum size of an EEFE that contains attribute variables whose values are

unknown.

di The defined minimum value for the ith amplitude value or partial amplitude value on

the r.h.s. of an EEFE in the form of equation (4.27) or equation (4.29).

di The defined maximum value for the ith amplitude value or partial amplitude value on

the r.h.s. of an EEFE in the form of equation (4.27) or equation (4.29).

d−Vi
The global minimum value of the attribute variable Vi.

d+
Vi

The global maximum value of the attribute variable Vi.

min An operator that returns the smallest member of an ordered set.
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max An operator that returns the largest member of an ordered set.

D−Vi An ordered set of all the minimum values defined or calculated for the attribute

variable Vi.

D+Vi An ordered set of all the maximum values defined or calculated for the attribute

variable Vi.

d+
ε The boundary for the error value, ε, that is obtained when the maximum storage

variable value and minimum amplitude values are substituted into the unkown

attribute variables of an EEFE in the form of equation (4.30).

d−ε The boundary for the error value, ε, that is obtained when the minimum storage

variable value and maximum amplitude values are substituted into the unkown

attribute variables of an EEFE in the form of equation (4.30).

a A constant value specified for an amplitude value.

aC A default value for an mapllitude value specified in a context of interpretation, sub-

context, or partial context C .

ar A default value for an amplitude value retrieved from a representational element.

ΨT A transformation applied to the period, T , of an evolving function, EV , if an adverb

of period is applied to the computational verb V .

ΨA A transformation applied to an amplitude value in an evolving function, EV , if an

adverb of amplitude is applied to the computational verb V .

M A generic name for a matrix.

p A non-zero value in the pivot column of a matrix.

r The value stored in a row–column combination of a matrix.

g A gene in a chromosome of a genetic algorithm.

gi The ith gene in a chromosome of a genetic algorithm.

gj
i The value of the jth gene of the ith chromosome of a genetic algorithm.

p A chromosome in the population of a genetic algorithm.

pi The ith chromosome in the population of a genetic algorithm.

g− The minimum value between two gene values chosen from parent chromosomes.

g+ The maximum value between two gene values chosen from parent chromosomes.
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I The difference between the maximum value, g+, and minimum value, g−, chosen from

the genes of parent chromosomes.

α The blending factor used by the BLX-α crossover operation.

dgi
The domain value of the ith gene of a chromosome in a genetic algorithm.

pvar A predefined stoppage value for algorithm 7 based on the change in fitness between

generations.

pgen A predefined stoppage value for algorithm 7 based on the number of generations.
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Appendix B

Additional examples

This appendix presents two extended examples that illustrate the ability of the compu-

tational verb theory interactive narrative generation (CVTNG) system to process and

model natural language sentences that contain multiple nouns, adjectives applied to a

single noun, adverbs applied to a single adjective or verb, verbs within a single sentence,

and sequences with of multiple actions. Section B.1 presents a sample sentence that

illustrates the ability of the CVTNG parsing subsystem (refer to section 5.5) and the

CVTNG subsystem for assigning measurement values to attribute values (refer to section

5.6 to handle sentences more complex than the sample sentences presented in chapter 6.

The sample sentence presented in section B.1 is changed to introduce inconsistencies to

examine the solution accuracy of the genetic algorithm for the resolution of fuzzy con-

straint satisfaction problems (FCSPs) (refer to algorithm 7) when applied to an FCSP

that contains multiple variables and fuzzy constraints. Section B.2 presents a dynamic

sample sentence that illustrates the ability of the CVTNG parsing subsystem, sequencing

algorithm, and subsystem for assignning measurement values to attribute variables to

handle sample sentences that describe dynamic behaviours that are more complex than

those of the sample sentences presented in chapter 6.
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Figure B.1: The visual output produced for the sample sentences, “The red pyramid is on

the blue cube. The small blue cube is very far to the left of the blue cube. The small red

pyramid is on the small blue cube. The very small blue cube is to the right of the small blue

cube. The very small red pyramid is on the very small blue cube.”

B.1 Extended static example

Figure B.1 illustrates the visual output produced when the sample sentences, “The red

pyramid is on the blue pyramid. The small blue cube is very far to the left of the blue

cube. The small red pyramid is on the small blue pyramid. The very small blue cube is

to the right of the small blue cube. The very small red pyramid is on the very small blue

cube.”, are processed by the CVTNG system and the measurement values obtained are

passed as parameters to a representational system. The measurement values are passed

as parameters to generated specifications of the Element interface that serve to transform

3D models according to the measurement value parameters received. The transformed

3D models are rendered to produce the output illustrated in figure B.2.

The parsing procedures presented in section 5.5 were extended to identify unique
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noun instances not only by the adjectives that describe them (refer to section 5.4.3) but

also by the adverbs that describe the adjectives in turn. The visual output produced for

the sample sentence illustrates the ability of the CVTNG system to:

• apply the same evolving function models to different nouns with different repre-

sentations;

• apply multiple adjectives to a single noun (“small’ and “blue”) and multiple adverbs

to a single adjective (“very” and “far” to “is to the left of”);

• correctly calculate measurement values for indirect relationships (the “very small

blue cube” and “blue cube”).

The sample sentences that correspond to figure B.1 may, for example, be altered

by adding the sample sentences, “The small blue cube is very far to the right of the

blue cube. The very small blue cube is to the left of the small blue cube.”, when the

sample sentences are provided as input to the CVTNG system. The newly introduced

sample sentences create conflicting statements with regard to the positions of the “small

blue” and “very small blue” instances of the noun “cube”. The positions of the “small

red” and “very small red” instances of the noun “pyramid” are also affected by the

conflicting statements with regards to the position of the instances of the noun “cube”

specified above. An FCSP with multiple fuzzy constraints and unknown variable values

results.

Figure B.2 illustrates the average solution accuracy obtained over 30 iterations of

algorithm 7 for optimal blending and population size values. A blending value of 0.7 was

experimentally determined to provide optimal results in conjunction with a population

size of 2. The population size and blending factor were determined in tandem and

algorithm 7 was repeated 30 times for all population and blending factor combinations

ranging from 2 to 20 and 0 to 1.0 respectively.

B.2 Extended dynamic example

Figure B.3 illustrates the output produced when the sample sentences, “The small blue

cube is left of the blue cube. The very small red pyramid is left of the small blue cube.
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Figure B.2: The solution accuracy of the genetic algorithm for the resolution of fuzzy con-

straints applied to the sample sentences of section B.1 in addition to the sample sentences,

“The small blue cube is very far to the right of the blue cube. The very small blue cube is to

the left of the small blue cube.”

The very small red pyramid grows and moves onto the small blue cube. The very small

red pyramid stays on top of the small blue cube. The small blue cube grows and moves

onto the blue cube.”, are processed by the CVTNG system. The example illustrates the

ability of the CVTNG system to:

• apply the same verb to different nouns that have different representations (“...

pyramid grows ...” and “small blue cube grows ...”);

• process multiple verbs in the same sentence that describe terminate actions (“The

very small pyramid grows and moves onto the small blue cube.”);

• maintain existing relationships while applying a dynamic action (“The very small
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Figure B.3: The visual output produced for the sample sentences, “The small blue cube is

left of the blue cube. The very small red pyramid is left of the small blue cube. The very small

red pyramid grows and moves onto the small blue cube. The very small red pyramid stays on

top of the small blue cube. The small blue cube grows and moves onto the blue cube.”, for

times values of t = 0, t = 1, t = 1.5, t = 2.0, t = 2.5, t = 3.0, t = 3.5, t = 4.0 in seconds (shown

from left to right and top to bottom in time order stated)
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red pyramid stays on top of the small blue cube. The small blue cube grows and

moves onto the blue cube.”).

If the CVTNG parsing algorithm is extended to use measurement values calculated

by the CVTNG system to determine unique noun instances, the sample sentences would

no longer need to repeatedly state the initial descriptives adjectives of a noun instance

to uniquely identify the noun instance. The CVTNG would also be able to identify a

noun based on its current state, for example, “The cube turns red. The red cube grows.”

would show a cube turning red and then becoming larger as the visual output. The

feedback of measurement values to the CVTNG parsing subsystem is beyond the scope

of this work.
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