
An aspect-oriented approach towards enhancing Optimistic Access Control

with Usage Control

by

Keshnee Padayachee

submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in the subject of

COMPUTER SCIENCE

in the

Faculty of Engineering, Built Environment and Information Technology

at the

UNIVERSITY OF PRETORIA

SUPERVISOR: Prof. J.H.P. Eloff

DECEMBER 2009

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

ii

PREFACE

This research was conducted on a part-time basis between 2004 and 2009 in collaboration

with the Department of Computer Science at the University of Pretoria under the

supervision of Professor J.H.P. Eloff. The results are the original work of the author and have

not been submitted for any degree at any other tertiary institution.

iii

ABSTRACT
With the advent of agile programming, lightweight software processes are being favoured

over the highly formalised approaches of the 80s and 90s, where the emphasis is on

"people, not processes". Likewise, access control may benefit from a less prescriptive

approach and an increasing reliance on users to behave ethically. These ideals correlate with

optimistic access controls. However, such controls alone may not be adequate as they are

retrospective rather proactive. Optimistic access controls may benefit from the stricter

enforcement offered by usage control. The latter enables finer-grained control over the

usage of digital objects than do traditional access control policies and models, as trust

management concerns are also taken into consideration. This thesis investigates the

possibility of enhancing optimistic access controls with usage control to ensure that users

conduct themselves in a trustworthy manner. Since this kind of approach towards access

control has limited applicability, the present study investigates contextualising this approach

within a mixed-initiative access control framework. A mixed-initiative access control

framework involves combining a minimum of two access control models where the request

to information is mediated by a mixture of access policy enforcement agents. In order for

this type of integration to be successful, a software development approach was considered

that allows for the seamless augmentation of traditional access control with optimistic

access control enhanced with usage control, namely the aspect-oriented approach. The

aspect-oriented paradigm can facilitate the implementation of additional security features

to legacy systems without modifying existing code. This study therefore evaluates the

aspect-oriented approach in terms of implementing security concerns.

It is evidently difficult to implement access control and in dynamic environments

preconfigured access control policies may often change dramatically, depending on the

context. In unpredicted circumstances, users who are denied access could often have

prevented a catastrophe had they been allowed access. The costs of implementing and

maintaining complex preconfigured access control policies sometimes far outweigh the

benefits. Optimistic controls are retrospective and allow users to exceed their normal

privileges. However, if a user accesses information unethically, the consequences could be

iv

disastrous. Therefore it is proposed that optimistic access control be enhanced with some

form of usage control, which may prevent the user from engaging in risky behaviour.

An initiative towards including security in the earlier phases of the software life cycle is

gaining momentum, as it is much easier to design with security from the onset than to use

the penetrate-and-patch approach. Unfortunately, incorporating security into software

development takes time and developers tend to focus more on the features of the software

application. The aspect-oriented paradigm can facilitate the implementation of additional

security features in legacy systems without modifying existing code. The current study

evaluates the aspect-oriented approach towards enhancing optimistic access control with

usage control. The efficacy of the aspect-oriented paradigm has been well established

within several areas of software security, as aspect-orientation facilitates the abstraction of

these security-related tasks so as to reduce code complexity.

v

SUMMARY

Title: An aspect-oriented approach towards enhancing Optimistic Access Control with Usage

Control

Candidate: Keshnee Padayachee

Supervisor: J.H.P. Eloff

Department: Department of Computer Science, Faculty of Engineering, Built Environment

and Information Technology

Degree: Doctor of Philosophy in Computer Science

Keywords: Usage Control, Optimistic Access Control, Access Control, Aspect-Oriented

Programming

vi

ACKNOWLEDGEMENTS

This work would not have been possible without the support and encouragement of my

supervisor Professor J.H.P. Eloff.

I am grateful to my husband Devern Padayachee; my nephews Ryan and André Veerasamy;

and my colleagues at UNISA, especially Professor Elmé Smith for giving me the requisite

courage to prevail. I also give credit to providence for giving me the perseverance to

continue in spite of the odds.

It always seems impossible until is done

-Nelson Mandela

vii

TABLE OF CONTENTS

PART 1:.. 1

CHAPTER 1: INTRODUCTION ... 2

1.1 Introduction ... 2

1.2 Motivation for this study .. 5

1.3 Problem Statement .. 9

1.4 Terminology used in this thesis... 9

1.5 Research Methodology ... 10

1.6 Delimitations .. 11

1.7 Thesis Layout .. 11

1.8 Summary .. 14

CHAPTER 2: ACCESS CONTROL ... 15

2.1 Introduction ... 15

2.2 Discretionary Access Control .. 15

2.3 Mandatory Access Control .. 17

2.4 Role-based Access Control .. 19

2.5 Conclusion .. 20

CHAPTER 3: OPTIMISTIC ACCESS CONTROL .. 22

3.1 Introduction ... 22

3.2 Optimistic Access Control ... 23

3.3 Requirements for Optimistic Security ... 24

3.4 Applicability of optimistic security .. 25

3.5 The extensibility of the Optimistic Access Control Model ... 26

3.6 Conclusion .. 29

viii

CHAPTER 4: USAGE CONTROL ... 30

4.1 Introduction ... 30

4.2 The continuity and mutability of the UCON model ... 31

4.3 The ABC Model for Usage Control (UCON model) .. 32

4.4 The Usage Control Model architecture ... 34

4.5 The Applicability and Extensibility of the UCON model ... 36

4.6 Conclusion .. 37

PART 2:.. 39

CHAPTER 5: ASPECT-ORIENTED PROGRAMMING .. 40

5.1 Introduction ... 40

5.2 Evolution to Aspect-Oriented Programming ... 41

5.3 Aspect-Oriented Programming Terminology... 43

5.4 AOP Frameworks .. 44

5.5 Evaluating Aspect-Oriented Programming .. 46

5.6 Conclusion .. 48

CHAPTER 6: ASPECT-ORIENTED SECURITY ... 49

6.1 Introduction ... 49

6.2 Aspect-oriented programming and its application to security .. 50
6.2.1 Access Control and Authentication .. 50
6.2.2 Accountability and Audit .. 52
6.2.3 Cryptographic Controls ... 52
6.2.4 Information Flow Controls .. 53
6.2.5 Protection from invasive software ... 53
6.2.6 Security kernels... 54
6.2.7 Verification ... 54

6.3 Conclusion .. 55

ix

PART 3:.. 56

CHAPTER 7: THE OAC(UCON) MODEL ... 57

7.1 Introduction ... 57

7.2 A motivating example ... 57

7.3 Architecture .. 59

7.4 Detailed Design .. 64
7.4.1 Formal Specifications .. 64
7.4.2 The Use Case Diagram of Usage Control under the Optimistic Access Control Paradigm 67

7.5 Conclusion .. 69

CHAPTER 8: PROTOTYPING AND MODEL EVALUATION ... 70

8.1 Introduction ... 70

8.2 The aim of the proof-of-concept prototype .. 70

8.3 Implementation of the proof-of-concept prototype ... 71

8.4 An implementation overview of the proof-of-concept prototype ... 76

8.5 Proof-of-concept prototype operation ... 80

8.6 Evaluation of the Aspect-Oriented Approach.. 83
8.6.1 The Design Approach .. 83
8.6.2 Execution Time and Memory Usage ... 85

8.7 Evaluation of the model concept .. 87

8.8 Conclusion .. 93

CHAPTER 9: CONCLUSION ... 95

9.1 Introduction ... 95

9.2 Main contribution... 95

9.3 Revisiting the problem statement .. 97

9.4 Future Research Directions ... 98

9.5 Conclusion .. 99

REFERENCES ... 100

INDEX .. 116

x

APPENDICES

Appendix A: List of Publications ... 118

Appendix B: OOP Documentation .. 122

Appendix C: AOP Documentation .. 138

Appendix D: Prototype Evaluation ... 157

Appendix E: Data Collection... 165

Appendix F: AspectJ Semantics .. 171

Appendix G: Running the Demo Project ... 172

xi

LIST OF FIGURES
Figure 1.1: Overview of Thesis .. 13

Figure 2-1: Discretionary Access Control based on an Access Control List (adapted from(Tolone et al., 2005)) .. 16
Figure 2-2: Mandatory access control (MAC) (adapted from (Russell and Gangemi, 1991)) 17
Figure 2-3: Role-based Access Control (adapted from (Samarati and de Capitani di Vimercati, 2001)) 19

Figure 4- 1: Continuity and Mutability Properties(Park et al.). ... 31
Figure 4-2: ABC Model Components(Sandhu and Park, 2003) ... 32
Figure 4-3: Conceptual Structure for the UCON Reference Monitor (Sandhu and Park, 2003) 35

Figure 5-1: Illustration of the Weaving Concept ... 44

Figure 7-1: Architectural Diagram .. 59
Figure 7-2: Conceptual Structure for Optimistic Access Control enhanced with Usage Control 61
Figure 7-3: A Mixed-Intiative Access Control Framework – combining RBAC with OAC(UCON) 64
Figure 7-4:Use Case Diagram of OAC(UCON) ... 67

Figure 8-1: State Activity diagram of OAC(UCON) Model) ... 71
Figure 8-2: Thread Diagram of the OAC(UCON) model ... 72
Figure 8-3: UML Diagram showing Aspect UsageControlInjector and Core Classes ... 75
Figure 8-4: Showing the OOP UML of Core Classes .. 84
Figure 8-5: OOP package level diagram vs AOP package level diagram (on the right) 85
Figure 8-6: Showing comparisons of the execution time of OO vs AOP .. 86
Figure 8-7: Showing comparisons of and Memory Usage of OO vs AOP .. 86

xii

PROGRAM LISTINGS

Program Listing 6-1: Generalised Aspect Code for Access Control ... 51
Program Listing 6-2: Demonstrating Accountability and Auditing with Aspect-Orientation 52

Program Listing 8-1: ‘SampleAuthorization’ class .. 73
Program Listing 8-2: Showing the UsageControlInjector Aspect .. 77
Program Listing 8-3: Depicting an InterTypeDeclaration Aspect .. 79

1

PART 1:

CHAPTER 2:
ACCESS CONTROL MODELS

CHAPTER 3:
OPTIMISTIC ACCESS CONTROL

CHAPTER 4:
USAGE CONTROL

CHAPTER 1:
INTRODUCTION

Chapter 1: Introduction

2

CHAPTER 1:

 INTRODUCTION

1.1 Introduction

With the advent of agile programming, lightweight software processes are being favoured

over the highly formalised approaches of the 80s and 90s, where the emphasis is on people,

not processes (Boehm, 2002). Likewise, access control may benefit from a less prescriptive

approach with an increasing reliance on users to behave ethically. These ideals correlate

with optimistic access controls. However, such controls alone may not be enough to ensure

that users behave in a trustworthy manner. This research presents a model for enhancing

optimistic access controls with usage control to ensure that users conduct themselves in a

trustworthy manner. Usage control enables finer-grained control over the usage of digital

objects than do traditional access control policies and models, as trust management

concerns are also considered. It has become evident that the means by which software is

designed and implemented can have a significant impact on software security (Devanbu and

Stubblebine, 2000). The aspect-oriented paradigm can facilitate the implementation of

additional security features to legacy systems without modifying existing code. This study

therefore evaluates the aspect-oriented approach in terms of implementing security

concerns such as usage control.

It is evidently difficult to implement access control and often in dynamic environments

preconfigured access control policies may change dramatically depending on the context.

Often in unpredicted circumstances users that are denied access could have prevented a

catastrophe had they been allowed access. Consider as an example, a nurse – at a hospital

that has been isolated during a tornado – who needs access to a patient's records but

cannot access them as nurses are not authorised to access this information (Povey, 1999).

Chapter 1: Introduction

3

In this extreme case, it is possible that the patient's health and safety may be unnecessarily

comprised due to the restrictions imposed by the access control system. The costs of

implementing and maintaining complex preconfigured access control policies sometimes far

outweigh the benefits. Optimistic access controls are retrospective and allow users to

exceed their normal privileges. However, if a user accesses information unethically, the

consequences could be disastrous. Hence this research proposes that optimistic access

control be enhanced with some form of usage control that may prevent the user from

engaging in risky behaviour.

Sandhu and Park (2003) who recognised the inadequacy of traditional access control

models, proposed a new approach to access control called Usage Control (UCON). This

model encompasses emerging applications such as trust management, in a unified

framework. They claim that the missing components of traditional access control are the

concepts of obligations and conditions. Obligations require some action by the subject so as

to gain or sustain access, e.g. by clicking the ACCEPT button on a licence agreement.

Conditions represent system-oriented factors such as time-of-day, where subjects are

allowed access only within a specific time period. A family of models for usage control

exists, involving pre-authorisation and ongoing authorisations.

The openness and flexibility of the optimistic access control approach has limited

applicability. Hence this study investigates contextualising this approach within a mixed-

initiative access control framework. According to Dewan et al. (2007), the mixed initiative

access control approach is a means to resolve situations where users may wish to provide

different controls for different objects or where users wish to have preferences in terms of

their privacy settings. Such a control framework involves combing a minimum of two access

control models where the request for information then is mediated by a mixture of access

policy enforcement agents. In order for this type of integration to be successful, a software

development approach was considered that would allow for the seamless augmentation of

traditional access control with optimistic access control enhanced with usage control. Such

an approach was found to be the aspect-oriented approach. The aspect-oriented paradigm

can facilitate the implementation of additional security features to legacy systems without

Chapter 1: Introduction

4

modifying existing code. Consequently this study evaluates the aspect-oriented approach in

terms of implementing security concerns.

Security is often extracted as a separable concern, due to its orthogonal nature in respect of

the functional requirements of a system. Hence the separation-of-concerns principle of the

aspect-oriented paradigm is well suited to addressing security concerns (Robinson et al.,

2004). Aspect orientation has the potential to enhance the implementation of security

concerns in terms of reusability and extensibility, thereby improving the robustness and

maintainability of a system. Evidently, abstracting a security feature into a security aspect

increases the possibility that it may be reused for other applications (Padayachee and

Wakaba, 2007). Access control and encryption, for example, have similar requirements for

most applications. Vanhaute and De Win (2001) demonstrated how to convert these

security concerns into reusable generic aspects.

Several authors cite the benefits of using aspect-oriented programming for implementing

security concerns (De Win, Vanhaute et al., 2002; Viega et al., 2001). According to Bodkin

(2004), aspect-oriented programming is relevant for all major pillars of security:

‘authentication, access control, integrity, non-repudiation, as well as for supporting the

administration and monitoring disciplines required for effective security’. Even security-

related bugs such as buffer overflows or race conditions can be considered security-related

concerns (De Win et al., 2003). Security aspects can be used to modularise access control

and authentication (see (De Win et al., 2003); (Shah and Hill, 2003) and (Slowikowski and

Zielinski, 2003)). The primary argument supporting aspect-oriented programming is that the

average programmer does not have the requisite skills in security (Viega et al., 2001). This

can be attributed to a lack of expertise and few tertiary institutions offering tuition in

software security (Viega and Evans, 2000). Programming tasks such as authentication,

access control and integrity should be abstracted away from developers and allocated to

security experts. Secondly, it is observed that security concerns such as encryption and

access control tend to crosscut the code base. Thirdly, a security aspect can be reused for

other applications since access control has the same requirements for most applications (De

Win et al., 2001). Fourthly, aspect-oriented software design is flexible enough to

Chapter 1: Introduction

5

accommodate the implementation of additional security features after the functional

system has been developed.

This study proposes using the aspect-oriented paradigm to facilitate the non-intrusive

insertion of access control features such as usage control into a fully operational software

system. (This is validated by a proof-of-concept prototype that will be presented in Chapter

8.) Chapters 2, 3 and 4 explore traditional access control models, usage control and present

the concept of optimistic access control respectively. Chapters 5 and 6 discuss the concepts

of aspect-oriented programming and their relationship with security. Chapters 7 and 8

present the model itself and evaluates the model concept. Chapter 9 concludes the thesis by

assessing the model presented and the implementation technique applied.

1.2 Motivation for this study

Discretionary access control is an access policy that restricts access to files and other system

objects such as directories and devices based on the identity of the users and/or the groups

to which they belong (Russell and Gangemi, 1991). In the case of discretionary access

control, no control is enforced on the use or dissemination of the information once this

information has been released to an authorised user (Pfleeger, 1997). For example, a

subject Jane may at her own discretion decide whether Sam may read the file entitled

Logistics, assuming she owns the file. Discretionary access control is very flexible but highly

vulnerable to Trojan Horses. As a result of this inadequacy, mandatory access policies were

proposed.

Mandatory access control (Ramachandran et al., 2006) refers to access control policy

decisions that are made beyond the control of the individual owner of the object. A central

authority determines what information is to be accessible by whom, and the user cannot

change access rights (Pfleeger, 1997). With mandatory access policies, every object and user

in the system is assigned a sensitivity label that consists of a level of secrecy and a set of

compartments (Bell and La Padula, 1976). Mandatory access control is deemed to be

superior to discretionary access control as it is not vulnerable to illegal information flows. An

Chapter 1: Introduction

6

illegal flow arises when information is transmitted from one object to another in violation of

the information flow security policy (Samarati et al., 1997). Even the most dominant model

of recent times, the role-based access control model, is vulnerable to illegal information

flows, as is demonstrated by Chon et al. (2004). Within role-based access control (RBAC),

system administrators create roles according to the job functions performed in a company

or organisation, grant permissions (access authorisation) to those roles, and then assign

users to the roles on the basis of their specific job responsibilities and qualifications (Sandhu

et al., 1996).

These models often assume that users want and are able to determine permissions before

the actual access is made. These mechanisms require a priori setting of permissions that are

difficult to specify and maintain in highly dynamic environments. In this thesis, this category

of access controls is referred to as traditional access controls. These types of access controls

are characteristically pessimistic. In other words, the models assume that human beings

cannot behave in a trustworthy manner and the system has to prevent them from behaving

in an undesirable way. Human trust is subjective and context specific and hence it is difficult

to form a definition that incorporates all views and types of trusts (Grandison, 2003).

Integrating trust/distrust into the computing world requires transforming a complex social

concept into an easy-to-use technical product that embodies the basic principles of

trust/distrust (English et al., 2002). Human beings make decisions based on the

circumstances of a particular situation. For example, within a typical mandatory access

control model, doctors may have the privilege to view sensitive information but nurses and

clerks would not. In the case of role-based access control, the role could be based on job

responsibilities; for instance, a patient's record can be written by any health professional

assigned to the role of ward physician (Pudney, 2003). However, this does not guarantee

that a valid user demonstrates integrity or acts professionally.

Access controls are difficult to implement and are evidently deficient under certain

conditions. Traditional access controls offer no protection for unclassified information –

such as a telephone list of employees that is unrestricted, yet available only to members of

the company. On the opposing side of the continuum, organisations such as hospitals that

Chapter 1: Introduction

7

manage highly sensitive information demand stricter access control measures. Yet,

traditional access control may well have inadvertent consequences in such a context. Often,

in unpredictable circumstances, users that are denied access could have prevented a

calamity had they been allowed access. It has been proposed that controls such as auditing

and accountability policies be enforced to deter rather than prevent unauthorised usage. In

dynamic environments, preconfigured access control policies may change dramatically,

depending on the context. Moreover, the costs of implementing and maintaining complex

preconfigured access control policies sometimes far outweigh the benefits. This research

considers an adaptation of usage control as a proactive means of deterrence control to

protect information that cannot be adequately or reasonably protected by access control.

Deterrent controls are intended to discourage individuals from intentionally violating

information security policies or procedures. Hence, if software systems could trust humans

to decide how and when they can access information, this would be a more accurate

assessment of trust. Trust on a humanistic level is highly complex and there are a variety of

factors that influence trust. The emergence of trust-based access control frameworks is

largely due to communications occurring among parties where each party is unknown. This

communication is typically decentralised. There is now a need for a new type of access

control where the access is not preconfigured and where, essentially, the user is trusted to

behave ethically.

While pessimistic access controls such as DAC, MAC and RBAC maybe highly appropriate in

certain contexts, optimistic access controls may be more appropriate in other

circumstances. For instance, Stevens and Wulf (2002) considered an actual inter-

organisational co-operation scenario where it was found that traditional access control did

not comply with the organisation's requirements and that co-operation and competitive

reasons motivated the use of interactive and optimistic access controls. Hong and Landany

(2004) also established that there is a need for privacy-sensitive systems to have a range of

control and feedback mechanisms for building pessimistic, optimistic and mixed-initiative

applications.

Chapter 1: Introduction

8

The approach of deterrence control is an application of optimistic access control. Optimistic

access control is useful in cases where openness and availability are more important than

complete confidentiality (Povey, 1999). Optimistic access control also has the advantage

that it is far easier to implement, since it is rather difficult for administrators to predict all of

the possible usage scenarios and thus all of the necessary permissions. Optimistic access

control is based on the assumption that most access control processes will be legitimate,

and relies on controls external to the system to ensure that the organisation’s security

policy is maintained. The scheme allows users to exceed their normal privileges in a way

that is constrained, so that it is securely audited and may be rolled back (Povey, 1999).

Optimistic access control involves a combination of audit and accountability; and deterrent

mechanisms to encourage trustworthy behaviour. This approach is characteristically more

retrospective rather proactive. However, the application of usage control within an

optimistic access control context may provide a proactive means of deterrent control.

Within traditional access control models, usage control would offer an extra layer of

restriction against unauthorised usage. However, under the optimistic access control

paradigm it would not restrict users but rather deter them from accessing and misusing

information. As is defined in terms of the optimistic access control paradigm, the user must

ultimately be able to access the requisite information.

Optimistic access controls trust human beings to perform legitimate accesses and take

retrospective action once such trust has been breached. The initial cost of implementing

optimistic access control methods is minimal; however, the fall-out could be disastrous. If

such a breach is discovered, it could involve prosecution or performing a roll-back

procedure. The roll-back procedure may be able to restore the system to its original state.

However, it is highly likely that it may not be able to undo the damage done.

Chapter 1: Introduction

9

1.3 Problem Statement

Access controls are difficult to implement and maintain due to the highly complex task of

envisaging all the possible usage scenarios and thus all the necessary permissions.

Notwithstanding this fact, the pre-configured access controls may not be appropriate to all

contexts. Furthermore, a security policy specified by a single access control model may not

applicable to all data in an information security system. This research considers an

adaptation of usage control as a proactive means of deterrence control to protect

information that cannot be adequately or reasonably protected by access control. This

thesis therefore presents a model for reformulating usage control under the optimistic

access control paradigm.

To accomplish the main goal identified above, the following sub-goals were identified:

 Providing a critical overview of access controls and optimistic access controls

 Providing an overview of aspect-oriented programming and its relevance to security

 Deriving a model that enforces Optimistic Access Control with Usage Control –

designated the OAC(UCON) model – within a mixed-initiative access control

framework

 Providing a proof-of-concept prototype to demonstrate the suitability of aspect-

orientation in terms of implementing the model concept

 Providing evaluative prototypes of the model concept in a small-scale experiment

using the design science methodology

1.4 Terminology used in this thesis

Access control is a fundamental part of computer security where every requested access

must be governed by an access policy stating who is allowed access to what; i.e. the request

must be mediated by an access policy enforcement agent (Pfleeger and Pfleeger, 2003).

Chapter 1: Introduction

10

Aspect-Oriented Programming provides explicit language support for modularising design

decisions that cross-cut a functionally decomposed program (Walker et al., 1999), i.e. the

developer is able to maintain the code (cross-cutting functionality) in a modularised form.

Mixed-initiative access control framework is an access control strategy that involves

combining a minimum of two access control models where the request to information is

mediated by a mixture of access policy enforcement agents.

Optimistic Access Control is a scheme that allows users to exceed their normal privileges in

a way that is constrained, so that it is securely audited and may be rolled back.

Usage Control (UCON) is an access control model that encompasses emerging applications

such as trust management in a unified framework.

1.5 Research Methodology

The research methodology involved the design of a proof-of-concept prototype to

demonstrate a subset of the model concept and to evaluate the suitability of the aspect-

oriented paradigm. Additionally, the model was evaluated in terms of the design science

research method so as to test its scalability and efficacy as a security measure. As the value

and utility of the model concept was evaluated, the design science method was selected to

this end. It involves a two-step process of building and evaluating (March and Smith, 1995).

During this process several evaluative prototypes were developed to verify the model

concept for commercial systems. The small-scale experiment tested the theory that users’

interaction with the prototype will be perceived as an effective countermeasure against

data misuse. In order to test the hypothesis, two qualitative data collections were employed

during the evaluation, namely participant observation and open-ended interviewing.

Postgraduate students with an extensive knowledge of information systems were utilized to

develop and evaluate the model concept. Since some of these students are already

employed within the information systems sector, this profile of participants can often serve

as representatives of systems developers.

Chapter 1: Introduction

11

1.6 Delimitations

It is important to distinguish between access control and information flow control. For

example, an access policy might specify that user1 can read from file1 and write to file2,

while a flow policy might specify that information in file1 is at most confidential and always

less than the class of information in file2 (Andrews and Reitman, 1980). The present study is

primarily concerned with access control, and more specifically with enhancing access

control by means of usage control. Thus it will specifically consider the reformulation of

usage control under the optimistic control access control paradigm.

Although the issue of trust is an important component of the mixed-initiative access control

framework, it is beyond the scope of this thesis to provide details as to how trust can be

measured and maintained. The issue of mutability of access rights based on trust is given

due consideration – however, it is not explored in any detail.

1.7 Thesis Layout

Chapter 1: Introduction: The problem is introduced in relation to access controls in that

they are too restrictive and difficult to pre-configure.

Chapter 2: Access Control: This chapter introduces traditional access control models and

presents the problem with the traditional approach to access control.

Chapter 3: Optimistic Access Control: This chapter introduces optimistic access control and

presents its strengths and weaknesses. While Chapter 2 covers the more traditional

methods of access control, Chapter 3 focuses on a non-conventional method of

implementing access control.

Chapter 4: Usage Control: This chapter introduces usage control and how it may be used to

address the weaknesses of optimistic access control.

Chapter 1: Introduction

12

Chapter 5: Aspect-Oriented Programming: The aspect-oriented programming paradigm is

introduced as a mechanism to implement access control measures. The abstraction of this

chapter allows for an adequate overview of the aspect-oriented paradigm as it is a fairly

new programming technique and not yet ubiquitous within the South African context.

Chapter 6: Aspect-Oriented Security: This chapter demonstrates how the aspect-oriented

paradigm may be used within the information security domain.

Chapter 7: The OAC(UCON) model: This chapter presents the model that is used to address

the inadequacies of t traditional access control requirements.

Chapter 8: Prototyping and Model Evaluation: This chapter describes the implementation

of the model proposed as a "proof-of-concept" by using an aspect-oriented programming

language. It also provides an evaluation of the approach and the model concept using

evaluative prototyping.

Chapter 9: Conclusion: This chapter concludes with directions for future research and

evaluates the contribution made by this thesis.

Chapter 1: Introduction

13

Figure 1.1 below presents a schematic overview of the thesis.

Figure 1.1: Overview of Thesis

P
A

R
T

2
P

A
R

T
3

P
A

R
T

1

C
h

ap
te

r 1:
IN

TR
O

D
U

C
TIO

N

Chapter 2:
ACCESS CONTROL

MODELS

Chapter 3:
OPTIMISTIC ACCESS CONTROL

Chapter 4:
USAGE CONTROL

Chapter 5:
ASPECT-ORIENTED PROGRAMMING

Chapter 6:
ASPECT-ORIENTED SECURITY

Chapter 7:
THE OAC(UCON) MODEL

Chapter 8:
THE PROTOTYING
AND EVALUATION

Chapter 9:
CONCLUSION

Chapter 1: Introduction

14

1.8 Summary

The proposed solution offered by this study may ease the burden of system administrators

significantly. It is rather difficult for administrators to predict all of the possible usage

scenarios and thus all of the necessary permissions. With optimistic access control, it is

ultimately left to users to make that judgement. The complexity of the implementation and

maintenance of pre-configured access control policies is therefore relegated to the way the

user interacts with the system. Adapting usage control as a deterrent mechanism provides a

proactive mechanism that can be used in addition to the retroactive methods of auditing

and accountability offered by optimistic access control. Through using a proactive means of

deterrent control, a larger subset of information may be relegated into the public domain.

This research does not obviate the need for traditional access control. For example,

payment processing e-business applications demand stricter information controls (Haldar et

al., 2005). Consequently the model presented here is intended to be incorporated into a

mixed-initiative access control framework.

Chapter 2: Access Control Models

15

CHAPTER 2:

 ACCESS CONTROL

2.1 Introduction

Access control is a fundamental part of computer security where every requested access

must be governed by an access policy stating who is allowed access to what; the request

must then be mediated by an access policy enforcement agent (Pfleeger and Pfleeger,

2003). There are three basic approaches to access control. The first approach requires pre-

configured access control policies (explored in this chapter), while the second involves

temporal access control policies (explored in Chapter 4). Chapter 2 provides an overview of

traditional access control models such as discretionary access control (DAC), mandatory

access control (MAC) and role-based access control (RBAC). The inadequacies of these

models are explored, thus providing the rationale for investigating the third approach to

access control – optimistic access control. This approach is characteristically retrospective.

2.2 Discretionary Access Control

Discretionary access control (DAC) is an access policy that restricts access to files and other

system objects such as directories and devices based on the identity of the users and/or the

groups to which they belong (Russell and Gangemi, 1991). With discretionary access control,

no control is enforced on the use or dissemination of the information once this information

has been released to an authorised user (Pfleeger, 1997). For example, a subject Jane may

at her own discretion decide whether Sam may read the file entitled Logistics, assuming she

owns the file (see Figure 2-1).

Chapter 2: Access Control Models

16

Figure 2-1: Discretionary Access Control based on an Access Control List (adapted from(Tolone et al., 2005))

According to Pieprzyk et al. (2003), there are several deficiencies with this type of

enforcement:

 If a permission ά is transferred from one subject to another, then the second subject

can propagate the permission ά with no agreement from the first subject.

 The read permission allows a reader to copy the object and to grant friendly subjects

read access to the copy.

 If two or more untrustworthy processes conspire, they may exercise their

permissions collectively.

Discretionary access control is particularly flexible, yet highly vulnerable to Trojan Horses

(Downs et al., 1985). According to Li et al. (2009), this is because it is assumed that all

programs are benign and will not be exploited by malicious inputs. McCollum (1990)

contends that discretionary access control is inappropriate for the enforcement of an

'integrated, global access policy based on a comparison of explicit markings on data to

attributes of the user seeking access', as such controls are designed to relate individual

users to specific data objects. (Li et al., 2009) go on to add that the problem with

discretionary access controls is that the enforcement mechanism cannot correctly identify

the true origins of a request made by multiple principles. To this end, there has been an

inclination to complement DAC mechanisms with some form of mandatory access control

(Mao et al., (2009).

Jane

Own
Read
Write

0

0

File:
Logistics

Sam

Read

0

0

Chapter 2: Access Control Models

17

2.3 Mandatory Access Control

Mandatory access control refers to access control policy decisions that are made beyond the

control of the individual owner of the object. A central authority determines what

information is to be accessible by whom, and the user cannot change their access rights

(Pfleeger, 1997) (see Figure 2-2). With mandatory access policies, every object and user in

the system is assigned a sensitivity label that consists of a level of secrecy and a set of

compartments (Bell and La Padula, 1976). For example, as depicted in Figure 2-2 below, the

sensitivity label of the Logistics file is SECRET [ALPHA, VENUS], where SECRET indicates the

level and [ALPHA, VENUS] the compartments. The security level is an element of a totally

ordered set. The levels generally considered are: TOPSECRET, SECRET, CONFIDENTIAL and

UNCLASSIFIED, where TOPSECRET > SECRET > CONFIDENTIAL > UNCLASSIFIED (Russell and

Gangemi, 1991). The set of compartments is unordered. An access class ci dominates (≥) an

access class cj if and only if the security level of ci is greater than or equal to cj and the

compartments of ci include that of cj. Access control is based on the following two principles

formulated by Bell and LaPadula (1976), which are adopted by all models enforcing

mandatory access security policies:

• No read-up: A subject can read only those objects whose access class is dominated

 by the access class of the subject, namely the Simple Security Property.

• No write-down: A subject can write only to those objects whose access class

 dominates the access class of the subject, namely the *-Property.

Figure 2-2: Mandatory access control (MAC) (adapted from (Russell and Gangemi, 1991))

Jane

level = SECRET

category = ALPHA

John

level = TOPSECRET

category = ALPHA, VENUS,TANK

LOGISTICS FILE

 level = SECRET

category = ALPHA, VENUS

can’t read
can write to file can read can’t write to file

Chapter 2: Access Control Models

18

It is important to note that the term ‘object’ does not imply ‘object’ in the typical object-

oriented sense. In fact, the term ‘subject’ is the active process that requests access to the

‘object’, which are passive entities such as files or records.

Although mandatory access control is considered to be superior to discretionary access

control, it is difficult to implement in reality and the model has a number of deficiencies as

indicated below (Anderson, 2001):

• ‘Blind write-up’ – The inability to inform low-security data whether a write to high-

 security data has happened correctly

• ‘Downgrading’– Moving information from a high-security level to a lower level is

 sometimes desirable

• ‘TCB bloat’ – A large subset of the operating system may end up in the Trusted

 Computing Base (TCB)

Mandatory access control (MAC) was once thought to be relevant to the military only. These

days, however, it is gradually being incorporated into commodity open operating systems

such as BSD and Linux. As Zakrzewski and Haddad (2002) put it, ‘mandatory access control

mechanisms are efficient for supporting complex relationships between different entities in

the computing environment’. Systems such as payment processing, e-business applications

and medical data applications may also require similar stringent controls. Mandatory access

control is highly applicable in areas such as privacy, as access to privacy-sensitive data can

be regarded as analogous to access to multilevel security data (Rjaibi and Bird, 2004).

Maintaining the privacy of individuals is one of the most compelling reasons for

implementing strong access controls in an organisation. Weippl and Essaymr (2003) also

demonstrate that besides its applicability to the military, mandatory access control has the

efficacy to protect personal digital assistants (PDAs). Another reason why mandatory access

control is deemed to be superior to discretionary access control, is because it is not

vulnerable to illegal information flows. An illegal flow arises when information is transmitted

from one object to another object in violation of the information flow security policy

(Samarati et al., 1997). Even the most dominant model of recent times, the role-based

Chapter 2: Access Control Models

19

access control model, is vulnerable to illegal information flows, as demonstrated by Chon et

al. (2004).

Mandatory access control can be easily unified within the role-based access framework,

since role-based access control (Sandhu, 2001) is a means of articulating policy rather than

embodying a particular security policy (Osborn et al., 2000). Mandatory access controls

generally cannot prevent implicit flows arising from the control paths not taken at run time

(Zheng and Myers, 2004). To prevent an information leak like this, Denning and Denning

(1977) proposed a mechanism to certify that a program does not violate information flow

policy. Information flow is concerned with the control path of information as a software

system executes. There exists a semantic gap between access controls of operating systems

and programming languages as languages such as the Java Virtual Machine lack

mechanisms to enforce mandatory access controls, programming languages have been

created (Haldar et al., 2005).

2.4 Role-based Access Control

Within role-based access control (RBAC), system administrators create roles according to

the job functions performed in a company or organisation. They grant permissions (access

authorisation) to those roles, and then assign users to the roles on the basis of their specific

job responsibilities and qualifications (Sandhu et al., 1996).

Figure 2-3: Role-based Access Control (adapted from (Samarati and de Capitani di Vimercati, 2001))

……
…..

……
…..

Role 1

Role 2

Role n

…
…
….
.

Chapter 2: Access Control Models

20

According to Tolone et al.(2005), the shortcomings of role-based access control can be

summarised as follows:

 The nature of the roles is static and they lack flexibility and responsiveness to the

environment in which they are being used.

 It lacks the ability to specify fine-grained control of individual users in certain roles and

individual object instances.

 Constraints are an important aspect of role-based access control and a powerful

mechanism for stipulating high-level organisational policy, the specification of which is

not expanded on in the model.

Izaki et al. (2001) demonstrate how illegal information flow may occur among objects within

the role-based access control model. As with discretionary access controls, role-based

access control can only restrict the access of objects in a system – hence information flows

among variables cannot be controlled (Chou, 2003).

Role-based access control does not scale up with access control model issues. The core is for

the most part unchanged and based largely on the access matrix model (Zhao et al., 2007).

This inflexibility is to be addressed by the model concept presented in this thesis. The aim is

to provide a model that is not entirely dependent on subject-object attributes (as with the

models presented in this chapter), but rather a flexible model that is dependent on

temporal factors.

2.5 Conclusion

Traditional access control is based on static authorisations that depend exclusively on a

subject's permissions with regard to target objects (Zhao et al., 2007). Usage control seeks

to address these inadequacies as it considers other factors that may influence a subject's

rights to a target object. Moreover, it considers the mutability of attributes during access.

Usage control will be explored in more detail in Chapter 4. Traditional access control models

are based entirely on denial of access. They do not consider contextual factors or

extenuating circumstances that may warrant overriding these controls. Access control

Chapter 2: Access Control Models

21

models such as DAC, MAC and RBAC often assume what users want and are able to

determine permissions before the actual access is made. They require permissions to be

pre-configured, which is difficult to specify and maintain in highly dynamic environments

where access policies may fluctuate on a regular basis. In the next chapter optimistic access

control is considered. It is based on the assumption that most accesses will be legitimate

and the control is retrospective.

Chapter 3: Optimistic Access Control

22

CHAPTER 3:

 OPTIMISTIC ACCESS CONTROL

3.1 Introduction

Industry surveys prove that a substantial share of computer security incidents are due to the

intentional actions of legitimate users. – the consequences of which include negative

publicity, competitive disadvantage and loss of consumer confidence (D' Arcy and Hovav,

2007). Traditional access control models are evidently deficient under certain conditions.

For instance, a particular organisation may necessitate access controls to be less

prescriptive for the purposes of intra-organisational cooperation (Etalle and Winsborough,

2007; Stevens and Wulf, 2002). Traditional access controls such as mandatory, discretionary

or role-based access control offer no protection for information that is unclassified and

freely available in the public domain. In the recruitment industry, for example, information

such as client lists and candidate lists has to be shared freely for the purposes of

collaborative job matching. As there are no controls over this information, an employee may

well download it and distribute it to competitors.

On the opposing side of the continuum, organisations (e.g. hospitals) that manage highly

sensitive information stipulate stricter access control measures. Yet traditional access

controls may sometimes have an undesired effect in these circumstances as well, for

instance the denial of access based on the attributes of the users rather than the context of

the access. The meaningful implementation of access control remains a difficult task and

preconfigured access control policies may at times change dramatically in dynamic

environments, depending on the context. Moreover, the costs of implementing and

maintaining complex preconfigured access control policies sometimes far outweigh their

benefits. It has been proposed that auditing and accountability measures be enforced to

Chapter 3: Optimistic Access Control

23

deter unauthorised users rather than to completely prevent them from gaining access

(Etalle and Winsborough, 2007). While pessimistic access controls such as DAC, MAC and

RBAC may be highly appropriate in certain contexts, optimistic access controls may be more

appropriate in other circumstances. This issue is investigated in Section 3.4.

3.2 Optimistic Access Control

Optimistic access control is useful in cases where openness and availability are more

important than complete confidentiality. Optimistic access control also has the advantage

that it is far easier to implement, since it is difficult for database administrators to predict all

of the possible usage scenarios and thus all of the necessary permissions. Optimistic access

control is based on the assumption that most access control processes will be legitimate,

and relies on controls external to the system to ensure that the organisation’s security

policy is maintained. The scheme allows users to exceed their normal privileges in a way

which is constrained, so that it is securely audited and may be rolled back (Povey, 1999).

According to Povey (1999) the optimistic enforcement of security policies are retrospective

and rely on administrators to detect unreasonable access and take steps to compensate for

the action. Such steps might include:

 Undoing illegitimate modifications

 Taking punitive action (e.g. firing or prosecuting individuals)

 Removing privileges

Optimistic access controls trust human beings to perform legitimate accesses and take

retrospective action after such trust has been breached. This approach is characteristically

more retrospective rather proactive. However, the application of usage control within an

optimistic access control context may provide a proactive means of deterrent control. Povey

(1999) suggests using integrity to complement optimistic access control, where the user is

unable to manipulate data arbitrarily. However, this thesis is not concerned with

maintaining the integrity of the data – rather, the model presented here involves protecting

the access of information.

Chapter 3: Optimistic Access Control

24

3.3 Requirements for Optimistic Security

Since the seminal article on optimistic access control was written by Povey (1999), the next

three sections are based largely on his work. Providing an optimistic security system

requires mechanisms to ensure that the likelihood and consequences of a user maliciously

using or plainly misusing the system are minimised. In order to satisfy this objective, the

following controls should be considered:

 Constrained entry points: Users should not in general be allowed to exceed their

privileges. Users should be warned when they exceed their privileges and be

reminded of their obligations towards their organisation.

 Accountability: The system must have strong enforcement of authentication so that

users are associated with their actions.

 Audit: The system must log the actions of users in detail, so that a post-mortem

analysis can determine whether an access has been legitimate or not.

 Recoverability: There should a mechanism for the system to be rolled back to ensure

that a user cannot damage a system irreparably.

 Deterrents: One effective way of reducing risks in an optimistic system is by using

punitive measures to deter misuse. The punitive measures themselves can be either

optimistic (with the system administrator enforcing the measure on the detection of

misuse) or pessimistic (with the punitive measure implemented immediately and

reversed if the action is determined to be legitimate).

In the model presented in Chapter 7, the constrained entry points stipulation is satisfied by

pre-obligations and pre-conditions offered by usage control. The accountability notion is

addressed by the fact that only authorised users are allowed access. The model system

retrospectively provides mechanisms for audit and recoverability. The issue of deterrents is

enforced by the obligations and conditions offered by usage control.

Chapter 3: Optimistic Access Control

25

3.4 Applicability of optimistic security

According to Povey (1999), optimistic access control may be applied in the following

contexts:

Emergency "break-glass" tool

The software equivalent of the "break-glass" container would be a program that is suitably

constrained using an optimistic security system and that gives stern warnings about misuse

before it is activated. This mechanism is incorporated in the model presented in Chapter 7.

Retrospective content filtering

One of the negative aspects of systems that provide filtering of material which is deemed

harmful or inappropriate is that the algorithms used to determine which content to filter

can often result in false matches. The result of this is that users can be denied access to

legitimate content, forcing them to search for ways to circumvent the system. By applying

the principles of optimistic security, users would be able to access any material they desired,

and an administrator would log all material accessed and run the content-filtering algorithm

retrospectively.

Sandboxing "somewhat-trusted" applications

Traditionally, the focus of "sandboxing" (or constraining the access privileges of programs)

has been on untrusted code that is downloaded from the Internet. For example: an

optimistic sandbox could track the changes made to the file system by a word-processing

program, and allow the user to undo these changes in the event of a crash or malicious

macro virus. This would improve the security and safety of these applications without the

loss of functionality or expensive certification of the programs.

Watching your system administrator

The system administrator can be constrained in that the user is informed whenever the

administrator accesses files that may involve a breach of the user's privacy.

Chapter 3: Optimistic Access Control

26

With regard to the context of optimistic access control, it relies entirely on the user being

accountable for its own compliance to access control policies, rather the system enforcing

access control policies on the user and controlling the user's action. In terms of the

compliance mindset subscribes to what might be called a deterrence theory of motivation,

which employs mandates, procedural controls and threats of punishment to manage and

motivate people (Herath and Rao, 2009). Deterrence theory is based on certainty, severity

and celerity of punishment that affect people's decisions on whether or not to commit a

crime or not (Higgins et al., 2005). In an information systems security context, these may be

visualised in terms of an employee's assessment of the consequences of a security threat

and the probability of exposure to a substantial security threat (Herath and Rao, 2009).

3.5 The extensibility of the Optimistic Access Control Model

Optimistic access controls address this niche where access control is not preconfigured and

the user is essentially trusted to behave ethically. While traditional access controls such as

DAC, MAC and RBAC may be highly appropriate in certain contexts, optimistic access

controls may be more appropriate in other circumstances. A field study conducted by

Stevens and Wulf (2002) who considered the cooperation between two engineering offices

and a steel mill is a case in point. Within this real-world inter-organisational co-operation

scenario, it was found that traditional access controls did not comply with the organisation's

requirements and that co-operation and competitive reasons motivate the use of

interactive and optimistic access controls (Stevens and Wulf, 2002).

A posterior policy enforcement offers interoperability, flexibility and scalability, which are

crucial in collaborative environments (Etalle and Winsborough, 2007). Cederquist et al.

(2006) also considered enforcing usage control policies a-posterior. This notion is similar to

the optimistic access control. The ideas expressed by Cederquist et al.(2006) are different

from the model presented in Chapter 7, as they focused on the auditing aspect of enforcing

and updating usage control policies retrospectively. The OAC(UCON) model uses usage

control as a deterrent mechanism to proactively prevent users from committing data

misuse. Thus the idea of refining a policy should be the exception rather than the norm.

Chapter 3: Optimistic Access Control

27

Additionally, the OAC(UCON) model focuses more on the pragmatic level of implementation

at the application level. The OAC(UCON) model includes the optimistic access control

requirements of roll-backs and the issue of continuity in terms of usage control. The model

also considers how to leverage optimistic access control within the wider context of

traditional access control. The issue of how access control policies will be enforced after a

threat has been discovered are beyond the scope of this research. Typically such

enforcement will be audit-based (Cederquist et al., 2006). However, a neural network or an

expert system could also be applied to decrease a user’s privilege to information in the

public domain. This approach may prove to be more effective as the updates to access

control policies could be more synchronous. This matter will be expanded on in Chapter 9 as

a direction for future research.

The mixed-initiative approach is also gaining recognition, where traditional access control is

combined with optimistic access control approaches. Imine et al. (2009) consider the

domain of distributed collaborative editors that provide support for modifying

simultaneously shared documents – such as sharing programming code among dispersed

users. Controlling access in such systems is challenging due to dynamic access changes and

low latency access to shared documents. They complemented mandatory access control

with optimistic access control to solve this problem. To deal with the latency and dynamic

access changes, optimistic access control was applied where the enforcement was

retrospective. Briscoe et al. (2000) presented a multi-service packet network which involved

a mixed-initiative approach where optimistic access control existed within the wider context

of the pessimistic access control. For example, the customer may be given an Internet

account after providing verifiable identification. Once past this pessimistic hurdle, the

optimistic access to more specific parts of the system can be allowed, yet is enforced by

punishment. The rationality for such enforcement is that it leaves the network structure

clear to simply classify, route, schedule and forward.

The call for privacy-sensitive systems to have a range of control and feedback mechanisms

for building pessimistic, optimistic and mixed-initiative applications has also been

recognised (Hong and Landay, 2004). Esquivel et al. (2007) also employed optimistic access

Chapter 3: Optimistic Access Control

28

control in terms of privacy in pervasive environments. There are environments capable of

sensing personal information anywhere and at any time. Based on the ”fair-trade”

metaphor, they presented a privacy solution dealing with a user’s privacy as a tradable good

for obtaining services in an environment. Thus, users gain access to more valuable services

as they share more personal information. This strategy combined with optimistic access

control and logging mechanisms, enhances user confidence. Zhao and Johnson (2008)

propose access governance with both flexibility and security of information systems. They

combine information access, audit, violation penalties and rewards so as to enable self-

interested employees to access information in a timely manner and seize business

opportunities for the organisation, while managing security risks.

While protecting information from misuse, managers strive to ensure that employees can

actually access the information they need to create value (Zhao and Johnson). In terms of

the models presented above, optimistic access control is applied retrospectively, whereas

the OAC(UCON) model, a flexible system with usage control to prevent misuse, is applied

proactively.

The flexibility of the optimistic access control paradigm may be used to address

circumstances where traditional access controls prove to be inadequate. However,

optimistic access control must be qualified with enforcements to prevent data abuse. In

terms of the OAC(UCON) model, it formalises the requirements for optimistic security such

as constrained entry points, accountability, audit, recoverability and deterrents.

Furthermore, the extensibility offered by this paradigm is complementary to a mixed-

initiative access control framework into which the OAC(UCON) model is intended to be

incorporated.

Chapter 3: Optimistic Access Control

29

3.6 Conclusion

The implementation of optimistic access control requires minimal effort and is cost efficient,

because it does not involve specifying and maintaining access control rights. However, the

flexibility offered by optimistic access control is a security risk and subject to misuse. Hence

it is proposed that this type of access control should be augmented with some sort of

control to ensure that humans behave ethically. It is proposed that optimistic access control

be complemented with usage control. Within traditional access control models, usage

control would offer an extra layer of restriction from unauthorised usage. However, under

the optimistic access control paradigm it would not restrict users, but rather deter and

constrain them from accessing and misusing information. As was stated earlier, the user

should ultimately be able to access the required information.

Chapter 4: Usage Control

30

CHAPTER 4:

 USAGE CONTROL

4.1 Introduction

Sandhu and Park (2003), recognising the inadequacy of traditional access control models,

proposed a new approach to access control called usage control (UCON). The usage control

model is highly appropriate in dynamic and distributed environments where other decision

factors such as context should be included to offer stricter enforcement on the rights to

digital objects. Typically, access controls consider enforcements that are made prior to

access; the UCON model extends pre-authorisation by re-evaluating usage requirements

throughout usages. This property is called “continuity” and has to be captured in modern

access control for the control of relatively long-lived usage or for immediate revocation of

usage (Sandhu and Park, 2003). The other unique property of the UCON model is "attribute

mutability". In modern information systems, the decision policies may change as a

consequence of certain actions that may result in modifications to the object or subject

attributes (Park et al., 2004). The UCON model has been largely inspired from digital rights

management and is a general purpose, unified framework that encompasses traditional

access control, trust management and digital rights management (Park et al., 2004). This

chapter provides an overview of the UCON model and elaborates on its applicability and

extensibility.

Chapter 4: Usage Control

31

4.2 The continuity and mutability of the UCON model

The UCON model encompasses emerging applications such as trust management in a

unified framework. It is claimed that the missing components of traditional access control

are the concepts of obligations and conditions. Obligations require some action by the

subject so as to gain or sustain access, e.g. by clicking the ACCEPT button on a licence

agreement or agreeing not to distribute the document. Conditions represent system-

oriented factors such as time of day, where subjects are allowed access only within a

specific time period.

In addition to these three decision factors (namely conditions, obligations and

authorisations) decision factors, there are two important properties called continuity and

mutability. Continuity is useful when there is sustained usage over a long period of time.

Hence usage requirements would be evaluated throughout the usage – known as ongoing

authorisation. The other property is mutability, which is useful in Digital Rights Management

systems where attributes have to be updated as a side-effect of a subject's actions. These

updates may be before (pre), during (ongoing) or after (post) usages (see Figure 4-1).

Typically, attribute management can be either admin-controlled or system-controlled. The

admin-controlled system is immutable in that the attribute modification is at the

administrator's discretion, whereas mutable attributes are automatically modified by the

system at the time of usage (Park et al., 2004).

Figure 4- 1: Continuity and Mutability Properties (Park et al.).

Before usage Ongoing usage After usage

Continuity of
decisions

Pre-decision Ongoing decisions

Pre-updates Ongoing updates Post-updates

Mutability of
attributes

Chapter 4: Usage Control

32

4.3 The ABC Model for Usage Control (UCON model)

Sandhu and Park (2003) have expanded usage control into a family of models for usage

control involving pre-authorisations and ongoing-authorisations. The implementation of

pre-authorisation is relatively simple as it warrants checking the conditions and obligations

before the user may proceed. However, the implementation of ongoing authorisation is

non-trivial. Sandhu and Park (2003) do not offer a proposition towards how ongoing

authorisations may be implemented.

Figure 4-2: ABC Model Components(Sandhu and Park, 2003)

Rights

(R)

Subjects

(S)

Objects

(O)

Subject Attributes (SA) Object Attributes (OA)

Conditions
(C)

 Authorisations
(A)

Obligations
(B)

Chapter 4: Usage Control

33

The ABC module (Figure 4-2) consists of eight components: subjects, subject attributes,

objects, object attributes, rights, authorisations, obligations and conditions.

Each of these terms (adapted from Sandhu and Park (2003) and Park et al. (2004)) is

explained briefly below:

 Subjects: represent users.

 Objects: target resources in respect of which subjects hold rights.

 Right: enables access of a subject to an object in a particular mode, such as a read

or write access.

 Subject and Object attributes: properties that can be used during the access

decision process. In practice, one of the most important subject attributes is subject

identity.

 Authorisation: based on subject and object attributes.

 Obligations: requirements that a subject must perform before (pre), after (post) or

during (ongoing) access.

 Conditions: environmental or system-oriented factors.

In terms of traditional access control, authorisation is assumed to be done before access is

allowed (pre). However, the UCON model extends this to continuous enforcement by re-

evaluating usage requirements throughout usages (ongoing). This type of enforcement,

known as 'continuity', implies that access may be revoked instantaneously. Ongoing

authorisation is active throughout the usage of the requested right and is repeatedly

checked for sustaining access. Technically, these checks are performed periodically, based

on time or events. For instance, suppose an ongoing obligation condition stipulates that a

window declaring the 'Terms and Conditions of Use' remains open during access. Thus, if the

user ignores this stipulation and closes the window during access, the usage is revoked

immediately (Sandhu and Park, 2003).

Chapter 4: Usage Control

34

Usage control is relevant in many contexts, including privacy, digital rights management,

management of Internet protocols and protocols for trade and administration secrets

(Pretschner and Walter, 2008). A key motivation for using usage control is that it considers

ongoing controls for extended access or for revocation. For example, Zhang and Nakae

(2006) employed the UCON model for collaborative systems by leveraging the features of

decision continuity and attribute mutability. This was ratified by the notion that traditional

access control approaches do not consider the usage status of a shared object in

authorisation. They developed a prototype and found that the main overhead of the system

introduced by usage control involved mutable attribute acquisitions; policy interpretations

and evaluations; and the updates of mutable attributes. Wang et al. (2006) also motivated

using the UCON model for extended access, as it would be useful in ubiquitous

environments where the information can be accessed anywhere and at any time, which is

potentially unsafe. The ongoing continuity for authorisations, obligations and conditions

found in the UCON model can be used to control objects in a dynamic environment since

they provide more robust access control for ubiquitous computing environments and can

protect sensitive messages from being disseminated.

4.4 The Usage Control Model architecture

From an architectural point of view, one of the most critical issues in enforcing the UCON

model is the reference monitor. The reference monitor (Figure 4-3) associates decision

policies and rules for the control of access to digital objects.

Chapter 4: Usage Control

35

Figure 4-3: Conceptual Structure for the UCON Reference Monitor (Sandhu and Park, 2003)

Usage decisions are based on subject attributes, object attributes, authorisations,

obligations and conditions at the time of the usage requests. The UCON reference monitor

consists of a Usage Decision Facility and a Usage Enforcement Facility. The Usage Decision

Facility includes modules for controlling the conditions, obligations and authorisations:

 The Authorisation Module deploys a process similar to traditional access control and

utilises subject information, object information and usage rules to check whether the

request is allowed or not.

 The Authorisation Module may return metadata to the Customisation Model

indicating how the data may be presented or customised.

 The Condition Module uses the contextual information and usage rules to decide

whether the conditional requirements have been met.

 The Obligation Module decides whether certain obligations need to be performed

before, after or during access.

 If there is an obligation that must be performed, this is monitored by the Monitoring

Module.

 The result will be resolved by the Update Module, which may change the attributes

of the subject and/or object.

Condition
Module

Obligation
Module

Authorisation
Module

Usage Decision Facility

Request
Information

Result
Information

Objects
Customisation

Module
Monitoring

Module
Update Module

Usage Enforcement Facility

Usage
Rules

Contextual
Information

Reference Monitor

Subjects

Chapter 4: Usage Control

36

4.5 The Applicability and Extensibility of the UCON model

The UCON model is unique in that it can be applied in several contexts with differing access

control policy strategies. The model encompasses other temporal and contextual factors

aside from considering access rights on subject-object attributes. Consequently, there has

been a trend towards complementing access control methods such as role-based access

control with usage control (see Li et al. (2005) and Xu et al. (2003)). As indicated, usage

control is relevant in many areas, including in privacy and digital rights management.

Although the UCON model is comprehensive, it has been extended in several ways. For

instance, according to Lee et al. (2004) this framework lacks an important component in

terms of access control. They maintain that the element of ‘consent’ should also be included

in an access control system, thereby increasing society’s trust of a software system. In this

scenario, consent is considered to be diametric to the ‘concept of obligation’ within the

usage control model. ‘While the obligation is obeyed by the customer, consent is observed

by the provider’ (Lee et al., 2004). The proposed method can extend the coverage of the

UCON model in terms of security and enhance the right of both provider and customer. It

also provides a solution for trust relationships in e-Commerce and for the protection of an

individual's privacy. In a position paper, Pretschner and Walter (2008) considered usage

control in the context of distributed systems that are composed of different actors assuming

the role of data providers (who give data away) and data consumers (who request and

receive data). In their position paper, they considered the element of negotiation for usage

control. The term negotiation suggests that multi-step bidirectional communication takes

place. Shin and Yoo (2007) extended the UCON model by incorporating an additional

component, delegation, for effective modelling of the delegation of access rights in

ubiquitous computing.

Syalim et al. (2005) proposed an enforcement to support data confidentiality in a database

service provider by contextualising the usage control model and architecture for the

aforementioned database service provider. In this context, the UCON model extended the

access matrix by utilising either a server-side or client-side reference monitor, or both

server-side and client-side reference monitors. Syalim et al. (2005) exploited the flexibility

Chapter 4: Usage Control

37

of the UCON and separated the control domain in a database service provider into two

parts: a database provider domain and a database user domain. In the database provider

domain, the access control system controls users’ access to the database services, while in

the database user domain, the access control system controls other users’ access to a user's

database.

Due to the dynamic authorisation requirements in collaborative systems, Zhang and Nakae

(2006) proposed a generalised authorisation framework for such systems based on the

UCON model. In collaborative systems, organisations share their computing resources to

establish virtual organisations. By leveraging the flexible policy specifications and attribute

mutability of the UCON model, Zhang and Nakae’s (2006) model supports virtual

organisations-level authorisation policies, but also usage constraints defined by each

resource provider. In their generalised authorisation framework, conditions are used to

support context-based authorisations in ad hoc collaborations.

Due to the extensibility and expressibility of the UCON model and its all-encompassing

nature, it may be extended to optimistic access control as well. The current research

considers adapting usage control as a proactive means of deterrence control to protect

information that cannot be protected adequately or reasonably by access control.

4.6 Conclusion

It has been suggested that where usage control on data consumers may not always be

practical, feasible or sensible, optimistic access control may be more appropriate where the

'observation' or monitoring of user behaviour could be used as a deterrent (Pretschner et

al., 2008). As discussed in Section 4.5, the UCON model is applicable in many areas due to its

strong expressive power and policy specification flexibility (Zhang et al., 2006). The

application of the UCON model to optimistic access control will be explored in detail in

Chapter 7.

Chapter 4: Usage Control

38

Usage control involves pre-authorisations and ongoing authorisations. The implementation

of pre-authorisation is relatively simple, as it warrants checking the conditions and

obligations before the user may proceed. In contrast, the implementation of ongoing

authorisation is non-trivial, and Sandhu and Park (2003) have not proposed any stipulations

as to how ongoing authorisations may be implemented. It has in the meantime been

suggested by Padayachee and Eloff (2007) that multithreading should be applied to

implement ongoing authorisations. However, in general, there is no notion of how usage

control as a whole may be implemented in the real-world context to complement existing

access control approaches. The aspect-oriented paradigm is now considered to be suitable

for this context as it facilitates the abstraction of usage control decisions from other access

control mechanisms and application logic. This approach would result in an implementation

that is easier to augment to existing access control implementations. Before the OAC(UCON)

model and the prototype are presented in Chapters 7 and 8 respectively, Chapter 5 unpacks

aspect-oriented programming and the evolution that has led to this new programming

paradigm.

PART 2:

CHAPTER 6:
 ASPECT-ORIENTED SECURITY

CHAPTER 5:
 ASPECT-ORIENTED PROGRAMMING

Chapter 5: Aspect-Oriented Programming

40

CHAPTER 5:

 ASPECT-ORIENTED PROGRAMMING

5.1 Introduction

Aspect-oriented programming was first proposed by Gregor Kiczales and others at Xerox

PARC in 1997. They developed it to offset redundancy in programs, thereby reducing

complexity. Redundancies usually become apparent in areas such as security, memory

management, resource sharing, and error and failure handling (Miller, 2001). Using aspect-

oriented programming to address these redundancies is beneficial, as it has the potential to

improve the reliability, maintainability, reusability (Viega and Voas, 2000) and robustness of

an application. Although aspect-oriented programming is not ubiquitous in industry, it is

receiving considerable attention from research and practitioner communities such as IBM,

Northeastern University in the United States, the University of Twente in the Netherlands

and Xerox (Miller, 2001). More recently, aspect-oriented software development has been

successfully applied by Motorola, Siemens and Hewlett-Packard (Pohl et al., 2008). The field

has matured to such an extent that it generated its own conference, and the first

International Conference on Aspect-Oriented Programming took place in Twente in the

Netherlands in 2002.

The object-orientated paradigm was found to be inadequate in terms of design and the

implementation of cross-cutting concerns, as there is no elegant way of modularising such

concerns. Aspect-oriented programming provides explicit language support for modularising

design decisions that cross-cut a functionally decomposed program (Walker et al., 1999).

That is, the developer is able to maintain the code (cross-cutting functionality) in a

Chapter 5: Aspect-Oriented Programming

41

modularised form. It is important to note that aspect-orientation maintains all the benefits

of the object-oriented paradigm and should be viewed as an extension rather than a

replacement of object-oriented technologies.

This chapter will commence with a discussion on the evolution of the different programming

paradigms, after which the concept of aspect-oriented programming will be introduced. The

next elaboration will cover the difficulties to be encountered with regard to the integration

of aspect-oriented programming into software development.

5.2 Evolution to Aspect-Oriented Programming

Programming languages have evolved from assembly languages in the 1950s, to procedure-

oriented languages in the 1960s, followed by structured programming and data abstraction

in the 1970s. The next innovation involved object-oriented, distributed functional, and

relational paradigms in the 1980s (Wegner, 1990). The sections that follow briefly describe

the evolution of the aspect-oriented paradigm.

Structured programming enabled developers to provide modularity and reusability of

constructs like procedures and functions(Constantinides and Hasson, 2002). However, as

the size of software products increased, the structured programming paradigm was found

to be inadequate and maintenance was becoming increasingly problematic. The basic tenets

of the object-oriented programming paradigm, which embraced encapsulation and reuse,

were viewed as a means for improving the quality and maintainability of software. The

other advantage that the object-oriented paradigm had over the structured paradigm was

the notion that it promoted thinking about software in a way that closely modelled the way

humans perceive and interact with the real world. However, the object-oriented paradigm

has not yet solved the problem of the duplication of code scattered throughout different

objects. With object-oriented programming the attempt to reduce duplication was class

inheritance. However, the problem is not related to the concept of inheritance. Instead, it is

about unrelated objects that share some points of commonality (Padayachee and Eloff,

2006). The design and implementation of cross-cutting concerns still pose a problem to

Chapter 5: Aspect-Oriented Programming

42

object-oriented programming, as there is no elegant way of modularising these concerns.

Aspect-oriented programming (AOP) addresses this problem and provides explicit language

support for modularising design decisions that cross-cut a functionally decomposed

program (Walker et al., 1999). In other words, the developer is able to maintain the code

(cross-cutting functionality) in a modularised form.

Aspect-oriented programming is designed to exploit some of the advantages of object-

oriented programming such as functionality, encapsulation, hierarchal classes and

modularity. At the same time it manages to overcome an important disadvantage: objects

cannot solve the problem of concerns that are not confined to a single class (Miller, 2001) .

These concerns result in the ‘tangling-of-aspects phenomenon’ (Kiczales, 1996), which

inevitably results in a system that is difficult to maintain (Raje et al., 2001). Aspect-oriented

programming advocates abstracting these cross-cutting concerns into modular units called

aspects. For instance, suppose a system had one cross-cutting concern, scattered

throughout the system. Suppose also that this cross-cutting concern can be removed from

the system and codified as a single separate aspect. Thereafter this aspect is woven into the

system at specific points when required, thereby simplifying the code significantly and also

promoting more effective coding of these aspects. Furthermore, an update can be done on

the single entity or aspect, rather than searching across the whole system and modifying the

cross-cutting concern several times (Padayachee and Eloff, 2006).

As with aspect-oriented programming, subject-oriented programming is also based on the

separation-of-concerns principle. In the subject-oriented paradigm, applications are

composed of subjects. The subject-oriented paradigm defines the state and behaviour

pertinent to the application itself – usually as fragments of the state and behaviour of

collections of relevant classes (Harrison and Ossher, 1993). Subject-oriented programming

also addresses some of the object-oriented programming limitations such as non-invasive

system extensions and system decomposition. The main difference between aspect-

oriented programming and subject-oriented programming is that aspect-oriented

programming achieves non-invasive system extension through intercepting base code at

Chapter 5: Aspect-Oriented Programming

43

join points, whereas subject-oriented programming achieves system extension through the

development of composition rules needed to integrate existing components.

5.3 Aspect-Oriented Programming Terminology

Aspect-oriented languages have three critical elements: a join point model, a means of

identifying join points and a means of affecting implementation at these join points (Kiczales

et al., 2001). There are two categories of aspects: development and production aspects.

Development aspects can be used during the development of an application to facilitate

debugging, testing and performance tuning, and they are not part of the final build of the

application. Production aspects are intended to be included in the build of an application

and they provide additional functionality for the application.

Here follows brief definitions of terminology used in aspect-oriented programming

extracted from Kiczales et al. (2001) and Kizcales et al. (1997):

Cross-cutting

Behaviour that cannot be encapsulated. Because of its impact across the whole system, it is

called cross-cutting behaviour.

Join Points

Join points are certain well-defined points in the execution flow of a program.

Pointcut

A pointcut is a set of join points described by a pointcut expression. The pointcut is used to

find a set of join points where aspect code would be inserted.

Advices

Advice declarations are used to define additional code that runs at join points. For example,

AspectJ supports before and after advice, depending on the time the code is executed.

‘Before’ (after) advice on a method execution defines code to be run before (after) the

Chapter 5: Aspect-Oriented Programming

44

particular method is actually executed. ‘Around’ advice defines code which is executed

when the join point is reached and has control over whether the computation at the join

point (i.e. an application method) is allowed to execute.

Aspect

An aspect is a modular unit of a cross-cutting implementation that is provided in terms of

pointcuts and advices, specifying what (advice) and when (pointcut) its code is going to be

executed. In terms of codification, aspects are similar to objects.

Aspect Weaver

The final application is generated by incorporating cross-cutting concerns into a final

executable form and invoking a special tool called an aspect weaver. Figure 5-1 illustrates

the concept of weaving in AspectJ where aspects and normal Java code are woven together

and compiled into Java byte code.

Figure 5-1: Illustration of the Weaving Concept

5.4 AOP Frameworks

The frameworks that are most widely known and used are AspectJ, AspectWerkz, JBoss

AOP, and Spring AOP. The frameworks that are less popular are abc, aspect#, AspectC++,

and JAC (Kersten, 2005; Wakaba, 2004)

JAVA CODE

ASPECTJ CODE

ASPECTJ WEAVER

COMPILER

JAVA BYTE CODE

Chapter 5: Aspect-Oriented Programming

45

AspectJ

AspectJ is an extension of the Java language syntax and semantics and provides its own set

of keywords for developing aspects. In addition to containing fields and methods, AspectJ’s

aspect declaration contains pointcut and advice members

AspectWerkz

AspectWerkz, JBoss AOP and Spring AOP add aspect semantics without changing the Java

language syntax. AspectWerkz provides two ways of making AOP declarations: Annotations

and JavaDoc style declarations.

JBoss AOP

JBoss AOP has an XML-based aspect declaration style – aspect, pointcut and advice

declarations are made in XML. Advice is implemented using plain Java methods that are

invoked by the JBoss AOP framework.

Spring AOP

Spring AOP also uses an XML-based aspect declaration style, and similar to JBoss AOP,

advices are implemented in a Java method with special parameters that are invoked by the

Spring framework.

AspectJ was selected to develop the model concept presented in this thesis. It was assumed

that as it is the most mature from all other aspect-oriented languages, it would be more

thoroughly tested than other recent aspect-oriented compilers. Furthermore, since the

AspectJ is more evolved than the other languages, it has a richer tool support. For example,

the Eclipse platform which an integrated development environment, provides a mechanism

to visualise an aspect-oriented system graphically.

Chapter 5: Aspect-Oriented Programming

46

5.5 Evaluating Aspect-Oriented Programming

Although aspect-oriented programming introduces an elegant implementation of separation

of concerns, it does have its challenges. According to Murphy et al. (1999), the aspect-

oriented approach makes it easier to reason about and develop ‘certain kinds of application

code’; this implies that aspect-oriented programming cannot be applied in every situation.

According to Padayachee and Eloff (2006), aspect-oriented programming is not only

inappropriate in the programming of small-scale systems, but several cross-cutting concerns

will have to be identified across a system to warrant the use of aspect-oriented technology.

As this is a new technology, problems are to be expected in terms of testing and debugging

the code. To start with, Alexander and Bieman (2002) maintain that as a result of the

weaving process, isolating faults will be difficult as they may reside in the source code,

aspect or woven code. Secondly, aspects being applied to pointcuts can interfere with

performance and predictability of the program behaviour (Läufer et al., 2003).

Another challenge, as noted by Chen (2004) is that of understandability. A many-to-many

relationship may exist between aspects and the primary abstractions they integrate with,

which would potentially require an understanding of many other aspects to understand only

one. According to Chen (2004), a complication may arise when several different authors

each writes a collection of aspects to be woven. Each programmer must be au fait with the

set of primary abstractions that his/her aspects can be woven with. This implies that each

programmer must know about the other aspects that are used, either by direct composition

or indirectly as a result of weaving. All of these activities will inevitably place a greater

cognitive burden on aspect authors.

The advantages gained from using aspect-oriented programming include increased

modularity, reduced development time, increased maintainability, improved reusability,

more flexibility and simpler class hierarchies (Elrad et al., 2001). In addition to the benefits

of reduced complexity and improved maintainability of software, programmers may be

better able to understand an aspect-oriented program when the effect of aspect code has a

well-defined scope(Walker et al., 1999). The presence of aspect code may also alter the

Chapter 5: Aspect-Oriented Programming

47

strategies that programmers use to address tasks perceived to be associated with aspect

code (Walker et al., 1999).

As with all technology, several disadvantages have been identified despite all the great

advantages. As aspect-oriented programming is a new technology, some issues are still

unresolved. For instance, Alexander and Bieman (2002) pose several pertinent questions

regarding aspect-oriented technology: 'How do we measure the complexity that results

from the weaving process?’; 'Can we control or minimise the cognitive distance induced by

the weaving process?'; 'How do we maintain aspect-oriented programs?' and 'How do we

effectively test and analyse aspect-oriented programs?' Furthermore, Baniassad and Clarke

(2004) and Clarke (2002) assert that identifying cross-cutting behaviour is difficult as it is

entangled with other behaviours.

Murphy et al. (2001) on the other hand, pose questions providing several opportunities for

research, such as: 'Does aspect-oriented programming work for large, multi-developer

projects?'; 'To what kinds of problems is it best suited?' and 'What kinds of constructs are

most usable for specifying crosscuts?'. Based on their empirical study, Murphy and his

fellow researchers argue that aspect-oriented programming shows clear ‘promise’, but

there is still much to learn about it. This implies that there is a definite need to carry out

more evaluative studies on aspect-oriented programming. This need will be addressed in

Chapter 8, where the aspect-oriented implementation of the model will be assessed against

the object-oriented implementation.

Providing aspect-oriented solutions to an access control problem may provide greater

insights into the paradigm and allow the access control problem to be viewed from a

different perspective. Incorporating an aspect-oriented approach may also involve a shift in

philosophy, as researchers and developers may have to discover innovative ways of

maximising the positives of the technology by rethinking the access control in an alternative

way. Just as the move from structured programming to object-oriented programming

involved readdressing access control implementations, so too will the shift from object-

oriented programming to aspect-oriented programming.

Chapter 5: Aspect-Oriented Programming

48

5.6 Conclusion

This chapter provided a brief overview of the evolution towards the aspect-oriented

paradigm. The paradigm's goals, strengths and weaknesses were identified and briefly

contrasted to those of the object-oriented paradigm. The object-oriented paradigm is,

however, here to stay and it will not be replaced by aspect-oriented programming. In fact,

aspect-oriented programming is merely a next step in the evolution of object-oriented

technology and a refinement of object-oriented technology. Despite all the difficulties

acknowledged and outlined in this chapter, aspect-oriented programming has been touted

as a way to resolve security issues. Aspect-orientation is viewed as a better context in which

to implement security concerns efficiently. The relationship between security and aspect-

oriented programming will be explored in more detail in the next chapter.

Chapter 6: Aspect-Oriented Security

49

CHAPTER 6:

 ASPECT-ORIENTED SECURITY

6.1 Introduction

Security is a constant and pervasive concern in software systems. A major cause of this fact

is the structural difference between application logic and security logic. A significant amount

of work has been done in aspect-oriented security to warrant making the process more

systematic in terms of software design and development.

According to Bodkin (2004) aspect-oriented security design ‘is relevant for all the major

pillars of security: authentication, access control, integrity, non-repudiation as well as the

supporting administration and monitoring disciplines required for effective security'. For

example, Alexander and Bieman (2002) state that 'code that implements a particular

security policy would have to be distributed across a set of classes and methods that are

responsible for enforcing the policy. However, with aspect-oriented technology, the code

implementing the security policy could be factored out from all classes into an aspect.'

Accordingly, the code that affects the implementation of multiple classes and methods is

localised in one cohesive place, namely an aspect.

In addition to the dimension of abstraction offered by aspect-oriented programming, it also

facilitates the implementation of additional security features so as to constitute a fully

operational software system.

Chapter 6: Aspect-Oriented Security

50

This ease of extensibility has the following advantages:

 It allows for better separation of concern and therefore better division of labour

between application developers and security engineers.

 It also allows security to be added in a more agile manner since it is not necessary to

consider it during requirements and specification phases.

 Using aspect-orientation to enforce security policy at compile time is also

advantageous as it is a lot more efficient than code reviews (Boström, 2004).

 Crosscutting concerns can be added or removed without making invasive

modifications to original programs (Ubayashi et al., 2004).

6.2 Aspect-oriented programming and its application to security

The discussion that follows highlights the relevance of aspect-oriented technology in terms

of implementing some of the major pillars of security (access control and authentication,

accountability and audit, data protection and information flow controls) in software

systems.

6.2.1 Access Control and Authentication

Access control is a fundamental part of computer security where every requested access

must be governed by an access policy stating who is allowed access to what. The request

must then be mediated by an access policy enforcement agent (Pfleeger and Pfleeger,

2003). The seminal work in this area was conducted by De Win et al. (2002), who actually

generalised the aspects they developed for access control to promote the reusability of

these aspects. In an earlier publication (2001) they delineated three types of aspects,

namely Identification, Authentication and Authorisation for access control in the aspect-

oriented paradigm.

Chapter 6: Aspect-Oriented Security

51

Program Listing 6-1: Generalised Aspect Code for Access Control
abstract aspect Identification of eachobject(entities()){

abstract pointcut entities();

public Subject subject null;

}

abstract aspect Authentication of eachcflowroot(authenticationCall()){

 private Subject subect;

 abstract pointcut serviceRequest();

}

abstract aspect Authorization{

 abstract pointcut checkedMethods();

}

The Identification aspect is used to tag the entities that must be authenticated, and as a

container for identity information of the subject. The subject (see Program Listing 6-1)

included in the aspect is used to determine whether access should be allowed or not. The

Authentication aspect passes authentication information to the access control mechanism,

while the Authorisation aspect checks the access based on the identity information received

through the Authentication aspect.

Slowikowski and Zielioski (2003) considered how aspect-oriented security could enhance

container-managed security and also demonstrated how identification, authentication and

access control may be applied to components without modifying the source code. They

concluded that aspect-oriented security required no modification of the application’s source

code to introduce security and that the procedure was highly flexible and extensible. The

significance of their research is that if access policies are unknown or vague, access control

features may be implemented after the development of other requirements or when these

policies have been defined more clearly. Furthermore, the abstraction of access control

policies eases security management and development significantly, as security experts may

be allocated specifically to the development of these features.

Chapter 6: Aspect-Oriented Security

52

According to Padayachee and Wakaba (2007), the aspect-orientated paradigm's versatility in

terms of access control measures has been further validated by studies conducted within

differing approaches to access control. The paradigm has been leveraged to implement

discretionary access control (see De Win et al. (2002)), role-based access control (see

Pavlich-Mariscal et al. (2005)) and mandatory access control (see Ramachandran et al.

(2006) and Padayachee and Eloff (2007)).

6.2.2 Accountability and Audit

Accountability and audit serve to collect and analyse the activity of an information system.

They aim at detecting security violations and defining causes, which may also be easily

implemented with aspects (Slowikowski and Zielinski, 2003). In Program Listing 6-2 below,

Slowikowski and Zielioski (2003) go on to demonstrate that an aspect could keep a log of

exceptions thrown from a specific component – without modifying the component.

Program Listing 6-2: Demonstrating Accountability and Auditing with Aspect-Orientation

aspect BankAspect{

 pointcut bankMethods():

execution (public *bank.*(..)) && this (SessionBean);

//Log information after throwing BankSecurityException from SessionBeans

// which belong to the bank package

 after() throwing (BankSecurityException e): bankMethods(){

 Log log = Log.getInstance();

 log.write(e);

 }

}

6.2.3 Cryptographic Controls

In an experiment conducted by Boström (2004), it was found that by using aspect-oriented

programming, database encryption could be added after the initial system had been

completed. This case study showed that using aspect-oriented programming resulted in

better modularity, database independence and less code. However, in certain instances the

logic developers could not be totally alienated from the process of encryption, because the

development of the functionality sometimes depended on the encryption process.

Chapter 6: Aspect-Oriented Security

53

6.2.4 Information Flow Controls

There is some duality between access control and information flow control as both

mechanisms are concerned with the flow of information. However, information flow control

is more than access control, as an illegal flow may occur even when only authorised

requests are performed on an object. As such, most access control models are

supplemented with some form of information flow control.

Masuhara and Kawauchi (2003) found that although sanitising was a cross-cutting concern,

there was no possible way to define a pointcut that would be able to detect whether a

string was from an unauthorised source or not, or whether it contained unwanted

information. Hence, they proposed a new pointcut called dflow that addresses the dataflow

between join points as an extension to the AspectJ Language. Recall that join points are

well-defined points where calls to aspect code would be inserted. The authors did not

address security classifications and their dataflow definition only dealt with direct

information flow. As no studies have been performed exclusively on this area, and seeing

that aspect-oriented programming is an evolution in object-oriented programming, it would

be pragmatic to investigate information flow control from this context as well (Padayachee

and Wakaba, 2007).

6.2.5 Protection from invasive software

Aspect-oriented programming has been used to implement software tampering detection

mechanisms in applications running on untrusted hosts (Falcarin et al., 2004). This involved

the use of aspect-oriented programming to realise self-checking, a process where a program

checks itself to verify that it has not been modified. In terms of evolving verification

techniques as security threats change, using the separation-of-concerns principles makes it

easier to 'swap in and out and evaluate alternative treatment options' (Houmb et al., 2004)

Chapter 6: Aspect-Oriented Security

54

6.2.6 Security kernels

A security kernel is responsible for enforcing the security mechanisms of the entire

operating system (Pfleeger and Pfleeger, 2003). Engel and Freisleben (2005) developed a

tool for deploying dynamic aspects in the kernel space of an operating system. They

determined that dynamic aspect-oriented programming was suitable in this area owing to

the changing requirements, internal conditions and cross-cutting functionality of security

kernels, and also found that the performance impact of using aspect-orientation was

negligible in most instances.

6.2.7 Verification

Kumar et al. (2001) developed a framework that uses the aspect-oriented programming

paradigm to verify that commercial off-the-shelf components are developed as per security

contracts. Validating a component’s performance, resource usage, transaction support,

security, data persistency and distribution, are concerns that cross-cut a system's

components – hence the aspect-oriented paradigm is appropriate for these purposes.

Furthermore, as verification procedures tend to be similar in most applications, using the

aspect-oriented paradigm facilitates the reusability of these validation measures (Grundy

and Ding, 2002) via abstraction.

As discussed above, the aspect-oriented paradigm is revolutionising security

implementations. It allows for security implementations to be adapted to changing needs

more rapidly, and this is critical, given that security needs are impermanent. Furthermore,

security solutions can seldom cater for all possible violations and these are usually

discovered retrospectively. The added value of treating security as a separable concern is

that it promotes reusability. This is significant, as the solution developed for the model

concept presented in this research may require only slight modification for reuse in other

information security systems in view of the fact that security aspects tend to be generic

Chapter 6: Aspect-Oriented Security

55

6.3 Conclusion

In this chapter, the relevance of aspect-oriented programming to information security was

explored and it became evident that it was in fact relevant to all pillars of security. Security

concerns must inform every phase of software development, from the requirements phase

through to the design, implementation and deployment (Devanbu and Stubblebine, 2000).

During systems development, security requirements may be vague or they may change, and

they may well be considered only as an afterthought after the system has been deployed.

The extensibility of the aspect-oriented paradigm allows for these concerns to be

implemented after other requirements have been developed. Furthermore, if a security

concern has to be maintained due to the discovery of new security threats in the

environment, the separation of concerns would fundamentally simplify this task. Within

other programming paradigms, it may result in several fixes across several components,

thus resulting in inconsistencies and regression faults.

The prototype that was designed to test the proof-of-concept of the model will be

presented in Chapter 7 while Chapter 8 deals with its implementation, using the aspect-

oriented approach. As the model is intended to augment traditional access controls, it is

posited that the aspect-oriented approach will be highly suitable to fulfil this need without

compromising the integrity of the system as a whole.

56

PART 3:

CHAPTER 7:
THE OAC(UCON) MODEL

CHAPTER 8:
THE PROTOTYPING AND MODEL EVALUATION

CHAPTER 9:
 CONCLUSION

Chapter 7: The OAC(UCON) Model

57

CHAPTER 7:

 THE OAC(UCON) MODEL

7.1 Introduction

This chapter introduces the concept of the Optimistic Access Control with Usage Control

model, designated the OAC(UCON) model. In the previous chapters the inadequacies of

traditional access controls models were highlighted, and it became clear that the

requirements for the OAC(UCON) had to include flexibility, adaptability and an open

architecture. However, there should also be provisos that prevent abuse of the openness

offered by this model. An example of the model that meets these requirements is presented

at this juncture.

7.2 A motivating example

Suppose company ABC is an e-Recruitment company where clients and prospective

candidates (job seekers) place job orders and applications respectively online. Company ABC

then maintains databases of candidates and clients. While internally the company places

access controls on sensitive information such as salaries, the information for collaborative

job matching is unrestricted. Suppose an employee decides to download all the telephone

numbers that are available on these databases and sells it to a telemarketer. Due to the lack

of deterrents, this act is relatively easy to carry out. Furthermore, the employee may claim

that he was unaware of the fact that his act was unethical. This type of security breach is

typically blamed on the user and a lack of user training. The rationale behind such a security

breach is contradictory to the security usability requirements that should be implemented in

a software system. According to Zurko (2005) we have to ask, ‘why did the system make the

insecure option so easy and attractive' – and in this case ultimately lucrative? Perhaps if

Chapter 7: The OAC(UCON) Model

58

synchronous system deterrents had been deployed at the time of usage, the employee may

have been deterred from carrying out an illegitimate act.

In this scenario, the following stipulations or mechanisms could have been used as usage

control deterrents:

 Pre-obligation: The user must click on a button in a window to indicate that he/she

agrees not distribute this information.

 Ongoing obligation: A window with the following warning 'This dataset must be used

exclusively for work-related purposes ONLY' is to remain open at all times.

 Pre-condition: The user is warned beforehand that ‘this information may be

accessed during business hours only’.

 Ongoing conditions: The information may be accessed during business hours only

(same as the pre-condition as it is time dependent). However, although the user may

have accessed the information during business hours (i.e. initially satisfying all the

conditions), the ongoing condition may become invalid as time passes.

 Post-obligation: The user must indicate the priority of the task completed if he/she

actually accessed these databases outside business hours. This information could be

used to develop a profile on the user.

The post-obligation implies that an employee may in fact access the databases after hours.

Under the optimistic paradigm the employee should ultimately be able to download the

data in the case of an emergency. This is permitted, as the employee should not be

hampered in the performance of his/her duties. While fulfilling the post-obligations facet is

within a user's control, the pre-conditions and ongoing conditions are not. For this reason a

break-the-glass tool may be included to allow for overriding the pre-conditions or ongoing

conditions.

The Break-the-Glass policy

The Break-The-Glass (BTG) policy provides a mechanism to override access control policies

(Ferreira et al., 2006) as part of the access control policy stated in the previous section. This

act can be justified because there are situations when access is required, even if it means

Chapter 7: The OAC(UCON) Model

59

Sending Replies Sending Requests

W
eb

 Tier

Web Pages

XML SECURITY
POLICIES

A
p

p
licatio

n
 Tier

Sandbox

Application

D
ata A

ccess Tier

ACCESS CONTROL
POLICIES

Database

OPTIMISTIC SECURITY POLICIES

Data Access Logic

that confidentiality is breached. The important issue is that this breach is openly declared to

the responsible parties and the access is properly analysed afterwards. At that stage it can

then be considered whether the breach was well justified or whether it was an intrusion.

The following section investigates how such deterrents may be practically implemented

under the optimistic paradigm.

7.3 Architecture

Many systems are based on a three-tiered architecture – access is via the web, the

application programs reside within an application server, and the data is stored within a

database system (Li et al., 2005). Only the application tier is considered in the next section

(Figure 7-1).

Figure 7-1: Architectural Diagram

Chapter 7: The OAC(UCON) Model

60

In Chapter 8 the prototype is designed within the Application Layer where it is protected by

the Sandbox offered by the Java Authentication and Authorisation Service (JAAS). In the

basic Java security model, trusted code is allowed full access to the system, and untrusted

code is forced to execute in a restricted environment called the sandbox. The access control

policies of the sandbox are established by an instance of the SecurityManager class. A

security manager provides methods that determine whether a particular operation is

permissible (Tymann and Schneider, 2008).

The conceptual structure of the OAC(UCON) model is shown in Figure 7-2. The Usage

Enforcement Facility includes the Customisation Module, which can be used to constrain a

user's access to specific components of an object. Within the model, it is presumed that as

the user’s optimistic rights are downgraded, the data that he/she is allowed to access may

be constrained according to sensitivity levels. The Monitoring Module involves logging all

accesses, while the Update Module is involved in changing the access rights.

The Usage Decision Facility includes the Condition, Obligation, Break-the-Glass and

Authorisation Modules. In general, most accesses are allowed – except for those users who

breached the system in the past. The Authorisation Module therefore determines the level

of access that is permitted. For example, an authenticated user is permitted to view data of

all sensitivity levels. In most cases users are trusted to view all objects that are given

optimistic access rights. The Condition Module decides whether conditional requirements

for authorised requests are satisfied or not by using usage rules and contextual information

(such as current time, IP address, etc.). The Obligation Module decides whether certain

obligations have to be performed or not, either, before, during or after the requested usage

has been performed. If there exists any post-obligation that has to be performed, this must

be monitored by the Monitoring Module and the result has to be resolved by the Update

Module in the Usage Decision Facility. If the user does not satisfy the obligations before or

during the access, he/she is not permitted to access the information. However, when the

conditions are invalid, the user is allowed to access the information by using the Break-the-

Glass Module. This Module is intended for emergencies only and the user is clearly informed

Chapter 7: The OAC(UCON) Model

61

about the consequences of accessing this information illegitimately. Access by ‘breaking the

glass’ is always red flagged for auditing purposes.

The Usage Protection Facility is used to protect the integrity of the information. The Audit

Module will check through all accesses and identify possible illegal accesses. It will

additionally create a list of red-flagged accesses. If the user cannot justify an illegal access,

then the Authorisation Module will restrict the user's optimistic access rights in future. This

may also involve punitive action. If the user has performed some illegal modification to the

data, the Roll-back Module will attempt to return the data back to its original state.

Figure 7-2: Conceptual Structure for Optimistic Access Control enhanced with Usage Control

Condition
Module

Obligation
Module

Authorisation
Module

Roll-back
Module Audit Module

Usage Decision Facility

Usage Protection Facility

Request Information
Result Information

Information regarding Accesses Information regarding Authorisation

Break-the-Glass
Module

Subjects Objects Customisation
Module

Monitoring
Module

Update Module

Usage Enforcement Facility

Usage
Rules

Contextual
Information

Reference Monitor

Chapter 7: The OAC(UCON) Model

62

The Break-the-Glass Module, which provides a mechanism to override access control

policies, is used in the same way as by Ferrieria et al. (2006). It is important to note that the

responsible parties are fully aware of this security breach and that the access is properly

analysed afterwards so as to consider whether the breach was well justified or a mere

intrusion. What is different from the way in which the Break-the-Glass policy is used by

Ferrieria et al. (2006) is that with the OAC(UCON) Model it is enforced when the system

conditions are not satisfied. For instance: users are only allowed to access data from 8:00am

to 5:00pm. In an emergency, the user will be allowed to override this system condition by

making use of the Break-the-Glass facility.

The sequence of a user’s interaction with the OAC(UCON) model can be summarised as

follows:

1. The Authorisation Module checks the constraints on the information requested by

using the Customisation Module. In general, the user is allowed to access the

information if he/she is authenticated and the data is under the optimistic access

control domain.

2. Before the user is allowed access, he/she has to fulfil one or more specific pre-

obligations set up by the Obligation Module. If these obligations are not met, the user

is not allowed to access the information.

3. If the system pre-conditions are valid, the user is allowed to access the information.

These permissions are maintained by the Condition Module. However, if the system

conditions are not valid, the user is presented with an opportunity to use the Break-

the-Glass facility deployed by the Break-the-Glass Module. The user is given adequate

warning about the usage of this facility. Moreover, it is red-flagged and logged.

4. The system is frozen until the user decides whether or not to use the Break-the-Glass

facility.

5. If the user employs the Break-the-Glass facility, the system verifies whom it needs to

notify and proceeds with the access.

6. All notifications and user actions are registered automatically by the Monitoring

Module.

Chapter 7: The OAC(UCON) Model

63

7. During the access, the user has to meet the ongoing obligations. If they are not met,

the user's access to the information is automatically revoked.

8. During the access, the ongoing conditions may become invalid. The user then has the

opportunity to use the Break-the-Glass facility to continue with the access.

9. After the access, the user may have to satisfy a post-obligation. This will be monitored

by the Monitoring Module.

10. The Update Model may change the access rights of a user if he/she has committed an

unjustified breach.

11. The Audit Model checks for red flags and unjustified breaches.

12. The Roll-back Module may be deployed if an unjustified breach resulted in the data

being compromised.

The OAC(UCON) model is intended to fit into a mixed-initiative access control framework

(see Figure 7-3), encompassing traditional access control such as role-based access control

for highly classified information and optimistic access control enforced with usage control

for information that is unclassified. Under the optimistic access control paradigm, users

should be allowed access under most circumstances. Thus, access would not depend on the

subject attributes or the object attributes. It is assumed that data is freely available and not

subject to authorisation unless the user's optimistic rights have been downgraded. While

the user will not be permitted to access the information unless the obligations are satisfied,

he/she will under special circumstances be allowed to access the data by utilising the Break-

the-Glass facility – even if the pre-condition(s) or ongoing condition(s) are invalid.

Chapter 7: The OAC(UCON) Model

64

Figure 7-3: A Mixed-Intiative Access Control Framework – combining RBAC with OAC(UCON)

7.4 Detailed Design

7.4.1 Formal Specifications

The formalised definition of the optimistic access control enhanced with usage control is as

follows:

Pre-Authorisation:

- Subjects S, Objects O, Rights R

- Function that checks if the user s, requesting access o with right r has Optimistic Rights:

 OptimisticRights(s,o,r)

- Function that checks if the set of Pre-Conditions are satisfied or not:

 PreC(s,o,r)

- Function that checks if the set of Pre-Obligations are satisfied or not:

 PreB(s,o,r)

Optimistic Access Control enforced with Usage Control

Role-based Access Control

……
…..

Role 1

…
…
….
.

Role 2

Role 3

Obligations

Conditions

Public Domain

Break-the-Glass

Yes

Yes

Yes

No

Chapter 7: The OAC(UCON) Model

65

- Function that requests if the user wants to override pre-conditions or not by using the

Break-the-Glass facility:

 Break-the-Glass(s,o,r)

- Access is allowed momentarily if the pre-obligations and pre-conditions are satisfied:

allowed (s,o,r) OptimisticRights(s,o,r) → {true, false}

 ^ PreB(s,o,r) → {true, false}

 ^ PreC(s,o,r) → {true, false}

- Otherwise allow the user to use the Break-the-Glass facility

allowed (s,o,r) OptimisticRights (s,o,r) → {true, false}

 ^ PreB (s,o,r) → {true, false}

 ^ ¬PreC (s,o,r) → {true, false}

 ^ Break-the-Glass(s,o,r) → {true, false}

- Access is revoked if the pre-obligations are not met or if the Break-the-Glass is not used

when the pre-conditions are invalid:

 revokeAccess(s,o,r) ¬ Break-the-Glass(s,o,r) → {true, false}

 ¬preB (s,o,r) → {true, false}

Ongoing Authorisations

- Subjects S, Objects O, Rights R

- Function that checks if the set of ongoing Conditions are satisfied or not:

 onC (s,o,r)

- Function that checks if the set of ongoing Obligations are satisfied or not:

 onB (s,o,r)

- Function that requests the user to override the ongoing conditions or not, using the Break-

the-Glass facility:

 Break-the-Glass (s,o,r)

- Sustain access if the ongoing obligations and ongoing conditions are momentarily

satisfied:

allowed(s,o,r) onB (s,o,r) → {true, false}

 ^ onC (s,o,r) → {true, false}

Chapter 7: The OAC(UCON) Model

66

- Otherwise allow the user to employ the Break-the-Glass facility if the ongoing conditions

are invalid in order to sustain access:

allowed (s,o,r) onB (s,o,r) → {true, false}

 ^ ¬onC (s,o,r) → {true, false}

 ^ Break-the-Glass (s,o,r)→ {true, false}

- Access is revoked if the ongoing obligations are not met or if the Break-the-Glass facility is

not accepted when the ongoing conditions are invalid:

 -revokeAccess(s,o,r) ¬onB (s,o,r) → {true, false}

 ¬ Break-the-Glass(s,o,r) → {true, false}

Post Authorisation

If a user does not satisfy their post-obligations or is involved in an unjustified breach, then

the user's optimistic rights are downgraded and his/her access will be constrained in future.

PostUpdate (OptimisticRights (s,o,r)): OptimisticRights (s,o,r)

 ¬PostObligations (s,o,r) → {true, false}

 ¬JustifiedBreach (s,o,r) → {true, false}

Administrator-controlled attributes can be modified by administrative actions. These

attributes are modified at the administrator's discretion but are 'immutable' in that the

system does not modify them automatically. Mutable attributes are automatically modified

by the system (Park et al., 2004). For instance, if the users cannot justify having used the

Break-the-Glass procedure, their optimistic access rights may be revoked or constrained in

future.

Chapter 7: The OAC(UCON) Model

67

7.4.2 The Use Case Diagram of Usage Control under the Optimistic Access Control

Paradigm

Figure 7-4:Use Case Diagram of OAC(UCON)

The implementation of pre-authorisation is relatively simple as it warrants checking the

conditions and obligations before the user may proceed. The implementation of ongoing

authorisation is, however, non-trivial. The implementation decision taken to deal with this

issue is to be addressed in Chapter 8. As the OAC(UCON) model is based on optimistic access

control, most users are trusted to access information that is relevant to their context. Note

that this is a less prescriptive approach than, say, role-based or mandatory access control.

Due to the openness of the architecture, the user has to meet all pre-obligations and

ongoing obligations, as he/she is expected to behave in a trustworthy manner.

User

Request Access to Object

Accept Pre-Obligations

Break-The Glass

Accept Post-Obligations

Validate Ongoing Conditions

Post Update

Audit

Roll-back

Validate Pre-conditions

System’s Conditions (time of day etc.)

System Administrator

Accept Ongoing Obligations

Chapter 7: The OAC(UCON) Model

68

In terms of the enforcement of security policies, it is imperative that this function be located

centrally and enforced uniformly. The same notion would apply to the implementation of

such policies in terms of application logic (Verhanneman et al., 2005). This type of

deployment may be achieved through the use of aspect-oriented methodologies. The

premise of the model is to create an aspect that will intercept calls when a subject requests

access to an object and to enforce optimistic access control enhanced with usage control. A

significant amount of work has been conducted in aspect-oriented security in respect of

access control. The implementation of access control using aspect-oriented programming

has been shown to ease the development of security-type concerns such as access control

(De Win et al., 2001), as it results in an implementation that is easier to maintain and port to

different environments.

According to Jones and Rastogi (2004), security controls may fall in one of four categories:

corrective control, deterrent control, detective control and preventative control. Access

control falls in the preventative control category. Information under this protection is

typically secured in terms of roles or attributes. However, information under the public

domain is not. Securing a distributed computing environment against malicious or otherwise

disruptive use involves two aspects (Georgiev and Georgiev, 2001):

 Social, where the safeguarding of a computer system relies on social deterrents, such

as shameful exposure or prosecution.

 Technical, where the system is protected by technical means, such as encryption

algorithms and access controls.

Detective functions attempt to identify unwanted events while they are occurring or after

they have occurred. Recovery controls restore lost computing resources or capabilities and

help the organisation to recover monetary losses caused by a security violation. Corrective

controls either remedy the circumstances that allowed the unauthorised activity or return

conditions to what they were before the violation (Kim and Leem, 2004). Deterrent controls

are intended to discourage individuals from intentionally violating information security

policies or procedures. Typically, organisations implement deterrents such as anti-virus

systems, passwords or they foster security awareness. However, with the use of the

OAC(UCON) model, deterrents are achieved in a proactive manner.

Chapter 7: The OAC(UCON) Model

69

7.5 Conclusion

This chapter presented the OAC(UCON) model together with specifications for a practical

and implementable system. One of the criticisms levelled at the model in earlier

presentations was its applicability. This problem was addressed by viewing the model within

a mixed-initiative context, that is, within the context of traditional access controls. The

model is highly applicable in contexts where some data cannot be reasonably protected by

traditional access controls and needs to be openly available. This data can now be relegated

to the public domain but remain subject to usage control rules under the optimistic access

control paradigm. In the next chapter, the prototype will demonstrate a subset of the

functionality of the OAC(UCON) that focuses more on the usage decisions component of the

model. The prototype is implemented by using aspect orientation to demonstrate the

suitability of the paradigm for this context. In addition, the model concept is evaluated in

terms of the design science research methodology to assess its effectiveness and scalability.

Chapter 8: Prototype Implementation

70

CHAPTER 8:

 PROTOTYPING AND MODEL EVALUATION

8.1 Introduction

The literature survey presented in Chapters 2, 3 and 4 has led to the development of a

Usage Control Model for Optimistic Access Control (OAC(UCON) model) (Chapter 7). The

current chapter presents the design of a proof-of-concept prototype to demonstrate a

subset of the model concept, based specifically on the usage decision. The prototype was

developed using an aspect-oriented programming language namely AspectJ. In addition, the

model was evaluated in terms of the design science research method (March and Smith,

1995) to test its scalability and efficacy as a security measure. During this process, several

evaluative prototypes were developed so as to verify the model concept for commercial

systems. Hence, the evaluative prototype encompassed a larger subset of the model

concept than the proof-of-concept prototype. The programming paradigm for the evaluative

prototypes was not stipulated. Consequently, the evaluative prototypes were implemented

by using various design techniques and programming languages in order to provide a more

comprehensive assessment of the model.

8.2 The aim of the proof-of-concept prototype

The aim of the prototype was to provide key working points to show how the model can

scale up using aspect orientation. The prototype was developed using AspectJ to evaluate

the aspect-oriented paradigm. Furthermore, for comparative purposes, the proof-of-

concept prototype was developed using Java as an object-oriented language and it focused

specifically on the Usage Decision Facility of the OAC(UCON) model. Section 8.3 is a

formalisation and consolidation of an earlier publication by Padayachee and Eloff(2009).

Chapter 8: Prototype Implementation

71

8.3 Implementation of the proof-of-concept prototype

Figure 8-1 shows the activity diagram for the OAC(UCON) model. In terms of the formal

specification presented in Section 7.4.1, this relates to the pre-authorisation and ongoing

authorisations as well as to the post-authorisation formulations.

Figure 8-1: State Activity diagram of OAC(UCON) Model)

When a user requests access to an object, authorisation is performed by utilising subject

and object information (attributes). Usage rules are used to check whether the request is

permissible and whether the data is classified and subject to access control. If the data is in

the public domain and hence unprotected by access controls, then the usage deterrence

pre-conditions valid

ac
ce

p
te

d
 o

n
go

in
g

o
b

lig
at

io
n

s

accepted pre-obligations

unclassified and authorized

BREAK GLASS

o
n

go
in

g
co

n
d

it
io

n
s

va
lid

re
fr

ai
n

ed
 f

ro
m

 u
si

n
g

B
R

EA
K

G
LA

SS
 fa

ci
lit

y

rejected ongoing obligations

o
n

go
in

g
co

n
d

it
io

n
s

in
va

lid

pre-conditions invalid

classified and authorizednot authorized

Access Control

Access Object

User Request Access

Ongoing Obligations Access Object Ongoing Conditions

End Request

Post Obligations Post Update

user ends request

rejected pre-obligations

Break the Glass

Chapter 8: Prototype Implementation

72

mechanisms are deployed. Otherwise, the access control proceeds as expected with

traditional access control based on user attributes.

Multithreading was used to implement the ongoing authorisations (see Figure 8-2). If a

subject requests an object (such as a file), the pre-conditions and pre-obligations are

checked and then two separate threads are invoked, representing the ongoing conditions

and ongoing obligations respectively.

Figure 8-2: Thread Diagram of the OAC(UCON) model

User requests to access object
-Check pre-conditions
-Check pre-obligations
- Deploy Break the Glass (BTG)
 if pre-conditions are not satisfied

Start Ongoing Obligations Thread

Verify conditions
- use BTG if
conditions are not
satisfied Uphold

Ongoing
Obligations

End Request

Stop Ongoing Conditions
Thread

Stop access if ongoing
obligations are not
satisfied

Main thread

Post obligation
Post updates

Start Ongoing Conditions
Start Ongoing
Obligations Thread
itions

Start Access Thread

Post access

Stop Ongoing Obligations

Stop access if user
does not use BTG
when conditions
are invalid

Uphold access while
ongoing conditions
are valid and ongoing
obligations are
satisfied

Stop Access Thread

Chapter 8: Prototype Implementation

73

As this model is based on optimistic access control, most users are trusted to access

information that is relevant to their context. However, owing to the openness of the

architecture, the user has to meet all pre-obligations and ongoing obligations. As the user is

expected to behave in a trustworthy manner, the trust is maintained by the user’s

acceptance of the pre-obligations and ongoing obligations that are coupled with accessing

the information. However, if the pre-conditions or ongoing conditions are invalid, the user is

allowed to deploy the Break-the-Glass facility to access the information.

If the user does not accept the pre-obligations, he/she is not allowed to access the

information at all. If the user does not accept the ongoing obligations, access is revoked.

These refusals are not considered as breaches of trust. On the other hand, if the user

accessed the information and then refuses to accept the post-obligations, such refusal is

considered to be a breach of trust.

In the previous chapter, aspect-orientation was proposed as means of implementing usage

control without making invasive changes to the code base of a fully operational system. To

illustrate the utility of the aspect-orientation in terms of the enforcement of usage control, a

scenario is considered where a fully operational software system that performs traditional

access control has to be complemented with the features offered by the OAC(UCON) model

during post-delivery maintenance. In this scenario, the class SampleAuthorization, as

shown in Program Listing 8-1, controls user accesses to objects by using traditional access

controls. An object could be a file 'c:\candidate.txt'.

Program Listing 8-1: ‘SampleAuthorization’ class
public class SampleAuthorization implements PrivilegedAction {

 public Object run() {

 AccessObject Access(SubjectName,ObjectName,"READ");

 AccessObject.request();

 }

}

Chapter 8: Prototype Implementation

74

As shown in Program Listing 8-1, the execution point where the request() method is

called involves checking whether this access request by a subject to an object is permissible.

The operational system has classes that represent the access and access information called

Access and AccessInformation respectively, where the Access class extends the

AccessInformation class. The AccessInformation class represents the nature of

the access, in terms of the subject-object attributes and the type of access. The Unified

Modelling Language (UML) diagram provided in Figure 8-3 shows how these classes may be

integrated with usage control features without modifying the operational system.

Since Aspect-Oriented Programming is a relatively new paradigm, there are no specific

standards available in terms of designing aspects with regard to the UML. A position paper

by Groher and Schulze (2003) was used to produce the UML diagram (Figure 8-3). The

symbol was created to show an intertype declaration.

As is shown, the Ongoing Obligations, Ongoing Conditions and Break-the-Glass mechanisms

are represented by classes OngoingObligation, OngoingCondition,

BreakTheGlass; and would inherit from the AccessInformation class as these

classes require information about the access. The UsageControlInjector collaborates

with these classes to perform its usage control functionality when a subject requests access

to an object. As the Access class was not intended to cater for instances where access

needs to be revoked owing to invalid usage control obligations and conditions, an

intertypeTypeInjectorOnAccess aspect was included to perform the requisite

actions when access needs to be terminated. For the sake of readability, only core classes

that are affected by the aspects are shown. The Sampleauthorization class is not

shown in the diagram as the UsageControlInjector provides its supplemental

functionally around the request() method found in the Access class which is actually

responsible for mediating a request between a subject and an object.

Chapter 8: Prototype Implementation

75

Figure 8-3: UML Diagram showing Aspect UsageControlInjector and Core Classes

<<advises>>

<<advises>>

<<declared on>>

<<advises>>

+close()
+request()

-accessObject:image

Access

+getAccessType()
+getObject()
+getSubjectName()

-accessType:String
-objectName:String
-subjectName:String

AccessInformation

+OngoingObligations(String, String, String)
+endOngoingObligations()
+run()

-OngoingObligationsRequest: ImageFrame

OngoingObligations

+conditionisValid()
+conditionsWarning()
+endOngoingConditions()
+getCondition()
+run()

-condition : long

OngoingConditions

+display()

BreakTheGlass

+Access.endrequest()
+Access.run()

-Access:Thread
declare parents:Access implements Runnable;

Aspect
<<IntertertypeInjectorOnAccess>>

-accessOpen: boolean
-preCondition: boolean
-accessObject: Access
-accessThread: Thread
-conditionsThread: Thread
-obligationsThread:Thread
-OnConditions: OngoingObligations
-Onobligations: OngoingConditions
-ObjectName:String
-SubjectName: String
-AccessType: String

Aspect
<<UsageControlInjector>>

+breakTheGlass(String, String, String)
+checkAccessType()
+initiateBreakTheGlassFacility()
+logAccess(String, String, String, String, String)
+OngoingAccess()
+OngoingCondition()
+OngoingObligation()
+postAccess()
+postObligations(String, String, String)
+preConditions(String, String, String)
+preObligations(String,String,String)

<<advises>>
<<pointcut>> OngoingAccess

<<after>>Access.endrequest()

<<pointcut>> OngoingCondition

<<after>>
OngoingConditions.conditionsWarning()

<<pointcut>> Intercept_Request()

<<around>> Access.request()

<<pointcut>> OngoingObligations

<<after>>
OngoingObligations.endOngoingObligations()

Chapter 8: Prototype Implementation

76

8.4 An implementation overview of the proof-of-concept prototype

With aspect-oriented programming, the existing authorisation module which has methods

for traditional access control can be augmented with usage control without modifying the

source code. Furthermore, all details relating to usage control can be confined in a singular

modular structure, namely an aspect, without it being mixed in with this module. To

accomplish this, a generic aspect UsageControlInjector that delineates four

pointcuts was defined. The first pointcut Intercept_Request intercepts those calls

where a user requests access to an object, i.e. during programs execution where the

method body of request() executes. The naming of the request method may differ from

application to application. The!within expression is used to prevent infinite recursive

calls. If no special precautions are taken, aspects that advise other aspects can easily and

unintentionally advise each other recursively. The target keyword has to ensure that the

executing code belongs specifically to class Access. The around advice defines code that is

executed around the request() method when it is called. This advice initially determines

if this information is in the public domain (i.e. controlled by Optimistic Access Control),

otherwise it allows traditional access control to proceed as usual. The advice also contains

operations to test the preObligations and preConditions. If the preObligations are not

satisfied, the user is not allowed to access the object. If the preConditions are invalid, the

user has the opportunity to use the Break-the-Glass facility to access the feature. The aspect

invokes threads to maintain the ongoing conditions and ongoing obligations to control the

request to use the object.

Chapter 8: Prototype Implementation

77

Program Listing 8-2: Showing the UsageControlInjector Aspect
public aspect UsageControlInjector {

 private static boolean accessOpen;

 private static boolean preCondition = true;

 private Thread obligationsThread;

 private Thread conditionsThread;

 private Thread accessThread;

 private Access accessObject;

 private OngoingConditions OnConditions;

 private OngoingObligations Onobligations;

 private String SubjectName;

 private String ObjectName;

 private String AccessType;

 pointcut Intercept_Request(Access AccessObject):

 execution(* *.request(..)) && !within(UsageControlInjector)

 && target(AccessObject) ;

 void around (Access AccessObject)

 : Intercept_Request(AccessObject){

 accessOpen = true;

 accessObject = AccessObject;

 SubjectName = accessObject.getSubjectName();

 ObjectName = accessObject.getObject();

 AccessType = accessObject.getAccessType();

 if (OptimisticRights()){

 if (preObligations(SubjectName, ObjectName, AccessType)){

 if (preConditions(SubjectName, ObjectName, AccessType)

 || breakTheGlass(SubjectName, ObjectName, AccessType)){

 //start access Thread

 //start OngoingObligation Thread

 //start OngoingCondition Thread

 while(accessOpen){

 //wait

 }

 postObligations(SubjectName,ObjectName,AccessType);

 }

 }

 }

 }

 public boolean checkAccessType(){

 //determine whether this information is subject to optimistic access

control

 return true;

 }

// when there is conditions warning

pointcut OngoingCondition(): call(* *.conditionsWarning(..)) &&

target(OngoingConditions);

after(): OngoingCondition(){

 initiateBreakTheGlassFacility();

}

// when the user ends ongoingObligations

pointcut OngoingObligation() : call(* *.endOngoingObligations(..)) &&

target(OngoingObligations)&& !within(UsageControlInjector);

after(): OngoingObligation(){

 postAccess();

}

Chapter 8: Prototype Implementation

78

// when the access ends

pointcut OngoingAccess() : call(* *.endrequest(..)) && target(Access) &&

!within(UsageControlInjector);

after(): OngoingAccess(){

 postAccess();

 }

void initiateBreakTheGlassFacility(){

//method to initiate the Break-the-Glass facility

}

boolean preObligations(String SubjectName, String ObjectName, String

AccessType){

//method to perform preObligations

}

boolean preConditions(String SubjectName, String ObjectName, String

AccessType){

//method to perform preconditions

}

void postAccess(){

//clear up

//update logs

}

public void postObligations(String SubjectName, String ObjectName, String

AcccessType){

//method to perform postObligations

}

boolean BreakTheGlass(String SubjectName, String ObjectName, String

AccessType){

 //perform Break-the-Glass facility

}

void logAccess(String SubjectName, String ObjectName, String AccessType,

String Notice, String RedFlag){

//write to log file

}

}

The next two pointcuts, pointcut OngoingCondition and pointcut

OngoingObligation, intercept execution points that indicate that the ongoing

conditions and ongoing obligations are no longer satisfied. The after advices of each

pointcut define code that is executed after such an irregularity is detected. In this case, if

some action results in the ConditionsWarning or an endObligations method

being called on either the conditions object or the obligations object, then this call

will be intercepted by these pointcuts. If the ongoing obligations are no longer satisfied,

then the access is revoked immediately. If the ongoing conditions are no longer satisfied,

the user has the opportunity to use the Break-the-Glass facility to continue with the access.

Chapter 8: Prototype Implementation

79

The last pointcut is used to intercept execution points where the access is terminated by the

user. Subsequently post-access activities such as logging the access are performed and the

Ongoing Conditions and Obligations threads are ceased. (Appendix F provides details on the

AspectJ semantics.)

The Access class would require additional functionality to mediate users' requests to an

object and to end requests when required. This functionality may not have been provided in

a way that fits in with the current usage of the Access class. To maintain the integrity of

the class, aspect orientation permits a seamless integration of this additional functionality

by facilitating the creation of a special aspect known as an intertype declaration without

modifying the Access class. The intertype declaration construct is supported by aspect-

oriented programming languages such as AspectJ. An intertype declaration is generally used

to add on information such as methods or fields to an object without modifying the existing

class. Furthermore, as this process needs to be controlled within thread, in Java it implies

that this class must implement the java.lang.Runnable thread interface. With

AspectJ, this can be done using the declare parents syntax so that Access class can

be an active object. The relevant classes are provided in Appendix C.

Program Listing 8-3: Depicting an InterTypeDeclaration Aspect
public aspect IntertypeDeclarationOnAccess {

 declare parents: Access implements Runnable;

 Thread Access.aThread;

 public void Access.endrequest() {

 aThread = null;

 close();

 }

 public void Access.run() {

 //perform the request

 }

}

The UsagecontrolInjector is relatively generic as it can be reused within other

contexts as well. Only the method specified that performs the access control, namely

request(), would have to be re-specified according to the system naming. The

IntertypeDeclarationonAccess aspect is partially generic, as the class name

Chapter 8: Prototype Implementation

80

Access would have be re-specified accordingly. Unlike typical instrumentation, using the

aspect-oriented paradigm results in better consistency, as all methods that match the

pointcuts are identified. Evidently, it is possible to augment usage control features in a

system without modifying the existing system.

8.5 Proof-of-concept prototype operation

Step 1: Login and authentication of the user

Step 2: An application interface appears which allows searching of files.

Step 3: User selects a file to open and the pre-obligation dialogue box opens. User has to

accept the pre-obligation to move on to the next step.

Chapter 8: Prototype Implementation

81

Step 4: Pre-conditions warning appears if the pre-conditions are NOT met.

Step 5: The Break-the-Glass facility is invoked. User has to accept the Break-the-Glass option

in order to access the file.

Step 6: Ongoing Obligations pop up while user accesses the file. The ongoing obligations

window on the right is an example of an ongoing obligation that involves presenting the user

with the security policies related to the file being accessed.

Chapter 8: Prototype Implementation

82

Step 7: Ongoing Conditions pop up intermittently if the ongoing conditions are not met

whilst the user is accessing the file.

Step 8: The Break-the-Glass facility is invoked.

Step 9: User is allowed to sustain the access by accepting the Break-the-Glass option.

Step 10: Post-Obligations are invoked once the user closes the file concerned. This is an

example of a post-obligation that is used to assess the user's trustworthiness.

Chapter 8: Prototype Implementation

83

Step 11: Back to Original Interface

8.6 Evaluation of the Aspect-Oriented Approach

In this section, the aspect-oriented approach is evaluated against the object-oriented

approach. An object-oriented version of the proof-of-concept prototype was developed for

comparative purposes.

8.6.1 The Design Approach

The UML diagram of the Object-Oriented Version is presented in Figure 8-4 below.

Compared to the Aspect-Oriented Approach presented in Figure 8-3, it can be observed that

the coupling between classes in the system have increased. It is not always clear how to

best measure a metric such as coupling in an aspect-oriented system and how to compare it

to its equivalent in a corresponding object-oriented system; as yet there does not exist a

definitive work for metrics for aspect-oriented systems. However, it is still possible to

observe fine-grained changes in coupling by reasoning about the changes in the code base

(Singh, 2005).

Chapter 8: Prototype Implementation

84

Figure 8-4: Showing the OOP UML of Core Classes

Access

+request()
+Access(String, String, String)
+endrequest()
+run()

+run()
+endOngoingObligations()

OngoingObligations

-OngoingObligationsRequest: ImageFrame

Access

+OngoingConditions(String, String, String)
+conditionwarning()
+getCondition()
+conditionisValid()
+run()
+endOngoingConditions()

OngoingConditions
Access
-condition: boolean

display()

BreakTheGlass

Employs

-accessOpen: boolean
-preCondition: boolean
-obligationsThread: Thread
-conditionsThread: Thread
-accessThread: Thread
-OnConditions: OngoingConditions
-accessObject: Access
-Onobligations: OngoingObligations
-breakTheGlass: BreakTheGlass
-SubjectName: String
-ObjectName: String
-AccessType: String
+conditionsInvalid: boolean
+endAccess: boolean
+endObligations: boolean

UsageControl

run()

SampleAuthorization
Access
-ans:boolean

getSubjectName()
getObject()
getAccessType()
run()
stop()

AccessInformation

SubjectName: String
ObjectName: String
AccessType: String

+UsageControl(Access)
+checkAccessType()
+initiateUsageControl()
+initiateBreakTheGlassFacility()
+stopAccess()
+stopOngoingObligations()
+preObligations(String, String, String)
+preConditions(String, String, String)
+postAccess()
+postObligations(String, String, String)
+breakTheGlass(String, String, String)
+logAccess(String, String, String)

Chapter 8: Prototype Implementation

85

Compared to the aspect-oriented version, there appears to be a reduction in the scattering

of concerns (see Figure 8-5) at the package level. For example, the aspect-oriented version

does not cross-cut the class responsible for authorisation (i.e. AuthorizationSim in the

diagram). In the case of the object-oriented version, the Usagecontrol class has to

interact with the Access, OngoingObligations and OngoingConditions classes,

as the class has to be aware of the fact that the conditions are no longer met; that the

OngoingObligations are not being fulfilled; or that the user has terminated the

request. In the case of the aspect-oriented version, the UsageControlInjector aspect

observes each of these objects and decides what action to perform. It has been calculated

that the usage control function is scattered across four classes in the object-oriented

version.

Figure 8-5: OOP package level diagram vs AOP package level diagram (on the right)

8.6.2 Execution Time and Memory Usage

Figure 8-6 shows the change in execution time. In the bar graph, the upper bar represents

the time used by the aspect-oriented system while the lower bar represents the quantity for

the object-oriented system. The values for these evaluations are calculated by averaging the

data of several test runs. It can be noted that the object-oriented version is 1.9% faster than

the aspect-oriented version, a difference that is actually negligible. Several reasons could

account for this, such as user speed and the speed of the computer processor used for the

experiments.

accessObject

authentication
-Sim

authorization-
Sim

testUtilities components

usagecontrol

accessObject

authentication
-Sim

authorization-
Sim

testUtilities components

usagecontrol

Chapter 8: Prototype Implementation

86

Figure 8-6: Showing comparisons of the execution time of OO vs AOP

Next, the amount of memory (Figure 8-7) that the Java Virtual Machine had demanded from

the operating system at the end of each test run was compared. The object-oriented version

used only 1.9% less memory than the aspect-oriented version. This figure is within a

reasonable margin of error. The results of the tests, which were conducted on an Intel(R)

Core 2 Duo CPU E6850 with 3.00 GHz and 1.96 GB of RAM, show that aspect-oriented

programming can compete with object-oriented version.

Figure 8-7: Showing comparisons of and Memory Usage of OO vs AOP

Chapter 8: Prototype Implementation

87

8.7 Evaluation of the model concept

The design science research methodology was used to conduct a small-scale experiment

based on the following activities: build, evaluate, theorise, and justify (March and Smith,

1995). The experiment involved a problem identification stage (which was done in Chapter

1), design and development of prototypes stages, and an evaluation (Offerman et al., 2009)

stage. The participants who were involved in the design and implementation of evaluative

prototypes were Computer Science Honours students from the University of Pretoria. The

concept specification was scaled up to a real-world scenario and included a mixed-initiative

access control framework together with trust (see Appendix D). The purpose of this process

was to identify if there were any vacuities, ambiguities or inconsistencies in the model

concept. During the evaluation stage, the participants interacted with the evaluative

prototypes and provided value judgements on it in terms of the efficacy of the security

mechanism provided by the product concept.

A small segment of the evaluation involved the usability of the security mechanisms

provided by the model concept. According to Jøsang and Patton (2001), security usability is

concerned with the study of how security information should be handled in the user

interface. In this context, the usability of the security mechanisms was evaluated. According

to Whitten and Tygar (1999) security software is usable if the people who are expected to

use it

 are reliably and made aware of the security tasks they need to perform;

 are able to figure out how to successfully perform those tasks;

 do not make dangerous errors; and

 are sufficiently comfortable with the interface to continue using it.

Qualitative data collections were employed, namely participant observation and open-

ended interviewing (see Appendix D):

Observation: The idea with participant observation was to determine whether the end-

user can successfully complete a task relating to the evaluative prototypes.

Qualitative interview: A qualitative, open-ended interview was conducted to determine the

participants' perceptions of the appeal of the model concept in terms of data misuse.

Chapter 8: Prototype Implementation

88

Participants had to address the following in terms of the model concept: Weaknesses,

Strengths, Potential improvements, Viability, Applicability and Scalability.

To facilitate the process, the issues concerning the evaluation were formulated into 11

statements. The participants then provided a judgment on each statement. The following

data was gathered from the experiment and are discussed in the paragraphs that follow:

Statement 1: The product specifications as given in the assignment were ambiguous and

incomplete.

Statement 2: The product specifications as given in the assignment could easily be

translated into an implementable product.

Both statements above focused on the viability (or not) of the product, and it was found

that 78% of the participants judged the specifications to be unambiguous and complete.

Two participants stated that the notion of priorities of tasks needed to be addressed, as the

priorities of tasks were assigned randomly in the specification. The priority of the task and

the use of the Break-the-Glass feature were examined to determine whether the user

utilised the Break-the-Glass facility for a bona fide emergency. If this priority of task did not

warrant ‘breaking the glass’, then the user's rights to information under the optimistic

access control domain were constrained. Three of the participants in the study felt that the

specifications given were ambiguous and incomplete, and claimed that this had led to

misinterpretation. Another participant claimed that the specification "did not give explicit

rules for the break-the-glass". All participants nevertheless agreed that the specifications

could easily be translated into an implementable product. In fact, one participant indicated

that the specifications were easy to divide into implementable components. The product

concept was judged to be highly viable and the participants were able to implement it using

several approaches, including Java, C# and PHP.

Chapter 8: Prototype Implementation

89

Statement 3: In terms of the enforcement of security, other mechanisms such as a written

policy document or adequate training would have been more effective than the

mechanisms identified in the product concept.

With regard to the effectiveness of the product concept in relation to other non-technical

approaches, 78,5% of the participants disagreed that other mechanisms such as training

would have been more effective than the product concept. Three participants felt that other

mechanisms – in combination – would increase the security overall, while four others felt

that the training and policy documents were "simpler to ignore" and "not a constant

reminder" as was the case with an automated system. In addition, the prototype concept

enabled the tracking of a user's actions.

Statement 4: The flexibility offered under the optimistic access control domain is a security

risk.

Based on the risk of using optimistic access control (owing to its flexibility), 78,5% agreed

that optimistic access control was a security risk and that data should be protected by other

means. However, some participants indicated that it depended on the nature of the

organisation and its data, and that some environments such as the medical industry actually

required the proposed level of flexibility.

Statement 5: Specifying system conditions, such as limiting access according to the time-

of-day, may deter users from abusing their privileges.

Altogether 78.5% of the participants agreed that specifying conditions would deter users

from abusing their privileges. Most participants felt that these conditions would give the

user the feeling that they were “doing something wrong" and that they would be deterred

as a result. They also felt that the threat of punishment and losing trust might provide a

motivation for users not to abuse their privileges.

Chapter 8: Prototype Implementation

90

Statement 6: The 'break-the-glass' facility is vulnerable to abuse.

In terms of the susceptibility of the break the glass facility 71% of the participants agreed

that the Break-the-Glass system was vulnerable to abuse. However, most of them indicated

that the threat of being discovered after the event was a way of preventing the Break-the-

Glass facility from being misused.

Statement 7: The protection mechanisms, such as fulfilling obligations, will compel users

to comply with the established rules of behaviour in order to protect confidential

information.

In terms of satisfying obligations, 85% of the participants agreed that the fulfilment of

obligations would compel users to comply with the established rules of behaviour. Using

obligations would prevent users from claiming ignorance as an excuse for not complying.

Furthermore, since users are intimidated by warnings, user responsibility could be expected

to increase.

Statement 8: An individual who interacts with the system will recognize that access is

dependent on user responsibility as well as technical access control.

With regard to security usability, 71.4 % of the participants agreed that an individual who

interacted with the system would recognise that access was dependent on user

responsibility as well as technical access control. Those participants who opposed the

statement argued that users were irresponsible and untrustworthy.

Statement 9: The risk of losing one's rights to information under the optimistic access

control domain may deter one from abusing one's privileges.

Due to the severity of punishment, 84.6% agreed that the risk of losing one's rights to

information under the optimistic access control domain might act as a deterrent against

abusing one's privileges. The threat of being caught and losing one's trust was a strong

motivator. However, participants agreed that if the user's premeditated goal was to steal

data, these mechanisms would not prevent such incidences.

Chapter 8: Prototype Implementation

91

Statement 10: The conditions, obligations and the break-the-glass mechanisms may be

distracting to a user.

In terms of security usability, 57% of the participants disagreed that the conditions,

obligations and the Break-the-Glass mechanism would be distracting to the user. Even those

users who agreed felt that after some time most users would ignore these pop-ups anyway.

However, all of this would depend on how the user interface was designed. It was important

to be presented in such a way that users should not become complacent or exasperated

about the messages.

Statement 11: Most users will ignore the messages about conditions and obligations

relating to the access.

Half of the participants agreed that users would ignore the messages about conditions and

obligations relating to the access. They felt that, in time, users would eventually pay no

attention to these messages. The other 50% of participants, who disagreed, proposed that

users should be forced to respond to the message. Furthermore, participants posited that

users would ignore these messages unless the consequences were clearly specified.

Although most participants regarded optimistic access control as a security risk, participants

reasoned that the additional facilities of obligations and conditions might deter users from

abusing their privileges. Participants suggested that constant reminders would ensure that

users would not perform illegitimate actions seeing that they would be monitored. Some

participants indicated that the separation of public domain information from the private

domain was strength, as it allowed for information to be subject to different controls.

Furthermore, it was quite a simple task to maintain the access control policies for

information under the optimistic access control domain. Regarding improvements, it was

suggested that the conditions should be more dynamic and that they should be based on

user profiles. Participants also suggested that rather than displaying pop-ups for every

access, a single-sign or a pop-up should be flashed intermittently. Regarding weaknesses,

the participants felt that users might try to bypass warning messages because they were

annoyed by them and that there was too much reliance on the trustworthiness of users.

Chapter 8: Prototype Implementation

92

The evaluation exercise revealed that the model concept could be appropriate to call

centres, dynamic environments, medical information systems and Wikipedia. It was

reasoned that the system would be relevant in situations where users were transitory. This

kind of system would also be more fitting for users who were professionals rather than the

average user. It would furthermore be more suitable in environments where damage was

reversible or in small organisations that used data that was not that sensitive.

Augmenting traditional access control with usage control features is expected to slow down

program execution, as it involves the inclusion of additional code in the functional system.

In terms of security usability, controls such as pre-obligations and ongoing obligations may

be distracting and impact negatively on the productivity of users. Perhaps, as the user

becomes more 'trustworthy", some obligations or conditions may be relaxed or negotiated.

The costs of implementing usage control as a deterrent may have to be weighed up against

the cost of information misuse. South Africa’s draft bill on the protection of personal

information is viewed as a means to ensure South Africa’s future participation in the

information market by providing ‘adequate’ information protection of an international

standard (see (CHAPTER 9: A DRAFT BILL ON THE PROTECTION OF PERSONAL INFORMATION,

2005)). If individuals are ensured that their privacy is taken into account in a software

system, it is understandable that they will trust the system with their private information.

The survival of e-business will probably depend on its ability to guarantee the privacy of its

clients.

The proposed OAC(UCON) model does not account for trust issues; thus this needs to be

addressed in future renditions of the model. In addition, the relationship between using the

Break-the-Glass facility and the priority of the task needs to be explored. Since using this

facility is dependent on the urgency of the task, the rules governing the Break-the-Glass

facility need to be defined in more detail.

Chapter 8: Prototype Implementation

93

8.8 Conclusion

The aspect designed for the enhancement of optimistic access control was tested in terms

of a proof-of-concept prototype. It was found that confining all the operations relating to

usage control to a single modular structure would reduce both development and

maintenance costs. Next, the relationship between multithreading and cross-cutting

behaviour was explored in this chapter. It was shown that the aspect-oriented approach

does not impact significantly on execution time or memory usage and that aspect-oriented

programming introduced fewer scattering of usage control concerns and less coupling

between classes.

Owing to the sample size which was quite modest (i.e. 14 participants), the limitations of

the experiment need to be taken into account when making generalisations from the

research. The nature of the study required participants to be competent at programming a

large system independently and to deliver the product within a reasonable time frame.

Purposive sampling had to be employed as the participant had to be an advanced

programmer who also had the time available to do the task. These two requirements were

met by the students enrolled for the Computer Science Honours programme at the

University of Pretoria. It is difficult to find members of society who would fit this unique

profile. The other limitation posed by the research method was that every participant's final

product had to be evaluated and the participants had to share their insights on the model as

well as their design decisions. Having a large sample would make this task extremely time

consuming. It would also imply that each participant's involvement would have been

superficial. A small sample, on the other hand, allowed for a more in-depth analysis of each

participant's value judgement. A future study may involve replicating the research method

with a new group of students from another university.

The model has not been tested within a large distributed system with several end-users in

an organisational setting. However, participants who tested the model concept can be

considered the representatives of stakeholders in the information technology industry. As

postgraduate students, they have extensive knowledge of information systems and are

Chapter 8: Prototype Implementation

94

currently employable or employed within the information systems sector. The product was

found to be highly viable as all participants were able to implement the scaled-up version of

the concept. The usability of the system was reasonable, except for the criticism that the

usage control features might be distracting and could eventually be ignored. However, the

evaluation revealed that users would understand that access control was based on technical

control as well as user responsibility. The effectiveness of optimistic access control was

found to be largely dependent on the usage control features, as optimistic access control on

its own posed a security risk. The evaluation nevertheless proved that by employing usage

control features of obligations and conditions, this risk would be reduced.

Chapter 9: Conclusion

95

CHAPTER 9:

 CONCLUSION

9.1 Introduction

The study in hand focused on a model for usage control under the optimistic access control

paradigm, i.e. the OAC(UCON) model. To increase the applicability of the model, it was

presented within a mixed-initiative access control framework. The pragmatic issue of

implementing such a model within the wider context of access control formed the topic of

discussion in this thesis. To ease the integration of the proposed model into an existing

access control framework, an aspect-oriented approach was selected. The motivation for

this study was posited in Chapter 1 and required a number of research goals to be

addressed. In this closing chapter the researcher evaluates the extent to which the

objectives of the research goals have been met. Finally, it concludes with a discussion of the

main contribution of the research and suggestions for further research.

9.2 Main contribution

This research did not promote the notion that traditional access control models were

inferior to optimistic access control. Rather, it suggested that the two approaches might

work well in a mixed-initiative approach. The OAC(UCON) model is flexible and reduces the

burden of setting pre-configured security policies for every subject-object relationship, and

thereby reduces the load on system administrators. However, the model acknowledges that

the gains realised by flexibility should not be negated through data misuse. Thus, the model

provided sufficient deterrents against data misuse by leveraging the security mechanisms

Chapter 9: Conclusion

96

offered by usage control. It was suggested that data that cannot be reasonably protected

within traditional access control could be protected by these usage control deterrents.

As was stated earlier, the proposed solution could well ease the burden of system

administrators significantly. It is rather difficult for administrators to predict all of the

possible usage scenarios and thus all of the necessary permissions. With optimistic access

control, it is ultimately left to the users to make that judgement. Consequently, the

complexity of implementing and maintaining pre-configured access control policies is

shifted to the way the user interacts with the system. Adapting usage control as a deterrent

provides a proactive mechanism over and above the retroactive methods of auditing and

accountability. By using the OAC(UCON) model, a larger subset of information may be

relegated into the public domain.

This research also addresses the issue of continuity within usage control and its practical

implementation within the access control context rather than within the digital rights

management context. The thesis is consequently presenting pragmatic ways of introducing

continuity within the access control dimension. In terms of the proof-of-concept that was

developed, the ongoing obligations involved presenting the user with the relevant security

policies while he/she accesses the related information. This is an example of the type of

application that educates the user on approved security policies with regard to the specific

data that he/she is interacting with.

Investigating the efficacy of the aspect-oriented programming language can be considered

one of the major contributions of this research. It was found that usage control can be

completely separated from access control and other application logic. It was also

determined that the performance differences between the object-oriented and aspect-

oriented version were negligible. Additionally, there was less coupling between classes with

the aspect-oriented version, which increased the readability and understandability of the

code. The relationship between multithreading and cross-cutting behaviour was also

explored and the study demonstrated how ongoing authorisations could be maintained with

multithreading.

Chapter 9: Conclusion

97

The model is unique in that the access controls are applied in the application layer. It

provides supplemental usage control to objects that have their access rights defined within

the database layer. The rights defined in the database layer may be relaxed in the

application layer or maintained as specified. If the rights were relegated to optimistic rights,

then the rights are relaxed and supplemented with optimistic rights. Alternatively, if these

rights were considered to be highly classified, then the OAC(UCON) allowed these rights to

remain as specified.

9.3 Revisiting the problem statement

The problem statement highlighted the inadequacies of current access control models,

namely their lack of flexibility and difficulties in assigning pre-configured access control

policies. To this end, a critical overview of popular access control models was provided and

an optimistic access control model was recommended as a means of correcting these

deficiencies. Since it was noted that optimistic access control is far too flexible to be used in

practice, it was enhanced with usage control in order to offer greater rigour. In this model,

usage control was reformulated under optimistic access control to act as a mechanism for

deterrence rather for denial of access. Thus the OAC(UCON) model was developed. To

improve its general applicability, it was presented in a mixed-initiative access control

framework, where pessimistic access control models were complemented with optimistic

access control models. In order for this type of integration to be successful, a software

approach was inferred that would allow for the seamless augmentation of traditional access

control with optimistic access control enhanced with usage control, namely the aspect-

oriented approach. A partially generic usage control aspect was presented that could, in

theory and with minor modifications, be augmented seamlessly into a fully operational

system. The aspect-oriented approach was also evaluated in terms of performance against

an object-oriented approach. Finally, the design science research methodology was

employed to test the model concept and to assess its scalability with other access control

measures and within a wider context so as to gain insight into the usability of the model

concept.

Chapter 9: Conclusion

98

9.4 Future Research Directions

The element of trust within the OAC(UCON) model warrants an investigation into human

behaviours and the responses to its application. It would be pragmatic to investigate

whether the model concept in fact dissuades individuals from accessing and misusing

information in the public domain. Future research could be directed at the inclusion of trust-

based mechanisms to update a user's optimistic rights. Presently the model does not

account for how trust levels may change when a user loses his/her optimistic rights. In order

to test the scalability of the model concept, the notion of trust needs to be considered and

its inclusion would complete the mixed-initiative access control framework. The issue of

trust was considered in terms of how a user's rights to information under the optimistic

paradigm may be modified based on prior usage. In the case of the evaluative prototype of

the model it was presumed that, at the onset, each user had access to optimistic rights

rated as 'high'. However, as the user demonstrated his/her untrustworthiness, the level of

access was downgraded to 'medium' and finally to 'low'. As their optimistic rights were

demoted, the view to information became increasingly constrained. The users’ optimistic

rights were updated using fuzzy logic. Future research could well involve considering the

factors that influence trust levels. In the specification given to the participants as part of the

design research method, the priority of the task and the user's previous trust level were

used to update his/her optimistic rights in a fuzzy matrix.

An alternative research direction may involve investigating whether the model concept

increases the propensity towards compliant information security behaviour. This refers to a

set of core information security activities that has to be carried out by end-users so as to

maintain information security as defined by information security policies (Chan et al., 2006).

It is also suggested that future studies should involve a case study to test the usability of the

aspect-oriented approach since it has not been tested in an organisational context yet.

However, confining all the operations pertaining to usage control to a single modular

structure will alleviate both development and maintenance costs as it can be integrated

seamlessly into a system based on traditional access control.

Chapter 9: Conclusion

99

9.5 Conclusion

The proposed solution to access control draws inspiration from some of the principles

advocated by agile methods. For example, consider the agile principles relating to

embracing change and maintaining simplicity. In the case in hand access control was

implemented in its most rudimentary form. As with agile methods, the reliance was on

people rather than on complicated processes to maintain control.

The viability of the model concept was demonstrated in a scaled-up version where it was

possible to create a mixed-initiative access control model. It was found that optimistic

access control is a security risk, but that the combination of usage control features coupled

with monitoring and punitive action may deter users from abusing their privileges. The

security usability aspect of the concept would need to be improved, as users would

probably sooner or later disregard the obligations and conditions. Accordingly these notions

needed to be more dynamic and responsive. The obligations and conditions messages need

to be updated constantly and they have to be reformulated to retain a user's focus. The

evaluation revealed that the concept may be appropriate to call centres, medical

information systems, temporal environments and smaller organisations where data is not

viewed as particularly sensitive. This kind of system would also be more appropriate for

users who have a degree of professionalism more so than the average user and in

environments where damage is reversible.

The use of aspect-oriented programming contributed to the principles of embracing change

and maintaining simplicity. Adapting usage control as a deterrent provides a proactive

mechanism over and above the retroactive methods of auditing, accountability and

recoverability. It is envisioned that a larger subset of information may be transferred to the

public domain, thus obviating the need for specifying convoluted access control policy

decisions.

References

100

REFERENCES

Alexander, R.T. & Bieman, J.M. (2002) 'Challenges with Aspect-oriented Technology', ICSE

Workshop on Software Quality, Orlando, Flordia, 25 May 2002.

Anderson, R.J. (2001) Security engineering: a guide to building dependable distributed

systems, Wiley, Computer Publishing, New York, USA.

Andrews, G.R. & Reitman, R.P. (1980) 'An axiomatic approach to information flow in

programs', ACM Transactions on Programming Languages and Systems, vol. 2, no. 1, pp. 56-

76.

Baniassad, E. & Clarke, S. (2004) ' Finding Aspects in Requirements with Theme/Doc', in

Proceedings of Early Aspects 2004: Aspect-Oriented Requirements Engineering and

Architecture Design, Lancaster, UK, 22 March 2004.

Bell, D.E. & La Padula, L.J. (1976) Secure computer systems: Unified Exposition and Multics

Interpretation, Technical Report ESD-TR-75-306, Electronics Systems Division, Bedford USAF

Base.

Bodkin, R. (2004) 'Enterprise Security Aspects', AOSD'04 International Conference on

Aspect-Oriented Software Development, Lancaster, UK, March 2004, <[Online] Available:

http://www.cs.kuleuven.ac.be/~distrinet/events/aosdsec/papers.html>.

Boehm, B. (2002) 'Get Ready for Agile Methods with Care', Computer, vol. 35, no. 1, pp. 64-

9.

http://www.cs.kuleuven.ac.be/~distrinet/events/aosdsec/papers.html%3e

References

101

Boström, G. (2004) 'A case study on estimating the software engineering properties of

implementing Database Encryption as an aspect', Proceedings of the 3rd international

conference on Aspect-oriented software development, Lancaster, UK, 22-24 March 2004.

Briscoe, B., Rizzo, M., Tassel, J. & Damianakis, K. (2000) 'Lightweight policing and charging

for packet networks', in 3rd IEEE Conference on Open Architectures and Network

Programming, Tel Aviv, Israel, 26-27 March 2000, pp. 77-87.

Cederquist, J.G., Corin, R., Dekker, M.A.C., Etalle, S., den Hartog, J.I. & Lenzini, G. (2006) The

Audit Logic: Policy Compliance in Distributed Systems, Centre for Telematics and Information

Technology, University of Twente, Enschede.

Chan, M., Woon, I. & Kankanhalli, A. (2006) 'Perceptions of information security in the

workplace: linking information security climate to compliant behavior', Journal of

Information Privacy and Security, vol. 1, no. 3, pp. 18-41.

 CHAPTER 9: A DRAFT BILL ON THE PROTECTION OF PERSONAL INFORMATION (2005),

viewed 30 November 2009, <Available [Online]

http://old.ispa.org.za/regcom/privacyfiles/chapter-9-draft-bill-protection-personal-

info.pdf>.

Chen, L. (2004) Aspect-Oriented Programming in Software Engineering, Technical Report,

Wake Forest University, Department of Computer Science.

Chon, R., Enokido, T. & Wietrzsk, V. (2004) 'Role Locks to Prevent Illegal Information Flow

among Objects', in 18th International Conference on Advanced Information Networking and

Applications (AINA'04) Volume 1, Fukuoka, Japan, 29-31 March 2004, pp. 196-201.

Chou, S.-C. (2003) 'Information Flow Control among Objects: Taking Foreign Objects into

Control', in 36th Annual Hawaii International Conference on System Sciences (HICSS'03), Big

Island, Hawaii, 6-9 January 2003, pp. 335-44.

http://old.ispa.org.za/regcom/privacyfiles/chapter-9-draft-bill-protection-personal-info.pdf%3e
http://old.ispa.org.za/regcom/privacyfiles/chapter-9-draft-bill-protection-personal-info.pdf%3e

References

102

Clarke, R.E. (2002) 'e-Consent: A Critical Element of Trust in e-Business', 15th Bled

Electronic Commerce Conference: eReality:Constructing the eEconomy, Bled, Slovenia, 17-

19 June 2002.

Constantinides, C. & Hasson, Y. (2002) 'Beyond objects: Improving the modularity of

complex software', Workshop on Grand Challenges for Computing Research, Edinburgh,

Scotland, 24-26 November 2002.

D' Arcy, D. & Hovav, A. (2007) 'Deterring internal information systems misuse',

Communications of the ACM, vol. 50, no. 20, pp. 113-7.

De Win, B., Joosen, W. & Piessens, F. (2002) 'Developing Secure Applications through

Aspect-Oriented Programming', in Aksit, M., Clarke, S., Elrad, T. & Filman, R.E. (eds), Aspect-

Oriented Software Development, Addison-Wesley, Boston, p. 633–50.

De Win, B., Joosen, W. & Piessens, F. (2003) 'AOSD & Security: A Practical Assessment',

Workshop on Software engineering Properties of Languages for Aspect Technologies

(SPLAT03), Boston, Massachusetts, 17-21 March 2003.

De Win, B., Piessens, F. & Joosen, W. (2002) 'On the importance of the separation-of-

concerns principle in secure software engineering', Workshop on the Application of

Engineering Principles to System Security Design, Boston, Massachusetts, 6-8 November

2002.

De Win, B., Vanhaute, B. & De Decker, B. (2002) 'How aspect-oriented programming can

help to build secure software', Informatica, vol. 26, no. 2, pp. 141-9.

De Win, B., Vanhaute, B. & Decker, B. (2001) 'Security Through Aspect-Oriented

Programming', in Decker, B.D., Piessens, F., Smits, J. & Herreweghen, E.V. (eds), Advances in

References

103

Network and Distributed Systems Security, IFIP TC11 WG11.4 First Working Conference on

Network Security, Leuven, Belgium, 26-27 November 2001, pp. 125-38.

Denning, D.E. & Denning, P.J. (1977) 'Certification of Programs for Secure Information Flow',

Communications of the ACM, vol. 20, no. 7, pp. 504 -13.

Devanbu, P.T. & Stubblebine, S. (2000) 'Software engineering for security: a roadmap', in

Proceedings of the Conference on The Future of Software Engineering, Limerick, Ireland, 4-

11 June 2000, pp. 227-39.

Dewan, P., Grundin, J. & Horvitz, E. (2007) 'Towards a mixed-initiative access control', in

COLCOM '07: Proceedings of the 2007 International Conference on Collaborative Computing:

Networking, Applications and Worksharing, New York, USA, November 12-15, 2007, pp. 64-

71.

Downs, D., Rub, J.R., Kung, K.C. & Jordan, C.S. (1985) 'Issues in Discretionary Access Control',

in 1985 IEEE Symposium on Security and Privacy, 1985, Oakland, CA, 22-24 April 1985, pp.

208-15.

Elrad, T.M., Askit, G., Kiczales, K., Lieberherr, H. & Ossher. (2001) 'Discussing Aspects of

AAOP', Communications of the ACM, vol. 44, no. 10, pp. 33-8.

Engel, M. & Freisleben, B. (2005) 'Supporting autonomic computing functionality via

dynamic operating system kernel aspects', in Proceedings of the 4th international

conference on Aspect-oriented software development, Chicago, Illinois, 22-26 March 2005,

p. 51 – 62.

English, C., Nixon, P., Terzis, S., McGettrick, A. & Lowe, H. (2002) 'Security Models for

Trusting Network Appliances', 5th Annual Workshop on Networked Appliances, Liverpool,

England, October 2002.

References

104

Esquivel, A., Haya, P.A. & Garc´ıa-Herranz, M. (2007) 'Managing Pervasive Environment

Privacy Using the “fair trade” Metaphor', in Meersman, R., Tari, Z. & Herrero, P. (eds), On

the move to meaningful Internet systems: OTM 2007 Workshops, Springer-Verlag, Berlin,

Germany, vol. 4806, Lecture Notes in Computer Science, pp. 804-13.

Etalle, S. & Winsborough, W.H. (2007) 'A Posteriori Compliance Control', in SACMAT '07:

Proceedings of the 12th ACM symposium on Access control models and technologies, Sophia

Antipolis, France, 20-22 June 2007, pp. 11-20.

Falcarin, P., Baldi, M. & Mazzocchi, D. (2004) 'Software Tampering Detection using AOP and

mobile code', 3rd International Conference on Aspect-Oriented Software Development

(AOSD'04), Lancaster, UK, 22-24 March 2004.

Ferreira, A., Cruz-Correia, R., Antunes, L., Farinha, P., Oliveira-Palhares, E., Chadwick, D.W. &

Costa-Pereira, A. (2006) 'How to break access control in a controlled manner', in

Proceedings of the 19th IEEE International Symposium on Computer-Based Medical Systems,

Salt Lake City, Utah, 22-23 June 2006, pp. 847-51.

Georgiev, I.K. & Georgiev, I.I. (2001) 'A security model for distributed computing', Journal of

computing sciences in colleges, vol. 17, no. 1, pp. 178-86.

Grandison, T.W.A. (2003) 'Trust Management for Internet Applications', PHD thesis, Imperial

College London.

Groher, I. & Schulze, S. (2003) 'Generating Aspect Code from UML Models', Workshop on

Aspect-Oriented Modeling with UML, AOSD, Boston, Mass. USA, 17-21 March 2003.

Grundy, J. & Ding, G. (2002) 'Automatic Validation of Deployed J2EE Components Using

Aspects', in 17th IEEE International Conference on Automated Software Engineering

(ASE'02), Edinburgh, UK, 23-27 September 2002, pp. 47-57.

References

105

Haldar, V., Chandra, D. & Franz, M. (2005) 'Practical, Dynamic Information Flow for Virtual

Machines', in PLID'05 2nd International Workshop on Programming Language Interference

and Dependence, London, UK, 6 September 2005.

Harrison, W. & Ossher, H. (1993) 'Subject-oriented programming: a critique of pure objects',

in Proceedings of the eighth annual conference on Object-oriented programming systems,

languages, and applications, Washington D.C., 26 September – 1 October, pp. 411-28.

Herath, T. & Rao, H.R. (2009) 'Protection motivation and deterrence: a framework for

security policy compliance in organisations', European Journal of Information Systems, vol.

18, no. 2, pp. 106-25.

Higgins, G.E., Wilson, A.L. & Fell, B.D. (2005) 'An Application of Deterrence Theory to

Software Piracy', Journal of Criminal Justice and Popular Culture, vol. 12, no. 3, pp. 166-84.

Hong, J.I. & Landay, J.A. (2004) 'An Architecture for Privacy Sensitive Ubiquitous Computing',

in Proccedings of the International Conference on Mobile Systems, Applications and Services,

Boston, Massachusetts, USA, pp. 177-89.

Houmb, S.H., Georg, G., France, R. & Matheson, D. (2004) 'Using aspects to manage security

risks in risk-driven development', in 3rd International Workshop on Critical Systems

Development with UML, Lisbon, Portugal, 11-15 October, pp. 71-84.

Imine, A., Cherif, A. & Rusinowitch, M. (2009) An Optimistic Mandatory Access Control

Model for Distributed Collaborative Editors, Technical Report, INRIA.

Izaki, K., anaka, K. & Takizawa, M. (2001) 'Information Flow Control in Role-Based Model for

Distributed Objects', in Eighth International Conference on Parallel and Distributed Systems,

Kyongju City, Korea, 26-29 June 2001, pp. 363-70.

References

106

Jones, R.L. & Rastogi, A. (2004) 'Secure Code: Building Security into the Software

Development Life Cycle', Information Security Journal: A Global Perspective, vol. 15, no. 5,

pp. 29-39.

Jøsang, A. & Patton, M. (2001) User Interface Requirements for Authentication of

Communication, Technical Report, Distributed Systems Technology Centre, Brisbane,

Australia.

Kersten, M. (2005) AOP Tools Comparison, AOP@Work, DeveloperWorks, IBM, viewed 1

December 2005, <[Online] Available: http://www.ibm.com/developerworks/library/j-

aopwork1>.

Kiczales, G. (1996) 'Aspect-Oriented Programming', Computing Surveys(CSUR), vol. 28, no. 4,

p. 154.

Kiczales, G., Hillsdale, E., Hugunin, J., Kersten, M., Palm, J. & Griswold, W.G. (2001) 'Getting

Started with AspectJ', Communications of the ACM, vol. 44, no. 10, pp. 59-65.

Kiczales, G., Irwin, J., Lamping, J., Loingtier, J., Lopes, C.V., Maeda, C. & Mendhekar, A.

(1997) 'Aspect-Oriented Programming ', in Aksit, M. & Matsuoka, S. (eds), Proceedings of the

11th European Conference on Object-Oriented Programming (ECOOP), Springer-Verlag,

Jyväskylä, Finland, vol. 1241, Lecture Notes in Computer Science, pp. 220-40.

Kim, S. & Leem, C.S. (2004) 'An Information Engineering Methodology for the Security

Strategy Planning', in Lagana, A. (ed.), Computational Science and Its Applications - ICCSA

2004, Springer, Berlin/Heidelberg, vol. 3043, Lecture Notes in Computer Science, pp. 597-

607.

Kumar, A., Singh, A.K. & Babu, R.S. (2001) 'A security assurance framework for component

based software development', Informatica, vol. 25, no. 4, pp. 509 - 15.

http://www.ibm.com/developerworks/library/j-aopwork1%3e
http://www.ibm.com/developerworks/library/j-aopwork1%3e

References

107

Läufer, K., Thiruvathukal, G.K., Elrad, T. & Bader, A. (2003) 'Enhancing the CS Curriculum

with Aspect Oriented Software Development (AOSD), Working Paper', International

Conference on aspect-oriented software development, Boston, 17-21 March 2003.

Lee, G., Kim, W. & Kim, D.-K. (2004) 'Novel Method to Support User's Consent in Usage

Control for Stable Trust in E-business', in Lagan, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan,

C.J.K. & Gervasi, O. (eds), Computational science and its applications - ICCSA 2004, vol. 3045,

Lecture Notes in Computer Science, pp. 906-14.

Li, N., Moa, Z. & Chen, H. (2009) 'Usable Mandatory Access Control for Operating Systems',

in Roa, H.R. & Upadhyaya (eds), Information Assurance, Security and Privacy (Handbooks in

Information Systems), Emerald Group Publishing Limited, Bingley, UK, vol. 14, pp. 335-63.

Li, X., Naeem, N.A. & Kemme, B. (2005) 'Fine-Granularity Access Control in 3-tier Laboratory

Information Systems', in Proceeding of the 9th Database Engineering and Application

Symposium, (IDEAS '05), Montreal, Canada, 25-27 July 2005, pp. 391- 7.

Mao, Z., Li, N., Chen, H. & Jiang, X. (2009) 'Trojan horse resistant discretionary access

control', in SACMAT '09: Proceedings of the 14th ACM symposium on Access control models

and technologies, Stresa, Italy, pp. 237-46.

March, M.T. & Smith, G.F. (1995) 'Design and natural science research on information

technology ', Decision Support Systems, vol. 15, no. 4, pp. 251-66.

Masuhara, H. & Kawauchi, K. (2003) 'Dataflow Pointcut in Aspect-Oriented Programming', in

Ohori, A. (ed.), Proceedings of The First Asian Symposium on Programming Languages and

Systems (APLAS'03), Springer, Beijing, China, vol. 2895, Lecture Notes in Computer Science,

pp. 105-21.

References

108

McCollum, C.J. & Messing, J.R.N.L. (1990) 'Beyond the Pale of MAC and DAC Defining new

forms of access control', in Proceedings of IEEE Symposium on Security and Privacy, Oakland,

California, USA, 17-19 May 1990, pp. 190-200.

Miller, S.K. (2001) 'Aspect-Oriented Programming Takes Aim at Software Complexity',

Computer, vol. 34, no. 4, pp. 18-21.

Murphy, G.C., Walker, R.J. & Baniassad, E.L.A. (1999) 'Evaluating Emerging Software

development Technologies: Lessons learned from Assessing Aspect-Oriented Programming',

IEEE Transactions on Software Engineering, vol. 25, no. 4, pp. 483-55.

Murphy, G.C., Walker, R.J., Baniassad, E.L.A., Rollibard, M.P., Lai, A. & A., K.M. (2001) 'Does

aspect-oriented programming work?' Communications of the ACM, vol. 44, no. 10, pp. 75-7.

Offerman, P., Levina, O., Schonherr, M. & Bub (2009) 'Outline of a design science research

process', in 4th International Conference on Design Science Research into Systems and

Technology, Malvern, Pennsylvania, 6-9 May 2009.

Osborn, S., Sandhu, R. & Munawer, Q. (2000) 'Configuring Role-Based Access Control to

Enforce Mandatory and Discretionary', ACM Transactions on Information and System

Security, vol. 3, no. 2, pp. 85-106.

Padayachee, K. (2007) 'Instrumentation of AspectJ Programs: An Exploratory Study', in

Proceedings of the International MultiConference of Engineers and Computer Scientists

2007, Hong Kong, vol. 1, 21- 23 March 2007, pp. 1077-81.

Padayachee, K. & Eloff, J.H.P. (2006) 'The Next Challenge: Aspect-Oriented Programming', in

Nyongesa, H. (ed.), Proceedings of the Sixth IASTED International Conference on Modelling,

Simulation and Optimization, Gaborone, Botswana, 11-13 September 2006, pp. 304-7.

References

109

Padayachee, K. & Eloff, J.H.P. (2007) 'Enhancing Optimistic Access Controls with Usage

Control', in Lambrinoudakis, C., Pernul, G. & Tjoa, A.M. (eds), Trust, Privacy and Security in

Digital Business, Springer, Regensburg, Germany, vol. 4657, Lecture Notes in Computer

Science, pp. 75 - 82.

Padayachee, K. & Eloff, J.H.P. (2009) 'Adapting usage control as a deterrent to address the

inadequacies of access controls', Computers and Security, vol. 28, no. 7, pp. 536-44.

Padayachee, K. & Wakaba, N. (2007) 'A Taxonomy of Aspect-Oriented Security', The 2007

European Applied Business Research Conference, Venice, Italy, 4-7 June 2006.

Park, J., Zhang, X. & Sandhu, R. (2004) 'Attribute Mutability in Usage Control', in Proceedings

of the annual IFIP WG 11.3 Working Conference on Data and Applications Security, Sitges,

Catalonia, Spain, 26 July 2004, pp. 15-29.

Pavlich-Mariscal, J., Michel, L. & Demurjian, S. (2005) 'A Formal Enforcement Framework for

Role-Based Access Control using Aspect-Oriented Programming', in Proceedings of

ACM/IEEE 8th International Conference on Model Driven Engineering Languages and

Systems (MoDELS/UML 2005), Montego Bay, Jamaica, 2-7 October 2005, pp. 537-52.

Pfleeger, C.P. (1997) Security in Computing, 2nd edn, Engelwood Cliffs, NJ.:Prentice Hall,

United States of America.

Pfleeger, C.P. & Pfleeger, S.L. (2003) Security in Computing, 3rd edn, Prentice Hall, Upper

Saddle River, New Jersey.

Pieprzyk, J., Hardjono, T. & Seberry, J. (2003) Fundamentals of computer security, Springer,

Berlin.

References

110

Pohl, C., Charfi, A., Gilani, W., Göbel, S. & B.G., H. (2008) 'Adopting Aspect-Oriented

Software Development in Business Application Engineering', 7th International Conference

on Aspect-Oriented Development, Brussels, Belgium, 31 March - 4 April 2008.

Povey, D. (1999) 'Optimistic Security: A New Access Control Paradigm', Proceedings of the

1999 workshop on New security paradigms, Caledon Hills, Ontario, Canada, 22 - 24

September 1999.

Pretschner, A., Hilty, M., Schutz, F., Schaefer, C. & Walter, T. (2008) 'Usage Control

Enforcement: Present and Future', IEEE S ecurity & Privacy, vol. 6, no. 4, pp. 44-53.

Pretschner, A. & Walter, T. (2008) 'Negotiation of Usage Control Policies - Simply the Best?'

in ARES '08: Proceedings of the 2008 Third International Conference on Availability,

Reliability and Security, Washington, DC, USA, 4-7 March 2008, pp. 1135-6.

Pudney, P. (2003) e-Consent in consumer health & telemedicine, University of South

Australia, viewed 30 November 2009, <[Online] Available:

http://www.pudney.net.au/~phillip/papers/econsent.pdf>.

Raje, R.R., Zhong, M. & Wang, T. (2001) 'Case Study: A Distributed Concurrent System with

AspectJ', ACM SIGAPP Applied Computing Review, vol. 9, no. 2, pp. 17-23.

Ramachandran, R., Pearce, D.J. & Welch, I. (2006) 'AspectJ for Multilevel Security', The 5th

AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software

(ACP4IS), Bonn, Germany, 2006, 21 March 2006.

Rjaibi, W. & Bird, P. (2004) 'A Multi-Purpose Implementation of Mandatory Access Control in

Relational Database Management Systems', in Proceedings of 30th VLDBases Conference,

Toronto, Canada, pp. 1010-20.

http://www.pudney.net.au/~phillip/papers/econsent.pdf%3e

References

111

Robinson, P., Rits, M. & Kilian-Kehr, R. (2004) 'An Aspect of Application Security

Management', Proceedings of the 2nd International Workshop AOSDSEC’04, Lancaster, UK,

March 2004.

Russell, D.F. & Gangemi, G.T. (1991) Computer Security Basics, O'Reilly Media and Associate,

Sebastopol, California.

Samarati, P., Bertino, E., Ciampichetti, A. & Jajodia, S. (1997) 'Information Flow Control in

Object-Oriented Systems', IEEE Transactions on Knowledge and Data Engineering, vol. 9, no.

4, pp. 524-38.

Samarati, P. & de Capitani di Vimercati, S. (2001) 'Access control: Policies, models, and

mechanisms', in Focardi, R. & Gorrieri, R. (eds), Foundations of Security Analysis and Design,

Springer-Verlag, Berlin, vol. 2172, Lecture Notes in Computer Science, pp. 137-96.

Sandhu, R. & Park, J. (2003) 'Usage Control: A Vision for Next Generation Access Control', in

Gorodetsky, V., Popyack, L.J. & Skormin, V.A. (eds), Computer Network Security, Springer,

Berlin/Heidelberg, vol. 2776, Lecture notes in Computer Science, pp. 17-31.

Sandhu, R.S. (2001) 'Future Directions in Role-Based Access Control Models', in Gorodetski,

V.I., Skormin, V.A. & Popyack, L.J. (eds), Information Assurance in Computer Networks,

Springer, Berlin, Heidelberg, vol. 2052, Lecture Notes in Computer Science, pp. 22-6.

Sandhu, R.S., Coyne, E.J., Feinstein, H.L. & Youman, C.E. (1996) 'Role-Based Access Control

Models', IEEE computer, vol. 29, no. 2, pp. 38-47.

Shah, V. & Hill, F. (2003) An Aspect-Oriented Security Assurance Solution, Defence Advanced

Research Projects Agency, viewed 1 December 2005, <[Online] Available:

http://www.stormingmedia.us/50/5039/A503914.html>.

http://www.stormingmedia.us/50/5039/A503914.html%3e

References

112

Shin, W. & Yoo, S.B. (2007) 'Secured Web Services Based on Extended Usage Control', in

Washio, T.Z., Z-H., Huang, J.Z., Hu, X., Li, J., Xie, C., He, J., Zou, D., Li, K.-C. & Freire, M.M.

(eds), Emerging Technologies in Knowledge Discovery and Data Mining, PAKDD 2007,

International Workshops, Nanjing, China, May 22-25, 2007, Springer, Berlin, vol. 4819,

Lecture Notes in Computer Science, pp. 656-63.

Singh, A. (2005) 'The Scalablity of AspectJ', MSC thesis, University of California, Davis.

Slowikowski, P. & Zielinski, K. (2003) 'Comparison Study of Aspect-oriented and Container

Managed Security', Proceedings of the ECOOP workshop on analysis of Aspect-Oriented

Software, Darmstadt, Germany, 21-25 July 2003.

Stevens, G. & Wulf, V. (2002) 'A New Dimension in Access Control: Studying Maintenance

Engineering across Organizational Boundaries', Proceedings of the ACM conference on

Computer Supported Cooperative Work (CSCW), New Orleans, Louisiana, USA, 16 -20

November 2002.

Syalim, A., Tabata, T. & Sakurai, K. (2005) 'Usage Control Model and Architecture for Data

Confidentiality in a Database Service Provider', in Indonesia Cryptology and Information

Security Conference, Jakarta, Indonesia, 30-31 March 2005, pp. 155-60.

Tolone, W., Ahn, G.-J., Pai, T. & Hong, S.-P. (2005) 'Access Control in Collaborative Systems',

Acm Computing Surveys, vol. 37, no. 1, pp. 29-41.

Tymann, P.T. & Schneider, G.M. (2008) Modern Software Development using Java, 2nd edn,

Thomson Course Technology, Boston, Massachusetts.

Ubayashi, N., Masuhara, H. & Tamai, T. (2004) 'An AOP Implementation Framework for

Extending Joint Point Models', Proceedings of the ECOOP' 2004 Workshop on Reflection,

AOP and Meta-Data for Software Evolution, Oslo, Norway, 15 June 2004.

References

113

Vanhaute, B. & De Win, B. (2001) 'AOP, Security and Genericity', 1st Belgian AOSD

Workshop, Vrije Universiteit Brussel, Brussels, Belgium, 8 November 2001.

Verhanneman, T., Piessens, F., De Win, B. & Joosen, W. (2005) 'Uniform Application-level

Access Control Enforcement of Organizationwide Policies', in Proceedings of the 21st Annual

Computer Security Applications Conference (ACSAC 2005), Tucson, Arizona, 5-9 December

2005, pp. 431-40.

Viega, J., Bloch, J.T. & Chandra, P. (2001) 'Applying Aspect-Oriented Programming to

Security', Cutter IT Journal, vol. 14, no. 2, pp. 31-9.

Viega, J. & Evans, D. (2000) 'Separation of concerns for security', in Tarr, P., Harrison, W.,

Ossher, H., Finkelstein, A., Nuseibeh, B. & Perry, D. (eds), ICSE 2000 Workshop on Multi-

Dimensional Separation of Concerns in Software Engineering, Limerick, Ireland, 10 June

2000, pp. 125-38.

Viega, J. & Voas, J. (2000) 'Can Aspect-Oriented Programming Lead to More Reliable

Software', IEEE Software, vol. 17, no. 6, pp. 19-21.

Wakaba, N. 2004, 'A Taxonomy of Aspect-Oriented Security (Honours Project), Unpublished

Dissertation', University of South Africa.

Walker, R.J., Baniassad, E.L.A. & Murphy, G.C. (1999) 'An initial assessment of aspect-

oriented programming', in Proceedings of the 21st international conference on Software

engineering, Los Angeles, California, 16-22 May 1999, pp. 120-30.

Wang, H., Zhang, Y. & Cao, J. (2006) 'Ubiquitous Computing Environments and Its Usage Access

Control', in InfoScale '06: Proceedings of the 1st international conference on Scalable

information systems, Hong Kong, 29 May - 1 June 2006, pp. 6-16.

References

114

Wegner, P. (1990) 'Concepts and Paradigms of Object-Oriented Programming', ACM

SIGPLAN OOPS Messenger, vol. 1, no. 1, pp. 7-87.

Weippl, E. & Essmayr, W. (2003) 'Personal Trusted Devices for Web Services: Revisiting

Multilevel Security', Mobile Networks and Applications, vol. 8, no. 2, pp. 151-7.

Whitten, A. & Tygar, J.D. (1999) 'Why Johnny Can’t Encrypt: A Usability Evaluation of PGP

5.0', Proceedings of the 8th USENIX Security Symposium, Washington DC, America, 23-26

August 1999.

Xu, Z., Feng, D., Li, L. & Chen, H. (2003) 'UC-RBAC: A Usage Constrained Role-Based Access

Control Model ', in Qing, S., Gollmann, D. & Zhou, J. (eds), Information and Communications

Security, Springer, Berlin, vol. 2836, Lecture Notes in Computer Science, pp. 337-47.

Zakrzewski & Haddad, I. (2002) Linux Distributed Security Module, viewed 26 October 2007,

<[Online]. Available: http://www.linuxjournal.com/article/6215>.

Zhang, X., Nakae, M., Covington, M.J. & Sandhu, R. (2006) 'A Usage-based Authorization

Framework for Collaborative Computing Systems', in Proceeding of Symposium on Access

Control Models and Technologies (SACMAT’06), Lake Tahoe, California, USA, 7-9 June 2006,

pp. 180-9.

Zhao, B., Sandhu, R., Zhang, X. & Qin, X. (2007) 'Towards a Times-Based Usage Control

Model', in Barker, S. & Ahn, G.-J. (eds), Data and Applications Security XXI, Springer,

Berlin/Heidelberg, vol. 4602, Lecture Notes in Computer Science, pp. 227-42.

Zhao, X. & Johnson, M.E. (2008) 'Access Flexibility with Escalation and Audit', in 20th Workshop

on Information Systems and Economics (WISE 2008), Paris, France, 13-14 December 2008.

http://www.linuxjournal.com/article/6215%3e

References

115

Zheng, L.M. & Myers, A.C. (2004) Dynamic Security Labels and Noninterference,Technical

Report 2004., viewed 26 October 2005, <[Online]. Available:

www.cs.cornell.edu/andru/papers/dynlabel.pdf>.

Zurko, M.E. (2005) 'User-Centered Security: Stepping Up to the Grand Challenge', 21st

Annual Computer Security Applications Conference 2005, Tucson, Arizona, USA, 5-9

December 2005.

http://www.cs.cornell.edu/andru/papers/dynlabel.pdf%3e

Index

116

INDEX

A

access control · iii, iv, 2, 3, 4, 5, 6, 7, 11, 15, 17, 18, 19,
23, 30, 49, 50, 51, 52, 53, 67, 68, 73, 76
Discretionary access control · 5
mandatory access control · 18
Mandatory access control · 5
Optimistic access control · 8, 23

Access control · 9, 15
advice · 44, 45
Advice · 43, 45
Aspect · 4, 10, 12, 40, 41, 42, 43, 44, 46, 50, 51, 52, 53,

74, 75, 77, 79, 83, 85, 86
aspect orientation · 69, 70, 79
AspectJ · 43, 44, 45
aspect-orientation · iv, 9, 41, 48, 50, 54
aspect-oriented programming · 4, 5, 9, 12, 38, 40, 41, 46,

47, 48, 49, 52, 53, 54, 55, 68, 70, 76, 79, 93, 96, 99
Aspect-oriented programming · 40, 43, 50, 53
authentication · 4, 49, 50, 51

B

Break-the-Glass · 62, 63, 65, 73, 76

C

corrective control · 68

D

detective control · 68
deterrent control · 8, 14, 23, 68

I

information flow controls · 50

J

join points · 53
Join Points · 43

M

Mandatory access control · 15
mixed initiative access control framework · iii, 3, 14
mixed-initiative access control framework · 95, 97, 98

O

OAC(UCON) model · 9, 12, 26, 38, 60, 63, 71, 95, 96, 98
object-orientated paradigm · 40
object-oriented paradigm · 41, 48
ongoing conditions · 58, 63, 65, 72, 76, 78, 82
ongoing obligations · 67, 73
ongoing Obligations · 65
optimistic access control · iii, iv, 3, 5, 8, 9, 10, 11, 14, 21,

23, 25, 27, 28, 29, 37, 57, 62, 63, 64, 69, 77, 95, 96, 97
optimistic rights · 60, 63, 97, 98

P

Pointcut · 43
pointcuts · 44, 46
post-obligations · 66
pre-conditions · 24, 58, 63, 65, 72, 81
pre-obligations · 24, 65, 67, 72, 73, 92
Pre-Obligations · 64
preventative control · 68

R

role-based access control · 6, 15, 19, 20, 22, 36, 52, 63

S

structured programming · 41
Structured programming · 41

T

trust · iii, 2, 3, 6, 7, 8, 10, 23, 31

Index

117

U

usage control · iii, iv, 2, 3, 5, 7, 8, 9, 10, 11, 14, 23, 24,
26, 28, 29, 30, 32, 34, 36, 37, 38, 58, 63, 64, 68, 69, 85,
92, 93, 95, 96, 97, 98, 99

W

Weaver · 44
Weaving · 44

Appendix A: Publications

118

APPENDIX A:
 PUBLICATIONS

The next challenge: Aspect-Oriented Programming

Abstract:Computer Science educationists face many challenges due to the rapid evolution in

technology. One of the more recent challenges was the introduction of object-oriented

programming to the computing curriculum. There have been many articles based on the

difficulties encountered in teaching object-oriented programming and many solutions

proposed in response. While some problems remain unresolved, the pressure to keep

abreast of technology remains. The next hurdle that academics may face will be

incorporating aspect-oriented programming into the curriculum. Although aspect-oriented

programming is not yet ubiquitous in industry it is receiving considerable attention from

research and practitioner communities alike. Increasingly academics will encounter the

tension between teaching the fundamentals and introducing real-world technologies such

as aspect-oriented programming that address real-world concerns. This paper addresses this

particular notion, together with the challenges that will be faced if aspect-oriented

programming is introduced into the computer science curriculum.

Reference:

Padayachee K. & Eloff J.H.P. 2006. The Next Challenge: Aspect-Oriented Programming, In:

The Sixth IASTED International Conference on MODELLING, SIMULATION, AND

OPTIMIZATION (MSO 2006) ACTA Press, Gaborone, Botswana, 11-13 September 2006, pages

123-127

Appendix A: Publications

119

An Aspect-Oriented Implementation of e-Consent to Foster Trust

Abstract: As society becomes increasingly dependent on software, there is an increasing

expectation of information systems to protect the individual’s right to privacy. The process

of attaining electronic consent (e-Consent) may perhaps improve the trust that society has

in information systems to protect these rights. However, an issue such as e-Consent is

usually not given due consideration, as it is a non-functional issue and the implementation

of the e-consent mechanism in disparate and legacy systems is difficult. Hence many

systems are implemented without such types of controls. Evidently, aspect-oriented

software design is highly extensible, as security concerns may be easily integrated into a

completed software product. In this paper it is proposed that aspect-oriented programming

be used to augment an existing system with electronic consent.

Reference: Padayachee, K. & Eloff J.H.P. 2006. Aspect-Oriented Implementation of e-

Consent to foster Trust, In: SAICSIT 2006: Service-oriented software and Systems, Cape

Town, South Africa, 9 - 11 October 2006, pages 164-169

An Aspect-Oriented Model to Monitor Misuse

Abstract: The efficacy of the aspect-oriented paradigm has been well established within

several areas of software security as aspect-orientation facilitates the abstraction of these

security-related tasks to reduce code complexity. The aim of this paper is to demonstrate

that aspect-orientation may be used to monitor the information flows between objects in a

system for the purposes of misuse detection. Misuse detection involves identifying behavior

that is close to some previously defined pattern signature of a known intrusion.

Reference: Padayachee, K. & Eloff, J.H.P. 2006. An Aspect-Oriented Model to Monitor

Misuse, International Joint Conferences on Computer, Information, and Systems Sciences,

and Engineering, In: Innovations and Advanced Techniques in Computer and Information

Sciences and Engineering, Springer (Netherlands), pages: 273 -278, December 2006

Appendix A: Publications

120

An Aspect-Oriented Approach to Enhancing Multilevel Security with Usage Control: An

Experience Report

Abstract: The aim of this paper is to document experiences with augmenting multilevel

security with usage control at the application level within the aspect-oriented paradigm.

Multilevel access control is an access control policy that supports systems that process

especially sensitive data. However, attribute-based access control is sometimes insufficient

and needs to be combined with additional features in order to meet the demands of

modern applications and systems. Usage control enables finer-grained control over the

usage of digital objects than do traditional access control policies and models.

Reference:

Padayachee, K. & Eloff, J.H.P. 2007. An Aspect-Oriented Approach to Enhancing Multilevel

Security with Usage Control: An Experience Report, In: IAGENG: Lecture Notes in

Engineering and Computer Science Volume 1 - International, Conference on Software

Engineering (ICSE'07), Hong Kong, 21 - 23 March 2007, Hong Kong: Newswood Ltd.

International Association of Engineers (Hong Kong), pages: 1060 - 1065

Enhancing Optimistic Access Controls with Usage Control

Abstract: With the advent of agile programming, lightweight software processes are being

favoured over the highly formalised approaches of the past. Likewise, access control may

benefit from a less prescriptive approach with an increasing reliance on users to behave

ethically. These ideals correlate with optimistic access controls. However, ensuring that

users behave in a trustworthy manner may require more than optimistic access controls.

This paper investigates the possibility of enhancing optimistic access controls with usage

control to ensure that users conduct themselves in a trustworthy manner. Usage control

enables finer-grained control over the usage of digital objects than do traditional access

control policies and models. Further to ease the development and maintenance of usage

control measures, it is posited that it is completely separated from the application logic by

using aspect-oriented programming.

Appendix A: Publications

121

Reference: Padayachee, K. and Eloff J.H.P. 2007. Enhancing Optimistic Access Controls with

Usage Control, In: Lecture Notes in Computer Science: Trust, Privacy and Security in Digital

Business, Springer (Germany), Volume 4657 Regensburg, Germany, September 3-7, 2007,

pages: 75 – 82.

Adapting Usage Control as a Deterrent to address the Inadequacies of Access Controls

Abstract: Access controls are difficult to implement and evidently deficient under certain

conditions. Traditional controls offer no protection for unclassified information, such as a

telephone list of employees that is unrestricted, yet available only to members of the

company. On the opposing side of the continuum, organizations such as hospitals that

manage highly sensitive information require stricter access control measures. Yet,

traditional access control may well have inadvertent consequences in such a context. Often,

in unpredictable circumstances, users that are denied access could have prevented a

calamity had they been allowed access. It has been proposed that controls such as auditing

and accountability policies be enforced to deter rather than prevent unauthorized usage. In

dynamic environments preconfigured access control policies may change dramatically

depending on the context. Moreover, the cost of implementing and maintaining complex

preconfigured access control policies sometimes far outweighs the benefits. This paper

considers an adaptation of usage control as a proactive means of deterrence control to

protect information that cannot be adequately or reasonably protected by access control.

Reference: Padayachee K, Eloff JHP (2009), Adapting usage control as a deterrent to address

the inadequacies of access controls, Computers and Security (2009), Vol 28, No. 7, pages

536-544

Appendix B: OOP Documentation

122

APPENDIX B:
 OOP DOCUMENTATION

For full documentation refer to the accompanying CD.

Hierarchy For All Packages

Package Hierarchies:
accessobject, authenticationSim, authorizationSim, components, testutilities, usagecontrol

Class Hierarchy

o class java.lang.Object

o class accessobject.AccessInformation (implements java.lang.Runnable)

o class accessobject.Access

o class usagecontrol.BreakTheGlass

o class usagecontrol.OngoingConditions

o class usagecontrol.OngoingObligations

o class javax.swing.plaf.basic.BasicComboBoxEditor (implements javax.swing.ComboBoxEditor,
java.awt.event.FocusListener)

o class components.JSearchableComboBox.SearchEditor

o class components.CharUtility

o class java.awt.Component (implements java.awt.image.ImageObserver, java.awt.MenuContainer,
java.io.Serializable)

o class java.awt.Container

o class javax.swing.JComponent (implements java.io.Serializable)

o class javax.swing.JComboBox (implements javax.accessibility.Accessible,
java.awt.event.ActionListener, java.awt.ItemSelectable,
javax.swing.event.ListDataListener)

o class components.JSearchableComboBox

o class javax.swing.JPanel (implements javax.accessibility.Accessible)

o class components.CheckBox (implements java.awt.event.ItemListener)

o class components.Demo

o class components.image (implements java.awt.event.ActionListener)

o class java.awt.Window (implements javax.accessibility.Accessible)

o class java.awt.Frame (implements java.awt.MenuContainer)

o class javax.swing.JFrame (implements javax.accessibility.Accessible,
javax.swing.RootPaneContainer, javax.swing.WindowConstants)

o class components.ImageFrame

o class components.DoublyLinkedList

o class components.DoublyLinkedList.DLLIterator

o class components.DoublyLinkedList.DLLNode

o class testutilities.MemoryUsage

o class authorizationSim.MyCallbackHandler (implements javax.security.auth.callback.CallbackHandler)

o class authorizationSim.SampleAuthorization (implements java.security.PrivilegedAction)

o class authorizationSim.SampleAzn

o class authenticationSim.SampleLoginModule (implements javax.security.auth.spi.LoginModule)

o class authorizationSim.SamplePrincipal (implements java.security.Principal, java.io.Serializable)

o class components.TernarySearchTree

o class components.TernarySearchTree.TSTNode

file:///C:/Thesis_2009/object/accessobject/package-tree.html
file:///C:/Thesis_2009/object/authenticationSim/package-tree.html
file:///C:/Thesis_2009/object/authorizationSim/package-tree.html
file:///C:/Thesis_2009/object/components/package-tree.html
file:///C:/Thesis_2009/object/testutilities/package-tree.html
file:///C:/Thesis_2009/object/usagecontrol/package-tree.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/Access.html
file:///C:/Thesis_2009/object/usagecontrol/BreakTheGlass.html
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html
file:///C:/Thesis_2009/object/usagecontrol/OngoingObligations.html
file:///C:/Thesis_2009/object/components/JSearchableComboBox.SearchEditor.html
file:///C:/Thesis_2009/object/components/CharUtility.html
file:///C:/Thesis_2009/object/components/JSearchableComboBox.html
file:///C:/Thesis_2009/object/components/CheckBox.html
file:///C:/Thesis_2009/object/components/Demo.html
file:///C:/Thesis_2009/object/components/image.html
file:///C:/Thesis_2009/object/components/ImageFrame.html
file:///C:/Thesis_2009/object/components/DoublyLinkedList.html
file:///C:/Thesis_2009/object/components/DoublyLinkedList.DLLIterator.html
file:///C:/Thesis_2009/object/components/DoublyLinkedList.DLLNode.html
file:///C:/Thesis_2009/object/testutilities/MemoryUsage.html
file:///C:/Thesis_2009/object/authorizationSim/MyCallbackHandler.html
file:///C:/Thesis_2009/object/authorizationSim/SampleAuthorization.html
file:///C:/Thesis_2009/object/authorizationSim/SampleAzn.html
file:///C:/Thesis_2009/object/authenticationSim/SampleLoginModule.html
file:///C:/Thesis_2009/object/authorizationSim/SamplePrincipal.html
file:///C:/Thesis_2009/object/components/TernarySearchTree.html
file:///C:/Thesis_2009/object/components/TernarySearchTree.TSTNode.html

Appendix B: OOP Documentation

123

o class usagecontrol.UsageControl

Java Documentation for Class BreakTheGlass

usagecontrol
Class BreakTheGlass

java.lang.Object

 accessobject.AccessInformation

 usagecontrol.BreakTheGlass

All Implemented Interfaces:
java.lang.Runnable

public class BreakTheGlass
extends AccessInformation

Field Summary

Fields inherited from class accessobject.AccessInformation

AccessType, aThread, ObjectName, SubjectName

Constructor Summary

(package

private)
BreakTheGlass(java.lang.String SubjectName,

java.lang.String ObjectName, java.lang.String AccessType)

Method Summary

(package

private)

 boolean

display()

Methods inherited from class accessobject.AccessInformation

endrequest, getAccessType, getObject, getSubjectName, run

file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23AccessType
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23aThread
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23ObjectName
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23SubjectName
file:///C:/Thesis_2009/object/usagecontrol/BreakTheGlass.html%23BreakTheGlass(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/object/usagecontrol/BreakTheGlass.html%23display()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23endrequest()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getAccessType()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getObject()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getSubjectName()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23run()

Appendix B: OOP Documentation

124

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Constructor Detail

BreakTheGlass
BreakTheGlass(java.lang.String SubjectName,

 java.lang.String ObjectName,

 java.lang.String AccessType)

Method Detail
display
boolean display()

Java Documentation for Class OngoingConditions

usagecontrol
Class OngoingConditions

java.lang.Object

 accessobject.AccessInformation

 usagecontrol.OngoingConditions

All Implemented Interfaces:
java.lang.Runnable

public class OngoingConditions
extends AccessInformation
Author:

Keshnee Padayachee

Field Summary

private

static long
condition

 Controls actions relating to the conditions of access

private

 boolean
stop

Fields inherited from class accessobject.AccessInformation

AccessType, aThread, ObjectName, SubjectName

file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html%23condition
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html%23stop
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23AccessType
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23aThread
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23ObjectName
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23SubjectName

Appendix B: OOP Documentation

125

Constructor Summary

OngoingConditions(java.lang.String SubjectName,

java.lang.String ObjectName, java.lang.String AccessType)

Method Summary

 boolean conditionisValid()

 void conditionsWarning()

 void endOngoingConditions()

 long getCondition()

 void run()

Methods inherited from class accessobject.AccessInformation

endrequest, getAccessType, getObject, getSubjectName

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail
condition
private static long condition

Controls actions relating to the conditions of access

stop
private volatile boolean stop

Constructor Detail

OngoingConditions
public OngoingConditions(java.lang.String SubjectName,

 java.lang.String ObjectName,

 java.lang.String AccessType)

file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html%23OngoingConditions(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html%23conditionisValid()
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html%23conditionsWarning()
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html%23endOngoingConditions()
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html%23getCondition()
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html%23run()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23endrequest()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getAccessType()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getObject()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getSubjectName()

Appendix B: OOP Documentation

126

Method Detail
conditionsWarning
public void conditionsWarning()

getCondition
public long getCondition()

conditionisValid
public boolean conditionisValid()

run
public void run()

Specified by:

run in interface java.lang.Runnable

Overrides:

run in class AccessInformation

endOngoingConditions
public void endOngoingConditions()

Java Documentation for Class OngoingObligations

usagecontrol
Class OngoingObligations

java.lang.Object

 accessobject.AccessInformation

 usagecontrol.OngoingObligations

All Implemented Interfaces:
java.lang.Runnable

public class OngoingObligations
extends AccessInformation

Field Summary

private

 ImageFrame
OngoingObligationsRequest

 Controls actions relating the OngoingObligations of the Access

Fields inherited from class accessobject.AccessInformation

AccessType, aThread, ObjectName, SubjectName

Constructor Summary

OngoingObligations(java.lang.String SubjectName,

java.lang.String ObjectName,java.lang.String AccessType)

file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23run()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/components/ImageFrame.html
file:///C:/Thesis_2009/object/usagecontrol/OngoingObligations.html%23OngoingObligationsRequest
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23AccessType
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23aThread
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23ObjectName
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23SubjectName
file:///C:/Thesis_2009/object/usagecontrol/OngoingObligations.html%23OngoingObligations(java.lang.String,%20java.lang.String,%20java.lang.String)

Appendix B: OOP Documentation

127

Method Summary

 void endOngoingObligations()

 void run()

Methods inherited from class accessobject.AccessInformation

endrequest, getAccessType, getObject, getSubjectName

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail
OngoingObligationsRequest
private ImageFrame OngoingObligationsRequest

Controls actions relating the OngoingObligations of the Access

Constructor Detail

OngoingObligations
public OngoingObligations(java.lang.String SubjectName,

 java.lang.String ObjectName,

 java.lang.String AccessType)

Method Detail
run
public void run()

Specified by:

run in interface java.lang.Runnable

Overrides:

run in class AccessInformation

endOngoingObligations
public void endOngoingObligations()

file:///C:/Thesis_2009/object/usagecontrol/OngoingObligations.html%23endOngoingObligations()
file:///C:/Thesis_2009/object/usagecontrol/OngoingObligations.html%23run()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23endrequest()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getAccessType()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getObject()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23getSubjectName()
file:///C:/Thesis_2009/object/components/ImageFrame.html
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html%23run()
file:///C:/Thesis_2009/object/accessobject/AccessInformation.html

Appendix B: OOP Documentation

128

Java Documentation Class UsageControl

usagecontrol
Class UsageControl

java.lang.Object

 usagecontrol.UsageControl

public class UsageControl
extends java.lang.Object

Field Summary

private Access accessObject

private

static boolean
accessOpen
 Controls the Usage control of an Access to an Object

private

 java.lang.Thread
accessThread

(package private)

 java.lang.String
AccessType

private

 BreakTheGlass
breakTheGlass

static boolean conditionsInvalid

private

 java.lang.Thread
conditionsThread

static boolean endAccess

static boolean endObligations

(package private)

 java.lang.String
ObjectName

private

 java.lang.Thread
obligationsThread

private

 OngoingConditions
OnConditions

private

 OngoingObligations
Onobligations

private

static boolean
preCondition

(package private)

 java.lang.String
SubjectName

Constructor Summary

UsageControl(Access AccessObject)

file:///C:/Thesis_2009/object/accessobject/Access.html
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23accessObject
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23accessOpen
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23accessThread
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23AccessType
file:///C:/Thesis_2009/object/usagecontrol/BreakTheGlass.html
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23breakTheGlass
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23conditionsInvalid
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23conditionsThread
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23endAccess
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23endObligations
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23ObjectName
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23obligationsThread
file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23OnConditions
file:///C:/Thesis_2009/object/usagecontrol/OngoingObligations.html
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23Onobligations
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23preCondition
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23SubjectName
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23UsageControl(accessobject.Access)
file:///C:/Thesis_2009/object/accessobject/Access.html

Appendix B: OOP Documentation

129

Method Summary

(package

private)

 boolean

breakTheGlass(java.lang.String SubjectName,

java.lang.String ObjectName, java.lang.String AccessType)

 boolean checkAccessType()

(package

private)

 void

initiateBreakTheGlassFacility()

 boolean initiateUsageControl()

(package

private)

 void

logAccess(java.lang.String SubjectName,

java.lang.String ObjectName, java.lang.String AccessType,

java.lang.String Notice, java.lang.String RedFlag)

(package

private)

 void

postAccess()

 void postObligations(java.lang.String SubjectName,
java.lang.String ObjectName, java.lang.String AcccessType)

(package

private)

 boolean

preConditions(java.lang.String SubjectName,

java.lang.String ObjectName, java.lang.String AccessType)

(package

private)

 boolean

preObligations(java.lang.String SubjectName,

java.lang.String ObjectName, java.lang.String AccessType)

(package

private)

 void

stopAccess()

(package

private)

 void

stopOngoingObligations()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail
accessOpen

file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23breakTheGlass(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23checkAccessType()
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23initiateBreakTheGlassFacility()
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23initiateUsageControl()
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23logAccess(java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23postAccess()
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23postObligations(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23preConditions(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23preObligations(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23stopAccess()
file:///C:/Thesis_2009/object/usagecontrol/UsageControl.html%23stopOngoingObligations()

Appendix B: OOP Documentation

130

private static boolean accessOpen

Controls the Usage control of an Access to an Object

preCondition
private static boolean preCondition

obligationsThread
private java.lang.Thread obligationsThread

conditionsThread
private java.lang.Thread conditionsThread

accessThread
private java.lang.Thread accessThread

OnConditions
private OngoingConditions OnConditions

accessObject
private Access accessObject

Onobligations
private OngoingObligations Onobligations

breakTheGlass
private BreakTheGlass breakTheGlass

SubjectName
java.lang.String SubjectName

ObjectName
java.lang.String ObjectName

AccessType
java.lang.String AccessType

conditionsInvalid
public static boolean conditionsInvalid

endAccess
public static boolean endAccess

endObligations
public static boolean endObligations

Constructor Detail

UsageControl
public UsageControl(Access AccessObject)

Method Detail
checkAccessType
public boolean checkAccessType()

file:///C:/Thesis_2009/object/usagecontrol/OngoingConditions.html
file:///C:/Thesis_2009/object/accessobject/Access.html
file:///C:/Thesis_2009/object/usagecontrol/OngoingObligations.html
file:///C:/Thesis_2009/object/usagecontrol/BreakTheGlass.html
file:///C:/Thesis_2009/object/accessobject/Access.html

Appendix B: OOP Documentation

131

initiateUsageControl
public boolean initiateUsageControl()

initiateBreakTheGlassFacility
void initiateBreakTheGlassFacility()

stopAccess
void stopAccess()

stopOngoingObligations
void stopOngoingObligations()

preObligations
boolean preObligations(java.lang.String SubjectName,

 java.lang.String ObjectName,

 java.lang.String AccessType)

preConditions
boolean preConditions(java.lang.String SubjectName,

 java.lang.String ObjectName,

 java.lang.String AccessType)

postAccess
void postAccess()

postObligations
public void postObligations(java.lang.String SubjectName,

 java.lang.String ObjectName,

 java.lang.String AcccessType)

breakTheGlass
boolean breakTheGlass(java.lang.String SubjectName,

 java.lang.String ObjectName,

 java.lang.String AccessType)

logAccess
void logAccess(java.lang.String SubjectName,

 java.lang.String ObjectName,

 java.lang.String AccessType,

 java.lang.String Notice,

 java.lang.String RedFlag)

Source Code for class Access

package accessobject;

import javax.swing.UIManager;

import usagecontrol.UsageControl;

import components.image;

public class Access extends AccessInformation {

 /**

 * This class controls the object being accessed

 */

 public void request(){

 UIManager.put("swing.boldMetal", Boolean.FALSE);

 image.createAndShowGUI(ObjectName);

 }

Appendix B: OOP Documentation

132

 public Access(String SubjectName, String ObjectName, String AccessType) {

 super(SubjectName,ObjectName,AccessType) ;

 }

public void endrequest() {

 super.endrequest();

 image.close();

}

public void run() {

 super.run();

 UIManager.put("swing.boldMetal", Boolean.FALSE);

 image.createAndShowGUI(ObjectName);

 aThread = Thread.currentThread();

 // Keep going as long as myThread is the same as the current thread.

 while (image.WindowOpen) {

 try {

 Thread.sleep(500); // Tell the thread to sleep for half a second.

 }

 catch (InterruptedException e) {}

 }

 if (!image.WindowOpen){

 endrequest();

 //object-oriented version

 UsageControl.endAccess = true;

 //end object-oriented version

 }

}

}

Source code for class AccessInformation
package accessobject;

public class AccessInformation implements Runnable{

 /**

 * This class maintains all the details relating to the access

 */

 protected String SubjectName;

 protected String ObjectName;

 protected String AccessType;

 protected Thread aThread;

 public AccessInformation(String subName, String OName, String type) {

 SubjectName = subName;

 ObjectName = OName;

 AccessType = type;

 }

 public String getSubjectName()

 {

 return SubjectName;

 }

 public String getObject()

 {

 return ObjectName;

 }

 public String getAccessType()

 {

 return AccessType;

 }

 public void run(){aThread = Thread.currentThread(); }

 public void endrequest() {

 aThread = null;

 }

}

Appendix B: OOP Documentation

133

Source code for class BreakTheGlass

package usagecontrol;

import javax.swing.ImageIcon;

import javax.swing.JOptionPane;

import accessobject.AccessInformation;

public class BreakTheGlass extends AccessInformation{

 /**

 * Provides the BreakTheGlass Interface

 */

 BreakTheGlass(String SubjectName, String ObjectName, String AccessType) {

 super(SubjectName,ObjectName,AccessType);

 }

 boolean display(){

 String message = "<html>" + SubjectName +" are you SURE <font

 color=black>" +

 "you want to continue with this access?"

 +"
(a) This access will be RED-FLAGGED!!!"

 +"
(b) You will have justify this usage to the system adminstrator" ;

 ImageIcon icon = new ImageIcon("c:\\icons\\policestop.gif");

 int answer = JOptionPane.showConfirmDialog(null, message,"BREAK THE GLASS IN CASE OF

 EMERGENCY",

 JOptionPane.YES_NO_OPTION,JOptionPane.INFORMATION_MESSAGE, icon);

 if (answer == JOptionPane.YES_OPTION) {

 return true;

 }

 else if (answer == JOptionPane.NO_OPTION) {

 return false;

 }

 return false;

 }

}

Source code for class OngoingConditions
package usagecontrol;

import javax.swing.*;

import accessobject.AccessInformation;

public class OngoingConditions extends AccessInformation{

 /**

 * Controls actions relating to the conditions of access

 */

 private static long condition = 0;

 private volatile boolean stop = false;

 public OngoingConditions(String SubjectName, String ObjectName, String AccessType) {

 super(SubjectName,ObjectName,AccessType);

 }

 // This will terminate the run() method.

 public void conditionsWarning(){

 ImageIcon icon = new ImageIcon("c:\\icons\\warn1.gif");

 String message = "<html> "+ SubjectName

 +", is PROHIBITED "

 +"from accessing client file: " + ObjectName + " after working hours";

 JOptionPane.showMessageDialog(null, message ,"CONDITIONS WARNING",

 JOptionPane.INFORMATION_MESSAGE,icon);

 //object-oriented version

 UsageControl.conditionsInvalid = true;

 //end of object-oriented version

 }

 public long getCondition(){

 condition++;

 return condition;

 }

Appendix B: OOP Documentation

134

 public boolean conditionisValid()

 { condition++;

 if (condition%10 == 0)

 return false;

 else

 return true;

 }

 public void run() {

 super.run();

 while(conditionisValid()){

 try {

 Thread.sleep(1000); // Tell the thread to sleep for a second.

 }

 catch (InterruptedException e) {}

 }

 if (!stop){

 conditionsWarning();

 }

 }

 public void endOngoingConditions(){

 stop = true;

 }

}

Source code for class OngoingObligations
package usagecontrol;

import java.awt.Color;

import javax.swing.ImageIcon;

import components.ImageFrame;

import accessobject.AccessInformation;

public class OngoingObligations extends AccessInformation{

 /**

 * Controls actions relating the OngoingObligations of the Access

 */

 private ImageFrame OngoingObligationsRequest;

 public OngoingObligations(String SubjectName, String ObjectName, String AccessType) {

 super(SubjectName,ObjectName,AccessType);

 }

 public void run() {

 super.run();

 String Message = "<html>" + SubjectName+ " ACCESSING...client

 file: "

 + ObjectName + " WITH RIGHTS "+ AccessType+".
 ";

 Message.toUpperCase();

 ImageIcon icon = new ImageIcon("c:\\files\\OBS.jpg");

 OngoingObligationsRequest = new ImageFrame(600,300,400,400,"Ongoing

 Obligations",Message,icon);

 OngoingObligationsRequest.setForeground(Color.BLUE);

 OngoingObligationsRequest.setResizable(false);

 // Keep going as long as myThread is the same as the current thread.

 while (OngoingObligationsRequest.windowOpen()) {

 try {

 Thread.sleep(500); // Tell the thread to sleep for half a second.

 }

 catch (InterruptedException e) {}

 }

 if (!OngoingObligationsRequest.windowOpen()){

 OngoingObligationsRequest.close();

 //object-oriented version

 UsageControl.endObligations = true;

 //end of object-oriented version

 }

 }

 public void endOngoingObligations()

 { UsageControl.endObligations = true;

 if (OngoingObligationsRequest.windowOpen()){

Appendix B: OOP Documentation

135

 OngoingObligationsRequest.close();

 }

 }

}

Source Code for class UsageControl

package usagecontrol;

import javax.swing.JOptionPane;

import javax.swing.ImageIcon;

import accessobject.Access;

import components.CheckBox;

public class UsageControl {

 /**

 * Controls the Usage control of an Access to an Object

 */

 private static boolean accessOpen;

 private static boolean preCondition = true;

 private Thread obligationsThread;

 private Thread conditionsThread;

 private Thread accessThread;

 private OngoingConditions OnConditions;

 private Access accessObject;

 private OngoingObligations Onobligations;

 private BreakTheGlass breakTheGlass;

 String SubjectName;

 String ObjectName;

 String AccessType;

 public static boolean conditionsInvalid = false;

 public static boolean endAccess = false;

 public static boolean endObligations = false;

 public UsageControl(Access AccessObject)

 {

 accessObject = AccessObject;

 SubjectName = AccessObject.getSubjectName();

 ObjectName = AccessObject.getObject();

 AccessType = AccessObject.getAccessType();

 }

 public boolean checkAccessType(){

 return true;

 }

 public boolean initiateUsageControl(){

 accessOpen = true;

 conditionsInvalid = false;

 endObligations = false;

 endAccess = false;

 if (preObligations(SubjectName, ObjectName, AccessType))

 {

 if (preConditions(SubjectName, ObjectName, AccessType)

 || breakTheGlass(SubjectName, ObjectName, AccessType)){

 accessThread = new Thread(accessObject);

 accessThread.start();

 Onobligations = new OngoingObligations(SubjectName, ObjectName, AccessType);

 obligationsThread = new Thread(Onobligations);

 obligationsThread.start();

 OnConditions = new OngoingConditions(SubjectName,ObjectName,AccessType);

 conditionsThread = new Thread(OnConditions);

 conditionsThread.start();

 while(accessOpen){

 try {

 Thread.sleep(500);

 if (conditionsInvalid){

 initiateBreakTheGlassFacility();

 }

 if (endAccess){

Appendix B: OOP Documentation

136

 stopAccess();

 }

 if (endObligations){

 stopOngoingObligations();

 }

 } catch (InterruptedException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 postObligations(SubjectName,ObjectName,AccessType);

 }

 else

 System.out.println("no conditions");

 }

 else

 System.out.println("no obligations");

 return true;

 }

 /**

 *

 */

 void initiateBreakTheGlassFacility(){

 if (!breakTheGlass(OnConditions.getSubjectName(), OnConditions.getObject(),

OnConditions.getAccessType()))

 { Onobligations.endOngoingObligations();

 postAccess();

 }

 conditionsInvalid = false;

 }

 void stopAccess(){

 Onobligations.endOngoingObligations();

 if (accessOpen)

 postAccess();

 }

 void stopOngoingObligations(){

 if (accessOpen)

 postAccess();

 }

 boolean preObligations(String SubjectName, String ObjectName, String AccessType){

 ImageIcon icon = new ImageIcon("c:\\icons\\hand.gif");

 String message = "<html>" + SubjectName + ", if you click YES " +

 " you agree to NOT<font

color=black>" +

 " distribute client file: "

 + ObjectName;

 int answer = JOptionPane.showConfirmDialog(null, message,"PRE-OBLIGATIONS",

 JOptionPane.YES_NO_OPTION,JOptionPane.WARNING_MESSAGE,icon);

 if (answer == JOptionPane.YES_OPTION) {

 return true;

 }

 else if (answer == JOptionPane.NO_OPTION) {

 return false;

 }

 return false;

 }

 boolean preConditions(String SubjectName, String ObjectName, String AccessType){

 if (preCondition) {

 ImageIcon icon = new ImageIcon("c:\\icons\\warn1.gif");

 String message = "<html> " + SubjectName +", "

 +" PROHIBITED from accessing client file: " +

 ObjectName + " at this time !" ;

 JOptionPane.showMessageDialog(null, message ,"PRE-CONDITIONS WARNING",

 JOptionPane.INFORMATION_MESSAGE,icon);

 preCondition = false;

Appendix B: OOP Documentation

137

 return false;

 }

 return true;

 }

 void postAccess(){

 accessOpen = false;

 accessObject.endrequest();

 Onobligations.endOngoingObligations();

 OnConditions.endrequest();

 //update logs

 }

 public void postObligations(String SubjectName, String ObjectName, String AcccessType){

 CheckBox.createAndShowGUI();

 }

 boolean breakTheGlass(String SubjectName, String ObjectName, String AccessType){

 breakTheGlass = new BreakTheGlass(SubjectName,ObjectName,AccessType);

 if (breakTheGlass.display()){

 logAccess(SubjectName,ObjectName,AccessType,"Illegal Access", "YES");

 return true;

 }

 return false;

 }

 void logAccess(String SubjectName, String ObjectName, String AccessType, String Notice,

String RedFlag){

 //WRITE TO LOG FILE

 }

}

Appendix C: AOP Documentation

138

APPENDIX C:
 AOP DOCUMENTATION

For full documentation refer to accompanying CD.

Hierarchy For All Packages

Package Hierarchies:
accessobject, authenticationSim, authorizationSim, components, testutilities, usagecontrol

Class Hierarchy

o class java.lang.Object

o class accessobject.AccessInformation

o class accessobject.Access

o class usagecontrol.OngoingConditions (implements java.lang.Runnable)

o class usagecontrol.BreakTheGlass

o class usagecontrol.OngoingObligations (implements java.lang.Runnable)

o class javax.swing.plaf.basic.BasicComboBoxEditor (implements javax.swing.ComboBoxEditor,
java.awt.event.FocusListener)

o class components.JSearchableComboBox.SearchEditor

o class components.CharUtility

o class java.awt.Component (implements java.awt.image.ImageObserver, java.awt.MenuContainer,
java.io.Serializable)

o class java.awt.Container

o class javax.swing.JComponent (implements java.io.Serializable)

o class javax.swing.JComboBox (implements javax.accessibility.Accessible,
java.awt.event.ActionListener, java.awt.ItemSelectable,
javax.swing.event.ListDataListener)

o class components.JSearchableComboBox

o class javax.swing.JPanel (implements javax.accessibility.Accessible)

o class components.CheckBox (implements java.awt.event.ItemListener)

o class components.Demo

o class components.image (implements java.awt.event.ActionListener)

o class java.awt.Window (implements javax.accessibility.Accessible)

o class java.awt.Frame (implements java.awt.MenuContainer)

o class javax.swing.JFrame (implements javax.accessibility.Accessible,
javax.swing.RootPaneContainer, javax.swing.WindowConstants)

o class components.ImageFrame

o class components.DoublyLinkedList

o class components.DoublyLinkedList.DLLIterator

o class components.DoublyLinkedList.DLLNode

o class usagecontrol.IntertypeDeclarationOnAccess

o class testutilities.MemoryUsage

o class authorizationSim.MyCallbackHandler (implements javax.security.auth.callback.CallbackHandler)

o class authorizationSim.SampleAuthorization (implements java.security.PrivilegedAction)

o class authorizationSim.SampleAzn

o class authenticationSim.SampleLoginModule (implements javax.security.auth.spi.LoginModule)

file:///C:/Thesis_2009/accessobject/package-tree.html
file:///C:/Thesis_2009/authenticationSim/package-tree.html
file:///C:/Thesis_2009/authorizationSim/package-tree.html
file:///C:/Thesis_2009/components/package-tree.html
file:///C:/Thesis_2009/testutilities/package-tree.html
file:///C:/Thesis_2009/usagecontrol/package-tree.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html
file:///C:/Thesis_2009/usagecontrol/BreakTheGlass.html
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html
file:///C:/Thesis_2009/components/JSearchableComboBox.SearchEditor.html
file:///C:/Thesis_2009/components/CharUtility.html
file:///C:/Thesis_2009/components/JSearchableComboBox.html
file:///C:/Thesis_2009/components/CheckBox.html
file:///C:/Thesis_2009/components/Demo.html
file:///C:/Thesis_2009/components/image.html
file:///C:/Thesis_2009/components/ImageFrame.html
file:///C:/Thesis_2009/components/DoublyLinkedList.html
file:///C:/Thesis_2009/components/DoublyLinkedList.DLLIterator.html
file:///C:/Thesis_2009/components/DoublyLinkedList.DLLNode.html
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html
file:///C:/Thesis_2009/testutilities/MemoryUsage.html
file:///C:/Thesis_2009/authorizationSim/MyCallbackHandler.html
file:///C:/Thesis_2009/authorizationSim/SampleAuthorization.html
file:///C:/Thesis_2009/authorizationSim/SampleAzn.html
file:///C:/Thesis_2009/authenticationSim/SampleLoginModule.html

Appendix C: AOP Documentation

139

o class authorizationSim.SamplePrincipal (implements java.security.Principal, java.io.Serializable)

o class components.TernarySearchTree

o class components.TernarySearchTree.TSTNode

o class usagecontrol.UsageControlInjector

Java Documentation for Class Access:
Class Access

java.lang.Object

 accessobject.AccessInformation

 accessobject.Access

Direct Known Subclasses:
OngoingConditions

public class Access
extends AccessInformation

 Advised by: usagecontrol.UsageControlInjector.after(): OngoingAccess..

 Aspect declarations:
usagecontrol.IntertypeDeclarationOnAccess.declare parents:

implements Runnable

Author:
KESHNEE TODO To change the template for this generated type comment go to Window - Preferences - Java - Code Style - Code
Templates

Inter-Type Method Summary

void
Access.endrequest()

 Declared by: usagecontrol.IntertypeDeclarationOnAccess

void
Access.run()

 Declared by: usagecontrol.IntertypeDeclarationOnAccess

Inter-Type Field Summary

package Thread
Access.aThread

 Declared by: usagecontrol.IntertypeDeclarationOnAccess

Field Summary

Fields inherited from class accessobject.AccessInformation

accessType, objectName, subjectName

Constructor Summary

Access(java.lang.String SubjectName, java.lang.String ObjectName,

java.lang.String AccessType)

file:///C:/Thesis_2009/authorizationSim/SamplePrincipal.html
file:///C:/Thesis_2009/components/TernarySearchTree.html
file:///C:/Thesis_2009/components/TernarySearchTree.TSTNode.html
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingAccess..
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html%23declare%20parents:%20implements%20Runnable
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html%23declare%20parents:%20implements%20Runnable
file:///C:/Thesis_2009/accessobject/Access.html%23Access.endrequest()
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html
file:///C:/Thesis_2009/accessobject/Access.html%23Access.run()
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html
file:///C:/Thesis_2009/accessobject/Access.html%23Access.aThread
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23accessType
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23objectName
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23subjectName
file:///C:/Thesis_2009/accessobject/Access.html%23Access(java.lang.String,%20java.lang.String,%20java.lang.String)

Appendix C: AOP Documentation

140

Method Summary

 voi

d

close()

 voi

d

request()

 Advised by
:

usagecontrol.UsageControlInjector.around(accessobject.Access)

: Intercept_Request..

Methods inherited from class accessobject.AccessInformation

getAccessType, getObject, getSubjectName

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Constructor Detail

Access

public Access(java.lang.String SubjectName,

 java.lang.String ObjectName,

 java.lang.String AccessType)

Method Detail

request

public void request()

 Advised by:
usagecontrol.UsageControlInjector.around(accessobject.Access):

Intercept_Request..

close

public void close()

Java Documentation for class AccessInformation
Class AccessInformation

java.lang.Object

 accessobject.AccessInformation

Direct Known Subclasses:
Access, BreakTheGlass, OngoingObligations

public class AccessInformation
extends java.lang.Object
Author:

KESHNEE TODO To change the template for this generated type comment go to Window - Preferences - Java - Code Style - Code
Templates

Field Summary

protected

 java.lang.String

accessType

protected objectName

file:///C:/Thesis_2009/accessobject/Access.html%23close()
file:///C:/Thesis_2009/accessobject/Access.html%23request()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23around(accessobject.Access):%20Intercept_Request..
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23around(accessobject.Access):%20Intercept_Request..
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getAccessType()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getObject()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getSubjectName()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23around(accessobject.Access):%20Intercept_Request..
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23around(accessobject.Access):%20Intercept_Request..
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/BreakTheGlass.html
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23accessType
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23objectName

Appendix C: AOP Documentation

141

 java.lang.String

protected

 java.lang.String

subjectName

Constructor Summary

AccessInformation(java.lang.String subName, java.lang.String OName,

java.lang.String type)

Method Summary

 java.lang.String getAccessType()

 java.lang.String getObject()

 java.lang.String getSubjectName()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

subjectName

protected java.lang.String subjectName

objectName

protected java.lang.String objectName

accessType

protected java.lang.String accessType

Constructor Detail

AccessInformation

public AccessInformation(java.lang.String subName,

 java.lang.String OName,

 java.lang.String type)

Method Detail

getSubjectName

public java.lang.String getSubjectName()

getObject

public java.lang.String getObject()

getAccessType

public java.lang.String getAccessType()

file:///C:/Thesis_2009/accessobject/AccessInformation.html%23subjectName
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23AccessInformation(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getAccessType()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getObject()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getSubjectName()

Appendix C: AOP Documentation

142

Java Documentation for Class BreakTheGlass

Class BreakTheGlass

java.lang.Object

 accessobject.AccessInformation

 usagecontrol.BreakTheGlass

public class BreakTheGlass
extends AccessInformation

Field Summary

Fields inherited from class accessobject.AccessInformation

accessType, objectName, subjectName

Constructor Summary

(package

private)

BreakTheGlass(java.lang.String SubjectName,

java.lang.String ObjectName, java.lang.String AccessType)

Method Summary

(package

private)

 boolean

display()

Methods inherited from class accessobject.AccessInformation

getAccessType, getObject, getSubjectName

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Constructor Detail

BreakTheGlass

BreakTheGlass(java.lang.String SubjectName,

 java.lang.String ObjectName,

 java.lang.String AccessType)

Method Detail

display

file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23accessType
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23objectName
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23subjectName
file:///C:/Thesis_2009/usagecontrol/BreakTheGlass.html%23BreakTheGlass(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/usagecontrol/BreakTheGlass.html%23display()
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getAccessType()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getObject()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getSubjectName()

Appendix C: AOP Documentation

143

boolean display()

AJDocumentation on Aspect IntertypeDeclarationOnAccess
java.lang.Object

 usagecontrol.IntertypeDeclarationOnAccess

public aspect IntertypeDeclarationOnAccess
extends java.lang.Object
Author:

KESHNEE

Declare Summary

declare parents: implements Runnable

 Declared on: accessobject.Access

package Thread
Access.aThread

 Declared on: accessobject.Access

void
Access.endrequest()

 Declared on: accessobject.Access

void
Access.run()

 Declared on: accessobject.Access

Constructor Summary

IntertypeDeclarationOnAccess()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

 Declare Detail

declare parents: implements Runnable

 Declared on: accessobject.Access

Access.aThread

package Thread Access.aThread

 Declared on: accessobject.Access

Access.endrequest()

public void Access.endrequest()

file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html%23declare%20parents:%20implements%20Runnable
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html%23Access.aThread
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html%23Access.endrequest()
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html%23Access.run()
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/IntertypeDeclarationOnAccess.html%23IntertypeDeclarationOnAccess()
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/accessobject/Access.html

Appendix C: AOP Documentation

144

 Declared on: accessobject.Access

Access.run()

public void Access.run()

 Declared on: accessobject.Access

Constructor Detail

IntertypeDeclarationOnAccess

public IntertypeDeclarationOnAccess()

Java Documentation on Class OngoingConditions
java.lang.Object

 accessobject.AccessInformation

 accessobject.Access

 usagecontrol.OngoingConditions

All Implemented Interfaces:
java.lang.Runnable

public class OngoingConditions
extends Access
implements java.lang.Runnable
Author:

PADAYK TODO To change the template for this generated type comment go to Window - Preferences - Java - Code Style - Code
Templates

Field Summary

private

static long

condition
 Controls actions relating to the conditions of access

private

 boolean

stop

Fields inherited from class accessobject.AccessInformation

accessType, objectName, subjectName

Constructor Summary

OngoingConditions(java.lang.String SubjectName, java.lang.String ObjectName,

java.lang.String AccessType)

Method Summary

 boolean conditionisValid()

 void conditionsWarning()

 void endOngoingConditions()

file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23condition
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23stop
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23accessType
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23objectName
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23subjectName
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23OngoingConditions(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23conditionisValid()
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23conditionsWarning()
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23endOngoingConditions()

Appendix C: AOP Documentation

145

 long getCondition()

 void run()

 Advised by:
usagecontrol.UsageControlInjector.after():

OngoingCondition..

Methods inherited from class accessobject.Access

close, request

Methods inherited from class accessobject.AccessInformation

getAccessType, getObject, getSubjectName

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

Field Detail

condition

private static long condition

Controls actions relating to the conditions of access

stop

private volatile boolean stop

Constructor Detail

OngoingConditions

public OngoingConditions(java.lang.String SubjectName,

 java.lang.String ObjectName,

 java.lang.String AccessType)

Method Detail

conditionsWarning

public void conditionsWarning()

getCondition

public long getCondition()

conditionisValid

public boolean conditionisValid()

run

public void run()

 Advised by: usagecontrol.UsageControlInjector.after(): OngoingCondition..

Specified by:

run in interface java.lang.Runnable

endOngoingConditions

file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23getCondition()
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23run()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingCondition..
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingCondition..
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/accessobject/Access.html%23close()
file:///C:/Thesis_2009/accessobject/Access.html%23request()
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getAccessType()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getObject()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getSubjectName()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingCondition..

Appendix C: AOP Documentation

146

public void endOngoingConditions()

Java Documentation on Class OngoingObligations
java.lang.Object

 accessobject.AccessInformation

 usagecontrol.OngoingObligations

All Implemented Interfaces:
java.lang.Runnable

public class OngoingObligations
extends AccessInformation
implements java.lang.Runnable

Field Summary

private

 ImageFrame

OngoingObligationsRequest

 Controls actions relating the OngoingObligations of the Access

Fields inherited from class accessobject.AccessInformation

accessType, objectName, subjectName

Constructor Summary

OngoingObligations(java.lang.String SubjectName, java.lang.String ObjectName,

java.lang.String AccessType)

Method Summary

 void endOngoingObligations()

 void run()

 Advised by:
usagecontrol.UsageControlInjector.after():

OngoingObligation..

Methods inherited from class accessobject.AccessInformation

getAccessType, getObject, getSubjectName

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,

wait, wait, wait

file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/components/ImageFrame.html
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html%23OngoingObligationsRequest
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23accessType
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23objectName
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23subjectName
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html%23OngoingObligations(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html%23endOngoingObligations()
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html%23run()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingObligation..
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingObligation..
file:///C:/Thesis_2009/accessobject/AccessInformation.html
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getAccessType()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getObject()
file:///C:/Thesis_2009/accessobject/AccessInformation.html%23getSubjectName()

Appendix C: AOP Documentation

147

Field Detail

OngoingObligationsRequest

private ImageFrame OngoingObligationsRequest

Controls actions relating the OngoingObligations of the Access

Constructor Detail

OngoingObligations

public OngoingObligations(java.lang.String SubjectName,

 java.lang.String ObjectName,

 java.lang.String AccessType)

Method Detail

run

public void run()

 Advised by: usagecontrol.UsageControlInjector.after(): OngoingObligation..

Specified by:

run in interface java.lang.Runnable

endOngoingObligations

public void endOngoingObligations()

AJDocumentation on Aspect UsageControlInjector
java.lang.Object

 usagecontrol.UsageControlInjector

public aspect UsageControlInjector
extends java.lang.Object

Pointcut Summary

(package

private)
Intercept_Request(accessobject.Access)

(package

private)
OngoingCondition()

(package

private)
OngoingAccess()

(package

private)
OngoingObligation()

Advice Summary

around(accessobject.Access): Intercept_Request..

 Advises: accessobject.Access.request

after(): OngoingCondition..

 Advises: usagecontrol.OngoingConditions.run

after(): OngoingAccess..

 Advises: accessobject.Access

after(): OngoingObligation..

 Advises: usagecontrol.OngoingObligations.run

file:///C:/Thesis_2009/components/ImageFrame.html
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingObligation..
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23Intercept_Request(accessobject.Access)
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23OngoingCondition()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23OngoingAccess()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23OngoingObligation()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23around(accessobject.Access):%20Intercept_Request..
file:///C:/Thesis_2009/accessobject/Access.html%23request()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingCondition..
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23run()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingAccess..
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23after():%20OngoingObligation..
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html%23run()

Appendix C: AOP Documentation

148

Field Summary

private Access accessObject

private

static boolean
accessOpen

private

 java.lang.Thread
accessThread

private

 java.lang.String
AccessType

private

 java.lang.Thread
conditionsThread

private

 java.lang.String
ObjectName

private

 java.lang.Thread
obligationsThread

private

 OngoingConditions
OnConditions

private

 OngoingObligations
Onobligations

private

static boolean
preCondition

private

 java.lang.String
SubjectName

Constructor Summary

UsageControlInjector()

Method Summary

(package

private)

 boolean

breakTheGlass(java.lang.String SubjectName, java.lang.String ObjectName,

java.lang.String AccessType)

(package

private)

 void

initiateBreakTheGlassFacility()

(package

private)

 void

logAccess(java.lang.String SubjectName, java.lang.String ObjectName,

java.lang.String AccessType, java.lang.String Notice,

java.lang.String RedFlag)

 boolean OptimisticRights()

(package

private)

 void

postAccess()

 void postObligations(java.lang.String SubjectName, java.lang.String ObjectName,
java.lang.String AcccessType)

file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23accessObject
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23accessOpen
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23accessThread
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23AccessType
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23conditionsThread
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23ObjectName
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23obligationsThread
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23OnConditions
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23Onobligations
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23preCondition
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23SubjectName
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23UsageControlInjector()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23breakTheGlass(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23initiateBreakTheGlassFacility()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23logAccess(java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23OptimisticRights()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23postAccess()
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23postObligations(java.lang.String,%20java.lang.String,%20java.lang.String)

Appendix C: AOP Documentation

149

(package

private)

 boolean

preConditions(java.lang.String SubjectName, java.lang.String ObjectName,

java.lang.String AccessType)

(package

private)

 boolean

preObligations(java.lang.String SubjectName, java.lang.String ObjectName,

java.lang.String AccessType)

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,

wait, wait

Pointcut Detail

Intercept_Request(accessobject.Access)

OngoingCondition()

OngoingAccess()

OngoingObligation()

Advice Detail

around

around(accessobject.Access): Intercept_Request..

 Advises: accessobject.Access.request

after

after(): OngoingCondition..

 Advises: usagecontrol.OngoingConditions.run

after

after(): OngoingAccess..

 Advises: accessobject.Access

after

after(): OngoingObligation..

 Advises: usagecontrol.OngoingObligations.run

file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23preConditions(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/usagecontrol/UsageControlInjector.html%23preObligations(java.lang.String,%20java.lang.String,%20java.lang.String)
file:///C:/Thesis_2009/accessobject/Access.html%23request()
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html%23run()
file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html%23run()

Appendix C: AOP Documentation

150

Field Detail

accessOpen

private static boolean accessOpen

preCondition

private static boolean preCondition

obligationsThread

private java.lang.Thread obligationsThread

conditionsThread

private java.lang.Thread conditionsThread

accessThread

private java.lang.Thread accessThread

accessObject

private Access accessObject

OnConditions

private OngoingConditions OnConditions

Onobligations

private OngoingObligations Onobligations

SubjectName

private java.lang.String SubjectName

ObjectName

private java.lang.String ObjectName

AccessType

private java.lang.String AccessType

Constructor Detail

UsageControlInjector

public UsageControlInjector()

Method Detail

OptimisticRights

public boolean OptimisticRights()

initiateBreakTheGlassFacility

void initiateBreakTheGlassFacility()

preObligations

boolean preObligations(java.lang.String SubjectName,

 java.lang.String ObjectName,

 java.lang.String AccessType)

preConditions

boolean preConditions(java.lang.String SubjectName,

 java.lang.String ObjectName,

 java.lang.String AccessType)

postAccess

void postAccess()

postObligations

public void postObligations(java.lang.String SubjectName,

 java.lang.String ObjectName,

file:///C:/Thesis_2009/accessobject/Access.html
file:///C:/Thesis_2009/usagecontrol/OngoingConditions.html
file:///C:/Thesis_2009/usagecontrol/OngoingObligations.html

Appendix C: AOP Documentation

151

 java.lang.String AcccessType)

breakTheGlass

boolean breakTheGlass(java.lang.String SubjectName,

 java.lang.String ObjectName,

 java.lang.String AccessType)

logAccess

void logAccess(java.lang.String SubjectName,

 java.lang.String ObjectName,

 java.lang.String AccessType,

 java.lang.String Notice,

 java.lang.String RedFlag)

Source Code for class Access

package accessobject;

import javax.swing.UIManager;

import components.image;

public class Access extends AccessInformation{

 public void request(){

 System.out.println("Inside request");

 UIManager.put("swing.boldMetal", Boolean.FALSE);

 image.createAndShowGUI(objectName);

 }

 public Access(String SubjectName, String ObjectName, String AccessType) {

 super(SubjectName, ObjectName, AccessType) ;

 }

 public void close(){

 image.close();

 }

}

Source code class AccessInformation
package accessobject;

public class AccessInformation {

 protected String subjectName;

 protected String objectName;

 protected String accessType;

 public AccessInformation(String subName, String OName, String type) {

 subjectName = subName;

 objectName = OName;

 accessType = type;

 }

 public String getSubjectName()

 {

 return subjectName;

 }

 public String getObject()

 {

 return objectName;

 }

 public String getAccessType()

 {

 return accessType;

 }

}

Appendix C: AOP Documentation

152

Source Code for BreakTheGlass
package usagecontrol;

import javax.swing.ImageIcon;

import javax.swing.JOptionPane;

import accessobject.AccessInformation;

public class BreakTheGlass extends AccessInformation{

 /**

 * Provides the BreakTheGlass Interface

 */

BreakTheGlass(String SubjectName, String ObjectName, String AccessType) {

 super(SubjectName,ObjectName,AccessType);

}

boolean display(){

String message = "<html>" + subjectName +" are you SURE <font

color=black>" +

 "you want to continue with this access?"

 +"
(a) This access will be RED-FLAGGED!!!"

 +"
(b) You will have to justify this usage to the system administrator" ;

 ImageIcon icon = new ImageIcon("c:\\test0\\policestop.gif");

 int answer = JOptionPane.showConfirmDialog(null, message,"BREAK THE GLASS IN CASE OF

 EMERGENCY",

 JOptionPane.YES_NO_OPTION,JOptionPane.INFORMATION_MESSAGE, icon);

 if (answer == JOptionPane.YES_OPTION) {

 return true;

 }

 else if (answer == JOptionPane.NO_OPTION) {

 return false;

 }

 return false;

 }

}

Source code for InterTypeDeclarationOnAccess

package usagecontrol;

import javax.swing.UIManager;

import accessobject.*;

import components.image;

/**

 * @author KESHNEE

 *

 * TODO To change the template for this generated type comment go to Window -

 * Preferences - Java - Code Style - Code Templates

 */

public aspect IntertypeDeclarationOnAccess {

 declare parents: Access implements Runnable;

 Thread Access.aThread;

 public void Access.endrequest() {

 aThread = null;

 close();

 }

 public void Access.run() {

 aThread = Thread.currentThread();

 UIManager.put("swing.boldMetal", Boolean.FALSE);

 image.createAndShowGUI(getObject());

 // Keep going as long as myThread is the same as the current thread.

 while (image.WindowOpen) {

 try {

 Thread.sleep(500); // Tell the thread to sleep for half

 }

 catch (InterruptedException e) {}

 }

 if (!image.WindowOpen){

 endrequest();

 }

 }

}

Appendix C: AOP Documentation

153

 }

 return false;

 }

}

Source code for OngoingConditions
package usagecontrol;

import javax.swing.*;

import accessobject.*;

/**

 * @author PADAYK

 *

 * TODO To change the template for this generated type comment go to

 * Window - Preferences - Java - Code Style - Code Templates

 */

public class OngoingConditions extends Access implements Runnable{

 /**

 * Controls actions relating to the conditions of access

 */

 private static long condition = 0;

 private volatile boolean stop = false;

 public OngoingConditions(String SubjectName, String ObjectName, String AccessType) {

 super(SubjectName,ObjectName,AccessType);

 }

 // This will terminate the run() method.

 public void conditionsWarning(){

 ImageIcon icon = new ImageIcon("c:\\icons\\warn1.gif");

 String message = "<html> "+ subjectName

 +", is PROHIBITED "

 +"from accessing client file: " + objectName + " after working hours";

 JOptionPane.showMessageDialog(null, message ,"CONDITIONS WARNING",

 JOptionPane.INFORMATION_MESSAGE,icon);

 }

 public long getCondition(){

 condition++;

 return condition;

 }

 public boolean conditionisValid(){

 condition++;

 if (condition%10 == 0)

 return false;

 else

 return true;

 }

 public void run() {
 Thread aThread = Thread.currentThread();

 while(!stop && conditionisValid()){

 try {

 Thread.sleep(1000); // Tell the thread to sleep for a second.

 }

 catch (InterruptedException e) {}

 }

 if (!stop){

 conditionsWarning();

 }

 }

 public void endOngoingConditions(){

 stop = true;

 }

}

Appendix C: AOP Documentation

154

Source Code for OngoingObligations

import java.awt.Color;

import javax.swing.ImageIcon;

import components.ImageFrame;

import accessobject.Access;

import accessobject.AccessInformation;

public class OngoingObligations extends AccessInformation implements Runnable{

 /**

 * Controls actions relating the OngoingObligations of the Access

 */

 private ImageFrame OngoingObligationsRequest;

 public OngoingObligations(String SubjectName, String ObjectName, String AccessType) {

 super(SubjectName,ObjectName,AccessType);

 }

 public void run() {

 Thread aThread = Thread.currentThread();

 String Message = "<html>" + subjectName+ " ACCESSING...client file:

 "

 + objectName + " WITH RIGHTS "+ accessType+".
 ";

 Message.toUpperCase();

 ImageIcon icon = new ImageIcon("c:\\files\\OBS.jpg");

 OngoingObligationsRequest = new ImageFrame(600,300,400,400,"Ongoing

 Obligations",Message,icon);

 OngoingObligationsRequest.setForeground(Color.BLUE);

 OngoingObligationsRequest.setResizable(false);

 // Keep going as long as myThread is the same as the current thread.

 System.out.println("Obligations Window"+objectName);

 while (OngoingObligationsRequest.windowOpen()) {

 try {

 Thread.sleep(500); // Tell the thread to sleep for half a second.

 }

 catch (InterruptedException e) {}

 }

 endOngoingObligations();

 }

 public void endOngoingObligations(){

 if (OngoingObligationsRequest.windowOpen()){

 OngoingObligationsRequest.close();

 }

 }

 }

 stop = true;

 }

}

Source code for class UsageControlInjector

package usagecontrol;

import javax.swing.JOptionPane;

import javax.swing.ImageIcon;

import testutilities.*;

import accessobject.Access;

import components.CheckBox;

public aspect UsageControlInjector {

 private static boolean accessOpen;

 private static boolean preCondition = true;

 private Thread obligationsThread;

 private Thread conditionsThread;

 private Thread accessThread;

 private Access accessObject;

 private OngoingConditions OnConditions;

 private OngoingObligations Onobligations;

 private String SubjectName;

 private String ObjectName;

 private String AccessType;

 pointcut Intercept_Request(Access AccessObject):

Appendix C: AOP Documentation

155

 execution(* *.request(..)) && !within(UsageControlInjector)

 && target(AccessObject) ;

 void around (Access AccessObject): Intercept_Request(AccessObject){

 Runtime runtime = Runtime.getRuntime();

 MemoryUsage.printUsage(runtime);

 accessOpen = true;

 accessObject = AccessObject;

 SubjectName = accessObject.getSubjectName();

 ObjectName = accessObject.getObject();

 AccessType = accessObject.getAccessType();

 if (OptimisticRights()){

 if (preObligations(SubjectName, ObjectName, AccessType))

 {

 if (preConditions(SubjectName, ObjectName, AccessType)

 || breakTheGlass(SubjectName, ObjectName, AccessType)){

 accessThread = new Thread(AccessObject);

 accessThread.start();

 Onobligations = new OngoingObligations(SubjectName, ObjectName, AccessType);

 obligationsThread = new Thread(Onobligations);

 obligationsThread.start();

 OnConditions = new OngoingConditions(SubjectName,ObjectName,AccessType);

 conditionsThread = new Thread(OnConditions);

 conditionsThread.start();

 while(accessOpen){

 try {

 Thread.sleep(500);

 } catch (InterruptedException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 postObligations(SubjectName,ObjectName,AccessType);

 }

 }

 }

 MemoryUsage.printUsage(runtime);

 }

 public boolean OptimisticRights(){

 //determine whether this information is subject to optimistic access control

 return true;

 }

 // when there is conditions warning

 pointcut OngoingCondition(): call(* *.conditionsWarning(..)) && target(OngoingConditions);

 after(): OngoingCondition(){

 initiateBreakTheGlassFacility();

 }

 // when the access ends

 pointcut OngoingAccess() : call(* *.endrequest(..)) && target(Access) &&

!within(UsageControlInjector);

 after(): OngoingAccess(){

 postAccess();

 }

 // when the user ends ongoingobligations

 pointcut OngoingObligation() : call(* *.endOngoingObligations(..)) &&

target(OngoingObligations) && !within(UsageControlInjector);

 after(): OngoingObligation(){

 postAccess();

 }

 void initiateBreakTheGlassFacility(){

 if (!breakTheGlass(OnConditions.getSubjectName(), OnConditions.getObject(),

OnConditions.getAccessType())){

 Onobligations.endOngoingObligations();

 postAccess();

 }

 }

Appendix C: AOP Documentation

156

 boolean preObligations(String SubjectName, String ObjectName, String AccessType){

 ImageIcon icon = new ImageIcon("c:\\icons\\hand.gif");

 String message = "<html>" + SubjectName + ", if you click YES " +

 " you agree to NOT" +

 " distribute client file: "

 + ObjectName;

 int answer = JOptionPane.showConfirmDialog(null, message,"PRE-OBLIGATIONS",

 JOptionPane.YES_NO_OPTION,JOptionPane.WARNING_MESSAGE,icon);

 if (answer == JOptionPane.YES_OPTION) {

 return true;

 }

 else if (answer == JOptionPane.NO_OPTION) {

 return false;

 }

 return false;

 }

 boolean preConditions(String SubjectName, String ObjectName, String AccessType){

 if (preCondition) {

 ImageIcon icon = new ImageIcon("c:\\icons\\warn1.gif");

 String message = "<html> " + SubjectName +", "

 +" PROHIBITED from accessing client file: " +

 ObjectName + " at this time !" ;

 JOptionPane.showMessageDialog(null, message ,"PRE-CONDITIONS WARNING",

 JOptionPane.INFORMATION_MESSAGE,icon);

 preCondition = false;

 return false;

 }

 return true;

 }

 void postAccess(){

 accessOpen = false;

 accessObject.endrequest();

 Onobligations.endOngoingObligations();

 OnConditions.endOngoingConditions();

 //update logs

 }

 public void postObligations(String SubjectName, String ObjectName, String AcccessType){

 CheckBox.createAndShowGUI();

 }

 boolean breakTheGlass(String SubjectName, String ObjectName, String AccessType){

 BreakTheGlass breakTheGlass = new BreakTheGlass(SubjectName,ObjectName,AccessType);

 if (breakTheGlass.display()){

 logAccess(SubjectName,ObjectName,AccessType,"Illegal Access", "YES");

 return true;

 }

 return false;

 }

 void logAccess(String SubjectName, String ObjectName, String AccessType, String Notice,

String RedFlag){

 //WRITE TO LOG FILE

 }

}

Appendix D: Prototype Evaluation

157

APPENDIX D:
 PROTOTYPE EVALUATION

D1. Research Methodology

The Design Science Research method was applied. This methodology involves problem

identification, design and development, and an evaluation.

D.2 Problem Statement

To validate the concept elucidation of the OAC(UCON) model via evaluative prototyping and

to determine if the OAC(UCON) model is perceived as an effective countermeasure against

data misuse.

D.3 Design and Development

The product concept was implemented by the researcher using both object-oriented and

aspect-oriented techniques. However, in order to remove researcher bias, the product

concept was introduced to 14 Honours students at the University of Pretoria. They were not

shown the working version as to not to bias their judgement of the concept. Furthermore,

as the model was intended to scale up to a real-world scenario, the product specification

was placed in a context where optimistic access control enhanced with usage control was

viewed within a traditional role-based access control with trust measures. The participants

were not expected to use the aspect-oriented approach, as this concept is not currently

taught in the syllabus.

Appendix D: Prototype Evaluation

158

Participants were given the following specification as a term assignment:

Using an appropriate open source database application, you will create a simple database to

store information about a typical organisation with employees and clients to be serviced. A

client record includes inter alia the name, occupation, employer, address, contact details

and account details of the client. The employee record includes inter alia the name, salary

and period of employment of employees. You will use SQL statements to query the

database.

For collaborative purposes the client information is relegated to the public domain, while

the employee data is protected by role-based access controls. You need to enforce mixed

initiative access controls when the user attempts to access the database.

If the user attempts to access data in the public domain, then he/she is subject to the

following usage control mechanisms:

Pre-obligation: The user must click on a button in a dialog box, thereby indicating that

he/she agrees not to distribute this information.

Pre-condition: This information may be accessed during business hours only.

Ongoing obligation: A window with the following warning “This dataset must be used

EXCLUSIVELY for work-related purposes” is to remain open while the user accesses the

information.

Ongoing condition: This information may be accessed during business hours only (same as

pre-condition, as it is time dependent). While the pre-condition may have been valid at the

time of access, it may become invalid during the access.

Post-obligation: The user must send an e-mail to the administrator if he accessed these

databases outside of business hours.

Break-the-glass (BTG): While the user will not be permitted to access the information

unless the obligations have been satisfied, he/she will under special circumstances be

allowed to access it by utilising the BTG facility even if the pre-conditions or ongoing

conditions are invalid.

Post-update: A user’s rights to information in the public domain can be modified based on

prior usage. Your program should log all access in such a way that there is a secure audit

Appendix D: Prototype Evaluation

159

trail. At the onset each user has a trust level of high. However, as they demonstrate their

untrustworthiness, the level is downgraded to medium and finally to low. As their trust level

drops, they lose their rights to information in the public domain – i.e. information that they

are allowed to access is limited. Users with a medium trust level can access most

information except for account information. Users with a low trust level are not allowed to

view account information or contact details. They can be limited to view less sensitive

details such as the client's name, occupation, etc.

After the user has accessed the database, his/her trust level is updated by using fuzzy logic.

For test purposes, each access can be given a random priority [0, 1]. If the BTG facility was

deployed by the user, then the trust level [0,1] is updated, dependent on the priority of the

task and the user's previous trust level using the fuzzy matrix given below.

High Medium Low

High

Trust level

remains High

Trust level

downgraded to

Medium

Trust level downgraded

to Medium

Medium Trust level

remains Medium

Trust level

downgraded to Low

Trust level downgraded

to Low

Low Trust level

remains Low

Trust level remains

Low

Trust level remains Low

The employee records are protected by role-based access controls. In this system there are

three roles, namely manager, administrator and user. The manager can read, delete and

update an employee record, whereas an administrator can read and update an employee

record. Users can read employee records, but all salary information is concealed.

You need to authenticate users (by means of passwords) and stipulate access control

policies for the data in the database. If you prefer Java as your language of implementation,

Priority of Task

Previous Trust Level

Appendix D: Prototype Evaluation

160

you could use the Java Sandbox model [9] to authenticate users and stipulate access control

policies for the data in the database.

You will need to create a policy file to grant permissions to authenticated users.

You will need to create a login configuration file for authentication.

D.4 Evaluation

This small-scale experiment will test the theory that users’ interaction with the prototype

will be perceived as an effective countermeasure against data misuse. In order to test the

hypothesis, two qualitative data collections will be employed, namely participant

observation and open-ended interviewing.

Observation: The idea with participant observation is to determine whether access control

measures were implemented successfully.

Qualitative Interview: A qualitative interview is to be conducted to determine the

developer's perceptions of the appeal of the prototype in terms of data misuse.

Qualitative Questionnaire: Participants were asked to address the following in terms of the

model concept: Weaknesses, Strengths, Improvements, Viability, Applicability, Scalability.

Appendix D: Prototype Evaluation

161

EVALUATION

 Indicate whether you agree or disagree with the following statements and give reasons for your answer.

Statements Agree/
Disagree

The product specifications as given in the assignment were ambiguous and incomplete.

Agree []
Disagree []

Reason:

The product specifications as given in the assignment could easily be translated into an
implementable product.

Agree []
Disagree []

Reason:

In terms of the enforcement of security, other mechanisms such as a written policy
document or adequate training would have been more effective than the mechanisms
identified in the product concept.

Agree []
Disagree []

Reason:

The flexibility offered under the optimistic access control domain is a security risk.

Agree []
Disagree []

Reason:

Specifying system conditions – such as limiting access according to the time of day – may
deter users from abusing their privileges.

Agree []
Disagree []

Reason:

The 'Break-the-Glass' facility is vulnerable to abuse.

Agree []
Disagree []

Reason:

The protection mechanisms – such as fulfilling obligations – will compel users to comply
with the established rules of behaviour in order to protect confidential information.

Agree []
Disagree []

Reason:

An individual who interacts with the system will recognise that access is dependent on user
responsibility as well as technical access control.

Agree []
Disagree []

Reason:

The risk of losing one's rights to information under the optimistic access control domain
may deter one from abusing one's privileges.

Agree []
Disagree []

Reason:

The conditions, obligations and the Break-the-Glass mechanisms may be distracting to a
user.

Agree []
Disagree []

Reason:

Appendix D: Prototype Evaluation

162

Most users will ignore the messages in terms of the conditions and obligations relating to
access.

Agree []
Disagree []

Reason:

Any other comments or critique

Appendix D: Prototype Evaluation

163

D.5 Overview of the Experiment-and-evaluation-of-use study and its
application

Sessions

Several separate sessions were held at the laboratory of the School of Computer Science.

Each session was attended by one participant and lasted approximately 30 minutes. Prior to

their individual session, participants were given the concept specification to implement as a

term assignment. Each participant then had to demonstrate his/her working product and

provide value judgements on the model concept.

Steps involved

The participants were given the following test cases to carry out in order to interact with the

prototype, while the researcher observed:

1. An authorised user accessing data under the public domain is allowed to read client

data but is subject to pre-conditions, pre-obligations, ongoing obligations, ongoing

conditions and post-obligations (simulate instances where the pre-conditions and

ongoing conditions are not satisfied).

2. An unauthorised user is not able to access any data.

3. An authorised user is subject to role-based access control policies when accessing

the employee data.

4. User's optimistic rights are downgraded.

The participants were then asked several open-ended questions regarding the usability and

perceived effectiveness of the product as a security countermeasure [see questions in D.4

above].

Validity

Postgraduate students were used to develop and evaluate the model concept in view of the

fact that they have extensive knowledge in information systems and are currently

employable. Seeing that some of these students are already employed within the

Appendix D: Prototype Evaluation

164

information systems sector, their profile can serve as a profile of user representatives in

systems development.

Appendix E: Data Collection

165

APPENDIX E:
DATA COLLECTION

Statement1: The product specifications as given in the assignment were ambiguous and incomplete.

Participant Responses Agree Disagree

A In fact, I just followed the instructions incorporating minimal
creativity from class discussions

 YES

B It was sufficient YES

C It was relatively open-ended but not incomplete YES

D I was able to implement it early YES

E Much was left to (mis) interpretation YES

F I think it was good but the concept of priorities should be stated
more

 YES

G All the aspects of the system has been explained clearly YES

H To a certain extent because it did not give explicit rules of the break
the glass

YES

I NO RESPONSE YES

J RBAC and optimistic access control were clearly specified except for
how priority is assigned

 YES

K The assignment was straightforward YES

L NO RESPONSE YES

M All specifications were easy to understand and implement into a
system

 YES

N I found the project brief very complete, although I think the system
would need more to be commercially viable

 YES

Appendix E: Data Collection

166

Statement 2: The product specifications as given in the assignment could easily be translated into an
implementable product.

Participant RESPONSE Agree Disagree

A Well, I wouldn't really know, not really an expert on access control in
commercial environments

YES

B It was properly adapted for the size and situation YES

C NO RESPONSE YES

D NO RESPONSE YES

E No Issues YES

F Yes I think it can be used in certain types of industry YES

G Since it was enough to implement the prototype, given that it is scaled
up, the real product could be implemented

YES

H yes but it can only scale to certain levels YES

I NO RESPONSE YES

J Specification was detailed enough YES

K It is close to that point upon completion YES

L NO RESPONSE YES

M Specifications were easy to divide into implementable components YES

N Yes, if tested properly, and robust for users to define new conditions YES

Statement 3: In terms of the enforcement of security, other mechanisms such as, a written policy document
or adequate training would have been more effective than the mechanisms identified in the product
concept.

Participant Response Agree Disagree

A Usage based as implemented in the project is just kinda[sic] weak,
Maybe if the break the glass facility were removed entirely

YES

B PB: They are simpler to ignore YES

C The other mechanisms added to the current mechanisms can make
the overall product more effective but,..

 YES

D A companies trust of their employees should have some evaluation
criteria

 YES

E Depends on the environment. Ideally both should be used YES

F Inforcing[sic] it this way I think would be more effective YES

G NO RESPONSE YES

H Written policy can be present but they[sic] is not constant reminder
like in a automated system

 YES

I NO RESPONSE YES

J Learning curve maybe too steep for the average people, requiring
training

YES

K If used in addition it would be more secure YES

L With the prototype concept it enables administrators to track user
actions

 YES

M The main security risk still lies with the user and no amount of training
can truly provide security against human stupidity

 YES

N No personal ethics would still be basis for decisions made by
personnel. An agreement etc. would be acceptable in court

 YES

Appendix E: Data Collection

167

Statement 4: The flexibility offered under the optimistic access control domain is a security risk.

Participant Response Agree Disagree

A It really all depends on what you are guarding and if the users are being
monitored

YES

B Never give a user more slack than the minimum YES

C it might, depending on the level of confidentiality of the data YES

D The users might see and distribute sensitive data YES

E Should be controlled through other means YES

F In some cases I think letting people access data with BTG can cause
major harm

YES

G The information can be abused with optimistic access control YES

H Because it is subject to evaluation by a human YES

I It can be because they is no monitor to ensure that risk free activities
are done

YES

J Too much data is allowed to be viewed YES

K NO RESPONSE YES

L But it depends on the nature of the organisations and its data YES

M If used intelligently a lot of information can be accessed without dire
consequences

YES

N No certain environment require that flexibility such the medical industry YES

Statement 5: Specifying system conditions, such as limiting access according to the time-of-day, may deter users
from abusing their privileges.

Participant Response Agree Disagree

A The threat of losing trust would deter me, if I really wanted to get in I
would rather just try avoid the access control system

YES

B It may, the key being "may" YES

C NO RESPONSE YES

D Error dialogues might frighten some uses and deter them from
continuing

YES

E Depends on the consequences of violating them YES

F If people want to abuse their privileges they can do it during work hours YES

G Since ignoring the restrictions would lead to degradation of trust YES

H Yes but what about a situation when a company works overtime YES

I NO RESPONSE YES

J As long as the user is aware of these issues it will deter them YES

K Users should be less likely to abuse their privileges during working hours YES

L It will give a user a feeling that they are doing something wrong YES

M A person would mostly try to be unseen when doing misconduct and
that the easiest after hours

YES

N No, not if defined correctly and the BTG functionality provides
alternatives

 YES

Appendix E: Data Collection

168

Statement 6: The 'break the glass' facility is vulnerable to abuse.

Participant Responses Agree Disagree

A Most definitely in my implementation it relied mostly on the threat of an
admin stepping in after the event

YES

B NO RESPONSE YES

C The trust level drops too quickly YES

D The trust level drops YES

E Necessary nonetheless YES

F Yes, I think some user will abuse the BTG feature YES

G Not if the task at hand is of low priority YES

H Because you can use it to get back at employee when di[sic] YES

I Everything is logged and the user will be monitored YES

J The priority of requests need to be better refined YES

K To the extent that everything is vulnerable to abuse YES

L NO RESPONSE YES

M As stated above, if used correctly a lot of information can be accessed
without dire consequences

YES

N No, not if the manager/auditor does not abuse the system by allowing
any situation or accepting any reason

YES

Statement 7: The protection mechanisms, such as fulfilling obligations, will compel users to comply with the
established rules of behaviour in order to protect confidential information.

Participant Responses Agree Disagree

A Nobody reads EULAs YES

B Well it does YES

C It might, do a user test YES

D This would have to be tested as the users think and act differently YES

E Depends on the implementation of those obligations YES

F If not doing degrades their access right it will compel the users to comply
with it

YES

G NO RESPONSE YES

H NO RESPONSE YES

I NO RESPONSE YES

J Users are intimidated by warning usually YES

K It adds a sense of responsibility YES

L But only if the user is trustworthy. YES

M Because ignorance is not an excuse anymore YES

N Yes YES

Appendix E: Data Collection

169

Statement 8: An individual who interacts with the system will recognize that access is dependent on user
responsibility as well as technical access control.

Participant Responses Agree Disagree

A The warning should be a clear indication YES

B NO RESPONSE YES

C This depends on the level of knowledge the user have of the trust-based
system

YES

D The trust level indication YES

E Don't assume users are responsible YES

F As a user uses it for some time. I think he will get accustomed to
responsible usage of the sys

YES

G NO RESPONSE YES

H Yes, because the constant prompts YES

I NO RESPONSE YES

J Technical side may be obvious e.g. audit logs YES

K See above YES

L They might notice that their amount of actions they can performs
degrades

YES

M This will only be the case for the majority if it is explained clearly at the
beginning

 YES

N Yes YES

Statement 9: The risk of losing one's rights to information under the optimistic access control domain may deter
one from abusing one's privileges.

Participant Responses Agree Disagree

A Although it depends what their ultimate goal is. I.e. if they are planning
on quitting the next day, they should even care

YES

B Depends on the information content and nature. Also user registration *

C NO RESPONSE YES

D If the information is vital to the user YES

E Only if the information is wanted but not needed YES

F If not fulfilling obligation reduces their access rights they will be careful
with the use of data

YES

G Since the user can't see sensitive info YES

H Yes fear is always a deterrent YES

I NO RESPONSE YES

J Lets the user know when can go wrong and violate privileges YES

K NO RESPONSE YES

L If the user's goal is to steal data, it won't prevent them from doing so YES

M If your actions are logged that caused it , you have a higher possibility of
being caught

YES

N Yes YES

* - NO RESPONSE

Appendix E: Data Collection

170

Statement 10: The conditions, obligations and the break-the-glass mechanisms may be distracting to a user.

Participant Responses Agree Disagree

A It depends on the user, I say disagree because I suspect most users
will simply ignore the mechanisms and they will lose their meaning
anyway

 YES

B If they want the info. they won't mind YES

C It is quite distracting at times, as all error messages/info messages
are.

YES

D At first, last they might ignore it User testing again is vital here YES

E Depends on the implementation of UI YES

F To some extent if they are many YES

G NO RESPONSE YES

H Constant popups are distracting to the user YES

I It might be a bit strange at first but the user should be able to get
use to it

 YES

J This is needed to deter users YES

K NO RESPONSE YES

L It will only effect them when they log in and go past business hours YES

M Windows vista used a similar approach with permission popups and
must users disabled this security feature due to annoyance

YES

N PN: If the conditions are important enough, it should not YES

Statement 11: Most users will ignore the messages in terms of the conditions and obligations relating to the
access.

Participant Responses Agree Disagree

A Once they learn which sequence of buttons to press to get to the
required result, why would they bother reading? Or caring for that
matter

YES

B True, do you ever read the agreement when you start YES

C Depends on what they know about the consequences of ignoring
them

 YES

D If the user is forced to give response to the message YES

E Will after repeated exposure but then users will know its contents YES

F NO RESPONSE YES

G NO RESPONSE YES

H Yes until they are warned that they will loose[sic] access YES

I They might at first but once they notice that is limits their access
after it will be taken seriously

 YES

J Most sensible users will feel threaten by the messages YES

K Initially they will pay heed, but later it becomes routine YES

L Most users will just want to get the data to do their work YES

M This will only happen if the consequences are not clearly specified YES

N Yes but the responsibility still lies with the them and holds them
accountable

YES

Appendix F: Aspect J Semantics

171

APPENDIX F:
 ASPECTJ SEMANTICS

The following list of pointcut designators describe only those designators that were used in
the context of thesis:

Wildcards

Type names that contain the two wildcards "*" and ".." are also type patterns. The *

wildcard matches zero or more characters except for ".", so it can be used when types have

a certain naming convention.

Operators

Pointcuts compose through the operations or (“||”), and (“&&”) and not (“!”)

Cited from:

1. Kiczales, G., et al. An Overview of AspectJ. In ECOOP '01: Proceedings of the 15th

 European Conference on Object-Oriented Programming. 2001. Budapest, Hungary:

 Springer-Verlag. p. 327-353

2. http://www.eclipse.org/aspectj/doc/released/progguide/semantics- pointcuts.html

 (Last accessed 1 October 2009)

call(signature)

execution(signature)

Matches call/execution joinpoints at which the
method or constructor matches the signature

target(ClassName) All the join points where the object on which the

method called is an instance of ClassName

within(className) matches join points of any kind at which the
currently executing code is contained with
ClassName

declare parents: ClassName

implements InterfaceName

declares the ClassName type to implement the
InterfaceName Interface

Appendix G: Running Demo Project

172

APPENDIX G:
 RUNNING DEMO PROJECT

Go to:

http://cs-cert.unisa.ac.za/internet/keshnee/content.html

Instructions for Running Demo:

 (1) Create a directory called test0 on your C drive

(2) Unzip test0.zip to into test0 directory

(3) Search for aoptest.exe in directory test0 and double click to run

(4) Read Manual.pdf for more details on the operation of the software

This software was built using:
Aspect J version 1.4.0
Eclipse version 3.2
Java SDK 1.4.2_05

http://cs-cert.unisa.ac.za/internet/keshnee/content.html
test0.zip
Manual.pdf

