Niching in Particle Swarm Optimization
by

Isabella Lodewina Schoeman

Submitted in partial fulfillment of the requirements for the degree
Philosophiae Doctor
in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria, Pretoria

June 2010

© University of Pretoria

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

Niching in Particle Swarm Optimization

by

Isabella Lodewina Schoeman

E-mail: lona.schoeman@gmail.com

Abstract

Optimization forms an intrinsic part of the design and implementation of modern systems.
such as industrial systems, communication networks, and the configuration of electric or elec-
tronic components. Population-based single-solution optimization algorithms such as Particle
Swarm Optimization (PSO) have been shown to perform well when a number of optimal or
suboptimal solutions exist. However, some problems require algorithms that locate all or most
of these optimal and suboptimal solutions. Such algorithms are known as niching or speciation
algorithms.

Several techniques have been proposed to extend the PSO paradigm so that multiple optima
can be located and maintained within a convoluted search space. A significant number of these
implementations are subswarm-based, that is, portions of the swarm are optimized separately.
Niches are formed to contain these subswarms, a process that often requires user-specified
parameters, as the sizes and placing of the niches are unknown. This thesis presents a new
niching technique that uses the vector dot product of the social and cognitive direction vectors
to determine niche boundaries. Thus, a separate niche radius is calculated for each niche, a
process that requires minimal knowledge of the search space. This strategy differs from other
techniques using niche radii where a niche radius is either required to be set in advance. or
calculated from the distances between particles.

The development of the algorithm is traced and tested extensively using synthetic bench-
mark functions. Empirical results are reported using a variety of settings. An analysis of
the algorithm is presented as well as a scalability study. The performance of the algorithm
is also compared to that of two other well-known PSO niching algorithms. To conclude, the

vector-based PSO is extended to locate and track multiple optima in dvnamic environments.

Keywords: Niching, speciation, particle swarm optimization, dynamic.

Supervisor
Department

Degree

.
.

.
.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

Prof. A. P. Engelbrecht

Department of Computer Science

: Philosophiae Doctor

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

Niching in Particle Swarm Optimization

by

Isabella Lodewina Schoeman

E-mail: lona.schoeman@gmail.com

Opsomming

Optimering vorm 'n intrinsieke deel van die ontwerp en implementering van moderne stelsels
soos industriéle stelsels, kommunikasienetwerke en die konfigurasie van elektriese of elektroniese
komponente. Populasiegebaseerde, enkel-oplossing optimeringsalgoritmes soos Partikel Swerm
Optimering (PSO) het reeds getoon dat dit goeie resultate lewer indien 'n aantal optimale
of suboptimale oplossings bestaan. Sommige probleme vereis egter algoritmes wat al hierdie
optimale en suboptimale oplossings, of die meeste daarvan, opspoor. Sulke algoritmes staan
bekend as algoritmes vir nisvorming of spesiasie.

Verskeie tegnieke is voorgestel om die PSO paradigma uit te brei sodat veelvuldige op-
tima opgespoor en onderhou kan word in 'n soekruimte met talle hoogtepunte of pieke. 'n
Betekenisvolle aantal van sulke implementasies is subswerm-gebaseerd, wat beteken optimering
van gedeeltes van die swerm vind afsonderlik plaas. Nisse word gevorm om hierdie subswerms
in te sluit, 'n proses wat dikwels gebruiker-gedefinicerde parameters benodig, aangesien die
groottes en posisionering van die nisse nie bekend is nie. Hierdie tesis stel 'n nuwe tegniek vir
nisvorming voor wat die vektor dotproduk van die sosiale en kognitiewe rigtingvektore gebruik
om nisgrense te bepaal. Sodoende word n afsonderlike nisradius vir elke nis bereken. 'n proses
wat minimale kennis van die soekruimte vereis. Hierdie strategie verskil van ander tegnicke wat
nisradiusse gebruik waar 'n nisradius of vooraf gestel word, of van die afstande tussen partikels
bereken word.

Die ontwikkeling van die algoritme word nagespeur en uitvoerig getoets deur van kunsmatige
toetsfunksies gebruik te maak. Empiriese resultate met 'n verskeidenheid stellings word ger-
apporteer. 'n Ontleding van die algoritme word aangebied sowel as 'n skalingstudie. Die
prestasie van die algoritme word ook vergelyk met di¢ van twee ander bekende PSO nisvormin-
galgoritmes. Ten slotte word die vektor-gebaseerde PSO uitgebrei om veelvuldige optima in

dinamiese omgewings op te spoor en te volg.

IT VAN PRETORIA
Y OF PRETORIA
HI YA PRETORIA

Acknowledgements

I would like to sincerely thank the following people who were instrumental in the completion

of this dissertation:

e Professor Andries Engelbrecht for his enthusiasm, inspiration and assistance during the

development and completion of this thesis;

e My family, friends and colleagues for their patience and support.

UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

Contents
1 Introduction 15
1.1 Motivation L e e e e 16
1.2 Objectives e e e e e 17
1.3 Methadelogy: . - o o o comwmamn n s v 5 v 0 v o 0 8 0 8w e e s s 4 17
14 Contributions « « o o o smwmms v 8 v 6 5% 8 ¥ 8 0 w8 8 6 @ m e W S W g 18
1b Thosisoutlitie s ¢ v o s vwmmmu 6 5 58 55 6 88 £ 484 AR EEEEEE S ST & 19
2 Optimization 21
2] IMGroduckon : « o ¢+ 5 v smm s 53§ 55 e F I PR B E FRERERE S L 4 21
2.2 Mathematical optimization e 22
2.2.1 Basic conceptso e e e e 22
2.2.2 Maximization e e e e e e 23
2.2.3 Problem classification o oo 23
2.2.4 Mathematical optimization methods 27
2.3 Stochastic local search algorithms 29
24 Optimization I Oatile s « o wm von 6 5 5 5 8 3 5 6 8 8 & & 56 % % 0w @ 1 5 s 5 % 0 5 30
2.5 Computing paradigms inspired by natural optimization processes 32
2.6 Conclusion e e 34
3 Particle Swarm Optimization 35
3.1 Introduction L 35
3.2 Particle swarm optimization: The algorithm 36
3.2.1 Global and local particle swarm optimizers 38
3.2.2 Cognition-only and social-only models 39
323 "Theimerflagwelght « v c v v s v v v o v 6 6 5 0 5 66 £ v w o 6 40

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

CONTENTS 6
324 The consttiction BAeior.: o ow s & 5 s 5 8 5 3 6 8 8 5 8 8 8 8§ 8 8 6w nw s 43
3.2.5 Neighbourhoods 44

3.3 Variations on the particle swarm optimizer 47
3.3.1 Information sharing strategies, 48
3.3.2 Subswarm-based approaches 51
3.3.3 Memetic PSO algorithms 52

3.4 Conclusion L e e 54

4 Niching 55

4.1 Imtroduction L 55

4.2 Genetic algorithm niching techniques 56
4.2.1 A sequential niching technique 57
42.2 A species conserving genetic algorithm 61

4.3 PSO niching technigques . . . ¢ v v v v v o v o i b b e e e e e e e e e e e 63
4.3.1 Objective function stretching 64
4.3.2 ThenBest PSO e 65
4.3.3 NichePSO o 67
4.3.4 The species-based PSOo 70
4.3.5 The adaptiveniching PSO &« ¢ v v v v s o v v v v v vmmwmn s v 73
4.3.6 The fitness Euclidian-distance ratio-based PSO 74
4.3.7 The waves of swarm particles algorithm 06

A COPBIURIGN. & v 5 & 5 § £ 6 S0 5 5 5 3 8 5 58 2 6 5 n s 6 o n . 5w e mem 77

5 Vector-Based PSO 78

5.1 Introduction L 78

5.2 Objectives of this chapter 79

5.3 Using vector properties. 80

5.4 Identifying niches 88

2.5 Veetor-based PBO algorithms . . « v < v v v v v v v v v v v v v smmmwe swe 92
5.5.1 The sequential vector-based PSO 92
5.5.2 The parallel vector-based PSO, 96
5.5.3 The enhanced parallel vector-based PSO 101

Conclusion 104

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

CONTENTS 7
6 Vector-Based PSO Applied to Static Environments 106
6.1 Introduction L e 106
6.2 Experimental procedure 107
6.2.1 General procedures and settings 107

622 Statistical procedures - . « s s 5 5 8 55§ ¢ 88 6§ 5606w EEE s e b 110

6.2.3 Test functions 111

6.2.4 Initial swarm sizes and granularity00 117

6.3 Results of the sequential vector-based PSO 122
6.4 Results for the parallel and enhanced parallel vector-based PSO 128
641 Teshresulls o o v wn vmsn 2 4 65 ¢ 55 55 6 8 5w a% T eE s Es & 128

6.4.2 Tracking merging of niches 145

6.4.3 Comparing the parallel and enhanced parallel algorithms 154

6.5 Analysis of the vector-based particle swarm optimizer 156
6.5.1 Analysis of the VBPSO on additional functions 157

6.5.2 Sensitivity of the vector-based PSO to granularity 168

6.5.3 Scalability of the vector-based PSO 176

6.6 A comparative study of three PSO niching approaches 194
5.6.1 Experimental procedute « . 5 + « 4 5 5 65 s v s v mme v s nE e e E sy 194

662 Results : : v svmwmmmu v 8 5 3 5 3 4 8§ 80 6 B S A AR EEH @B 5 0o 3 195

0:08 DINEHESION ¢ 5 o v o 0 D@8 5 5 5 5 5 £ 8 8 5 5 5 8.5 o o ol odl 160 S0 o imy e oo st om 195

6.7 Conclusion L 196

7 Dynamic Vector-Based PSO 199
7.1 Imtroduction e e 199
7.2 Dynamic optimization problems 200
7.3 Changes in the environment 201

7.4 Particle swarm models for tracking a single solution in a dynamic environment 202

7.5 Tracking multiple optima in a dynamic environment 204
7.5.1 A dynamic test function generator 205
7.5.2 PSO models for multiple dynamic optima 205

7.6 The dynamic vector-based particle swarm optimizer 207

7.7 Conclusion o e e e e 211

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

CONTENTS 8

8 The Vector-Based PSO Applied to Dynamic Environments 212

8.1 Introduction e e e e e e e 212

8.2 Experimentalsetupand results . . . « « o v v s rsn s r s s e E e e s e s 213
8.3 Comparing the performance of the dynamic vector-based PSO to that of the

dynamic species-based PSO L0000 229

8.3.1 Experimental settings and results oL 229

832 Diseussion . . cuowmw v o 5 8 5 v v ¢ v 8 6 & % e o w R BB R S 88 233

8.4 Sensitivity of the dynamic vector-based PSO to changes in severity 233

B Contlisio + : o v swmmwn s 5 s s 5 155 8 s s s EREEII BB S D5 5 6§ 5 & 238

9 Conclusion 239

Ul BUIINENY : s s semE®HF 88 8538 iU ERNBEENEREDDES § 5§ 8 239

Y2 FUCESON : & ¢ s v e mmns 82 22 58 L § 0 b i Emo G maii 5 5 8 s 243

References 244

A Test Results 254

Al Minirviarnd subswarm 81568 o ¢ ;5 5 5 5 s 5 i s P d AR EE T S S E S B A § 8 8 8 254

A.1.1 Experimental procedure 255

A.1.2 Results and discussion 255

A2 Merging intervals L 257

A.3 Minimum swarm size for tracking optima 259

A3l Experimental procedure 000 259

AZ2 Resultsand discussion « « < « « v v v o v v s swmma v s w®wa s 5 5 6 260

B Derived publications 261

UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA

List of Fi

2.1 Two-dimensional linear programming problem 24
2.2 Function of single variable with minimum at «* 25
2.3 Function of two variables with minimum at =* 25
2.4 Function of a single variable with global minimum at «* 26
3.1 Stochastic particle trajectory, obtained using w = 0.7 and ¢; = ¢y = 1.4 [100] . 42
3.2 Social networlstruehiTss =« =+« 2 v v v ¢ 2 smmmE B RS G S 5 5 8 E § 8§ 8 46
4.1 Suppression of one peak by a derating function 60
4.2 Determining the species seeds from the population at each iteration [57] 71

5.1 The inverted one-dimensional Rastrigin function, showing particles with associ-
BEEE NECTOEE & ¢ ¢ c O w552 3 5 5 5 0 8 5 8 B A il i o P st s o o m o w w nom s 32

5.2 Regions of positive and negative dot products for the inverted one-dimensional

Rastrigin function L. 85
5.3 Regions of positive and negative dot products for equation (?7) 85
5.4 The two-dimensional Ursem F1 function 87
5.5 Contour map of the two-dimensional Ursem F1 function 38
6.1 One-dimensional functions 112
6.2 The Himmelblau function showing maxima. 118
6.3 TheGriewank fmebion. ww s « o « 5 v ¢ 0 2 o vmmwmsmm e s s & % & & 5 ¢ & 4 118
6.4 The Rastrigin funietion. « .« s s s s o ¢ v v s swmme s v e 5 5 6 8 6 8 83 § 5 & 119
65 "TheAckley TUfietion. « ssive 5 5 ¥ 5 8 25 6 0 S MO TS E 06 6 8 5 3 88 858 % 4 119
6.6 The Ursem F1 function. 120
6.7 The Ursem F3 function. 120

UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

LIST OF FIGURES 10
6.8 The six hump camel function. oL 121
6.9 Merging of one-dimensional functions L. 147
6.10 Merging of two-dimensional functions - part 1 152
6.11 Merging of two-dimensional functions - part 2 153
6.12 The Styblinski-Tang function showing maxima 157
6.13 The Bird function showing maxima 158
6.14 The generalized Schwefel function 2.26 showing maxima 161
6.15 The tabular holder function 162
6.16 The tube holder function. 165
6.17 Number of optima vs. granularity for the Himmelblau function 169
6.18 Interniche distances for the Himmelblau function 170
6.19 Number of optima vs. granularity for the Griewank function 171
6.20 Interniche distances for the Griewank function 172
6.21 Number of optima vs. granularity for the Rastrigin function 173
6.22 Interniche distances for the Rastrigin function 175
6.23 The absolute Sine function in one and two dimensions 177
6.24 The Griewank function in one and two dimensions 77
6.25 The Rastrigin function in one and two dimensions 178
6.26 % Optima found versus swarm sizes for the absolute Sine function 182
6.27 % Optima versus swarm sizes for the Griewank function 186
6.28 % Optima versus swarm sizes for the Rastrigin function 190
6.29 Optimal swarm sizes versus actual number of optima for three benchmark functions193
6.30 Comparing performance of three niching strategies for seven functions. 198

7.1 Anenvironment with three peaks at positions (—0.5, —0.7), (=0.5,0.5) and (0.5, 0),
generated by Morrison and De Jong’s test problem generator 206
8.1 Scenario 1: Function landscapes 217
8.2 Scenario 2: Function landscapes 218
8.3 Scenario 3: Function landscapes oo 219
8.4 Scenario 4: Function landseapes . . « . . o 0 0 v v e v e e e s e e e e 220
8.5 Movement of one peak through a landscape containing 5 peaks 235
8.6 Average #optima versus severity for H-peak function 237

IVERSITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

List of Tables

6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

6.14
6.15
6.16

o Ui

Dot products of a range of particle positions for the inverted one-dimensional

Rastrighn funetion. « o v oow woarw wn o & 8 o & 2 o5 o5 5 5 b 5o 5o w6 & 8 @ s 5 84
Dot products of a range of particle positions for equation (?2?). 36
Positions of maxima of one-dimensional functions 111
Optima of the Himmelblan function 113
Optima of the Griewank function, 114
Optims of the Rastrigin funetion: . . « v o v ¢ 5 0 v 5 6 6 v o v msmww s s ws s 115
Opthna of the Adkley futichion &+ & s 2 < « « ¢ ¢ 4 s s £ e v oo e a@mamn s a 115
Optima of the Ursem F1 function 116
Optima of the Ursem F3 function 117
Optima of the Six Hump Camel function 117
Initial swarm sizes and granularity for test functions 121

Sequential vector-based PSO results for one-dimensional functions F'1 and F2 . 124
Sequential vector-based PSO results for one-dimensional functions F3 and F4 . 125
Sequential vector-based PSO results for the Himmelblau function 126
Results of the Mann-Whitney U test. Success rates of the sequential VBPSO

using a system-supplied random number generator are compared to those using

Sobol sequences. 125
Parallel vector-based PSO results for one-dimensional functions F1 and F2 . . 130
Parallel vector-based PSO results for one-dimensional functions F3 and £4 . . 131

Enhanced parallel vector-based PSO results for one-dimensional functions F1
Bl D) i v v e v s v s mm e s g s 8 B E S B RS PR R SR B 132
Enhanced parallel vector-based PSO results for one-dimensional functions F3
and F'd . e e e e e e e e e e e e e e e e e 133

11

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

LIST OF TABLES 12

6.18

6.19

6.20

6.21
6.22
6.23
6.24
6.25
6.26

6.27

6.28

6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41

Summary of ranks based on the Mann-Whitney U test for comparing success
rates of algorithms using a system-supplied random number generator to those
neing Hebolacpmerest comwmmns s s s 2 R W BB R A 2B 2R W HE 134
Results of the Mann-Whitney U test. Success rates of the parallel and enhanced
parallel VBPSO algorithms using a system-supplied random number generator
are compared to those using Sobol sequences 135
Parallel and enhanced parallel vector-based PSO results for the Himmelblau
Fanehion « . « « « 2 ¢ v v commmmn 58 8 ¥ 8§ B B B E 8§ BB BREEEE E S 136
Parallel and enhanced parallel vector-based PSO results for Griewank function 137
Parallel and enhanced parallel vector-based PSO results for Rastrigin function 138
Parallel and enhanced parallel vector-based PSO results for Ackley function . . 139
Parallel and enhanced parallel vector-based PSO results for Ursem F1 function 140
Parallel and enhanced parallel vector-based PSO results for Ursem F'3 function 141
Parallel and enhanced parallel vector-based PSO results for the six hump camel
Buneflon . « « « v v v s v smm s ¥ 5 v 8w s e B B R R RS WG W e 142
Summary of ranks based on the Mann-Whitney U test for comparing success
rates of algorithms using a system-supplied random number generator to those
using Sobol sequences L L L e e 143
Results of the Mann-Whitney U test. Success rates of the parallel and enhanced

parallel VBPSO algorithms using a system-supplied random number generator

are compared to those using Sobol sequences 144
Merging of niches for one-dimensional functions F1 to F4 146
Merging of niches using the parallel VBPSO -part 1 148
Merging of niches using the parallel VBPSO -part 2 149
Merging of niches using the enhanced parallel VBPSO - part 1 150
Merging of niches using the enhanced parallel VBPSO - part 2 151
Average % optima located for functions F1to F4. 154
Summary of VBPSO success rates for two-dimensional functions 155
Comparing algorithms for functions F1to F4 155
Comparing the enhanced parallel VBPSO to the parallel VBPSO 156
Optima of the Styblinksi-Tang function 158
Optinta of the Bird funetion .« » 5 5 5 5 5 ¢ 5 8 5 5 8 0 500 00 a5 6 b oo 159
VBPSO results for Styblinksi-Tang function 160

VBPSO results for the Bird function 160

UNIVERSITY OF PRETORIA

Qe YUNIBESITHI YA PRETORIA
LIST OF TABLES 13
6.42 Optima of the generalized Schwefel function 2.26 162
6.43 Optima of the tabular holder function in the range x|, a9 € [-4.5,4.5] 163
6.44 VBPSO results for generalized Schwefel function 2.26 164
6.45 VBPSO results for tabular holder function 164
6.46 Optima of the tube holder function in the range [-3.4] and [34] 166
6.47 Optima of the tube holder function in the range [-3.4] and [34] 166
6.48 VBPSO results for tube holder function 167
6.49 Testing granularity for the Himmelblau function 169
6.50 Interniche distances for the Himmelblau function 170
6.51 Testing granularity for the Griewank function 171
6.52 Interniche distances for the Griewank function 172
6.53 Testing granularity for the Rastrigin function 173
6.54 Interniche distances for the Rastrigin function. 174

6.55 Average number of solutions versus swarm sizes for the absolute Sine function -

6.58
6.59
6.60
6.61
6.62
6.63
6.64

6.65

6.66

6.67

3.1

part 1 . . e e 179

) Average number of solutions versus swarm sizes for the absolute Sine function -

3 T LT 180
Average number of solutions versus swarm sizes for the absolute Sine function -

PAMEE o ¢ o6 5 39 5@ m el BB % 2 F 8 5 8 B 8 oo ol s piovsl v o e o s i 0 6 8 3 181
Average number of solutions versus swarm sizes for the Griewank function - part 1183
Average number of solutions versus swarm sizes for the Griewank function - part 2184

Average number of solutions versus swarm sizes for the Griewank function - part 3185

Average number of solutions versus swarm sizes for the Rastrigin function . . . 187
Average number of solutions versus swarm sizes for the Rastrigin function - part 2188

Average number of solutions versus swarm sizes for the Rastrigin function - part 3189
Minimum swarm sizes required to locate 98% of possible optima for the absolute
SENE BEOEEION & s e o mm 5 6§ 5 5 8 £ B B # 9l @ s o s s om e s 191
Minimum swarm sizes required to locate 98% of possible optima for the Griewank
function 192
Minimum swarm sizes required to locate 98% of possible optima for the Rastrigin

function L 192

Scenario 1: Positions of 3 optima over 6 steps 216

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

Chapter 1

Introduction

Many actions oceurring in nature and human existence incorporate some form of optimization.
Species survive by continually optimizing parameters describing their environment. Various
strategies are employed to ensure the survival of the species, for example, some animals ag-
gregate in flocks, herds and schools. Such structures serve as a defense against predators, are
instrumental in locating food sources, and ensure accurate navigation on migration. To survive,
individuals in a flock, herd or school are not only dependent on their own devices, but can also
rely on the collective knowledge of the entire population.

Particle swarm optimization (PSO) is a population-based optimization strategy inspired
by the behaviour of bird flocks that wheel and swoop in unison. Personal as well as social
memory are employed to guide the movement of particles, collectively referred to as a swarm,
in order to converge on a better position. PSO has been proved to be an effective. efficient
and robust optimization method for solving a wide array of single-solution problems including
neural network training [96] [98] and function minimization [19] [28] [48] [49]. Furthermore,
the algorithm is simple to implement, and requires no gradient information which is problem-
dependent and may be difficult to calculate. PSO is particularly useful when the overall
optimal solution needs to be located in a problem space containing many sub-optimal solutions.
The entire search space is explored, thus preventing the swarm from settling on a suboptimal
solution.

While the standard PSO locates the overall best position in the search space, many problems
require the location of sub-optima as well. The quality of such solutions often differ very
slightly from one another or may even be similar. The user then has a choice between multiple,

equally acceptable solutions in a single search space. Population-based algorithms designed

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 1. INTRODUCTION 16

to locate multiple optima, also glean their terminology from nature. In natural ecosystems,
animals survive in different ways, and different species evolve to fill each role, referred to as
an ecological niche. In PSO, a species is represented by a subswarm. Algorithms designed to
locate multiple optima are referred to as niching or speciation algorithms.

Originally. genetic algorithms were adapted for niching [4] [40] [56]. Since the inception
of the PSO paradigm. attempts have been directed towards the development of PSO niching
algorithms, and modifications to the standard PSO were put in place to facilitate niching. To
this end, various strategies have been applied, for example, objective function stretching [72]
where the function landscape is modified each time a position is discovered where the function
has a minimum value. the species-based PSO [57] that uses a problem-dependent niche radius
parameter set in advance, nBest [12] that redefines the fitness function for multiple solutions,
and NichePSO [13] [14] that has a high success rate, but requires finely-tuned parameters. A
number of other algorithms yielding good results have been developed [5] [41] [58], but often
these algorithms are computationally complex. The need for a simple, elegant and efficient
niching algorithm with minimal user-specified parameters and low complexity that would be
robust enough to be used in a large variety of situations, was identified. In addition, the idea to
exploit the basic characteristics of the PSO paradigm to facilitate niching, was ultimately ap-
pealing. Thus, the purpose of this thesis is the development of a niching method encompassing
these characteristics as far as possible.

This thesis investigates existing niching strategies that have been developed using the par-
ticle swarm paradigm. A novel niching algorithm requiring minimal knowledge of the search
space, is developed, tested, and compared with existing algorithms. The algorithm is extended
to incorporate dynamic optimization problems where multiple optima are tracked in changing

environments.

1.1 Motivation

Single-solution particle swarm optimizers are relatively easy to implement, and a large number
of PSO variations have been developed for various problem types. However. since the number
of optima in the search space, as well as the shapes and sizes of the peaks forming the function
landscape are usually unknown, PSO algorithms that locate multiple optima are much more
complicated. Such multimodal PSO algorithms often require prior knowledge of the search
space to produce significant results. Although some parameters have to be set in advance to

facilitate niching, the challenge to develop a PSO niching algorithm requiring minimal prior

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 1. INTRODUCTION L7

knowledge of the function landscape, remained. An additional challenge comprised using and
extending the principles on which the original PSO algorithm rests to facilitate niching. re-
sulting in an efficient and elegant solution. Such a strategy should also be robust enough to
operate successfully in convoluted function landscapes where the shapes, sizes, and placing of

niches differ considerably.

1.2 Objectives
The main objectives of this thesis can be summarized as follows:
e To extend the essential building blocks of the basic PSO paradigm to facilitate niching.

e To develop an efficient, elegant, and robust niching algorithm that identifies candidate
solutions in an unknown problem space, calculate niche boundaries, and optimize sub-

swarms occupying the niches to yvield multiple optima.
e To ensure that the algorithm requires minimal prior knowledge of the function landscape.
e To compare different niching approaches using a diverse problem set.
e To conduct a scalability study of the niching algorithm.

e To extend the niching algorithm to incorporate dynamic optimization problems.

1.3 Methodology

The main purpose of this thesis is the development of a novel strategy to induce niching in
multimodal function landscapes. The assumption that the vector dot product of the social and
cognitive direction vectors can be used to determine niche boundaries is explained and moti-
vated. A technique to calculate separate niche radii and form subswarms occupying the niches,
is presented. Three algorithms that have been developed consecutively, are presented. The
sequential vector-based PSO identifies niches sequentially and optimizes the subswarms con-
tained in the niches in turn. The parallel vector-based PSO also identifies niches sequentially,
but subswarms occupying the niches are optimized in parallel while duplicate subswarms are
merged at specific intervals. The enhanced vector-based PSO includes a strategy to prohibit

unnecessary merging of niches.

ﬁ UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 1. INTRODUCTION 18

All three algorithms are tested for a number of one-dimensional and two-dimensional bench-
mark functions with well-known characteristics, using a system-supplied random number gen-
erator as well as Sobol sequences to calculate initial particle positions. Selected benchmark
functions were also used to test the sensitivity of the algorithm for a range of granularity values.
An upper bound for the granularity was derived for each function.

A scalability study was undertaken relating the required swarm size to the number of optima
in a specified search space. Three scalable benchmark functions were used. For each setting
the function was tested with a range of swarm sizes, and optimal swarm sizes were deduced
from graphs of the results. A linear relation between optimal swarm size and number of optima
was established for each of the three functions.

To assess the performance of the vector-based PSO in comparison to that of two other
niching algorithms, NichePSO and the species-based PSO, all three algorithms were tested
on seven two-dimensional functions using the same settings. The functions were chosen to
represent a range of landscapes in order to observe how specific situations impacted on the
performance of the algorithms.

The vector-based PSO was extended to locate and track optima in changing environments.
The moving peak benchmark [25] was used to set up a number of scenarios including spatial
movement of 3 and 5 peaks across a defined two-dimensional search space, variation of the
value of the function at stationary positions, peaks that are obscured during movement, and
new peaks that appear at unknown positions. Each of these situations were used to test the
performance of the dynamic vector-based PSO. To conclude, the influence of severity (the
spatial change in the position of the optimum) on performance was tested. The movement of
one peak across a landscape containing three peaks was tracked using a range of severity values

to deduce an upper bound for the severity in a specific scenario.

1.4 Contributions
The main contributions of this thesis are:

e Proposing a strategy to address the problem of finding niche radii in a multimodal func-
tion landscape. Niches could be located and demarcated with minimal prior knowledge

of the objective function.

e Developing a niching algorithm for particle swarm optimization that uses the above strat-

egy and compares well to other niching paradigms.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 1. INTRODUCTION 19

e An empirical analysis of state-of-the-art PSO niching methods.

e Extending the niching algorithm to locate and track multiple optima in dynamic envi-

ronments.

1.5 Thesis outline

Chapter 2 presents an overview of various aspects of optimization. A brief discussion of math-
ematical optimization is followed by different viewpoints on optimization in nature, and how it
is related to the development of population-based optimization algorithms. To conclude, the
main features of evolutionary computation and its various forms are discussed.

Chapter 3 describes the inception and development of the original particle swarm optimiza-
tion paradigm. Several aspects concerning the improvement and refinement of the algorithm
are reviewed. Particle trajectories and the concept of neighbourhoods in a swarm are briefly
discussed. A classification of single-solution PSO algorithms is given followed by the descrip-
tion of a number of relevant strategies. Information sharing strategies and subswarm-based
algorithms are emphasized.

Chapter 4 describes and elaborates on the concept of niching or speciation. Niching al-
gorithms locate more than one optimum of an objective function in a search space. Genetic
algorithm niching techniques are briefly reviewed. A number of techniques that adapt particle
swarm optimization to locate and optimize functions with multiple optima are discussed in
detail. These algorithms use different strategies to identify candidate solutions, estimate niche
boundaries, and optimize separate subswarms to converge on different optima. Algorithms
where these processes take place sequentially as well as in parallel, have been developed. In
the case of parallel niching algorithms, a merging component is incorporated. Improvements
and refinements of some of the algorithms are also discussed.

Chapter 5 presents the development of a new niching strategy, the vector-based particle
swarm optimizer (VBPSO). The principles underlying this approach are discussed. and three
consecutive versions of the algorithm are described in detail. Extensive test results obtained
by applying the various versions of the algorithm to a number of one- and two-dimensional
functions are presented in chapter 6. The final version of the VBPSO is analysed by empiri-
cally testing the sensitivity of the algorithm for different parameter values, its ability to scale
to functions in higher dimensions, and the relationship between the initial swarm size and

the algorithm’s performance. Chapter 6 is concluded by presenting the results of a compara-

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 1. INTRODUCTION 20

tive study of the performance of three diverse PSO niching algorithms, namely the VBPSO,
NichePSO [13] [14] and the species-based PSO [57]. These algorithms are applied to a number
of two-dimensional functions with varying characteristics.

Chapter 7 investigates the behaviour of the vector-based particle swarm optimization paradigm
in a changing environment. The positions as well as the quality of multiple optima can change
dynamically over time. The vector-based PSO that locates multiple optima in static environ-
ments, is adapted and extended to track multiple optima over time. In chapter 8 a number of
scenarios illustrating a variety of dynamic changes is set up and tested. The chapter concludes
with an investigation of the influence of severity on dynamic changes.

A summary of the developments and results obtained in this thesis, is presented in chapter

Appendix A presents empirical results of tests that were run to determine specific settings
used by the vector-based PSO algorithms. These settings include minimum subswarm sizes,
merging interval sizes and minimum sizes of subswarms capable of tracking moving optima.

A list of publications is presented in appendix B. These papers have led to, or are derived

from the work presented in this thesis.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

Chapter 2
Optimization

This chapter presents an overview of various aspects of optimization. A brief discussion of mathe-
matical optimization is followed by different viewpoints on optimization in nature and how natural
phenomena relate to the development of population-based optimization algorithms. To conclude,

the main features of evolutionary computation and its various forms are discussed.

2.1 Introduction

The term optimization is derived from the Latin root optimus meaning best. The optimum
refers to the best or most favourable set of conditions. Therefore, optimization can be described
as the process that has to be followed in order to obtain a set of conditions where a specific
desirable feature will have the best or most effective possible value within a certain environment.

Problems for which the solution lies in finding an optimal value for some objective, are
known as optimization problems. Typically, an optimization problem has many candidate
solutions, each represented by a set of possible conditions. Depending on the characteristics
and requirements of the problem, an acceptable solution should be found. which may be the
best overall solution, or one of a set of feasible solutions.

Many optimization problems can be found in everyday life, ranging from navigating through
rush-hour traffic to cost-effective economic policies, production scheduling in manufacturing,
and process optimization in large petro-chemical plants.

Optimization is commonly used in a mathematical context, where it refers to the minimiza-
tion or maximization of mathematical functions by choosing, by means of some strategy, values

from within an allowed set in order to find the best solution.

21

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 2. OPTIMIZATION 22

However, optimization is a much broader concept. In order to survive, man had to find
ways and means to overcome obstacles in a hostile environment. Strategies had to be devised
to maximize the availability of food sources and favourable conditions for procreation, while
minimizing any danger to the continued existence of the species. Going even further back,
plant and animal species have evolved over millions of years by adapting to their environment
in the most profitable manner. Features have been developed to facilitate finding food, defense
against predators, and procreation of the species.

The remainder of this chapter is organized as follows: Classical mathematical optimization
is briefly reviewed in section 2.2. Basic concepts, problem classification, and mathematical
optimization methods are discussed. Section 2.3 covers stochastic local search algorithms, while
some background on optimization in nature is given in section 2.4, The chapter is concluded

by a brief summary of evolutionary algorithms in section 2.5.

2.2 Mathematical optimization

Classical mathematical optimization methods form a necessary background to any study in-
volving some form of optimization. Formal definitions of basic concepts and maximization are
given, followed by the classification of optimization problems according to specific features. A
subset of the most important mathematical optimization methods, divided into derivative and

non-derivative methods, are discussed.

2.2.1 Basic concepts

Mathematical optimization can be described formally as the process of

1. the formulation and

2. the solution of a constrained optimization problem of the form

minimize f(x), x= [z1, 29, - Zn|” € K" (&.1)

stitbject to the constraints:

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 2. OPTIMIZATION 23

where f(x), g;(x) and h;(x) are scalar functions of the vector x and 7 refers to some

tolerance [93].
The components of equation (2.1) can be described as follows:

e The objective function, f(x), represents a mathematical formulation of the problem to

be optimized.
e The variables, x; (the design variables), affects the value of the objective function.

e The inequality constraints, h;(x), and equality constraints, g;(x), restrict values that can
be assigned to the variables. If no constraints or only boundary constraints are specified.

the problem is referred to as an unconstrained minimization problem.

2.2.2 Maximization

Maximization of a function can be effected by modifying the standard form given in equation
(2.1) as follows:

mazximize f(x) = minimize (—f(x)) (2.2)
Any inequality constraints should then be modified accordingly.

Both minima and maxima can be referred to as optima, depending on how the problem is

described and how the optimization process is implemented.

2.2.3 Problem classification

Optimization problems can be classified according to specific features. The choice of an op-
timization algorithm will, to a large extent, depend on the particular type of problem, and
should be appropriate for the specific application. The following points should be taken into

consideration when deciding on a strategy.

Linear versus non-linear optimization problems: For some optimization problems the
objective as well as all the constraints, are linear functions [93] [98]. These problems are
called linear programming problems. Figure 2.1 depicts a linear programming problem in
two dimensions. Efficient techniques have been developed to solve these problems, one

of the most famous being the simplex method proposed by Dantzig in 1947 [93].

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 2. OPTIMIZATION 24

feasible region

LR : \ linear constraints
direction of increase’.

in f(x)

v

Figure 2.1: Two-dimensional linear programming problem

Non-linear optimization problems are generally more difficult to solve, and numerous

techniques have been developed for this purpose.

Dimensionality of the objective function: The number of variables in the objective func-
tion may vary from one to several. Figure 2.2 and Figure 2.3 depict functions of one and

two variables with single minima at x*.

Local and global optima: Sonie optimization problems are such that more than one opti-
mum exists in the search space. The values of the objective function at these positions
may differ significantly, differ very slightly, or can even be the same. The optimum with
the best value is the global optimum, while the other optima are referred to as local
optima. More formally, given that optima imply minima. local and global minimizers are

defined as follows: A local minimizer, XJ;, of the region B, is defined so that
f(x) < f(x),¥x € B (2.3)

where B C S C R" and S denotes the search space.

A global minimizer, x* is defined so that

f(x*) < f(x),vx€ S (2.4)

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Que® VYUNIBESITHI YA PRETORIA

CHAPTER 2. OPTIMIZATION

f(x)

v

Figure 2.2: Funetion of single variable with minimum at z*

f(xy, X,)

Figure 2.3: Function of two variables with minimum at z*

25

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
W VYUNIBESITHI YA PRETORIA
CHAPTER 2. OPTIMIZATION 26
'y
f(x)
x; x* X :

Figure 2.4: Function of a single variable with global minimum at z*

and local minimum at z7.

where S is the search space.

Figure 2.4 depicts an objective function with a global minimum and one local minimum.

Constraint functions: Optimization problems can be divided into unconstrained and con-
strained problems. Unconstrained minimization takes place when an objective function is
optimized over the entire search space. Although the boundaries of the search space are

also constraints, these problems are referred to as unconstrained optimization problems.

With constrained optimization problems, one or more constraint functions are defined to
restrict the region where optimization should take place. If g(x) denotes the inequality
constraint function, such that g(x) < 0, the contour g(x) = 0 divides the search space
into a feasible region and an infeasible region [93] [98].

In the case of the equality constraint function, h(x), the feasible values will only be found

on the contour or surface where h(x) = 0.

Multi-solution optimization: An objective function may, in addition to global optima, con-

tain several local optima. As these local optima may represent alternative feasible so-

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 2. OPTIMIZATION 27

lutions, it is often necessary to find all or most solutions in a particular search space.

Multi-solution optimization is also referred to as multi-modal optimization.

Multi-objective optimization: The simultaneous optimization of several objective func-
tions is necessary in many real-world problems, where objectives may work against each
other [33]. The result is a set of optimal solutions representing trade-offs between differ-

ent, often conflicting, objectives.

Optimization in dynamic environments: Most real-world optimization has to be carried
out in a dynamic environment, that is, the objective function changes over time. Such en-
vironments require algorithms that locate and track changing optima. Single or multiple

solutions can be tracked, depending on the problem requirements.

This thesis focuses on multi-solution optimization, using particle swarm optimization. Al-
gorithms are developed to locate multiple solutions in a search space. These algorithms are
also adapted to track multiple optima in a dynamic environment. Throughout the thesis, only

unconstrained, single-objective functions are considered.

2.2.4 Mathematical optimization methods

Numerous methods for solving optimization functions of many variables have been developed,
tested and applied to practical problems [93]. It is often claimed that some optimization
techniques are superior to others, a statement that is contradicted by the “No Free Lunch”
(NFL) theorem of Wolpert and Macready [103]. This theorem states that all optimization
techniques have the same behaviour over all f : X — Y where X and Y are finite sets.
However. differences in the behaviour of optimization techniques have been observed [26]. For
several optimization scenarios specific techniques have been found to be superior to general
ones. It can also be reasoned that although the NFL theorem has been proved for the set
of all functions, it does not necessarily hold for all subsets of this set [98]. Most real-world
functions have some structure and compact descriptions, forming a small subset of all functions.
Therefore the choice of a method depends on the specific problem and will, to a large extent,
determine the efficiency and accuracy of the solution. The advent of the computer has played
an important part in the development of numerical methods using an iterative approach to find
better approximations to the optimum until the desired accuracy is achieved.

A primary method to find local extrema of a function is to locate points where the derivative

of the function is zero, provided that the function is differentiable. An alternative method is

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 2. OPTIMIZATION 28

to evaluate the function many times and search for a local minimum. Therefore, numerical

optimization methods can be divided into derivative and non-derivative methods.

Non-derivative methods

Non-derivative optimization methods are methods that do not require any derivative of the
objective function. For a non-derivative optimization method to be efficient, the number of
function evaluations should be reduced while an accurate solution must be reached in reasonable

time. Two well-known and efficient methods are discussed below [64]:

The golden ratio method: This method is suitable for functions that are unimodal, that is,
one minimum occurs in a specific interval. The method works as follows: Assuming that
the initial interval is [0,1], it is divided into three subintervals [0,1-r], [1-r,x] and [r,1].
Depending on whether f(z) is decreasing or increasing at the interval boundaries, a new
interval, consisting of the two leftmost or the two rightmost subintervals, is formed and
this smaller interval is divided into three subintervals. The process is repeated until the
boundaries of the subinterval where the minimum occurs, differ less than a given error

margin, in which case the minimum can be approximated.

The Nelder-Mead method: Nelder and Mead devised a simplex method to find the mini-
mum of a function of n variables [67]. The term simpler describes a generalized triangle
in n dimensions. For two variables, a simplex will be a triangle. Initially, function values
at the three vertices are found. The search generates a sequence of triangles that are
formed by replacing the worst vertex of each triangle with a new vertex in such a way
that the function values at the vertices become smaller while approaching the minimum

point.

Derivative methods

Derivative optimization or direct-search methods use the derivative of the objective function
at certain points in the search space to direct the search for the position where the function
has a minimum or maximum value.

A large number of direct-search algorithms for unconstrained minimization of functions have
been developed. All such algorithms require an initial estimate of the optimum [93]. From this

starting point a sequence of estimates xp, X1, X2, ..., are generated. Assuming the optimum is

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 2. OPTIMIZATION 29

a minimum point, search for a better estimate takes place in the direction of descent; that is,
where the derivative of the function becomes smaller. The process is repeated until no further
descent is possible, or if the condition for a minimum, V f(x) = 0, is sufficiently accurately
satisfied in which case z* = (.

For smooth functions, a sub-class of the direct search methods, namely the line search
descent methods, is suitable. The direction of descent u't! is selected at each iteration z' such
that _

df (x')

TIRH] = Vrf(x'i)qu <0 (2.5)

where A indicates the minimizer, V is the gradient and 7 refers to some tolerance.

Within the sub-class of line search descent methods, a number of methods exist that differ
in the way in which the descent directions. u', are chosen, as well as the way in which the line
search is performed.

The method of steepest descent is a simple and well-known method for the minimization
of a function of n variables. It was first proposed by Cauchy in 1847 [93] [64]. This method
is a first order method because first order partial derivatives are employed to compute the
search direction at each iteration. For an n-dimensional function, f(x), partial derivatives
are evaluated in turn, each time starting with the previous minimum and changing the search
direction. Iteration will produce a sequence, {x;}, of points with the property f(xq) > f(x1) >

coo> flxg) > o If limg oo X, = X5 then f(x7) will be a local minimum for f.

2.3 Stochastic local search algorithms

Derivative and non-derivative optimization methods depend, to a large extent, on a well-chosen
starting point. Roughly, these methods can be classified as local methods, as the search process
is initialized at some point in the search space and proceeds by iteratively moving from one
location to a neighbouring one depending on local knowledge only [44]. In contrast to systematic
search algorithms where the search space is traversed systematically, there is no guarantee that
a local search algorithm will find a solution. Local search methods can also visit the same
location more than once or get stuck in some part of the search space from which they cannot
escape.

Local search algorithms may generally seem inferior to systematic algorithms, but due to
time constraints, using systematic algorithms is often not viable. ldeally, search algorithms

should deliver reasonably good solutions within a limited time. However, depending on the

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 2. OPTIMIZATION 30

problem, a good solution may be reached by combining local and systematic algorithims.
Local search algorithms often make use of stochastic mechanisms and are then known as
stochastic local search algorithms. These algorithms have been proved useful for solving both
NP-complete decision problems and NP-hard combinatorial problems [44]. The concept of
hill-climbing, as well as algorithms such as simulated annealing [54] and tabu search [38] can
be classified as using stochastic search mechanisms. In addition, population-based algorithms,
finding their inspiration in the behaviour of natural populations, all use some form of stochastic

search.

2.4 Optimization in nature

Optimization is not a new concept. Inhabitants of the world in which we live have evolved over
millions of years into populations best suited to survive in their various environments. The
amazing diversity of these populations and the myriad of ingenious ways in which they have
adapted to their environment suggest some stochastic processes as well as the principle that
came to be known as survival of the fittest [22]. To ensure their survival, these populations had
to optimize the parameters describing their existence. Survival strategies have evolved in these
populations in different ways. Some animals and insects have developed special features to pro-
tect themselves against predators and utilize their environment to their best advantage. Other
creatures, especially birds and insects, form colonies, nests or swarms. It is from these, often
highly specialized systems, that researchers gleaned their inspiration to develop optimization
methods that model the way in which the systems work, as perceived by the researcher. The
optimization system is usually more simplified than the natural system it purports to model -
natural systems being much more complicated and not always well understood by man. How-
ever, this does not prevent the researcher from building an artificial system with the broad
principles observed in the natural system as a starting point.

Many of these artificial systems are population-based, having found their inspiration in the
behavioural patterns of populations of animals like flocks of birds, schools of fish, and termite
and ant colonies. Interesting theories of group behaviour and the forces that seem to govern it,
have been formulated over the years [63] [75] [80]. Some of the first studies in the behavioural
patterns of animals and insects in their natural environment were undertaken in the early
years of the 20th century by Eugene Marais, a South African writer, lawyer and naturalist

[63]. Among others, the behaviour of termites inhabiting large termite nests, were carefully

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 2. OPTIMIZATION 31

observed and documented. Experiments suggested that the queen influences the movements of
all the termites, even when they are far away from the nest. On the other hand, synchronous
movements of swarms of locusts were observed where no central influence could be identified.
Marais called this phenomenon the “group soul”, an influence keeping the group or swarm
together even if no fixed centre exists.

Different explanations for the highly coordinated movements of flocks of birds or schools of
fish were put forward. Research done by Wayne Potts in 1984 showed that maneuver waves
spread through a flock of birds much faster than a single bird’s mean reaction time [75]. Potts
called this the “chorus line hypothesis” and attributed it to an individual anticipating an
approaching wave.

In 1986 Craig Reynolds showed that complex behaviour can be generated by applying simple
rules. He illustrated the concept by creating “boids”, computer-generated flocking organisms
[80]. Three basic laws govern the movement of each boid, namely separation, alignment and
cohesion. A mechanism was thus developed to create computer-generated flocks of creatures
for use in films and multi-media. A current popular view is to attribute the phenomenon to
emergent behaviour where the flock’s movements are determined by decisions of individual
birds following simple rules when responding to movements of their neighbours.

Many advantages for being part of a flock exist. A flock’s collective intelligence will serve as
a defense against predators, find food sources more easily and avoid being lost, while moving
in groups even reduces energy expenditure as birds are able to glide more often. Therefore,
it can be concluded that group behaviour can be seen as a form of optimization. The best
food sources, adequate defense, and profitable energy expenditure all ensure the survival of the
group as an entity, while the survival of the group, swarm, or nest takes precedence over the
tate of the individual.

In general, computer systems can now be built where collections of independently acting
entities exhibit collectively intelligent behaviour in an environment that these entities can sense
and alter. This behaviour is known as swarm intelligence, an example of biology as a source

for computing.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 2. OPTIMIZATION 32

2.5 Computing paradigms inspired by natural optimization pro-

cesses

Swarm intelligence forms only one branch of a class of computing paradigms that owe their
existence to the observation and study of natural biological systems. The field of artificial intel-
ligence (AI) hosts a number of these paradigms, including mechanisms with an ability to learn
or adapt to new situations [32]. These systems are collectively known as computational intelli-
gence (CI) which comprises a number of main paradigms: artificial neural networks (NN), evo-
lutionary computation (EC), swarm intelligence (SI), fuzzy systems (FS), and artificial immune
systems (AIS). The branch of evolutionary computation shows some characteristics similar to
swarm intelligence, as both are population-based and exhibit adaptive behaviour in order to
obtain better solutions to optimization problems. The development of various sub-branches of
evolutionary computation preceded the advent of the discipline of swarm intelligence. There-
fore, to place swarm intelligence in perspective, a brief description of evolutionary computation
is presented.

The development of evolutionary algorithms was inspired by the behaviour of populations
of individuals in nature. For such populations to survive, individuals of a population have to
adapt to an often hostile environment. For centuries agriculturists have cultivated plants and
bred domestic animals to acquire traits useful to man. During the great voyages of discovery
in the 18th and 19th centuries, many new plant and animal species were discovered. Some
isolated populations have developed in peculiar ways to adapt to their environments. In the
absence of predators some species have even lost some of their features.

Charles Darwin, an English botanist, also joined an expedition of the “Beagle” in the
capacity of a naturalist [22]. He visited the Galapagos archipelago in 1835. In the absence of
humans and predators, some of the most unique life forms on earth, highly adapted to their
harsh surroundings, have developed on the islands. Observations here and in other remote
locations, emphasized the struggle for existence among these animals and plants. The idea that
favourable variations would tend to be preserved and unfavourable ones destroyed, formed the
basis of his theories about the formation of new species. Thus natural selection or “survival of
the fittest” would ensure that the population having evolved over many generations, would be
able to survive and reproduce.

These ideas as well as the science of genetics, inspired the development of several optimiza-

tion algorithms [24] [40] [43] [55]. All of these use randomly chosen populations of individuals,

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 2. OPTIMIZATION 33

a fitness function to determine how good the solution is, and a strategy to produce offspring
from the individuals.

The following techniques comprise the main sub-areas of evolutionary computation:

Genetic algorithms: Computer programs that resemble natural selection were pioneered in
the late fifties and early sixties. The original genetic algorithm strategy involves a popu-
lation of random strings of 1's and 0’s that are generated to solve a particular problem.
The measure of fitness depends on the type of problem. The process of selecting parents,
recombining parents through crossover to form offspring and then selecting a new gener-
ation, is repeated until the population converges. From time to time a small fraction of
strings are mutated to introduce diversity. Many modifications of the original algorithm
have been tested in a variety of contexts [32], and used to solve a number of practical

optimization problems [43].

Genetic programming: Genetic programming (GP) [55] is an evolutionary-based methodol-
ogy to optimize a population of computer programs. The purpose of genetic programming
is to find programs that perform a user-defined task. Reports on genetic programming
methodology were published during the 1980°s by Smith [91], Cramer [21], and Forsyth
[37]. while John R. Koza pioneered the solving of complex optimization problems by

means of genetic programming [55].

Evolutionary programming: Evolutionary programming (EP), originally proposed by Lawrence
J. Fogel in the 1960’s, differs from genetic algorithms and genetic programming in that
evolutionary programming evolves behavioural models instead of genetic models [35] [36].

An important difference between evolutionary programming and the other paradigms is

that only mutation is used in order to introduce variation in a next population.

Evolutionary strategies: The ideas of adaptation and evolution also led to the development
of evolutionary strategies (ES). developed by Rechenberg and Schwefel in the 1960’s and
1970’s [79] [86]. The focus of evolutionary strategies is on evolution of evolution. A set of
strategy parameters is defined that influences the evolution process. While the population

is optimized, the strategy parameters are adapted, thus optimizing the process itself.

Differential evolution: Differential evolution (DE) is a stochastic population-based opti-
mization algorithm introduced by Storn [94] and Price [78] in 1996. DE is distinguished

from other population-based techniques by the differential mutation mechanism where

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 2. OPTIMIZATION 34

the target vector is mutated by the addition of a random difference weighted vector. A
trial vector is constructed and offspring is produced by crossover between a parent and

the trial vector.

Cultural evolution: Cultural evolution, inspired by human social evolution, enhances the
search process by including prior knowledge about the domain [81]. Culture can be
defined as a system of symbolically encoded conceptual phenomena that are socially and
historically transmitted within and between social groups [27]. Cultural changes occur
much faster than biological evolution in natural systems, thus speeding up the search

process.

2.6 Conclusion

A brief discussion of aspects of optimization was presented in this chapter. Principles from
mathematical optimization that were deemed to be relevant to the objectives of this thesis
were reviewed. As many modern population-based algorithms glean inspiration from adaptive
natural systems, some background and interesting observations of emergent behaviour in nature
were described. Finally, several evolutionary computing paradigms were briefly reviewed, as it

exhibits some similarities to particle swarm optimization.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

Chapter 3

Particle Swarm Optimization

This chapter describes the inception and development of the original particle swarm optimization
paradigm. Several aspects concerning the improvement and refinement of the algorithm are re-
viewed. Particle trajectories and the concept of neighbourhoods in a swarm are briefly discussed.
A classification of single-solution particle swarm optimization algorithms is given followed by the
description of a number of relevant strategies. Information sharing strategies and subswarm-based

algorithms are emphasized.

3.1 Introduction

In keeping with the interest in natural phenomena as the force behind the development of
strategies to solve optimization problems, studies of the coordinated movements of bird flocks
inspired a fascinating new optimization paradigm. In their landmark publication, Particle
Swarm Optimization [48], James Kennedy and Russell Eberhart reason that, similar to humans,
underlying collective memory could be profitable to bird flocks. Although the original intent of
the study was to graphically simulate the movement of a bird flock, the realization that birds
flock towards a food source by capitalizing on one another’s knowledge, led to the idea that
the movement of each agent is guided by two values: the agents’s own previous best position
as well as the best position of the entire flock. In the case of a bird flock, the objective would
be to reach a food source and the best position would be the nearest position to that source.

A unique feature of this paradigm is the association of a velocity with each agent, emulating

CHAPTER 3. PARTICLE SWARM OPTIMIZATION 36

the movement of bird flocks through space. Position changes are effected by adjusting the
velocity over a number of steps or iterations. The original experiments done by Kennedy and
Eberhart [48] added a random amount, weighted by a parameter of the system, to the previous
velocity at each step. The velocity is adjusted in the direction of an agent’s previous best
position, called pbest, as well as the group’s previous best position, called gbest. If the new
position of an agent is better, that is, nearer to the food source, pbest is updated. If the new
value for pbest proves to be better than the previous best position of the entire flock, gbest is
also updated [48]. Results from these experiments showed that, with velocity parameters set
to relatively small values, this simulation of a bird flock is very realistic, exhibiting much of

the flock’s graceful movements before the target, the food source, is reached.

3.2 Particle swarm optimization: The algorithm

Further experiments by Kennedy and Eberhart on their flock simulation yielded a simplified
algorithm that could optimize multidimensional functions that proved to be difficult to optimize
using conventional methods [48]. In accordance with models developed for applications in
artificial life [66], the behaviour of the simulation was perceived to be more like a swarm than
a flock. Also. although the initial candidate solutions or agents are only points in the search
space, velocities and accelerations are more appropriate for particles. Thus the paradigm was
labeled particle swarm optimization (PSO).

Because the concept of PSO stems from the observation of group dynamics in nature, it
can be classified as a population-based algorithm [28]. Although not similar to evolutionary
algorithms, both these paradigms have roots in the observation of natural phenomena. The
use of an objective function for evaluating a candidate solution is practised in evolutionary
algorithms as well as PSO. However, it must be emphasized that the inception of all these
algorithms have only been inspired by the natural phenomena after which, to a certain extent,
they have been named and do not purport to simulate nature in all its complexities.

The particle swarm optimizer maintains a population of particles in n-dimensional space.
Initially, particles are randomly distributed throughout the search space. where each particle
represents a potential solution to an optimization problem. If S is the size of the swarm and

denotes a specific particle, characteristics of 7 are represented by the following symbols [98]:
x;: The current position of the particle;

vi: The current velocity of the particle;

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 3. PARTICLE SWARM OPTIMIZATION 5 4

vi: The personal best position of the particle,

Together with each particle’s position and velocity, a personal best position is maintained
where the objective function yields the best fitness of all positions visited so far by that particle.
Such a personal best position represents part of the memory of a particle, one of the unique
characteristics of the PSO paradigm.

In ‘flying’ through hyperdimensional space, particles continually search for better positions.
It such a position is found, the personal best is updated as follows, assumming minimization:

yi(t) if f(xi(t+1)) = flyi(t)

(1) = 3.1
yilt+1) {x,;(t-l—l) if f(xi(t+ 1)) < f(yi(t)) Wl

Another strength of PSO is the concept of social memory. Particles benefit by capitalizing
on the knowledge of their neighbours. If a better solution is discovered by a single member, the
entire population will move in the direction of that solution. Simultaneously the best position of
the entire swarm, or part of it, is updated. The symbol ¥ indicates the best position discovered

by any member of the swarm or grouping within the swarm, defined as follows:

y(t) € {ya(t), y1(t), - .-, ys«(OH F(¥ (1)) = min{f(yo(t)), f(y1(t). ... flys(t)} (32)

The core of the particle swarm optimizer comprises the adjustment of the velocity associated
with each particle during a single iteration. The previous velocity vector. the velocity vector
towards the particle’s personal best (pbest) and the velocity vector towards the entire swarm’s
best value (gbest), are linearly combined. The functions to be optimized are not always sim-
ple, and many suboptimal solutions may exist in the search space. To diversify the search
and explore new regions in multidimensional space, random coefficients are introduced. Two
independent random sequences, ry ~ U(0,1)" and ry ~ U(0,1)", are used. The constants,
0 < ep, o < 2, called the acceleration constants. control the maximum values of r; and ra. The

velocity of a particle in a swarm is updated as follows:

l-',g_j(t + 1) = 'U-g‘j(f.) + ClT‘LJ(t)['yi*j(f) — .If.i‘j(tﬂ + CQTQ_j{_ﬁ)[@j(t) — :I:i_j(l‘)] (33)

where j=1,....n.

It is clear from equation (3.3) that the values of ¢; and ¢y can be manipulated to increase
or decrease the movement in the direction of either the personal best or global best positions.
Depending on the values of ¢) and ¢y, a particle may also fly past the target before being pulled

back in the direction of the previous best values.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 3. PARTICLE SWARM OPTIMIZATION 38

The velocity is used to update the position of each particle:
xi(t+ 1) =x;(t) + vi(t + 1) (3.4)

The original PSO algorithm consists of, after initializing all particle positions, personal best
positions and velocities, repeated updating of the velocity and position of each particle. Si-
multaneously the personal best position of each particle is updated if better values are found.
The best position of the entire swarm, or neighbourhood when a subswarm is optimized, is also
updated when appropriate. After a number of iterations, or when specific stopping conditions
arc met, the algorithm terminates and the solution is the last global best position, or the best

neighbourhood best position.

3.2.1 Global and local particle swarm optimizers

Eberhart and Kennedy [28] implemented two versions of the initial particle swarm optimizer:
the global version that keeps track of the best value, gbest. of the entire swarm, and the local
version where the best value of a particle’s nearest neighbours are retained and used to update
the velocity of those particles [28]. The two versions are called the GBEST and LBEST models
respectively. The GBEST PSO is summarized in Algorithm 1.

Algorithm 1 The GBEST particle swarm algorithm

Initialize a population of particles with random positions
in n dimensions;

Set velocities associated with each particle to 0;

repeat

for each particle i € [1,S] do

if f(S.z;) < f(S.y;) then

‘ O = 5.y

end

if f(S.y;) < f(S.y) then
| 59 =Sy

end

Update velocity using equation (3.3);
Update position using equation (3.4):

end
until stopping condition is true:

The local version of the particle swarm optimizer is similar to the global version except that

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 3. PARTICLE SWARM OPTIMIZATION 39

particles can only access information of their nearest neighbours’ best positions [28]. The best
evaluation found in this group (nbest) is used together with each particle’s previous best value
(pbest) to calculate a new velocity and new position for each particle. Neighbourhoods consist
of a predetermined number of particles adjacent to one another. The notion of adjacency is,
however, based on the assumption that particle information is stored in arrays. and that the
indices of particles of a neighbourhood are adjacent. Because particle positions are stochasti-
cally determined. the positions of the neighbourhood particles are not necessarily adjacent in
the search space.

The purpose of this version of the particle swarm optimizer was apparently to create dif-
ferent groups of particles that explore different regions of the search space and so increase the
diversity and the ability to optimize a function that may contain local optima. Particles within
stuch a neighbourhood have no relationship to each other, as selection of the particles forming a
neighbourhood is based on particle indices. Thus, neighbourhoods overlap and a particle may
be part of more than one neighbourhood. The main differences between the GBEST PSO and
LBEST PSO are [32]:

e The GBEST PS5O converges faster, but swarm diversity is lost.

e As the result of improved diversity, the LBEST PSO is less likely to converge on a local

minimuin.

Suganthan [95] proposed a number of improvements for the standard PSO algorithm to
improve the quality of the solutions as the number of iterations was increased. A variable
neighbourhood operator was introduced. Starting with a neighbourhood consisting of a single
particle, the size of the neighbourhood is gradually increased to include all particles. The
neighbourhood is defined in two different ways: by using particle indices and by choosing
a fraction of particles that are physically close to the particle for which a neighbourhood is
sought. The second method uses a spatial neighbourhood and can be computationally intensive
as Euclidian distances between all particles have to be calculated. Experimental results showed

that the quality of the solutions improved when using dynamic neighbourhoods [95].

3.2.2 Cognition-only and social-only models

The particle swarm paradigm originates from the observation of bird flocks where individual

members profit from the discoveries and previous experience of the flock in their search for

CHAPTER 3. PARTICLE SWARM OPTIMIZATION 40

food [48]. The idea of knowledge sharing can also be found in human societies and its social
structures [49].

If the PSO paradigm is viewed as simulating the ability of human societies to process
knowledge. two distinct parts can be identified, a cognitive part and a social part. The term
ciry;(8)(yij(t) — @ j(t)) is perceived to represent private thinking, as a new position in the
search space is calculated using the experience of the best previous position. A particle swarm
optimizer using only the cognitive component is known as the cognition-only model [49]. For
this model particles tend to search the regions where they have been initialized, and behave as

independent hill-climbers. The velocity update formula is modified as follows:

'l.’i_j(f + 1) = 'Ui,j(t) + C'N'l!j(t)(.fji,j(t) — J‘j‘j(t)) (3.5)

According to Kennedy [49] and Carlisle and Dozier [17], the cognition-only model is less suc-
cessful and slower than the model with a cognitive as well as a social component, referred to
as the full model. However, the cognition-only model proved to be useful when combined with
other techniques to develop a niching algorithm [13] [16].

The velocity update formula for the social-only PSO version [49] is:

vij(t+ 1) = vij(t) + cara ; (£)(5;(t) — xi5(t)) (3.6)

For the social-only model. individuals have no tendency to return to positions that previously
proved to be successful for themselves. All particles are attracted towards the best position in
their neighbourhood so that this version converges faster [17] [49]. However, depending on the
problem, there is a tendency to converge on local optima, as particles does not explore their

own neighbourhoods sufficiently.

3.2.3 The inertia weight

The addition of velocity adds several unique characteristics to the particle swarm [50] [88].
Considering the metaphor of a swarm of particles flying through hyperdimensional space, the
addition of velocity at every step increases the resulting velocity of a particle until it flies past
the target and is pulled back towards previous personal best and neighbourhood best values.
Thus the search for an optimum is diversified and other more remote regions of the search space
can be explored. However, for the GBEST model it is necessary to control the velocity in order
to prevent particles from leaving the search space. Therefore the velocity of a particle is limited

by some value V., [49]. Limiting the velocity is also referred to as velocity clamping, which is

CHAPTER 3. PARTICLE SWARM OPTIMIZATION 41

implemented by clamping speed to control the global exploration of particles. If Vi,,,. ; is the
maximum allowed step size in dimension j, the speed is adjusted before particles positions are
updated:

vgj(t +1) if ‘U;J»(f +1)) < Vinaa,j

'Ui‘j(f-}-].):)
Vma.r.j if UE;,‘(f- + 1)) = Vrrm.a‘,j

(3.7)

where v; ;(t + 1) is computed using equation (3.3).

A value for Vi, ; should be selected carefully, as the swarm will not explore the search
space sufficiently if the value is too small, while a too large value might have the effect that
good regions of the search space are not exploited sufficiently.

To control the velocity and to improve the performance of the particle swarm optimizer, a
new parameter, the inertia weight, was introduced by Shi and Eberhart [88]. It was argued that
a very small velocity causes particles to statistically contract to the current global optimum,
resembling a local search algorithm. A larger velocity causes exploration of new regions, result-
ing in a global search ability. Different problems require different balances between the local
search ability and global search ability. To implement this, an inertia weight w was brought

into the equation as follows:
vig(t 4+ 1) = w4 (8) + crry () (4 () — 2i5(8)) + carg (8 (95 (1) — @i 5(1)) (3.8)

.‘I?-L"j(l‘. +1) = xii(t) +vij(t+1) (3.9)

where w is the inertia weight.

The inertia weight acts as a scaling factor that modifies the contribution of the previous
velocity to the current update equation. In their initial empirical studies, Shi and Eberhart [88]
investigated the effect of different values for w € [0, 1.4]. Algorithms with an inertia weight in
the range [0.8,1.2] were found to converge faster. Dynamically changing inertia values, where
large inertia values decrease over time to smaller values, also improve the performance of the
particle swarm optimizer significantly [88]. These results can be explained by noting that an
optimization algorithm generally needs more exploration ability at the beginning of a run while
exploitation ability is necessary when the optimum is approached. Further studies by Shi and
Eberhart [89] concluded that the selection of the inertia parameter and maximum velocity may
be problem-dependent.

The ultimate purpose of PSO is to explore the search space where the objective function is
defined and, though the landscape may contain many suboptimal solutions, locate the overall

or global best position. Through exploitation of the surrounding search space, the accuracy

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA
CHAPTER 3. PARTICLE SWARM OPTIMIZATION 42
10 T T T T
5 H =
0 3
-5 4
10 ¢]
-15 L L L L
0 50 100 150 200 250

Figure 3.1: Stochastic particle trajectory, obtained using w = 0.7 and ¢; = ¢ = 1.4 [100]

of the solution is improved. The choice of control parameters such as inertia and acceleration
coefficients determines whether the PSO will exhibit divergent, convergent or cyclic behaviour,
and whether exploration of the search space is sufficient. Control parameter settings can not
be seen in isolation. Choosing a value for w has to be made in conjunction with the selection of
values for ¢; and ¢, [33]. Some studies empirically found certain parameter choices to work very
well, for example Eberhart and Shi’s choice of w = 0.7298, ¢; = ¢z = 1.49618 [29]. However,
these choices should not be generalized as they are based on a limited sample of problems and
may also be problem-dependent.

Theoretical studies of particle trajectories played a large part in gaining insight into optimal
parameter choices. Ozcan and Mohan [68] conducted formal analyses showing that, in the
absence of stochastic influences, the trajectory of a particle follows a sinusoidal wave. Each
particle acquires a random frequency and amplitude during the search. The analyses were
extended to incorporate a multidimensional and multi-particle system [69].

Particle trajectory studies done by Ozcan and Mohan [68] [69] and Clerc and Kennedy [20]
use a simplified PSO system without an inertia term. Van den Bergh and Engelbrecht [100]
conducted an analysis of particle trajectories with the inertia weight included. Formal proof is

presented that each particle i of a ghest PSO converges to a stable point p;, that is, if {x;(¢)},-5

EIT VAN PRETORIA
TY OF PRETORIA
THI YA PRETORIA

CHAPTER 3. PARTICLE SWARM OPTIMIZATION 43
is a sequence of particle positions, it is shown that

livi %(t) =D (3.10)

t——+oc

Thus the trajectory of a simple particle with inertia converges to a stable point, which is a
weighted average of y (the personal best position) and y (the global best position).

A heuristic to select the best values for w, ¢; and ¢z could now be derived [100]. Van den
Bergh and Engelbrecht found that, to guarantee convergence, the following relation has to be
satisfied:

w> e+)~ 1 (3.11)

An example of the trajectory of a particle using the parameter settings w = 0.7 and
¢y = ¢o = 1.4 that satisty the relationship given in equation (3.11) is shown in Figure 3.1
[100].

3.2.4 The constriction factor

Conditions to guarantee the convergence of the particle swarm to an equilibrium state were
also studied by Clerc [19]. Clerc and Kennedy [20] proposed the incorporation of a constriction
factor into the particle swarm update equation to balance the exploration-exploitation trade-
off and prevent the velocity from growing out of bounds. Velocities have traditionally been
contained by implementing a V., parameter. However, the need for such a parameter is
eliminated by the implementation of properly defined constriction coefficients. The effect of
a constriction factor is similar to that of the incorporation of an inertia weight, but velocity

clamping is not necessary. A value for the constriction factor y was derived in terms of ¢; and

€.
The modified velocity update equation is presented in the following equation:
vig(t+1) = x(vi(t) + i () (wii(t) — 235 () + cara ;(£) (5 (t) — zi5(t))) (3.12)
where
2 (3.13)
2—¢— /o(o—4)
with

O =1+ @9

o1 =car

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Quu# YUNIBESITHI YA PRETORIA
CHAPTER 3. PARTICLE SWARM OPTIMIZATION 44
O = car2

The purpose of the constriction coefficient, y, is to reduce the velocity at each time step in
order to ensure convergence to a stable point [33]. Applying the constraints ¢ > 4 and x € [0,1]
guarantees swarm convergence, as x evaluates to a value in the range [0,1]. The value of &
determines the extent to which either exploration or exploitation dominates behaviour of the
swarm. Local exploitation is favoured for = 0, resulting in fast convergence, while x = 1 has
the effect that convergence is slow with a high degree of exploration.

Eberhart and Shi compared the performance of particle swarm optimization using an inertia
weight with the performance of a PSO with a constriction factor [29]. Empirical results showed
that the constriction factor approach incorporating velocity clamping as well, performs better
than the inertia weight approach. Comparing the equations representing the inertia weight
approach with those representing the constriction factor approach, it can be shown that the
inertia weight approach is similar to the constriction factor approach if the inertia weight w is
set to x, and ¢; and ¢y is chosen such that @ = ¢; + ¢o where ¢ > 4. Theoretical analyses by
Van den Bergh and Engelbrecht [100], and Trelea [97] confirmed that careful selection of the

inertia weight w as well as ¢; and ¢o result in improved performance.

3.2.5 Neighbourhoods

The discussion of two early PSO models, GBEST and LBEST in section 3.2.1 introduced the
concept of a neighbourhood. Social structures and communication within social networks can,
to a large extent, be seen as the driving force behind particle swarm behaviour. The LBEST
version of the PSO as described by Eberhart and Kennedy [28] model social behaviour by
making use of neighbourhoods. Overlapping neighbourhoods are created where particles of each
are scattered throughout the problem space and will eventually converge to the neighbourhood
best and then to the global best. Thus the diversity of the swarm is improved.
Neighbourhoods form a basis for communication within a swarm. Individuals in a neigh-
bourhood influence one another; the more successful an individual is, the greater the influence
on other members of the neighbourhood. Thus the quality of the entire neighbourhood will be
enhanced. Group performance is influenced by the quality of communication within the group
which is again affected by the structure of the social network [51]. In particle swarm opti-
mization neighbourhoods may have different topologies. Particles assigned to a neighbourhood
are selected according to some structure based on array indices if the swarm is implemented

as an array of particles [51]. The different topologies indicate the degree of connectivity and

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 3. PARTICLE SWARM OPTIMIZATION 45

the amount of information interchange in a social network. Highly connected networks favour
faster convergence, but the danger also exists that local minima may be reached. Sparsely
connected networks converge slower, but if clustering occurs, the search space may also not be
covered sufficiently [33].

Several social network structures have been empirically studied. A number of these are

described below [51] [53] [65]:

The star social structure: A star structure, illustrated in Figure 3.2, describes a social
gtructure where all particles are interconnected. Such a structure corresponds to the
original GBEST PSO model. All particles communicate with one another. Information
flow through the network is fast, as each individual is attracted to the best solution found
so far. Populations tend to converge rapidly, but are susceptible to convergence on local

optima [51].

The ring social structure: The original LBEST PSO model uses a ring structure, illustrated
in Figure 3.2, to form neighbourhoods. Each individual is affected by its K immediate
neighbours. If K = 2, each particle communicates with its two adjacent neighbours.
Neighbourhoods formed in such a manner will overlap, as adjacency must be understood

in terms of particle indices and not physical adjacency in the search space.

The wheel social structure: For the wheel structure, illustrated in Figure 3.2, one individ-
ual is connected to all others, which are connected only to that individual. All information
flow through this focal point. Too rapid conversion on local optima is prevented by the

buffering effect of the focal particle, and the propagation of good solutions is slowed down.

The pyramid social structure: This social structure has the shape of a three-dimensional
wire-frame triangle [53]. Compared to the performance of other topologies, it produced

relatively good results.

The four clusters social structure: Four clusters of particles are formed with two connec-

tions between clusters.

The Von Neumann social structure: Particles are connected in a grid structure [53]. Neigh-
bours above, below, and on each side on a two-dimensional lattice are connected. The

Von Neumann social structure was shown to perform very well in a number of empirical

studies [53] [73].

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA
CHAPTER 3. PARTICLE SWARM OPTIMIZATION 46
(a)Star (b)Ring
(¢)Wheel

Figure 3.2: Social network structures

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 3. PARTICLE SWARM OPTIMIZATION 47

The concept of different neighbourhoods of particles within a swarm is central to the de-
velopment of a number of algorithms, referred to as niching algorithms to solve multi-solution
optimization problems. Genetic algorithm niching techniques such as fitness sharing [40], clear-
ing [74], the sequential niching technique of Beasley et al. [4] and species conserving genetic
algorithms developed by Li et al. [56] all use some form of a niche radius to demarcate a por-
tion of the swarm which is then optimized separately to converge on either the global or one of
the local optima. Particle swarm niching techniques such as NichePSO [13], the species-based
PSO [67] and the vector-based PSO developed in this study, also rely on a niche radius in order
to divide the swarm into subswarms. These techniques are addressed in depth in chapters 4
and 5.

When neighbourhoods are created to facilitate niching, it is understood to be spatial neigh-
bourhoods. Such neighbourhoods are defined as a subset of a swarm of particles in the same
region of the problem space. Suganthan [95] proposed that neighbourhoods be formed on the
basis of spatial proximity in order to improve the performance of single-solution PSO. The Eu-
clidian distance between particles determines whether particles are close enough to one another
to qualify being in the same neighbourhood. Given neighbourhoods of size n y. Suganthan de-
fines the neighbourhood of particle i as the np; particles closest to particle i. The original
PSO algorithm is modified to facilitate a finer grained search by employing neighbourhoods.
A neighbourhood is created by calculating distances between particles and choosing a number
of particles near to particle i. The best particle in the neighbourhood, lbest, is calculated.
Neighbourhood sizes are gradually increased. Updating each neighbourhood means that each
lbest moves in the direction of gbest but at a much slower rate of convergence, giving the swarm
more exploratory power.

Using spatial neighbourhoods is computationally expensive as distances between particles
have to be calculated at each iteration. Thus, if neighbourhoods are created to improve diver-

sity, neighbourhoods based on particle indices are preferable.

3.3 Variations on the particle swarm optimizer

Since the inception of the particle swarm optimizer, many variations have been proposed and
tested with the purpose of improving the performance of the algorithm [33]. Enhancements
to the basic PSO comprise improvements to the accuracy of the solutions, the probability of

locating the overall optimal value as well as the extent to which convergence could be guar-

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 3. PARTICLE SWARM OPTIMIZATION 48

anteed. Single-solution PSO algorithms for continuous, unconstrained problems are classified
by Engelbrecht according to the technique that was implemented to improve the performance
[33]:

Social-based algorithms: These algorithms use different information sharing strategies. Par-
ticles influence one another in different ways, thus changing the way in which the neigh-

bourhood best position is calculated.

Hybrid algorithms: Aspects of evolutionary computation and ant colony optimization as
well as strategies such as simulated annealing and gradient descent, are incorporated into

the traditional PSO.

Sub-swarm-based: Algorithms are included where the swarm is divided into sub-swarms and

manipulated in different ways in order to improve diversity and accuracy of the solutions.

Memetic algorithms: Exploration ability of PSO is improved by the incorporation of other

techniques implementing local search.

Multi-start algorithms: Parts of the swarm or the entire swarm are restarted at certain

stages.
Repelling methods: Particles are repelled from one another in order to improve diversity.

This study emphasizes optimization algorithms with the ability to locate multiple solutions.
Such algorithms are applied to problems described by multi-modal functions in demarcated
search spaces. These algorithms are referred to as niching or speciation algorithms and are
described in depth in chapter 4. Some of the strategies used to facilitate niching, have their
roots in techniques used in single-solution PSO algorithms. The concept of neighbourhoods as
introduced in the LBEST PSO model [28], has already been discussed. A number of relevant

single-solution PSO algorithms are presented in this section.

3.3.1 Information sharing strategies

The idea of neighbourhoods form a salient feature of these algorithms. The following strategies

are discussed:

IT VAN PRETORIA
Y OF PRETORIA
HI YA PRETORIA

CHAPTER 3. PARTICLE SWARM OPTIMIZATION 50

A

Zi r(t)(ym(t) — xi(t))

ny;,

m=1

where ny, = |NV;|, N is the set of particles in the neighbourhood of particle i and r(t) ~
U(0,c; + ¢2)". To calculate the velocity at the next time step, the above term is added to the
current velocity and the result is scaled by either the inertia weight or the constriction factor.
For the second approach, the contribution of each particle is scaled by a weight depending
on the performance of that particle. Mendes et al. tested both approaches on a number of
benchmark functions using different population topologies. Both approaches performed better

than the standard PSO.

Fitness-distance ratio PSO

The fitness-distance ratio PSO (FDR-PSO), developed by Veeramachaneni et al. [102], ad-
dresses the problem of premature convergence by adjusting the velocity of each particle towards
the best previous positions visited by its neighbours. Similar to the fully informed PSO [65],
a particle is most likely to be influenced by more successful individuals in its neighbourhood.
However, the influence of mulfiple other particles may cancel each other, resulting in a reduced
possible benefit. The FDR-PSO algorithm counteracts this possibility by selecting only one
other particle when updating each velocity dimension. Such a particle is chosen subject to the

following criteria:
e [t must be near to the particle being updated.
e [t should have visited a position with fitness better than the particle being updated.

A simple and robust way to update each velocity dimension comprises selecting a particle
that maximizes the ratio of the fitness difference to the one-dimensional distance. For dimension

j=1,...,n, a particle referred to as nbest is chosen to maximize

o flym(®) = fa(t)
FDR(i,m,j) = 9o (0 25,00

where F DR refers to the fitness-distance ratio. Veeramachaneni et al. [102] showed the FDR-

(3.14)

PSO to perform significantly better than the original PSO and several of its variants, when

tested on a number of benchmark functions.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 3. PARTICLE SWARM OPTIMIZATION 51

The technique used by the FDR-PSO to quantify the influence of multiple particles on the
updating equation in a neighbourhood inspired an enhanced speciation algorithm developed by
Li [57]. The Fitness Euclidian-distance Ratio-based PSO (FER-PSO) is discussed in chapter
4,

3.3.2 Subswarm-based approaches

Grouping of particles into subswarms can primarily be seen as an effort to diversify the search
process. In order to locate the overall optimal position, the entire search space should be
explored and premature convergence inhibited. Engelbrecht [33] classifies subswarm-based PSO
approaches into cooperative PSO algorithms and competitive PSO algorithms. A selection of

cooperative PSO approaches is briefly discussed in this section.

Multi-phase PSO

Lovbjerg et al. [60] combined the particle swarm with concepts from evolutionary algorithms
to develop two hybrid particle swarm optimizers. These algorithms can be classified as hybrid
algorithms with the ideas of subpopulations and breeding incorporated to prevent premature
convergence to suboptimal points. However, the breeding between subswarms is a form of
cooperative PSO, as genetic material is exchanged between parents of different subswarms

33]. The structure of the hybrid model is illustrated in Algorithm 2.

Algorithm 2 The structure of the hybrid model

begin

initialize;

while not terminate-condition do
evaluate;
calculate new velocity vectors:
move;
breed;

end

end

A breeding model as well as a subpopulation model are presented. The breeding model
produces offspring by randomly selecting two parents. Offspring are produced by arithmetic

crossover on the position of the parents for each dimension. Velocity of the offspring is calcu-

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 3. PARTICLE SWARM OPTIMIZATION 52

lated as the sum of the velocity vectors of the parents normalized to the original length of each
parent velocity vector. Parent particles are then replaced by their offspring particles.

The subpopulation model extends the breeding hybrid PSO model by dividing the particles
into a number of subpopulations, each having its own unique best known optimum. Breeding
takes place between particles from different subswarms, which could result in an escape from
a local optimum.

Al-kazemi and Mohan [1] describes an adaptation of the PSO algorithm to discrete op-
timization problems. Particles are divided into two subswarms of equal size. At any given
time, each particle is in one of two possible phases, an attraction phase and a repulsion phase.
Attraction and repulsion refer to the movement of particles towards or away from the global
best position. Directions of these movements are controlled by the coefficients in the velocity

update equation, which excludes the personal best position:

vyt + 1) = wv(t) + ermyz(t) + o (2) (3.15)

Phase switching takes place either after a set number of iterations, or if no global best
fitness improvement is observed in a specified number of steps. Unlike other PSO variants,
particle positions are updated by incorporating a hill-climbing procedure. A particle position

is permitted to change only if such a change improves fitness.

Cooperative split PSO

Stochastic optimization algorithms such as particle swarm optimizers and genetic algorithms
almost always experience reduced performance with increased dimensionality. Van den Bergh
and Engelbrecht introduced the cooperative split PSO (CPSO-Sk) [101] to improve the per-
formance of the original algorithm. Multiple swarms are used to optimize different components
of the solution vector cooperatively. If each subswarm represents one dimension, the number
of subswarms will be equal to the dimensionality, n. of the problem. However, the function
to be optimized requires an n-dimensional vector. Therefore subswarms cannot be optimized
separately. To address this impediment, a context vector is constructed by concatenating the
global best particles from each of the n swarms to form an n-dimensional vector. In swarm j,
for example, the other n — 1 components in the context vector are kept constant while the jth
component of the context vector is replaced in turn by each particle from the jth swarm.

Van den Bergh and Engelbrecht reported a marked improvement in performance over the

standard PSO when CPSO-Sk was tested on several benchmark optimization problems [101].

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 3. PARTICLE SWARM OPTIMIZATION 53

3.3.3 Memetic PSO algorithms

Empirical studies have shown that many optimization algorithms lack the ability to refine a
solution once a promising region of the search space have been located. Mechanisms that
have been provided to balance exploration and exploitation can be put into effect to favour
exploitation in the later stages of the optimization process. In addition, special features can
be incorporated to address this problem. For example, a local optimizer can be embedded
between the iterations comprising the search process. Al-kazemi and Mohan [1] incorporated
a hill-climbing process in their multi-phase PSO discussed earlier. To reduce computational
complexity and yield similar performance, local search methods such as hill climbing can be
applied only to neighbourhood best solutions.

Incorporating local search methods is also applicable to niching algorithms, especially since
the subswarms and species that form an integral part of many of these algorithms consist of

limited numbers of particles.

The guaranteed convergence PSO

The guaranteed convergence PSO (GCPSO) [100] incorporates a local search heurisite related
to basic hill-climbing. The algorithm forms an integral part of NichePSO, a niching PSO
developed by Brits et al. [13] [14] [16]. NichePSO is discussed in chapter 4.

Particle swarm optimizers have a property that make them susceptible to premature conver-
gence resulting in inaccurate solutions. Van den Bergh and Engelbrecht found that a particle
may reach a state where x; = y; = y , meaning the particle’s current position, its personal best
position and the global best position is the same [100]. In such a case the velocity update will
depend only on ww; j(t), meaning that the previous velocity and inertia factor will be respon-
sible for moving the particle to another position. If previous velocities are very close to zero,
all particles will stop moving once they catch up with the global best position. The swarm will
converge before a solution is reached. Such behaviour is referred to as stagnation.

A new parameter was introduced to the PSO algorithm. If 7 is the index of the global best

particle so that

Yo=Y

a new velocity update equation for the global best particle was suggested:

‘U-,—\j(f + 1) = —L‘T\j(t) = ‘_t;'j(t) + U,I’UT_j(f) i p(f)(l — 27‘2.j(t)) (J]_())

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 3. PARTICLE SWARM OPTIMIZATION %1

The idea of the new equation is to search in a small region around the best global position,
(yj). for a position with better fitness. The term —x ;(#) resets the particle’s position to
yj. The search direction is the current search direction, thus wuv,;(t) is added. The term
p(t)(1 — 2ry ;(t)) generates random positions in a region with side lengths 2p(t). p is a scaling

factor generated as follows:

2p(t) if # successes > s,
p(t+1) =< 0.5p(t) if # failures > f,. (3.17)

plt) otherwise

The number of consecutive failures or successes are given by the terms #failures and #successes
respectively. A failure is defined as f(y(¢)) = f(¥(t — 1)), assuming minimization, while s, and
fe are threshold parameters, depending on the objective function. More detail can be found in
99].

The position of the global best particle 7 is updated by the following equation where the

velocity is calculated by the new velocity update equation:
Trj(t+ 1) = g;(t) + wor;(t) + p(t)(1 — 2r2(2)) (3.18)

The guaranteed convergence particle swarm optimizer (GCPSO) was tested on a number
of nnimodal and multimodal functions, and significantly faster convergence compared to the
original PSO, was found. With smaller swarm sizes the effect was more pronounced. The
algorithm can be classified as a local optimization algorithm and would be especially useful

when swarms are partitioned into smaller subswarms to be optimized separately.

3.4 Conclusion

This chapter reviewed the inception and development of the particle swarm optimization
paradigm. The original algorithm was discussed while an overview of the most important
improvements was given. Aspects such as trajectories followed by particles as a result of the
associated velocity, were touched upon. Neighbourhoods in the swarm and the forming of sub-
swarms were emphasized, as these concepts form the basis of a number of niching strategies
which will be discussed in chapter 4. A number of relevant single-solution PSO algorithms were

described with the emphasis on information sharing strategies and subswarm-based algorithms.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

Chapter 4

Niching

This chapter describes and elaborates on the concept of niching or speciation. Niching algorithms
locate more than one optimum of an objective function in a search space. Genetic algorithm niching
techniques are briefly reviewed. A number of techniques that adapt particle swarm optimization
to locate and optimize functions with multiple optima are discussed in detail. These algorithms
use different strategies to identify candidate solutions, estimate niche boundaries and optimize
separate subswarms to converge on different optima. Algorithms where these processes take place
sequentially as well as in parallel, have been developed. In the case of parallel niching algorithms, a
niche merging component is incorporated. Improvements and refinements of some of the algorithms

are also discussed.

4.1 Introduction

Function optimization is usually understood as the process of locating a position where the
function has the best possible value. The quest for efficient and effective techniques to accom-
plish this goal has been described in the preceding chapters. However, for various optimization
tasks more than one optimum needs to be located. In engineering design, alternative designs
that perform equally well, often exist [4]. If several optima can be located, the user can choose
a design by considering criteria that have not been incorporated in the objective function. An-
other example of multi-solution optimization is locating all the resonance points in mechanical

or electrical systems [23]. Depending on the application, the designer will need to maximize or

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 56

minimize all such resonances. Solving systems of linear equations is also required in many sci-
entific and engineering problems, for example, in robotics and signal processing. Multi-solution
optimization provides an efficient technique to solve such problems.

The Oxford dictionary describes a niche as a shallow recess, a definition that can also
be used figuratively to indicate a container of entities exhibiting some common traits. This
description is used in population-based optimization strategies such as evolutionary algorithms
and swarm intelligence when all optima of a multi-modal function have to be located in a
demarcated search space. When a function has more than one optimum, the part of the search
space where individuals have a natural tendency to converge on a specific optimal solution, is
known as a niche. Therefore algorithms designed to locate multiple optima, are referred to as
niching algorithms.

In keeping with the biological origins of the various kinds of population-based optimization
algorithms, the niching metaphor also has its roots in nature [4]. In ecology, a niche describes
the relational position of a species or population in its ecosystem. Such an ecological niche
describes how an organism or population responds to the distribution of resources and com-
petitors and how those same factors may be altered by the organism or population. Thus
different populations survive and can exist together by utilizing the environment in different
ways. Different species evolve to fill different ecological niches. Therefore niching algorithms
are also referred to as speciation or species-based algorithms.

Niching has originally been studied for evolutionary algorithms, in particular genetic algo-
rithms [4]. Recently, a number of niching algorithms for particle swarm optimization have also

been developed. A new PSO niching algorithm is presented in chapter 5.

4.2 Genetic algorithm niching techniques

Similar to the development of single-solution population-based algorithms, the development
of niching methods for evolutionary algorithms preceded that of particle swarm optimization.
Much of the concepts and terminology used in the study of niching algorithms, stem from their
use with evolutionary algorithms, particularly genetic algorithms. Therefore, a brief discussion
of relevant genetic algorithm niching techniques is presented.

Fitness sharing, a strategy to promote stable sub-populations or species. is described by
Goldberg and Richardson [40]. The idea comes from natural ecosystems where different species

evolve to fill each ecological niche. To implement fitness sharing, it must be known if individ-

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 57

uals occupy the same niche. Although the strategy is primarily concerned with encouraging
diversity, useful concepts like calculating the distances between all individuals and introducing
a niche radius, are fundamental to many niching techniques for genetic algorithms as well as
particle swarm optimization.

Crowding, originally proposed by De Jong [24], and deterministic crowding proposed by
Mahfoud [61], are based on the competition for limited resources in a natural population.
Deterministic crowding recombine pairs of individuals to produce offspring, that replace their
closest parent if the fitness is better. The idea of closeness, determined here by means of the
phenotypic distance function, as well as the identification of some form of similarity among
individuals, can be found in a number of niching algorithms.

Pétrowski [7T4] proposed a clearing procedure as a niching method for genetic algorithms.
The method was inspired by the sharing of limited resources within subpopulations of indi-
viduals characterized by some similarities. The population is divided into subpopulations by
first sorting individuals from best to worst according to the fitness values. To determine if
individuals belong to the same subpopulation, a dissimilarity measure, referred to as the clear-
g radius, a, is used. All solutions within distance o from the best dominant individual are
then cleared, that is, their fitness values are set to zero. The process is repeated for the next
fittest solution, until a list of dominant individuals or winners remain. Each of these winners
represents the fittest individual in a niche.

The clearing procedure was shown to significantly improve the performance of genetic al-
gorithms applied to multimodal optimization. The use of a radius to identify a niche and
the process to determine niches also feature in later algorithms such as the species conserving

genetic algorithm [56] and the species-based PSO [57].

4.2.1 A sequential niching technique

A sequential niching technique for multimodal function optimization using genetic algorithms
was proposed by Beasley et al [4]. For this technique, maximization is assumed. Maxima
are located in sequence. However, repetition of the GA does not guarantee that a different
solution will be found each time. Therefore, the sequential niching technique uses knowledge
gained from previous executions of the optimization algorithm to prevent the region where
a solution has been found from being searched again. A PSO niching technique, objective
function stretching [71] [72] shows some similarities to the sequential niching technique for

genetic algorithms. Therefore, a more detailed description of the said technique is deemed to

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING o8

be relevant to the study of PSO niching.
The sequential niching technique maintains two fitness functions in order to carry over

knowledge from previous executions of the algorithm:
e the original fitness function or raw fitness function, F', and
e the modified fitness function, M.

To compute the modified fitness function, a distance metric is required to indicate how close
two chromosomes are. Beasley et al uses the Euclidian distance between two points occupied by
individuals in n-dimensional space. The modified fitness function, M (x), for an individual x,
is computed by multiplying the raw fitness function, F(x), by a single-peak derating function.
Initially, My(x) = F(x). The optimization algorithm is run using the modified fitness function,
keeping a record of the best individual, ¥, found in the run. The modified fitness function is
updated to give a depression in the region near the best individual, producing a new modified

fitness function, according to

Myi1(x) = My(x) G(x,9) (4.1)

where G(x.y) is a single-peak derating function.
Various derating functions can be used, for example, the power law and exponential func-

tions, respectively defined as

(deg/r)® ifdgg<T

1| otherwise

Gp(x.9) = (4.2)

and

exp(log m * (r —dyy)/r) ifdey <r

Ge(x,y) = (4.3)

1 otherwise

The above functions assume maximization. For minimization, stretching functions are used.

The distance between x and y, as determined by the distance metric, is given by dy;. The
values of the derating functions increase as this distance increases. The curve described by the
power law function can be concave, convex or linear. The power factor. «, determines how
concave (« > 1) or convex (a < 1) the derating curve is. Curves of the exponential function
are concave. In equation (4.3), m is the minimum value of the derating function, G, at which
point dy; = 0. The value of m also determines how concave the derating curve will be. Smaller

values of m produce more concavity.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 59

The niche radius, r, an estimated value depending on the inter-niche distance, requires prior
knowledge of the objective function. However, Deb [23] proposed a technique to calculate r,
provided that the number of maxima is known or can be estimated. Assume that a hypersphere
of radius r surrounds each of the p maxima in the function, and that these hyperspheres do
not overlap. The hyperspheres must completely fill the n-dimensional space. If the parameter
range for each dimension is normalized to be 0 or 1, r is given by:

_
e (4.4)

The purpose of the derating function is to modify the search space such that previously
traversed parts of the search space are not re-explored. The derating function reduces the fitness
of each individual by an amount that depends on the distance between that individual and
each best individual found in previous runs. The modified fitness function now has a minimum
imposed in areas where maxima were located, thus preventing the maxima to be located again.
Figure 4.1 illustrates the raw fitness function, F(x) = sin?(27x), and the modified function
after the raw function has been multiplied by the power law derating function with 2 = 0.25,
r=0.25, and o« = 2. In this example two small peaks or false optima remain. Larger values
for v can reduce the height of these optima, but with too high values maxima of interest may
be lost or the solutions may be incorrect.

After each execution of the optimization algorithm. the modified fitness function is updated
by:

My 11(x) = Mp(x) * G(x,¥) (4.5)

Algorithm 3 describes sequential niching genetic algorithm of Beasley et al. [4]. A single
application of this algorithm is referred to as a sequence, since it consists of several runs of the

optimization algorithm (a GA or other search technique).

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qo VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 60
1 e
08
06
Fitness ,
04 |
|
i
02 /
0 i 204 o
0 0.2 04 0.6 08 1

Figure 4.1: Suppression of one peak by a derating function

Algorithm 3 The sequential niching genetic algorithm

Initialize the modified fitness function to the initial, or raw fitness function:

repeat

Run the GA to optimize the modified fitness function. keeping a record
of the best individual found in the run;

Update the modified fitness function to give a depression in the region
near the best individual, producing a new modified fitness function;

if fitness of best individual > solution threshold then

{ display as a solution;
end
until the required number of solutions have been found;

According to Algorithm 3, the best individual found in a run is displayed as a solution if the
fitness of that individual is larger than the solution threshold. The solution threshold represents
the lower fitness limit for maxima of interest. It is assumed that there is a known number,
p, of maxima with fitnesses greater than the solution threshold. If the likely fitness values of
the maxima of interest are not known, the solution threshold is set to 0 and the algorithm is

terminated after the first p maxima have been located. The value of p is set beforehand.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 61

Sequential niching proved to be a vast improvement on fitness sharing methods [4]. However,

it does suffer from several drawbacks, listed below:

e Calenlation of the niche radius requires the number of maxima to be known in advance.
An objective function where the maxima are spread evenly throughout the search space,

is assumed.
e False maxima are introduced by the derating function and may be located as solutions.

e [0 find ¢ maxima, a single-solution optimization algorithm needs to be executed at least

q times, which increases the computational complexity.

In order to solve the problem involving false maxima, Beasley et al [4] suggested using the
modified fitness function to find an approximate solution. Using the original or raw fitness

function. a local search method can then locate a more accurate solution.

4.2.2 A species conserving genetic algorithm

Species conserving genetic algorithms by Li ef al. [56] evolve parallel subpopulations using
species conservation. A species is a class of individuals with common characteristics. In
natural ecosystems some species may become extinet due to a failure to adapt to a changing
environment. However, if these species might be useful to other ecosystems or to humanity,
some form of intervention could preserve a few individuals.

Li et al. define a species as a subset of the population containing individuals where the
distance between any two individuals is less than a parameter, oy, the species distance. The
species distance is also used to determine which individuals are worth preserving from one
generation to the next. The algorithm has close ties to the species-based PSO [57] that will be
discussed later in this chapter.

The notion of species is exploited by the species conserving genetic algorithm to achieve
niching when optimizing multimodal functions. To locate multiple optima, individuals that
are copied into the next generation have to include highly fit individuals, as well as individuals
that, while not highly fit, are different enough from the current best individuals to be worth
keeping. To establish which individuals have to be conserved, the population is partitioned
into several species. Each species is dominated by an individual called the species seed. X,
denotes the set of species seeds found in generation t. To build the set X, each individual in

generation ¢ is considered successively in decreasing order of fitness. If X, does not contain

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 62

any seed that is closer to that individual than half the species distance, o4/2, the individual
becomes a new species seed and is added to X;. The procedure for determining the species
seeds is performed for every generation in a GA run.

Once all the species seeds have been found, the new population is constructed by applying
the usual genetic operators, i.e. selection, crossover and mutation. Some species may not be fit
enough to survive following these operations, but is nevertheless worth keeping. To enable them
to survive, the species seeds in X are copied into the new population. Species are conserved

as follows [56]:
e Mark all individuals as unprocessed.

e The new generation, G(t + 1), is searched for solutions belonging to the same species as

each species seed x € X, identified in the previous generation.

e Species seed x replaces the worst of these “similar” solutions, provided x has better fitness

and is marked as processed.

e [f there are no solutions in the same species as x in G(t+1), x replaces the worst unmarked

solution in G(f + 1).

e As the species seeds are drawn from the previous generation, the number of species seeds
Ny is always less than the population size, N, and therefore unmarked solutions must

always exist.

Thus species seeds found in the current generation are conserved by moving them into the
next generation.

Solutions to a multimodal optimization problem can, depending on the objective function,
be a number of global optima or a number of dissimilar high-quality solutions. After the
generation loop of the species conserving genetic algorithm is exited, these optima are identified
by defining a solution acceptance threshold, ry € [0.1]. Solutions are all individuals x € X
that satisfy

f(X) > ‘(fmar = fmm}l'rf (46)

where [0 18 the fitness of the most fit species seed and fi,;, 18 the minimum fitness in the

final population.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 63

4.3 PSO niching techniques

The purpose of the original particle swarm algorithim was to find a single optimum of an n-
dimensional function which might be difficult to optimize in any other way [48], [51], [88].
Suboptimal solutions may be encountered while a PSO is in the process of converging, but
niches are not formed where a subswarm can converge on such a suboptimum. One of the main
reasons why niche formation is inhibited, is the influence of the social component of the velocity
update equation [34]. Particles are attracted to the single best solution in a neighbourhood.
Therefore, if a better solution is encountered, the entire swarm changes direction towards this
more promising area in the search space. In the case of the GBEST PSQO, the neighbourhood
is the entire swarm, and all particles are attracted to the swarm’s global best position. There-
fore the GBEST PSO is incapable of niching [34]. The LBEST PSO constructs overlapping
neighbourhoods consisting of a particle and its [immediate neighbours. Due to the overlapping
neighbourhoods, all particles will eventually converge on the same point. Engelbrecht et al.
(34] have empirically shown that the standard LBEST PSO is inefficient in locating and main-
taining multiple solutions and cannot be used as a niching algorithm . Hence, if the problem
is such that all the optimal local and global solutions in the range of values where the function
is being investigated, are required, the algorithm needs to be modified.

The idea of optimizing portions of a swarm separately has been implemented in a variety of
PSO algorithms, mainly to improve diversity. Eberhart and Kennedy introduced a local ver-
sion of the original PSO model, called the LBEST model, where the velocity of each particle is
updated depending on its own personal best value as well as the best solution in a topological
neighbourhood, called Ibest [28]. Particles constituting a neighbourhood are selected using
particle indices. Most of the particles in these neighbourhoods will eventually converge, but
convergence is slowed down, ensuring a better chance to locate a good solution. Suganthan
proposed a partitioning scheme based on the spatial location of particles [95], and found that
performance was improved for a number of test functions. Various other population struc-
tures and neighbourhood topologies were implemented, all with the purpose of improving the
performance of the particle swarm optimizer [51], [52], [53].

The notion of neighbourhoods form a natural starting point when designing niching algo-
rithms. A neighbourhood can be conceptualized as a collection of particles that will eventually
converge on some optimum. However, to facilitate niching, spatial neighbourhoods will be more
appropriate.

This section reviews a number of PSO niching strategies.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 64

4.3.1 Objective function stretching

A function stretching technique proposed by Parsopoulos ef al. was originally devised to
overcome the problem of occasional convergence to local optima [71]. The principle of function
stretching was also used by Parsopoulos and Vrahatis to modify the particle swarm optimizer
in order to locate all the global minima of a function [72]. In some applications several minima
exist where the minimum value of the function is similar. According to Parsopulos and Vrahatis
[72]. the original particle swarm will exhibit a cyclic movement over the search space in such
cases, being unable to converge on one minimum. Such problems, as well as instances where
a global minimum as well as some suboptimal solutions need to be located, can be solved by
using the stretching technique.

The technique, which assumes minimization, exhibit some similarities to that of Beasley et
al. [4]. Each time a minimum is discovered, the original function landscape is transformed by
applying a stretching function to the original function. The PSO is prevented from returning
to the previously discovered minimum, as the function landscape has changed and all local
minima above the current minimum has been eliminated. Minima below the current minimum
are not affected.

The following two-stage transformation to a new objective function, H(x), is applied soon
after a local minimum x* of the function f has been detected:

— x| - (sign(f(x) = fF(x*)) +1)

G(w) =)+ 2 s

(4.7)

_ stgn(f(x) — f(x*)) +1
H{x) = Glx)+ 722ta11h(g(6‘(x) — G(x*)))

where ~1, 72 and p are arbitrary chosen positive constants and the sign function is defined as:

(4.8)

-1, ifp<0
sign(p) = 0, ifp=0 (4.9)
L1, ifp>0.

The sign tunction can also be approximated by
sign(p) =~ tanh(Ap)

for large values of A.
The algorithm that uses the objective function stretching technique locate minima sequen-

tially. Each time a minimum is discovered, the value of x* is recorded. The function f(x) is

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 65

set equal to H(x) and all the particles in the swarm are re-initialized. Since particles have
converged and will not be able to discover new minima, re-initialization is required. New ran-
dom positions and personal best positions are calculated for all particles. The entire process is
repeated until some stopping criterion is met. If the number of minimizers is known, the algo-
rithm can run until all minimizers have been found. If the number of minimizers is unknown,
a specific number can be requested, or the algorithm can run until the maximum number of
iterations is reached.

However, Van den Bergh [98] has shown that the stretching technique introduces false local
minima as well as misleading gradients. PSO exhibits a tendency to move ‘down’ a slope, and
the function landscape of the new objective function, H(x), will be such that the slope leads
away from the minimizer. Therefore the PSO may converge to a boundary of the search space

instead of the minimum.

4.3.2 The nBest PSO

Brits et al. developed a particle swarm optimization algorithm, nbest, to solve systems of
unconstrained equations [12] [14]. While the standard gbest PSO easily solves systems of equa-
tions with one optimal solution, systems with multiple solutions require the implementation of
a niching strategy. Brits et al. adapted the standard ghest PSO algorithm to locate multiple
solutions in one run of the algorithm.

Using PSO requires solving systems of equations to be restated as an optimization problem.
Each particle represents a candidate solution for each parameter in a system of equations. For
example, in a system of two equations with two variables, x; and x4, values for these variables
have to be found, indicating positions where the lines intersect. A particle’s fitness is determined
by how close it is to a solution. Each equation of the system is converted to represent an error
function for that equation. Therefore, for a system of two equations, where f, and fy are

functions representing the error,

flay, @) = [fil@y, m2)| + | fo(zr, 22)] (4.10)

The objective is to minimize f(x,xs) which is straightforward if there is only one solution.
However, when the system of equations is such that it has more than one solution, a niching
technique must be considered. The standard particle swarm optimizer is modified by initially
extending the fitness function to reward a particle when that particle is close to any of the

possible solutions in the system of equations. The fitness function for solving a system of K

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 66

equations,

p
Fxi) =Y | fulxi)| (4.11)
k=1

is redefined for multiple solutions. For example, if a system of linear equations consists of
three equations that intersect in turn at three different positions. the fitness of particle x; is
calculated by equation (4.11) for each intersection, using the two linear equations of which the
lines intersect. The fitness of x; is the minimum of the three results. The new fitness function

is then defined as:

f(xi) = min(fi(x;)) (4.12)

An additional modification to the standard PSO model is the definition of neighbourhoods.
While the lbest model uses topological neighbourhoods to diversify the search for better solu-
tions and slow down convergence before locating a single optimum solution, the nbest model
uses a different approach. An Euclidian neighbourhood is defined for each particle x; as the n;
closest particles to x;. The Euclidian distances between x; and other particles in the swarm
are calculated to find the closest particles. The neighbourhood best (nbest), y;. of each Euclid-
ian neighbourhood is defined as the center of mass of the positions of all the particles in the

neighbourhood:

bl e

k
yi=1Y Bij (4.13)
i=1

where the set B; consists of the k closest particles to x;.

The number of particles in a neighbourhood is a user-defined parameter, k, that has to
be chosen carefully. Considering the definition of y;, & should not be too small, as a particle
will blindly trail its closest neighbour. If k is too large, the algorithm will become similar
to GBEST, yielding no information about a possible good result. Particles are updated as
for the standard particle swarm optimizer, but the global best particle, y, is replaced with
vi. Therefore, particles move towards their neighbourhood bests, while neighbourhoods shrink
over time. Eventually particles converge on optima in their regions, resulting in multi-solution
optimization.

The nbest algorithm performed well when tested on a number of systems of linear and

non-linear equations, as well as on other multimodal functions. A small inertia weight and

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 67

relatively large values of ¢; and ¢y allowed the particles to explore the search space more

thoroughly, preventing premature convergence.

4.3.3 NichePSO

The NichePSO algorithm developed by Brits et al., is a niching particle swarm optimizer where
multiple solutions are located in parallel [13], [14], [16]. Multiple swarms are grown from an
initial particle population. As niches are detected, subswarms are formed. Eventually each
subswarm represents one of the potential solutions to the problem.

As in the case of the standard PSO, the swarm is initialized to distribute particles uniformly
throughout the search space. The NichePS0 uses Fauré sequences to generate initial particle
positions. At this stage no niches have been detected and the entire swarm is referred to as the
main swarm. All particles are trained using one iteration of the cognition only model. Only
the cognitive component is used to update particle velocities [49]. Therefore particles move in
the direction of more promising regions of the search space, facilitating subswarm formation.

Niching algorithms rely to a large extent on a good strategy to identify initial candidate
solutions in the search space. Parsopoulos et al. identify potential solutions by using a threshold
value, €, where f(x;) < e. However, the effectiveness of this approach cannot be guaranteed
where the objective function’s landscape is unknown. NichePSO uses a similar approach to
identify candidate solutions but, instead of using a threshold e, the fitness of a particle is
monitored by tracking its normalized standard deviation over a number of iterations. If the
particle’s fitness changes very little, that particle is identified as a candidate solution and a
subswarm is created with the particle’s closest topological neighbour.

Formally, the standard deviation, a;, of the fitness of particle i is tracked over a number
of iterations, es, set to 3 in the experiments of Brits et al. [14] [16]. A subswarm is created
when o; < 0, where ¢ is a small problem-dependent value. To avoid problem dependence, o;
is normalized according to possible maximum and minimum values. The closest neighbour to

particle x; is particle xg, where ¢, the distance between the particles, is defined as:
¢ = arg min{||x; — x|/} (4.14)
Xk

where £ is the index of any particle in the main swarm, with & # i.
Each subswarm initially consists of two particles. namely the candidate solution that acts
as the neighbourhood best value, and its closest neighbour. While the main swarm is still

searching the solution space, using the cognitive-only PSO for updating particle positions,

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 68

subswarms are updated separately. Initially, a subswarm consists of very few particles in a
small region. To prevent swarm stagnation and premature convergence of these subswarms,
the guaranteed convergence particle swarm optimization (GCPSO) algorithm [100] is used to
update particle positions. GCPSO is described in Chapter 3 of this thesis.

To demarcate the subswarms that have been created, a subswarm radius is maintained and
updated during iterations. Initially, the radius of each subswarm is the Euclidian distance
between the candidate solution or the neighbourhood best value, and its closest neighbour, the
only other particle in the subswarm and situated on the boundary of the subswarm. While the
subswarms are updated, particles from the main swarm are updated at the same time, and will
move towards better positions. Should such a particle move into a region already occupied by
a subswarm, the particle will be absorbed into that subswarm. A particle i is absorbed into a

subswarm S; when

lxi —ys,ll < Ry (4.15)

where yg is the neighbourhood best position of subswarm S;. R; signifies the radius of
subswarm 5;, and is defined as

R; = max{||ys, — X5 I} (4.16)

where xg, | is a particle in subswarm S5j.

Existing subswarms may also attempt to optimize the same solution, given those subswarms
have been created from particles near to each other. These subswarms are merged when the
hyper-space defined by their particle positions and radii intersect in the search space, creating

a new larger swarm. Subswarms S, and S, intersect when
I¥s,, = ¥s,.ll <(Rs,, + Rs,,) (4.17)
In the case where the radii of both subswarms are zero, the subswarms are merged if
||y-5"i‘1 = 953.2” < p (4.18)

where g is a small number, normalized to the interval [0,1] in order to make the merging process
more gEHEI‘i('.

The NichePSO algorithm is summarized in Algorithm 4 [13] [14] [16].

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 69

Algorithm 4 NichePSO Algorithm

Create and initialize a n-dimensional main swarm, S
repeat
Train the main swarm, S, for one iteration using the
cognition-only model;
Update the fitness of each main swarm particle, xg ;;
for each subswarm S; do
Train subswarm particles, xg, ;, using a full model PSO
which incorporates the social component;
Update each particle’s fitness:
Update the swarm radius RSJ:_

end
if a merging condition is satisfied then

‘ Merge the corresponding subswarms;
end
Allow subswarms to absorb any particles from the main swarm

that moved into the subswarm;
if a particle in the main swarm converged then
Create a new subswarm with this particle and its closest
neighbor:

end
until stopping condition is true;

NichePSO was tested on a select group of benchmark functions. Four one-dimensional func-
tions were investigated in the range x € [0, 1], where each function had 5 optima with differing
positions and fitness of the optima. The two-dimensional modified Himmelblau function was
tested in the region xy,xy € [—5.5], where the function has four equal optima [13] [14] [16].
Experimental results showed that NichePSO successfully located and maintained multiple op-
timal solutions. However, performance of the algorithm does depend on tunable parameters p
and d. Merging of subswarms is controlled by the value of p [14] [16]. A too small value of
i will impede the merging of subswarms while subswarms that are supposed to converge on
separate optima, will merge when the threshold approaches the interniche distance. Therefore,
if 1 is too large, not all optima will be located. According to Brits ef al. [16], 4 should not be
greater than the smallest interniche distance for optimal NichePSO performance.

Brits et al. [14] [16] investigated the sensitivity to changes in § as well. ¢ is a parameter
used as an indication of whether a particle could be identified as a candidate solution. Results

showed that NichePSO is not dependent on a finely tuned 4. Smaller § values effected a slight

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 70

increase in the number of fitness function evaluations, but did not influence the number of

optima that was located.

Scalability of the NichePSO

The NichePSO algorithm discussed in the previous section showed good results when tested
on one and two-dimensional multimodal functions. Brits et al. also investigated NichePSO’s
ability to scale to massively multimodal functions [14] [15] [16]. NichePSO was tested on the
Griewank and Rastrigin functions. Both these functions have a single global minimum and local
optima at regular intervals along each dimension. For a specific dimension size, the number of
optima increases exponentially as the number of dimensions increases. With a corresponding
increase in swarm size, NichePSO performed consistently with slight degradation as the number

of dimensions increased [15}.

4.3.4 The species-based PSO

The notion of different species existing together in a population was the inspiration behind a
PSO for solving multimodal optimization problems [57]. In Biology a species can be described
as a group of actually or potentially interbreeding individuals who are reproductively isolated
from other such groups. The concept of species that evolve to fill a role referred to as an
ecological niche, has been used in Goldberg and Richardson’s fitness sharing genetic algorithm
[40]. the sequential niche technique of Beasley et al. [4], and the species conserving genetic
algorithm (SCGA) [56].

Li [57] proposed the species-based PSO (SPSO) that incorporates the idea of classifying the
population into groups or species. The best-fit individual, or particle in the case of PSQO. in a
species is referred to as the species seed. The definition of a species also includes a parameter,
re, referred to as the species radius which is the Euclidian distance from the species seed to the
boundary of the species. All particles that fall within the ry distance from the species seed,
are part of that species. Figure 4.2 illustrates how particles are assigned to species by using a
species radius.

The algorithm determining the species seeds for the SCGA, introduced by Li et al. [56],
is adopted by the species-based PSO. In PSO terminology the neighbourhood best ([lbest), the
best-fit particle in a neighbourhood, is similar to the species seed for that species. Species seeds

are determined by first sorting all particles x; in decreasing order of fitness. Initially the set of

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 71

Flx)

Figure 4.2: Determining the species seeds from the population at each iteration [57]

species seeds S is empty. Particles are checked in turn from best-fit to least-fit against species
seeds found so far. The best-fit particle in the swarm is the first species seed and is added to
S. Particles falling within a pre-determined radius of that seed, is part of that species. If a
particle is found that falls outside the radius of that seed, the particle is added to S as a new
seed. As S is built, subsequent particles are checked against all the species seeds in S. Only
particles that do not fall within the niche radii of any of the seeds in S, are added to S as new
seeds. The set of species seeds is complete once all particles have been checked.

Once the species seeds have been identified from the population, particle positions are
updated using the species seeds as the neighbourhood best positions of each corresponding
species. Each iteration consists of determining the set of species seeds and adjusting all particle
positions once. The process is repeated for a number of iterations enabling the particles to
converge on several optima in parallel.

Algorithm 5 formalizes the process to determine species seeds. The species-based PSO that

incorporates the process to determine species seeds is given in Algorithm 6.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 72

Algorithm 5 Determining the species seeds

Input: L., eq - a list containing all particles x; sorted in decreasing order of fitness if
maximization is assumed
Output: S - a set containing particles s; identified as species seeds
begin
5 =g
while not reaching the end of Lsorieq do
found — FALSE;
for all s; € S do
if distance d(s;j,x;) < ry then
found «— T'RUE;
break;
end
end
if (not found) then
‘ let S — SU{x;}
end
end
end

Algorithm 6 The species-based PSO

begin
Create an initial population with randomly generated particles;
repeat
Evaluate all particle individuals in the population;
Sort all particles in descending order of their fitness values
i.e., from the best-fit to least-fit ones;
Determine the species seed using Algorithm 5 for the current population;
Assign particles identified in each species to the corresponding species seed;
Adjust particle positions according to the PSO update equations;

until termination condition is met;

end

The species-based PSO was tested on several benchmark functions [57]. The test functions
used were those suggested by Beasley et al. [4], namely four one-dimensional functions, as
the two-dimensional Himmelblau function, and the Rastrigin function in different dimensions.
Tests showed that SPSO can find all the optima for all these functions in one and two dimensions

reliably and with good accuracy [57]. However, one drawback of this approach is the size of

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 73

the species radius, r;. Each objective function requires a unique species radius that has to be
set in advance. Thus prior knowledge of the objective function is implied. For an unknown
function landscape the algorithm can be run with varying values of the species radins. The
species radius yielding the best performance is then chosen for that specific problem. Using
this approach, the algorithm could still be described as robust and accurate.

However, in all these functions distances between niches do not differ much. Niche shapes
are relatively symmetrical. If the shapes and sizes of niches differ a lot, niches require different
niche radii. In addition, asymmetrical niche shapes require a different technique to determine
the boundaries of the species. Thus the reliability of a single niche or species radius may be
challenged when the function landscape is more convoluted and different niches have different

niche radii.

4.3.5 The adaptive niching PSO

A niching method that removes the need to specify the niche radius in advance was proposed
by Bird and Li [5]. Niching parameters are determined adaptively during a run. The method
is called the adaptive niching PSO (ANPSO). Initially, the algorithm calculates the average
distance. r, between each particle and its closest neighbour. This value is used to determine the
formation of niches. ANPSO uses an undirected graph, g, with particles as nodes to keep track
of the minimum distance between particles over a number of steps. At each iteration, an edge
is added to g between every pair of particles that have been closer than r to one another during
the last 2 steps. Niches are formed from the connected subgraphs of g, while all unconnected
particles remain outside any niches. Particles can also be added to existing niches during a
run. Thus the neighbourhood topology is redefined at every step. Once niches are determined,
a GBEST topology is used to update particles in each niche, while a Von Neumann topology is
used to update particles that have not yet been assigned to a niche. Therefore, particles that
have formed a niche will tend to perform a local search around an optimum, while particles
outside any niche will continue searching the whole problem space.

The ANPSO removes the need to specify a niche radius in advance, as it is calculated from
the distances between particles. To prevent too many particles from converging on the same
optimum, a limit is placed on the number of particles allowed in a single niche. Owing to the
calculation of distances between particles, the algorithm is computationally more expensive
than most other niching techniques, but, according to Bird and Li [5], the cost is offset by

the time taken to tune the niche size parameter in other niching algorithms. The algorithm

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING T4

performed well on a number of benchmark functions.

Algorithm 7 The adaptive niching PSO

begin
Create an initial population with N randomly generated particles:
for all particles x; do
Calculate distances
di = ming; ||x; — % ||;
Calculate average distance

. xf‘%}(fi;
end
Create an undirected graph ¢ containing a node for each particle x;;
repeat

for all particles x; do

if d; < r during last 2 steps then

Add and edge to g between x; and nearest particle;

if one of the particles is already assigned to a niche then
‘ Add the other particle to the niche;

else
‘ Create a niche from x; and nearest particle;
end
end
end
Update particles in each niche using GBEST;
Update particles outside any niche using Von Neumann topology;

until termination condition s met;

end

4.3.6 The fitness Euclidian-distance ratio-based PSO

Another effort to address the difficulty in pre-specifying parameters used for estimating how far
apart optima in multimodal functions are, has been proposed by Li [58]. The fitness Euclidian-
distance ratio-based PSO (FER-PSO) encourages the survival of fitter and closer particles. The
FER-PSO was inspired by the fitness distance ratio-based PSO (FDR-PSO) of Veeramacheneni
et al. [102]. The FDR-PSO was originally designed to locate a single global optimum. A new
term based on FDR values was added to the canonical PSO velocity update equation. A

canonical PSO modifies the velocity of each particle iteratively by its personal best position

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 75

and the position of the best particle from the entire swarm. As a result. each particle searches
around a region defined by these two positions, and the influence from other fitter and nearer
particles is increased. However, the concept of attracting each particle towards a fitter and
closer point in the neighbourhood can effectively be applied to multimodal optimization a well.

FER-PSO uses two swarms, a memory-swarm formed by personal bests of particles, y;, and
an explorer-swarm consisting of the current positions of particles, x;. The latter continues to
explore the search space while the former acts as a stable repository where the best positions
found so far are retained. Each point in the memory-swarm can be improved by moving towards
its fittest-and-closest point. As the FER-PSO is designed for multimodal optimization, each
particle is attracted towards a fittest-and-closest neighbourhood point, identified by computing
the fitness BEuclidian-distance ratio of that particle and all other particles in the swarm. The
effect of such a strategy is that particles would form niches naturally around multiple optima,
given that there are suflicient numbers of particles.

The fitness Euclidian-distance ratio is calculated as follows:

FER, = o 100 =10 (4.19)

ly; — will

where o is a scaling factor to ensure that neither the fitness nor the Euclidian distance becomes
too dominated over one another.

For each particle with personal best y;, the maximum fitness Euclidian-distance ratio found

will indicate the particle identified as the neighbourhood best y to be used in the canonical

PSO velocity update equation for particle i, namely

vi = x(vi + Ry [0, %] ® (yi —xi) + Ra|0, .\pr;al'] 2 (y — xi)) (4.20)
where v; is the velocity of particle i, and y is the constriction factor. used to prevent each
particle from exploring too far away in the search space. x; is the current position of particle
i, y; the personal best position of particle i, and y is the best position found so far in the
entire swarm. Rq[0, #522] and Rp[0, #522] are two separate functions, each returning a vector
consisting of random values in the range [0, ﬁ%‘wﬁ] where @00 15 a positive constant. Point-
wise vector multiplication of these functions with the difference between y; and x;, as well as
y and x; repectively, is indicated by .

Results showed that good performance were reported on some widely-used multimodal
functions without the need to pre-specify niching parameters. However, the algorithm is com-
putationally expensive due to the calculation of the fitness Euclidian-distance ratio for every

pair of particles.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 76

4.3.7 The waves of swarm particles algorithm

The waves of swarm particles (WoSP) algorithm, developed by Hendtlass [41], uses a technique
that locates multiple optima by forcing the swarm to explore different promising regions of the
problem space. Particles are organized into waves, each of which optimizes a single candidate
solution. The practice of only evaluating a particle’s performance at discrete intervals, is used
to adjust particle behaviour in situations where the swarm is converging on an optimum.

To alter the behaviour of particles when they are settling close together, a short-range
interaction between particles is introduced, namely a gravitational style attraction that becomes
more effective when particles are near to one another. To acquire such an effect, the magnitude
of the short-range force (SRF) of particle i towards particle j is set inversely proportional to
some power p of the distance between the particles. This short-range force produces a velocity

component, v; ;, that is represented by

Vi_,i:'_
T @
i

(4.21)

where d; ; is the distance between particles i and j, and K is a constant.

WoSP combines the short-range force with non-continuous or discrete evaluation to effect
exploration of the search space. A particle’s performance is evaluated at discrete time intervals.
By the time of the next evaluation, particles may have passed each other and be at such a
distance apart that the short-term attraction is too weak to bring them back together.

Because of the additional velocity component, v; ;, velocities decrease as the distance be-
tween particles increases. Particles will not be pulled back, but continue moving apart, explor-
ing beyond their previous positions. Instead of converging on a single optimum, some of the
neighbourhood particles are ejected with significant velocities, thus exploring other regions of
the search space. Such particles are organized in a wave. In particles assigned to the wave,
knowledge of the previous optimum is replaced by knowledge of the wave, that is, the best-fit
particle of the wave becomes the neighbourhood best. Particles assigned to the wave are now
attracted to the best particle in the wave. The wave converges on another optimum, starting
the process again until all or most of the optima have been located.

Some aspects of the algorithm need to be clarified:

e Waves formed by ejected particles are numbered. Initially all particles belong to wave
number zero. Every time a particle is ejected, it is promoted by having its wave number

increased to that of the highest numbered wave. A new wave is created if necessary.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 4. NICHING 77

Particles are commonly ejected in pairs, and in that case a wave will have an initial size
of two. To reduce the probability that particles are pulled back to the region they have
left, a particle is required to move at least a user-specified distance (the search scale)away

from the previous position before the particle may become part of a wave.

e A particle is considered as ejected when the ratio of the velocity component introduced
by the short-range force to the other velocity components exceeds a user-specified value,
called the promotion factor. As the speed of particles decrease when a wave is settling
on an optimum, this ratio increases and the particle is ejected. Therefore particles are

ejected when a wave is settling on an opfimum.

The algorithm was tested on a number of benchmark problems. Results showed that the
WoSP algorithm is able to escape from local sub-optima and continue to search for other

optima.

4.4 Conclusion

This chapter described the concept of niching. Some niching strategies for genetic algorithms
were reviewed, followed by a thorough discussion of a number of well-known niching algorithms
developed in the field of particle swarm optimization. The algorithms are based on different
principles, and various approaches are followed to locate all the solutions in functions with
multiple optima.

Chapter 5 proposes the vector-based PSO, a new niching algorithm that purports to address

a number of drawbacks of other niching algorithms.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

Chapter 5

Vector-Based PSO

This chapter presents the development of a new niching strategy, the vector-based particle swarm
optimizer (VBPSQO). The principles underlying this approach are discussed and three consecutive

versions of the algorithm are described in detail.

5.1 Introduction

Swarm intelligence algorithms such as particle swarm optimization (PSO) have been proved
to be effective and robust for difficult optimization problems [28] [48] [49]. PSO was specifi-
cally designed to face the challenge of optimizing problems described by convoluted problem
landscapes, often characterized by many sub-optimal or near-optimal solutions. The two-fold
nature of the PSO algorithm containing a social and a cognitive component facilitates both
the exploitation of regions with better fitness, as well as the exploration of the entire problem
space. Thus the swarm is directed to where the best overall solution can be found. In both
these aspects the velocity term. which is also a unique PSO feature, plays a significant role
[50]. The concept of velocity is part of the metaphor of a swarm of particles flying through and
exploring a hyperdimensional space. Particles move towards the target and overshoot it, but
being pulled back by previous successes, oscillate around the target before eventually converg-
ing on the best solution [99]. If, in the process of exploration, better fitness is encountered, the
entire swarm moves in a different direction away from a suboptimal solution. Therefore, given

adequate exploration of the search space, the swarm will eventually converge on the overall

78

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

CHAPTER 5. VECTOR-BASED PSO 79

optimal position.

If a problem is such that the location of multiple optima is required, it is expected that
different regions of the search space should be optimized in order to locate the different optima.
Therefore, algorithms must be designed that counteract the effect of one of the essential charac-
teristics of the particle swarm, namely redirecting the swarm away from a suboptimal solution
to a solution with better fitness. Different strategies have been devised to neutralize this effect
and maintain an optimal solution once it has been located, for example, by modification of the
objective function [72], and using the cognition-only PSO at certain stages of the process [13].

This chapter describes a novel approach to niching where the power of the concepts under-
lying the original PSO is harnessed to induce niching. In addition, as in the case of all niching
algorithms, the strategy should be such that multiple optima can be located and optimized
with minimal prior knowledge of the landscape of the objective function and the number of
optima to be found in a designated search area. While some constraints such as the boundaries
of the search space and the number of initial particles obviously have to be present, another
objective of this work was to limit other parameter settings to as few as possible, but still retain
a robust and accurate algorithm that would yield good performances for a variety of problem
landscapes.

The remainder of the chapter is organized as follows: Section 2 states the objectives of this
chapter. Section 3 contains a description of vector properties and their relevance to niching,
and section 4 explains how vector properties are used to determine niche boundaries. Section 5
gives a complete overview of the development of the new niching paradigm, namely vector-based

particle swarm optimization (VBPSO).

5.2 Objectives of this chapter

Two steps are needed to locate multiple optimal solutions:

e Identify candidate solutions and demarcate the portion of the search space - called a

niche - where an optimal solution may be found.

e Contain particles in the niche while optimizing the subswarm with the PSO method. Even
one escaping particle can redirect the subswarm to a neighbouring niche and diminish

the chances to find all the optimal solutions.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

CHAPTER 5. VECTOR-BASED PSO 80

Niching algorithms described in the previous chapter used various strategies to find can-
didate solutions from which subswarms can be grown. However. a more critical issue is to
determine the boundaries of the niche where the candidate solution or neighbourhood best was
identified. Often a niche radius or species radius is pre-determined, implying prior knowledge
of the objective function [39] [92]. One of the main objectives of developing a new niching
algorithm is to find a niche radius for each niche. Such a niche radius will also be useful during
the optimization phase to contain particles in the niche.

Another objective is to find a solution that is simple, but powerful. and where the principles
driving PSO are utilized to its fullest extent. The idea of a pared-down, elegant solution to a
problem has general appeal. As early as the 14th century William of Ockham, a leading figure
in the golden age of Oxford scholasticism, formulated the so-called “principle of parsimony”.
This principle later became known as “Ockham’s razor”, a metaphor depicting cutting through
complicated scholastic and theological arguments to reach the core of truth [42]. One of several
ways in which this principle can be stated, is: “Entities are not to be multiplied beyond ne-
cessity”. The principle of parsimony, originally formulated to guide the evaluation of symbolic
reasoning systems, is frequently quoted in scientific disciplines. Ockham’s razor has, among
others, inspired the generalization of neural networks with as few as possible connections [96],
and fitness evaluation based on a simplicity criterion [3]. In the case of particle swarm opti-
mization, it can also be said that the principle of parsimony inspires a simple. cohesive solution

with a limited number of parameter settings.

5.3 Using vector properties

Vectors are used extensively in PSO algorithms. In order to find a simple solution to a multi-
modal problem with a minimal number of pre-determined parameters, the possibility of using
properties of the vectors forming part of the original PSO. was investigated. Concepts such
as the tendency to move towards the personal best as well as the global best are implemented
using vectors, as is the concept of a velocity associated with a particle. These vectors are ma-
nipulated to find a new position. If these vectors can also be manipulated to facilitate niching,
the result will be an elegant as well as a powerful solution.

The original PSO updates the velocity vector associated with a particle as follows:

vt + 1) = wH v j(t) + crr () (yig(t) — 2i5(8) + cora(8)(95(t) — zi5(2)) (5.1)

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 5. VECTOR-BASED PSO 81

where w is the inertia weight, ¢; and ¢y two positive acceleration constants, and r; ; and ry ;
random values between () and 1.

A new particle position is calculated by adding the new velocity vector to the position vector
of the particle. Equation (5.1) indicates that the velocity vector is adjusted in the aggregate
direction of the sum of the cognitive and social vectors. If these two vectors point roughly in
the same direction, it can be assumed that the particle’s position will be adjusted towards a
position with better fitness, the weighted average of the social and cognitive vectors. However,
if the two vectors are pointing roughly in opposite directions, two outcomes might be expected:
[f only the social vector is considered, the position of the particle will most probably be adjusted
nearer to that position. However, if only the cognitive vector is considered, adjustment towards
a fitter position will, in most cases, mean that the particle moves away from the particle’s
current position, possibly in the direction of a different candidate solution. In other words,
the particle follows a hill-climbing process. Figure 5.1 illustrates this scenario using a simple
one-dimensional function.

When identifying niches, this knowledge can be used to identify particles that are not
in the niche surrounding the current neighbourhood best position. Not all particles where
both vectors point in the same direction will, of course, be moving towards the current best
position, as there may be other candidate solutions between those particles and the current
neighbourhood best.

Consider the inverted one-dimensional Rastrigin function,

F(z) = —(z* — 10 cos(2mz) + 10)

—_—
<
(]

r

where x € [-1.5, 1.5]. Figure 5.1 illustrates the function with three maxima in this range. Let
the initial best position be at @ = 0. The neighbourhood comprises the entire search space,
thus this position is known as g or ghest. Assume that a number of particles are distributed
along the z-axis. Each particle has an associated personal best position (y; or pbest;) where
the fitness will be better than at the original particle position. Positions of two particles P
and P, are shown with vectors pointing in the direction of the personal best position as well
as towards the global best position. If a particle is in a region where particles are expected to
converge on the current neighbourhood best position, vectors towards the particle’s personal
best position as well as the neighbourhood best position point in the same direction. If the
vectors point in opposite directions, it means that the position of the particle is in a region
where it is not expected to converge on the current neighbourhood best position.

From the above discussion it can be deduced that the direction of the velocity vectors used

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 5. VECTOR-BASED PS5O 82
5 — N
ol gbest T
|
j pbest,
5 | 1
! pbest,,
f(x) : 3
10 - P /!]
- /!
! I
; P
15} | -
! |
: :
! 1
-20 - | ! 1
| iy |
i [
Va, Vg Vp *;
—— » ‘
.25 Np . —
15 4 05 T o 0.5 1 1.5
X

Figure 5.1: The inverted one-dimensional Rastrigin function, showing particles with associated

vectors

in particle swarm optimization can indicate whether a particle will converge on an optimum or
not. A method was required that combines the vectors pointing to the personal best position
and the current neighbourhood best position of a particle respectively, resulting in a value
indicating the inclination of the particle to move towards the current neighbourhood best
position or not. The vector dot product provided a means to determine if the social and
cognitive vectors point roughly in opposite directions or not. The dot product of two vectors
is defined as follows [31]:

Let a = a)i+agj + azk and b = bii + baj + bzk be two vectors. The dot product (or scalar

product or inner product) of a and b is the number, a - b. defined by

a-b=ab +asby+ asbs

The angle between two nonzero vectors, a and b, is defined to be the angle, 6, where
€ [0.7]. The relationship between the dot product and the angle between two vectors is

described by:

a-b = [al||[b]| cos 0

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 5. VECTOR-BASED PSQO 83

The value of cosf will be positive in the first quadrant where € [0, 7/2] and negative in
the second quadrant where 6 € [1/2, 71|. Therefore it can be surmised that the dot product of
two vectors will be positive if they point roughly in the same direction; that is, with an angle
of less than 90° between them. If the vectors point roughly in opposite directions, that is, with
an angle greater than 90° and less than 180° between them, the dot product will be negative.
In the case of one-dimensional functions, the angle between the vectors will either be 0° or
180°.

Consider again Figure 5.1 where the best position in the entire search space is indicated by
gbest. Py and P» are the positions of two particles distributed along the z-axis from = —1.5
to r = 1.5. A vector points from each particle to the associated personal best position. pbest,
situated at a position with higher fitness in the direction of the nearest suboptimal position.
The sizes of these vectors are random values between 0 and a small problem-dependent value.
For the purpose of illustration, assume that the size of all these vectors is 0.1.

To illustrate how dot products of particles change when situated along a range of particle
positions, Table 5.1 was set up. v, indicates the position vector from the particle at position
x to its associated personal best position, pbest. v, indicates the position vector from the
particle at position = to the current neighbourhood best position, gbest. v, - v, is the vector
dot product of these vectors. Figure 5.2 shows the regions in the search space of the inverted
one-dimensional Rastrigin function where the dot products of the vectors pointing to their
associated pbest and gbest positions, are positive or negative.

As a second example of the regions where positive and negative dot products of position

vectors towards pbest and gbest occur, the following one-dimensional function is used:
F(x) = sin®(5mz) (5.3)

For 0 < 2 < 0.4, the function described by equation (5.3) has two peaks. Let gbest be
at position x = 0.1. The value of |[p — x| is set to 0.01 except in the troughs of the function.
To illustrate changes in the values of dot products in specific regions, Table 5.2 lists the dot
products of particles along a range of positions. Figure 5.3 shows the regions in the search
space of the function where the dot products of the vectors pointing to pbest and gbest are
positive or negative.

In both these examples, note that particles in the region surrounding the current gbest
position, yield positive dot products. At the niche boundary the dot products change to
negative. However, there are other regions with positive dot products, for example in the region

surrounding an adjacent niche, but not facing the current gbest position. These observations

CHAPTER 5. VECTOR-BASED PSO

IT VAN PRETORIA
Y OF PRETORIA

HI YA PRETORIA

84

Table 5.1: Dot products of a range of particle positions for the inverted one-dimensional Ras-

trigin function

¥ f(z) Vp Uy UpUy| T f(z) Up Vg Up: g
-1.5 -22.25 0.1 1:8 0.15 0.05 -0.4919 -0.1 -0.05 0.005
-1.45 -21.6131 0.1 145 0.145 0.1 -1.9198 -0.1 -0.1 0.01
1.4 -20.0502 0.1 1.4 0.14 0.15 -4.1446 -0.1 -0.15 0.015
-1.35 -17.7004 0.1 1.35 0.135 0.2 -6.9408 -0.1 -0.2 0.02
-1.3 -14.7802 0.1 1.3 0.13 0.25 -10.0625 -0.1 -0.25 0.025
-1.25 -11.5625 0.1 1.256 0.125 0.3 -13.1802 -0.1 -0.3 0.03
-1.2 -8.3498 0.1 1.2 0.12 0.35 -16.0004 -0.1 -0.35 0.035
-1.15 -5.4446 0.1 1.15 0.115 04 -18.2502 -0.1 -04 0.04
-1.1 -3.1198 0.1 1.1 0.11 0.45 -19.7131 -0.1 -0.45 0.045
-1.05 -1.5919 0.1 1.05 0.105 0.5 -20.25 0 -0.5 0

-1 -1 0 1 0 0.55 -19.8131 0.1 -0.55 -0.055
-0.95 -1.3919 -0.1 0.95 -0.095 0.6 -18.4502 0.1 -0.6 -0.06
-0.9 -2.7198 -0.1 0.9 -0.09 | 0.65 -16.3004 0.1 -0.65 -0.065
-0.85 -4.8446 -0.1 0.85 -0.085 | 0.7 -13.5802 0.1 -0.7 -0.07
-0.8 -7.5498 -0.1 0.8 -0.08 | 0.75 -10.5625 0.1 -0.75 -0.075
-0.75 -10.5625 -0.1 0.75 -0.075 | 0.8 -7.5498 0.1 -0.8 -0.08
-0.7 -13.5802 -0.1 0.7 -0.07 0.85 -4.8446 0.1 -0.85 -0.085
-0.65 -16.3004 -0.1 0.65 -0.065 | 0.9 -2.7198 0.1 -0.9 -0.09
-0.6 -184502 -0.1 0.6 -0.06 0.95 -1.3919 0.1 -0.95 -0.095
-0.55 -19.8131 -0.1 0.55 -0.055 1 -1 0 -1 0
-0.5 -20.25 0 0.5 0 1.05 -1.5919 -0.1 -1.05 0.105
-0.45 -19.7131 0.1 045 0.045 1.1 -3.1198 -0.1 -1.1 0.11
-0.4 -18.2502 0.1 0.4 0.04 1.15 -5.4446 -0.1 -1.15 0.115
-0.35 -16.0004 0.1 035 0.035 12 -8.3498 -0.1 -1.2 0.12
0.3 -13.1802 0.1 0.3 0.03 1.25 -11.5625 -0.1 -1.25 0.125
-0.25 -10.0625 0.1 0.25 0.025 1.3 -14.7802 -0.1 -1.3 0.13
-0.2 -6.9498 0.1 0.2 0.02 1.35 -17.7004 -0.1 -1.35 0.135
-0.15 -4.1446 0.1 0.15 0.015 1.4 -20.0502 -0.1 -14 0.14
-0.1 -1.9198 0.1 0.1 0.01 1.45 -21.6131 -0.1 -1.45 0.145
-0.05 -0.4919 0.1 0.05 0.005 1.5 -22.25 0 -1.5 0

0 0 0 0 0

EIT VAN PRETORIA
TY OF PRETORIA

P
UNIVERSIT
UNIVERSI

Queff YUNIBESITHI YA PRETORIA

CHAPTER 5. VECTOR-BASED PSO
5
0 st
f.m_\ , N 1N
,-/ A ,/ \ / \
51 / \ / \
A \ / \
f(x) / | / \ , \
-10r / ; \ \
- E |
5} \ / / \'
N TN B
20 ,’/ \\ \/
positive negative positive regative positive
-1 0.5 0 0.5 1
X

1.5

-25

Rastrigin function

08
f(x)
06

04

0.2

gbest

positive

0.05 0.1

positive

Figure 5.2: Regions of positive and negative dot products for the inverted one-dimensional

0.35

0.15

0.3

04

Figure 5.3: Regions of positive and negative dot products for equation (5.3)

CHAPTER 5. VECTOR-BASED PSO

IT VAN PRETORIA
Y OF PRETORIA
HI YA PRETORIA

Table 5.2: Dot products of a range of particle positions for equation (5.3)

P flx) Vp Vg Vv | f(z) Up Vg Up- Uy
0.01 1.4655E-05 0.01 0.09 0.0009 | 0.21 1.4655E-05 0.0l -0.11 -0.0011
0.02 0.0009 0.01 0.08 0.0008 | 0.22 0.0009 0.01 -0.12 -0.0012
0.03 0.0088 0.01 0.07 0.0007 | 0.23 0.0088 0.01 -0.13 -0.0013
0.04 0.0412 0.01 0.06 0.0006 | 0.24 0.0412 0.01 -0.14 -0.0014
0.05 0.125 0.01 0.05 0.0005 | 0.25 0.125 0.01 -0.15 -0.0015
0.06 0.2804 0.01 0.04 0.0004 | 0.26 0.2804 0.01 -0.16 -0.0016
0.07 0.5004 0.01 0.03 0.0003 | 0.27 0.5004 0.01 -0.17 -0.0017
0.08 0.7400 0.01 0.02 0.0002 | 0.28 0.7400 0.01 -0.18 -0.0018
0.09 0.9284 0.01 0.01 0.0001 | 0.29 0.9284 0.01 -0.19 -0.0019
0.1 1 0 0 0 0.3 1 0 -0.2 0
0.11 0.9284 -0.01 -0.01 0.0001 | 0.31 0.9284 -0.01 -0.21 0.0021
0.12 0.7400 -0.01 -0.02 0.0002 | 0.32 0.7400 -0.01 -0.22 0.0022
0.13 0.5003 -0.01 -0.03 0.0003 | 0.33 0.5004 -0.01 -0.23 0.0023
0.14 0.2804 -0.01 -0.04 0.0004 | 0.34 0.2804 -0.01 -0.24 0.0024
0.15 0.125 -0.01 -0.05 0.0005 | 0.35 0.125 -0.01 -0.25 0.0025
0.16 0.0412 -0.01 -0.06 0.0006 | 0.36 0.0412 -0.01 -0.26 0.0026
0.17 0.0088 -0.01 -0.07 0.0007 | 0.37 0.0088 -0.01 -0.27 0.0027
0.18 0.0009 -0.01 -0.08 0.0008 | 0.38 0.0009 -0.01 -0.28 0.0028
0.19 1.4655E-05 -0.01 -0.09 0.0009 | 0.39 1.4655E-05 -0.01 -0.29 0.0029
0.2 3.3817E-96 0 -0.1 0 0.4 2.1643E-94 0 -0.3 0

86

IVERSITEIT VAN PRETORIA
ERSITY OF PRETORIA
BESITHI YA PRETORIA

CHAPTER 5. VECTOR-BASED PSO 87

Figure 5.4: The two-dimensional Ursem F1 function

suggest that the niche boundaries of the niche surrounding the current gbest can be established,
but that a sequential process must subsequently be followed where particles in the first niche is
deactivated, a next neighbourhood best is identified, and new values for v, and the dot product
for each remaining particle is calculated.

To illustrate vector directions in a two-dimensional search space, consider the Ursem F1

function in two dimensions:
F(z1,22) = sin(2z; — 0.57) + 3cos(za) + 0.5x, (5.4)

If the domain is infinite, this function produces a convoluted landscape of an infinite number
of optima with differing heights. In the domain z; € [—2.5,3] and 22 € [-2,2] two optima
of different fitness values are present. Therefore the function has a global as well as one local
optimum in the region described. The function landscape is illustrated in Figure 5.4.

Figure 5.5 shows a contour map of the two-dimensional Ursem F1 function. Two particles,
Py and P, are depicted. The associated position vectors of each particle point towards the
corresponding personal best position as well as gbest, a position at or near to the global optimum
of the function.

Similar to the process followed for one-dimensional functions, vector operations can be used

to calculate a position that roughly indicates the boundary between two niches. Let vy, be the

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 5. VECTOR-BASED PSO 88

Figure 5.5: Contour map of the two-dimensional Ursem F1 function

position vector from particle P to its associated personal best position, and vy, the velocity
vector from particle P to its associated personal best position. v, and v, are velocity vectors
from P; and P» to the current neighbourhood best position, gbest. In this example the vector
dot product v, - v, will be negative and the vector dot product vy, - v,, positive.

Section 5.4 describes a method using the vector dot product to establish niches and to

determine their boundaries to a significant degree of certainty.

5.4 Identifying niches

As indicated earlier, the process of locating multiple optima in multimodal objective functions
comprises identifying and demarcating regions in the problem space, called niches, where op-
tima are likely to be found. Each niche is then optimized using PSO. During optimization.
niches have to be maintained. As explained earlier, a particle searching outside the niche, may
find a position with better fitness than the current neighbourhood best and divert an entire
subswarm to converge on an adjacent niche. Therefore particles should be prevented from
leaving the niche.

Typical multimodal functions have convoluted problem landscapes containing peaks or

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 5. VECTOR-BASED PSO %9

optima with varying shapes and sizes where the niches surrounding the optima are not always
symmetrical around the position of the current best-fit particle or neighbourhood best. The
Euclidian distance from the neighbourhood best to the boundary of the niche is known as the
niche radius. The concept of a niche radius is incorporated in a number of niching algorithms,
in the case of genetic algorithms as well as particle swarm optimization [4] [13] [57]. Given the
asymmetrical shape of many niches, niche boundaries can, at best, be approximated. Therefore
a niche radius indicates an approximate region containing particles belonging to the niche.
Moreover, many problem spaces contain niches of different sizes. If the same niche radius is
used for all the niches in the problem space, regions demarcated by a niche radius may be
smaller or larger than that of the actual niches. In addition, the objective function may be
such that peaks in the function landscape are irregularly shaped. As a result, extra niches may
be identified on the outskirts of the genuine niches, or genuine niches may be merged during
the optimization process. Therefore it should be advantageous if a strategy can be devised
where a specific niche radius is calculated for every niche in the search space.

Niching algorithms for PSO have devised different strategies to find niche radii. For ex-
ample, the NichePSO algorithm initially sets each niche radius to the distance between a
candidate solution and its closest neighbour, forming a subswarm with only two particles [13]
[14]. During optimization, subswarms attempting to optimize the same solution merge when
the hyper-space defined by their particle positions and radii intersect in the search space, creat-
ing a larger swarm with a larger niche radius. The original species-based PSO requires a niche
radius to be defined by the user. This radius is the same for all niches [57]. The vector-based
PSO implements a novel strategy where the vector dot-product is used to find the boundary
between niches, and to compute a separate niche radius for every niche [82] [83] [84]. Therefore,
one of the aspects according to which these algorithms are different from one another, is the
strategy used to establish and maintain niche radii.

Finding the niche radius forms part of a larger sequential process of establishing niches,
each with a neighbourhood best position from which the niche radius, the distance towards the

boundary of the niche, is calculated. The process is summarized as follows:

Initialize the swarm: Similar to all population-based optimization algorithms, vector-based
particle swarm optimizers start by initializing a swarm of particles at random positions
throughout the search space. To identify candidate solutions and establish niches, per-
sonal best positions are required for each particle. An initial personal best value for each

particle is established by finding a random position very near to the particle. If fitter

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

CHAPTER 5. VECTOR-BASED PSO 90

than the original particle, the new particle becomes the personal best. If not, the two

positions are exchanged and the original particle becomes the personal best.

Identify the first candidate solution: The particle with the fittest personal best in the
entire swarm becomes the first neighbourhood best. For each particle a dot product of
the vector pointing to its own personal best and the vector pointing to the neighbourhood

best is calculated.

Calculate the niche radius: The Euclidean distance between the current neighbourhood
best particle and the closest particle with a negative dot product is now calculated. A
negative dot product indicates that the fitness of the function at that point is increasing
and that particle is part of an adjacent niche. This value approximates the niche radius.
Only particles inside the radius having a positive dot product are identified as belonging
to that niche. Niches are numbered as they are established, while the same number is

assigned to particles constituting the subswarm that occupies the niche.

Establish remaining niches: The process of identifying candidate solutions and establishing
niches is repeated by setting the next neighbourhood best to the fittest particle without
a niche number, and calculating the corresponding niche radius. Several niches are iden-
tified in this way until all particles have been numbered. This process yields a number
of neighbourhood best particles, each one being a candidate solution. A niche radius is
associated with each niche, but the radii will differ depending on the size and shape of

the niche.

Note that this strategy yields only a rough estimate of the niche boundaries, assuming
that the function landscape is unknown and may be convoluted. However, niche radii are
intrinsically inaccurate, as the niche surrounding a candidate solution is seldom completely
circular or spherical. The particle representing the current neighbourhood best position is also
not necessarily in the center of the niche. As the niche radius represents the shortest distance
from the current neighbourhood best position to the niche boundary, a number of particles
belonging to the niche will, in most cases, still be outside the boundary of the niche as defined
by the niche radius. The strategy described here will group these particles together as a niche;
the neighbourhood best position being the nearest particle to the genuine adjacent niche. Such
niches are described as false or subsidiary niches. Therefore, the number of initial niches is

usually larger than the number of genuine niches. False niches will yield duplicate solutions if

ﬁ UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 5. VECTOR-BASED PSO 91

subswarms occupying the niches are optimized sequentially as the niches are identified, or be
absorbed during the optimization phase when niches are optimized in parallel.

Some false niches may contain very few particles, often only one. Van den Bergh [98] [99]
found that a single particle becomes stationary when the position of the particle is similar
to the pbest and ghest positions. The velocity magnitude becomes 0 and the particle cannot
move. This phenomenon is referred to as stagnation [99]. Therefore, subswarms consisting of
single particles will not converge effectively. The vector-based PSO initializes particles with an
initial value for the personal best that is different from the particle position, but for one-particle
subswarms, gbest is still equal to the personal best. These particles have some initial velocity
but may easily become stationary, unless such a subswarm is merged with a larger subswarm
while it still has a velocity magnitude greater then zero. In such cases additional solutions that
do not represent optima or suboptima, will result.

To address this issue the vector-based PSO creates additional particles at random positions
in the vicinity of the neighbourhood best position of subswarms that consist of only one or
two particles. Empirical tests conducted during the development of the family of vector-
based algorithms have shown that, in most cases, subswarms consisting of three particles
do converge effectively. A selection of these tests is presented in appendix A, section A.l.
Results differ according to the landscape of a specific function and the initial distribution of
particles in the search space. Therefore, the optimal size of these subswarms can, at best, be
estimated. To retain the principle of parsimony, the introduction of another tunable parameter
is not considered. A fixed size for these subswarms should not be too large, as an increase
in the number of particles increases computational complexity. On the other hand, too small
subswarms might not converge and produce solutions that do not represent good optima or
suboptima. Results showed a number of extra solutions when subswarms consisted of one
particle only, and a few extra solutions (for more complicated functions) when swarms sizes
were extended to two particles. For subswarms consisting of three particles, no extra solutions
were found for the functions tested, and it was assumed that the possibility of stagnation of
particles is very low.

Once all niches have been identified, and some of the subswarms occupying the niches
have been extended so that each niche contains at least three particles, these subswarms are
optimized. Three different algorithms have been developed identifying niches in this manner.

These are discussed in the next section.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 5. VECTOR-BASED PSO 92

5.5 Vector-based PSO algorithms

This section presents an overview of the development of three vector-based PSO strategies [82)]
(83] [84]. All three strategies use the method described in section 5.4 based on the princi-
ples discussed in section 5.3, to identify candidate solutions and calculate niche radii for the
initial niches. The optimization process carried out to locate multiple optima is improved in
each successive algorithm. The sequential VBPSO optimizes niches as they are identified. A
number of duplicate niches are located for some optima. The parallel VBPSO incorporates
a merging strategy to eliminate duplicate niches and reduce the computational complexity of
the process. Niches are optimized in parallel and merged when it becomes clear that more
than one subswarm converges on the same optimum. The enhanced parallel VBPSO adapts
the updating process to contain particles in a niche during optimization, in order to prevent a

subswarm being diverted to and merged with an adjacent subswarm.

5.5.1 The sequential vector-based PSO

The sequential VBPSO constitutes a first attempt at using the dot product to identify candidate
solutions and find multiple optimal solutions for an optimization problem [82]. Niches are
identified sequentially as described in section 5.4. The optimization process is incorporated in
the overall sequential process, that is, subswarms are optimized as the niches are identified.
Algorithm 8 presents a pseudo-code algorithm of the sequential VBPSO.

Some aspects of the algorithm are discussed in detail below:

Initialize the swarm: A specified number of particles is created at random positions through-
out the search space. This algorithm stores particles as a linked list of particle objects.
Provision is made for each particle to store a unique niche number, the position of the
particle, its personal best position and the neighbourhood best position. Position vectors
towards the personal best and neighbourhood best positions are stored, as well as the dot
product of these vectors. The distance between a particle and the current neighbourhood
best position is stored as the radius. For all particles, the niche-id is initially set to 0.
When a particle is created, an initial personal best position is calculated. Personal best
positions are required for all particles in order to calculate dot products that are used
to identify niches. To find a personal best position, a random position is created in the
vicinity of the particle position. For this purpose a parameter, €, is introduced, which

is a small value relative to the search space, acting as an upper bound to the distance

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA

CHAPTER 5. VECTOR-BASED PSO

93

Algorithm 8 The sequential vector-based PSO

begin
Initialize the swarm by creating N particles;
Set niche identification number (niche-id) of each particle to 0;
for each particle do
Find a random position within the niche radius from the current neighbourhood best:
The position with the best fitness is the personal best, y;(¢):
The other position is x;(t);
Calculate the vector v, where
vpi(t) = yi(t) — xi(t)

end
repeat
Set ¥(f) to y;(t) with best fitness of particles where niche-id = 0
for each particle in the swarm do

Calculate the vector v,; where

vyi(t) = ¥(t) — xi(t)
Calculate the dot product d;:
(S‘,‘ = Vp;i Vg;.‘
Set radius p; to the distance between §(t) and x;(t)

end
Set niche radius to distance between y(t) and nearest particle with 4, < 0;
for each particle where p; < niche radius and §; > 0 do

| Set niche-id to next number;
end

if particles in niche < 3 then
| Create extra particles in niche so that it has at least 3 particles;
end
tor specified number of iterations do
for each particle with current niche-id do
Update particle position x;(¢);
Update y;(t) and y(#);
Update vectors v, and v,;
Update dot product 4;;
end
end
until no particles with niche-id = 0 remain;

end

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 5. VECTOR-BASED PS5O 94

between the particle position and its personal best position. The position is created ran-
domly within these bounds. If the fitness at the new position is better than that of the
original position, the new position becomes the particle’s personal best. If not, the values
are exchanged so that the new position is the position of the particle and the original

position its personal best.

Identify niches: Section 5.4 presented a general description of niche forming in principle. Al-
gorithm 8 incorporates a formal description of the process. When the swarm is initialized,
the niche-id of all particles is set to 0. The particle with the best fitness of its personal
best position is identified as the current neighbourhood best, ¥(¢). For every particle in
the entire swarm, the position vector from the particle’s position to the current neigh-
bourhood best position, vy, is calculated, as well as the dot product, d;, of the vectors Vgi
and vy,;. For each particle a radius, the Euclidian distance from the particle’s position to
that of the current neighbourhood best, is also calculated. As explained in section 5.3, the
position of a particle where 0; has changed from positive to negative will be a rough indi-
cation of the niche boundary. Therefore. the niche radius is set to the Euclidian distance
between the current neighbourhood best position and the position of the nearest particle
with a negative dot product. Particles with positive dot products and radii smaller than
the niche radius constitute a subswarm that can be optimized separately. As niches are
identified, particles forming the subswarm in the niche are marked by setting niche-id to
the niche number, starting with 1. While particles with niche-id = 0 remain, the process
is repeated. The fittest particle with niche-id = 0 becomes the next neighbourhood best
and particles are assigned the next number. When no particles with niche-id = 0 remain,

all niches will be numbered, and niche-id indicates to which niche each particle belongs.

False niches: The shape of a niche in an unknown function landscape can not be assumed
to be symmetrical around a position identified as the current neighbourhood best. Thus
the niche radius only gives a rough estimate of the boundary of the niche. However, a
number of particles belonging to the niche may still be situated outside the niche radius,
especially if the niche has an irregular shape. In such cases extra or false niches form next
to the niche where the true optimum will eventually be located. The particle identified
as the neighbourhood best of the false niche will be the particle nearest to the adjacent
niche containing the true optimum. Experimental results presented in [82] and section
6.3 confirm that a number of false niches are formed. Subswarms occupying these niches

converge on optima in adjacent niches, giving rise to duplicate solutions.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 5. VECTOR-BASED PS50 95

Extending a subswarm: Some of the subswarms formed when niches are identified may con-
tain very few particles. Often only one particle constitutes a subswarm and y(t) will be
equal to y;(t). If the particle position is updated and a position is located where the
fitness is better than at y;(t), the positions of x;(¢), y;(t) and §(¢) will be the same. Such
a particle easily becomes stationary and will not converge, or converge very slowly due
to the remaining momentum. False niches are especially prone to such conditions. To
prevent these subswarms from becoming stationary, additional particles are added when
there are less than a specific number of particles in a niche. The niche radius is an upper
bound of the distance of these particles from the current neighbourhood best. While de-
veloping the sequential vector-based PSO, empirical observations showed that subswarms
require at least 3 particles to prevent the particles from becoming stationary. Thus the

sequential VBPSO extends subswarms with 1 or 2 particles to contain 3 particles.

Optimizing the subswarms: The sequential VBPSO optimizes subswarms as the niches
they occupy, are identified. Therefore, the entire process is sequential. For a single
iteration, the positions of all particles in a subswarm are updated as described in Chap-
ter 3. For the sake of clarity, equations (5.5) and (5.6) used to update the velocity and

then the particle position, are repeated:

vij(t+1) = wvij(t) + erry () (ye i (8) — @i (t) + cora ()3 (1) — zi5(t)) (5.5)
Xt‘(f-+1):Xg{f)+V{j(f+l) (56)

In the sequential VBPSO the acceleration constants, ¢; and cs, are set to 1. That is, the
maximum step size in the direction of the neighbourhood best position, referred to by
c1, is equal to ¢z, the maximum step size in the direction of the personal best position.
Thus the influence of the social component of the velocity update equation is equal to
the influence of the cognitive component. Once niches are established, each subswarm
that occupies a niche is expected to converge on one optimum. Exploration of remote
areas of the search space is not required at this stage. In fact, a particle leaving a niche
might divert an entire subswarm to a more promising area in the search space with the
result that fewer suboptimal solutions are located. Therefore, the influence of the social
component must not be too large. On the other hand, a too large cognitive component
will slow down convergence. Therefore, for multimodal optimization, equal influence of
the two components is appropriate. The inertia weight, w, is set to 0.8. Shi and Eberhart,

who introduced the inertia weight [89], found that choosing w € [0.8, 1.2] results in faster

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 5. VECTOR-BASED PSO 96

convergence. The choice of the settings for ¢, ¢y and w satisfies the theoretically derived
relation for convergent particle trajectories as defined by Van den Bergh and Engelbrecht
[100]:

w > %(cl +e)—1 (5.7)

Number of iterations: The number of iterations, that is, the number of times all particles
in a subswarm are updated, can be set in advance, or the cycle can be repeated until a
desired measure of accuracy is reached. However, owing to the extension of subswarms
with too few particles, a specific number of iterations will not always yield the same

number of function evaluations.

Duplicate solutions: The sequential VBPSO produces duplicate solutions as a result of the
forming of false niches as described earlier. The algorithm contains no strategy to merge
the subswarms contained in these niches. Thus, for some niches. more than one subswarm
will converge on an optimum. In interpreting the results produced by the algorithm, the

number of different optima will comprise the true number of niches.

The sequential VBPSO implements the strategy of using vector operations to identify niches
in particle swarm optimization. However, the sequential nature of the algorithm as well as the
formation of false niches produce duplicate solutions, as substantiated by experimental results
presented in chapter 6. An improved algorithm is presented in the next section to eliminate

duplicate solutions, thus enhancing the quality of the solutions.

5.5.2 The parallel vector-based PSO

An improved niching algorithm, the parallel VBPSO [83] is presented in this section. Yielding
duplicate solutions is an undesirable characteristic of the sequential VBPSO. The parallel
VBPSO incorporates a merging strategy to eliminate duplicate solutions. Niches are identified
sequentially, similar to the process used by the sequential VBPSO presented in Algorithm 8.
Niches are numbered and each particle is labeled with the number of the niche. Niches are then
optimized in parallel, that is, all particles in all niches are updated during each iteration, while
convergence is guided by each particle’s personal best position as well as the neighbourhood
best of the niche. The updating procedure is repeated for a specified number of iterations,
interspersed with a merging procedure called repeatedly after a fixed number of the iterations

have been completed. The effect that the size of these merging intervals may have on the

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 5. VECTOR-BASED PSO 97

performance of the algorithm is discussed in detail below. Algorithm 9 presents a pseudo-

code algorithm of the parallel VBPSO. Algorithm 10 presents a pseudo-code algorithm of the

merging procedure.

Some aspects of the algorithm are discussed in more detail below:

Initialize swarm and identify niches: After initialization of the swarm, niches are identi-

fied similar to the process followed in the sequential vector-based algorithm described in
section 5.5.1. A number of false or extra niches will also be identified. Instead of yielding
duplicate solutions, the parallel vector-based PSO merges the subswarms contained in

these niches while optimization takes place in parallel.

Store niche information: The parallel VBPSO does not optimize niches as they are iden-

tified. An appropriate data structure is used to store information about each numbered
niche. The position and fitness of the neighbourhood best particle, the niche radius, the
number of particles comprising the subswarm in the niche, as well as a boolean flag to

indicate whether the neighbourhood best particle has been updated, are recorded.

Parallel optimization: The parallel VBPSO identifies niches sequentially. stores the infor-

mation and then optimizes the subswarms occupying these niches, in parallel. For a single
iteration, the positions of all particles in the entire swarm are updated. A single particle
is updated as described in Chapter 3 and in section 5.5.1. As explained earlier, false
niches that were formed around niches containing true optima, will converge towards the

true niches.

The merging threshold: During the optimization process, subswarms moving towards one

another in the process of converging on the same optimum, are merged once the distance
between the subswarms becomes less than a certain threshold value. The distance be-
tween subswarms is measured as the Euclidian distance between current neighbourhood
best positions of niches containing those subswarms. A new problem-dependent param-
eter, called the granularity, is introduced to facilitate niching. Section 6.5.2 presents the
results of experiments to investigate the influence of granularity on the performance of

the algorithm.

The merging procedure: The merging procedure of VBPSO is formalized in algorithm 10.

A merging procedure for NichePSO has been described in chapter 4, where subswarms

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

CHAPTER 5. VECTOR-BASED PSO

98

Algorithm 9 The parallel vector-based PSO

begin
Initialize the swarm by creating N particles;
Set niche identification number (niche-id) of each particle to 0;
Initialize the granularity, g;
for each particle do
Create a random position within the niche radius;
The position with the best fitness is the personal best, y;(t);
The other position is x,(t) ;
Calculate the vector v,;, where
vpi(t) = i(t) — xi(t)

end
repeat
Set y(t) to y,(f) with best fitness of all particles with niche-id = 0;
for cach particle in the swarm do

Calculate the vector v,; where

Vyi(t) = ¥(t) —xi(t)

Calculate the dot product d;:

Set radius p; to the distance between y(t) and x;(¢);
end
Set niche radius to the distance between ¥(t) and nearest particle with 4; < 0;
for each particle where p, < nicheradius and §; > 0 do

| Set neche-id to the next number:
end

if particles in niche < 3 then

| Create extra particles in niche so that it has at least 3 particles;
end

Store relevant niche information in an appropriate data structure;

Vpi " Vi

until ne particles with niche-id = 0 remain;
for m times do
for k times do
for each particle do
Update particle position x;(t);
Update y;(t) and $(t);
Update vectors vp; and v;:
Update dot product §;;
Update radius p;:

end
end
Merge niches using Algorithm 10;

end
end

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 5. VECTOR-BASED PSO 99

Algorithm 10 Merging procedure of the parallel VBPSO

begin
for niche; wherei =1 ton —1 do
for niche; where j =i+1 ton do
Calculate Euclidian distance dy between y,(t) and ¥,(#):
if d| < granularity then
if §i(t) has better fitness than ¥;(t) then
for all particles in niche; do
Calculate Euclidian distance dy to §;(t) of niche i;
if dy < granularity then
Set niche-id of particle to that of niche;:
Update number of particles of both niches;

end
end
else
for all particles in niche; do
Calculate Euclidian distance da to §;(¢) of niche j;
if dy < granularity then
Set niche-id of particle to that of niche;;
Update number of particles of both niches:
end
end
end
end
end
end
end

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 5. VECTOR-BASED PSO 100

are merged when they intersect. Subswarms S5;, and Sj, intersect when
195, = il < (Rj + Rj,) (5:8)

where ¥, and y;, are the particles with the best fitness in subswarms S; and S) respec-
tively and R; and Rj, are the radii of the respective subswarms. However, as a result
of the definition of a niche radius, this approach can not be followed when merging sub-
swarms in the parallel VBPSO. In NichePSO a niche radius is defined as the Euclidian
distance from the neighbourhood best position to the boundary of a niche. Initially a
subswarm consists of two particles, a candidate solution and its nearest neighbour while
a number of particles remain part of the main swarm. Particles are absorbed from the
main swarm and existing subswarms merged when the conditions in equation (5.8) apply.
Niche radii remain small. The technique used by the family of vector-based PSO algo-
rithms identifies niches by calculating niche boundaries as described in section 5.4. Niche
radii are much larger than in the case of NichePSO and may even overlap. Therefore

intersecting subswarms do not necessarily converge on the same optimum.

Merging in the parallel vector-based PSO will commence if the distance between sub-
swarms becomes less than the granularity. The distance between these subswarms is
measured as the distance between the neighbourhood best positions of the corresponding
niches. All particles are not merged at the same time; the neighbourhood best particles
are the last to merge. While the distance between two adjacent niches remains less than
the granularity and becomes smaller, other individual particles are merged. Particles
from the swarm where the fitness at the neighbourhood best position is less than that of
the adjacent swarm, will be merged with the fitter swarm. An individual particle will only
be merged if the distance between that particle and the neighbourhood best position of
the other (fitter) subswarm becomes less than the granularity. Therefore the particle will
be absorbed by the subswarm where the neighbourhood best has the best fitness. The
process is implemented by changing the niche identification number, niche-id, resetting
y(t) and calculating new values for v,; and ¢;. Simultaneously the number of particles is
incremented in the fitter niche and decremented in the other niche. The particle at the
neighbourhood best position of the less fit swarm is only absorbed once it becomes the

only remaining particle in the niche.

Merging intervals: Optimization of the subswarms is interspersed by calls to the merging

procedure. According to the merging procedure, particles from subswarms merge when

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 5. VECTOR-BASED P50 101

the distance between the neighbourhood best positions of two subswarms becomes smaller
than the granularity. All particles do not merge at the same time, and several calls
to the merging procedure may be required for an entire subswarm (occupying a false
niche) to be absorbed by a fitter adjacent subswarm. The merging procedure can be
called after each iteration of the update equation. However, to reduce computational
complexity, the merging procedure can be called after a number of iterations of applying
position updates. Appendix A, section A.2 presents empirical results using a selection of
functions to illustrate the effect of merging intervals on the performance of the algorithm.
Provided the merging procedure is called more than two or three times at intervals spread
throughout the run, merging of all relevant subswarms can be expected. Exact interval
sizes do not have any effect on the outcome of the algorithm. Algorithm 9 formalizes the
process so that particle positions and corresponding data are updated k times, followed
by one call to the merging procedure. These actions are repeated m times, giving a total
of m x n iterations. The parallel VBPSO divides the total number of iterations into 10
equal intervals, i.e. if 500 iterations of the updating equations are executed, the merging
procedure is called after every 50 iterations. This interval size was chosen in order to

track the merging process, as presented in chapter 6.

The parallel VBPSO uses the same strategy as the sequential VBPSO to identify niches in a
multimodal landscape. However, to eliminate duplicate solutions, subswarms moving towards
the same optimum are merged while being optimized in parallel. Chapter 6 presents experi-
mental results of implementations of the algorithm for a number of one- and two-dimensional
functions. The next section presents an algorithm where the updating process is refined to

improve results.

5.5.3 The enhanced parallel vector-based PSO

A refined version of the parallel vector-based PSO, the enhanced vector-based PSQ, is presented
in this section [84]. The parallel VBPSO performs well on benchmark functions where the
optima are distributed regularly throughout the problem space and the fitness of these optima
differ slightly or not at all. However, experimental results presented in section 6.4 show that the
performance of the parallel VBPSO degrades if the problem space becomes more convoluted
and the niche shapes and sizes differ considerably.

During optimization, particles may move outside the niche, but are pulled back unless the

fitness of the new position is better than that of its current neighbourhood best position. In

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

CHAPTER 5. VECTOR-BASED PSO 102

such a situation the following problems may arise:

e Particles moving outside a niche may encounter a location where the fitness is better
than that of the current neighbourhood best position and divert the entire subswarm in
a different direction. Consequently, the algorithm will not locate all the optima in the
search space. While this characteristic comprises one of the strengths of the original PSO,

it can be seen as a weakness of using PSO for niching.
e Particles may move outside the search space and locate additional optima.

e If particles are not contained in the search space, a niche will contain fewer particles

resulting in slower convergence and degradation of the accuracy of the solutions.

Algorithm 11 presents a pseudocode algorithm of the enhanced parallel vector-based PSO
where the process of updating the particles in a subswarm is modified to inhibit the tendency
of particles to move outside the niche.

Some aspects of the algorithm are discussed in more detail below:

Initialize swarm and identify niches: The swarm is initialized and niches identified similar

to the sequential vector-based PSO and the parallel vector-based PSO.

Contain particles inside a niche: A strategy to contain particles inside a niche is inclnded
in the enhanced parallel vector-based PSO. During optimization, it is possible for a parti-
cle to leave the niche if the velocity is such that the particle overshoots the neighbourhood
best position and moves out of the current niche. Such a particle may find a new position
with better fitness than that of the neighbourhood best position of the original niche.
In these cases the entire subswarm in the original niche will be diverted to, and merged
with the new niche. To counteract this effect, each potential new position is investigated
before updating that particle to determine whether it is still inside the niche. A potential
new position, p, is found by adding velocity (calculated by equation (5.5)) to the previous
position. If p has a better fitness than the previous position, the particle position can
potentially be updated. To determine whether p is still inside the niche, a temporary
particle, X¢emp(t), with a corresponding personal best position is created at p. Similar to
the strategy followed when particles were initially created. a random position, r, is found
near p by calculating a random direction as well as a random distance between p and r.
Since this distance has to be small, the granularity value forms the upper bound of the

random distance. The fittest of these two positions will be the personal best position

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 5. VECTOR-BASED PSO 103

Algorithm 11 The enhanced parallel vector-based PSO

begin
Initialize the swarm by creating N particles;
Set niche-id of each particle to 0 and initialize granularity, g;
for each particle do
Calculate personal best position, y;(#). of particle at position x;(t)
Calculate the vector v,
end
repeat
Set ¥(t) to y;(t) with best fitness of all particles with niche-id = 0;
for each particle in the swarm do
Calculate the vector vg;;
Calculate the dot product §,:
0 = Vpi - Vg
Set radius p; to the distance between y(t) and x;(t);
end
Set niche radius to distance between ¥(t) and nearest particle with 4, < 0;
for each particle where p; < nicheradius and §; > 0 do

| Set niche-id to next number;
end

if particles in niche < 3 then

| Create extra particles in niche so that it has at least 3 particles;
end

Store relevant niche information in an appropriate data structure;
until no particles with niche-id = 0 remain;
for m times do
for k times do
for each particle do
Create temporary particle X,..,,(t) and personal best yiepmp(t);
Calculate vectors vyiemp, Vgtemp and dot product diemp:
if d¢emp < 0 then
‘ Retain original particle position and corresponding values;
end
else
Particle position X;(t) = X¢emp(t):
Update y;(t), ¥(t) and vectors v,; and vg,:
Update dot product d; and radius p;;
end
end
end
Merge niches;

end
end

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 5. VECTOR-BASED PSO 104

of the particle, while the other position will be the particle position. In other words, if
fitness(p) < fitness(r), the temporary particle is created at position r with the personal
best at position p, and vice versa. Both these positions are needed to calculate the vector
Vptemp: To determine whether the particle position is inside the current niche, the vec-
tors v ptemp and Vgtemp 88 well as the dot product ‘5te:rnp between the two vectors, are
calculated. A positive dot product means that the new particle position still forms part
of the niche while a negative dot product indicates that the particle has moved outside
the current niche and into an adjacent niche where the function landscape slopes away
from the current niche. Although the possibility exists that a particle may move to a
position far away from the current niche and still yield a positive dot product, a particle

moving a small distance out of the current niche, will be identified in this manner.

Therefore, if 040y, < 0, the potential new position is discarded and the original particle
position and the corresponding values retained. If (5temp > 0, the new particle position
i) = xtemp(t) and y;(t), ¥(t), vectors vp; and v, as well as the dot product 4; and

radius p; are calculated.

Merging niches: The enhanced parallel vector-based PSO also optimizes niches in parallel
and merges subswarms contained in these niches. The merging strategy described by

algorithm 10 is used for the enhanced parallel VBPSO as well.

The enhanced parallel VBPSO identifies niches and optimizes subswarms contained in those
niches in parallel using the same basic strategy as the parallel VBPSO. The updating process
is refined to prohibit particles from leaving a niche; a process incorporated to improve the
performance of the parallel VBPSO.

Chapter 6 presents experimental results of implementations of the algorithm for a number

of benchmark functions.

5.6 Conclusion

This chapter traced the development of the vector-based particle swarm optimizer (VBPSO) for
niching through its various stages. The concept on which the strategy is based, was explained
and motivated. Three algorithms were presented, namely the sequential. parallel and enhanced
parallel vector-based PSO, where each algorithm represents an improvement on the previous

version. Techniques used to implement the concept and refine the implementations in later

EIT VAN PRETORIA
TY OF PRETORIA
THI YA PRETORIA

CHAPTER 5. VECTOR-BASED PSO 105

versions, were explained and motivated.
The next chapter provides an empirical evaluation of these algorithms, and compares the

performance of the best VBPSO to that of other PSO-based niching algorithms.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

Chapter 7

Dynamic Vector-Based PSO

This chapter investigates the behaviour of the vector-based particle swarm optimization paradigm
in changing environments. Multiple optima can change dynamically over time, both temporally and
spatially, requiring an algorithm to track these multiple, changing optima. The vector-based PSO,
originally developed to locate multiple optima in static environments, is adapted and extended to

track multiple optima over time.

7.1 Introduction

PSO can be considered to be a well-established population-based optimization approach. Al-
though PSO has been successfully applied to static problems, real-world optimization often
has to be carried out in a dynamic environment; that is. the objective function changes over
time. Examples of such problems include scheduling problems such as air traffic control and
routing in telecommunication networks. Controlling petrochemical processes also requires fre-
quent re-optimization to balance input and output parameters. Locations of optima and the
fitness of the objective function at these positions may change, while some optimal solutions
disappear altogether and others appear in new positions. To locate an optimum using particle
swarm optimization, particles have to converge on a single point. However, to keep track of
dynamically changing optima, some form of redistribution of particles is required in order to
increase swarm diversity. This is necessary for the algorithm to continually explore the search

space in order to track an optimum of which the position or fitness have changed, or to detect

199

ﬁ UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 7. DYNAMIC VECTOR-BASED PSO 200

the disappearance of an optimum or the appearance of a new optimum. Some algorithms such
as the charged PSO (8] [9], automatically track optima in a dynamically changing environment,
while others require modification of the algorithm.

Depending on the severity of the move, PSO in dynamic environments proved to be effective
when locating and tracking a single optimal value [6] [7] [8] [17]. However, in a highly multi-
modal environment changes in the fitness of the optima may result in a previous suboptimal
solution taking on the best value. Such a situation would be easy to handle if an algorithm
could locate and keep track of multiple optima.

This chapter presents an initial and explorative study of the ability of a niching PSO method
to track multiple dynamically changing optima. The vector-based PSO [82], [83], [84] is adapted
to locate and track optima in a changing environment. A number of scenarios is set up and
used to test the performance of the dynamic vector-based PSO in dynamic environments [85].

The chapter is organized as follows: Dynamic optimization problems are defined in section
2, while changes in the environment are discussed in section 3. Research on PSO models
to locate a single optimum in a dynamic environment is summarized in section 4. Section
5 presents a discussion of existing algorithms to locate and track multiple dynamic optima.
Section 6 describes how the vector-based PSO is extended to locate and track optima in a

dynamic environment in parallel, while section 7 concludes the chapter.

7.2 Dynamic optimization problems
A formal definition of a dynamic optimization problem is given as

minimize f(x,@(t)), x=(x1,...,2,,), w(t) = (wi(t),..., =,)
subject to gm(x) <0,m=1,...,n,
hn(x) =0,m =ny+1,... Mg 0
zj € dom(x;) (7.1)
where w(t) is a vector of time-dependent objective function control parameters. The objective
is to find
x*(¢) = min f(x, w(t)) (7.2)
€T
where x*(t) is the optimum found at time step t.
Dynamic systems change over time in several ways. Changes can take place at regular

or irregular time intervals, or continuously. The timescale involved is referred to as temporal

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

CHAPTER 7. DYNAMIC VECTOR-BASED PSO 201

severity. Changes in optimal positions can also be quantified. The term spatial severity is used

to indicate the amount of change in the position of an optimum at each step. The severity

parameter, ¢, is used to indicate the change in location before the next optimization effort.
In addition to the type of dynamic environment, the way in which change occurs, can also

vary. The next section presents a discussion of changes in the environment.

7.3 Changes in the environment

To a large extent the dynamics of an environment depends on the optimization problem. Op-
timization algorithms for dynamic environments are designed to react to changes in the envi-
ronments. If changes occur at specific intervals, the mechanism the algorithm uses to improve
exploration is invoked to coincide with those times. If changes do not occur at fixed intervals,
those changes in the environment need to be detected automatically.

Carlisle and Dozier [17] [18] used a sentry particle to detect change in the environment.
A new sentry particle is chosen at random each iteration. If the fitness of such a particle is
different from that of the previous iteration, the environment has changed, although no change
in the fitness of the sentry particle does not guarantee that the environment did not change.
If the change is significant, a tracking strategy is triggered. An alternative method, proposed
by Hu and Eberhart [45], monitors the global best position. The method was improved by
monitoring the second-best position as well [46].

Response to changes in the environment can take many forms. If the environment changes
while the swarm is still in the process of converging, and the spatial severity is not too large,
the PSO automatically adapts and moves towards the new optimum [33]. If the swarm has
converged to an equilibrium state, which is possible if the temporal severity is low, the swarm
becomes stable and will not move to the new optimal position. In such cases some strategy
has to be deployed to inject more diversity which will allow the swarm to move to the new
optimal position. According to Blackwell [6], optimization with particle swarms has two major
ingredients, the particle dynamics and the particle information network. A combination of
these ingredients make PSO a robust and efficient optimizer of real-valued objective functions.
However, when applying PSO to dynamic problems the algorithm must be modified for optimal
results, as diversity loss is experienced due to convergence, while the problem of outdated mem-
ory occurs as a result of the environment dynamism. Diversity loss is the more serious problem,

as the swarm has to re-diversify, locate the shifted optimum, and re-converge. Two strategies

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

CHAPTER 7. DYNAMIC VECTOR-BASED PSO 202

can be utilized to address such a problem, namely the deployment of a re-diversification mech-
anism when the objective function changes, and /or some diversity measure that is maintained
during the run.

The next section overviews a number of approaches to single-solution particle swarm opti-

mization in dynamic environments.

7.4 Particle swarm models for tracking a single solution in a

dynamic environment

Carlisle and Dozier [17] [18] conducted one of the first investigations into modification of the
Particle Swarm Optimizer to locate changing extrema. BEach particle’s record of its personal
best position is reset to the current particle position as the environment changes. Resetting
only takes place if, after the environment change, the personal best position is worse than
the current position. Thus direction and velocity decisions based on outdated information are
avoided. This process is initiated by two methods: periodic resetting, based on the iteration
count, and triggered resetting, based on the magnitude of the change in the environment. For
the second method a sentry particle is selected at random in the search space. At each iteration
the sentry particle’s fitness is reevaluated; if the fitness changed by more than the trigger value,
the personal best positions of all particles are reset.

It must be noted that such a strategy will only be effective when the swarm has not yet
converged to a solution. The use of a sentry particle to detect change is also not reliable, as
localized fluctuations may occur.

Eberhart and Shi experimented with tracking and optimizing a single optimum in a dy-
namic system [30]. Successful tracking of a 10-dimensional parabolic function is demonstrated.
PS50 was perceived to perform better than genetic algorithms on similar problems. However,
dynamic environments can vary considerably, and many real-world systems change state fre-
quently, thus requiring frequent re-optimization. Eberhart and Shi reason that searching from
the current position works well for small environmental changes, or when the swarm has not yet
reached an equilibrium state. For severe environmental changes, re-initialization of the entire
swarm can be more effective as previous optimal positions will contribute very little or nothing
at all to the effort. A combination of these two approaches, namely retaining the global best

position and re-initializing a percentage of the particle positions, is suggested in order to retain

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 7. DYNAMIC VECTOR-BASED PSO 203

potentially good positions as well as increase diversity.
Blackwell and Branke identify the following problems which have to be considered when

applying PSO to dynamic environments [9]:

Outdated memory: When the objective function changes, an individual particle’s personal
best solution (called the particle attractor by Blackwell and Branke) may no longer apply,
and may even guide the search in the wrong direction. This problem is usually solved
by resetting the position of the attractor to the current particle position, as described

earlier.

Diversity loss and linear collapse: One of the principle characteristics of PSO is conver-
gence to a stable point as proved by Van den Bergh and Engelbrecht [100], Clerc and
Kennedy [20], and Trelea [97]. However, as pointed out by Van den Bergh [100], this
point is not necessarily an optimum. A shrinking swarm is synonymous with loss of di-
versity. If the optimum moves away, but the new position is still within the collapsing
swarm, there is a good chance that the swarm will successfully track the moving target
[6]. If the new target is significantly far from the collapsing swarm, the low velocities of
the particles will inhibit re-diversification and tracking. Van den Bergh and Engelbrecht
[100], and Blackwell and Bentley [8] have found that the swarm can even oscillate around
a false attractor and along a line perpendicular to the true optimum, a feature known as

linear collapse.

Blackwell and Branke categorize approaches to counterbalance the effect of diversity loss as
follows [9]:

Introduce diversity after the problem has changed: The entire, or part of the swarm is
randomized after each function change, or at some predetermined time interval. Such
an approach might have the effect that useful information such as positions with good

fitness is lost.

Maintain diversity throughout the run: Blackwell and Bentley [8] have introduced the
charged PSO, an attempt to maintain diversity throughout the run. A nucleus of neutral
particles act like a conventional PSO exploring the neighbourhood to locate an optimal
solution. In addition, a roaming swarm of “charged” particles, that is, particles that
are repelled by a subswarm converging on a peak, is maintained to detect new peaks

in the search space. In a later innovation, Blackwell and Branke [10] introduced the

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 7. DYNAMIC VECTOR-BASED PSO 204

idea of quantum particles that move to random positions around the swarm’s global best

position.

Maintain multiple swarms on different peaks: Blackwell and Branke [9] constructed in-
teracting multi-swarms by extending the single population PSO as well as the charged
particle swarm optimization method. A number of subswarms are maintained around
local optima that have been located, while a swarm of charged particles search for new
local optima, where, if discovered, new subswarms are established. Functions where the
landscapes consist of several peaks and changes to the locations, heights and widths of
the peaks are small, are expected to respond well to such a strategy. If peak heights
change in such a way that a suboptimal solution becomes the solution with the best fit-
ness in the search space, it is not difficult to keep track of the global optimum. A further
refinement entails sustaining diversity within subswarms by incorporating the strategy

used by quantum particles.

Blackwell and Branke extended the idea of multi-swarms by proposing two forms of swarm
interaction, namely ezclusion and anti-convergence [7]. Exclusion prevents swarms from set-
tling on the same peak by re-initializing the lesser swarm if two swarms move too close to one
another. Anti-conversion re-initializes the worst swarm in order to track down any new peak
that may appear.

Although the purpose of the multiswarms that are maintained on different peaks is to track
the overall optimal solution in a dynamic environment, the creation of sub-swarms per se is
relevant to multimodal optimization. Tracking multiple dynamic optima in parallel exhibit the
same advantages as the multi-swarm approach, but starts from another premise.

The next section describes how a multimodal particle swarm optimizer can be adapted for

dynamic environments.

7.5 Tracking multiple optima in a dynamic environment

In multidimensional systems changes can occur in one or more dimensions, independently or
simultaneously. Changes occurring in a problem space with many suboptimal solutions can
also have the effect that a suboptimal solution becomes the optimal solution and vice versa.
Thus, even if the severity is small, the location of the optimum may change considerably. In

most cases this problem will not occur if a niching algorithm is adapted for dynamic systems,

ﬁ UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 7. DYNAMIC VECTOR-BASED PSO 205

where the objective is to keep track of all optima. The best solution can easily be selected from
all the tracked optima at any stage during the optimization process. A possible exception can
occur if a new optimum appears and immediately becomes the optimal solution. However, once
the new optimum is detected and added to the collection of optima, the process will proceed

normally.

7.5.1 A dynamic test function generator

Dynamic environments can be generated by the moving peaks benchmark (MPB). De Jong
and Morrison’s test problem generator [25] was devised to be used in the study of evolutionary
algorithm performance in changing environments. The problem generator is also suitable to
evaluate PSO performance in dynamic environments. especially if the problem space contains
a number of suboptimal solutions as well. An environment in two dimensions consisting of a

number of cone shapes is generated by the following equation:

flz1,) = max (H,,.; —R; \/(1'1 —21,)% 4+ (@0 — ;1:2?_)2) (7.3)

where the height of each cone is given by H;, the slope by R; and the position by (8,5
The number of optima, their positions, shapes and heights can be specified. An environment

with three cones is illustrated in Figure 7.1.

7.5.2 PSO models for multiple dynamic optima

Particle swarm optimizers that locate multiple optima in parallel provide natural mechanisms
for adapting to dynamic environments. The species-based PSO [57] described in Chapter 4 is
eminently suitable for such a modification.

Parrott and Li [70] adapted the algorithm to track multiple peaks simultaneously. The
resulting algorithm, referred to as the dynamic species-based P50, is based on the static
species-based PSO where the particle with the best fitness is identified as a species seed and a
subpopulation is formed with particles within a set speciation radius, r. The process is repeated
until no more particles remain. The result is a number of subpopulations, each with its own
species seed which is the particle with the best fitness in the subpopulation. At each iteration
of the algorithm, particles are updated and subpopulations reformed. If the function changes,
species seeds will be identified at new positions, thus providing a natural way in which the

positions of peaks in the landscape can be tracked. To allow particles to move towards the new

IVERSITEIT VAN PRETORIA
ERSITY OF PRETORIA
BESITHI YA PRETORIA

CHAPTER 7. DYNAMIC VECTOR-BASED PSO 206

f(x,, x,)
1 i

0.8

06

0.4

0.2 -

Figure 7.1: An environment with three peaks at positions (—0.5, —0.7),(=0.5,0.5) and (0.5, 0),

generated by Morrison and De Jong’s test problem generator

species seeds, the dynamic SPSO re-evaluates each particle’s personal best fitness value before
updating the positions of the particles. Crowding at known optima had to be prevented so that
some particles could be allocated to search for new optima. Such a strategy entails introducing
a maximum species population parameter. Only the best candidate members are allocated as
members of a species, while redundant particles are re-initialized at random positions in the
solution space.

The dynamic SPSO was extensively tested on functions generated by De Jong and Mor-
rison’s dynamic test function generator [25] [70]. Several parameters were varied and results
reported. These results indicate that the algorithm can successfully track optima in a dynamic
two-dimensional environment.

Li et al. proposed an improved dynamic species-based PSO that incorporates techniques to
improve its tracking ability [59]. Some of these techniques were suggested by the multi-swarm
approach of Blackwell and Branke discussed in section 6.4. Inspired by the quantum swarm
model, some particles, the so-called “quantum” particles, are positioned around each peak to
maintain diversity. An anti-convergence method to re-randomize the worst swarm when all
species have converged is also adopted by the species-based PSO. The method is invoked if the
average particle diversity falls below a certain threshold. Different regions of the search space
can then be explored to search for new peaks. The SPSO was tested with a variety of scenarios

set up by the moving peak benchmark [25]. The results suggested that SPSO can adapt well

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

CHAPTER 7. DYNAMIC VECTOR-BASED PSO 207

on most test cases.

7.6 The dynamic vector-based particle swarm optimizer

This section describes how the vector-based PSO (referred to as the VBPSO) is extended to
locate and track optima in a dynamic environment in parallel.

The proposed dynamic vector-based PSO uses the VBPSO to find initial multiple optima.
These optima have to be tracked when the objective function changes, causing optima to move
to other positions. For a tracking strategy to be efficient, all optima should be found after
each objective function change with less effort than re-optimization would entail. The dynamic
VBPSO endeavours to retain useful information such as previous positions of optima after each
modification of the objective function, thus avoiding complete re-optimization. If changes are
not too severe, the positions where the previous optima were located. are retained and act
as starting points to track optima that have moved away. Thus fewer particles are required,
making the process more efficient. For severe changes it could be argued that no benefit can be
derived from previous optimal positions and that complete re-optimization would be preferable.

Each time the objective function is modified and the landscape changes, a tracking mech-
anism is invoked. In the dynamic vector-based PSO this mechanism consists of two stages.
Stage 1 tracks existing optima that have moved away, or of which the fitness at one or more
of the peaks have been modified. Provided the severity is not too large, optima can be tracked
with relatively little effort. Stage 2 of the algorithm contains a technique to locate new optima
that may have appeared.

The process to locate and track optima in a dynamic environment is described below while

algorithm 12 formally presents the vector-based PSO algorithm for multiple dynamic optima.

Locate niches and optimize: After the swarm had been initialized by creating an appro-
priate number of particles, the static vector-based PSO as described in chapter 5, is used
to locate and demarcate niches sequentially and optimize these niches in parallel. A
small problem-dependent parameter, the granularity, described in section 5.5.2. is set in
advance to facilitate niching. Thus the initial positions and fitnesses of all the optima
are obtained. Faster changes in the environment may result in less accurate optimal

positions.

Track existing optima: In a dynamic environment optima are tracked by finding new opti-

mal positions each time a modification of the ob jective function is detected, or at specific

CHAPTER 7. DYNAMIC VECTOR-BASED PSO 208

Algorithm 12 The dynamic vector-based PSO

begin
Initialize the swarm by creating n particles;
Locate niches and optimize using the vector-based PSO:;
while function is changing do
if function has been modified then
Stage 1:
Discard all particle information except previous optimal positions:
Create particles at previous optimal positions:
Establish new personal best positions (pbest);
Set each neighbourhood best position (nbest) to corresponding pbest:
Update position vectors towards pbest, nbest and and their dot
products;
Create 3 additional particles near each optimal position to form small
subswarms:
Optimize subswarms in parallel to converge on new positions;
if a peak has disappeared then
Merge niches;
end
Stage 2:
Discard all particle information except optimal positions found in stage 1;
Create n particles over entire search space:
for all existing niches do
Find niche radii;
Mark particles within niche radii as belonging to the corresponding
niche;
end
for particles not assigned to a niche do
repeat
Find particle with best pbest;
Set nbest of all particles to best pbest;
Find niche radius;
Mark particles within niche radius as belonging to the corresponding
niche;
until all particles have been included in a niche:
Optimize niches in parallel and merge if necessary;

end
end
end

end

EIT VAN PRETO
TY OF PRET
T

RIA
ORIA
HI YA PRETORIA

CHAPTER 7. DYNAMIC VECTOR-BASED PSO 209

intervals if the function changes continuously. At this stage a number of particles will have
converged on each previous optimal position. Redistribution of these particles through-
out the search space is instrumental in tracking optima when the environment changes.
However, if the locations of the optima do not change too much, only a few particles
in the vicinity of each existing optimum are required to track the optima to their new

positions.

The dynamic vector-based PSO employs a strategy where only the existing neighbour-
hood best position of each niche is retained when the objective function is modified and
optima need to be tracked. All other particle information is discarded. After the ob-
jective function has changed, a new particle is created at each previous neighbourhood
best position. Similar to the procedure the static vector-based PSO employs to create
initial particles, a personal best position is associated with the particle at each previous
neighbourhood position. A random position is found near to each particle and the per-
sonal best is set to the fittest of the two positions while the less fit position becomes the
particle position. The neighbourhood best position associated with each of these particles
Is sef equal to the personal best position of that particle. Such steps are necessary since
the personal best position of each previous optimum has to be re-evaluated in a changed
environment. At this stage one particle has been created at each previous neighbourhood

best position so that the number of particles is equal to the previous number of optima.

To enable the algorithm to track an optimum, a small number of additional particles
are created in the immediate vicinity of each particle created at a previous optimal
position. These particles are initialized at random positions within a radius r from
the neighbourhood best particle. The value of r is equal to the granularity that has
been set in advance for the objective function that is being optimized. Thus a small
subswarm is formed in each niche. Appendix A.3 presents empirical results showing
that a subswarm consisting of the original neighbourhood best particle as well as three
additional particles, giving a total of four per niche, is able to effectively track a moving
optimum. New personal best positions are updated. The neighbourhood best position of
each additional particle is set to the neighbourhood best position of the first particle in
each niche. Vectors pointing to the personal best and neighbourhood best positions, as

well as their dot product, are calculated.

1o locate modified optimal positions, the subswarms thus created, are optimized in paral-

lel. During the optimization process subswarms naturally move towards better positions.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

CHAPTER 7. DYNAMIC VECTOR-BASED PSO 210

It may happen that an optimum moves into a neighbouring niche and disappears. Re-
evaluation of the personal best positions of the subswarm associated with the peak that
disappeared causes that subswarm to move towards the neighbouring optimum where the

two subswarms will eventually merge.

The strategy used to track existing optima is referred to as stage 1 of the algorithm in
the formal description of the algorithm. New optima appearing in the landscape during

modification of the objective function, are not discovered during stage 1.

Locate new optima: New optima may appear when the objective function changes. Locating
these optima is not a simple matter, as the initial strategy to find niches must basically
be repeated to find new candidate solutions. The dynamic VBPSO algorithm includes
a mechanism to locate new optima. This mechanism is invoked after stage 1 of the
algorithm and is referred to as stage 2. These stages are invoked each time the objective
function is modified or at specific intervals in the process. Stage 2 of the algorithm only
retains the positions of the optima located during stage 1. All other particles and their
associated information are discarded. Similar to the static VBPSO that was used to
locate initial optima for one run of the algorithm, new particles are created at random
positions throughout the search space. The number of particles is set equal to the original
number created in the first phase of the algorithm. Niches are established by using the
vector dot product to calculate niche radii. However, instead of repeating the entire
sequential process to find candidate solutions, niche radii of the existing optima are first
calculated. Particles falling within those radii, are marked as belonging to that niche. If
a new peak has appeared near to an existing optimum, the niche radius of the existing
optimum will be smaller and not include particles expected to converge on the new peak.
To reduce the effort of finding new optima, the subswarms thus formed, are not optimized
again. The sequential process to find candidate solutions and calculate their niche radii
is then resumed for the remaining particles. Only subswarms formed by these remaining
particles are optimized during the optimization phase. If new optima have appeared,
subswarms would have formed around those optima on which it will converge during
optimization. However, if no new optima have appeared after the last modification of the
objective function, particles outside the niches surrounding the existing optima will form
subswarms adjacent to those niches. These subswarms reside in false niches that exhibit

a tendency to move into existing niches, and will eventually converge on existing optima.

Clearly, the process to locate new optima is computationally more expensive than the

IT VAN PRETO

UN E RIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
CHAPTER 7. DYNAMIC VECTOR-BASED PSO 211

process to track existing optima. The question arises whether complete re-optimization
at set intervals might not be considered as a workable alternative. The next section

investigates these possibilities.

7.7 Conclusion

This chapter presented a technique to extend the vector-based particle swarm optimizer to be
applicable to dynamic environments. Particle swarm models for tracking a single solution in a
dynamic environment were discussed while an overview of PSO models for multiple dynamic
optima was presented. The vector-based PSO for multiple dynamic optima was described and
formally presented as the dynamic vector-based PSO algorithm. Demonstration of its ability
to track multiple moving optima in a number of selected dynamic environments is presented

in chapter 8.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

Bibliography

(1] Al-kazemi, B., and Moham, C.K.: Multi-phase Discrete Particle Swarm optimization In:
Proceedings of the International Workshop on Frontiers in Evolutionary Algorithms. pp.
622-625 (2002)

[2] Antonov, LA. and Saleev, V.M.: An economic method of computing LP;-sequences Zh.
vychisl. Mat. mat. 19 pp. 243-245. English translation: U.S.S.R. Comput. Math. Phys. 19
pp. 252-256. (1979)

(3] Béck, T., Fogel, D.B., and Michalewicz, Z, eds. Evolutionary Computation 2. 15. Institute
of Physics Publishers. (2000)

[4] Beasley, D., Bull, D.R., and Martin, R.R.: A Sequential Niche Technique for Multimodal
Function Optimization. Evolutionary Computation, 1(2): 101-125 (1993)

[5] Bird, S. and Li, X.: Adaptively choosing niching parameters in a PSO In: Proceeding of
the Genetic and Evolutionary Computation Conference (GECCO 2006). pp. 3-9 Seattle,
Washington, USA. (2006)

6] Blackwell, T.: Particle Swarm Optimization in Dynamic Environments In: Evolu-
tionary Computation in Dynamic and Uncertain Environments. Vol 51/2007 Springer
Berlin/Heidelberg pp. 29-49 (2007)

[7] Blackwell, T.M., and Bentley, P.:Don’t Push Me! Collision-Avoiding Swarms In: Pro-
ceedings of the IEEE Congress on Evolutionary Computation volume 2, PP. 1691-1696
(2002)

(8] Blackwell, T.M. and Bentley, P.J.: Dynamic search with charged swarms In: Genetic
and Evolutionary Computation Conference. W.B.L. et al., Ed. Morgan Kaufmann, 19-26
(2000)

244

IVERSITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

BIBLIOGRAPHY 245

9]

[10]

[11]

[12]

[16]

18]

[19]

Blackwell, T.. Branke, J.: Multi-Swarm Optimization in Dynamic Environments In: Raidl,

G.R. (ed.): Applications of Evolutionary Computation, Vol. 1281. Springer 489-500 (2004)

Blackwell, T. and Branke, J.: Multi-Swarms, Ezclusion, and Anti-Convergence in Dy-
namic Environments In: IEEE Transactions on Evolutionary Computation, 10(4): 459-

472 (August, 2006)

Bratley, P. and Fox, B.L.:Algorithm 659: Implementing Sobol’s quasirandom sequence
generator ACM Trans. Math. Softw. 14:88-100 (1988)

Brits. R., Engelbrecht, A.P., and Van den Bergh, F.: Solving systems of unconstrained
equations using particle swarm optimizers in: Proceedings of the IEEE Conference on
Systems, Man and Cybernetics, pp. 102-107 (2002)

Brits, R., Engelbrecht, A.P., and Van den Bergh, F.: A niching particle swarm optimizer
In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning.
pp. 692-696 Singapore (November, 2002)

Brits, R.: Niching strategies for particle swarm optimization, MSe Thesis. University of
Pretoria (2002)

Brits, R., Engelbrecht, A.P., and Van den Bergh, F.: Scalability of NichePSO In: Pro-
ceedings of the IEEE Swarm Intelligence Symposium, pp. 228-234, (Indianapolis, USA),
(2003)

Brits, R., Engelbrecht, A.P. and Van den Bergh, F.: Locating multiple optima using particle
swarm optimization Applied Mathematics and Computation, 189(2): 1859-1883 (June
2007)

Carlisle, A., Dozier, G.: Adapting Particle Swarm Optimization to Dynamic Environ-
ments In: Proceedings of the International Conference on Artificial Intelligence. Las Vegas
Nevada USA pp. 429-434 (2000)

Carlisle, A., Dozier, G.: Tracking Changing Extrema with Particle Swarm Optimizer In:

Proceedings of the Fifth Biennial World Automation Congress. pp. 265-270 (2002)

Clerc, M.: The Swarm & the Queen. Towards a Deterministic and Adaptive Particle
Swarm Optimization In: Proceedings of the Congress on Evolutionary Computation, pp.
1951-1957 (Washington DC, USA) IEEE Service Center, Piscataway, NJ (1999)

EIT VAN PRETO
RSITY OF PRETO
ESITHI YA PRETO

puige’

RIA
RIA
RIA

BIBLIOGRAPHY 246

[20]

21]

[22]

[23]

[29]

[30]

Clerc, M. and Kennedy, J.: The Particle Swarm - Explosion, Stability, and Convergence

in a Multidimensional Complex Space, IEEE Transactions on Evolutionary Computation,
6(1): pp. 58-T3 (2002)

Cramer, N.L.: A representation for the Adaptive Generation of Sequential Programs In:
Proceedings of an International Conference on Genetic Algorithms and the Applications,

Grefenstette, J.J. (ed.), Carnegie Mellon University (1985)
Darwin, C.: The Origin of Species, P. F. Collier & Son (1909)

Deb, K., and Goldberg, D.E.: Natural Frequency Calculation using Genetic Algorithms.
In: Sathya V. Hanagud, Manohar P. Kamat, and Charles E. Ueng, editors, Proceedings
of the 16th Southeastern Conference on Theoretical and Applied Mechanics, pp. 94-101,
Atlanta, GA, (1990). The College of Engineering, Georgia Institute of Technology.

De Jong, K.: An analysis of the behavior of a class of genetic adaptive systems Doctoral

dissertation, University if Michigan, (1975)

De Jong, K.A., Morrison, R.W.: A Test Problem Generator for Non-Stationary Environ-

ment In: Proceedings of the Congress on Evolutionary Computation. [EEE Press. pp.
2047-2053 (1999)

Droste, S., Jansen, T. and Wegener, 1.: Perhaps not a free lunch but at least o free appetizer

Durham, W.: Co-Evolution: Genes, Culture and Human Diversity, Stanford University
Press (1994)

Eberhart, R.C., and Kennedy, J.: A New Optimizer Using Particle Swarm Theory Sixth
International Symposium on Micro Machine and Human Science, pp.39-43 (Nagoya,
Japan) IEEE Service Center (1995).

Eberhart. R.C., and Shi, Y.: Comparing Inertia Weights and Constriction Factors in Par-
ticle Swarm Optimization In: Proceedings of the Congress on Evolutionary Computation,
pp. 84-89 (San Diego, USA) IEEE Service Center, Piscataway, NJ (2000)

Eberhart, R.C, and Shi, Y.: Tracking and Optimizing Dynamic Systems with Particle
Swarms In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC2001).
pp. 94-100 (2001)

ITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

BIBLIOGRAPHY 247

31]

32]

[33]

[34]

[35]

136]

37]

[38]

139]

[40]

[41]

[42]

[43]

[44]

Ellis, R., and Gulick, D.: Caleulus with Analytical Geometry 5th ed., Saunders College
Publishing (1994)

Engelbrecht, A.P.: Computational Intelligence - An Introduction, John Wiley & Sons Ltd
(2002)

Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence, John Wiley &
Sons Ltd (2005)

Engelbrecht, A.P., Masiye, B.S.. and Pampara. G.: Niching Ability of Basic Particle
Swarm Algorithms (2005)

Fogel, D.B.: Evolutionary Computation, 2nd ed., IEEE Press, Piscataway, NJ (2000)

Fogel, L.J., Owens, A.J. and Walsh, M.J.: Artificial Intelligence Through Simulated Evo-
lution Wiley (1966)

Forsvth, D.B.: BEAGLE A Darwinian Approach to Pattern Recognition Kybernetes,
10:159-166 (1981)

Glover, F.: Tabu Search - Part I, ORSA Journal on Computing 1(3):190-206 (1989)

Goldberg, D.E., Deb, K., and Horn, J.: Massive Multimodality, Deception, and Genetic
Algorithms In: R. Minner and B. Manderick (Eds.): Parallel Problem Solving from Na-
ture, 2, 37-46 North-Holland (1992)

Goldberg, D.E., and Richardson, J.: Genetic Algorithms with Sharing for Multimodal
Function Optimization In: Proceedings of the 2nd International Conference on Genetic
Algorithms, pp. 41-49 (1997)

Hendtlass, T.: WoSP: A Multi-Optima Particle Swarm Algorithm. In: Proceedings of the
IEEE Congress on Evolutionary Computation. pp. 727-734 Edinburgh, UK. (2005)

Hoffman, R., Minkin, V.I., and Carpenter, B.K.: Ockham’s razor and Chemistry. Inter-
national Journal for the Philosophy of Chemistry. 3. 3-28 (1997)

Holland, J.H.: Adaptation in Natural and Artificial Systems, University of Michigan Press,
Ann Arbor (1975)

Hoos, H.H.: Stochastic Local Search - Methods, Models. Applications, PhD Thesis, Uni-
versity of Darmstadt (1998).

ITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

BIBLIOGRAPHY 248

[45]

[46]

[47]

[48]

[49)

Hu, X. and Eberhart, R.C.: Tracking Dynamic Systems with PSQ: Where’s the Cheese?,
In: Proceedings of the Workshop on Particle Swarm Optimization. pp. 80-81 (2001)

Hu. X. and Eberhart, R.C.: Adaptive Particle Swarm Optimization: Detection and Re-
sponse to Dynamic Systems In: Proceedings of the IEEE Congress on Evolutionary Com-

putation. Vol. 2 pp. 1666-1670, (May, 2002)

Joe, S. and Kuo, F.Y.: Remark on Algorithm 659: Implementing Sobol’s quasirandom
sequence generator ACM Trans. Math. Softw. 29:49-57 (2003)

Kennedy, J., and Eberhart, R.C.: Particle Swarm Optimization In: Proceedings of the
IEEE International Conference on Neural Networks (Perth, Australia), IEEE Service Cen-
ter, Piscataway, N.J, IV: 1942-1948 (1995).

Kennedy, J.: The Particle Swarm: Social Adaptation of Knowledge In: Proceedings of the
International Conference on Evolutionary Computation, pp. 303-308, Indianapolis, IN,
USA (1997)

Kennedy, J.: Why Does it Need Velocity? In: Proceedings of the IEEE Swarm Intelligence
Symposium, Pasadena CA (2005)

Kennedy, J.: Small Worlds and Mega-Minds: Effects of Neighborhood Topology on Particle
Swarm Performance, In: Proceedings of the Congress on Evolutionary Computation, pp.
1931-1938 (Washington DC, USA) IEEE Service Center, Piscataway, NJ (1999)

Kennedy, J.: Stereotyping: Improving Particle Swarm Performance with Cluster Analysis
In: Proceedings of the IEEE Congress on Evolutionary Compuation vol. 2 pp. 1507-1512
(2000)

Kennedy, J., and Mendes, R.: Population Structure and Particle Swarm Performance In:
Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1671-1676 IEEE
Press (2002)

Kirkpatrick, S., Gelatt, C.D.. and Vecchi, M.P.: Optimization by simulated annealing,
Science, 2204598: 671-680 (1983).

Koza. J.R.: Genetic Programming: On the programming of Computers by means of Natural
Selection MIT Press (1992)

ITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

BIBLIOGRAPHY 249

[56]

[58]

(5]

[60]

[61]

(62]

[63]

[64]

[66]

[67)

Li, J.P., Balazs, M.E., Parks, G.T., and Clarkson, P.J.: A species conserving genetic algo-
rithm for multi-modal function optimization In: Evolutionary Computation, 10(3):207-234
(2002)

Li, X.: Adaptively Choosing Neighbourhood Bests using Species in a Particle Swarm Op-
timizer for Multimodal Function Optimization. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO 2004). pp. 105-116 (2004)

Li, X.: A multimodal particle swarm optimzer based on fitness Euclidian-distance ratio In:
Proceeding of the Genetic and Evolutionary Computation Conference (GECCO 2007). pp.
78-85 London, England, UK. (2007)

Li, X.. Branke, J. and Blackwell, T.: Particle Swarm and Adaptation in a Dynamic
Environment In: GECCOO06, Seattle, Washington, USA (2006)

Lovbjerg, M., Rasmussen, T.K., Krink,T.: Hybrid particle swarm optimizer with sub-
populations and breeding In: Proceedings of the Genetic and Evolutionary Computation

Conference, vol 1, San Francisco USA pp. 469-476 (July 2001)

derick, editors, Parallel Problem Solving from Nature 2, pp. 27-37, (1992)

Malan, K., and Engelbrecht, A.P.: Algorithm Comparisons and the Significance of Popu-
lation Size Proceedings of the 2008 IEEE World Congress on Computational Intelligence
(WCCI 2008). Hong Kong. (2008) To be published.

Marais, E.N.: The Soul of the White Ant, (1937).

Mathews, J.H.: Numerical Methods for Mathematics, Science and Engineering, Prentice
Hall, Inc. 2nd ed. (1992).

Mendes, R., Kennedy, J., and Neves, J.: Watch Thy Neighbour or How the Swarm can
Learn from its Environment In: Proceedings of the IEEE Swarm Intelligence Symposium,
pp. 88-94 (2003)

Millonas, M.M.: Swarms, Phase Transitions, and Collective Intelligence In: C.G.Langton,

Ed., Artificial Life ITI. Addison Wesley, Reading, MA. (1994)

Nelder, J.A. and Mead, R.: A simplex method for function minimization In: The Com-

puter Journal, volume 7, pp. 308-313 (1965)

EIT VAN PRETORIA
TY OF PRETORIA
SITHI YA PRETORIA

-

BIBLIOGRAPHY 250

[68]

169]

[70]

[72]

[73]

[74]

[76]

[77]

Ozcan, E., and Mohan, C.: Analysis of a simple particle swarm optimization system In:
Intelligent Engineering Systems Through Artificial Neural Networks (ANNIE'98), Vol. 8
pp. 253-258 (1998)

Ozcan, E., and Mohan, C.: Particle Swarm Optimization: Surfing the Waves In: Proceed-
ings of the International Congress on Evolutionary Computation, pp.1939-1944 (Washing-
ton USA) (1999)

Parrott, D., Li, X.: A Particle Swarm Model for Tracking Multiple Peaks in a Dynamic
Enwvironment using Speciation. In: Proceedings on the 2004 Congress of Evolutionary

Computation (CEC2004) pp. 98-103 (2004)

Parsopoulos, K.E., Plagianakos, V.P, Magoulas, G.D. and Vrahatis, M.N.: Stretching
Techniques for Obtaining Global Minimizers through Particle Swarm Optimization. In:
Proceedings of the Particle Swarm Optimization Workshop. Indianapolis USA pp. 22-29
(2001)

Parsopoulos, K.E. and Vrahatis, M.N.: Modification of the Particle Swarm Optimizer for
Locating all the Global Minima. In: Kurkova, V., Steele, N.C., Neruda, R. and Karny, M.
(eds.): Artificial Neural Networks and Genetic Algorithms, 324-327 Springer (2001)

Peer, E.S., Van den Bergh, F., and Engelbrecht, A.P.: Using Neighbourhoods with the
Guaranteed Convergence PSO In: Proceedings of the IEEE Swarm Intelligence Sympo-
sium, pp. 235-242 IEEE Press (2003)

Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms In:
Proceedings of the Third IEEE International Conference on Evolutionary Computation
(ICEC’96), Piscataway, NJ, IEEE Press, pp. 798-803 (1996)

Potts, W.K.: The chorus-line hypothesis of coordination in avian flocks, Nature 24: 344-
345 (1984)

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P.: Numerical Recipes in
C: the Art of Scientific Computing Cambridge University Press, second edition (1992)

Fowler, F.G., and Fowler, HW.: The Pocket Ozford Dictionary of Current English 5th

edition Oxford University Press, London (1969)

IVERSITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

BIBLIOGRAPHY 251

78]

[79]

[80]

81]

[82]

[83]

[84]

[86]

[87]

Price, K.V.: An Introduction to Differential Evolution, In: Corne, D., Dorigo, M., and
Glover, F. (eds.) New Ideas in Optimization, McGraw-Hill, London (1999)

Rechenberg. 1.: Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien

der Biologischer Evolution. Framman-Holzboog Verlag, Stuttgart (1973)

Reynolds, C.W.: Flocks, herds and schools: a distributed behavioural model, Computer
Graphics 21(4): 25-34 (1987)

Reynolds, R.G.: Cultural algorithms In: Corne, D., Dorigo, M., and Glover, F., editors,
New Ideas in Optimization, p. 367, McGraw-Hill (1999)

Schoeman, LL., and Engelbrecht, A.P.: Using Vector Operations to Identify Niches for
Particle Swarm Optimization Proceedings of the IEEE Conference on Cybernetics and

Intelligent Systems. pp. 361-366 Singapore (2004)

Schoeman, I.L., and Engelbrecht, A.P.: A Parallel Vector-Based Particle Swarm Optimizer
Proceedings of the International Conference on Artificial Neural Networks and Genetic
Algorithms. (ICANNGA2005) Coimbra Portugal, pp. 268-271 (2005)

Schoeman, I.L., and Engelbrecht, A.P.: Containing Particles inside Niches when Optimiz-
ing Multimodal Functions Proceedings of SAICSIT2005. White River, South Africa pp.
78-85 (2005)

Schoeman, I.L., and Engelbrecht, A.P.: Niching for Dynamic Environments Using Particle
Swarm Optimization In: Proceedings of the Sixth International Conference on Simulated
Evolution and Learning (SEAL’06). pp. Hefei, China, (October 2006)

Schwefel, H-P.: Evolutionsstrategie und Numerische Optimierung. PhD Thesis, Technical
University Berlin (1975)

Sheskin, D.J.:
emphHandbook of Parametric and Nonparametric Statistical Procedures, Chapman &
Hall/CRC (2007)

Shi, Y., and Eberhart, R.C.: A Modified Particle Swarm Optimizer In: IEEE International
Conference of Evolutionary Computation (Anchorage, Alaska) pp. 69-73 (1998)

Shi, Y. and Eberhart, R.C.: Parameter Selection in Particle Swarm Optimization In:

Evolutionary Programming VII: Proceedings of EP 98, pp. 591-600 (1998)

EIT VAN PRETORIA
TY OF PRETORIA
SITHI YA PRETORIA

-

BIBLIOGRAPHY 252

[90]

[91]

[96]

[97]

[98]

[99]

Singh, G., and Deb, K.: Comparison of Multi-Modal Optimization Algorithms Based on
Evolutionary Algorithms GECCO’06, (Seattle, USA) pp. 1305-1312 (2006)

Smith, S.F.: A learning System based on Genetic Adaptive Algorithms. PhD Thesis, Uni-
versity of Pittsburgh (1980)

Smith, R.E., Forrest, S., and Perelson, A.S.: Searching for diverse, cooperative populations
with genetic algorithms TCGA Report No. 92002. The University of Alabama, Department
of Engineering Mechanics. (1992)

Snyman, J.A.: Practical Mathematical Optimization, Springer (2005) pp. 1-16.

Storn, R., and Price, K.: Differential Evolution - a Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces, In: Journal of Global Optimization, 11:341-
359 (1997)

Suganthan, P.N.: Particle Swarm Optimizer with Neighbourhood Operator In: Proceedings
of the Congress on Evolutionary Computation, pp. 1958-1961 (Washington DC, USA)
IEEE Service center, Piscataway NJ (1999)

Thodberg, H.H.: Improving Generalization of Neural Networks through Pruning. Interna-

tional Journal of Neural Systems. 1(4), 317-326 (1991)

Trelea, 1.C.: The Particle Swarm Optimization Algorithm: Convergence and Parameter
Selection Information Processing Letters, 85(6):317-325 (2003)

Van den Bergh, F.: An Analysis of Particle Swarm Optimizers PhD Thesis, University of
Pretoria (2002).

Van den Bergh, F. and Engelbrecht, A.P.: A New Locally Convergent Particle Swarm
Optimiser In: Proceedings of the IEEE International Conference on Systems, Man and

Cybernetics, (Hammamet, Tunisia), October 2002.

[100] Van den Bergh, F. and Engelbrecht, A.P.: A Study of Particle Swarm Optimization

Particle Trajectories, Information Sciences 176:937-971 (2006)

[101] Van den Bergh, F. and Engelbrecht. A.P.: A Cooperative Approach to Particle Swarm

Optimization IEEE Transactions on Evolutionary Computation 8(3):225-239 (2004)

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
BIBLIOGRAPHY 253

[102] Veeramachaneni, K., Peram, T., Mohan, C., and Osadciw, L.A.: Optimization Using
Particle Swarms with Near Neighbour Interactions In: Proceedings of the Genetic and
Evolutionary Computation Conference, In: Lecture Notes in Computer Science 2723:110-
121. Springer-Verlag (2003)

[103] Wolpert, D.H., and Macready, W.G.: No Free Lunch Theorems for Optimization, IEEE
Transactions on Evolutionary Computation 1(1), pp. 67-82 (1997)

Appendix A

Test Results

This appendix presents empirical results of tests that were run to determine specific settings used
by the family of vector-based PSO algorithms. Section A.1 presents results of empirical tests to
determine minimum sizes of small subswarms to prevent such swarms from stagnating. Section A.2
investigates the influence of interval sizes between calls to the merging procedure. This procedure is
called several times while subswarms are updated in parallel in order to merge subswarms attempting
to optimize the same optimal or suboptimal solution. Section A.3 presents results of empirical
tests to find the minimum size of a subswarm capable of tracking a moving optimum. If the
function landscape changes, positions of previous optima are retained and small subswarms are
created around such optima. Fewer function evaluations are required resulting in a reduction in

computational complexity.

A.1 Minimum subswarm sizes

To establish niche boundaries. the vector-based PSO calculates niche radii as described in
section H.4. A number of extra or false niches are formed adjacent to true niches. Some niches,
especially the false niches, may contain subswarms consisting of only one or two particles.
As explained in section 5.4, such subswarms may stagnate. To address this problem, these

subswarms are extended to contain at least three particles.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
APPENDIX A. TEST RESULTS 255

A.1.1 Experimental procedure

A selection of two-dimensional functions with differing characteristics, namely the Himmelblau,
Ursem F3 and Ackley functions, were used to investigate minimum subswarm sizes. Descrip-
tions and illustrations of the functions were provided in section 6.2.3. The algorithms were run
with minimal subswarm sizes of one, two, and three particles. The number of solutions that
indicated optima was recorded as well as the number of extra or false solutions that did not
indicate such positions. Each result is the average of 50 runs of the relevant algorithm. Results

are presented for the parallel vector-based PSO as well as the enhanced parallel vector-based
PSO.

Table A.1: Convergence of small subswarms using the parallel vector-based PSO

Function Results
Subswarm size Subswarm size Subswarm size
of 1 of 2 of 3
Success Average | Success Average | Success Average
rate # false rate # false rate # false
solutions solutions solutions
Himmelblau | 98% 5.6 99.5% 0.1 100% 0
Ursem F3 99% 5.7 100% 0.12 100% 0
Ackley 95.8% 2.7 98.7% 0.08 98.9% 0
(2-dim)

A.1.2 Results and discussion

When subswarms stagnate, results show solutions that do not indicate optimal positions in
the search space, since such subswarms do not converge on optimal positions. No such false
solutions will result if subswarms keep moving and eventually merge to indicate true opti-
mal positions. Thus, the number of such false solutions gives an indication of the ability of
subswarms to keep moving.

Tables A.1 and A.2 show the average number of extra or false solutions for the parallel
vector-based PSO and the enhanced parallel vector-based PSO. For each function and subswarm

size combination that was tested, the success rate of the run (total number of solutions as a

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe YUNIBESITHI YA PRETORIA

APPENDIX A. TEST RESULTS

Table A.2: Convergence of small subswarms using the enhanced parallel vector-based PSO

Function Results
Subswarm size Subswarm size Subswarm size
of 1 of 2 of 3
Success Average | Success Average | Success Average
rate # false rate # false rate # false
solutions solutions solutions
Himmelblau | 100% 0 100% 0 100% 0
Ursem F3 100% 0.8 100% 0.16 100% 0
Ackley 99.6% 0 99.6% 0 99% 0

percentage of the total number of possible solutions) and the average number of extra or false
solutions were recorded. As result of the stochastic character of the VBPSO. small differences
in success rates occurred. For each function, the average number of false solutions decreased
until no false solutions were recorded when a subswarm contained a minimum of three particles.
This lead to the conclusion that the subswarm sizes of at least three particles are sufficient
to obtain good results. Note that the enhanced parallel vector-based PSO yielded fewer false
solutions. This effect can be ascribed to the procedure where the particle position is updated
(refer to section 5.3), which is the only difference between the two algorithms. The enhanced
version tests each new position of a particle to ensure that the particle does not leave the
niche. Thus, a subswarm is prevented from being diverted to, and absorbed by, a neighbouring
subswarm, an effect causing a lower success rate. In addition, small subswarms are prevented
from becoming still smaller, a situation where stagnation can occur more often.

The small selection of results presented here does not purport to represent an exhaustive
analysis of the significance of choosing a minimum swarm size. False solutions may still be
encountered, even with larger minimum swarm sizes. On the other hand, the improved per-
formance of the enhanced version indicates that smaller minimum swarm sizes may suffice.
However, keeping in mind that the introduction of another tunable parameter to indicate mini-
mum swarm size is not an option, and too large swarm sizes increase computational complexity.

the minimum swarm size was set to three for all subsequent experiments.

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
APPENDIX A. TEST RESULTS 257

A.2 DMerging intervals

The parallel vector-based PSO algorithms update subswarms in parallel, thereby differing from
the earlier sequential version. During each iteration of the algorithm, all particles in all sub-
swarms are updated. When the vector-based PSO initially identifies niches, a number of
addtional or false niches are formed (see section 5.5). Subswarms in these niches are expected
to converge on optimal or suboptimal solutions of adjacent true niches (containing an opti-
mal solution), giving duplicate solutions. The parallel VBPSO merges these subswarms with
subswarms in true niches to exclude duplicate solutions. If the merging procedure is called
during the run, false niches are gradually absorbed by true niches, forming larger subswarms
which converge more effectively. If the merging procedure is called only once at the end of the
run, all subswarms have to be merged at once, which might be less effective. A selection of
functions have been tested to observe the effect of different merging intervals. Descriptions and
illustrations of the functions were provided in section 6.2. Only the enhanced parallel VBPSO
was tested as the parallel and enhanced parallel algorithms use the same merging procedure.
Averages of 50 runs have been reported for each setting. For each run the updating procedure
is iterated 500 times, interspersed with a number of calls to the merging procedure.

Results presented in Table A.3 show that a small number of subswarms do not merge when
the merging procedure is called once at the end of a run of 500 iterations. One extra call
to the merging procedure (with differing intervals) improves the situation but some niches
may still not merge. If the merging procedure is called more often, all niches merge. No
significant difference in the success rates of the different functions was found, indicating that
the algorithm is not sensitive to the exact size of the merging interval. In addition, the exact
size of the interval does not exert any influence on the success of the merging process, provided
that the merging procedure is called more than once during optimization and again at the end
of the run. The calls are best spread evenly over the run. The vector-based PSO algorithms
described in algorithms 10 and 11 calls the merging procedure at 10 equal intervals during
the run. These intervals were chosen in order to trace the merging process and present it
graphically. These results were presented in chapter 6.

Considering the above description, the size of the merging interval can rather be seen as a
heuristic than a tunable parameter. Therefore, setting the size of the merging interval cannot

be used as an argument that the principle of parsimony is violated.

Table A.3: Effect of merging intervals

UNIVERSITEIT VAN PRETO
UNIVERSITY OF PRETO
YUNIBESITHI YA PRETO

RIA
RIA
RIA

Function Results
Merge at end Merge at Merge at Merge at Merge at
interval 250 intervals 400, 100 5 intervals of 100 10 intervals of 50
Success Average | Success Average | Success Average | Success Average | Success Average
rate # extra rate # extra rate # extra rate # extra rate # extra
solutions solutions solutions solutions solutions
Himmelblau | 100% 0.2 100% 0 100% 0 100% 0 100% 0
(4 optima)
Ursem F3 100% 0.96 100% 0 100% 0 100% 0 100% 0
(4 optima)
Ackley 2-dim | 100% 1.44 99.8% 0.02 99.3% 0.06 99.8% 0 100% 0
(9 optima)

SITNSHY 1SAL 'V XIANAddV

IVERSITEIT VAN PRETORIA
SITY OF PRETORIA
SITHI YA PRETORIA

APPENDIX A. TEST RESULTS 259

A.3 Minimum swarm size for tracking optima

Section 7.6 presents an algorithm to track multiple optima in a dynamic environment. The
initial stage locates optima using the VBPSO described in chapters 5 and 6. After each
environment change, optima have to be tracked and new optimal positions located. To reduce
computational complexity, only the optimal positions of the previous stage are retained, and
small subswarms are created around those positions. This section presents tests designed to

find a minimum swarm size capable of tracking optima in a dynamic environment.

A.3.1 Experimental procedure

Scenario 1 described in section 8.2 was used to observe the effect of different minimum swarm
sizes on tracking capability. Three optima were tracked over six steps. For the sake of clarity,
the positions of the peaks are listed in Table A.4. Experiments were conducted where the size
of the small swarm created to track each optimum, were set to one (one particle at the position
of each previous optimum), two, three and four. The average offline errors between the optimal
positions found by the small swarms and the true optimal positions were calculated for each
setting. These errors were compared to the average offline error for the initial stage of the
algorithm (using a larger swarm). Errors of the same order of magnitude indicated a tracking

ability of the small subswarms similar to that of the initial swarm.

Table A.4: Positions of 3 optima over 6 steps

Step Peak 1 Peak 2 Peak 3
1 o H R =z | x H R x|z H R
1 |-06 -08 1 2|05 03 06 2|05 0 08 2
2 04 -08 1 2]-03 04 06 204 0 08 2
3 |02 08 1 2 |-01 05 06 2|03 0 08 2
4 0O -08 1 2|01 06 06 2,02 0 08 2
5 02 -08 1 2,03 07 06 2|01 0 08 2
6 04 -08 1 205 08 06 2,0 0 08 2

APPENDIX A. TEST RESULTS

A.3.2 Results and discussion

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

260

Results of experiments conducted to test the tracking ability of small subswarms are presented

in Table A.5. Averages of 50 experiments are listed. No significant difference was observed

between the average offline errors of the initial swarm (consisting of 30 particles) for the different

experiments. However, for stages two to six of the algorithm, the offline error decreased with

an increase in the sizes of the small subswarms. For a subswarm of three particles, the offline

error was marginally larger than that of the initial swarm. For a subswarm of four particles,

the offline error was marginally smaller than that of the initial swarm. Therefore, given that

the severity did not exceed the niche radius (refer to section 8.4), a subswarm size of three

or four particles was sufficient to track moving optima in a dynamic environment. For the

dynamic VBPSO, it was decided to create subswarms at previous optimal positions where each

subswarm consisted of a particle at one of those positions as well as three additional particles.

Table A.5: Tracking ability of small subswarms

Offline error

Initial swarm

Small subswarms

Subswarm size | Success
(particles) rate
1 100%
2 100%
3 100%
2 100%

5.17E-18 £+ 1.77E-18
240E-17 £ 1.17E-17
7.5TE-18 £+ 2.61E-18
2.62E-17 £+ 1.98E-17

3.48E-03 £+ 1.33E-03
5.34E-06 + 1.90E-06
9.38E-17 + 4.67TE-17
1.09E-17 £ 1.62E-18

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA

Appendix B

Derived publications

This appendix lists all papers that have been published or are currently under review, that led to,

or are derived from the work presented in this thesis.

Schoeman, LL., and Engelbrecht, A.P.: Using vector operations to identify niches for particle
swarm optimization. In: Proceedings of the IEEE Conference on Cybernetics and Intelligent
Systems. pp. 361-366 Singapore (2004)

Schoeman, LL., and Engelbrecht, A.P.: A parallel vector-based particle swarm optimizer. In:
Proceedings of the International Conference on Artificial Neural Networks and Genetic Algo-
rithms. (ICANNGA2005) Coimbra Portugal, pp. 268-271 (2005)

Schoeman, LL., and Engelbrecht, A.P.: Containing particles inside niches when optimizing
multimodal functions. In: Proceedings of SAICSIT2005. White River, South Africa pp. 78-85
(2005)

Schoeman, I.L., and Engelbrecht, A.P.: Niching for dynamic environments using particle swarm
optimization. In: Proceedings of the Sixth International Conference on Simulated Evolution
and Learning (SEAL'06). Hefei, China, (October 2006)

261

EIT VAN PRETO

-

UN RIA
UNIVERSITY OF PRETORIA
Qe VYUNIBESITHI YA PRETORIA
APPENDIX B. DERIVED PUBLICATIONS 262

Schoeman, [.L., and Engelbrecht, A.P.: A novel particle swarm niching technique based on ex-
tensive vector operations. Natural Comuputing, Springer, 1567-7818 (print) 1572-9796 (online)

(December 23, 2009)

Schoeman, I.L.. and Engelbrecht, A.P.: Scalability of the vector-based PSO. In: Proceedings of

the Congress of Evolutionary Computation (CEC2009) Trondheim, Norway, (May 2009)

[sabella Schoeman and Andries Engelbrecht: Effect of Particle Initialization on the Perfor-
mance of Particle Swarm Niching Algorithms. Accepted as an extended abstract in ANTS

2010

Schoeman, [.L., and Engelbrecht, A.P.: Tracking Multiple Optima in Dynamic Environments

using Particle Swarm Optimization. Under review.

