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SUMMARY 

 

Estrogens, alkylphenols and bisphenol-A, enter the environment through waste water systems and 

waste disposal of manufactured products e.g. detergents, paints, polycarbonates and flame-

retardants. These analytes disrupt the endocrine function of living organisms affecting their 

reproductive health and those of future generations. Gas phase low molecular- mass aldehydes and 

amines are typically eye, nose, and throat irritants. Formaldehyde is classified as a probable human 

carcinogen. Given their negative impact on human health it is urgent to monitor pollutants at 

extremely low levels in both air and water. The aqueous pollutants are often concentrated using 

solid phase extraction cartridges or liquid-liquid extraction followed by derivatization. Methods that 

can most effectively and selectively pre-concentrate aldehydes and amines involve in situ 
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derivatization. Unfortunately, the derivatizing reagents as well as their associated solvents or 

adsorbents, are responsible for problems encountered with these methods.  

 

Polydimethylsiloxane (PDMS) has emerged as the ideal concentration and reaction medium for 

trace analysis. However the expensive commercial devices such as SPME and SBSE both require 

the samples to be returned to the laboratory for concentration. Due to the open tubular nature of the 

PDMS multichannel trap (MCT), developed in our laboratory, it is ideally suited for on-site and on-

line sampling. The MCTs have a high analyte capacity owing to the large volume of PDMS 

available for concentration. The derivatization reaction can be performed in situ providing a “one-

pot concentration and reaction device”. This allows for reduced risk of contamination of / or losses 

of the sample and a sampling method that can cater for both air and water samples.  

 

To demonstrate the versatility of the PDMS MCT, two approaches for concentration in PDMS were 

investigated in this study, namely, 1) the on-line concentration and in situ derivatization of volatile 

polar analytes from air followed by REMPI-TOFMS detection, and 2) the concentration of phenolic 

lipophilic analytes from water requiring derivatization prior to analysis by GC/MS.  

 

1) Analyte and derivatizing reagent were simultaneously introduced into the PDMS trap using a y-

press-fit connector. The reaction occurs in situ followed by thermal desorption using a thermal 

modulator array alone or in conjunction with a thermal desorption unit. The aldehydes and amine 

derivatives were successfully detected by the REMPI-TOFMS. Reaction efficiencies were 

determined at room temperature without catalysts. Formaldehyde yielded a low 

reaction/concentration efficiency of 41 % with phenylhydrazine in PDMS, while acetaldehyde, 

acrolein and crotonal displayed much improved values of 92, 61 and 74 % respectively. Both 

propylamine and butylamine yielded 28 % reaction/concentration efficiency with benzaldehyde in 

the PDMS matrix. Detection limits obtained with this technique were significantly lower than the 

permissible exposure limits set by the Occupational Safety and Health Administration. It should be 

noted that the detection limits were not determined by actual measurement but by extrapolation 

from a larger signal. 

 

2) Aqueous analytes were concentrated in the PDMS MCT using a gravity flow rate of ~50 µl/min. 

The trap was dried and 5 µl derivatizing reagent added. At room temperature and without the 

presence of a catalyst, the reaction of alkylphenols with trifluoroacetic acid anhydride in the PDMS 

matrix was 100% complete after 5 minutes. Bisphenol-A reacted less than 50 % to completion 
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during this period, but the amount of derivative formed remained constant. This study revealed that 

extraction efficiencies of the alkylphenols and bisphenol-A off the PDMS trap have poor batch-to-

batch repeatability indicating that the PDMS matrix was not homogenous. For two different PDMS 

batches: tert-octylphenol displayed an extraction efficiency of 70 and 79%, nonylphenol displayed 

84 and 43% while Bisphenol-A displayed 10 and 26% respectively. The thermally desorbed 

derivatives were analysed by GC/MS. Despite background contamination in the desorption unit, 

detection limits were at the ppt level. Detection limits were not determined by actual measurement 

but by extrapolation from a larger signal.  

 

Real samples were also tested. 

 

Keywords: air pollutants, water pollutants, concentration, in situ derivatization, 

polydimethylsiloxane, PDMS, multichannel traps, thermal desorption, gas chromatography, mass 

spectrometry, resonance enhanced time-of-flight mass spectrometry. 
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SAMEVATTING 

 

Estrogene, soos alkielfenole en bisfenol-A, beland in die omgewing deur afvalwatersisteme en die 

wegdoening van vervaardigde produkte soos wasmiddels, verf, polikarbonate en vlamvertragers. 

Hierdie analiete ontwrig die endokrienfunksie van lewende organismes, en affekteer hul eie 

voortplantingsgesondheid sowel as dié van hul toekomstige geslagte. Gasfase laemolekulêremassa 

aldehiede en amiene is tipies oog-, neus- en keel-irritanse. Formaldehied is geklassifiseer as 'n 

waaarskynlike menslike karsinogeen. In die lig van hul negatiewe impak op menslike gesondheid is 

dit dringend noodsaaklik om hierdie besoedelstowwe te moniteer by uiters lae konsentrasies in 

beide lug en water. Besoedelstowwe in water word dikwels gekonsentreer met soliedefase-

ekstraksiepatrone gevolg deur derivatisering. Metodes wat aldehiede en amiene doeltreffend vooraf 

konsentreer, behels in situ derivatisering. Ongelukkig is die derivatiseringsreagense sowel as hul 

oplosmiddels of adsorbente verantwoordelik vir probleme met hierdie metodes. 

 

Polidimetielsiloksaan (PDMS, silikoon) het ontluik as die ideale konsentrerings- en reaksiemedium 

vir spooranalise. Die duur kommersiële toestelle soos SPME (soliedefase-mikroekstraksie) en 

SBSE (magnetieseroerder-ekstraksie) vereis egter dat die monsters na die laboratorium gestuur 

moet word vir konsentrering. As gevolg van die oopbuis geaardheid van die PDMS multikanaalval 
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(MKV) wat in ons laboratorium ontwikkel is, is dit ideaal geskik vir ter plaatse- en 

aanlynmonstering. Die MKV's het 'n groot kapasiteit vir analiete as gevolg van die groot volume 

PDMS beskikbaar vir konsentrering. Die derivatiseringsreaksie kan binne-in die val uitgevoer word, 

wat 'n “eenpot konsentrerings- en reaksietoestel” tot gevolg het. Dit lei tot 'n verminderde risiko van 

kontaminasie en/of verliese van die monster, en 'n monsteringsmetode wat geskik is vir beide water- 

sowel as lugmonsters. 

 

Om die veelsydigheid van die PDMS multikanaalval te demonstreer is twee prosedures ondersoek 

om stowwe in PDMS te konsentreer, naamlik: 1) aanlyn konsentrering en in situ derivatisering van 

vlugtige polêre analiete uit lug, gevolg deur REMPI-TOFMS (resonansversterkte 

multifotonionisasie - vlugtydmassaspektrometrie) deteksie, en 2) die konsentrering van fenoliese 

lipofiliese analiete uit water, met derivatisering voor analise met GC-MS (gaschromatografie – 

massaspektrometrie). 

 

1) Analiet en derivatiseringsreagens is tegelykertyd gevoer in 'n PDMS-val met 'n Y-koppelstuk. 

Die reaksie vind in situ plaas, gevolg deur termiese desorpsie met 'n termiese 

modulatoropstelling alleen, of saam met 'n termiese desorpsie-eenheid. Die aldehiede en 

amienderivate is suksesvol aangedui met 'n REMPI-TOFMS. Reaksiedoeltreffendhede is bepaal 

by kamertemperatuur sonder katalisatore. Formaldehied het ondoeltreffend gereageer en 

gekonsentreer (41%) met fenielhidrasien in PDMS, terwyl asetaldehied, akroleïen en krotonal 

baie beter waardes gegee het, nl. 92%, 61% en 74% respektiewelik. Beide propielamien en 

butielamien het 'n doeltreffendheid van 28% gehad met bensaldehied in die PDMS-matrys. 

Deteksielimiete met hierdie tegniek was aansienlik laer as die toelaatbare blootstellingslimiete 

van die Beroepsveiligheids- en Gesondheidsadministrasie. 

2) Waterige analiete is in die PDMS gekonsentreer met 'n swaartekragvloeitempo van ongeveer 50 

µl/min. Die val is gedroog en 5 µl derivatiseringsreagens is bygevoeg. By kamertemperatuur en 

sonder katalis was die reaksie van alkielfenole met trifluoorasynsuuranhidried in die PDMS-

matriks 100% volledig na 5 minute. Bisfenol-A het minder as 50% volledig gereageer in hierdie 

tydperk, maar die hoeveelheid derivaat wat gevorm het, het konstant gebly. Ekstraksie-

doeltreffendhede van alkielfenole en bisfenol-A het swak herhaalbaarheid getoon tussen 

besendings buise, wat aandui dat die PDMS-matriks nie homogeen was nie. Vir twee 

verskillende klompe PDMS het ters-oktielfenol 'n doeltreffendheid getoon van 70% en 79%, 

nonielfenol 84% en 43%, en bisfenol-A 10% en 26%. Die termiesgedesorbeerde derivate is 

geanaliseer met GC-MS. Ten spyte van agtergrondkontaminasie in die desorbeerder was 

deteksielimiete by die dele-per-triljoenvlak. Regte veldmonsters is ook getoets. 
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APPENDICES: 

 

Figure A2.1 Reaction efficiency graphs for the on-line derivatization of acrolein and 

crotonal with phenylhydrazine. The graph displays i) the amount of gas standard released 

over that time interval as determined by their permeation rate and ii) the amount of 

analyte gas trapped using in-situ derivatization on the SPME fibre as calculated using the 

internal standard and effective carbon number response for the signal obtained from the 

GC-FID for the derivative. A comparison of the gradients obtained from the standard and 

the actual amount of analyte trapped gives an approximation of the reaction/trapping 

efficiency for this reaction.     199 

 

Figure A2.2 Reaction efficiency graphs for the on-line derivatization of propylamine and 

butylamine with benzaldehyde. The graph displays i) the amount of gas standard released 

over that time interval as determined by their permeation rate and ii) the amount of 

analyte gas trapped using in-situ derivatization on the SPME fibre as calculated using the 

internal standard and effective carbon number response for the signal obtained from the 

GC-FID for the derivative. A comparison of the gradients obtained from the standard and 

the actual amount of analyte trapped gives an approximation of the reaction/trapping 

efficiency for this reaction.     199 

 

Figure A3.1 

A) GC-TOFMS chromatogram obtained for the underivatized phenols, TOP tR = 17.47 

min, NP tR= 20.30 min and BPA tR= 26.25 min.  

B) GC-TOFMS confirmation chromatogram for the trifluoroacetate derivatives prepared 

in a vial in acetone as described in section 6.2.6. TOP-TFA tR = 15.99 min, NP-TFA tR= 

19.00 min and BPA-TFA tR= 20.35 min. Notice the absence of underivatized phenols. 200 

 

Figure A3.2 GC-TOFMS mass spectrum obtained for the TOP-TFA derivative tR = 15.99 

min. M+ m/z 302, base peak m/z 231. 201 

 

Figure A3.3 GC-TOFMS mass spectrum obtained for the NP-TFA derivative tR = 19.00 

min. M+ m/z 316, base peak m/z 203. 201 

 

 

 
 
 



List of figures 

 xxxv 

  Pages 

Figure A3.4 GC-TOFMS mass spectrum obtained for the BPA-TFA derivative tR = 20.35 

min. M+ m/z 420, base peak m/z 405. 202 

 

Figure A3.5 Reconstructed ion chromatograms for m/z 231 and m/z 203 representing the 

TFA derivatives of TOP and NP respectively, along with m/z 135 and m/z 213 

representing ions for the corresponding underivatized alkylphenols. The PDMS 

degradation peaks are indicated by the m/z 73 ion trace.  203 

 

Figure A3.6 Reaction efficiencies, determined by placing 1µl 42 ng/µl TOP, 44 ng/µl NP 

and 54 ng/µl BPA in acetone on the PDMS trap, 5 µl TFAA is added after the solvent has 

evaporated. The trap is then sealed with glass caps for the duration of the reaction. The 

reaction appears to be complete after 5 minutes. See section 6.7.2. 204 

 

Figure A.5 Summary of the drying steps performed in series with the resulting PDMS 

MCT mass loss achieved from each drying step. 208  
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