
i 

 

 

 
 

by 
 
 

Nicolene Magrietha Thiebaut 
 
 

    Promotor:  Prof F.E. Steffens 
    ============================================================== 

 
 
 



ii 

 

 

 

 
 
 
 
 
 
 
 
 
 
I, Nicolene Magrietha Thiebaut declare that the dissertation, which I hereby  
 
 
 
submit for the degree MSc at the University of Pretoria, is my own work and has  
 
 
 
not previously been submitted by me for a degree at this or any other tertiary  
 
 
 
institution. 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
Signature:__________________ 
 
 
 
 
 
 
Date:  ___________________ 
 

 
 
 



iii 

 

 

 
 

I wish to record my sincere thanks and appreciation to the following persons and 
institutions for their contributions to this dissertation: 
 
The Agriculture Research Council (ARC) for allowing me to further my studies and for 
offering me a bursary. 
 
Prof. F. E Steffens from the Department of Statistics of the University of Pretoria, prof. 
Crowther and the other lecturers for their assistance and guidance.  
 
My friend Hartmut, my daughter Nicole, family and other friends for their patience and 
support. 
 
All the contributions are highly appreciated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



iv 

 

 

 
 

 

 
In practice, when one has many candidate variables as explanatory variables in multiple 
regression, there is always the possibility that variables that are important determinants 
of the response variable might be omitted from the model, while unimportant variables 
might be included. Both types of errors are important, and in this dissertation it is 
attempted to quantify the probabilities of these errors. 
 
A simulation study is reported in this dissertation. Different numbers of variables, i.e. p= 
4 to 20 are assumed, and different sample sizes, i.e. n=0.5p, p, 2p, 4p. For each p the 
underlying model assumes that roughly half of the independent variables are actually 
correlated with the dependant variable and the other half not. The noise is        2), 

where  2, is set fixed. The data was simulated 10000 times for each combination of n 

and p using known underlying models and   randomly selected from of a normal 
distribution. 
 
For this investigation the full model and forward selection regression are compared. The 

mean squared error of the estimated coefficient  ̂(p) is determined from the true   of 
each  n and p set.  A full discussion, as well as graphs, is presented.  
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When selecting variables in regression, certain procedures are followed.  If one wishes 
to establish a linear regression equation for a particular response Y (in terms of the 
predictor variables X1, X2, X3…Xp and furthermore if Z1, Z2, Z3 ….Zk, were all functions 
of one or more of the x‟s as well as the whole set of functions, such as logarithms, 
inverses etc.), then the following two generally opposed criteria shall be considered: 
 

1) To make the equation useful for prediction purposes, as many predictors as 
possible should be included – this normally results in a small bias so that 
reliable fitted values can be determined. 
 

2) To keep the variance of the predictions as small as possible (for a certain p, 
i.e. the number of variables, and n, i.e. the number of observations) to 
minimize costs involved in obtaining information on large numbers of 
predictors and the subsequent monitoring of them, the number of predictors 
must be as small as possible to be cost effective and easily interpretable. 

 
The different methods for “Selecting the best regression equation” are illustrated, 
followed by an overview of the full regression model and forward selection. A 
description of the program, i.e. programmed in SAS IML, and information about the 
parameters chosen for the study are also given.  The final part of this dissertation 
comprises a summary and conclusion of the study. 
 

 

 
 

The practical compromise between the extremes described in 1) and 2) above is 
normally regarded as the best regression equation.  There are no definite procedures 
for this selection process.  Although many procedures have been suggested, the 
methods commonly used in choosing the best regression model are the following1: 
 

a) The full model (includes all predictors) 
b) The best subset regression using:  R2  (adjusted) and Cp. 
c) Forward regression (there are variations on this method) 
d) Stepwise regression  
e) Backward elimination 
f) Variations on previous methods. 

 
These methods should be regarded as exploratory analysis (not providing a definite 
proof that the selected model is a true reflection of the real life situation). 
 
When using the above methods there can be problems such as: 
 

                                                 
1
 This discussion refers to Draper and Smith on p.327.   
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 Possible multicollinearity among the explanatory variables. 

 Too few observations 

 Several possible models to choose from. 
 

In the following section an overview of the above-mentioned methods, as well as an 
example is given.  The full regression model is used for comparison in this study. 
 
 
a)  The full multiple linear regression model 
 
All the terms are included in the model.   In matrix notation, the model is given by: 
 
                       where:   
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y is an n x 1 vector of observations, X is an n x (p+1) matrix,    is a (p+1) x 1 vector of 

the regression coefficients and   is an n x 1 vector of random errors.   
 

The aim is to find the vector of the least-square estimators  ̂, that minimizes: 
 

 S( )  ∑   
   

        (y-  )`(y-  ) 

 
 
The least-square estimators must satisfy 
 

 
   

  
  ̂  = 0   which simplify to 

 

X`X ̂=X`y 
 
which are the least square normal equations. 
 

The least-square estimator of   is then: 
 

 ̂             
 

provided that the inverse matrix         exists.  For this reason the full linear model 
cannot be calculated where n < p. 
 
t-test and F-test have been used in this study and are the following: 
 

Test:       = 0            
  ̂  

√   ̂   ̂  
                (0 < j < p)  and  where t                 

                            F = 
  ̂  

 

   ̂   ̂  
  =  t2          where F               

 

where  var( ̂           ,       with     = var(yi) 
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               ̂( ̂             and                   =    ̂   ̂   

 

with     the mean-square about regression (MSE) 
 
 

Example: 
 

For illustration purposes x1, x2, x3 and x4 are generated each from a normal distribution 
where xi ~       n=30 is used, and yi ~      . 
 
The data generated was the following: 
 

y x0 x1 x2 x3 x4 

      

0.947642 1 0.421586 -0.12949 1.379146 -0.47979 

0.778414 1 0.833397 0.07267 0.552539 -0.91775 

-1.07774 1 0.266575 -0.75721 0.95104 -1.41633 

0.139451 1 -0.50984 -0.15961 0.306478 0.046713 

1.274163 1 -0.65201 1.328503 -0.50505 0.971239 

0.537372 1 0.364805 -0.76114 0.08087 0.25374 

0.431233 1 0.577395 -0.84916 -0.68987 0.635711 

-0.05728 1 -0.84625 -0.17513 -0.18889 -0.61391 

0.768738 1 -0.65813 1.096219 0.073256 0.176281 

1.110896 1 1.026968 -0.25972 0.084936 1.326771 

-1.39961 1 -1.77678 -1.17105 1.738608 -0.00173 

0.287331 1 0.623366 -0.48989 -0.27325 0.641921 

0.889727 1 1.418482 -0.46166 -0.00976 0.982293 

0.186761 1 0.004334 1.425703 0.30741 -0.80675 

-0.06384 1 0.104088 -0.33449 0.156741 0.651072 

0.006442 1 1.170835 -0.57312 1.083025 -1.39766 

1.402955 1 -0.66119 0.035194 0.790913 0.494096 

1.661528 1 -0.8181 -0.71455 0.965787 1.797969 

-0.1518 1 -1.17774 -1.38733 0.264769 -2.49698 

1.130318 1 0.301525 1.516795 -0.87938 -0.54283 

0.757585 1 -1.20754 0.000857 -2.4172 0.565533 

-0.49201 1 -2.3877 0.091767 0.384804 0.455261 

2.209267 1 -0.39957 0.050983 -0.08351 -0.02853 

0.892306 1 -1.38631 1.980733 1.216849 -0.00048 

0.237334 1 -0.59445 0.200447 -1.60794 -0.76354 

1.935701 1 1.834607 0.355468 -0.74685 1.479613 

0.756728 1 2.242614 0.431939 -0.17352 -0.2563 

0.490658 1 2.365015 -0.63934 0.820001 1.261527 

0.519579 1 -0.13022 0.802198 -0.03034 0.424951 

0.742926 1 -1.29626 0.232773 -0.56458 1.619795 
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In this example the following output is obtained: 
 

The correlation matrix is: 

Correlations 

  Y x1 x2 x3 x4 

y Pearson Correlation 1 .266 .381
*
 -.279 .459

*
 

Sig. (2-tailed)  .155 .038 .136 .011 

N 30 30 30 30 30 

x1 Pearson Correlation .266 1 -.105 -.009 .097 

Sig. (2-tailed) .155  .580 .962 .611 

N 30 30 30 30 30 

x2 Pearson Correlation .381
*
 -.105 1 -.214 .074 

Sig. (2-tailed) .038 .580  .256 .699 

N 30 30 30 30 30 

x3 Pearson Correlation -.279 -.009 -.214 1 -.176 

Sig. (2-tailed) .136 .962 .256  .353 

N 30 30 30 30 30 

x4 Pearson Correlation .459
*
 .097 .074 -.176 1 

Sig. (2-tailed) .011 .611 .699 .353  

N 30 30 30 30 30 

*. Correlation is significant at the 0.05 level (2-tailed). 

The R2 value is: 0.42 which gives an indication of a linear trend. 
 
 

Model R R Square Adjusted R Square Std. Error of the Estimate 

1 .647
a
 .418 .325 .64681 

 

The F - probability of the ANOVA is: 0.007, which indicates statistically a significant 
model. 
 

ANOVA
b
 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 7.519 4 1.880 4.493 .007
a
 

Residual 10.459 25 .418   

Total 17.978 29    

a. Predictors: (Constant), x4, x2, x1, x3 

b. Dependent Variable: y 

 

The coefficients marked are statistically significant at the 5% level. 

 

 
 
 



5 

 

 

Coefficients
a
 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) *.529 .121  4.387 .000 

x1 .180 .105 .265 1.717 .098 

x2 *.339 .151 .352 2.238 .034 

x3 -.120 .143 -.133 -.842 .408 

x4 *.306 .124 .384 2.464 .021 

a. Dependent Variable: y 

The equation of the full model is then: 

                                       .  

The full model thus includes non-significant terms. 

 
b)  The best subset regression using:  R2  (adjusted) and Cp 

 

 This is a complicated regression technique.  It requires the fitting of every 
possible regression equation that involves Z0 plus any number of variables 
Z1…..Zr, where Z0 is the intercept term.  In this example the transformation and 
other combinations of the Z terms will not be fitted. 
 

 The three criteria most often used are the following: 
o The value of R2 achieved by the least squares fit. 
o The value of the s2, the residual mean square. 
o The Cp statistic. 

 

       These criteria are related to each other. 
 
All three the above criteria are used to obtain the best regression equation.  The fitting 
of regression equations that involve more predictor variables than are necessary to 
obtain a satisfactory fit to data is called over-fitting.   With these criteria over-fitting can 
be prevented. 
 
 

c)  Forward selection 
 

 Firstly choose the variable most highly correlated with y; 

 Fit the regression and calculate the residuals; 

 Choose the variable best correlated with the residuals (if significant); 

 Repeat the above sequence until all the variables have been selected, or until 
there are no more significant correlations with the residuals. 
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The following flowchart illustrates this selection. 

 
 
                                                
                                                                   
                                                 
       

      Step 1                                     
 
 
 

 

 
 Step j > 1 

 
 
 
 
 

 
 
 
 i < p 
         
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Forward selection 

Firstly choose the variable that best 
correlates with y (t-test for coefficients) 

 

If F or  t statistic is not significant  If F or t statistic is significant, fit regression with variable in model. 

Determine the coefficients of partial determination (variables not in model)  

Choose the variable with highest partial correlation. 
                   (t-test for coefficients) 

 

If t statistic is not significant  If t statistic is significant  

 Fit regression with that variable in the model  

Get the final model 

Stop - exclude variable from model 

Stop - exclude this variable from model 

Get the final model 
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Example continued: 
 
The R2 =0.332 of y with the variables x2 and x4 in the model indicates that there is some 
linear trend. 
 

Model Summary
c
 

Model R R Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Change Statistics 

R Square 

Change F Change df1 df2 

Sig. F 

Change 

1 .459
a
 .211 .183 .71183 .211 7.480 1 28 .011 

2 .576
b
 .332 .283 .66689 .121 4.901 1 27 .035 

a. Predictors: (Constant), x4      

b. Predictors: (Constant), x4, x2 

c. Dependent Variable: y 

 

The regression model with x2 and x4 in the model is significant (p=0.004). 
 

ANOVA
c
 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 3.790 1 3.790 7.480 .011
a
 

Residual 14.188 28 .507   

Total 17.978 29    

2 Regression 5.969 2 2.985 6.711 .004
b
 

Residual 12.008 27 .445   

Total 17.978 29    

a. Predictors: (Constant), x4 

b. Predictors: (Constant), x4, x2 

c. Dependent Variable: y 

 

Coefficients
a
 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .512 .131  3.903 .001 

x4 .366 .134 .459 2.735 .011 

2 (Constant) .506 .123  4.119 .000 

x4 .346 .126 .433 2.748 .011 

x2 .336 .152 .349 2.214 .035 
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ANOVA
c
 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 3.790 1 3.790 7.480 .011
a
 

Residual 14.188 28 .507   

Total 17.978 29    

2 Regression 5.969 2 2.985 6.711 .004
b
 

Residual 12.008 27 .445   

Total 17.978 29    

a. Predictors: (Constant), x4 

b. Predictors: (Constant), x4, x2 

a. Dependent Variable: y 

 

The final model with the forward regression is then: 
 

                        
 
 (The normality plot and the y-fitted versus residuals plot seem to be more acceptable 
than those of the full model.) 
 
 
d)  Stepwise regression. 
 
Stepwise regression is an improved version of forward regression, which permits re-
examination at every step of the variables incorporated in the model in previous steps.  
A variable that entered at any early stage may become superfluous at a later stage, 
because of its relationship with the other variables in the model at that particular 
moment. 
 
The following steps are taken: 
 

 The regression starts in the same manner as in forward selection; 

 A variable can be added or removed at any stage - it is removed when the 
regression coefficient is no longer “significant”; 

 The criterion for removing a variable must be stricter than for entering it. 
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The following flowchart illustrates this selection: 
 

 
 
 
 
 
 
 
 
 
 
 
 
  

 

  
 
 
 
 
 
 

      
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
   2 
 
 
 

 

                                                 
2
 The i „th variables are fitted.  If 2 variables are in the model, each variable is added separately to get a 

range of 3 variables models, etc. 
 

Stepwise regression 

Choose the variable most highly correlated 
with y, first. 

 

If F or t statistic is not significant  
If F or t statistic is significant, fit regression with variable in model. 

Get the final model 

Stop - exclude this variable from model 
Fit all “ith”

2
 variable models - each variable is added to the 

existing model separately 

If largest F or t statistic is not 

significant  

Remove that variable 

If largest F or t statistic is significant  

Include variable in the model. Test each Bhat in model 

separately. If all the variables are in the model and  are 

also significant, get final model 

If all F or t statistics are significant  

Get the 

final model 

If F or t statistic is not significant  
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Example continued: 
 

Stepwise regression gives the same results as the forward regression model.  X4 and 
then x1 are included in the model and no variables are removed.  
 

The final model with stepwise regression is:   0.506 0.336. 2 0.346. 4.y x x    

  
 

e)  Backward elimination 
 

 Start with the full model, i.e. all the predictor variables must be within the model – 
this can only be done when n > p, otherwise X‟X will be singular; 

 Eliminate the least significant variable and recalculate the regression;  

 All the remaining regression coefficients must be significant when the selection 
stops. 

 

The following flowchart illustrates this selection 

 
 
 
 
 
 
 
 
 

 
 
 
 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Backward elimination 

All the variables must be entered in the model 

 

Partial F or t-test for each variable in the model is made 

If smallest partial F or t statistic is not 

significant  

Remove that variable 

If smallest partial For t statistic is significant  

      Refit model with remaining variables Final model 

 
 
 



11 

 

 

 
Example (continued): 
 

There is no significant change in the R2 value when x3 is taken out of the model. 
The final R2 value is 0.402. 
 

Model Summary
c
 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

R Square 

Change F Change df1 df2 

Sig. F 

Change 

1 .647
a
 .418 .325 .64681 .418 4.493 4 25 .007 

2 .634
b
 .402 .333 .64317 -.016 .709 1 25 .408 

a. Predictors: (Constant), x4, x2, x1, x3         b. Predictors: (Constant), x4, x2, x1        c. Dependent Variable: y     

The ANOVA with x1, x2 and x4  is statistically significant. (Fprob=0.004) 

 

ANOVA
c
 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 7.519 4 1.880 4.493 .007
a
 

Residual 10.459 25 .418   

Total 17.978 29    

2 Regression 7.222 3 2.407 5.820 .004
b
 

Residual 10.755 26 .414   

Total 17.978 29    

a. Predictors: (Constant), x4, x2, x1, x3 b. Predictors:(Constant),x4, x2,x1  c. Dependent Variable:  

 

Coefficients
a
 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .529 .121  4.387 .000 

x1 .180 .105 .265 1.717 .098 

x2 .339 .151 .352 2.238 .034 

x3 -.120 .143 -.133 -.842 .408 

x4 .306 .124 .384 2.464 .021 

2 (Constant) .514 .119  4.335 .000 

x1 .181 .104 .267 1.740 .094 

x2 .365 .147 .379 2.477 .020 

x4 .323 .122 .405 2.650 .014 

a. Dependent Variable: y 
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The removal of variables was done if the significant value were > 0.1. That is why x1 is 
not removed out of the model. 
 
The final model is then: 

y=0.514 + 0.181x1 + 0.365x2 + 0.323x4.  
 
f)   Variations on previous methods. 
     Variations of the methods above can also be used.   
 
 
Comment on example:  This is not a very good model.  The R2 is around 0.40, which 
is not good for fitting a linear model.   This example was only used for illustrating 
purposes to show the different methods. 
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There is no unique method in finding the “best regression equation”.  In this chapter a 
few discussions will be made in finding the best probable model, taking the previous 
mentioned multiple regression analysis methods into account, and by focussing on 
forward selection and some other discussions from the literature.   
 
It is usually assumed that the correct functional specification of the regressors is known 
(e.g. 1/x1, lnx2) and that no outliers or influential observations are present.  If outlier 
observations were present, it must be removed and the variable selection process must 
be repeated. 
 
When doing the selection of variables in regression analysis, some important aspects to 
consider will be discussed.  Variable selection procedures should be used by the 
analyst as methods to explore the structure of the data.   There is usually not a single 
best equation but rather several good ones. 
 
In this study the focus is on the accuracy of a model using forward selection in multiple, 
linear regression.   
 
A few important concepts used in selecting the best possible linear model, as well as 
concepts that influence the error in a regression model are discussed. 
 
 
 

      (The assumptions will influence the accuracy of the regression analysis). 
 
     1) The residuals must have a zero mean, i.e. E(    = 0. 

     2) Homoscedasticity, i.e. Var(    =     for all i's (constant variance). 
 3) Normality: for statistical inference (confidence intervals and hypothesis testing),  

           assuming that           ).
4) Independence: All pairs    and     are (stochastically) independent.

 
    The above-mentioned assumptions are met in this study.  
 
 

 

Another serious problem that may substantially impact the usefulness of a 
regression model is multicollinearity.  This implies near–linear dependence among 
the regressors.  Multicollinearity can have serious effects on the estimates of the 
regression coefficients and on the general applicability of the estimated model.

A good linear model results when the y (dependent) variables are highly correlated 
with the x (independent) variables, but with as little as possible multicollinearity 
among the x variables. 
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From the example in chapter 2, none of the x variables were significantly correlated, 
and therefore did not influence the model -see correlation matrix below.  X2 and X4 
were significantly correlated with the dependent variable.

     The correlation matrix is: 

Correlations 

  Y x1 x2 x3 x4 

y Pearson Correlation 1 .266 .381
*
 -.279 .459

*
 

Sig. (2-tailed)  .155 *.038 .136 *.011 

N 30 30 30 30 30 

x1 Pearson Correlation .266 1 -.105 -.009 .097 

Sig. (2-tailed) .155  .580 .962 .611 

N 30 30 30 30 30 

x2 Pearson Correlation .381
*
 -.105 1 -.214 .074 

Sig. (2-tailed) .038 .580  .256 .699 

N 30 30 30 30 30 

x3 Pearson Correlation -.279 -.009 -.214 1 -.176 

Sig. (2-tailed) .136 .962 .256  .353 

N 30 30 30 30 30 

x4 Pearson Correlation .459
*
 .097 .074 -.176 1 

Sig. (2-tailed) .011 .611 .699 .353  

N 30 30 30 30 30 

*. Correlation is significant at the 0.05 level (2-tailed). 

 

Multicollinearity was in this example not a problem, but in many practical cases it may 
become a problem.
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The following collinearity diagnostics are obtained from one of the simulations of this 
study where n=8 and p=4.

Collinearity Diagnostics
a
 

Model Dimension Eigenvalue Condition Index 

Variance Proportions 

(Constant) x4 x3 x2 x1 

1 1 2.338 1.000 .02 .05 .03 .03 .03 

2 1.190 1.402 .35 .00 .05 .04 .03 

3 .906 1.607 .03 .16 .15 .03 .07 

4 .438 2.312 .48 .38 .15 .09 .05 

5 .129 4.260 .12 .41 .61 .80 .81 

a. Dependent Variable: y 

 

The condition index is the square root of the ratios of the largest eigenvalue to each 
successive eigenvalue.  A condition index greater than 15 indicates a possible problem 
and an index greater than 30 suggests a serious problem with collinearity. 
  
All the condition index values are smaller than 15.  This implies that there will not be a 
collinearity problem.

 

To obtain the narrowest possible confidence interval for βj, (and the maximum power in 
testing the hypothesis about βj, the variance for βj must be minimized).   
  

The variance for the estimated  ̂j, is used for the t-test and F-test and is the following: 
 
 

var( ̂           ,             
 

   = var(yi) 
 

   ̂( ̂             and  
 

                  =    ̂   ̂   
 

with     the mean-square about regression (MSE) 
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  

 

In statistics, the mean square error or MSE of an estimator is one of many ways to 
quantify the difference between an estimator and the true value of the quantity being 
estimated. MSE is a risk function, that corresponds to the expected value of the squared 
error loss or quadratic loss. 
 
This is one of the important concepts that is used in the study, i.e. determining the error 
in multiple forward regression analysis.  The mean-squared error is intimately related to 
the prediction accuracy.  The mean-squared error for the full- as well as the forward 
model is determined for the different values of n and p. 
 
The MSE is the second moment (about the origin) of the error, and thus incorporates 
both the variance of the estimator and the bias.  For an unbiased estimator, the MSE is 
the variance. 
 

The mean-squared error of the estimator  ̂ in estimating   is3: 
 

MSE( ̂  = E   ̂        = var( ̂)  + [E( ̂  -  ]2  
 

              =   var( ̂)  + [Bias(  ̂   ]2  
 

              =    ( ̂      ( ̂     /p    4                        (1)   
 
The red term is the variance, while the blue term is the squared bias.  The format of the 
last part of the equation is used in the program of this study for the full and forward 
model.   
 
The Gauss-Markov theorem implies that the least squares estimator has the smallest 
mean-square error for all linear estimators with no bias.  However, there may exist a 
biased estimator with a smaller mean-squared error.  Such an estimator would trade a 
little bias for a larger reduction in variance.  Biased estimates are commonly used.  Any 
method that shrinks or sets to zero some of the least square coefficients may result in a 
biased estimate. 
 
The full linear regression model               ….(2)  can be written as 
 
                     ….(3) 

 
where the equation (3) is the linear equation of the full model and      is the reduced 
model.    
 
There are two reasons5 why one may not be satisfied with the least squares estimates 
of the full model (eq. 2),  with      ̂               namely: 

 

 The first is prediction accuracy:  the least square estimates often have low bias, 
but large variance.  Prediction accuracy can sometimes be improved by shrinking 

                                                 
3
 http://en.wikipedia.org/wiki/Mean_square_error 

 
4
  Formula used in program 

5
  Referring to Hastie et al - The elements of Statistical learning. p. 57   

 
 
 

http://en.wikipedia.org/wiki/Mean_square_error
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or setting some coefficients to zero.  By doing so, a small amount of bias is 
sacrificed to reduce the variance of the predicted values, and hence may improve 
the overall prediction accuracy5. 
 
Comment:  The least square estimates of the parameters in the subset model 
have a smaller mean square error than the corresponding parameter estimates 
from the full model, when the deleted variables have regression coefficients that 
are smaller than the standard errors of their estimates in the full model6.   
 

 The second reason is interpretation:  With a large number of predictors, it is 
desired to determine a smaller subset that exhibits the strongest effects.  In order 
to get more clarity, one may be willing to sacrifice some of the small details5. 
 

From a more pragmatic point of view, most models are distortions of the truth, and 
hence are biased; picking the right model amounts to creating the right balance 
between bias and variance. 
 

 

 
The coefficient of determination R2 is a measure of the combined effects of all 
independent variables X1….Xp, in the regression model in reducing the total variability.  
When considering whether or not to add another independent variable to the regression 
model, a different measure is needed.  Such a measure is the coefficient of partial 
determination, which shows the marginal effect of a single variable associated with the 
regression model7. 
 
For the regression model (2) with two independent variables, the coefficient of partial 
determination between y and x1, given x2, already in the model is defined by: 
 

      r2 Y1,2  =  
                  

       
    8    (4)  

 
where SSE is the error sum of squares.       
 
This formula can be extended to the multivariate case.   The square root of the 
coefficient of partial determination is called the coefficient of partial correlation.  This 
and the extended formula are used in the program for the study.   
 
 The maximum r is used within each step of the forward regression analysis, 
determining the next most important variable to be allowed into the model. 
 
 
 
 
 
 
 

                                                 
6
 Montgomery.  2006. Introduction to linear regression analysis - Fourth Edition.  p. 264. 

7
 Wasserman. 1993. Applied Statistics, 4th Edition. - on this terminology (Chapter 20).  

8
  See program in the appendix how the formula is used 
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Forward regression analysis is a greedy algorithm that produces a nested sequence of 
modelsl9.  In this sense it might seem sub-optimal compared to best-subset regression.  
However, there are several reasons why it might be preferred: 
 

 Computational: for a large number of variables, one cannot compute the best 
subset sequence, but can always compute the forward selection (even when p > 
n). 
 

 Statistical:  a price is paid in variance for selecting the best subset of each size; 
forward selection is a more constrained search, and will have lower variance , but 
perhaps more bias. 
 

Comment:  Bendel and Afifi (1977) have shown in a simulation that forward selection 

with an F-to-enter statistic at nominal        produces a smaller population mean 
square residual than other more complex stopping rules. 

 
 

The next part is also an abstract out of Hastie et al - The elements of Statistical 
learning. - p. 59.  

 
Hastie et al.(2009) have a comparison of four subset-selection techniques on a 
simulated linear regression analysis dataset.  They graphically pictured the mean-

squared error of the estimated coefficient   ̂    at each step from the true   where k is 

the number of variables chosen from the subset model (k           ).  He simulated 
n=300 observations, p=31 variables from a standard Gaussian distribution for 50 runs.  
10 of the coefficients for each case were drawn at random from a normal N(0,0.4) 
distribution, with remaining coefficients equal to zero, and              
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
9
 Referring to Hastie et al - The elements of Statistical learning. p. 58   
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The following graph has been obtained: 
 
 

      

 
Figure A 

 
 
Figure A shows the results of a small simulation study to compare best-subset 
regression with the simple alternative forward and backward selection. There are n=300 
observations on p=31 standard Gaussian variables, with pairwise correlations that are 
all equal to 0.85. For 10 of the variables, the coefficients are drawn at random from a 

         distribution, whilst the rest are zero.  The noise             results in a signal-
to-noise ratio of 0.64.  Results are averages over 50 simulations.  In the graph the 

mean-squared error of the estimated coefficient  ̂    at each step from the true   is 
shown.  
 
The performance of the different subsets  is very similar, as is often the case.  Included 
in the figure is forward regression.  The forward stagewise regression takes longer to 
reach minimum error. 
 
On the other hand, backward elimination starts with the full model, and sequentially 
deletes the predictor that has the least impact on the fit.   Backward selection can only 
be used when n > p, while forward selection can always be used. 
 
Different from this study, Hastie graphed the mean-squared error of the number of 
subset variables versus the mean-squared error at each stage of the selection. 
 
In this study the mean-squared error is plotted against p (number of variables), n 
(numbers of observations) and k (the number of variables selected) of each n versus p 
case, discovering the best n versus p ratios as well as the best number of n and p‟s for 
the forward selection regression analysis. 
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Since these different procedures are widely used, knowledge of the distribution of the 
sample R2 would be helpful in each case10.  Berk (1978) has shown, however, that 
differences between procedures might not be significant in practice.  
 
 

 

A study by Bendel(1977) slightly differs from this study. He studies the Comparison of 
Stopping rules in Forward Stepwise Regression.  In his paper he uses the unconditional 
mean-square error of prediction as a criterion for comparing stopping rules used with 
the forward stepwise selection procedure in multivariate normal samples, based on 
simulations of 48 population correlation matrices.  The Cp statistic, “F to enter” (0.15 < 

   < 0.25), a rule which minimizes the sample criterion, and one which sequentially tests 
the equality of the population criterion (0.25 <    < 0.35) were used.  For these rules, 
the criterion seldom differs by more than 3%, although there are considerable 
differences between these and some other rules.  
 
For the prediction problem in Bendel‟s study, the regression equation is used to predict 

the y value of a randomly chosen element (  ,x0) of the population.  When  ̂(q)(x0) is 
used as an estimator of y0, the unconditional mean-square error of the prediction is 
defined as: 
 

        UMSE(q)  = E{ ̂(q)(x0) – y0}
2 

 

where the expectation is taken over all the random variables, including the “new” 

observation (  ,x0) , as well as the independent variables of the regression sample.  
The criterion UMSE was used by Stein [23] who employed the same basic model as 
described.  Afifi and Elashoff [1] used this criterion to establish relative efficiencies in 
various missing value techniques.    
 
In another study by Wilkinson (1981), he simulated upper critical values of the 
distribution of the sample squared multiple correlation coefficient under forward 
selection regression when the population multiple correlation is zero and the predictors 
are mutually independent. 
 
His simulation involved sampling of a dependent variable and predictors from a 
standard spherical multi-normal distribution.  Sample correlation matrices were 
generated  directly from a standardized Wishart distribution using an algorithm from 
Odell and Feiveson(1966).   
 
Normal numbers were generated by a subroutine FA03A of the Harwell Subroutine 
Library (1973).  R2 values were generated by the abbreviated Gauss-Doolittle method 
with forward selection of the predictors (Draper and Smith 1966, p 178). Forward 
stepping was continued on each sample until the F-to-enter rule was not met by any 
variable remaining to be selected.  (Barr et al. 1976; Dixon 1979; Nie et al. 1975; denote 
this stopping rule as F-to-enter).  Each regression was computed for at least 500 
samples and continued in additional blocks of 100 samples until three successive 
blocks yielded the same R2 value to two decimal places for both the 95th  and 99th  

                                                 
10

 Wilkinson L.  1981. Test of Significance in Forward Selection  Regression With an F-to-Enter Stopping 

Rule 
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percentage points of the sample distribution.  Using this procedure, test runs on known 
values (when F = 0) yielded the upper tail values correct to two significant digits 
reported in this article.  
 
The values calculated in Wilkinson‟s study are shown as follows: 
 
                 

 

  
 

 
 
 
                     
 
 
 
 
 
 
 

Table A: 
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The tables (A & B) of simulation results allow graphical interpolation with respect to any 
of the parameters (F, m: the number of variables selected, and n: number of 
observations) to within a 0.01 precision in the R2 values. The use of forward selection 
with these tables allows the researcher to test the null hypothesis that the population 
squared multiple correlation is zero when the number of variables in a subset regression 
has not been specified prior to the data analysis. 
 
 
 
 
 
 
 

Table B 
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Another study on Forward selection of Explanatory variables is done by Blanchet et al. 
(2008): 
 
This paper proposes a new way of using forward selection of explanatory variables in 
regression or canonical redundancy analysis. 
 
Ecologists are known to sample a large number of environmental variables to try to 
better understand how and why species and communities are structured.  They are 
often faced with the problem of having too many explanatory variables to perform 
standard regression or canonical analysis.  One method very often used for selecting 
variables in ecology, is forward selection.  It presents the great advantage of being 
applicable even when the initial data set contains more explanatory variables than sites, 
which is often the case in ecology.  
 
However, forward selection is known to overestimate the amount of explained variance, 
which is measured by the coefficient of multiple determination (R2; Diehr and Hoflin 
1974, Rencher and Pun 1980).  Another problem with forward selection is a highly 
inflated Type I error. 
 
Correcting these problems will greatly improve the performance of this very useful 
method in ecological modelling.  To prevent this problem, they proposed a two-step 
procedure.  Firstly, a global test using all explanatory variables is carried out.  If and 
only if, the global test is significant, one can proceed with forward selection. To prevent 
overestimation of the explained variance, the forward selection has to be carried out 
with two stopping criteria:  (1) the usual alpha significance level and (2) the adjusted 
coefficient of multiple determination (R2) calculating using all explanatory variables.  
(Adding unimportant variables to an already well-fitted model has practically no impact 
on the explained variance measured by Ra

2. Thus the use of Ra
2 as an additional 

stopping criterion is a good choice in forward selection procedure). 
 
When forward selection identifies a variable that brings one or the other criterion over 
the fixed threshold, that variable is rejected and the procedure is stopped. This 
improved method is validated by simulations involving univariate and multivariate 
response data.  
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The table below is also an abstract out of Blanchet‟s article. 
 
Table C shows the percentage of simulations in which all the variables are used to 
create the univariate or multivariate response variable(s), and only those are retained 
by the forward selection procedure.  
 

  Table C 

 
 
An ecological example is presented in this article as well. 

Whitney (2000) did a study on:  Unsupervised Forward Selection:  A method for 
eliminating Redundant variables. 
 
An unsupervised learning method is proposed for variable selection and its performance 
is assessed using three typical QSAR data sets.  The aims of this procedure are to 
generate a subset of descriptors from any given data set in which the relevant variables 
are relevant, redundancy is eliminated and multicollinearity is reduced. Continuum 
regression, an algorithm encompassing ordinary least squares regression, regression 
on principal components, and partial least squares regression, was used to construct 
models from selected variables.  The variable selection routine is shown to produce 
simple, robust, and easily interpreted models for chosen datasets.    
 
Another study is done by Stodden(2006) where she studied Model Selection when the 
number of variables exceeds the number of observations i.e. n < p. 
 

This classical multivariate linear regression problem assumes p predictor variables X1, 
X2….Xp and a response vector y, each with n observations, and a linear relationship 

between the two.              where      N(0,   ).  This thesis found that when n < p, 
there is a breakdown point for standard model selection schemes, such that model 

selection only works well below a certain critical complexity level depending on 
 

 
.  This 

notation is applied to some standard model selection algorithms (Classical Forward 
Stepwise, Forward Stepwise with False Discovery Rate thresholding, Lasso, LARS, and 
Stagewise Othogonal Pursuit) in the case where n <<p. 
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The notation of the Phase 1 Diagram is borrowed from the signal processing and 
statistical physics to discover that: 
 

1)  The breakdown point is well-defined for random X-models and low noise 
2)   Increasing noise shifts the breakdown point to lower levels of sparsity, and   

  reduces the model recover ability of the algorithm in a systematic way and 
3)   Below breakdown, the size of coefficient errors follows the theoretical error  

  distribution for the classical linear model. 
 

Stodden used threshold algorithms for the Classical Forward Stepwise, the Forward 
Stepwise and the Lasso and LARS methods.   She determined that the threshold-to-

enter for Classical Stepwise was set at √        , implying that the absolute value of the 

t-statistic for variables under consideration for inclusion in the model must be greater 

than √        .  She used the number of variables, p = 200.  The threshold-to-enter 

would then be 3.25. 
 

 

 
 

   

Figure B:  This Empirical Phase Diagram for Forward Stepwise illustrates where the 
underlying sparse model is recovered using the Forward Stepwise Algorithm, with the 

number of variables, p, fixed at 200 and the noise     N(0,16).   Variables were greedily 

added to the model until no remaining t-statistic was greater than √         in absolute 

value.  The phase transition is striking: there is a very sharp drop-off below which the 
algorithm recovers the model with near zero error, and above which the model is 
unrecoverable.  As with the theoretical phase transition diagram in Figure C, along the 
x-axis the level of underdeterminedness decreases, and along the y-axis the level of 

Figure B 
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sparsity of the underlying model increases.  Each colour indicates a different median 

normilized l2 error of the coefficients 
  ̂    

    
 over 30 realizations 

 

where li-norm is defined for a vector x = [x1,x2…xn]:  
                             and where |x0| = # {non zeros in x}  
 

Using this to define the sparsity solution gives the following problem: 
 
     |β |0 s.t.y =     

 
This is intuitively compelling – literally choosing the sparsest solution.  
 

The normalized root mean-square error (nRMSE) = 
  ̂    

    
   

 

The results are comparable across models built with different problem sizes and noise 
levels. The median nRMSE over instances at given values for k, n and p have been 
reported to indicate the algorithm performance. 
         

 
 

 

Figure C: Theoretical Phase Transition Diagram: theoretical threshold at which 
equivalence of the solutions l1 and l0 optimization problem breaks down.  The curve 
delineates a phase transition from the lower region where the equivalence holds, to the 
upper region, where it seems to require combinational search to recover the optimal 
sparse model.  Along the y-axis the level of underdeterminedness decreases, and along 
the y-axis the level of sparsity of the underlying model increases. 
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Stodden also determined the nRMSE for Pre-Breakdown Region for the Classical 

Forward Stepwise, with   
 

 
 = 0.5 (this is also one of the n versus p cases in this 

study).  
 

 

 

 
 

 

 

 

Figure D:  nRMSE for Pre-Breakdown Region for the Classical Forward Stepwise;  

   
 

 
 , p = 200.  Results for each of    {0,1,2,4,6,12,16} are displayed.  The median 

relative error is determined over 1000 replications.  Although the actual nRMSE rates 
are low compared to the other algorithms in this study, the breakdown points occur 

earlier, i.e. at smaller values of  . 
 

Stodden mentioned that to expand the analysis beyond   
 

 
 =0.5 would be useful, 

since the nature of the breakdown in performance, depends on the level of 

indeterminacy  .   
 
Extending the experiments to a much larger p would also allow one to draw empirical 
conclusions about how the level of indeterminacy affects the breakdown point.   
 

 

 

 

 

 

Figure D 
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In this study some attention is paid on the estimating of the regression coefficients in the 
cases where the number of variables exceeds the number of observations – as studied 
by Stodden. The accuracy of the model with different n and p values is determined.   
 
Radchenko(2011) on the other hand only focused on variable selection methods in 
regression situations where the number of predictors (p) is large relative to the number 
of observations (n). Two commonly applied variable selection approaches are the 
Lasso, which computes highly shrunk regression coefficients, and Forward Selection, 
which uses no shrinkage. They propose a new approach, “Forward-Lasso Adaptive 
Shrinkage” (FLASH), which includes the Lasso and Forward Selection as special cases, 
and can be used in both the linear regression and the Generalized Linear Model 
domains.   
 
As with the Lasso and Forward Selection, FLASH iteratively adds one variable to the 
model in a hierarchical fashion but, unlike these methods, at each step adjusts the level 
of shrinkage so as to optimize the selection of the next variable.  They first present 
FLASH in the linear regression fitting and show that it can be fitted using a variant of the 
computationally efficient LARS algorithm.  Then they extend FLASH to the GLM domain 
and demonstrate, through numerous simulations and real world data sets, as well as 
some theoretical analysis, that FLASH generally outperform many competing 
approaches.   
 

 

 

Hastie et al.(2009)  made a study of the shrinkage methods as well.  Subset selection is 
a method of retaining a subset of the predictors and discarding the rest. It produces a 
model that is interpretable and has possibly lower prediction error than the full model.  
However, because it is a discrete process – variables are either retained or discarded – 
it often exhibits high variance, and so doesn‟t reduce the prediction error of the full 
model.  Shrinkage methods are more continuous, and do not suffer as much from high 
variability.    
 

He compared the different methods, by comparing estimated prediction error curves. 
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The following graphs, (Figures (E)) show the estimated prediction error curves and their 
standard errors for the various selection and shrinkage methods.  Each curve is plotted 
as a function of the corresponding complexity parameter for that method.  The 
horizontal axis has been chosen so that the model complexity increases as we move 
from left to right.  The estimates of prediction error and their standard errors were 
obtained by tenfold cross-validation.  The least complex model within one standard error 
of the best is chosen, indicated by the purple vertical broken lines. 
 

 
            

 
 

 
These different methods are only shown here but this is beyond the scope of this 
dissertation.   It is just shown to take note of. 
 
 
 
 

Figures (E) 
)E 
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In   this chapter the parameters used in the SAS   IML programme  are  given,  and  the 
procedures and steps of the program, is described.  The references referred to, is given 
in chapter 5, “Steps, following  the  Statistics of the study”, simulation  results  followed  
in  chapter 6, conclusions and graphs in chapter 7, as well as the program, in chapter 
11 - the appendix. 
 
The forward selection regression model is used for this investigation.  The full model is 
also used for comparison in this study.  
 
The references marked in red referer to the program and / or printout. 

In this study, simulations of 10 000 runs (sim=10000)11 for the chosen n and p values 
are done for each of the full- and forward multiple regression analysis.   Firstly a few 
modules in SAS IML are defined, followed by the main program. Then the full 
regression model is done followed by the forward selection model.  The last part of the 
program consists of a few calculations. 
 
The parameters chosen for the study are the following: 
 
The number of variables (p) used in the regression, is chosen to range from 4 to 20 
(integer numbers). This is the number of variables to be included in the full model for 
each case.  In the forward selection model, the best k (k < p) variables are chosen.  For 
each of the p = 4…2012 the values for n, which is the number of observations is chosen 
to be 0.5p, p, 2p and 4p13.  In the case where n = 0.5p and n is not an integer, n was 
rounded up to the next larger integer. 
 
The x values are then generated from a normal distribution14 where xi            and 

  ={0}15 and 
 

     (
     
   

     
)    = 0.5(Ip  + Jp)

16     where Ip  = (
   
   
   

)      and  Jp = (
   
   
   

) 

 

   are also generated from a normal17 distribution with   independent ~ N(0,4)18 

distributed.  The equation for the linear regression model is y =    +       
 

The    (where p is even) values are assigned     = 1; for the first half of the total number 

of xi‟s (these are the first 
 

 
 values).  If the p value (the total number of x‟s) is an odd 

                                                 
11

  The number of runs for each p versus n ratio‟s named sim in the program 
12

  p = 4 to 20 - see program  
13

  n = 0.5p, p, 2p and 4p – see program 
14

  The x variables are generated from a normal distribution 
15

  X has mean 0 – see program 
16

 This is    = Cov(x) names sigma1 in the program and printout 
 

17
    is generated from a normal distribution 

18
    independent ~ N(0,4)

 variables – see program   
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number, then the first 
   

 
 values were assigned to the    = 1 value and the remaining    

= 0. 

Thus    

[
 
 
 
 
 
 
 
 
 ]
 
 
 
 

         for the first  
 

 
 or  

   

 
    1‟s and the rest of  

 

 
    

   0‟s.19 

 

That means that half of the number of variables i.e. the first 
 

 
 or 

   

 
 , should be included 

in the model when doing forward selection.  In this study we determine the probability of 
a correct classification as well. 
 
The results and conclusions of this study are mostly illustrated in the graphs presented 
in Chapter 7. 
 

The full linear regression model           is used to determine the least squares 

estimates of the full model with      ̂            21 
 
The parameters were chosen as above mentioned. 
 
The test for significance of regression is a test to determine if there is a linear 
relationship22 between the response variable (y) and the regressor variables x1,x2…xp.  
This test is done in the analysis for each simulation and each selected n and p case23.  
 
This procedure is often thought of as an overall or global test of model adequacy.  The 
appropriate hypotheses are:    
 
         H0 :     =            

         H1 :              (for some j) 

 
Rejection of the null hypothesis implies that at least one of the regressors x1,x2…xp.  
contributes significantly to the model.   
 
The test procedure is a generalization of the analysis of variance used in simple linear 
regression.  The total sum of squares (SST)24 is portioned into the sum of squares 
due to regression, (SSreg)25 and the residual sum of squares (SSE)26. 
 
Thus    SST =  SSreg + SSE 
            MSreg = SSreg /p27 

                                                 
19

    is assigned the values of 1 and 0 (for even and odd p‟s) – see program and output 
20

 The regression analysis on the full model(a) and (b) for the forward model 
21

 Determining   ̂ of the full model – see program 
22

 Referring to Montgomery (2006).  Introduction to linear regression analysis  p.80. 
23

 See F-statistic and F-  probability in program as well as output 
24

 See program and printout 
25

 The regression sum of squares (SSreg) for the full model (see program and printout) 
26

 The residual sum of squares (SSE) for the full model (see program and printout) 
27

 Mean-square due to regression – See program and output 
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MSE = SSE / (n – p – 1)28 
 
The R2 = SSreg/SST29 is called the coefficient of determination.  
 
The full regression model is applied to the simulated data.  The F-probability23 is 
determined for each simulation and each case (n and p). 
 
The F-probabilities are grouped into the classes p < 0.01, 0.01 < p < 0.05 and p > 0.05 
for each simulation, n and p case.   The proportion counts of each n and p case (over 
10 000 simulations) is determined.30 
 
See table 5, graphs 10 and 11 for the results on this study. 
 
The test for the Hypothesis H0:    =0 for each    and 

                                            H1:          for each    is done in this example. 

 
This test should actually be tested against the real     values, assigned in the program 

and not   = 0 (for all   ) as done here. 

 
This test here is actually done for testing the SAS IML program versus the SAS PROC 
REG program:31 
 
The right test for the Hypothesis H0:    =     for each    and 

                                                    H1:         for each     for j = 0…p 

 
where the test statistic should be: 
           

                                                      
 ̂       

    ̂  
 

 
 
where the null hypothesis H0:    =     for each    should be rejected if: 

 
                                                    

  
         

 
                     
The mean-squared error is also determined and compared to the mean squared-error 
for the forward model.  Results, on this are seen in table 4 and graphs 3, 5, 8 & 9.  
 
The other calculations follow in chapter 5. 
 
 
 
 
 
 

                                                 
28

 Mean square error – See program and output 
29

 R
2
 – See program and printout 

30
 F-probability (proportion counts) - See program and the results in Chapter 7 

31
 See program and printout 
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The full linear regression model          32      can be written as 
 

                     where p is the number of variables and k the numbers of 

variables selected in the forward selection. 
 

Then, the least-squares estimate of    is   ̂          
       21 

 
Firstly the variable maximum correlated to the y-variable is determined.33 
 
Test the significance of the variable.34 
 
A counter matrix is calculated to determine which variables in- or excluded from the 
model.35   
 
The coefficients of partial correlation are determined.36   
 
The maximum r is determined.37 
 
This process is repeated until there are no significant variables left for inclusion into the 
model.38 
 

The final   ̂ for the forward model is determined.39 
 
The mean-squared error of the forward- and full models is determined.40 
 
The other calculations which are used for this study be follow in the program, chapter 11 
– the appendix.
 
 
 
 

                                                 
32

 Assigning of model  
33

 Determine the variable mostly correlated to the y-variable – See program and output 
34

 T-value is determined and tested against the t-statistic 
35

 Xin and xout are calculated 
36

 See ryx in the program and printout 
37

 See program and printout – Maximum r. 
38

 Process repeated 
39 Estimate  ̂  - See program and printout 
40

 See program and printout 
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This chapter consists of the computer printout for 1 simulation.  It actually differs a bit from the 
program in the appendix.  The program in the appendix is for the 10 000 simulation with the 
different cases of n and p.  It is also the full program of the study. 
 

The statistical analysis in IML is compared with the statistics in the SAS (proc reg) printout here.  
The parameters here are set the same as in chapter 7(the simulation study), but with only 1 
simulation here. So it can be compared with SAS (proc reg) 
 

n = 30 and p = 8 is used here. 
 

The SAS IML programme  
(See the references on the red letters.  It refers back to the footnotes used in Chapter 4) 
 

The SAS System 

 

sim 11 i 

 no = 1 

 

sigma1 (x) 16  

1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 

0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 

0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 

0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 

0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 

0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 
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Assigned β     19 

  0 

1 

1 

1 

1 

0 

0 

0 

0 

 

a. ========== REGRESSION FOR THE FULL MODEL20==================== 

 

Bhat 
21 

-0.219302 

0.854587 

1.323134 

0.8227202 

0.3889855 

1.4121609 

-0.470012 

0.7243091 

-0.278632 

 

SSreg 25 

449.00154 

 

SSE 26  

297.86037 
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MSreg 27  

56.125193 

 

MSE 28 

14.183827 

 

SST24 

746.86191 

 

F23 

3.9569851 

     

  pp=p  23 

The F-probability is : 0.0049113 

  

  R2    29 

The R - square value is: 0.6011841 

 

r correlation matrix  

  y x1 x2 x3 x4 x5 x6 x7 x8 

y 1 0.5767 0.6514 0.4698 0.5708 0.6508 0.3319 0.4342 0.2712 

x1 0.576 1 0.6023 0.1606 0.5935 0.5050 0.2886 0.4136 0.1864 

x2 0.651 0.6023 1 0.4050 0.5278 0.6079 0.4170 0.4345 0.2714 

x3 0.469 0.1606 0.4050 1 0.4822 0.5211 0.3296 0.2439 0.5080 

x4 0.570 0.5935 0.5278 0.4822 1 0.5713 0.2278 0.2537 0.2109 

x5 0.650 0.5050 0.6079 0.5211 0.5713 1 0.4683 0.3236 0.4455 

x6 0.331 0.2886 0.4170 0.3296 0.2278 0.4683 1 0.5543 0.5623 

x7 0.434 0.4136 0.4345 0.2439 0.2537 0.3236 0.5543 1 0.2633 

x8 0.271 0.1864 0.2714 0.5080 0.2109 0.4455 0.5623 0.2633 1 
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b  31 bhat  stderrB probT 

 b0 -0.219302 0.7585274 0.7753284 

 b1 0.854587 0.992829 0.3990919 

 b2 1.323134 1.1591848 0.2665384 

 b3 0.8227202 0.9473216 0.3949543 

 b4 0.3889855 1.0044306 0.7024536 

 b5 1.4121609 0.9891448 0.1680929 

 b6 -0.470012 1.0154299 0.6482184 

 b7 0.7243091 0.7777099 0.3622641 

 b8 -0.278632 0.993503 0.7818731 

 

b. ============= FORWARD REGRESSION ANALYSIS 20=============== 

 

  xxmax 33  

keep x 2 in the model 

 

T  34 

4.5438157 

 

  Tprob  34    

tprob= 0.0000964 

 

k 

1 
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Xin      Xout  35 

0 1 

1 0 

0 1 

0 1 

0 1 

0 1 

0 1 

0 1 

 
The real β in the model at this stage 

bForward 

   0 

1 

 

  xstay 

The following x_s stays in the model 2 

 

SSEin 

429.88162 

 

Coefficients of partial correlation - ryx  36 

0.304330 0.2968863 0.3522077 0.4229714 0.0874718 0.2211262 0.129306 

 
 

37  SSEyxmin 

 The minimum SSE is: 5 

 

37   yxmax 

The maximum r is: 5 
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maxryx 

0.4229714 

 

  xxmax 37   

keep x 5 in the model 

 

t 

2.4254713 

 38           (process repeated) 

  tprob 

tprob= 0.02225 

 

k = 2 

 

xin xout 

0 1 

1 0 

0 1 

0 1 

1 0 

0 1 

0 1 

0 1 

 

bForward 

0 

1 

0 
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   xstay   

The following x_s stays in the model 2 5 

 

The following variables are not in the model 

 
 

noutx 

1 3 4 6 7 8 

 

SSEin 

352.97373 

 

Ryx      

0.239414 0.1630229 0.231948 0.0444591 0.2059767 0.0308368 

 

   SSEyxmin 

The minimum SSE is: 1 

 

  yxmax 

The maximum r is: 1 

 

maxryx 

0.239414 

 

h 

6 

38   (process repeated) 
 

t 

1.257343 
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  tprob 

tprob = 0.2198067 

 

  xxmax   

x 1 will not be in the model 

 

k 

3 

 

  finalxxx   

The following x e will be in the final model 2 5 

 

39  bhatFORW 

The final estimates values for the forward model are: -0.094351 

  2.3167823 

  1.9129184 

 

Xinlast (last counter) 

0 1 0 0 1 0 0 0 

 

MSE_bhattFORW 40 

5.4020743 

 

MSE FOR THE Forward MODEL of the estimated coefficient BHAT at each step from 
the true B is 

 

MSE_bhatTOTFORW 40  

5.4020743 

 

MsbtotFULL 40   

3.3957896 
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MSE for the FULL model of the estimated coefficient BHAT at each sim from the true B is 

 

MSE_bhatTOTFULL 40  

3.3957896 

 

dd 

1 0 0 

 

  sim   

The probabilities of the full model with 1 simulations 

 

30  no_prob_prob   

<0.01 0.01<=p<=0.05 >0.05 1 0 0 

 

The probabilities of each of the x_s to be in the forward model is: 

 

finalxin_prob 

0 1 0 0 1 0 0 0 
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DATA 
 

Obs y x0 x1 x2 x3 x4 x5 x6 x7 x8 

1 -0.7629 1 0.04656 0.62040 -1.26848 -0.27776 -0.53836 0.52450 1.58019 -0.60804 

2 -1.6483 1 -1.88630 -0.87413 0.24278 -0.85437 -1.25476 -0.14468 1.35467 -1.86182 

3 -11.2217 1 -2.02250 -1.18131 -1.85268 -1.60058 -2.37542 -0.47465 -1.00262 0.05250 

4 -3.5763 1 0.85877 -1.09555 -2.85873 -0.07797 -0.93742 -1.14722 0.40687 -1.69449 

5 -3.0987 1 0.49500 0.30015 -1.20874 -1.51518 -0.91345 0.67724 0.53144 -0.47134 

6 6.2110 1 0.34521 1.68691 1.17978 0.50887 0.09043 -0.05671 0.92642 0.06760 

7 3.2436 1 -0.52074 -0.80588 -0.16808 -0.90967 -1.21116 0.43454 0.83004 -0.68337 

8 -1.7805 1 -0.24421 0.08733 1.01913 -0.32970 -0.10161 1.32811 0.91512 0.62442 

9 -10.6864 1 -1.64873 -1.55292 -0.93073 -1.83826 -1.12564 0.93932 0.70678 0.69050 

10 -3.8644 1 -2.06994 -0.73017 -0.56868 -0.69484 -0.56194 0.27507 -0.85876 -0.66961 

11 1.8994 1 -0.27581 0.00839 -0.68049 -0.71346 0.77513 -0.71688 -1.11969 -1.07921 

12 4.2997 1 1.94553 1.25333 0.63126 1.18097 1.01464 0.71890 1.08941 0.68681 

13 -3.1161 1 0.09988 -0.52021 -0.06674 -0.75591 -1.69204 -1.19763 -1.39856 -0.70608 

14 -0.7396 1 0.18223 -0.15290 -1.14951 -1.66991 0.36882 -0.41121 0.67547 -0.51172 

15 10.3569 1 0.13248 0.78954 1.55271 1.14774 2.10558 2.11764 1.34703 0.77513 

16 -7.3901 1 -0.73099 -1.48944 0.30929 -0.69652 -0.85665 -0.95344 0.33151 0.26903 

17 -1.9307 1 0.70615 0.11229 1.62247 0.68463 0.83545 0.70869 0.51089 1.25189 

18 -4.6856 1 -0.20059 -1.88203 -1.35791 -0.75413 -1.90923 -1.73238 -2.08176 -2.28782 

19 -1.4566 1 -0.57142 0.50587 -0.60449 1.61618 0.07156 -1.57343 -0.41659 -1.76394 

20 1.0057 1 0.42204 1.27075 0.57853 -0.20164 -0.90917 -0.04812 0.96019 -0.10481 

21 -2.9322 1 0.30432 -0.08837 0.51017 -0.28884 -0.12737 -1.47037 0.85729 -1.91170 

22 7.2849 1 0.81053 0.26791 1.41117 1.42130 1.82799 0.04652 1.04482 1.13353 

23 -3.2717 1 -1.92164 -1.34038 0.15457 -1.34006 -1.38328 -1.59067 -2.04336 -0.36909 

24 4.4061 1 0.11616 -0.28016 -0.42876 0.44477 -0.86475 -1.50895 -0.10133 0.40942 

25 -1.5366 1 -1.76358 -0.87299 0.50043 -1.54735 0.00474 -1.28116 -1.40051 -0.21098 

26 -7.2694 1 -1.47401 -0.36263 -0.09214 -0.93846 0.33981 -0.63277 -1.74654 0.53202 

27 -9.2621 1 -1.12125 -0.44434 0.35428 0.46054 -1.13455 -0.78533 -1.99726 -1.47173 

28 1.4037 1 -0.21425 0.14567 -0.27417 -0.45418 -0.51584 -0.38450 -1.34642 0.05772 

29 1.6243 1 1.58070 0.59476 -0.38736 0.81322 1.27769 1.20860 -0.88698 -0.19220 

30 0.8326 1 0.44701 -0.78834 0.96729 1.71914 -0.24969 0.50235 0.24479 0.60695 
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The SAS System 

 
 

The CORR Procedure 
 
 

9 Variables: y x1 x2 x3 x4 x5 x6 x7 x8 

 
 
 

Simple Statistics 

Variable N Mean Std Dev Sum Minimum Maximum 

Y 30 -1.25540 5.07483 -37.66192 -11.22171 10.35692 

x1 30 -0.27245 1.06834 -8.17337 -2.06994 1.94553 

x2 30 -0.22728 0.88876 -6.81848 -1.88203 1.68691 

x3 30 -0.09546 1.05019 -2.86385 -2.85873 1.62247 

x4 30 -0.24871 1.03450 -7.46141 -1.83826 1.71914 

x5 30 -0.33168 1.07225 -9.95049 -2.37542 2.10558 

x6 30 -0.22095 1.00422 -6.62862 -1.73238 2.11764 

x7 30 -0.06958 1.16562 -2.08748 -2.08176 1.58019 

x8 30 -0.31468 0.96289 -9.44043 -2.28782 1.25189 
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Pearson Correlation Coefficients, N = 30  
Prob > |r| under H0: Rho=0 

  y x1 x2 x3 x4 x5 x6 x7 x8 

y 
1.00000 

  
 

0.57671 

0.0009 
 

0.65147 

<.0001 
 

0.46981 

0.0088 
 

0.57085 

0.0010 
 

0.65086 

<.0001 
 

0.33199 

0.0731 
 

0.43421 

0.0165 
 

0.27125 

0.1471 
 

x1 
0.57671 

0.0009 
 

1.00000 

  
 

0.60233 

0.0004 
 

0.16068 

0.3963 
 

0.59358 

0.0005 
 

0.50504 

0.0044 
 

0.28866 

0.1219 
 

0.41364 

0.0231 
 

0.18641 

0.3240 
 

x2 
0.65147 

<.0001 
 

0.60233 

0.0004 
 

1.00000 

  
 

0.40504 

0.0264 
 

0.52789 

0.0027 
 

0.60798 

0.0004 
 

0.41701 

0.0219 
 

0.43459 

0.0164 
 

0.27143 

0.1468 
 

x3 
0.46981 

0.0088 
 

0.16068 

0.3963 
 

0.40504 

0.0264 
 

1.00000 

  
 

0.48222 

0.0070 
 

0.52113 

0.0031 
 

0.32964 

0.0753 
 

0.24392 

0.1940 
 

0.50805 

0.0042 
 

x4 
0.57085 

0.0010 
 

0.59358 

0.0005 
 

0.52789 

0.0027 
 

0.48222 

0.0070 
 

1.00000 

  
 

0.57133 

0.0010 
 

0.22786 

0.2259 
 

0.25379 

0.1760 
 

0.21098 

0.2631 
 

x5 
0.65086 

<.0001 
 

0.50504 

0.0044 
 

0.60798 

0.0004 
 

0.52113 

0.0031 
 

0.57133 

0.0010 
 

1.00000 

  
 

0.46839 

0.0090 
 

0.32360 

0.0811 
 

0.44559 

0.0136 
 

x6 
0.33199 

0.0731 
 

0.28866 

0.1219 
 

0.41701 

0.0219 
 

0.32964 

0.0753 
 

0.22786 

0.2259 
 

0.46839 

0.0090 
 

1.00000 

  
 

0.55433 

0.0015 
 

0.56236 

0.0012 
 

x7 
0.43421 

0.0165 
 

0.41364 

0.0231 
 

0.43459 

0.0164 
 

0.24392 

0.1940 
 

0.25379 

0.1760 
 

0.32360 

0.0811 
 

0.55433 

0.0015 
 

1.00000 

  
 

0.26333 

0.1597 
 

x8 
0.27125 

0.1471 
 

0.18641 

0.3240 
 

0.27143 

0.1468 
 

0.50805 

0.0042 
 

0.21098 

0.2631 
 

0.44559 

0.0136 
 

0.56236 

0.0012 
 

0.26333 

0.1597 
 

1.00000 
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The SAS System 

 
The REG Procedure  -   Model: MODEL1 

Dependent Variable: y  
 

Number of Observations Read 30 

 

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 8 449.00154 56.12519 3.96 0.0054 

Error 21 297.86037 14.18383     

Corrected Total 29 746.86191       

 

Root MSE 3.76614 R-Square 29 0.6012 

Dependent Mean -1.25540 Adj R-Sq 0.4493 

Coeff Var -299.99605     

 

Parameter Estimates 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| 

Intercept 1 -0.21930 0.75853 -0.29 0.7753 

x1 1 0.85459 0.99283 0.86 0.3991 

x2 1 1.32313 1.15918 1.14 0.2665 

x3 1 0.82272 0.94732 0.87 0.3950 

x4 1 0.38899 1.00443 0.39 0.7025 

x5 1 1.41216 0.98914 1.43 0.1681 

x6 1 -0.47001 1.01543 -0.46 0.6482 

x7 1 0.72431 0.77771 0.93 0.3623 

x8 1 -0.27863 0.99350 -0.28 0.7819 
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The SAS System 

 
 

The REG Procedure 
Model: MODEL1 

Dependent Variable: y  
 

Number of Observations Read 30 

 
Forward Selection: Step 1 

Variable x2 Entered: R-Square = 0.4244 and C(p) = 4.3079 
  

  

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 1 316.98029 316.98029 20.65 <.0001 

Error 28 429.88162 15.35292     

Corrected Total 29 746.86191       

 

 

Variable Parameter 
Estimate 

Standard 
Error 

Type II SS F Value Pr > F 

Intercept -0.40992 0.73918 4.72169 0.31 0.5836 

x2 3.71992 0.81868 316.98029 20.65 <.0001 

Bounds on condition number: 1, 1 
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Forward Selection: Step 2 
Variable x5 Entered: R-Square = 0.5274 and C(p) = 0.8856 

  
  

Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Value Pr > F 

Model 2 393.88818 196.94409 15.06 <.0001 

Error 27 352.97373 13.07310     

Corrected Total 29 746.86191       

 
 

Variable Parameter 
Estimate 

Standard 
Error 

Type II SS F Value Pr > F 

Intercept -0.09435 0.69439 0.24136 0.02 0.8929 

x2 2.31678 0.95151 77.50373 5.93 0.0218 

x5 1.91292 0.78868 76.90789 5.88 0.0223 

 

Bounds on condition number: 1.5864, 6.3456 
No other variable met the 0.0500 significance level for entry into the model. 

  
  

  

Summary of Forward Selection 

Step Variable 
Entered 

Number 
Vars In 

Partial 
R-Square 

Model 
R-Square 

C(p) F Value Pr > F 

1 x2 1 0.4244 0.4244 4.3079 20.65 <.0001 

2 x5 2 0.1030 0.5274 0.8856 5.88 0.0223 

 
 
 

Note that:  F = t2  (See the separate t values from the output in IML) 
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The properties of forward regression will be evaluated and compared to the full model in 
terms of the following: 
 

 The probability that irrelevant variables ( j = 0) will be included in the model;  

 The probability that relevant variables ( j = 1) will be included from the model; 

 The mean-squared error of the regression coefficients; 

 The relative frequencies of the F – probability in the full model is also illustrated.    
 
Table 1 represents the number of x‟s included in the model with each simulation.  All the 
cases therefore add up to 10 000, the number of simulations, times the number of 
variables.  
 
Table 2 represents the total number of bj‟s=1 being correctly classified, whereas table 3, 
represents the total number of bj‟s=0 being incorrectly classified. 
 
Histogram graphs of table 2 and 3 are given in chapter 7, graphs 1 and 2. 
 
Table 4 represents the mean-squared error for the full- and forward selection models. 
 
Table 5 represents the F-probability counts of the full model.
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npcountxe                    Table 1 – The number of x’s selected in the model with forward regression 

case p ave_k n 0xs 1xs 2xs 3xs 4xs 5xs 6xs 7xs 8xs 9xs 10xs 11xse 12xs 13xs 14xs 15xs 16xs 17xs 18xs 19xs 20xs 

1 4 0.6 8 4315 5084 550 50 1 . . . . . . . . . . . . . . . . 

2 4 1.0 16 1385 7411 1131 66 7 . . . . . . . . . . . . . . . . 

3 5 1.1 10 1310 6884 1627 157 22 0 . . . . . . . . . . . . . . . 

4 5 1.6 20 84 4852 4476 557 30 1 . . . . . . . . . . . . . . . 

5 6 0.8 6 3290 5461 1033 192 24 0 0 . . . . . . . . . . . . . . 

6 6 1.2 12 714 6785 2179 294 25 3 0 . . . . . . . . . . . . . . 

7 6 1.8 24 17 3464 5519 886 108 6 0 . . . . . . . . . . . . . . 

8 7 1.1 7 1491 6255 1828 348 70 8 0 0 . . . . . . . . . . . . . 

9 7 1.6 14 94 4511 4367 886 128 12 2 0 . . . . . . . . . . . . . 

10 7 2.5 28 0 503 5180 3616 630 67 4 0 . . . . . . . . . . . . . 

11 8 1.3 8 964 6157 2236 519 100 22 2 0 0 . . . . . . . . . . . . 

12 8 1.8 16 43 3360 5067 1275 219 34 2 0 0 . . . . . . . . . . . . 

13 8 2.7 32 0 232 4236 4420 957 139 16 0 0 . . . . . . . . . . . . 

14 9 1.5 9 340 5237 3299 884 200 37 3 0 0 0 . . . . . . . . . . . 

15 9 2.3 18 5 1159 5087 2969 663 102 14 1 0 0 . . . . . . . . . . . 

16 9 3.4 36 0 7 937 4790 3351 777 129 9 0 0 . . . . . . . . . . . 

17 10 1.7 10 163 4567 3779 1122 284 69 14 2 0 0 0 . . . . . . . . . . 

18 10 2.5 20 3 650 4747 3523 864 185 21 7 0 0 0 . . . . . . . . . . 

19 10 3.6 40 0 3 522 4149 4033 1091 179 21 1 1 0 . . . . . . . . . . 

20 11 1.5 6 873 5319 2472 898 438 0 0 0 0 0 0 0 . . . . . . . . . 

21 11 2.0 11 57 2930 4521 1789 538 131 26 7 1 0 0 0 . . . . . . . . . 

22 11 3.1 22 0 131 2615 4464 2157 519 91 17 6 0 0 0 . . . . . . . . . 

23 11 4.5 44 0 1 49 1155 4289 3307 988 185 24 2 0 0 . . . . . . . . . 

24 12 1.5 6 755 5124 2591 948 582 0 0 0 0 0 0 0 0 . . . . . . . . 

25 12 2.2 12 31 2315 4563 2152 642 227 56 10 4 0 0 0 0 . . . . . . . . 

26 12 3.3 24 0 55 1890 4535 2557 777 149 29 7 1 0 0 0 . . . . . . . . 

27 12 4.7 48 0 0 14 686 3842 3810 1319 292 35 2 0 0 0 . . . . . . . . 
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npcountxe         Table 1 – The number of x’s selected in the model with forward regression  (continued) 

case p ave_k n 0xs 1xs 2xs 3xs 4xs 5xs 6xs 7xs 8xs 9xs 10xs 11xse 12xs 13xs 14xs 15xs 16xs 17xs 18xs 19xs 20xs 

28 13 1.8 7 307 4398 3171 1345 511 268 0 0 0 0 0 0 0 0 . . . . . . . 

29 13 2.5 13 6 1227 4344 2879 1075 356 80 26 4 3 0 0 0 0 . . . . . . . 

31 13 5.6 52 0 0 1 59 1187 3809 3377 1239 287 36 4 1 0 0 . . . . . . . 

32 14 1.9 7 292 4243 3129 1368 610 358 0 0 0 0 0 0 0 0 0 . . . . . . 

33 14 2.7 14 4 834 3958 3233 1339 454 130 35 9 2 2 0 0 0 0 . . . . . . 

34 14 4 28 0 6 357 2844 3878 2058 643 164 39 10 1 0 0 0 0 . . . . . . 

35 14 5.8 56 0 0 0 19 733 3308 3746 1668 442 75 8 1 0 0 0 . . . . . . 

36 15 2.2 8 79 3178 3665 1783 768 312 215 0 0 0 0 0 0 0 0 0 . . . . . 

37 15 3.1 15 0 331 2972 3763 1881 711 226 82 27 6 0 1 0 0 0 0 . . . . . 

38 15 4.6 30 0 0 69 1347 3496 3112 1390 457 102 22 1 4 0 0 0 0 . . . . . 

39 15 6.7 60 0 0 0 1 86 1081 3423 3348 1552 425 72 11 1 0 0 0 . . . . . 

40 16 2.3 8 70 2983 3592 1825 870 346 314 0 0 0 0 0 0 0 0 0 0 . . . . 

41 16 3.3 16 1 217 2488 3734 2217 891 321 96 25 8 2 0 0 0 0 0 0 . . . . 

42 16 4.9 32 0 0 24 896 3122 3272 1802 650 183 42 7 0 2 0 0 0 0 . . . . 

43 16 6.9 64 0 0 0 0 38 728 2800 3703 1955 634 125 15 2 0 0 0 0 . . . . 

44 17 2.6 9 18 1988 3748 2280 1079 503 217 167 0 0 0 0 0 0 0 0 0 0 . . . 

45 17 3.6 17 0 58 1524 3548 2767 1347 488 197 55 13 2 0 1 0 0 0 0 0 . . . 

46 17 5.5 34 0 0 7 270 1791 3225 2733 1344 451 129 41 9 0 0 0 0 0 0 . . . 

47 17 7.9 68 0 0 0 0 0 86 905 2803 3496 1959 614 118 15 4 0 0 0 0 . . . 

48 18 2.6 9 20 1884 3727 2233 1134 526 270 206 0 0 0 0 0 0 0 0 0 0 0 . . 

49 18 3.8 18 0 29 1178 3342 2984 1524 629 213 72 19 7 3 0 0 0 0 0 0 0 . . 

50 18 5.7 36 0 0 4 170 1339 3115 2889 1635 583 196 57 8 4 0 0 0 0 0 0 . . 

51 18 8.1 72 0 0 0 0 0 50 615 2451 3581 2246 824 199 32 2 0 0 0 0 0 . . 

52 19 2.9 10 6 1179 3395 2676 1440 695 316 168 125 0 0 0 0 0 0 0 0 0 0 0 . 

53 19 4.2 19 0 11 597 2672 3158 2016 939 424 129 45 6 2 1 0 0 0 0 0 0 0 . 

54 19 6.4 38 0 0 0 28 552 2008 3093 2439 1259 441 139 33 8 0 0 0 0 0 0 0 . 

55 19 9 76 0 0 0 0 0 4 63 751 2455 3424 2214 871 183 33 2 0 0 0 0 0 . 

56 20 3 10 7 993 3297 2709 1542 728 380 170 174 0 0 0 0 0 0 0 0 0 0 0 0 

57 20 4.4 20 0 5 438 2339 3247 2129 1119 459 192 47 13 8 1 2 1 0 0 0 0 0 0 

58 20 6.6 40 0 0 0 15 313 1606 3063 2686 1414 627 205 56 12 3 0 0 0 0 0 0 0 

59 20 9.3 80 0 0 0 0 0 1 44 512 2016 3287 2683 1085 305 58 8 1 0 0 0 0 0 
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  Number x_is βi's=1   Table 2 - This is the x's which is included when it should be included      Total 
case p ave_k n x1 x2 x3 x4 x5 x6 x7 x8  x9 x10 x11 x12 x13 x14 x15 TOTAL  prob 

1 4 0.6 8 2339 2347     . . . . . . . . . . . 4686 0.2343 

2 4 1 16 4068 4095     . . . . . . . . . . . 8163 0.4082 

3 5 1.1 10 2936 2866 2862     . . . . . . . . . . 8664 0.2888 

4 5 1.6 20 4624 4521 4652     . . . . . . . . . . 13797 0.4599 

5 6 0.8 6 1860 1797 1852       . . . . . . . . . 5509 0.1836 

6 6 1.2 12 3173 3074 3094       . . . . . . . . . 9341 0.3114 

7 6 1.8 24 5017 4977 5019       . . . . . . . . . 15013 0.5004 

8 7 1.1 7 2041 2048 2103 2006       . . . . . . . . 8198 0.2050 

9 7 1.6 14 3432 3328 3351 3351       . . . . . . . . 13462 0.3366 

10 7 2.5 28 5474 5467 5410 5511       . . . . . . . . 21862 0.5466 

11 8 1.3 8 2213 2174 2218 2153         . . . . . . . 8758 0.2190 

12 8 1.8 16 3532 3627 3666 3685         . . . . . . . 14510 0.3628 

13 8 2.7 32 5752 5880 5829 5679         . . . . . . . 23140 0.5785 

14 9 1.5 9 2209 2312 2237 2259 2310         . . . . . . 11327 0.2265 

15 9 2.3 18 3886 3868 3852 3857 3804         . . . . . . 19267 0.3853 

16 9 3.4 36 6252 6176 6138 6114 6146         . . . . . . 30826 0.6165 

17 10 1.7 10 2317 2393 2398 2380 2426           . . . . . 11914 0.2383 

18 10 2.5 20 3963 4047 4116 4025 4048           . . . . . 20199 0.4040 

19 10 3.6 40 6393 6417 6488 6429 6454           . . . . . 32181 0.6436 

20 11 1.5 6 1572 1579 1652 1529 1650 1565           . . . . 9547 0.1591 

21 11 2 11 2411 2448 2499 2548 2504 2469           . . . . 14879 0.2480 

22 11 3.1 22 4269 4273 4256 4117 4197 4185           . . . . 25297 0.4216 

23 11 4.5 44 6738 6710 6731 6707 6681 6667           . . . . 40234 0.6706 

24 12 1.5 6 1606 1596 1564 1562 1545 1553             . . . 9426 0.1571 

25 12 2.2 12 2490 2598 2549 2623 2503 2678             . . . 15441 0.2574 

26 12 3.3 24 4451 4428 4350 4340 4404 4474             . . . 26447 0.4408 

27 12 4.7 48 6998 6983 6974 6949 6889 6974             . . . 41767 0.6961 

28 13 1.8 7 1711 1714 1591 1710 1750 1695 1651             . . 11822 0.1689 

29 13 2.5 13 2606 2689 2640 2681 2652 2676 2686             . . 18630 0.2661 
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  Number x_is  bi's=1  Table 2 - This is the x's which is included when it should be included                                 Total 

case p ave_k n x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 11 12 13 14 15 16 17 18 19 20 TOTAL prob 

30 13 3.9 26 4575 4600 4623 4536 4544 4608 4532             . . . . . . . 32018 0.457 

31 13 5.6 52 7223 7218 7173 7256 7123 7233 7173             . . . . . . . 50399 0.720 

32 14 1.9 7 1603 1659 1716 1662 1629 1664 1606               . . . . . . 11539 0.165 

33 14 2.7 14 2788 2724 2737 2720 2743 2745 2752               . . . . . . 19209 0.274 

34 14 4 28 4740 4694 4689 4757 4706 4687 4688               . . . . . . 32961 0.471 

35 14 5.8 56 7484 7458 7409 7444 7426 7420 7473               . . . . . . 52114 0.744 

36 15 2.2 8 1824 1819 1717 1687 1788 1678 1704 1787               . . . . . 14004 0.175 

37 15 3.1 15 2792 2808 2849 2843 2810 2811 2867 2706               . . . . . 22486 0.281 

38 15 4.6 30 4755 4797 4816 4780 4753 4788 4883 4863               . . . . . 38435 0.480 

39 15 6.7 60 7648 7629 7672 7575 7664 7593 7502 7601               . . . . . 60884 0.761 

40 16 2.3 8 1703 1755 1690 1807 1733 1751 1691 1759                 . . . . 13889 0.174 

41 16 3.3 16 2908 2941 2939 2867 2846 2903 2892 2991                 . . . . 23287 0.291 

42 16 4.9 32 5022 4972 5039 5001 4993 5014 4898 5083                 . . . . 40022 0.500 

43 16 6.9 64 7859 7867 7859 7828 7901 7790 7830 7809                 . . . . 62743 0.784 

44 17 2.6 9 1819 1917 1855 1884 1800 1751 1826 1811 1838                 . . . 16501 0.183 

45 17 3.6 17 2955 2989 2989 2947 2994 2965 2954 2961 2960                 . . . 26714 0.297 

46 17 5.5 34 5052 5077 5120 5069 5157 5056 5065 5131 5174                 . . . 45901 0.510 

47 17 7.9 68 8041 7976 8023 7907 7999 7979 8055 7987 8057                 . . . 72024 0.800 

48 18 2.6 9 1841 1841 1892 1790 1754 1755 1778 1810 1744                   . . 16205 0.180 

49 18 3.8 18 3080 3043 3024 3081 3020 3050 3068 3065 2971                   . . 27402 0.304 

50 18 5.7 36 5269 5237 5299 5239 5278 5296 5266 5229 5192                   . . 47305 0.526 

51 18 8.1 72 8159 8192 8158 8160 8212 8143 8126 8202 8166                   . . 73518 0.817 

52 19 2.9 10 1910 1841 1976 1831 1841 1921 1849 1880 1890 1863                   . 18802 0.188 

53 19 4.2 19 3095 3041 3129 3097 3072 3116 3086 3048 3075 3131                   . 30890 0.309 

54 19 6.4 38 5392 5335 5350 5333 5401 5296 5408 5415 5353 5238                   . 53521 0.535 

55 19 9 76 8219 8321 8252 8287 8209 8292 8310 8302 8331 8354                   . 82877 0.829 

56 20 3 10 1881 1783 1907 1857 1836 1817 1871 1898 1835 1942                     18627 0.186 

57 20 4.4 20 3181 3121 3146 3151 3073 3189 3104 3131 3217 3163                     31476 0.315 

58 20 6.6 40 5490 5525 5416 5546 5546 5504 5519 5469 5478 5526                     55019 0.550 

59 20 9.3 80 8475 8509 8453 8502 8518 8485 8468 8460 8511 8479                     84860 0.849 
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Number x_is bi's=0   Table 3  - This is the x's included where it should not be included         Total 

case p ave_k n x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 TOTAL prob 

1 4 0.6 8     829 823 . . . . . . . . . . . 1652 0.0826 

2 4 1 16     862 874 . . . . . . . . . . . 1736 0.0868 

3 5 1.1 10       1017 1016 . . . . . . . . . . 2033 0.1017 

4 5 1.6 20       914 889 . . . . . . . . . . 1803 0.0902 

5 6 0.8 6       942 890 858 . . . . . . . . . 2690 0.0897 

6 6 1.2 12       958 922 919 . . . . . . . . . 2799 0.0933 

7 6 1.8 24       869 870 870 . . . . . . . . . 2609 0.0870 

8 7 1.1 7         966 1044 1067 . . . . . . . . 3077 0.1026 

9 7 1.6 14         1072 973 980 . . . . . . . . 3025 0.1008 

10 7 2.5 28         891 942 895 . . . . . . . . 2728 0.0909 

11 8 1.3 8         971 976 987 1016 . . . . . . . 3950 0.0988 

12 8 1.8 16         1018 935 965 949 . . . . . . . 3867 0.0967 

13 8 2.7 32         855 854 839 895 . . . . . . . 3443 0.0861 

14 9 1.5 9           1075 1001 1020 1067 . . . . . . 4163 0.1041 

15 9 2.3 18           1085 1003 1070 1068 . . . . . . 4226 0.1057 

16 9 3.4 36           865 882 898 906 . . . . . . 3551 0.0888 

17 10 1.7 10           1018 1039 1059 1050 990 . . . . . 5156 0.1031 

18 10 2.5 20           1042 1015 1013 988 1012 . . . . . 5070 0.1014 

19 10 3.6 40           822 811 822 820 863 . . . . . 4138 0.0828 

20 11 1.5 6             1041 1054 1055 1014 998 . . . . 5162 0.1032 

21 11 2 11             1095 1081 1043 1134 1127 . . . . 5480 0.1096 

22 11 3.1 22             1077 1100 1101 1063 1051 . . . . 5392 0.1078 

23 11 4.5 44             882 872 865 914 921 . . . . 4454 0.0891 

24 12 1.5 6             1041 983 1016 986 1000 1026 . . . 6052 0.1009 

25 12 2.2 12             1080 1102 1135 1143 1046 1091 . . . 6597 0.1100 

26 12 3.3 24             1022 1031 1073 1061 1072 1009 . . . 6268 0.1045 

27 12 4.7 48             791 825 832 841 852 852 . . . 4993 0.0832 

28 13 1.8 7               1066 1039 1040 1046 1029 1117 . . 6337 0.1056 

29 13 2.5 13               1091 1130 1114 1093 1189 1106 . . 6723 0.1121 
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  Number x_is bi's=0    Table 3  - This is the x's included where it should not be included (continued)       Total 
case p ave_k n x1 2 3 4 5 6 7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 TOTAL prob 

30 13 3.9 26               1104 1102 1040 1077 1106 1053 . . . . . . . 6482 0.108 

31 13 5.6 52               876 869 821 881 870 862 . . . . . . . 5179 0.086 

32 14 1.9 7               1028 1042 1042 1017 1099 1016 1052 . . . . . . 7296 0.104 

33 14 2.7 14               1141 1159 1166 1163 1146 1103 1123 . . . . . . 8001 0.114 

34 14 4 28               1082 1044 1036 1101 1053 1134 1061 . . . . . . 7511 0.107 

35 14 5.8 56               804 849 815 868 844 838 851 . . . . . . 5869 0.084 

36 15 2.2 8                 1179 1107 1101 1094 1085 1103 1106 . . . . . 7775 0.111 

37 15 3.1 15                 1247 1170 1192 1232 1202 1197 1128 . . . . . 8368 0.120 

38 15 4.6 30                 1182 1124 1119 1099 1140 1141 1090 . . . . . 7895 0.113 

39 15 6.7 60                 825 828 862 864 814 842 901 . . . . . 5936 0.085 

40 16 2.3 8                 1123 1107 1121 1091 1063 1115 1100 1127 . . . . 8847 0.111 

41 16 3.3 16                 1174 1163 1164 1168 1177 1128 1179 1168 . . . . 9321 0.117 

42 16 4.9 32                 1166 1101 1145 1105 1076 1090 1061 1116 . . . . 8860 0.111 

43 16 6.9 64                 826 821 806 829 884 840 790 759 . . . . 6555 0.082 

44 17 2.6 9                   1130 1133 1153 1182 1165 1122 1135 1105 . . . 9125 0.114 

45 17 3.6 17                   1197 1257 1173 1187 1210 1249 1260 1202 . . . 9735 0.122 

46 17 5.5 34                   1124 1208 1162 1149 1166 1116 1186 1185 . . . 9296 0.116 

47 17 7.9 68                   851 812 834 876 834 836 834 849 . . . 6726 0.084 

48 18 2.6 9                   1059 1096 1120 1108 1106 1120 1174 1154 1123 . . 10060 0.112 

49 18 3.8 18                   1181 1144 1195 1215 1242 1198 1209 1155 1141 . . 10680 0.119 

50 18 5.7 36                   1125 1141 1161 1050 1123 1116 1086 1128 1127 . . 10057 0.112 

51 18 8.1 72                   837 811 808 773 782 827 809 814 819 . . 7280 0.081 

52 19 2.9 10                     1151 1137 1176 1175 1190 1196 1114 1202 1161 . 10502 0.117 

53 19 4.2 19                     1271 1249 1264 1254 1268 1194 1247 1211 1218 . 11176 0.124 

54 19 6.4 38                     1130 1181 1134 1111 1110 1095 1217 1150 1204 . 10332 0.115 

55 19 9 76                     824 848 829 859 837 881 840 840 850 . 7608 0.085 

56 20 3 10                     1217 1167 1213 1194 1179 1193 1118 1162 1162 1152 11757 0.118 

57 20 4.4 20                     1286 1198 1209 1187 1304 1216 1236 1216 1182 1177 12211 0.122 

58 20 6.6 40                     1167 1123 1113 1159 1146 1056 1188 1100 1109 1131 11292 0.113 

59 20 9.3 80                     830 808 786 785 835 816 752 793 799 806 8010 0.080 
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Case p Average k n 

Mean-squared  
error for Forward 

selection 

Mean-squared 
error for the Full 

model 

 

 
 

1 4 0.6 8 1.0960 3.5198 2 

2 4 1 16 0.6749 0.7257 4 

3 5 1.1 10 1.2283 2.4991 2 

4 5 1.6 20 0.7221 0.5689 4 

5 6 0.8 6 1.5477 . 1 

6 6 1.2 12 0.9600 1.8062 2 

7 6 1.8 24 0.5321 0.4650 4 

8 7 1.1 7 1.7686 . 1 

9 7 1.7 14 1.0385 1.4929 2 

10 7 2.4 28 0.5429 0.3976 4 

11 8 1.3 8 1.4521 . 1 

12 8 1.8 16 0.8402 1.2642 2 

13 8 2.7 32 0.4275 0.3446 4 

14 9 1.6 9 1.6142 . 1 

15 9 2.3 18 0.8876 1.0918 2 

16 9 3.4 36 0.4241 0.3036 4 

17 10 1.7 10 1.3937 . 1 

18 10 2.5 20 0.7532 0.9677 2 

19 10 3.6 40 0.3513 0.2727 4 

20 11 1.5 6 2.5542 . 0.5 

21 11 2 11 1.4632 . 1 

22 11 3.1 22 0.7817 0.8492 2 

23 11 4.5 44 0.3516 0.2499 4 

24 12 1.5 6 2.3981 . 0.5 

25 12 2.2 12 1.2885 . 1 

26 12 3.3 24 0.6810 0.7669 2 

27 12 4.7 48 0.2916 0.2273 4 

28 13 1.8 7 2.4179 . 0.5 

29 13 2.5 13 1.3679 . 1 

30 13 3.9 26 0.7007 0.7015 2 

31 13 5.6 52 0.2879 0.2094 4 

32 14 1.9 7 2.2781 . 0.5 

33 14 2.7 14 1.2219 . 1 

34 14 4.1 28 0.6228 0.6405 2 

35 14 5.8 56 0.2468 0.1941 4 

36 15 2.2 8 2.2874 . 0.5 

37 15 3.1 15 1.2847 . 1 

38 15 4.7 30 0.6415 0.5978 2 

39 15 6.7 60 0.2412 0.1803 4 
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Case p Average k n 

Mean-squared 
error for Forward 

selection 

Mean-squared 
error for the 
Full model 

 

 
 

40 16 2.2 8 2.2169 . 0.5 

41 16 3.3 16 1.1677 . 1 

42 16 4.9 32 0.5672 0.5479 2 

43 16 6.9 64 0.2085 0.1695 4 

44 17 2.5 9 2.2207 . 0.5 

45 17 3.6 17 1.2249 . 1 

46 17 5.5 34 0.5947 0.5211 2 

47 17 7.9 68 0.2025 0.1585 4 

48 18 2.6 9 2.1207 . 0.5 

49 18 3.8 18 1.1142 . 1 

50 18 5.7 36 0.5334 0.4859 2 

51 18 8.1 72 0.1781 0.1502 4 

52 19 2.9 10 2.1036 . 0.5 

53 19 4.2 19 1.1745 . 1 

54 19 6.4 38 0.5439 0.4607 2 

55 19 9.1 76 0.1738 0.1413 4 

56 20 3 10 2.0532 . 0.5 

57 20 4.4 20 1.0779 . 1 

58 20 6.6 40 0.4945 0.4335 2 

59 20 9.3 80 0.1517 0.1346 4 

Discussions of this table are given and represented in graphs 3 to 9.

 
 
 



58 

 

 

 

 

 
 

case p n <0.01 0.01<p<0.05 >0.05 

1 4 8 0.0732 0.1399 0.7869 

2 4 16 0.2882 0.2705 0.4413 

3 5 10 0.1537 0.2481 0.5982 

4 5 20 0.739 0.1659 0.0951 

6 6 12 0.1862 0.2668 0.547 

7 6 24 0.8206 0.1263 0.0531 

9 7 14 0.4162 0.3076 0.2762 

10 7 28 0.9836 0.0133 0.0031 

12 8 16 0.4913 0.2981 0.2106 

13 8 32 0.9944 0.0049 0.0007 

15 9 18 0.7634 0.175 0.0616 

16 9 36 0.9996 0.0004 0 

18 10 20 0.8218 0.141 0.0372 

19 10 40 1 0 0 

22 11 22 0.9517 0.0416 0.0067 

23 11 44 1 0 0 

26 12 24 0.9727 0.0241 0.0032 

27 12 48 1 0 0 

30 13 26 0.996 0.0036 0.0004 

31 13 52 1 0 0 

34 14 28 0.9981 0.0018 0.0001 

35 14 56 1 0 0 

38 15 30 0.9998 0 0.0002 

39 15 60 1 0 0 

42 16 32 1 0 0 

43 16 64 1 0 0 

46 17 34 1 0 0 

47 17 68 1 0 0 

50 18 36 0.9999 0.0001 0 

51 18 72 1 0 0 

54 19 38 1 0 0 

55 19 76 1 0 0 

58 20 40 1 0 0 

59 20 80 1 0 0 
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The full regression model         is used to determine the least squares estimates 

of the full model with      ̂            81.  This is applied to the simulated data.  The F-
probability is determined for each simulation and each case (n and p).  
 
 
That is, the hypothesis H0:     =            is being tested and the F0 statistic is 

being computed.  The H0 hypothesis is being rejected if: 
 
                  F0 >            

 
The F-probabilities is grouped into the classes p < 0.01,   0.01 < p < 0.05 and p > 0.05.   
The proportion of the counts within the classes p < 0.01,   0.01 < p < 0.05 and p > 0.05  
for each n and p case (over 10 000 simulations) is determined. 
 
Discussions of the table above are given and represented in graphs 10 to 11.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
81

  The estimated β,   ̂ for the full model 
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See Table 2 in Chapter 6 for data.   
 
Each of the probability cases (for each n versus p case), is determined by the total 
number of xi‟s being correctly classified (where    =1) divided by the total number of 

simulations, which is multiplied by the number of variables.

From the above-mentioned graph it is evident that the probabilities (for xi ‟s being 
correctly classified) form 4 distinct groups, i.e. for each group, n=0.5p, p, 2p and 4p they 
form different probability groups.  For a multiple linear forward regression analysis, the 
best probability for the xi‟s to be correctly classified lies within the classification of the n 
= 4p group.   
 
From the above one may deduce that in the situation presented by the present 
simulation, the probability for a correct classification is > 40% for n = 4p.  For the cases 
where n = 4p and n > 36 (case 16), the probability of a correct classification > 60%.  For 
the cases where n = 4p and n > 68 (case 47), the probability of a correct classification is 
more than 80%.   
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In order to obtain better accuracy in multiple regression it should be evident that n > 4p 
and n > 36. The probability of a correct classification will then be higher than 60%. 
 
Looking at this graph (with specified conditions) it would not be recommended that n = 

0.5p, where n   20. The probability of a correct classification is smaller than 20%, which 
is not advisable.    
 
 

 
 
See Table 3 in Chapter 6 for data.   
 

Each of the probability cases is determined by the total number of xi‟s being 
misclassified (where    = 0) divided by the total number of simulations, which is 

multiplied by the number of variables.  

From the above one may deduce that in the situation presented by the present 
simulation forms 2 groups for the cases higher than 19 (0 < j < p).  This is applicable for 
the groups, n = 0.5p, p and 2p forming one group and n = 4p forming the other 
probability group.  For a multiple, linear forward regression analysis, the lowest 
probability for the xi‟s to be misclassified lies within the classification of the n = 4p group; 
especially for the cases higher than 16 (p > 9).   
 
The misclassification for a multiple forward regression for n = 4p is less than 10%.  
From this graph it is also clear that the misclassification for p > 10 (cases >19) is slightly 
less than the rest of n = 4p. 
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To obtain better accuracy in multiple forward regression, it is recommended that n > 4p 
and n > 40.  
 
Each test was done normally at α = 0.05, but the actual significance level seems to be 
between 0.08 and 0.12 depending on n and p.  This indicates that forward selection is a 
reliable method to use, but one may have to adjust the significance level.

 
 

 
 

 
 

 

From 10 000 simulations, when n = 2p and n = 4p, the mean-squared error of the 

estimated coefficient  ̂ is determined for the full regression model.  The full regression 
model can however not be done for the cases n = 0.5p as (X‟X) is singular and the 
inverse does not exist.  For n = p an exact fit would be obtained. 
 

From graph 3 it is clear that the mean-squared error of the estimated coefficient   ̂ for 
the full regression model has an exponential curve when both p and n increase 
simultaneously.  The blue and the green curves decrease, when n=2p and n=4p 
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increase respectively.  There is not much difference in the mean-squared error of 

  ̂between the curves when n = 2p and n = 4p for the same p value.    
  
The multilpe linear regression for the full model is more accurate for higher n values. 
The mean-squared error for the cases where n = 4p is less and therefore more 
accurate. 
(table 4) 

 

 
 
For n=4p:      orange:       p is odd. 
                      red:             p is even. 
For n=2p:      light blue:    p is odd. 
                     dark blue:    p is even. 
For n=p:        dark green: p is odd. 
                      light green: p is even. 
For n=0.5p:   brown:        p is odd. 
                      yellow:       p is even.     

    

For each of the n versus p ratio‟s the mean-squared error graphs form 4 different 
trends.  For each of the n versus p ratio curves there are two disjoint curves.  The 
reason for this is the following: 
 

   = 1 is chosen for the first half of the   values and the remaining,  „s = 0 where p is 

even. This results in one group, whereas the cases where p is an odd number, the first 
    

 
,  „s = 1 and the remaining   „s = 0, results in another group. 

 
From Graph 4 the minimum sample size (n) for a specified p and the minimum sample 
size for a certain n versus p ratio (under normal conditions) can be determined. 
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The sample size, n must not be too small, otherwise the estimator will not be correct.  
Only a certain number of variables are kept in the model (k) for the forward selection, 
which is often much less than p - this is shown in graph 7. 
     
In all the cases the mean-squared error decreases as n increases.  To obtain a more 
accurate forward regression model, it is therefore recommended that n = 4p.  
 
It is not advisable that n=0.5p and that n is too small.  If this were the case, it is advised 
that the sample size n be increased, i.e. n must be greater than 10.  (table 4) 

 

 

The mean-squared error for the estimated coefficient  ̂ from the true   for the full model 
versus p, where n > p+1 is represented in the graph above. 

The graph formed 2 curves, the one for n = 2p and the other one for n = 4p.  It forms 
exponential curves, similar than the plot of mean-squared error for the estimated 

coefficient  ̂ versus n. 
 
For an accurate forward model n = 4p and p > 5 would be advisable.  (table 4) 
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The 4 four different n versus p groupings can be shown as: 
 
For n=4p:      orange:       p is odd. 
                      red:             p is even. 
For n=2p:      light blue:    p is odd. 
                     dark blue:    p is even. 
For n=p:        dark green: p is odd. 
                      light green: p is even. 
For n=0.5p:   brown:        p is odd. 
                      yellow:       p is even.     
 

The mean-squared error is intimately related to prediction accuracy. The lower the 
mean-squared the more accurate the model and estimates. 
 
The three groups, n = p, n = 2p and n = 4p is grouped together and the group n = 0.5p 

from a group on its own.   It is again advisable that n   0.5p is not used, especially 
when p < 20 (table 4). 
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The following graph illustrates a different point of view (when compared with Graph 6) 
when the mean-squared error is plotted against k, the number of variables in the 
forward selection for different values of n. 
 
 

 

 

The graph forms similar patterns than the graph of the mean-squared error of   ̂(graph 
6) versus p.  The different colour groups represent the groups where n = 0.5p, p, 2p and 
4p. 
 
Because k variables are selected out of the p values in forward regression analysis, the 
outcome  of the forward selection model is determined by k, the number of variables 
included in the model.  For a more accurate forward selection, k must be bigger than 4 
and n = 2p or 4p.  Thus p must be greater than 4 as well. 
 
To obtain a more accurate forward regression model, it is again recommended that n = 
4p. (table 4) 
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This graph shows the difference in mean-squared error of the full- versus the forward 
model.   The independent variable is here the number of variables (n).    

For the cases where n = 2p (comparing the red and blue graph) the forward model has 

a lower mean-squared error for   ̂ than the full model, (especially for low n values).  The 
forward model is therefore more accurate than the full model in this case.  
 
For the cases where n = 4p (comparing the orange and green graph) the two graphs do 

not differ much in mean-squared error values for   ̂ especially where n > 60. 
 
The full regression model can however not be done for the cases n = 0.5p as (X‟X) is 
singular and the inverse does not exist.  For n = p an exact fit would be obtained.  In 
those cases the forward model can only be used. 
 
To obtain better accurate models the full- as well as the forward model is suggested for 
the case where n = 4p.   For the case where n = 2p the forward model is preferred. 
(table 4) 
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This graph shows the difference in mean-squared error of the full- versus the forward 
model.   The independent variable here is the number of variables (p).    

The graph shows similar patterns than graph 8.  For the cases where n = 2p (comparing 

the red and blue graph) the forward model has a lower mean-squared error for   ̂ than 
the full model, (especially for low p values).  The forward model is therefore more 
accurate than the full model in this case.  
 
For the cases where n = 4p (comparing the orange and green graph) the two graphs do 

not differs much in mean-squared error values for   ̂.  Both models is good here. 
 
For the cases where n = 0.5p and n = p, the full model could not be determined, 
because (X‟X) is singular and the inverse does not exist. 
 
To obtain better accurate models the full- as well as the forward model is suggested for 
the case where n = 4p.   In practise it often happened that the most important variables 
would be chosen, then the forward model is the preferable model, especially when n = 2p. 
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This refers to table 5. 
 
The F-probability for the full model is determined for each simulation and each case (n 
and p).  10 000 simulations are done for this study.  For each simulation the F-
probability is grouped into one of the classes, p > 0.05, 0.01 < p < 0.05 and p < 0.01.  
The average F-probability counts over 10 000 are determined and shown in the graph 
as a proportion. 
     
Out of this graph it is clear that the multiple regression analysis for the full model is 
more significant for the larger n (also p) values.  It is advisable that n must be larger 
than 26 for the case where n=2p.   The model is significant, as 0.01 level is always 
achieved. 
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This refers to table 5. 

It is the average F-probability counts for the classes p> 0.05, 0.01<p<0.05 and p<0.01 
for n=4p over 10 000 simulations The full regression model can however not be done 
for the cases n = 0.5p as (X‟X) is singular and the inverse does not exist.  For n = p an 
exact fit would be obtained. 
 
The proportion F-probabilities for small n and p values were much higher than of the 
bigger n and p values in the class (>0.05).  Thus, for bigger values of n and p numbers 
the full model were much better than the, of the small values.  For a good (strictly 
significant) model the case must be higher than 10.  Thus n > 28 or p > 7 for n = 4p.  
The model is then significant at 0.01 level. 
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In practise, when one has many candidate variables as explanatory variables in multiple 
regression, there is always the possibility that variables that are important determinants 
of the response variable might be omitted from the model while unimportant variables 
might be included. Both types of errors are important, and in this paper we attempt to 
quantify the probabilities of these errors. 

The forward model has been addressed to determine the error rate.   

The mean-squared error is intimately related to prediction accuracy.   The mean-
squared error for each n versus p case has an exponential downward trend as n 
increase (or p) for both the full- and forward models for each of the n versus p groups.  
The full regression model can however not be done for the cases n = 0.5p as (X‟X) is 
singular and the inverse does not exist.  For n = p an exact fit would be obtained. 
 

The mean-squared error of the forward model for the estimated  , (  ̂ ) form the true   
is lower than that of the full model for the case where n = 2p and more or less the same 
than the case where n=4p.  Looking at this, the forward regression model is a more 
accurate model than the full model in this case.  In the case where n = 4p, both models 
are more or less the same as prediction accuracy. 
 
A reduction of the full model in many cases is necessary, but reasons for these 
requirements are outside the scope of this dissertation.  In many of the cases the 
forward selection is preferred over the full model.  
 
The best forward selection analysis is found in the cases where n = 4p and n >36.   The 
probability of a correct classification will then be higher than 60% . 
 
For a multiple, linear forward regression analysis the lowest probability for the xi‟s to be 
misclassified is within the classification of the n = 4p group, especially for the cases 
higher than 16 (n > 36).  Each test was done nominally at α = 0.05, but the actual 
significance level seems to be between 0.08 and 0.12 depending on n and p. This 
indicates that forward selection is a reliable method to use, but the significance level 
may have to be adjusted. 
 
Forward regression in all the cases can be done but the accuracy of the model must be 
kept in mind. 
 
 If forward regression analysis is done in cases where n = 0.5p it would be advisable 
that n > 30.  (Thus is not tested in this dissertation).   Forward regression must be used 
very wisely when n=0.5p or other analytical methods like the Lasso shrinkage method 
must preferably be used. 
 
To conclude, the analysis of an accurate forward regression analysis can be regarded 

as reliable, provided the sample size is big enough (n   4p).   
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The analysis of an accurate forward regression analysis can be regarded as reliable, 

provided the sample size is big enough (n   4p) and p   4.   
 
The best forward selection analysis is found in the cases where n = 4p and n >36.   The 
probability of a correct classification will then be higher than 60% in study.
 
This dissertation is only a guideline for using forward selection, keeping the accuracy of 

the models in mind where the cases are n = 0.5p, p , 2p and 4p with an error N(0,4) 
and where x is normally distributed with 
 

    ={0}  and       (
     
   

     
) 

 
The dissertation could be built upon in a number of ways. 
 
It is suggested that proper guidelines for statisticians and researchers must be 
published, given guidelines for using forward selection for all the normality conditions of 
x and for the different noise levels. 
 
It is shown that the different subset selection methods do not differ too much.  
 
In a case where forward selection is not the appropriate method (for a chosen n and p), 
better guidelines for using other analytical methods must be published.   

To further clarify the properties of forward regression, the following additional 
simulations would be usefull: 
 

 Other values of  , rather than 0.5  

 Other proportions of variables with  j = 1 and  j = 0 

 Cases where the irrelevant variables ( j = 0) are uncorrelated with the relevant  

     variables ( j = 1) 

 Situations with serious multicollinearity 

 Still larger values of p (larger than 20) 

 The non-zero regression coefficients  j not all equal  

 Stepwise regression may also be studied in a similar way.  
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/************      regressionFORWARD.sas    *****************************/ 

options ls=80 ps=64; 

 

proc iml; 

 

sim=10000;    (11) 

dd=j(sim,3,0); 

MSE_bhat=j(1,1,.); 

 

*n=30  ;   /*********** This is the n and p for the example *************/ 

k=0; 

*p=8; 

 

/*======================================================================*/ 

/*            DEFINING THE MODULES USED IN PROGRAM                      */ 

/*======================================================================*/ 

 

/*======================================================================*/ 

/*    Determine the variable with maximum partial correlation           */ 

/*======================================================================*/ 

 

Start maxr(p,r,rmax,xxmax);   (33) 

   do xxx = 2 to p+1 ; 

      if r[1,xxx]=rmax then do; 

        xxmax = xxx-1; 

      end; 

   end; 

Finish maxr;  

 

 

/*======================================================================*/ 

/*       Testing the t- statistic for significance                      */ 

/*======================================================================*/ 

 

Start tprobval(k,n,rmax,xxmax,t,tprob);   (34) 

   *print k; 

   t=rmax*(sqrt((n-2-k)/(1-rmax**2))); 

   *print t; 

   tprob =(1-probt(abs(t),n-2-k))*2; 

 if tprob <= 0.05 then do; 

     *print 'keep x' xxmax ' in the model';   

     *print t; 

     *print 'tprob=' tprob;  

     k=k+1; 

 end; 

*else do; 

*print t; 

*print 'tprob =' tprob; 

*print 'x' xxmax 'will not be in the model'; 

*end; 

*print k; 

Finish tprobval; 
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/*======================================================================*/ 

/*                Determine the estimated B (BHAT)                      */ 

/*======================================================================*/ 

 

Start bb2(xFF,n,p,xin2,xxxxin,y,xF,bhatFORW,yhatFORW); 

   xFF=j(n,1,1); 

   *PRINT xF; 

 

  do g = 1 to p ; 

  if xin2[,g] = j(n,1,1) then do; 

    xFF = xFF || xxxxin[,g]; 

  END; 

 end; 

 

xF=xFF; 

*print xF;  /** This x is the new forward regression analysis x ***/ 

 

 bhatFORW = inv(xF`*xF)*xF`*y ;   

 yhatFORW = xF*bhatFORW ; 

*print bhatFORW; 

 

Finish bb2; 

 

/*======================================================================*/ 

/*      Defining the bhatFORWARD to determine the MSE for bhat          */ 

/*======================================================================*/ 

 

start bhat_mseFORW(k,xin,p,bhatFORW,bhatFORW2,bhatFORW2_);  

 

jj=1; 

do ii=1 to p ; 

    if xin[ii,1]=j(1,1,0) then do; 

      bhatFORW2=bhatFORW2//j(1,1,0); 

    end; 

   else do; 

      bhatFORW2=bhatFORW2//bhatFORW[1+jj,1]; 

      jj=jj+1; 

   end; 

end; 

 

bhatFORW2_= bhatFORW[1,1]//bhatFORW2 ; 

free bhatFORW2; 

*print bhatFORW2_; 

 

finish;  

 

/*======================================================================*/ 

/* Determine the estimated B(BHAT)if no variables are included in model */ 

/*======================================================================*/ 

 

start bb3(n,y,xFF,xF,bhatFORW,yhatFORW); 

 

 xFF=j(n,1,1); 

 xF=xFF; 

 

 /*** This x is the new forward regression analysis x ***/ 

 bhatFORW = inv(xF`*xF)*xF`*y ;    

 yhatFORW = xF*bhatFORW ; 

*print yhatFORW, bhatFORW bForw bFF2; 

 

Finish bb3; 
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/*======================================================================*/ 

/*         Determine the variables in and out of the model              */ 

/*======================================================================*/ 

 

Start outnew2x(xin,xout,n,p,xout2,xxxxout,xstay,noutx,xFout); 

 

xstay=loc(xin); 

*print 'The following x_s stays in the model' xstay;  

noutx=loc(xout); 

*print noutx; 

 

 do c = 1 to p ; 

  if xout2[,c] = j(n,1,1) then do; 

    xFout = xFout || xxxxout[,c]; 

  END; 

 end; 

 

 *print xFout;  

 Finish outnew2x; 

 

/*======================================================================*/ 

/**      Determine the coefficient of partial correlation   (8&36)     **/ 

/*======================================================================*/ 

 

Start ryx(y,xF,bhatFORW,p,h,xin,z,SSEin,xFF,BFHat,SSEr,SSErtot,r2yx,ryx);   

  SSEin=(y-xF*bhatFORW)`*(y-xF*bhatFORW); 

  *print SSEin; 

 

  Do kk=1 to p; 

  If xin[kk,1]^=1 then do; 

  *print xF; 

  xFF=xF; 

  xFF=xFF||z[,kk];  

  *print xFF;  

  BFHat =inv(xFF`*xFF)*xFF`*y; 

  SSEr=(y-xFF*BFHat)`*(y-xFF*BFHat); 

  SSErtot=SSErtot||SSEr; 

  free xFF; 

  

  end; 

  end; 

  r2yx=j(1,h-1,1)-SSErtot/SSEin;   (8) 

  ryx=sqrt(r2yx); 

*print ryx , SSErtot; 

Finish ryx; 

 

/*======================================================================*/ 

/*  Determine the max r or the minimum SSE of the remainder x e (8&36) **/ 

/*                  Coefficient of partial correlation                  */        

/*======================================================================*/ 

  

Start min_SSE(SSErtot,ryx,h,minSSE,noutx,maxryx,SSEyxmin,yxmax) ;   

   minSSE = min(SSErtot[1,]); 

  *print minSSE; 

   maxryx = max(ryx); 

  Do m=1 to h; 

   

  if ryx[1,m]=maxryx then do; 

    yxmax=noutx[,m]; 

    SSEyxmin=noutx[,m]; 

    *print 'The minimum SSE is:' SSEyxmin; 
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    *print 'The maximum r is:' yxmax; 

    maxryx =ryx[1,m]  ; 

    *print maxryx; 

  end; 

 

  end; 

 

  Finish min_SSE; 

 

/*======================================================================*/ 

/*                            END OF MODULES                            */ 

/*         BEGINNING OF THE PROGRAM                      */           

/*======================================================================*/ 

 

/*======================================================================*/ 

/*                           The p loop                                 */ 

/*======================================================================*/ 

do p= 4 to 20;    (12) 

 

MSE_bhatFULL=j(1,1,.); 

 

 

/*======================================================================*/ 

/*                           The n loop                                 */ 

/*======================================================================*/ 

 

DO ggg = 1 TO 4;   /*while (n>k+2);  (13) 

n=round(0.25*(2**ggg)*p,1); 

*print n k p; 

 

if n>5 then do; 

 

 

/*======================================================================*/ 

/*                           The sim loop   (11)                        */ 

/*======================================================================*/ 

DO i = 1 to sim;    

 

 

*if n> k+2 then do;  

h=p; 

rr=j(p+1,p+1,0);  

 

*print " ========= simulation = " i  " p=" p " n=" n " =================="; 

 

 xin=j(p,1,0);     (35) 

 xbin=j(p,1,0); 

 xout=j(p,1,1); 

      xout2=j(n,p,1); 

 xin2=j(n,p,0); 

 mu1 = j(1,p,0);     (15) 

    sigma1=diag(j(p,p,0.5))+j(p,p,0.5);    (16) 

 *print sigma1; 

 

   call vnormal(z,mu1,sigma1,n) ;    (14) 

   x= j(n,1,1) || z; 

   *print x,z; 
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/*======================================================================*/ 

/*    Generating the e values from a normal distribution with           */ 

/*          with mean 0 and variance sigma_e                           **/ 

/*                   Assigning the b values    (19)                     */  

/*======================================================================*/ 

   

 

   b=j(p+1,1,0); 

   pb=p/2; 

   kb1=(p+1)/2; 

   kb2=(p-1)/2; 

 

   if p=4 | p=6 | p=8 | p=10 | p=12 | p=14 | p=16 | p=18 | p=20 then do; 

   b=j(1,1,0)//j(pb,1,1)//j(pb,1,0);      

   end; 

 

   if p= 5 | p=7 | p=9 | p=11 | p=13 | p=15 | p=17 | p=19 then do; 

   b=j(1,1,0)//j(kb1,1,1)//j(kb2,1,0);    

   end; 

 

   *print b; 

   e=j(n,1,0); 

   mu_e={0};   (18) 

   sigma_e={2};   (18) 

   e=normal(e)#j(n,1,sigma_e)+j(n,1,mu_e);  (17) 

   y=x*b + e; 

   *print y; 

 

   xy = y||x; 

   xx= x[,2:p+1]; 

   yxx= y || x[,2:p+1]; 

 

   ybar=j(n,1,1)`*y/n; 

   xbar=j(n,1,1)`*xx/n; 

   yxbar=j(n,1,1)`*yxx/n; 

 

  /*======================================================================*/ 

  /*                a.  REGRESSION FOR THE FULL MODEL     (20)            */ 

  /*======================================================================*/ 

 

   If n > (p+1) then do; 

 

   bhat = inv(x`*x)*x`*y ;   (21) 

   yhat = x*bhat ; 

   SSreg=(bhat)`*(x`*y)-n*ybar*ybar;  (25) 

   SSE=(y-x*bhat)`*(y-x*bhat);        (26) 

   SST=y`*y-n*ybar*ybar;              (24) 

   MSreg=SSreg/p;                     (27)      

   MSE=((y-x*bhat)`*(y-x*bhat))/(n-p-1);  (28) 

   F=MSreg/MSE;       (23)               /*  Determine the F-probability */               

   pp=1-probf(F,p,n-p);                  /*  Determine the p- value  */ 

   *print xy; 

   R2= SSreg/SST;    

                   /* Determine the R2 VALUE   */ 

   *print bhat, SSreg,SSE, MSreg, MSE,SST, F; 

   *print "The F-probability is :" pp; 

   *Print "The R - square value is: " R2; 
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/*======================================================================*/ 

/*Determine the class for the F-prob for each of the n, p and sim cases */ 

/*======================================================================*/ 

(30)   

 

  if pp<= 0.05 then do; 

  if pp>=0.01 then do;           

     dd[i,1:3]= {0 1 0} ; 

     *print "Fprob = 0.05"; 

  end;  

  end; 

 

  If pp < 0.01 then do;  

    *Print "Fprob <0.01"; 

    dd[i,1:3]={1 0 0} ; 

  END; 

 

  if pp > 0.05 then do ; 

     dd[i,1:3]= {0 0 1} ; 

     *print "Fprob > 0.05"; 

  END; 

 

  /*  Determine the standard error of the B values  */ 

 

  stderr=j(p,p,99);  (31) 

  stderrB=j(p,1,99); 

  invxx=inv(x`*x); 

  covb=abs(invxx*MSE); 

  mseb=vecdiag(covb); 

  mmm=mseb[+,]; 

  *PRINT covb mseb mmm; 

  stderrBB=SQRT(covb); 

  stderrB=vecdiag(stderrBB); 

 

  nm3={'b0' 'b1' 'b2' 'b3' 'b4..'};   

  nm2={'bhat..'}; 

  

  /*  Determinine the t-probabilities of the B values   */ 

 

  TB= J(p+1,1,0); 

  probT = J(p+1,1,0); 

 

  DO j= 1 TO p+1 ; 

     TB[j,1]=abs(bhat[j,1]/stderrB[j,1]); 

     probT[j,1]=(1-probt(TB[j,1],n-p-1))*2; 

  end; 

 

   *print bhat [rowname=nm3] stderrB probT; 

 

/*======================================================================*/ 

/*    Determine the MSE FOR BHAT for the full model for each            */        

/*                    of the n, p and sim cases          (40)           */ 

/*======================================================================*/ 

 

    MSE_bhatFULL=((b-bhat)`*(b-bhat))/p; 

 *print MSE_bhatFULL; 

    MsbtotFULL= MsbtotFULL //MSE_bhatFULL; 

 *print MsbtotFULL; 

 

end; 

 

 
 
 



81 

 

 

 

 

else do; 

 MsbtotFULL=j(sim,1,.); 

 dd[i,1:3]={. . .} ; 

end; 

 

*print '    /*** End of regression of full model **/'; 

 

/*======================================================================*/ 

/*                a.  REGRESSION FOR THE FORWARD MODEL     (20)         */ 

/*======================================================================*/ 

 

 

/**a.  Get correlations to determine linear relationships between      */ 

/*                         all the variables;                          */ 

 

    sigma = (yxx-j(n,1,1)*yxbar)`*(yxx-j(n,1,1)*yxbar)/(n-1); 

    *print yxbar, sigma; 

    stdev_xy = sqrt(vecdiag(sigma)); 

    *print stdev_xy; 

    d = diag(stdev_xy); 

    *print d; 

    r = inv(d)*sigma*inv(d); 

    coryx=r[1,2:p+1]; 

    rmax =max(coryx); 

 

    nm1={'y' 'x1' 'x2' 'x3' 'x4..'}; 

    *print 'The correlation matrix is:'; 

    *print r[colname=nm1] [rowname=nm1]; 

    

   

/** b. Determine which x has maximum correlation with the y-value    ***/ 

 

    call maxr(p,r,rmax,xxmax);   (33) 

    *print xxmax, rmax; 

   

/*  c.       Test for correlation significance                        **/ 

 

    call tprobval(k,n,rmax,xxmax,t,tprob);   (34) 

       

/*d. Choose the best partial correlated variable if significant in b.  */ 

 

If tprob < 0.05  then do;   (35) 

    xin[xxmax,1]=1 ;  

 xout[xxmax,1]=0; 

 xin2[1:n,xxmax]=j(n,1,1); 

 xout2[1:n,xxmax]=j(n,1,0); 

      xxxxout=x[,2:p+1]#xout2; 

 xxxxin=x[,2:p+1]#xin2; 

    *print xxxxout xxxxin; 

    *print xin xout ; 

 

free bForw bF; 

 

call bb2(xFF,n,p,xin2,xxxxin,y,xF,bhatFORW,yhatFORW); 

 

*print yhatFORW, bForw xF; 

 

/* e. Determine the partial correlation matrix   */ 

     

call outnew2x(xin,xout,n,p,xout2,xxxxout,xstay,noutx,xFout); 
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call ryx(y,xF,bhatFORW,p,h,xin,z,SSEin,xFF,BFHat,SSEr,SSErtot,r2yx,ryx); 

 (36) 

h=p-1;          /* the variables became 1 less  */ 

 

call  min_SSE(SSErtot,ryx,h,minSSE,noutx,maxryx,SSEyxmin,yxmax) ;   

 

/*  f. Test for significance between the residuals and the x variables */    

 

call tprobval(k,n,maxryx,yxmax,t,tprob);   

 

end; 

 

else do; 

 

 finalxx=xin`; 

 call bb3(n,y,xFF,xF,bhatFORW,yhatFORW); 

 

end; 

  

free xFout; 

  

/*========================================================================*/ 

 

 /*** g. Repeating the selecting of variables  ****/ 

 

do kk=1 to p-2 while((tprob < 0.05) & (n > k+2)) ;  

    

      *print kk k; 

 xin[yxmax,1]=1 ;  

 xout[yxmax,1]=0; 

 xin2[1:n,yxmax]=j(n,1,1); 

 xout2[1:n,yxmax]=j(n,1,0); 

      xxxxout=x[,2:p+1]#xout2; 

 xxxxin=x[,2:p+1]#xin2; 

     *print xxxxout xxxxin; 

 

*print xin xout xin2 xout2 ; 

 

call bb2(xFF,n,p,xin2,xxxxin,y,xF,bhatFORW,yhatFORW); 

 

call outnew2x(xin,xout,n,p,xout2,xxxxout,xstay,noutx,xFout); 

 

noutx=loc(xout); 

 

*print 'The following variables are not in the model' noutx; 

 

free SSErtot; 

 

call ryx(y,xF,bhatFORW,p,h,xin,z,SSEin,xFF,BFHat,SSEr,SSErtot,r2yx,ryx); 

 

h=h-1; 

*print h ; 

 

/* the variables became 1 less  */ 

  

  if h>0 then do ; 

      call min_SSE(SSErtot,ryx,h,minSSE,noutx,maxryx,SSEyxmin,yxmax) ;    

  end; 
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/*  Test for significance between the residuals and the x variables */    

 

call tprobval(k,n,maxryx,yxmax,t,tprob);    

 

free xbin bFstay xFout;  

 

END; 

 

/*===========  Final part  ============================================*/ 

 

If tprob < 0.05 then do;  

 

     *print yxmax; 

 

      xin[yxmax,1]=1 ;  

 xout[yxmax,1]=0; 

 xin2[1:n,yxmax]=j(n,1,1); 

 xout2[1:n,yxmax]=j(n,1,0); 

      xxxxout=x[,2:p+1]#xout2; 

 xxxxin=x[,2:p+1]#xin2; 

 

     *print xxxxout xxxxin; 

     *print xin xout ; 

 

 free bForw; 

      call bb2(xFF,n,p,xin2,xxxxin,y,xF,bhatFORW,yhatFORW); 

 

      *print yhatFORW bForw  bhatFORW, xF;   

      finalxx=loc(xin); 

 

end; 

 

else do; 

 finalxx=xin`; 

end; 

 

/*========================================================================*/ 

/* Determine the mean squared error of bhat for the separate simulated    */ 

/*              values of the forward regression model                    */ 

/*========================================================================*/ 

 

 

call bhat_mseFORW(k,xin,p,bhatFORW,bhatFORW2,bhatFORW2_); 

 

    MSE_bhatFORW=(b-bhatFORW2_)`*(b-bhatFORW2_)/p;  

    MSE_bhattFORW =  MSE_bhattFORW//MSE_bhatFORW; 

 

free xxxx xxxxin; 

free h SSErtot SSEin ; 

 

*print 'The following x e will be in the final model' finalxx; 

 

xinlast=xinlast//xin`; 

 

*print xinlast; 

 

k=0; 

END;      /*==================== sim do loop ===========================**/ 
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*print "=== Summary for n=" n " and p = " p "  for " sim " simulations ==="; 

 

finalxin=j(20,1,.); 

 

*print xinlast; 

 

finalxin_prob=xinlast[+,]/sim; 

finalxin=xinlast[+,]; 

finalamountx=xinlast[,+]; 

avsfinalamountx=round(finalamountx[+,]/sim,(0.1)); 

 

*print "The total of the x_s to be in the model is:" finalxin; 

*print 'The probabilities of each of the x_s to be in the forward model is:' 

finalxin_prob; 

*print "The total amount of x e to be in the models" finalamountx,n,p ' 

=avs_k'; 

*print "The average amount of xe over all the simulations in the models is" 

avsfinalamountx;  

*free bForw bF  ; 

 

countmat=j(sim,p+1,0); 

 

Do sss = 1 to sim; 

Do iii = 0 to p; 

If finalamountx[sss,1] = iii then do; 

  countmat[sss,iii+1] = {1}; 

  *print countmat; 

end; 

end; 

end; 

*free countmat; 

 

/**** Determine the amount of xs to be in the model over all simulations **/ 

 

if p<20 then do; 

countxe = (j(1,1,p)||j(1,1,avsfinalamountx)||j(1,1,n))||countmat[+,]||j(1,20-

p,.); 

npcountxe=npcountxe//countxe; 

end; 

 

else do; 

countxe = (j(1,1,p)||j(1,1,avsfinalamountx)||j(1,1,n))||countmat[+,]; 

npcountxe=npcountxe//countxe; 

end; 

 

countname={'p','ave_k','n','0xs','1xs','2xs','3xs','4xs','5xs','6xs','7xs','8

xs','9xs','10xs','11xse', 

'12xs','13xs','14xs','15xs','16xs','17xs','18xs','19xs','20xs'}; 

 

*print countxe[colname=countname]; 

 

 

/******Determine the amount of xi_s to be in all simulations **********/ 

 

if p<20 then do; 

x_is_np = (j(1,1,p)||j(1,1,avsfinalamountx)||j(1,1,n))||finalxin||j(1,20-

p,.); 

amountx_is=amountx_is//x_is_np; 

end; 

 

else do; 
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x_is_np = (j(1,1,p)||j(1,1,avsfinalamountx)||j(1,1,n))||finalxin; 

amountx_is=amountx_is//x_is_np; 

end; 

 

countnp={'p','ave_k','n','x1','x2','x3','x4','x5','x6','x7','x8','x9','x10','

x11','x12','x13','x14','x15','x16','x17','x18','x19','x20'}; 

*print amountx_is[colname=countnp]; 

 

/*  The mean-square error for the FORWARD REGRESSION MODEL is:   */ 

 

*Print MSE_bhattFORW ;  

*Print MsbtotFULL;  

 

MSE_bhatTOTFORW =j(1,1,p)||j(1,1,avsfinalamountx)||j(1,1,n)|| 

(MSE_bhattFORW[+,]/sim); 

 

*print 'MSE FOR THE Forward MODEL of the estimated coefficient BHAT at each 

step from the true B is' MSE_bhatTOTFORW;    

 

/*  The mean-square error for the FULL REGRESSION MODEL is:   */ 

 

MSE_bhatTOTFULL= (MsbtotFULL[+,]/sim); 

 

*print 'MSE FOR THE FULL MODEL of the estimated coefficient BHAT at each step 

from the true B is p k n' MSE_bhatTOTFULL; 

 

no_prob_prob= dd[+,]/sim; 

 

*print dd; 

 

ddsum = j(1,1,p)||j(1,1,n)||no_prob_prob; 

 

*print "The total number of F probabilities in the full model in the "; 

*print "different probability categories "; 

*print "<0.01'     '0.01<=p<=0.05'     '>0.05, will be"; 

*print ddsum ; 

 

Fprob_=Fprob_//ddsum; 

*Fprob_prob=Fprob_/sim; 

 

free xinlast MSE_bhattFORW MsbtotFULL xcount ddsum countxe finalamountx 

x_is_np; 

 

np_MSE_bhatTOTFULL = np_MSE_bhatTOTFULL//MSE_bhatTOTFULL; 

np_MSE_bhatTOTFORW = np_MSE_bhatTOTFORW//MSE_bhatTOTFORW; 

mse_bhat= np_MSE_bhatTOTFORW||np_MSE_bhatTOTFULL ; 

 

/* 

DO qq = 1 to 59; 

if mse_bhat[qq,5] = {0} then do; 

   mse_bhat[qq,5] = {.}; 

end; 

end;*/ 

 

free MSE_bhatTOTFULL MSE_bhatTOTFORW ; 

 

END;          /*****************************************************/ 
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end;       /*================= The n do loop ===========================*/ 

 

END;     /**================   The p do loop  =========================**/ 

 

 

Print '********    Summary OF simulated data  ****************************'; 

 

print 'The total amount of xs to be in the model with' sim 'simulations with 

p average k and n is:' ; 

 

print npcountxe[colname=countname]; 

 

print 'The total amount of each x_i to be in the model with' sim 'simulations 

with p average k and n is:' ; 

 

print amountx_is[colname=countnp]; 

 

DO kl = 1 to 59;      

if mse_bhat[kl,5] = {0} then do; 

   mse_bhat[kl,5] = {.}; 

end; 

end; 

 

mse_bhat2=j(59,6,0); 

 

DO kl = 1 to 59;  

 

if mse_bhat[kl,3] = round(0.5*mse_bhat[kl,1],1) then do;    /***** Labels for 

n = 0.5p, p, 2p and 4p ***/  

   mse_bhat2[kl,1:6] = mse_bhat[kl,1:5]||j(1,1,0.5);   

end; 

 

if mse_bhat[kl,3] = mse_bhat[kl,1] then do; 

    mse_bhat2[kl,1:6] = mse_bhat[kl,1:5]||j(1,1,1);   

end; 

 

if mse_bhat[kl,3] = 2*mse_bhat[kl,1] then do; 

   mse_bhat2[kl,1:6] = mse_bhat[kl,1:5]||j(1,1,2);   

end; 

 

if mse_bhat[kl,3] = (4*mse_bhat[kl,1]) then do; 

  mse_bhat2[kl,1:6] = mse_bhat[kl,1:5]||j(1,1,4);    

end;   

 

end; 

 

 

print 'Table of p, average k, n and the meansquare of bhat for the forward- 

and full model for' sim ' simulations'; 

 

print 'p  avs_k  n   MSEBHATFORWARD  MSEBHATFULL n=__p '; 

 

print mse_bhat2;  

 

Print 'The F probabilities of the full model with ' sim 'simulations' ; 

print 'with n and p respectively'; 

 

print '<0.01'     '0.01<=p<=0.05'    '>0.05  will be'  Fprob_ ; 
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cn={'p','avs_k', 'n','MSE_bhatFORW','MSE_bhatFULL','np'}; 

create msefull from mse_bhat2[colname=cn]; 

append from mse_bhat2; 

 

run; 

 

 goptions reset=all; 

 symbol1 value=dot  

        height=2  width=2; 

 

 symbol2 value=star 

        height=3  width=2; 

 

 symbol3 value=triangle 

        height=3   width=2; 

Axis1 Label=(A=90 c=black  'MSE_bhat') ; 

Title1 "The means square error for b hat for the full model"; 

 

proc gplot data=msefull ; 

 plot MSE_bhatFULL*n=np /vaxis=axis1; ; 

run ; 

 

 goptions reset=all; 

 symbol1 value=dot  

        height=2  width=2; 

 

 symbol2 value=star 

        height=3  width=2; 

 

 symbol3 value=triangle 

        height=3   width=2; 

Axis1 Label=(A=90 c=black  'MSE_bhat') ; 

Title1 "The means square error for b hat for the forward model"; 

 

proc gplot data=msefull ; 

 plot MSE_bhatFORW*n=np /vaxis=axis1;; 

run ; 

 

goptions reset=all; 

symbol1 value=dot  

        height=2  width=2; 

 

symbol2 value=star 

        height=3  width=2; 

 

symbol3 value=triangle 

        height=3   width=2; 

Axis1 Label=(A=90 c=black  'MSE_bhat') ; 

Title1 "The means square error for b hat for the full model"; 

 

proc gplot data=msefull ; 

 plot MSE_bhatFULL*p=np /vaxis=axis1;; 

run ; 
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 goptions reset=all; 

 symbol1 value=dot  

        height=2  width=2; 

 

 symbol2 value=star 

        height=3  width=2; 

 

 symbol3 value=triangle 

        height=3   width=2; 

Axis1 Label=(A=90 c=black  'MSE_bhat') ; 

Title1 "The means square error for b hat for the forward model"; 

 

proc gplot data=msefull ; 

 plot MSE_bhatFORW*p=np /vaxis=axis1;; 

run ; 

 

goptions reset=all; 

 symbol1 value=dot  

        height=2  width=2; 

 

 symbol2 value=star 

        height=3  width=2; 

 

 symbol3 value=triangle 

        height=3   width=2; 

 

Axis1 Label=(A=90 c=black  'MSE_bhat') ; 

Title1 "The means square error for b hat for the full & forward model"; 

 

proc gplot data=msefull ; 

 plot MSE_bhatFULL*n MSE_bhatFORW*n /overlay vaxis=axis1; 

run ; 

 

goptions reset=all; 

 symbol1 value=dot  

        height=2  width=2; 

 

 symbol2 value=star 

        height=3  width=2; 

 

 symbol3 value=triangle 

        height=3   width=2; 

 

Axis1 Label=(A=90 c=black  'MSE_bhat') ; 

Title1 "The means square error for b hat for the full & forward model"; 

 

proc gplot data=msefull ; 

 plot MSE_bhatFULL*p MSE_bhatFORW*p /overlay vaxis=axis1; 

run ; 
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/*========================================================================*/ 

/*  TESTING FORWARD REGRESSION IN SAS IML WITH PROC REG IN SAS*/ 

/*========================================================================*/ 

 

data msefull; 

set msefull; 

 PROC PRINTTO FILE='e:\msc.prn' ; 

 run;  */ 

 

/* 

colname ={'y' 'x0' 'x1' 'x2' 'x3' 'x4' 'x5' 'x6' 'x7' 'x8' }; 

create data1 from xy[colname=colname]; 

append from xy; 

 

colname ={'y' 'x0' 'x1' 'x2' 'x3' 'x4' 'x5' 'x6' 'x7' 'x8' }; 

create data2 from yxx[colname=colname]; 

append from yxx; 

 

 

proc print data=data1; 

 

PROC CORR DATA=data2; 

 

PROC REG data=data1; 

  MODEL y  

         = x1 x2 x3 x4 x5; 

  output out=Data p=yhat  ; 

 

PROC REG data=data1; 

  MODEL y  

         = x1 x2 x3 x4 x5  

   / SELECTION =FORWARD SLENTRY=0.05  ; 

   

proc print data=regression;   **/ 

 

 quit; 

 

===================================================================== 
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