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Mining continuous classes using evolutionary computing

Data mining is the term given to knowledge discovery paradigms that attempt to infer knowl-

edge, in the form of rules, from structured data using machine learning algorithms. Specifi-

cally, data mining attempts to infer rules that are accurate, crisp, comprehensible and interest-

ing. There are not many data mining algorithms for mining continuous classes. This thesis

develops a new approach for mining continuous classes. The approach is based on a genetic

program, which utilises an efficient genetic algorithm approach to evolve the non-linear regres-

sions described by the leaf nodes of individuals in the genetic program's population. The

approach also optimises the learning process by using an efficient, fast data clustering algo-

rithm to reduce the training pattern search space. Experimental results from both algorithms

are compared with results obtained from a neural network. The experimental results of the

genetic program is also compared against a commercial data mining package (Cubist). These

results indicate that the genetic algorithm technique is substantially faster than the neural

network, and produces comparable accuracy. The genetic program produces substantially less

complex rules than that of both the neural network and Cubist.
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Chapter 1

INTRODUCTION

Knowledge discovery is the process of obtaining useful knowledge from raw data or facts.

Knowledge can be inferred from data by a computer using a variety of machine learning

paradigms. Data mining is the generic term given to knowledge discovery paradigms that

attempt to infer knowledge in the form of rules from structured data using machine learning.

In an article in the Boston Sunday Globe of August 11 2002, Vest identified the Biotech-

nology industry as the largest growing industry in Boston [97]. This follows the successful

conclusion of the human genome project. The result of the human genome project is essen-

tially a catalogue and guide to the structure of human DNA. Yet, very little is known about

the effects of individual genes in DNA. In order to decipher and analyse the vast amount of

information stored in DNA, data mining will have to be performed on a massive scale.

As an industry, data mining and data warehousing threatens to replace e-commerce as the

major information technology driving force of the 21st century. Recent events in the media

also illustrate the need for data mining:

• The September 11 2001 attacks on the World Trade Centre in New York highlighted

major deficiencies in the method of information gathering used by US agencies such as

the FBI and the CIA. Data mining could be used as an effective tool to combat crim-

inal and terrorist activities, by tracing the activities, communications and purchases of

individuals and identifying possible suspects .

• The recent scandals involving CEOs of large multi-national corporations such as Enron,

Worldcom, etc., illustrate the need for the development of data mining methods in order

 
 
 

 
 
 



• The recent world-wide recession and collapse of the airline industry illustrate the need
for companies to improve their market share as a means of survival. Access to accurate

and reliable information is crucial for decision making. Data mining could be used to

provide a competitive edge over other companies.

Thus, knowledge discovery in the form of data mining is becoming increasingly important in

today's world. However, in order to perform some of the mammoth tasks described above, it

is necessary to develop fast, efficient knowledge discovery algorithms.

Knowledge discovery algorithms can be divided into two main categories according to

their learning strategies:

• Supervised learning algorithms attempt to mini mise the error between their predicted

outputs and the target outputs of a given dataset. The target outputs can either be

- discrete, i.e. the supervised learning algorithm attempts to predict the class of a

problem, e.g. whether it will be sunny, rainy or overcast in tomorrow's forecast,

- or continuous, i.e. the supervised learning algorithm attempts to predict the value

associated with a class, e.g. determining the price of a VCR.

• Unsupervised learning algorithms attempt to cluster a dataset into homogeneous regions,

according to some characteristic present in the data.

Many knowledge discovery algorithms have been developed which utilise machine learn-

ing and artificial intelligence paradigms. The main classes of paradigms include: artificial

neural networks [13][106], classification systems (like ID3 [81], CN2 [20][21] and C4.5 [83]),

evolutionary computing [7][8][49], regression systems (like M5 [82]) etc.

One of the primary problems with current data mining algorithms is the scaling of these

algorithms for use on large databases. Additionally, very little attention has been paid to algo-

rithms for mining with continuous target outputs, which requires non-linear regression. This

thesis presents and fully discusses a number of evolutionary computing algorithms suitable for

non-linear regression. The primary algorithm developed by this thesis is a genetic program for

the mining of continuous classes (GPMCC), which utilises a genetic algorithm that evolves

 
 
 

 
 
 



structurally optimal polynomial expressions (GAS OPE) as the non-linear regressions for the

terminal nodes of the individuals in the genetic program. Additionally, a number of algorithms

are developed which optimise the learning process. These algorithms utilise a fast, efficient

data clustering algorithm. Methods for coping with large databases are also covered by this
thesis.

The remainder of this thesis is organised as follows: Chapter 2 provides a taxonomy of

data mining methods in use today. It also covers many of the principles used throughout this

thesis. The GASOPE method is presented in chapter 3 and details other methods employed by

or related to the GASOPE method. Chapter 4 presents the GPMCC method, fully discusses the

GPMCC method's interaction with the GASOPE method and provides an overview of other

associated methods. Finally, chapter 5 concludes this thesis

 
 
 

 
 
 



Chapter 2

BACKGROUND
This chapter provides a taxonomy of the methods employed by many data mining applications

in use today. An overview of the methods utilised in later sections is also presented. The

paradigms of knowledge discovery, evolutionary computing, neural networks and clustering are

discussed in broad terms. Attention to detail is given for specific methods as and when they are

required by later chapters.

This section discusses knowledge discovery and, more specifically, knowledge discovery

through machine learning. Section 2.1.1 introduces the reader to the fundamentals of knowl-

edge discovery. Some of the more common types of rule induction algorithms are discussed

in section 2.1.2. Finally, section 2.1.3 provides examples of the past usage of various types of

rule induction algorithms and is not confined to the induction algorithms presented in section

2.1.2.

Knowledge discovery is the process of obtaining useful knowledge from raw data or facts.

Such data can be structured, e.g. relational databases, tables and spreadsheets, or unstructured,

e.g. text, video and audio. Knowledge discovery applied to structured data is termed data

mining and knowledge discovery applied to unstructured data is usually termed text mining.

 
 
 

 
 
 



Knowledge can be defined, for the purpose of this thesis, as an organised body of informa-

tion. Such an organised body of information can be represented by rules of the form

where the antecedent describes a test on the state of a set of attributes and the consequent

describes a response to that state. The goal of knowledge discovery is thus to infer rules from

data that are

One way in which knowledge can be inferred from data is through machine learning, by an

algorithmic process known as empirical learning. Empirical learning includes algorithms that

reason from supplied examples in order to produce general theories about a specific problem

domain, which is categorised by a dataset. These general theories are used to make predic-

tions about further points in the problem domain, through both extrapolation and interpola-

tion. Examples of empirical learning algorithms include artificial neural networks (discussed

in section 2.3), evolutionary computing (discussed in section 2.2) and the large variety of rule-

induction algorithms presented later in this section.

If training examples are supplied with known labels or targets, the empirical learning strat-

egy is called supervised learning. Otherwise, the empirical learning strategy is known as

unsupervised learning. Supervised learning can solve two types of problems: classification

problems, where the training example labels are categorical and are called classes, and regres-

sion problems, where the training example labels are continuous.

This section provides definitions of terms used throughout this thesis. A number of different

rule induction algorithms are also discussed. The rule induction algorithms are divided into

two categories according to the types of problems they solve:

 
 
 

 
 
 



• Classification systems, which classify training examples according to their discrete

target outputs .

• Regression systems, which predict the numeric value associated with a class, i.e. regres-

sion systems predict the continuous target outputs of training examples.

A decision tree is one representation of an organised body of information. A decision tree can

recursively be defined as either a leaf node (terminal node) that names a class, or as an inter-

nal node (non-terminal node) that represents an attribute-based test, with a branch to another

decision tree for each outcome of that test. A node that is linked to a node higher up in the

hierarchy is called a child node. The sequence of nodes from the root of the tree to a leaf

node is called a path. All paths of a decision tree are mutually exclusive and exhaustive, i.e.

all regions defined by all paths completely cover the instance space (or pattern space). An

instance space is an n-dimensional attribute space where each instance describes a point in

that space. The size of a decision tree is the number of nodes in it, including the leaf nodes.

Each attribute in a decision tree can either be nominal, ordinal or continuous. An attribute

test has an attribute, relational operator and threshold. An example is classified using these

attribute tests by moving the example down from the root of the decision tree, along the path

that covers the example, i.e. all the attribute tests along the path of the decision tree are true

for that example. When an example reaches a leaf, it is asserted to belong to the class labelled

by that leaf. Figure 2.1 illustrates an example of a decision tree.

A production rule consists of an antecedent and a consequent. The antecedent is formed by

a conjunction of conditions. For zero-order classifier learning, which represents a number of

axis-orthogonal splits in the attribute space, these conditions take the form of (A :::;v), (A > v),
(A = v) or (A E {VI,"', vn}), where A represents an attribute and v, VI,"', Vn are possible

values of A. The consequent, in the case of classification systems, names a class.

An alternative representation of an organised body of information is a production system

[77]. A production system represents an ordered list of production rules. An example is

classified using these rules by moving the example from the top to the bottom of the production

system, comparing the attributes of the example against the antecedents of each rule. If an

example is covered by the antecedent of a production rule it is asserted to belong to the class

 
 
 

 
 
 



labelled by the consequent. Table 2.1 shows the production system for the example of figure
2.1.

IF (Colour = {green} ) THEN chlorine
IF (Colour = {clear}) 1\ (pH < 7) THEN chlorine
IF (Colour = {clear} ) 1\ (pH = 7) THEN nothing
IF (Colour = {clear}) 1\ (pH> 7) THEN acid

IF (Colour = {milky}) 1\ (Debris = yes) THEN nothing
IF (Colour = {milky}) 1\ (Debris = no) THEN acid

Two induction strategies are used to generate rules for classification systems: selective

induction and constructive induction. These two approaches are described next.

Selective induction induces rules from a training set by selecting attributes from the supplied

training examples, upon which the training set is split. Essentially, these attributes partition the

 
 
 

 
 
 



search space into regions that have the same class membership. In the case of decision trees,

the induction algorithm utilises axis-orthogonal splits, each of which is based on a single

attribute. If the supplied attributes are appropriate for representing target theories, selective

induction algorithms perform well in terms of prediction accuracy and theory complexity.

Some popular examples of selective induction algorithms include ID3 [81], C4.5 [83] and

CN2 [21][20], and are summarised below:

The ID3 algorithm uses decision trees to generate rules. ID3 generates these decision trees

using a divide-and-conquer approach. The algorithm recursively splits a training set, P, if the

training set labels consist of heterogeneous classes. The heuristic utili sed to decide on a test,

upon which to split the training set, is called the gain criterion, which is based on information

theory. The gain criterion is defined as follows:

_ Y'C !req(C\f,Q) .l (!req(C\f,Q))
L.",'l'=1 IQI og2 IQI

Y'0 IPepl· j (D)L.",<I>=1 lPf . In 0 £<1>

injo(P) - injox(P)

injo(P)

injox(P)

gain(X)

where 0 is the number of outcomes of test X, Q is a set of cases belonging to some class

C'l' and c is the number of classes in the domain. The information content of the domain

before splitting occurs is calculated by injo(P). The sum of the weighted information content

of each outcome after splitting occurs is calculated by injox(P). The objective of the ID3

algorithm is to maximise the gain criterion gain(X), i.e. to maximise the decrease in entropy

of performing a split. ID3 assumes clean data and is therefore unable to deal with outliers or

missing values. The trees generated by ID3 completely cover the training set. Thus, ID3 is

particularly susceptible to over-fitting.

The C4.5 algorithm (latest version C5.0 [84]) is based on ID3, but has no assumptions

about the purity of the data. The C4.5 algorithm uses decision trees and heuristics to generate

simplified, comprehensible production rules. C4.5, like ID3, generates these decision trees

using a divide-and-conquer approach. The heuristic utili sed to perform the divide-and-conquer

approach is similar to ID3's gain criterion, called the gain ratio criterion. The gain ratio

criterion is defined as follows:

spliLinjo(X)

gainJatio(X)

° IPepl l (IPepl)
- L<I>=1 lPf' og2 lPf
gain(X) / spliUnj o(X)

 
 
 

 
 
 



where gain(X) is obtained using equation (2.1) and all variables are defined as above. The

maximum information content of each outcome after splitting occurs is calculated by

spliLinjo(X). The objective of C4.5 is to maximise the gain ratio criterion gain-ratio(X),

i.e. to maximise the relative decrease in entropy. The gain ratio criterion prevents the C4.5

algorithm from biasing toward classes with large number of patterns.

ID3 and C4.5 inherently applies to discrete data. However, in the case of continuous-valued

attributes the training examples are sorted (according to the desired attribute) and a threshold

is chosen that lies between any two adjacent training examples (usually the midpoint between

the two examples). This threshold then acts to split the data into two subsets, according to the

test Ai < ai,l iai
,2. If an attribute has n continuous values in the domain, n - 1 splits are tested

using equation (2.2) and the split with the largest gain ratio criterion is selected.

C4.5 provides a windowing strategy to reduce the number of training examples presented

to the algorithm. The windowing strategy initially selects a random subset of training examples

(the window) from which an initial tree is built. This tree is used to classify training examples

not included in the window. The training examples that are misclassified by the initial tree

are then added to the window, from which another tree is built. Quinlan's initial reason for

utilising a windowing strategy was to attempt to reduce the time required to construct trees.

After experimentation, however, he discovered that the windowing strategy also resulted in
more accurate decision trees [83].

CN2 uses a beam search algorithm in order to find rules, and a control algorithm for repeat-

edly executing the search. The rules induced by CN2 are represented in the form of a produc-

tion system. CN2 uses an entropy measure to decide on a set of conditions from which to

induce a rule. Instead of using classification accuracy or information content as a measure of

rule quality, CN2 uses the Laplace Error Estimate to test the significance of rules. The Laplace

Error Estimate is defined as follows:

Laplace...Accuracy = IIQII + 1 (2.3)
R +c

where c is the number of classes in the domain, Q is a set of examples belonging to the class

covered by the rule and R is the set of examples covered by the rule. CN2 also uses significance

testing in order to prune the induced rules.

Constructive induction algorithms consist of two steps. One step constructs new attributes,

the other generates theories. Attribute construction can be visualised as the application of

 
 
 

 
 
 



constructive operators, such as /\, V and -', to the set of existing attributes, in order to reduce

the attribute space of the problem domain. The constructive operators thus provide a mech-

anism for mapping an N-dimensional attribute space into an X dimensional attribute space

such that X :::;N. Theories are generated from the X dimensional attribute space by using any

of the previously mentioned selective induction algorithms. In essence, constructive induc-

tion attempts to provide a mechanism for generating complex orthogonal splits in the decision

space. Zheng's X-of-N algorithm is an example of a constructive induction algorithm [105].

A regression tree is a decision tree that has numeric values at its terminal nodes. A model tree,

on the other hand, is a decision tree that has multi-variate linear models at its terminal nodes.

Both of these classifiers attempt to predict a numeric value associated with a class, rather than

the class to which an example belongs. The objective of both model and regression trees is to

perform a piecewise approximation of the instance space.

As with decision trees, an example moves along a path toward a leaf and is compared with

each attribute test along the way. Once the example reaches a leaf, the example is asserted to

have the target output defined by the numeric value or the multi-variate linear model. Figure

2.2 illustrates an example of a model tree.

 
 
 

 
 
 



Compared with the large number of classification systems, very few regression systems are

currently in existence. One of the few methods in existence is Quinlan's M5 algorithm [82].

M5 utilises model trees and is a descendant of C4.5. Like C4.5, M5 uses a heuristic in order

to decide on a test. The heuristic is defined as follows:
o IP. 1

6.error = std(P) - E -I <jll • std(P<jl)
<jl=1 P

where P, once again, represents the set of training cases, 0 is the number of outcomes for a test,

std(P<jl) represents the standard deviation of the target values of cases in P<jl,and P<jl represents

the set of patterns belonging to outcome <1>. After examining all tests, M5 chooses the test

that maximises the expected error reduction. The multi-variate linear regressions at each leaf

are constructed using standard regression techniques (such as the least squares method) [16].

The M5 algorithm also includes heuristics for smoothing and model tree pruning. Pruning is

used to remove regressions that cover outliers. Smoothing is used to adjust the values of an

appropriate leaf model to reflect the predicted values at nodes along the path from the root to

that leaf. Smoothing can be visualised as a process of adjusting the output of models that have

few training cases or that lie on either side of an orthogonal split, where the models have very

different values.

Many successful applications of knowledge discovery techniques exist in the literature. This

section presents a small, interesting subset of these examples which are not constrained to

include only the algorithms discussed in section 2.1.2.

Spertus used C4.5 in a system called "Smokey" to dispose of abusive emails (flame mail)

[95]. Smokey built a 47-element feature vector based on the syntax and semantics of each

sentence, combining the vectors for the sentences in each message. The system was able to

correctly classify 64% of abusive emails and 98% of normal emails.

Daelemans et al. applied C4.5 to the problem of natural language processing [26]. Specif-

ically, C4.5 was applied to the formation of diminutive forms in Dutch. C4.5 proved a useful

tool in corroborating or falsifying existing linguistic theories.

Adomavicius and Tuzhilin used a system called "1: 1Pro" to build customer profiles [2].

Specifically, the system mined the non-alcoholic beverage sales of a number of households. As

 
 
 

 
 
 



anticipated, the system discovered that most rules pertained only to a small number of house-

holds, meaning that the system captured the idiosyncratic behaviour of individual households.

The system also discovered interesting seasonal behavioural characteristics of consumers.

This section presents a brief introduction to evolutionary computing. Section 2.2.1 introduces

the reader to evolutionary computing by drawing parallels with natural evolution. The evolu-

tionary computing definitions used throughout this thesis are discussed in section 2.2.2. A

number of popular evolutionary computing paradigms are presented in section 2.2.3. Section

2.2.4 discusses a number of performance issues relating to the use of evolutionary computing.

Finally, section 2.2.5 presents some of the past uses of a number of evolutionary computing

paradigms. Interested readers should consult the authoritative works of Goldberg [48] and
Back et al. [7][8].

Evolutionary computing simulates the Darwinian principle of natural selection. Darwin discov-

ered that a certain species of birds (finches) native to the Galapagos islands, differed from each

other in terms of beak shape [27]. He also noted that the beak varieties were associated with

diets based on different foods. He concluded that when the original South American finches

reached the islands, they dispersed to different environments where they had to adapt to differ-

ent conditions. Over many generations, they changed anatomically in ways that allowed them

to get enough food and survive to reproduce. This illustrates one of the handful of ways that

species of plant, animal and bird-life evolve over long periods of time. The main concept of

natural selection is that the fittest individuals in a population survive and the weakest individ-

uals perish.

Evolutionary computing (Ee) utilises a population of individuals, where each individual repre-

sents a candidate solution to the optimisation problem. The chromosome associated with each

 
 
 

 
 
 



individual encodes the genotypes and phenotypes of that individual. A genotype describes

the genetic or factional constitution of an individual and thus provides a mechanism to store

experiential evidence. A phenotype describes the observable characteristics of an individual

produced by the interaction between the genes and the environment. A gene represents a char-

acteristic of the individual. The value of a gene is referred to as an allele.
In EC, the design of a chromosome (or individual) is paramount. The efficiency and

complexity of an EC search algorithm greatly depends on the chromosome representation

scheme. Traditional EC methods encode the chromosome as a binary string. More modem

methods encode the chromosome as any combination of available machine types, e.g. real

numbers, integers, characters etc.
The fitness function is the most important component of any EC paradigm. The fitness

function maps a chromosome representation into a floating-point value, which quantifies the

quality of each individual. The quality of an individual can be defined as the distance between

the individual and the optimal solution. The fitness function is used to guide the other EC oper-

ators such as selection, elitism, crossover and mutation. It is important that the fitness function

accurately models the optimisation problem, i.e. the fitness function should adequately model

the solution space to a problem. Obviously, a fitness function that inaccurately models the

optimisation problem could lead to sub-optimal solutions. Also, the fitness function should

reflect all the criteria to be optimised, e.g. certain problems require the optimisation of both

the output and the internal architecture of a solution. Constraints on the problem space can also

be incorporated into the fitness function through penalisation of those solutions that violate the

constraints. However, constraints can also be directly applied to the EC operators.

Before beginning the evolutionary process, an initial population of individuals must be

generated. A standard way of generating these individuals is to randomly set each gene in a

chromosome. The goal of random selection is to uniformly represent the entire search space. If

prior knowledge is available on the search space, heuristics can be used to bias the initial popu-

lation toward potentially good solutions. This, however, may lead to premature convergence

because the entire search space is not covered.

As was mentioned earlier, there are a number of other operators involved in an EC opti-

misation algorithm. Selection operators emphasise better solutions in a population. Many

selection schemes were compared by Goldberg and Deb [49]. Random selection selects indi-

 
 
 

 
 
 



viduals with no reference to fitness at all. Proportional selection selects an individual propor-

tionately according to its fitness value, using roulette wheel sampling. Tournament selection

selects a group of n individuals to take part in a tournament and the best individual is selected.

Rank-based selection uses the rank ordering of fitness values to determine the probability of

selection and not the fitness itself.

Elitism involves the selection of a set of individuals from the current generation to survive

to the next. The individuals that survive to the next generation can be selected using the

previous selection operators or as the best individuals from the current generation.

Crossover operators model reproduction in nature. Superior individuals should have more

opportunities to reproduce. An extreme example of this can be seen in nature in wolf packs,

where only the alpha male and the alpha female have pups, because the alpha male and alpha

female actively terminate pups produced by other individuals. Each generation is thus strongly

influenced by the genes of the fitter individuals.

Crossover is achieved by combining genetic material from a number of parents (usually

two) to create a new individual. A number of crossover strategies exist for binary string repre-

sentations and are also applicable to other representations. Uniform crossover begins by creat-

ing a random binary mask. This mask is applied to both parents in order to generate a new

individual,

where a, b, c and m respectively represent the vectors of parent A, parent B, the new individual

C and the mask. One-point crossover selects a random bit position. All bits in the first parent

before the bit position and all bits in the second parent after the bit position are placed in the

target chromosome. Two-point crossover is similar to one-point crossover, except that two bit

positions are chosen. The three crossover strategies mentioned above are shown in figure 2.3.

Mutation operators serve to expand the search space of the EC optimisation algorithm by

injecting new information into the search space. Mutation is thought to occur in nature due

to cosmic and other types of radiation, which damages the molecules found in DNA [87].

Mutation in EC is performed by randomly injecting new genetic material into an individual,

thus damaging the genes of the chromosome. Mutation is performed on an individual C by

randomly adjusting a number of the genes in the individual's chromosome. Two popular muta-

tion strategies for binary string representations are random mutation, which randomly selects a
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number of bits and negates them, and inorder mutation, which selects pairs of bit positions and

randomly negates bits between pairs of bit positions. The two mutation strategies mentioned

above are shown in figure 2.4
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There are many evolutionary computing paradigms. This section overviews some of the most

important ones.

Genetic algorithms (GAs) model genetic evolution. The original GAs, introduced by

Holland, used a bit string representation, proportional selection and crossover as the primary

method to produce more individuals [55]. A number of changes have been made to the original

GA including representation, selection, elitism, mutation and crossover changes.

Island genetic algorithms model the migration of individuals to other subpopulations/islands

[18]. Essentially, each island represents a subpopulation of the entire population of individu-

als. Individuals compete for survival on each of these subpopulations, but are also allowed to

migrate to other subpopulations. The subpopulations can also represent subsets of the search

space or different optimisation criteria.

Genetic programming (GP), introduced by Koza [68], is a specialisation of GAs that

utilises a tree-based chromosome representation scheme. This tree-based representation can

be used to represent programs or expressions. Each individual in a GP population, therefore,

 
 
 

 
 
 



represents a possible program or expression, which is an element of the program space formed

from all possible programs that can be created from a given grammar.

Evolutionary programming, introduced by Fogel [39], differs from the GA and GP paradigms,

in that evolutionary programming models phenotypic evolution. The evolutionary process

attempts to find a set of optimal behaviours from the space of observable behaviours.

Evolutionary strategies, introduced by Rechenberg [85], models the evolution of evolution.

The evolutionary process attempts to evolve both the genetic characteristics of an individual

as well as a set of strategy parameters. The strategy parameters control the evolutionary char-

acteristics of the individuals.

Coevolution models the complementary evolution of closely related species [7]. Two

coevolutionary processes are symbiotic relationships, where two species co-operate for their

mutual benefit, and predator-prey relationships, where each species attempts to out-perform

the other in their environment. Coevolution does not define optimality through the use of a

fitness function, but defines optimality as the overall success of one population over another,

i.e. a relative fitness. Coevolution has mostly been applied to two-agent games, where the

objective is to evolve a game strategy.

Cultural evolution, introduced by Reynolds [86], models societal evolution. Two search

spaces are maintained by cultural evolution: the population space and the belief space. The

belief space models the cultural behaviours of a population. An acceptance function is used to

determine which individuals have an influence on the current beliefs. The belief space is then

adjusted with the experiential knowledge of influential individuals. The belief space is then

used to influence the individuals in population space.

The representation of a chromosome or solution in an evolutionary computing (EC) algorithm

has implications for the performance of that algorithm. Binary coding, although frequently

used, introduces Hamming cliffs into the search space. A Hamming cliff is formed when

two numerically adjacent values have bit representations that lie far apart. This represents

a problem when a small change in variables should result in a small change in fitness. An

alternative representation is Gray coding, where the Hamming distance between successive
numerical values is 1.

 
 
 

 
 
 



Tree-based representation schemes, as found in genetic programs, can lead to discontin-

uous or inefficient results, e.g. if a grammar contains the natural logarithm function, values

in the domain (-00,0] will have no meaning. Alternatively, if a grammar consists of boolean

connectives, expressions such as ""n will not be unlikely. Additional semantic tests need

to be included to ensure the semantic correctness of each individual tree.

Mutation operators inject new genetic material into a population. However, Hinterding

et al. argued that mutation operators are more than just background operators and are crucial

to the success of any EC algorithm [53]. Mutation operators should, in fact, utilise domain

specific knowledge. Domain specific knowledge is any previously discovered knowledge that

pertains to the specific optimisation problem of the EC, e.g. if the optimisation problem is the

design of wings for a fixed wing aircraft, domain specific knowledge would include the known

strengths of various compounds from which a wing can be manufactured.
The argument for the use of domain specific knowledge is supported by the No Free Lunch

theorem of Wolpert and Macready [103], which states that

" ... the average performance of any pair of algorithms across all possible problems

is exactly identical."

" ... if some algorithm aI's performance is superior to that of another algorithm a2

over some set of optimisation problems, then the reverse must be true over the set

of all other optimisation problems."

From the above example, if an algorithm has specifically been engineered for the design of

wings for a fixed wing aircraft, the algorithm may not necessarily perform well at optimising

the architecture of an artificial neural network. However, because the algorithm was only

engineered to solve the wing design problem, it is not expected to also optimise artificial

neural network architectures.

The mutation rate of an EC algorithm directly controls the injection rate of new material

into the population and therefore controls how rapidly the search space is broadened. A large

mutation rate causes the algorithm to behave more like a random search, because experiential

knowledge gained from reproduction is lost. When the experiential knowledge is lost, the

algorithm continually searches through parts of the search space it has already visited, leading

 
 
 

 
 
 



to increased training time. A small mutation rate can cause the algorithm to stagnate in a local

minimum, because all of the individuals in a population become homogeneous. Stagnation

thus results in poor training accuracy and sub-optimal convergence.

The choice of the initial population size has implications for the performance of an EC

algorithm. Large populations may be more computationally complex than small populations,

but they cover more of the search space.

Elitism can ensure that an EC algorithm retains good genetic material. However, the elite

group can lead to stagnation, because the elite individuals are more likely to be involved in

crossover. If an elite group survives for many generations, the population will become homo-

geneous, leading to sub-optimal convergence.
The crossover rate, on the other hand, controls how rapidly the search space is reduced.

A large crossover rate leads to a large number of individuals being involved in reproduction.

This can cause slower convergence, because increases in fitness in one individual take a long

time to filter through to other individuals in a population. A small crossover rate, on the other

hand, leads to a small group of individuals being involved in reproduction. This can cause

the algorithm to stagnate in a local minimum, because, as with a low mutation rate, all the

individuals in a population rapidly become homogeneous.

Additionally, the population size, generation gap (elitism), mutation rate, and crossover

rate all exhibit some or other level of dependence on one another and on the problem domain.

The correct parameter choices are thus fairly problem specific.

Evolutionary computing paradigms are increasingly being applied to situations that are compu-

tationally complex or situations where humans have very little prior knowledge of the problem

domain. Examples include routing, network optimisation, design, game strategies etc. This

section overviews just some of the applications.

Biles used a genetic algorithm for generating improvised jazz solos [12]. The method

primarily received an input chord progression, as well as other cues, from which the algorithm

attempted to improvise a melody. The genetic algorithm used a multi-objective fitness function

in order to reward solutions that were considered musically correct. Although Biles' attempts

were successful, he did concede that the method was far from musically perfect.

 
 
 

 
 
 



Beretta et al. used a genetic algorithm to perform fuzzy compression and decompression

of an input image [11]. Specifically, the method optimised the fuzzy membership boundaries

that described a patch of pixels. The method was found to perform well on a large database

of images and had very good generalisation ability, specifically with regards to preserving

important features within a picture.

Gockel et ai. used a hybrid genetic algorithm to solve the channel routing problem [47].

The algorithm used domain specific knowledge during initialisation of the population to im-

prove the efficiency of the algorithm. The algorithm provided improved results over similar

attempts and could feasibly be implemented on very large channels.

Koza used a coevolutionary genetic program to evolve game strategies for a number of

types of strategy games [67]. Specifically, the method attempted to evolve a strategy equivalent

to the minimax strategy, without prior knowledge of the minimax strategy. The algorithm was

successful in discovering the minimax strategy.

Schweitzer et al. used evolutionary strategies to optimise the layout of a road network [89].

The method minimised the cost of road construction and maintenance, while providing direct

connections between nodes in order to avoid detours. Evolutionary strategies proved to be a

capable tool in solving this frustrating problem.

This section presents a brief introduction to the machine learning paradigm of artificial neural

networks. Section 2.3.1 introduces the reader to artificial neural networks by drawing parallels

with biological neural systems. The fundamentals of artificial neural networks are presented

in section 2.3.2. Performance issues pertaining to the use of artificial neural networks are

discussed in section 2.3.3. Finally, section 2.3.4 presents the past usage of artificial neural

networks. The interested reader is encouraged to review the works of Zurada [106] and Bishop
[13].

Artificial neural networks are an attempt to model biological neural systems. One of the

primary features of biological neural systems is that they can learn from their environments.

 
 
 

 
 
 



For example, an animal can learn to identify possible sources of food and water, and also to

identify potential threats. Also, many types of birds in infancy have the ability to learn to

recognise the individual calls of their parents, particularly through the vast cacophony created

by other members of their species in breeding areas.

The primary building blocks of biological neural systems are called neurons. A neuron

consists of a cell body which contains a nucleus and cytoplasm, from which threadlike processes

called dendrites extend. Electrochemical impulses travel from the cell body along a single

fibre, called an axon, to other neurons. The processes of one neuron never touch those of

another neuron and are separated by a space called a synapse. A synapse serves to either

inhibit or propagate an electrochemical signal.

An artificial neuron (AN) is a model of a biological neuron. An AN represents a non-linear

mapping of I real-valued inputs (9\/) to a real-valued output ([0, 1],[-1,1] or [-00,00]). Each

input Xi is associated with a weight Wi, which serves to amplify the aforementioned input. Each

AN has an associated activation function fAN and threshold value e, both of which control the

output of the AN. The output of an AN is computed as

1
fAN(net) = L (XiWi) - e

i=l

1
fAN(net) =n (XiWi) - e

i=l

for a product unit.

Different types of activation functions fAN can be used. In general, activation functions are

monotonically increasing mappings, where fAN ( -00) = 0 or fAN ( -00) = -1, and fAN (00)= 1.

Frequently used activation functions include the linear, step, ramp, sigmoid, hyperbolic tangent

and Gaussian functions, of which the sigmoid activation function is the most common. The

sigmoid activation function is defined as follows:

1
fAN(net) = An t1+e- e

i It,3-W"'b ~cr
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where A controls the slope of the function. Usually A = 1, which gives an active domain (where

f~N '*' 0) for the sigmoid function of [- J3, J3].
The weights and threshold values of an AN are obtained through learning. A learning rule,

such as the popular gradient descent learning rule, is used to train an AN [99]. Other learning

rules include Widrow-Hoff [17], generalised delta [74], etc. The gradient descent learning rule

requires the definition of an error metric to measure the AN's error in approximating a target

output. The sum squared error
IPI

Ess = E (YPI - Y~I)2
1=1

is usually used, where YPI and YPI represent the target and predicted outputs for pattern PI, and

IPI is the size of the training set.
An AN essentially represents an I-dimensional hyperplane, where the curvature of the

hyperplane is described by the AN activation function. This hyperplane is of importance,

because it can be used either to describe a decision boundary between two linearly separable

classes or to fit a regression curve through a number of data-points.

An artificial neural network (ANN) is a layered interconnection of ANs. A wide variety

of ANN architectures are in use today [13][106]. A feed-forward ANN, illustrated in figure

2.5, consists of an input layer, a number of hidden layers and an output layer, where each

layer is connected to the next in the aforementioned order. A feed-forward ANN can also

implement direct connections between the input and output layer. Feed-forward ANNs are

important, because it has been proved that feed-forward ANNs with monotonically increas-

ing differentiable functions can approximate any continuous function with one hidden layer,

provided that the hidden layer has enough hidden neurons [57][58]. Functional link ANNs are

feed-forward ANNs that implement activation functions in all layers including the input layer

[79]. Recurrent ANNs have feedback connections, which allow the ANN to learn the temporal

characteristics of a given dataset [15]. The Elman recurrent ANN copies hidden units into a

context layer, which is then fed back to the hidden layer. The Jordan recurrent ANN copies

output units into a state layer, which is then fed back to the hidden layer.

Generally, ANNs (like other empirical learning algorithms) can be categorised into two

types according to their learning strategies: supervised and unsupervised. Supervised ANNs

attempt to predict the target response of a given input pattern. Input patterns can either

 
 
 

 
 
 



form part of a classification or regression problem. Unsupervised ANNs attempt to discover

patterns, features or relationships between input patterns, without supervision, and are mainly

used to perform clustering. Unsupervised ANNs will be discussed further in section 2.4.

Supervised ANNs utilise a training set consisting of a number of input vectors, where each

input vector has an associated target vector. The ANN uses the target vector to determine the

overall error of the network. This overall error is employed by a learning rule to either directly

adjust the ANN's weights and thresholds or as an error estimate for some optimisation method.

ANN optimisation methods can either be classed as local or global. Examples of local opti-

misation methods include the popular gradient descent with back-propagation [99] and scaled

conjugate gradient [75]. Examples of global optimisation methods include leapfrog optimi-

sation [60], genetic algorithms [3] and particle swarm optimisation [61]. Localoptimisation

methods can, in turn, be categorised according their weight update strategies:

• Stochastic learning adjusts the weight and threshold values of an ANN after each train-

ing pattern presentation.

 
 
 

 
 
 



• Batch learning adjusts the weight and threshold values of an ANN only after the presen-

tation of all training patterns.

The gradient descent optimisation algorithm can be divided into two phases. The feed-

forward phase calculates the output of the ANN. The back-propagation phase propagates an

error signal back from the output layer, through the hidden layer, to the input layer. Essen-

tially, the back-propagation phase adjusts the weights of each AN in the ANN proportionately

according to the amount of error introduced by that AN. The weight update equations of an

ANN have to be derived separately for each type of activation function employed by the ANN

and each optimisation algorithm. An important aspect to the gradient descent algorithm is the

introduction of a momentum term a and learning rate 11to the weight update equations. These

terms control the convergence speed of an ANN and will be discussed in section 2.3.3.

Each training iteration (referred to as an epoch) of an ANN represents one pass through

the training set. After each epoch the mean squared error is calculated as

~IPI ~T ( • )2E _ J..l=l J..t=l Yt,PI - Yt,PI
MS- IPIT

where T represents the number of target outputs for the ANN.

Stochastic learning can be summarised with the following pseudo-code algorithm, assum-

ing gradient descent:

( -1 1)
Wih:= U Vl+T' Vl+T ,i E {1, .. ·,I + l},h E {I,· .. ,H}1+1 1+1

( -1 1)
Wht := U VH+T' VH+T ,h E {l, .. ·,H + 1},t E {I, .. ·, T}

H+l H+l
where I, H and T are the number of input, hidden and output units respectively (the

number of weights for each AN is increased by one to cater for the bias). Also initialise

the learning rate 11,the momentum a and the number of epochs E.

 
 
 

 
 
 



(a) Perform the feed-forward phase to calculate Yt,PI for each output AN, t.

(b) Calculate the error signal (JOt,PI = (Yt,PI - Y7,p) 2 for each output AN.

(c) Perform back-propagation of the error signal (JOt,PI' by adjusting the output layer

weights Wht, computing the hidden layer error signals (JYh,PI and adjusting the

hidden layer weights Wih.

(d) Set Ess := Ess + r:{=l (Yt,PI - Y7,p) 2

5. Set EMS := I~f}

As with all algorithms, a number of factors influence the performance of an artificial neural

network (ANN). The performance of an ANN is influenced by three competing objectives,

i.e. accuracy, complexity and convergence. Accuracy is concerned with those aspects of an

ANN that impede its generalisation ability. Complexity is concerned with such issues as the

ANN architecture, the size of the training set and the complexity of the optimisation method.

Convergence is concerned with the stability of an ANN, i.e. whether the variability in the

ANN outcome is within acceptable levels. This section discusses ANN data preparation,

ANN weight initialisation, the learning rate, momentum and optimisation method of an ANN,

ANN architecture selection and active learning with respect to how they relate to the above

mentioned objectives.

 
 
 

 
 
 



ANNs usually require the scaling of their input data. Incorrect scaling leads to decreased ANN

accuracy, when the scaled inputs do not cover the entire active domain of the ANN activation

functions. Patterns should thus be scaled to the active domains of the activation functions

utilised in the hidden and output layers. Also, depending on the activation functions utilised

in the output layer, the outputs of an ANN will have to be scaled. It is also important to

ensure that the data is numeric, i.e. nominal attributes need to be converted into a continuous

representation. A nominal attribute with n different values is recoded as n binary valued inputs,

where the input parameter corresponding to a particular nominal value is assigned the value of

1 and the remainder are assigned the value of O.

Outliers can significantly affect the weights of an ANN and can lead to decreased ANN

accuracy in terms of generalisation. Essentially, an outlier has a large effect on the sum squared

error metric, utili sed by many ANN optimisation algorithms. Such optimisation algorithms

will adjust weights so as to minimise the sum squared error. Thus, a single pattern can exert a

disproportionate influence on the weights of an ANN. This leads to a case where the training

error of an ANN might be good, but the generalisation error is poor. Thus, outliers result in a

bias of the weights of the ANN toward the outlier. A number of strategies exist for handling

the outlier problem. One solution, is to remove the outliers before training, using statistical

techniques. Another is to use a robust objective function, unlike the sum squared error, that is

not influenced by outliers.

Training patterns with missing attribute values may contain useful information. Removal

of these training patterns could result in decreased ANN accuracy, particularly if the pattern

occurs in a region of low data point density. A common solution is to replace the missing value

with the average value of the attribute.

ANN complexity ultimately depends on the size of the training set utili sed during ANN

training. A number of strategies have emerged to control large and, conversely, small training

sets. The introduction of noise, sampled from a normal distribution, in small training sets has

been shown to result in reduced training time and increased accuracy [56]. Several researchers

have also developed strategies for coping with large training sets that involve the presentation

of various subsets of the data to the ANN training process. This section differs from the later

active learning section in that the ANN has no active control over the subsets presented to

 
 
 

 
 
 



it. These training set manipulation strategies include selective presentation [78], incremental

training strategies [24], increased complexity training [22] and delta subset training [23].

The selective presentation strategy divides the original training set up into two other train-

ing sets. One set containing "typical" patterns, and the other containing "confusing" patterns.

Typical patterns refer to patterns that lie far away from decision boundaries and, conversely,

confusing patterns refer to patterns that lie close to decision boundaries. The two new training

sets are alternately presented to the training algorithm. In practise, this algorithm is not prac-

tical because prior knowledge of the search space is required in order to divide the data into

subsets.
The incremental training strategies start with a small random initial subset. During training

additional patterns from the original set are added to the actual training set. This algorithm is

practical because it assumes no prior knowledge of the search space.

The increased complexity training strategy splits the original training set up into subsets

of increased difficulty. The strategy starts by presenting easy problems to the learning algo-

rithm, and gradually increasing the level of difficulty. A drawback of the method is that the

complexity measure of the patterns is problem dependent.

The delta subset training strategy orders the training patterns according to their inter-

pattern distance. The metric used to perform the ordering can either be the Hamming distance

or the Euclidean distance. The learning algorithm is then presented with either the smallest

difference patterns first or the the largest difference patterns first.

Gradient-based optimisation methods are very sensitive to the initial weight vectors. This

sensitivity can lead to poor convergence. A particularly poor strategy is the initialisation of

these vectors to 0, which can be shown to be equivalent to an ANN with only one hidden

unit. A good strategy is to set the initial weight vectors to random weights in the range

[vi -1. , vi 1. ], where the connections parameter represents the number of connec-
connectIOns connectIOns

tions leading to an artificial neuron (AN) [100].

 
 
 

 
 
 



The learning rate 11controls the step size of the ANN optimisation method. A small learning

rate results in small weight adjustments and a large learning rate, conversely, results in large

weight adjustments. The learning rate parameter introduces a trade-off between the speed of

convergence and the accuracy of convergence. This trade-off exists, because small weight

adjustments cause the ANN to take longer to stabilise. Large weight adjustments, on the other

hand, may cause the ANN to wildly oscillate between weight values and jump over a local

minimum.

The momentum term a prevents unlearning in stochastic learning. Unlearning occurs when

two successive weight updates result in no change in the state of the ANN weights, i.e. when

the second weight update negated the effect of the first weight update. Momentum in ANNs

is similar to inertia in physics, in that updates to the weights have little effect, unless they are

sustained.

The optimisation method employed by an ANN has a significant influence on performance.

While gradient descent is very popular, it suffers from slow convergence and susceptibility to

local minima. However, optimisation methods such as particle swarm optimisation and genetic

algorithms are significantly more computationally expensive. Thus, a trade-off exists among

various types of optimisation methods.

Learning in ANNs does not just include finding the optimal weight values, it also includes

finding the optimal ANN architecture. Finding the optimal architecture is crucial, because a

large number of weights, trained for too long, with noise in the training data causes an ANN to

"memorise" that data. Memorisation results in poor ANN generalisation ability. Finding the

optimal architecture ultimately requires a search over all possible architectures. The optimal

architecture of an ANN is thus that architecture which results in the best generalisation perfor-

mance. Architecture selection can be divided into three categories:regularisation, network

construction and network pruning.

Regularisation involves the addition of penalty terms to the ANN objective function, which

penalises network complexity (network size). A large number of regularisation strategies exist

in the literature [46][63][98][101].

 
 
 

 
 
 



Network construction involves the growth of a small network by dynamically adding hidden

ANs during training. This method requires the ANN to analyse and decide on an appropriate

time to add new hidden ANs. Deciding on the appropriate time is, however, not trivial and can

result in over-fitting and increased training time [42][54].

Starting with a too large architecture, network pruning involves the removal of unnecessary

ANs either during or after training. The decision to prune an AN depends on some measure of

the relevance of that AN. A large number of pruning techniques exist in the literature. Opti-

mal brain damage is a popular technique, that uses sensitivity analysis to remove redundant

weights [70]. Variants of optimal brain damage include optimal brain surgeon [52] and opti-

mal cell damage [19]. Fletcher et al. utilise the Fisher information matrix as well as statistical

hypothesis testing to determine the optimal number of hidden units and weights [38]. Engel-

brecht used sensitivity analysis in order to prune irrelevant weights, hidden units and input

units [31].

Most ANNs are passive learners, i.e. they have no control over the training data presented to

them. Active learning, on the other hand, allows ANN s to make optimal use of the training

data. The ANN trains on the patterns it regards as most informative, by automatically remov-

ing patterns that are redundant or ambiguous from the training set. This section differs from

training set manipulation in that the ANN has active control over the data. There are two main

approaches to active learning: incremental learning and selective learning.
Incremental learning starts with an initial subset of the training data. At specified inter-

vals during training, further patterns are selected from the training set using some or other

heuristic. As training progresses the size of the actual training set increases [25][35][43][71].

Selective learning differs from incremental learning in that training starts with the full training

set and patterns are discarded as they are found to be redundant [33][34]. Engelbrecht and

Brits present an interesting active learning strategy that makes use of clustering to select the

most informative patterns for training [32].

 
 
 

 
 
 



2.3.4 Past usage

Artificial neural networks (ANNs) are increasingly being applied to diverse fields such as

feature recognition, compression, design, forecasting, classification etc. This section presents

a small subset of these applications.

Le Cun et ai. used an ANN for the recognition of hand-written digits on a database of zip-

code examples provided by the U.S. Postal Service [69]. The algorithm was fairly accurate

(l % error rate) and required minimal preprocessing of the input data. The results indicated

that the method was extensible to alphanumeric characters. Indications were that the method

was also comparitively fast, with the ability to recognise over 10 digits per second.

Fanghanel et al. used an ANN in the field of data compression to find the optimal parame-

ters for Wavelet Transform Coding [37]. Specifically, the ANN learnt the optimal Daubechies

filters for different one dimensional signals. Their findings indicated that the ANN resulted in

better compressed outputs than the standard decompositions under noisy circumstances.

Sellar et al. used an ANN approach to assist in the design of a "hovercraft" [90]. The

method was required to select an appropriate combination of design variables, in order to come

up with a feasible design. The design variables consisted of a number of discipline-specific

local optimisations. An ANN based optimisation algorithm was employed in order to optimise

the global combination of design variables. Sellar et ai. termed these combinations, response

surface approximations. The method was shown to reduce the cost and time associated with

designing a system, in comparison to the traditional methods of designing such a system.

Yao et al. used a standard back-propagation ANN in order to forecast exchange rates

between the Swiss Franc and the U.S. Dollar [104]. The method modelled different trading

strategies and computed the average paper profits for adopting any given strategy. Depending

on the strategy employed, they showed that average paper profits between 11.36% and 27.59%

could be achieved over different time horizons.

This section presents a brief overview of clustering and various clustering techniques. Section

2.4.1 introduces the goals of clustering, as well as the main categories into which all clustering

algorithms fall. K-means clustering is discussed in section 2.4.2. Section 2.4.3 presents the

 
 
 

 
 
 



learning vector quantiser. Self organising maps are discussed in section 2.4.4. Finally, section

2.4.5 presents the split-and-merge algorithm.

Clustering is the process of finding groups of similar data points in a given dataset, i.e. find-

ing regions in a dataset with a high data point density. Essentially, any clustering algorithm

attempts to reduce the variance among data points in each of its constituent clusters. Clus-

tering can thus be seen as a process of partitioning a set of data points, such that each of the

subsets of those data points is homogeneous with respect to some characteristic. Each cluster

represents knowledge about its constituent data points.

Clustering methods can broadly be classified into two main categories [5][51][66]:

• Partitional clustering aims to directly partition a given dataset into disjoint subsets

(clusters) such that specific clustering criteria are optimised.

Clustering is primarily used to reduce the amount of data to be presented to machine learn-

ing algorithms. Clustering is also important for exploratory data analysis [28][64], where little

is known about a dataset or problem. Exploratory data analysis attempts to make a set of data

points more accessible by using simple analysis methods to provide a preliminary overview of

the content of those data points.

K-means clustering is a fast, rough, partitional clustering algorithm [72]. K-means clustering

treats each training pattern in a dataset as a real-valued input vector PI, I E {I,···, IPI}, where

IPI is the size of the dataset. Nominal attributes need to be converted to binary-valued features

as described in section 2.3.3. K-means clustering initialises k buckets (or clusters) Co,8 E

{I, ... ,k}, where each bucket is associated with a centroid vector woo Each centroid vector Wo
represents the average of all of the input vectors in Co.

 
 
 

 
 
 



The algorithm starts by randomly removing k training patterns from the dataset and insert-

ing one pattern into each bucket. The algorithm proceeds by placing each of the remain-

ing training patterns in the dataset into the bucket whose centroid lies closest to that training

pattern. The distance metric used by the algorithm can either be the Manhattan Distance or

the Euclidean distance. After all training patterns have initially been clustered, the algorithm

repeatedly iterates over all the training patterns in all buckets, moving each training pattern to

the bucket with the closest centroid, until a stopping criterion is reached.

The k-means clustering algorithm proceeds as follows:

(a) Update the cluster centroid Wo to be the centroid of all the samples currently in Co
using

k

EQ = E E Ilpt-wol12

O=lPtEC/l

 
 
 

 
 
 



5. Return to step 2 until EQ does not change significantly, cluster membership does not

change or a maximum number of iterations is reached.

Many k-means clustering variants exist in the literature. Alsabti et al. present an interesting

k-means clustering algorithm that makes use of a tree structure in order to reduce the number

of prototype comparisons during each training cycle [4]. Basically, the tree structure represents

a nearest neighbour ordering of the training patterns. ISODATA is another k-means clustering

variant suitable for image clustering [9].

2.4.3 Learning vector quantisers

A learning vector quantiser (LVQ) is a neural network based, unsupervised, partitional clus-

tering algorithm [65]. An LVQ has two layers: an input layer and an output layer. The LVQ

training process constructs clusters based on competition between output artificial neurons.

Each output unit of the LVQ represents a cluster (not to be confused with a classification).

During training, the output unit whose weight vector is closest to the current input pattern is

declared the winner. The weights of the winning output unit and that of its neighbours are

adjusted to better resemble the training pattern. The distance between an input pattern and a

weight vector is measured using the Euclidean distance.

In essence, the LVQ is very similar to the k-means clustering algorithm. Each output unit's

weights can be viewed as a centroid vector, and the update equations cause those centroid

vectors to move in order to cover or describe a number of patterns.

2.4.4 Self-organising maps

Self-organising maps (SOMs) were motivated by the self-organisation characteristics of the

human cerebral cortex, such as the visual cortex and the auditory cortex [66]. The SOM is

a multi-dimensional scaling method to project an IPI-dimensional input space to a discrete

output space of lower dimension. This discrete output space is usually a two-dimensional grid,

but can be toroidal. The SOM uses the grid to approximate the probability density function of

the input space, while still maintaining the topological structure of the input space. Therefore,

if two input patterns are close to one another in the input space, then the patterns will also be

close together in the SOM.

 
 
 

 
 
 



SOM training is based on a competitive learning strategy. Each artificial neuron (AN) 0t

on the map is associated with an I-dimensional weight vector Wt (shown by figure 2.6). Two

types of clustering occur for SOMs:

• The first is during training where input patterns are mapped to the closest AN; so, the

AN serves as a centroid of a cluster of geometrically similar patterns.

• Then, after training, centroids/neuron vectors are further clustered together to form

groupings of similar ANs.

Training starts by initialising each AN's weight vector. The weight vector can be initialised

to random values, to a randomly selected input pattern or any other suitable strategy. Each

training pattern is presented to the SOM and the AN with the shortest Euclidean distance
to this pattern is adjusted to more accurately reflect the training pattern. Also, ANs in the

neighbourhood of the winning AN are proportionately adjusted to reflect the training pattern.

The learning process is iterative and continues until a good enough map has been found. The

quantisation error is a measure of the goodness of the map and can be defined as the sum of

Euclidean distances of all patterns to their corresponding winning ANs.The quantisation error

is defined as follows:
IPI

EQ = L IlpI-Wt112

1=1

where PI is the training pattern and Wt is the weight vector of the winning AN 0t.

 
 
 

 
 
 



The main advantage of a SOM is the easy visualisation and interpretation of clusters

formed by the map. Map visualisation is achieved by computing the unified distance matrix,

which expresses the distances between the codebook vectors of adjacent neurons or by using

some colour scale representation. Large distances represent cluster boundaries and small

distances represent clusters. SOMs can also be used for classification by labelling each AN

according to the most likely outcome of that AN, and using the label as a classification for

input patterns. Other applications of SOMs include prediction and interpolation [28].

2.4.5 Split-and-merge
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Split-and-merge is a hierarchical clustering algorithm that attempts to discover regions in a

dataset, within which some property does not change abruptly [59]. Split-and-merge is mostly

used for finding regions of homogeneous intensity in images and is important for robot vision.

An image region is a set of connected pixels such that:

 
 
 

 
 
 



• The difference in intensity values of pixels in a region should be no more than some

error E.

• A polynomial surface of degree n can be fitted to the intensity values of pixels in

the region with largest error less than E

2. For no two adjacent regions it is the case that the union of all the pixels in these two

regions satisfies the homogeneous property.

Split-and-merge starts with one image region. If the region does not satisfy property I of

the image region definition, then the image is partitioned into four image regions. If each of

those image regions do not satisfy the homogeneous property, then each of the image regions

is partitioned into four image regions. This process iterates until each image region is homo-

geneous. Once all splitting has been performed, the algorithm merges image regions until

property 2 of the image region definition is satisfied. Figure 2.7 illustrates the split-and-merge
algorithm with E :=:; 1.

This chapter provided a taxonomy of the underlying methods employed by many data mining

applications in use today. The paradigms of knowledge discovery, evolutionary computing,

artificial neural networks and clustering were broadly discussed. This chapter provided the

fundamental grounding for the algorithms and methods presented in the rest of this thesis.

The next chapter discusses the GASOPE method as a means for obtaining structurally optimal

polynomial expressions, as a means of performing function approximation.

 
 
 

 
 
 



Chapter 3

THE GASOPE METHOD

The previous chapter presented a number of machine learning paradigms used in this chapter,

and throughout the rest of this thesis. This chapter presents a function approximation method

that uses a genetic algorithm to evolve structurally optimal polynomial expressions (GASOPE).

This genetic algorithm is one of the core aspects of the algorithm discussed in the next chapter.

The study of function approximation can be broken up into two classes of problems. One class

deals with a function being explicitly stated, where the objective is to find a computation-

ally simpler type of function, such as a polynomial, that can be used to approximate a given

function. The other class deals with finding the best function to represent a given set of data

points (or patterns). The latter class of function approximation plays a very important role

in the prediction of continuous-valued outcomes, e.g. subscriber growth forecasts, time-series

modelling, etc. This chapter concentrates on methods to construct functions that accurately

represent a series of data points, at minimal processing cost.

Traditional methods to perform this type of function approximation include the frequently

used discrete least-squares method, regression, Taylor polynomials and Lagrange polynomials.

Other methods include neural networks and some evolutionary algorithm paradigms.

This chapter develops a genetic algorithm approach to evolve structurally optimal polyno-

mial expressions (GAS OPE) in order to describe a given data set. A fast clustering algorithm

 
 
 

 
 
 



is used to reduce the pattern space and thereby reduce the training time of the algorithm.

Highly specialised mutation and crossover operators are used to directly optimise the polyno-

mial expressions, and to exploit similarities between the various polynomial expressions in the

search space.

The remainder of this chapter is organised as follows: Section 3.2 presents an overview of

various function approximation techniques. The implementation of the genetic algorithm poly-

nomial approximator is presented in detail in section 3.3. The section presents the clustering

algorithm used to cluster the training data, and introduces the representation, specialised muta-

tion and crossover operators, and the hall-of-fame, all of which ensure the structural optimality

of the evolved polynomials. The experimental procedure, data sets and results are discussed

in section 3.4. Finally, section 3.5 presents the summarised findings and envisioned future

developments to the method.

As was mentioned earlier, function approximation can be broken up into two classes of prob-

lems: One class dealing with the simplification of a defined function in order to determine

approximate values for that defined function, and the other class dealing with finding a func-

tion that best describes a set of data points. This section discusses, in detail, traditional methods

to perform both classes of function approximation, such as the discrete least squares approxi-

mation, regression, Taylor polynomials and Lagrange Polynomials. This section also discusses

other approaches, such as neural networks and evolutionary computing.

3.2.1 Discrete least squares approximation

The following is a brief adaptation of Fraleigh and Beauregard [40], and Burden and Faires

[16]. The method of least squares involves determining the best linear approximation to an

arbitrary set of m = IPI data points {(aI, bI), ... , (am, bm)}, by minimising the least squares

m

Ess = E[bi - biJ2
i=I

 
 
 

 
 
 



where n + 1 represents the maximum number of terms.

The coefficients ro through rn of the polynomial function mentioned above, can be deter-

mined by solving the linear system:

where rT = [ro rl ... rn]' which means obtaining the least-squares solution by solving

the overdetermined linear system:

1 al a2 an
I I

1 a2 a2 an
A= 2 2 (3.4)

1 am a2 anm m

and vector bT = [bo bi ... bn].

Obviously, the above method requires a decision as to what function to use to calculate the

least-squares fit. Many types of functions can be fitted, e.g. polynomial, exponential, logarith-

mic, etc. In the simple polynomial case, however, at least a decision needs to be taken as to

the value of n. Because a least-squares fit is empirically obtained from a set of data points, the

interpolation characteristics of such a fit are reasonably good. However, for the same reason, a

least-squares fit has poor extrapolation properties, particularly when an extrapolated point lies

far away from the data set.

The least squares method is relatively fast, because it only requires the reduction of one

linear system in order to obtain the best approximation of the problem space for a given archi-

tecture (approximating function). However, outliers can exercise considerable influence on the

rj coefficients and can lead to poor generalisation.

 
 
 

 
 
 



Regression can be described as the process of discovering the most plausible and most easily

understandable relationship between a set of independent variables and a dependant variable

[96]. A dependent variable and an independent variable are correlated when there is a rela-

tionship between them, i.e. an increase in the independent variable results in a decrease in

the dependent variable or an increase in the independent variable results in an increase in the

dependent variable. However, it is important to note that correlation between variables does

not imply causality, i.e. if there is a relationship between an independent and a dependent vari-

able, it is not necessarily the case that changes in the dependent variable are directly caused by

the independent variable in the real-world.

The coefficient of determination R2 provides an indication of how well a discrete least

squares approximation (model) of section 3.2.1 fits the observed data. The coefficient of deter-

mination R2 is defined as:
R2 = 1_ E~l (bi - bJ)2

E~l (bi - b)2

where m is the size of the training set, bi is the target output of pattern i, b is the mean of the

target values and bi is the predicted output of pattern i. The coefficient of determination has

the range [0,1], where values closer to 1 indicate a strong correlation between the data set and

the model and values closer to ° indicate no relation between the data set and the model. The

correlation coefficient is defined as R = Vi{i for simple linear regression, where there is only

one independent variable.

The adjusted coefficient of determination R~ is used as an indication of how well a discrete

least squares approximation fits the observed data, factoring in the complexity of the discrete

least squares approximation. The adjusted coefficient of determination R~ is defined as:

where k is the number of coefficients (free variables) of the least squares approximation and

all other variables are defined as before.

Essentially, the adjusted coefficient of determination R~ penalises fits that have larger

numbers of free variables, i.e. two models may have the same or similar accuracy, but the

model with the smaller number of free variables will be preferred. Thus, the adjusted coeffi-

 
 
 

 
 
 



cient of determination attempts to maximise the correlation between a model and the data set,

while minimising the architecture of the model.

The following is a brief adaptation of Haggarty [50]. Without loss of generality, assume x is

a scalar. If f is an n-times differentiable function at a point a, then the Taylor polynomial of

degree n for f at a is defined by:

/ (a) f(n) (a)
Tn,af(x) =f(a)+-l!-(x-a)+ ... + n! (x-a)n

The importance of Taylor polynomials is that they only involve simple addition and multi-

plication. Moreover, given x to any specified degree of accuracy, it is straightforward to eval-

uate such polynomial expressions to a comparable degree of accuracy.

Taylor's theorem provides an important result: Let f be (n + 1)-times continuously differ-

entiable on an open interval containing the points a and b. Then the difference between f and

Tn,af at b is given by:

(b )(n+l)
f(b) - Tn,af(b) = (:: I)! f(n+l) (c)

for some c between a and b. The error in approximating f(x) by the polynomial Tn,af(x) is

the term to the right of the equality in the above. The error at a point between the Taylor

polynomial Tn,af(x) and any function f can be determined to any degree of accuracy. This,

in turn, means that Taylor polynomials can be used to approximate any n times differential,

continuous function at any specific point on that curve.

Taylor polynomials are not appropriate for interpolation [16]. The nth Lagrange interpolating

polynomial is an alternative to Taylor polynomials that allows the approximation of a defined

function over an interval [16]. The definition of an nth Lagrange interpolating polynomial is

as follows: If XQ,Xl,'" ,Xn are n + 1 distinct numbers and f is a function whose values are

given at these numbers, then there exists a unique polynomial P(x) of degree at most n with

 
 
 

 
 
 



n
P(X) = f(xo)Ln,o(x) + ... + f(xn)Ln,n(x) = E f(Xk)Ln,k(X)

k=O

L
n

k = (X-xo) (X-Xd"'(X-Xk_l)(X-Xk±d"'(X-Xn)
, (Xk-XO) (xk-xd"'(Xk-Xk-d(Xk-Xk±d"'(Xk-Xn) (3.8)

nn (X-Xi)
i=O,i# (Xk-Xi)

for each k = 0, I, ... ,n. In order to fit an n-degree Lagrange polynomial, the method should be

provided with n + I control points that are uniformly distributed throughout the interval of the

defined function.
It can be proved that the error between the Lagrange polynomial and the defined function

is bounded over an interval. Suppose XO,XI,'" ,Xn are distinct numbers in the interval [a, b]
andf E Cn+I[a,b]. Then, for each X in [a,b], a number E(x) in (a,b) exists with

f(n+I) (E(x))
f(x) = P(x) + ( ) (x-xO)(X-XI)"'(X-xn)n+ I !

3.2.5 Selecting the correct approximating polynomial order

Any function with n turning points can be reasonably described by an order (n + I)-degree

polynomial. Assume a continuous function f with n turning points (PI,"', Pn), then the

derivative of f must necessarily be 0 at those turning points. A polynomial expression with

f(x) = 0 at all points (PI, ... ,Pn) has the factorised form

Integration of the simplified form yields

f(x) = rn ~+I + rn-I ~ +...+ ro xl +C
n n-I I

 
 
 

 
 
 



which is of degree n + 1. Thus, if a polynomial is used to approximate a defined function or

dataset, the degree of the polynomial approximation should always be selected as one more

than the number of turning points of the original function or dataset. Higher order approxi-

mations can lead to over-fitting, because too many free variables (coefficients and terms) are

available to any given polynomial approximation technique.

Artificial neural networks with at least one hidden layer have been proved to be universal

approximators [57], [58]. This means that a neural network can approximate any nonlinear

mapping to a desired degree of accuracy, provided that enough hidden units are provided in

the hidden layer. With reference to the previous section, Basson and Engelbrecht showed that

for any function, the optimal number of hidden units that should be provided in the hidden

layer should be one more than the number of turning points of the function [10]. However, this

result assumes prior knowledge about the input space.

With reference to section 2.3, neural networks suffer from a number of problems when

performing function approximation:

• The training of neural networks is computationally time consuming, especially when a

large number of data points, are used and for large architectures.

• Finding the optimal architecture is crucial to ensure optimal interpolation (generalisa-

tion) performance. Architecture selection further adds to the complexity of training.

• Depending on the training algorithm used, neural networks are susceptible to local

minima.

• While neural networks do have extrapolation capabilities, this deteriorates the further

extrapolation points lie from the training set.

 
 
 

 
 
 



3.2.7 Evolutionary computing

A number of evolutionary computing approaches have been applied to function optimisation.

Wilson describes a genetic algorithm that performs a piecewise-linear approximation to any

arbitrary function [l02]. His findings yielded arbitrary close approximations that were effi-

ciently distributed over a function's domain.

Angeline, discusses a model that uses genetic programming to select a system of equations

that are optimised in a neural network like fashion, in order to predict chaotic time-series [6].

His goal, specifically, was to evolve task specific activation functions for neural network-like

systems of equations, i.e. activation functions that were not sigmoidal in nature.

Nikolaev and Iba discuss a genetic program that uses Chebishev Polynomials as building

blocks for a tree-structured polynomial expression [76]. Their findings indicate that the tree-

structured polynomial representation produced superior results on several benchmark and real-

world time-series prediction problems, both in terms of training and generalisation accuracy.

With reference to section 2.2, evolutionary computing approaches have a number of factors

that need to be considered before application:

• The training of evolutionary computing paradigms is computationally time consuming,

especially when a large number of data points are used and for a large number of indi-

viduals.

• A suitable representation scheme must be chosen in order to adequately describe the

problem space.

• A suitable fitness function must be selected in order to adequately describe the problem
space.

• Depending on the problem, evolutionary computing paradigms could be sensitive to
initial conditions and training parameters.

• Using a suitable chromosome representation scheme, the interpolation ability of an

evolutionary computing algorithm can be engineered to be as good as any numerical

analysis technique, particularly if the evolutionary computing algorithm utilises numer-

ical methods. However, the evolutionary computing algorithm's extrapolation abilities

will only be as good as the underlying numerical methods.

 
 
 

 
 
 



This section discusses the implementation specifics of a genetic algorithm that evolves struc-

turally optimal polynomial expressions (GASOPE) and heavily borrows from the ideas presented

in section 3.2. Essentially, the algorithm is a three stage process that consists of:

One of the primary problems with all machine learning paradigms, is the need to iterate over

each training pattern in order to calculate an error metric (in the case of a neural network)

or to calculate the fitness (in the case of an evolutionary algorithm) of an individual. This is

especially a problem with very large data sets. Special strategies have to be utili sed, such as

active learning for artificial neural networks 2.3.3, to solve the large data set problem.

Clustering has been used in order to try to break the aforementioned restriction. The idea

is to perform a fast, rough clustering of the training data, and then to draw a stratified random

sample from the clusters, to be used in a manner similar to that of Engelbrecht and Brits [32].

A stratified random sample [96], of size s, is drawn from k clusters of training patterns,

where each cluster represents a stratum of homogeneous training patterns (according to some

characteristic inherent in the data), instead of using all of the available training patterns. The

stratified random sample is drawn proportionally from each of the k clusters, i.e.:

I I ICois
Co c Co : ICol = lPf

and ICol is the (stratum) size of cluster Co and IPI is the size of the data set. Obviously, a

proportional sample would be meaningless unless each strata was homogeneous with respect

 
 
 

 
 
 



to some characteristic. Also, if a cluster consists of just outliers, a proportional sample will

prevent these outliers from skewing the data distribution.

The GAS OPE method uses the k-means clustering algorithm (of section 2.4.2) to obtain the

homogeneous strata mentioned above. The GASOPE method uses a simple heuristic in order

to increase the performance of the k-means clustering algorithm, which requires the inclusion

of a standard deviation measure for each cluster centroid. The algorithm proceeds as follows:

1. Initialise k centroids (WI,"', Wk) such that each centroid is initialised to one input vector

wI) = PI), 0 E {I,· .. ,k} and initialise k centroid deviation vectors (aI,' .. , ak) such that

al) = 0, 0 E {I,· .. ,k}, where each cluster CI) is associated with the centroid wI) and the

centroid deviation vector al).

(a) If (Pi E Coo, (0 E {I, ... ,k} ) /\ ((Pi < Woo- aoo) V (Pi> Woo+ aoo)), then find the

nearest centroid wl)*, i.e. if

(a) Update the cluster centroid wI) to be the centroid of all the samples currently in CI)

so that
Lp/ECl)Pi

WI)= ICI)I

(b) Update the cluster centroid deviation vector al) to be the standard deviation of all

the samples currently in CI) so that

 
 
 

 
 
 



k
EQ=[' [,llpt-WoI12

O=lp/ECIl

5. Return to step 2 until EQ does not change significantly or cluster membership does not

change.

Essentially, the centroid Wo and the centroid standard deviation (jo in the above algorithm

allow the k-means clustering algorithm to fit k hyper-cubes over an n-dimensional pattern

space. Any pattern not within the bounds of the hyper-cube of the cluster of which the pattern

is a member becomes eligible for selection in step (2a) of the algorithm. This pattern selection

strategy drastically reduces the number of comparisons that need to be made for each training

iteration of the algorithm, resulting in improved performance over the normal direct k-means

clustering algorithm.

Figure 3.1 demonstrates a typical output of the above k-means clustering algorithm for 15

cluster centroids. What is interesting to note, is that larger clusters form around the turning

 
 
 

 
 
 



points of the function. These larger clusters demonstrate that the information content of the

function is greatest near the turning points of a function, where the derivative of the function

is changing more rapidly. This, in turn, indicates that the efforts of the function approxima-

tion technique should be concentrated on the regions near the turning points of the function.

Proportional sampling will select more patterns from larger clusters, and will therefore concen-

trate the efforts of the function approximation technique on the regions near the turning points.

The idea is similar to an incrementalleaming approach used by Engelbrecht for artificial neural

networks [35]
With regards to the bias-variance dilemma [44], clustering minimises the variance compo-

nent of the GAS OPE method. The genetic algorithm of the next section minimises the bias

component of the GASOPE method.

The following section discusses the core algorithms employed by the genetic algorithm compo-

nent of the GAS OPE method. The introduction introduces the reader to the complexity of the

technique used by the genetic algorithm. The representation of each individual in a population

is then discussed. The initialisation values of each individual is presented. The mutation and

crossover operators employed by the genetic algorithm are discussed. The fitness function

employed by the genetic algorithm is discussed. Finally, the algorithm to guide the genetic

algorithm optimisation process is presented.

In sections 3.2.1 and 3.2.3 Taylor polynomials and discrete least squares approximation were

discussed in terms of their relevance to function approximation. The definition of the linear

function presented in equation (3.1) is extended to the non-linear form from:

n

hi = L rja!
j=o

 
 
 

 
 
 



where m is the dimensionality of the input space, n is the maximum polynomial order, Aq is

the order of attribute ai,q and r(A] ,AZ,"',Am) is a real-valued coefficient. This definition allows
the representation of functions such as:

+ r(1,O)ai,l + r(O,1)ai,2 +
2 2+ r(2,O)ai,1 + r(O,2)ai,2

for m = 2 and n = 2. If the value of the coefficients r(A] ,Az,"',Am) are efficiently determined using
the least squares approximation (from equation (3.3)), then all the genetic algorithm is required

to do is to algorithmically determine the optimal approximating polynomial structure. The

definition of optimality used throughout this thesis is bimodal: both the smallest polynomial

structure and the best possible function approximation are required. A simplistic approach

would be to generate every possible combination of a function, and test the predicted result of

the function against the data set. However, such an exhaustive search approach is prohibitive.

This section does, however, continue to derive an upper bound on the genetic algorithm search

space, should an exhaustive search be undertaken.

First, the total number of unique terms t generated by equation (3.10) is determined. Select,

with repetition, p inputs from a set of m inputs. This problem is similar to determining the

number of n-multi-sets of size p, where p E {O"", n}. There are

t=t(p+m-1)
p=O P

such multi-sets (terms) [36]. By applying induction and Pascal's formula, equation (3.11) is
simplified to

The number of function choices, u, is calculated by choosing, without repetition, q terms

from the set of t terms:

 
 
 

 
 
 



From equations (3.12) and (3.14), the number of terms and function choices can be determined.

A lO-dimensional input space with a maximum polynomial order of 3, has 286 possible terms

and 2286 function choices. To iteratively calculate and test each function choice against a set

of S training patterns is thus computation ally difficult. Genetic algorithms, however, can be

used to determine solutions to such difficult problems, because genetic algorithms implement

a highly parallel search.

The representation used by the algorithm is fairly simple and is, in fact, a representation of

equation (3.10). Each individual is made up of a set 1mof unique, term-coefficient mappings,

e.g.

where p is the maximum set size (maximum number of terms) and r~, for ~ E {O"", p - I},

is a real-valued coefficient (re-mapped from equation (3.10) for the sake of simplicity). Each

term t~ is made up of a set T~of unique, variable-order mappings, e.g.

where m is the number of inputs (variables), a~,t, 't E {l,···, m} is an integer representing an

input value and A.~,tis a natural-valued order. In practise, these two sets are maintained as a

two-dimensional variable-length, sorted array, which allows only unique insertion.

Each individual 1min a population GGA is initialised by randomly selecting variable-order

pairs, in order to build a term T~ up to a maximum polynomial order e E {O,,,,, n}. This

process is repeated until the number of terms equals the maximum number of terms p. The

initialisation of an individual is fully described by the following pseudo-code algorithm:

(a) Set T~= {}

 
 
 

 
 
 



(b) Select e E {O,... ,n} uniformly from the maximum polynomial order n.

(c) While e > 0 do

1. Select I ~ f ~e uniformly from the available orders e.

11. Select I ~ g ~ m uniformly from the set of m inputs.

111. If IT~I< IT~U {(g -+ f)}1 then e:= e - f, i.e. decrease the number of available

orders e.

IV. Set T~= T~U { (g -+ f) }

(d) Set lro = lro U {(T~ -+ O)} as shown in figure 3.2

~

~

~ r, -- a2,1 A2,1r------ a2,3 AZ3~ T~
~
-

r4 -- a42 A4.2r------ a4,3 A43 -- a4,4 A44

The mutation operators serve to inject new genetic material into a population of individuals,

thus the mutation operator broadens the search space. Four mutation operators are used by the

genetic algorithm, namely shrink, expand, perturb and reinitialise:

• Shrink operator: The shrink operator is fairly simple to implement and has the objec-

tive to remove, arbitrarily, one of the term-coefficient pairs T~ from the individual lro,

 
 
 

 
 
 



as indicated by the crossed out section in figure 3.3. The pseudo-code for the shrink

operator is as follows:

1. Select T~E 1m uniformly from the set of terms 1m.

2. Set 1m= Im/ {T~} as shown in figure 3.3.

• Expand operator: The expand operator adds a new random term-coefficient pair to the

individual 1m(only if 1m< p). The pseudo-code for the expand operator is as follows:

1. If 11mI < p then

(a) Set T~= {}

(b) Select e E {O,... ,n} uniformly from the maximum polynomial order n.

(c) While e > 0 do

i. Select f E {I,· .. ,e} uniformly from the available orders e.
11. Select g E {I,· .. ,m} uniformly from the set of m inputs.

iii. If IT~I< IT~U {(g -+ fnl then e := e - f, i.e. decrease the number of

available orders e.

iv. Set T~= T~U {(g -+ fn

 
 
 

 
 
 



(d) Set 10) = IO)U {(T; --+ O)} as shown in figure 3.4.

~

r4 a4,2 A4,2

~

• Perturb operator: The perturb operator is fairly complicated and requires the algo-

rithm to select a term T; from the individual 10), and to adjust one of the variable-order

mappings. This adjustment can either add, remove or adjust an order in a variable-order

mapping and is applied uniformly (with equal probability) over all three actions. The

pseudo-code for the perturb operator is as follows:

1. Select T; E 10) uniformly from the set of terms 10).

2. Calculate the number of orders available

IT~I
e := p - E Alro,v.

v=l

3. Select g E {I, ... ,m} uniformly from the set of m inputs.

4. Select h E U(O, 1) as a uniformly distributed random number.

5. If h < 0.333 then

 
 
 

 
 
 



(a) Set T!; = T!;I {(g -+ Ag)}, i.e. remove the lh variable-order mapping from set

T!; as shown by the crossed out section in figure 3.5.

6. Else if h < 0.666 then

(a) Select f E {I,··., e} uniformly from the available orders e.
(b) Set T!; = T!;U {(g -+ f)} as shown by the large box in figure3.5.

7. Else

(a) Set T!; = T!;I {(g -+ Agn, i.e. remove the gth variable-order mapping from set

T!;.

(b) Set e := e +A, i.e. increase the number of available orders e.

(c) Select f E {I,··., e} uniformly from the available orders e as shown by the

small box in figure 3.5.

(d) Set T!;= T!;U {(g -+ fn

~

r2

~

r4

t----T~

 
 
 

 
 
 



The crossover operator serves to retain genetic material from one generation of individuals

to the next, thus the crossover operator directs the search space toward a particular solution.

The crossover operator used by the genetic algorithm selects a subset of two individuals in

order to construct a new chromosome. Term-coefficient mappings are selected to construct the

new chromosome at random, with a higher probability of selection given to term-coefficient

mappings that are prevalent in both individuals. A ratio of 80:20 was used (shown below),

because, on average, the new individual generated by these parameters was found to be roughly

the same length as its longer parent. The pseudo algorithm for the crossover operator is as

follows:

2. Let 113E G be any term-coefficient set in the population of individuals GGA as shown in
figure 3.6.

3. Let Iy E G be any term-coefficient set in the population of individuals GGA as shown in
figure 3.6.

5. Let B = (/13/ly) U (/y/ll3) be the union of the exclusions as shown in figure 3.6.

(b) If h < 0.8 then la = la U {Ae}

(c) Set e := e + 1

 
 
 

 
 
 



(b) If h < 0.2 then In = In U {Be}

(c) Set e := e + 1

[I}--111
~2

~3

~4

a4,2 1.4,2

~
~6

I~

The fitness function is an important aspect of a genetic algorithm, in that it serves to direct

the algorithm toward optimal solutions. The fitness function used by the genetic algorithm is

similar to the adjusted coefficient of determination (from equation (3.6». The fitness function

is defined as:
2 I;i-l(bi-bi J2 s-l

Ra = 1- L~ (b.-i)2 . s-k (3.15)
1=1 1 1

where s is the sample size, bi is the actual output of pattern i, b~ro,iis the predicted output of

individual 1m for pattern i, and the model complexity d is calculated as follows:

 
 
 

 
 
 



where /0) is an individual in the set P of individuals, T~ is a term of /0) and A~,'t is the order of

term T~. This fitness function penalises the complexity of an individual /0) by penalising the

number of multiplications needed to calculate the predicted output of that individual,i.e. the

number of terms and their order.

In order to calculate the fitness of an individual, however, the algorithm requires the coef-

ficients in the set /0) to be calculated. Matrix A (from equation (3.4)) is populated with the

combination of terms represented by each term-coefficient mapping, e.g. if the term is aoar,
the algorithm multiplies out each of the input attributes for a particular pattern. Matrix A is

thus populated from left to right with terms from each pattern in the sample space (where the

patterns proceed from top to bottom). The vector b is made up of the target output for each

pattern. After reducing the linear system shown by equation (3.3), vector r represents the

coefficients of each of the term-coefficient mappings.

(a) Sample S C U~=lCo where Co is a cluster (stratum) of patterns

(b) Determine the coefficients of each of the term-coefficient mappings in an individual

/0) by reducing b ~ Ar in terms of the sample S

(c) Evaluate the fitness R~(IO)) of each individual in population GGA,g using the patterns

in S

(d) Let G~A,g C GGA,g be the top x% of the individuals to be involved in elitism

(e) Install the members of G~A,g into GGA,g+l

(f) Let G~A,g C GGA,g be the top n% of the individuals to be involved in crossover

 
 
 

 
 
 



/I

i. Randomly select two individuals In and l~ from GGA,g

11. Produce offspring ly from In and 1[3

iii. Install ly into G~A,g

(h) Perform mutation:

1. Select an individual 1m from d~A,g

ii. Mutate 1m

111. Install 1m into GGA,g+ 1

(i) Evolve the next generation g := g + 1

It is important to note that each generation in the above algorithm draws a new stratified

random sample from the training set. The entire process, thus, is not based on just one sample

of the training set.

This section discusses the need for a hall-of-fame. The hall-of-fame works like the hall-of-

fame in classic arcade games, where the player that achieved a better score than any of the

players in the hall-of-fame takes hislher rightful place (by entering hislher initials) and knocks

the worst score off the list. For GASOPE, the hall-of-fame is essentially a set of unique,

individual solutions, ranked according to their fitness value. After every generation the best

individual is given the opportunity to enter the hall-of-fame. Entry into the hall-of-fame is

determined as follows:

• If the best individual of a generation is structurally equivalent to an individual in the hall-

of-fame, the fitness values of the individual in the hall-of-fame and the best individual

are compared. The individual with the best fitness then replaces the individual in the

hall-of-fame.

• Otherwise, if the best individual of a generation is not structurally equivalent to any

individual in the hall-of-fame, the best individual is inserted relative to its fitness (or

possibly not at all if its fitness is worse than any of the individuals in the hall-of-fame).

 
 
 

 
 
 



The hall-of-fame is not an elitism method; the individuals in the hall-of-fame do not further

participate in the evolutionary process. The hall-of-fame simply keeps track of the best solu-

tions for any given architecture. In the end the solution taken is not necessarily the best solution

of the last generation, but the best over all generations. Ultimately, the purpose of the hall-of-

fame is to ensure that the best, general solution is selected as the solution to the optimisation

process.

Because the genetic algorithm of section 3.3.2 works with only a sample of the available

patterns, certain function fits may not represent the true nature of the data set, particularly when

such a data set is extremely noisy, because of the new sample used at each generation. For

example, with a particularly poor sample selection from a noisy data set, the genetic algorithm

may decide that a straight line is the optimal fit for the data set, when, in fact, a cubic function

would have performed better on the whole. Following that, the genetic algorithm may decide

that such a fit was the best fit seen so far in the optimisation process and will decide to retain

that solution, ultimately leading to sub-optimal convergence. The hall-of-fame prevents this

scenario from happening, because all best solutions compete for a place in the hall-of-fame.

At the end of the optimisation process, the solutions in the hall-of-fame are tested against

a validation set (a subset of the patterns withheld from training), to determine the ultimate

solution.

This section discusses the experimental procedure and results of the GASOPE method VS. an

artificial neural network, applied to various data sets generated from a range of generating

functions. Section 3.4.1 presents the generating functions of the various data sets. The exper-

imental procedure and program initialisation are explained in section 3.4.2. Section 3.4.3

presents the experimental results for the functions listed in section 3.4.1 and discusses the

findings.

Table 3.1 presents a range of functions, fl to f5, used to test the GASOPE algorithm. Some

of these functions are illustrated by figures 3.7 to 3.9. These functions are all continuous over

 
 
 

 
 
 



Name Function

fl f(xo) = sin(xo) + U( -1,1 );xo E [0,21t]
f2 f(xo) = sin(xo) + cos(xo) + U( -1,1); XoE [0,21t]

f3 f(xo) =x6-5x6+4xo+U(-1,1);xo E [-2,2]

f4 f(XO,Xl) =sin(xo)+sin(xl)+U(-l,l);{xo,xd E [0,21t]

f5 f(XO,Xl) =x6-5x6+4xo+x1-5xi+4xl +U(-l,l);xO,Xl E [-2,2]

their domains and have been injected with noise to illustrate the characteristics of the GAS OPE

method on noisy data sets. Additionally, the method has been tested on a number of interesting

chaotic time-series problems:

• Logistic map: The first, and most basic, chaotic time-series problem is the Logistic

map, whose generating function can be described in the following manner:

dx
-=a'x(l-x)dt n n

• Henon map: The next chaotic time-series problem is the Henon map, which can be

described in the following manner:

dx 2
- = l-a·x:+b·ydt n n

dy dx
dt dt

where a = 1.4, b = 0.3,x(0) -U( -1,1) and y(O) - U( -1,1). The henon map is illustrated

by figure 3.10.

• Rossler attractor: The next chaotic time-series problem is the Rossler attractor, whose

generating function is:
dx
dt = -Yn -Zn

dy
dt =Xn -a'Yn

 
 
 

 
 
 



dz
dt = b+zn(xn - e)

where a = 0.2,b = 0.2,e = 5.7,xo = 1.0,yo = 0 and Zo = O. This function should be

generated using the Runga- Kutta order 4 method [16]. The Rossler attractor is illustrated

in figures 3.11 to 3.14.

• Lorenz attractor: The last chaotic time-series problem is the Lorenz attractor, whose

generating function is:
dx
dt = cr(Yn - xn)

dy
dt = r·xn -Yn -XnZn

dz
dt =XnYn -b·zn

where cr = 1O,r = 28,b = 8/3,xo = 1.0,yo = 0 and Zo = O. Once again, this function

should be generated using the Runga- Kutta order 4 method [16]. The Lorenz attractor is

illustrated in figures 3.15 to 3.18.

3.4.2 Experimental procedure

Each of the generating functions listed in section 3.4.1 were used to create a corresponding

data set consisting of 12000 patterns. Each pattern consisted of the inputs and target outputs

for the specific generating function, e.g. for the Rossler attractor, each pattern consisted of the

three input components and one target output component. Each data set was scaled to create

another data set, which consisted of scaled input components (to the range [-1,1]), to be used

by a neural network for function approximation.

The neural network implementation used for comparison with the GAS OPE method was

trained until the maximum number of epochs were exceeded, using stochastic gradient descent.

Only the hidden layer of the neural network used sigmoidal activation functions; the other

layers used linear activation functions. The use of linear activation functions in specifically

the output layers negates the need for the scaling of the neural network outputs. The neural

network was initialised with an initial learning rate of 0.15 (a linearly decreasing learning rate

was used), a momentum of 0.9 and a maximum number of epochs of 500. No checks were

used to determine whether the neural network over-fitted the data.

 
 
 

 
 
 



Variable Value

Clusters 15

ClusterEpochs 10

FunctionMutationRate 0.1

FunctionCrossoverRate 0.2

FunctionGenerations 100

Functionlndividuals 30

FunctionPercentageSampleSize 0.01

FunctionMaximumComponents 20

FunctionElite 0.1

FunctionCutOff 0.001

The GAS OPE method was initialised using the values shown in table 3.2. The number of

clusters ("Clusters") parameter sets the number of clusters to be used in the k-means optimi-

sation process. A larger value results in increased training time due to the increase in compar-

isons between patterns and cluster centroid vectors. A smaller value may have implications

for accuracy in that, strictly speaking, the number of cluster centroids should be at least as

large as the number turning points of the underlying function that describes the data points.

The number of clusters value was chosen as 15 because the value is larger than the number of

turning points used by any of the above defined functions.

The number of cluster epochs ("ClusterEpochs") determines the number of times the train-

ing set is presented to the k-means clustering algorithm. A small number of cluster epochs

results in rough cluster membership, whereas a large number of cluster epochs result in crisp

cluster membership. However, the larger the number of cluster epochs, the longer the genetic

algorithm takes to optimise. A value of 10 was chosen because the GASOPE method requires

speed more than precision.

The linear system (ATA)r =ATb (refer to equation (3.3)) is consistent. This means that

whether the linear system b ~ Ar is overdetermined or underdetermined, the first linear system

will still be reducible. However, the first linear system could potentially return a poor least

 
 
 

 
 
 



squares approximation if Gauss-Jordan reduction is used to solve the linear system. Gauss-

Jordan reduction can introduce discontinuities into the reduction of the linear system when the

data points used to populate that linear system lie too close to one another or a pivot in the

system lies close to O. These discontinuities typically occur when a value in the matrix is less

than the minimum granularity of the floating point representation of the target platform.

An alternative method of matrix reduction that does not introduce discontinuities is singular-

value decomposition [80]. Singular-value decomposition can always be performed, no matter

how singular (non-invertible) a matrix is. Although both Gauss-Jordan reduction and singular-

value decomposition have a maximum complexity of O(n3), singular-value decomposition

requires the execution of more depth-3 nested loops than Gauss-Jordan reduction and is there-

fore slower than Gauss-Jordan reduction.

An alternative way to solve the poor least squares approximation problem, as outlined

above, is based on data point clustering. The goal of clustering (from section 2.4) is to find

homogeneous strata in a set of data points. A pattern in one cluster is dissimilar to all patterns

in all other clusters. If we sample the training set by selecting at least one pattern from each

cluster, the patterns should be dissimilar enough to return a good least squares approximation.

The sample size ("FunctionPercentageSampleSize") parameter should thus be chosen large

enough to include at least one pattern from each cluster. A large sample size results in a slower

optimisation process because it directly increases the number of patterns to be presented to the

GAS OPE optimisation algorithm.

The accuracy of the GASOPE method depends both on the sample size and the number of

clusters. An increase in the number of clusters leads to patterns being selected more uniformly

throughout the domain of the search space. An increase in the sample size results in more

patterns being selected from the turning points of the search space. The implication is that

both the sample size and the number of clusters are equally important factors in ensuring the

accuracy of the generated solutions.

The function cutoff ("Function CutOff") parameter controls a heuristic that prevents terms

from appearing in a polynomial expression when that term's coefficients tend to O. This cutoff

results in a reduced set of terms and is thus used to prune each individual solution. The cutoff

is applied after the calculation of each term's coefficient by checking whether the coefficient

lies between the bounds of [-FunctionCutOff,FunctionCutOff]. If this is the case, the term

 
 
 

 
 
 



is removed from the polynomial expression. The other genetic algorithm parameters are fairly

self explanatory and suffer from the problems discussed in section 2.2.4.

Both the neural network and the GASOPE method made use of three distinct sets of

patterns. For each problem the 12000 data patterns were split up into a training set of 10000

patterns, a validation set of 1000 patterns and a generalisation set of 1000 patterns. The

purpose of the training set is to train the two methods; the fitness function of the genetic

algorithm and the forward- and back-propagation phase of the neural network use the training

set as the driving force of their algorithms. The validation set is used to validate the interpo-

lation ability of the genetic algorithm; the genetic algorithm uses the validation set to select

the best individual from the hall-of-fame. The generalisation set is used to compare the two

algorithms on unseen data patterns i.e., their generalisation ability.

The results for each of the functions listed in section 3.4.1 were obtained by running 100

simulations of the corresponding data sets. Note though, that before each simulation was

run, the data patterns were shuffled randomly among the three sets (training, validation and

generalisation) and presented in this form to both the neural network and the GASOPE method.

Results reported are averages over the 100 simulations together with standard deviations.

Method Simulations Epochs/ Individuals Training Pattern

Generations patterns presentations

GAS OPE 100 100 30 0.01 x 10000 30000000
NN 100 500 1 10000 500000000

One criticism of comparing a neural network with the GAS OPE method revolves around

the complexity of each method. Using a training set of 10000 patterns, table 3.3 shows the

calculated number of pattern presentations per method. Because the GASOPE method only

samples 100 training patterns per generation (FunctionPercentageSampleSize x SampleSize =

0.01 x 10000 = 100), the number of pattern presentations that have to be performed are consid-

erably reduced compared to that of the neural network. If the number of training patterns had

not been included in this complexity measure, many would have argued that the experimen-

tal results are unfairly weighted against the neural network. Bearing in mind that the neural

 
 
 

 
 
 



network sees more of the training data during optimisation, this is not the case. Also, it is

expected that the NN optimisation process will take on average 16.667 times longer than the

GASOPE method to complete.

The breakdown of the total execution time of the GASOPE method for an average simula-

tion run is as follows:

This section discusses the experimental results of both the neural network mentioned in section

3.4.2 and the genetic algorithm presented in this chapter for the chosen function approximation

tasks. The section is divided into three categories namely, noiseless data sets, noisy data sets

and polynomial structure.

Table 3.4 summarises the results of the noiseless application of the Henon map, Logistic map,

Rossler attractor and the Lorenz attractor, respectively. All experiments utili sing these func-

tions used the GASOPE method with a maximum polynomial order of 3 and a neural network

(NN) with a hidden layer size of 3, i.e. there were 3 hidden units. As mentioned in section

3.4.2, all other initialisation values were set according to table 3.2 and the initialisation criteria

specified in section 3.4.2.

For each of the experiments shown in table 3.4, the GASOPE method performed signif-

icantly better, on average, than the neural network. This improvement was both in terms of

training and generalisation accuracy and in terms of the average simulation completion time

for each simulation run. What is interesting to note, is that the GA performed better than the

NN on a range of chaotic time-series problems. Also, the GASOPE method is more robust than

 
 
 

 
 
 



Table 3.4: Comparison of GASOPE and NN on noiseless data (TMSE = mean squared error on

training set, GMSE = mean squared error on test set (generalisation), 0' indicates the standard

deviation, t is average simulation completion time in seconds)
Function GAS OPE TMSE O'TMSE GMSE O'GMSE t

NN TMSE O'TMSE GMSE O'GMSE t
Henon GAS OPE 0.000000 0.000000 0.000000 0.000000 0.83s

NN 0.001258 0.011678 0.001266 0.011730 29.46s

Logistic GASOPE 0.000000 0.000000 0.000000 0.000000 0.66s

NN 0.055384 0.061578 0.055628 0.061842 20.50s

Rossler GAS OPE 0.000000 0.000000 0.000000 0.000000 0.91s

x component NN 0.000754 0.000562 0.002488 0.002444 32.16s

Rossler GAS OPE 0.000000 0.000000 0.000000 0.000000 0.87s

y component NN 0.000454 0.000348 0.001416 0.001640 32.15s

Rossler GASOPE 0.000004 0.000000 0.000004 0.000000 0.90s

z component NN 0.000388 0.000054 0.018146 0.041082 32.lOs

Lorenz GASOPE 0.000434 0.000004 0.000432 0.000028 0.88s

x component NN 0.002064 0.001108 0.655078 0.634666 32.50s

Lorenz GASOPE 0.000900 0.000014 0.000900 0.000086 0.95s

y component NN 0.087084 0.034538 2.588240 2.377820 32.51s

Lorenz GASOPE 0.000404 0.000028 0.000396 0.000050 0.96s
z component NN 0.172464 0.193974 2.464340 2.326490 32.54s

the NN, because the standard deviations are smaller. Additionally, the NN average simulation

completion time was more than 16.667 times the average completion time of the GASOPE

method. Thus, the GAS OPE method is orders of magnitude faster than the NN. Figures 3.10

to 3.18 show the function plots of most of the functions used in this section.

Table 3.5 represents the experimental results for the GAS OPE method and the neural network

(NN) as applied to a number of noisy data sets.

 
 
 

 
 
 



• fl: Function fl represents the results of a noisy application of sin(x) over a domain

of one period. The NN was trained using 3 hidden units in the hidden layer and the

GASOPE method was trained with a maximum polynomial order of 3. All other initial-

isation parameters were set as shown by table 3.2 and specified in section 3.4.2. The

GASOPE method performed slightly better than the NN in terms of training and gener-

alisation error, and performed substantially better than the NN in terms of the average

simulation completion time. A plot of the best GASOPE and NN output, evaluated

according to generalisation ability of each end state of each simulation run, against the

plot of the generalisation data set is shown in figure 3.7.

• f2: Function f2 represents the results of a noisy application of sin (x) + cos(x) over a

domain of one period. The NN was, once again, trained using 3 hidden units and the

GASOPE method was trained with a maximum polynomial order of 3. The NN, in

this case, performed slightly better than the GASOPE method in terms of accuracy.

The GASOPE method, however, was still reasonably competitive against the NN. The

GAS OPE method performed substantially better than the NN in terms of the average

simulation completion time. Figure 3.8 shows a plot of the best NN and GAS OPE

output for the function f2 against a plot of the generalisation data set.

• f3: Function f3 represents the results of a noisy application of a fifth order polynomial

over the interval [- 2,2]. The GAS OPE method used a maximum polynomial order of 5

and the NN used 5 hidden units. The GASOPE method performed substantially better

than the NN, both in terms of accuracy and the average simulation completion time. A

plot of the best GA and NN output against the plot of the generalisation data set is shown
in figure 3.9.

• f4: Function f4 represents the results of a 2-dimensional application of function fl. The

GASOPE method used a maximum polynomial order of 3 and the NN used 6 hidden

units (2 dimensions, 2 turning points in each dimension). The NN performed slightly

better than the GA in terms of training and generalisation accuracy, but performed signif-

icantly worse than the GASOPE method in terms of the average simulation completion
time.

 
 
 

 
 
 



• f5: Function f5 represents the results of a 2-dimensional application of function f3. The

GA used a maximum polynomial order of 5 and the NN used 10 hidden units (2 dimen-

sions, 4 turning points in each dimension). The GASOPE method performed signifi-

cantly better than the NN both in terms of training and generalisation accuracy, and in

terms of the average simulation completion time.

• Henon: The Henon function represents the results of a noisy application of the Henon

map. Uniformly distributed noise in the range [-1, 1] was injected into the output

component of the data set. The GASOPE method used a maximum polynomial order of

3 and the NN used 3 hidden units. The NN performed slightly better than the GASOPE

method in terms of training and generalisation accuracy, but performed significantly

worse than the GASOPE method in terms of the average simulation completion time.

Figure 3.10 shows a plot of the Henon map.

• Lorenz: The Lorenz functions represent the results of a noisy application of the Lorenz

attractor in all three components. Uniformly distributed noise in the range [-10, 10] was

injected into the each of the input and output components of the data set. The GAS OPE

method used a maximum polynomial order of 3 and the NN used 3 hidden units. For all

three experiments of the Lorenz attractor, the GASOPE method performed significantly

better than the NN both in terms of training and generalisation accuracy, and in terms

of the average simulation completion time. Figures 3.15 to 3.18 show the plots for the
Lorenz attractor.

Once again, it is interesting to note that the NN's average simulation completion time was

more than 16.667 times the average simulation completion time of the GASOPE method. This

showed that the GASOPE method is orders of magnitude faster that the NN.

This section discusses the structural optimisation ability of the GASOPE method.

Using Lagrange interpolating polynomials (section 3.2.4) a defined function can be approx-

imated to any required degree of accuracy. If the function

 
 
 

 
 
 



Table 3.5: Comparison of GASOPE and NN on noisy data (TMSE = mean squared error on

training set, GMSE = mean squared error on test set (generalisation), 0" indicates the standard

deviation, t is average simulation completion time in seconds)
Function GAS OPE TMSE O"TMSE GMSE O"GMSE t

NN TMSE O"TMSE GMSE O"GMSE t
fl GASOPE 0.339252 0.001538 0.339346 0.010278 0.75s

NN 0.341698 0.003444 0.341108 0.009948 19.54s

f2 GAS OPE 0.387740 0.002300 0.386500 0.011378 0.75s

NN 0.341504 0.002420 0.340432 0.009524 19.87s

f3 GAS OPE 0.337418 0.001496 0.336534 0.008804 0.78s

NN 0.446104 0.034328 0.446128 0.037590 29.35s

f4 GAS OPE 0.351866 0.002412 0.351748 0.010270 1.25s

NN 0.342220 0.003066 0.343354 0.009826 47.36s

f5 GAS OPE 0.336980 0.001826 0.337030 0.008900 1.36s

NN 0.437576 0.090354 0.440616 0.085214 72.06s

Henon GAS OPE 0.745516 0.021636 0.748390 0.034662 0.80s

NN 0.724794 0.027760 0.729226 0.038624 29.58s

Lorenz GAS OPE 46.663200 0.576780 46.760000 1.665810 0.93s
x component NN 49.093600 1.640780 51.442600 2.628370 32.lOs

Lorenz GASOPE 52.554100 1.200120 53.048800 2.334640 0.87s

y component NN 56.833200 2.887430 59.376100 4.060700 32.46s

Lorenz GAS OPE 55.493400 0.958328 55.562000 2.087360 0.90s

z component NN 59.959000 2.625930 62.317100 3.420240 32.43s

 
 
 

 
 
 



is approximated with a Lagrange polynomial of degree 3 (with interpolation points x = O,x =

0.5,x = l,x = 1.5), the approximation

y = 1.3875X3 + 0.057570~ + 1.2730x

is obtained. Using the GASOPE method, the result over 100 simulations (initialised using

table 3.2 and a maximum polynomial order of 3) is consistently

y = 1.38552x3 + 1.35944x - 0.0280584

The difference in MSE between these two methods is 0.000174, with the Lagrange polynomial

being the more accurate of the two. The GAS OPE method decided to substitute the x2 term for

the constant -0.0280584 (one less multiplication in the simplified form used by the GASOPE

method) because the loss in accuracy was acceptable and it resulted in a smaller architecture.

Similarly, approximation of

with a Lagrange polynomial of degree 3 (with interpolation points x = O,x = 2:,x = ~1t,x =
21t), yields the approximation

y = 0.094266x3 - 0.888436~ + 1.860735x

Using the GASOPE method, the result over 100 simulations (initialised using table 3.2 and a

maximum polynomial order of 3) is consistently

The difference in MSE between these two methods is 0.01552, with the GASOPE method

being the more accurate of the two. The GASOPE method decided, in this case, to include the

constant -0.226775 because the gain in accuracy was significant.

Both of the above results illustrate that the GASOPE method does indeed find the optimal

polynomial approximation to a function.

 
 
 

 
 
 



This chapter presented and discussed a genetic algorithm approach to evolve structurally opti-

mal polynomial expressions (GASOPE) to represent a given data set. The genetic algorithm

was shown to be significantly faster than a neural network approach, and the genetic algo-

rithm produced comparable results when compared to the neural network approach in terms

of generalisation ability for most of the functions used in this chapter on both clean and noisy

datasets (which included chaotic time-series). The success of the genetic algorithm approach

is mainly due to the specialised mutation and crossover operators, and can also be attributed

to the fast k-means clustering algorithm, both of which lead to a significant reduction of the

search space. Performance gains in terms of speed can also be attributed to the highly paral-

lel search behaviour of genetic algorithms, i.e. the increase in performance of the GAS OPE

method over a neural network is not just a function of the number of patterns presented.

Although the genetic algorithm discussed in this chapter appears to be fairly effective both

in terms of accuracy and speed, there is, however, one serious drawback. The drawback is

that polynomial structures are poor predictors of periodic data. In order to predict periodic

data over an interval with polynomials, it is necessary to increase the order of the interpolating

polynomial. However, such a prediction becomes particularly poor and deteriorates when the

polynomial predictor is used to extrapolate information outside of the aforementioned interval.

This problem can be solved in one of 2 ways: Build an expression that utilises a periodic

function such as cosine or sine, or use only linear predictors at the ends of the approximation
interval.

The use of cosine or sine as a periodic function in the above, would require a substantial

rework of the data structure employed to house term-coefficient pairs. The data structure would

have to be changed from a list to a tree, which would require the operators to be changed. The

use of linear predictors at the ends of the approximation interval is fairly simple to implement:

Construct an expression that represents a hyper-plane in the attribute space, e.g. if two inputs

(XQ,Xl) and one target output z are used, construct the expression z = rQxQ + rlXl +c and use

the linear system mentioned in this chapter to solve rQ, rl and c. This hyper-plane can then

be used in conjunction with an interval measure to extrapolate any unseen data outside the
training interval.

The next chapter presents a genetic program for the mining of continuous-valued classes

 
 
 

 
 
 



(GPMCC) that utilises the expressions generated by the GASOPE method to provide multi-

variate models for the leaf nodes of a model tree.
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Figure 3.16: Lorenz attractor: x component

Figure 3.17: Lorenz attractor: y component

 
 
 

 
 
 



 
 
 

 
 
 



Chapter 4

THE GPMCC METHOD

The previous chapter presented a genetic algorithm for evolving structurally optimal polynomial

expressions (GASOPE). This chapter discusses a genetic program for the mining of continuous-

valued classes (GPMCC). The GPMCC method relies heavily on the algorithms presented

earlier in this thesis.

Knowledge discovery algorithms like C4.5 [83] and M5 [82] utilise metrics based on informa-

tion theory to partition the problem domain and to generate rules. However, these algorithms

implement a greedy search algorithm to partition the problem domain. For a given attribute

space, C4.5 and M5 attempt to select a test that minimises the relative entropy of the subsets

resulting from the split. This process is applied recursively until all subsets are homogeneous

or some accuracy threshold is reached.

Figure 4.1 illustrates the partitioning problem by drawing parallels with graph theory. The

minimal spanning tree of the graph of figure 4.1 illustrates how a greedy algorithm reaches

point D from point A through point B, which is clearly not the optimal path. The optimal

path from point A to point D traverses point C. This clearly shows that knowledge discovery

algorithms such as C4.5 and M5 may not generate the smallest possible number of rules for a

given problem. A large number of rules results in decreased comprehensibility, which violates

one of the prime objectives of data mining.
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This chapter discusses a regression technique that does not implement a greedy search

algorithm. The regression technique utilises a genetic program for the mining of continuous

valued classes (GPMCC) which is suitable for mining large databases. Although the majority

of continuous data is linear, there are cases for which a non-linear approximation technique

could be useful, e.g. time-series. Therefore, the GPMCC method utilises the GASOPE method

 
 
 

 
 
 



of chapter 3 to provide non-linear approximations (models) to be used as the leaf nodes (termi-

nal symbols) of a model tree.

The remainder of this chapter is organised as follows: Section 4.2 provides a background

to techniques that do not implement greedy search algorithms to generate rules. The structure

and implementation specifics of the GPMCC method are discussed in section 4.3. Section

4.4 presents the experimental findings of the GPMCC method for a number of real-world and

artificial databases. Finally, section 4.5 presents the summarised findings and envisioned future

developments to the GPMCC method.

The previous section presented a brief introduction to the GPMCC method. This section

presents a detailed discussion of two existing methods suitable for non-linear regression. A

novel method of generating comprehensible regression rules from a trained artificial neural

network is discussed in section 4.2.1. Finally, section 4.2.2 presents genetic programming

approaches for non-linear regression and model tree induction.

Artificial neural networks (ANNs) are widely used as a tool for solving regression problems.

However, ANN s have one critical drawback: the complex input to output mapping of the

ANN is almost impossible for a human user to comprehend. ANNs are thus one of a handful of

black-box methods that do not satisfy the comprehensibility requirement of knowledge discov-

ery. This section discusses a recent work by Setiono that allows decision rules to be generated

for regression problems from a trained ANN, called NeuroLinear [91][94]. Setiono's findings

indicated that rules extracted from ANN s were more accurate than those extracted by various

discretisation methods.

This section is divided into three parts. Network training and pruning discusses the training

and pruning strategy of the ANN used by Setiono. Activationfunction approximation describes

how a piecewise linear approximation of the activation function is obtained. Generation of

rules discusses the algorithm for generating rules from a trained ANN.

 
 
 

 
 
 



The method starts by training an ANN that utilises hyperbolic tangent activation functions in

the hidden layer (of size H). Training is performed on a training set of IPI training points

(Xi,Yi), i = 1,···, IPI where Xi E 9\N and Yi E 9\. Training, in this case, minimises the sum of

squares error Ess(w, v) augmented with a penalty term P(w, v).

IPI
Ess(w, v) = E (Yi - yj)2 +P(w, v)

i=l

£1(E~=l (Ef=111~:~1+ 1~~~~))+
£2(E~=l (E~l W~l + v~))

where £1,£2and 11are positive penalty terms, yj is the predicted output for input sample Xi, i.e.

H
yj = E tanh ((xif vm) + 't,

m=l

wm E 9\N is the vector of network weights from the input units to hidden unit m, Wml is the l-th

component of wm, Vm E 9\ is the network weight from the hidden unit m to the output unit and

't is the output unit's bias.

Setiono performed training using the BFGS optimisation algorithm, due to its faster conver-

gence than gradient descent [29][92]. After training, irrelevant and redundant neurons were

removed from the ANN using the N2PFA (Neural Network Pruning for Function Approxi-

mation) algorithm [93]. ANN pruning prevents the ANN from over-fitting the training data

(discussed in section 2.3.3) and also reduces the length of the rules extracted from the ANN.

The length of the extracted rules are reduced because the number of variables (weights, input

units and hidden units) affecting the outcome of the ANN are reduced.

The complex input to output mapping of an ANN is a direct consequence of using either the

hyperbolic tangent or the sigmoid function as artificial neuron activation functions. However,

as was discussed in section 2.3.2, the importance of these functions in ANN training is that

they are monotonically increasing, differentiable and continuous throughout their domains.

 
 
 

 
 
 



1

-•... 0.5Q)
c:-.c:c:
«l•... 0"0c:
«l-•...Q)

-0.5c:-....J
-1

-1.5
-4 -3

L(net) -
tan{llet) --

sample-points

o
net

Figure 4.2: A 3-piece linear approximation of the hidden unit activation function tanh(net)

given 20 training samples (0)

In order to generate comprehensible rules, a 3-piece linear approximation of the hyperbolic

tangent activation function is constructed. This entails finding the cut-off points (neto and

-neto), the slope «(30 and (31) and the intersection (0, <Xl and -<Xl) of each of the three line

segments. The sum squared error between the 3-piece linear approximation and the activation

function is minimised to obtain the values for each of these parameters:

IPI
min = I)tanh(neti) - L(neti))2

neto,I3o,~1,0.1 i= 1

where neti = xf .w is the weighted input of sample i and

L(net) = {

-<Xl + (31net

(3onet

<Xl + (31net

if net < - neto

if -neto ~ net ~ neto

if net> neto

 
 
 

 
 
 



The intercept and slopes which minimises the sum squared error are calculated as follows:

R Llnetd~neto netitanh(neti)
tJO = 2

Llnetil~neto neti

L\netiI >neto (neti - neto) (tanh(neti) - tanh (neto) )
~l = -------------

L\netd>neto (neti - neto) 2

<Xl = (~o-~l)neto

The weighted input neti of each sample is checked as a possible optimal value for neto starting

from the one that has the smallest magnitude. Figure 4.2 illustrates how the 3-piece linear

approximation is constructed.

Linear regression rules are generated from a pruned ANN once the network hidden unit activa-

tion functions tanh (net) has been approximated by the 3-piece linear function described above.

The regression rules are generated as follows:

(a) Generate a 3-piece linear approximation Lm(net).

(b) Using the points -netmo and netmo from function Lm(net), divide the input space

into 3 subregions.

(a) Define a linear equation that approximates the ANN's output for an input pattern i
in subregion r as the rule consequent:

H
yj = L vmLm(netmi) +'t

m=l

where netmi = xiwm, Vm E 9\ is the network weight from the hidden unit m to the

output unit and 't is the output unit's bias.

 
 
 

 
 
 



(b) Generate the rule antecedent: ((Cd /\ ... /\ (Cm) /\ ... /\ (CH)) where Cm is either

netmi < -netmo, netmi > netmo or -netmo < netmi < netmo. Each Cm represents an
attribute test. The antecedent is formed by the conjunction of the appropriate tests

from each of the hidden units.

The rule antecedent ((Cl) /\ ... /\ (Cm) /\ •.. /\ (CH)) defines the intersection of each subspace

in the input space. For a large number of hidden ANs, this antecedent becomes large. If this

antecedent is simplified, using logic or by using an algorithm such as C4.5 (discussed in section

2.1.2), then the rules generated by the above algorithm will be much easier to comprehend.

The evolutionary computing paradigm of genetic programming (GP) can be used to solve a

wide variety of data mining problems. This section discusses GP methods for symbolic regres-

sion, decision, regression and model tree induction, and scaling problems associated with GP.

GP satisfies the comprehensibility requirement of knowledge discovery, because the represen-

tation of an individual (or chromosome) can be engineered to provide easily understandable

results.

Unlike artificial neural networks, GP can be used to perform symbolic regression without the

need for data transformations. GP is also capable of regression analysis on variables that

exhibit non-linear relationships, as apposed to the linear regression techniques presented in

section 3.2. GP is thus a useful tool for regression analysis of non-linear data. However,

because most data is in fact linear, a more conventional form of regression should always be
considered first.

Regression problems are solved by fitting a function, represented by a chromosome, to

the dataset using a fitness function that minimises the error between them. The terminal set

is defined as a number of constants and attributes, e.g. {32,2.5,O.833,x,y,z}, and describes a

number of valid states for the leaf nodes of a chromosome (in the form of a tree). The function

set is defined by a number of operators, e.g. {+,-, *, \,cos,sin}, and describes a number of

 
 
 

 
 
 



Figure 4.3: An example chromosome for a regression problem: terminal set

{32, 2.5,0.833,x,y,z} and function set {+,-, *, \, cos,sin}

valid states for the internal nodes of a chromosome. Figure 4.3 demonstrates an example

chromosome for the aforementioned terminal set and function set.

The constants used in the terminal set are an Achilles' Heel of a symbolic regression

genetic program. If a population is liberally scattered with constants chosen from a preset

range, e.g. [-1, 1], it may be difficult for a genetic program to evolve the expression 300x.

Abass et at. present a concise overview of methods to correct this problem [1].

A number of different classification systems that utilise genetic programming (GP) have been

developed. This section discusses two interesting ones. Additionally, this section shows how

a genetic program can be developed to directly evolve decision, regression and model trees.

Eggermont et at. present a GP approach that utilises a stepwise adaptation of weights

(SAW) technique in order to learn the optimal penalisation factor for the GP fitness function

[30]. Each individual in the population represents a classification rule, and utilises a function

set of boolean connectives and a terminal set of attribute tests, i.e. either the rule condition

 
 
 

 
 
 



covers a training pattern, in which case it is asserted to belong to a class, or it does not. The

approach was shown to have increased accuracy over the fixed penalisation factor case.

Freitas presents an interesting GP framework that evolves SQL queries in order to increase

scalability, security and portability [41]. Each individual consists of two parts: a tuple-set

descriptor and a goal attribute. The GP approach utilises a niching strategy in order to force

the method to produce innovative rules.

GP can also be used to directly build decision, regression and model trees. As was mentioned

in section 4.2.1, artificial neural networks provide no comprehensible explanation of how

they classify or approximate a dataset. On the other hand, classification systems, such as

C4.5 (from section 2.1.2), and regression systems, such as M5 (from section 2.1.2), generate

overly complex trees. GP is potentially capable of providing a compromise between these two

extremes.

For zero-order learning, the function set of the chromosome consists of a number of

attribute tests. The terminal set for the chromosome consists of either

The models for model trees can be obtained by linear regression, symbolic regression or the

GASOPE method of the previous chapter.

The fitness function can either

• or minimise the error between the predicted response of the individual and the target

response of a number of training patterns.

Additionally, the fitness function should implement a penalisation factor in order to penalise

the complexity of a chromosome. In this manner, genetic programs can be used to minimise

both the bias and the variance of the model described by a chromosome.

 
 
 

 
 
 



GP has shown considerable promise in its problem solving ability over a wide range of appli-

cations including data mining [45][62]. However, problems exists in scaling GP to larger

problems such as data mining. Marmelstein and Lamont summarise many of these difficulties

[73]. Some of the most important scaling problems are:

• The size and complexity of GP solutions can make it difficult to understand. Further-

more, solutions can become bloated with extraneous code (also known as introns).

Of the above difficulties, the most difficult to control is the complexity of GP solutions,

otherwise known as code growth. Abass describes many methods for the removal of introns,

e.g. chromosome parsing, alternative selection methods and alternative crossover methods [1].

This section discusses a genetic program for the mining of continuous-valued classes (GPMCC).

Section 4.3.1 presents an overview of the GPMCC method and its various components. An

iterative learning strategy used by the GPMCC method is discussed in section 4.3.2. Section

4.3.3 describes, in detail, the fragment pool utili sed by the GPMCC method. Finally, the core

genetic program for model tree induction is discussed in section 4.3.4.

The genetic program for the mining of continuous-valued classes (GPMCC) consists of three
parts:

1. An iterative learning strategy to reduce the number of patterns that are presented to the

genetic program.

 
 
 

 
 
 



2. A pool of GASOPE fragments, which serve as a terminal set for the terminal nodes of

a chromosome in a genetic program. This pool of fragments is evolved using mutation

and crossover operators.

Stratified rando
sample

GP tree
initialisation

Figure 4.3.1 shows an overview of the GPMCC learning process. In addition, the GPMCC

learning process is summarised below:

 
 
 

 
 
 



(a) Sample S, using an incremental training strategy, from the remaining training patterns
I ,

P, i.e. P C P,S= SUP.

(b) Remove the sampled patterns from P, i.e. P =P/ s.
(c) Evaluate the fitness R~(IxJ of each individual in population GGP,g using the patterns

in S

(d) Let G~p'g C GGp'g be the top x% of the individuals, based on fitness, to be involved

in elitism

(e) Install the members of G~p,g into GGP,g+1

(f) Let G~p,g C GGP,g be the top n% of the individuals, based on fitness, to be involved

in crossover

(g) Run the fragment pool optimisation algorithm once

(h) Perform crossover:

i. Randomly select two individuals Ia, and 113 from G~p,g

11. Produce offspring Iy from Ia, and 113

iii. Install Iy into G~p,g

(i) Perform mutation:

i. Select an individual 1m from G~P,g

ii. Mutate 1mby randomly selecting a mutation operator to perform.

iii. Install 1m into GGP,g+1

(j) Evolve the next generation g := g + I

4.3.2 Iterative learning strategy

The GPMCC method utilises an iterative learning strategy to reduce the number of training

patterns presentations per generation. Additionally, the iterative learning strategy should result

in more accurate rules being generated [32][83]. The strategy utilises the k-means clustering

of section 3.3.1 to cluster the training data. Clustering finds regions of high pattern density.

As was discussed in section 3.3.1, larger clusters form around the turning points of a func-

tion. Using a proportional sampling strategy, the most informative patterns can be selected for

training.

 
 
 

 
 
 



As with the GASOPE method, a stratified random sample is selected from the available

training patterns during each generation of the genetic program. The size, s, of the initial

sample is chosen as a percentage of the total number of training patterns IPI. The sampling

strategy utilises an acceleration rate to increase the size of the sample during every generation

of the genetic program. This size of the sample is increased until the size of the sample equals

the total number of training patterns.

The stratified random sample is drawn proportionally from each of the k clusters of the

k-means clusterer, i.e.:

e' C· Ie' I = ICol· acceleration· s
o Co· 0 IPI

and ICol is the (stratum) size of cluster CO,IPI is the size of the data set, s is the initial sample
size and acceleration is the acceleration rate. The acceleration rate increases the size of the

sample at each generation.

4.3.3 The fragment pool

From section 2.1.2, a model tree is a decision tree that implements multi-variate linear models

at its terminal nodes. However, linear models may not adequately describe time-series data or

non-linear data. In these cases, a model tree that implements multi-variate linear models at its

terminal nodes will perform a piecewise approximation of the problem space. Although such a

piecewise approximation may be accurate, the number of rules induced by the approximation

will be large as indicated by the results in section 4.4.3.

A number of techniques exist to perform non-linear regression. Two obvious non-linear

regression techniques include

• using a genetic program to perform a symbolic regression (from section 4.2.2) of the

data covered by the terminal nodes,

• or using the GASOPE method (from section 3.3.2) to perform a non-linear regression of

the data covered by the terminal nodes.

 
 
 

 
 
 



However, the use of both of these methods can be shown to have a severe impact on the time
taken to construct a model tree.

From section 3.4.3, the largest training time of the GAS OPE method was approximately

1.5 seconds. Assuming a genetic program is used to construct a model tree, if a model is

generated by a mutation operator, a 1.5 second time penalty will be incurred every time that

mutation operator is called. If, for example, there is a 1% chance of the mutation operator being

run on an individual in a population of 100 individuals with, on average, 5 terminal nodes per

individual, a 7.5 second time penalty will be incurred per generation (0.01 x 100 x 5 x 1.5 =
7.5). For 1000 generations this performance penalty is 7500 seconds (2 hours and 5 minutes).

In other words, a very large proportion of the genetic program's training time will be spent

optimising the models.

This section discusses the fragment pool. The fragment pool is an evolutionary algorithm

for improving the time taken for a model to be generated, based on context modelling. The

fragment pool represents a belief space of terminal symbols for a model tree. The remainder of

this section discusses the representation of the fragment pool, the initialisation of a fragment,

the fragment mutation and crossover operators, and the fitness function.
The implementations of the fragment pool and the genetic program of section 4.3.4 to

evolve model trees are heavily intertwined. Therefore, for the remainder of this section assume

that there is a genetic program that evolves model trees, whose terminal nodes are models that

are obtained from the fragment pool.

where 100is a GASOPE individual from section 3.3.2 (model) and 1t(j) is the lifetime of 100, The

lifetime 1t(j) represents the age of a fragment in the fragment pool. When a fragment's lifetime

expires, it is removed from the pool. The lifetime of a fragment can, however, be reset if the

fragment is deemed "useful". By counting the number of times a model appears as a terminal

node in the members of the crossover group of the genetic program, the fragment usefulness

can be determined. A model is more likely to appear as a terminal node of members of the

 
 
 

 
 
 



crossover group if the model closely approximates the sub-space described by the training

and validation patterns covered by the path to the terminal node. Thus, the fragment pool

implements a kind of context modelling [88], because fragments that result in sub-optimal

approximations for these sub-spaces are eventually removed and can no longer contaminate
the pool.

(a) Use the GASOPE method (from section 3.3.2) to obtain a non-linear regression 10

of the patterns in each cluster.

4. Divide k by the split factor i.e k := l"t} t .sp 1_ ac or

Essentially, the above algorithm performs multiple piecewise approximations of the prob-

lem space to build an initial set of fragments. The number of initial clusters, initial-clusters,

and the split factor, split-factor, ultimately control the total number of piecewise approx-

imations (models) that are generated. The algorithm starts by fitting many highly specific

approximations and then increasing the approximation generality by decreasing the available

number of clusters k. Decreasing the available number of clusters results in an increase in the

number of patterns covered by each cluster centroid. This, in turn, results in a more general

function approximation per cluster.

The models contained within the fragments form part of a terminal set for the genetic

program. Whenever the genetic program requires a model, the fragment pool randomly selects

a fragment and passes the fragment's model to the genetic program.

 
 
 

 
 
 



The fragment pool mutation operators serve to inject additional fragments into the fragment

pool. The addition of fragments to the fragment pool result in an increased number of models

in the terminal set of the genetic program. Additional models in the terminal set prevents the

stagnation of the genetic program, by allowing the introduction of models that approximate

regions not covered by the initialisation of the fragment pool. Additionally, the mutation

operators also serve to fine-tune the models at the terminal nodes of the genetic program. Two

mutation operators exist for the fragment pool;

The shrink operator duplicates an arbitrary fragment in the fragment pool, and applies the

shrink operator of section 3.3.2 to the duplicate. The introduce operator calls the GASOPE

optimisation algorithm of section 3.3.2 on the training and validation patterns covered by the

path of a terminal node of an arbitrary individual of the genetic program. The path is defined

as the nodes traversed from the root of a tree to a specific node in the tree. The model obtained

from the GAS OPE optimisation algorithm is given a lifetime of 0 and is inserted into the

fragment pool. The other mutation operators of the GASOPE method are not used by the

fragment pool optimisation process, because they require the coefficients for a term to be

calculated. The coefficients can only be calculated if the training and validation sets are kept

for each fragment. This, however, is not feasible because a fragment in the pool may be utili sed

by more than one individual in the genetic program, i.e. an individual could describe multiple

sub-spaces of the problem domain. All the operators of the GASOPE method are, however,

used in the initialisation of the fragment pool.

The crossover operator of the fragment pool is an invocation of the GAS OPE crossover

operator of section 3.3.2. A fragment with a non-zero usefulness factor and an arbitrary frag-

ment are randomly chosen from the fragment pool and their models are given to the GAS OPE

crossover operator. The model obtained from the GASOPE crossover operator is given a life-

time of 0 and is inserted into the fragment pool.

A culling operator removes fragments from the fragment pool, when those fragment's

fragment lifetimes have expired, i.e. when the fragment lifetimes are larger than some upper-

 
 
 

 
 
 



bound. The culling operator removes fragments from the fragment pool that have not been

useful for a number of generations. This operator ensures that the fragment pool does become

uncontrollably large. A large fragment pool results in a large number of terminal symbols,

which may increase the time taken to optimise the genetic program.

The shrink operator and the crossover operator are uniformly/randomly applied once after

the completion of a generation of the genetic program. This ensures that the size of the frag-

ment pool increases at least once per generation, in order to counteract the effects of the frag-

ment lifetime, i.e. the removal of useless fragments. The introduce operator is applied with a

statistical probability whenever the genetic program requires a model, i.e. when the relevant

genetic program mutation operator is invoked. If the fragment lifetime is too large or the intro-

duce operator is applied too often, the fragment pool will grow too quickly. A large fragment

pool results in a large number of terminal symbols, which may have a negative consequence

on the convergence properties of the genetic program. Conversely, a small fragment pool may

lead to the stagnation of the genetic program, because there may not be enough variation in

the terminal symbols described by the fragment pool.

The fitness function rewards the usefulness of a fragment. As was mentioned earlier, the

fragment usefulness is determined by counting the number of times a fragment appears as a

terminal node of individuals in the crossover group of the genetic program. The crossover

group consists of the top individuals in the genetic program, obtained through tournament

selection. Thus, the usefulness of a fragment is determined by the number of times it appears

as well as where it appears, i.e. fragments not used as terminal symbols of the crossover group

are useless, because the overall fitness of the individuals using those fragments is poor.

1. Obtain a set G~p,g of individuals from the crossover group of a genetic program.

2. Evaluate the fitness of each fragment Fro in the pool GFP using G~p,g, i.e. for each

fragment Fro E GFP:

 
 
 

 
 
 



(a) Count the number of times, n, the individual lro appears as a terminal symbol in
/I

GGP,g·

(b) Set the fitness of the individual FFP(Fro) = n.

3. Select a crossover group from the pool G~p c GFP, where FFP(Fro) > 0, Fro E G~p (the

fragments of G~p still reside in GFP).

4. Reset the fragment lifetime of all fragments in GP~p to 0, as they were deemed useful.

5. Increase the fragment lifetime of all fragments in GPFP/GP~P by one.

,
(a) Select a fragment Fa from GFP and a fragment F13 from GFP.

(b) Perform crossover to obtain a fragment Fy = {/y -+ O}.

(c) Insert Fy into GFP

(a) Select a fragment Fro from GFP.

(b) Duplicate Fro to get F~.

(c) Perform mutation on F~.

(d) Insert F~ into GFP

This section discusses, in detail, a genetic program for inducing model trees. The models for

this genetic program are obtained from the fragment pool discussed in section 4.3.3.

 
 
 

 
 
 



NODE: (CONSE QU ENT) I ((ANTECEDENT -+ NODE) V (,ANTECEDENT -+ NODE))

ANTECEDENT: (NOMINAL..ANT ECEDENT) I (CONT INU OU S..ANT ECEDENT)

NOMINAL..ANTECEDENT: (AI; = vI;)

CONTINUOUS..ANTECEDENT: (AI; < VI;)I(AI; > VI;)I(AI; = VI;)I(AI; i= vI;)

CONSEQUENT: (1m)

A con~equent, 1m, represents a GASOPE model from the fragment pool, AI; represents a

nominal-, continuous- or discrete-valued attribute and vI; represents a possible value of AI;' For

the continuous antecedents, operators such as :::;and ~ are obtained by adjusting the attribute

value vI;'

The GPMCC initialise operator creates an individual Ix by recursively adding nodes to that

individual, up to a maximum depth bound. The pseudo-code algorithm for the initialisation

is as follows, where CALLER is a calling node initially set to Nil and depth is the maximum

required depth of the tree:

(a) Select an attribute AI;' ~ = 1,···,1 from the attribute space of dimension I.

(b) If AI; is a continuous-valued attribute, select an operator op(~) E {<, >,=, i=}.

(c) Otherwise, op(~) E {=}.

 
 
 

 
 
 



(d) Select an attribute value as,i for attribute As from a training pattern i, such that

Vs = as,i,i E {I,···, IPI}.
(e) Create a node Nx with antecedent antx = (As op(~) vs) and consequent conx =Nil.

(f) Call Initialise with the node covered by the antecedent of Nx (the left node), Nantx'

and depth depth + 1.

(g) Call lnitialise with the node covered by the negation of the antecedent of Nx (the

right node), N..,antx' and depth depth + 1.

(a) Select an individual Iro from the fragment pool.

(b) Create a node Nx with antecedent antx = Nil and consequent conx = Iro.

(c) Set the node covered by the antecedent of Nx:

Once the procedure terminates, CALLER returns with the head of the tree. Figure 4.5 illustrates

one outcome of the initialisation of an individual Ix. Each node in the diagram is recursively

initialised as Nx and the arrows show the path taken by the initialisation method.

The mutation operators serve to inject new genetic material into the population. Additionally,

the mutation operators utilise domain specific knowledge (for reasons described in section

2.2.4) in order to improve the quality of the individuals in the population. A large number of

mutation operators exist for the GPMCC method.

 
 
 

 
 
 



• Expand-worst-terminal-node operator: The expand-worst-terminal-node operator lo-

cates and partitions the sub-space for which a terminal node has a higher relative error

than all other terminal nodes in the individual Ix. The relative error of the terminal node

is determined by using the mean squared error EMS between the model described by

the terminal node and the training set covered by the path of that terminal node. The

operator attempts to maximise the adjusted coefficient of determination R~ (fitness) of

the individual, by partitioning the sub-space described by a terminal node into smaller

sub-spaces. The pseudo-code for the expand-worst-terminal-node operator is as follows:

1. Select Nx (shown in figure 4.6) such that VNi E Ix : (conx i- Nil) /\ (EMS (Nx) ::;
EMS (N i) ), i.e. select the worst terminal node.

2. Select an attribute A~, ~ = 1, ... ,I from the attribute space of size I (in order to turn

the consequent into an antecedent).

3. If A~ is a continuous-valued attribute, select an operator op(~) E {<, >, =, i-}.

4. Otherwise, op(~) E {=}.

5. Select an attribute value a~,i for attribute A~ from a training pattern i, such that

v~ = a~,i,i E {I"", IPI}.
6. Set the antecedent antx of node Nx to (A~ op(~) v~).

 
 
 

 
 
 



7. Set the consequent conx of node Nx to Nil (to satisfy the termination criteria).

8. Create a node covered by the antecedent of Nx (the left node), NantX., with antecedent

ant-,antx. = Nil and consequent conantx. = lro.

Nantantx. := Nil

11. Create a node covered by the negation of the antecedent of Nx (the right node),

N-,antx.' with antecedent ant-,antx. = Nil and consequent con-,antX. = lro·

N -,antantx.:=Nil

Intuitively, the expand-worst-terminal-node operator attempts to increase the fitness of

an individual, by partitioning the subspace covered by the worst terminal node (in terms

of mean squared error) into two more subspaces. A high mean squared error is an indi-

cation of a poor function approximation. It is possible that by partitioning the subspace

the accuracy of the function approximation can be increased. Thus, this operator caters

for discontinuities in the input space .

• Expand-any-terminal-node operator: The expand-any-terminal-node operator parti-

tions the sub-space of a random terminal node in an individual Ix. The pseudo-code for

the expand-any-terminal-node operator is identical to the expand-worst-terminal-node

operator, except that step (1) should read:

 
 
 

 
 
 



If the high mean squared error in the worst terminal node is due to a large variance

in the data, the expand-worst-terminal-node operator will continually attempt to parti-

tion the subspace of the worse terminal node to no avail. This could lead to extremely

slow convergence of the GPMCC method. The expand-any-terminal-node prevents this

scenario from occurring by allowing any terminal node to be expanded.

• Shrink operator: The shrink operator replaces a non-terminal node of an individual Ix

with one of the non-terminal node's children. The pseudo-code for the shrink operator
is as follows:

1. Select Nx (as shown in figure 4.7) from Ix such that (antx "# Nil).

2. If U(O, 1) < 0.5 then the current node becomes the node covered by the antecedent

(the left node) Nx := Nantx.

3. Otherwise, the current node becomes the node covered by the negation of the

antecedent (the right node) Nx :=N'antx (as shown in figure 4.7).

 
 
 

 
 
 



The shrink operator is responsible for removing introns from an individual, which is

necessary to prevent code bloat.

• Perturb-worst-non-terminal-node operator: The perturb-worst-non-terminal-node op-

erator selects and perturbs a non-terminal node which has a higher relative error than all

other non-terminal nodes in an individual Ix. Once again, the relative error is determined

using the mean squared error EMS on the training set. This operator gives the GPMCC

method an opportunity to optimise the partitions described by the non-terminal nodes of

an individual. The pseudo-code for the perturb-worst-non-terminal-node operator is as

follows:

1. Select Nx (as shown in figure 4.8) such that VNi E Ix : (antx =1= Nil) 1\ (EMS (Nx) :::;

EMS(Ni)).

2. IfV(O, 1) < VI, where VI E [0,1] is a user-defined parameter

(a) If As is a continuous-valued attribute

1. If V(O, 1) < V2 where V2 E [0,1] is a user-defined parameter, select an

operator op(~) E {<,>, =, =I=} (as shown in figure 4.8).

 
 
 

 
 
 



ii. Otherwise, adjust the attribute value v~ according to a Gaussian distribu-
. '- -(max-min)U(O,I)2 h W • - 1 I . ( > ) 1\tIOn v~ .- v~+ 2U3(O.3)2 , W ere va~,i' l - , .. , . max _ a~,i 1\

(min ::;a~,i)' U3 E 9\ is a user-defined parameter, min is the minimum

value for an attribute A~ and max is the maximum value for an attribute

A~. The standard deviation 0.3 of the Gaussian distribution provides an

even distribution of the Gaussian function in the domain [0,1].

(b) Otherwise,

1. Randomly, select an attribute value a~,i for attribute A~ from a training

pattern i, and let v~= a~,i, i E {I,···, !PI}.
3. Otherwise,

(a) Select an attribute A~, ~ = 1, ... ,I from the attribute space of size I.

(b) If A~ is a continuous-valued attribute, select an operator op(~) E {<, >,=, =I=}.
(c) Otherwise, op(~) E {=}.
(d) Randomly select an attribute value a~,i for attribute A~ from a training pattern

i, such that v~= a~,i' i E {I,···, IPI}.
4. Set the antecedent antx of node Nx to (A~ op(~) v~).

Intuitively, the partition described by a non-terminal node of an individual may not

correctly partition the subspace e.g. if a test should have been Al < 5, but is actually

Al < 4.6. The perturb-worst-non-terminal-node operator specifically attempts to adjust

the test described by the worst non-terminal node (indicated by the largest mean squared

error) .

• Perturb-any-non-terminal-node operator: The perturb-any-non-terminal-node oper-

ator selects and perturbs a non-terminal node in an individual Ix. The perturb-any-

non-terminal-node operator is identical to the perturb-worst-non-terminal-node operator

except that step (1) should read:

This operator allows for the perturbation of any non-terminal node, in order to prevent

slow convergence in the case that the high mean squared error of the worst non-terminal

node is due to high variation in the dataset.

 
 
 

 
 
 



• Perturb-worst-terminal-node operator: The perturb-worst-terminal-node operator se-

lects and perturbs a terminal node which has a higher relative error than all other non-

terminal nodes in an individual Ix. This operator gives the GPMCC method an opportu-

nity to optimise the non-linear approximations for the sub-space covered by the training

and validation patterns described by the path to a terminal node. The perturb-worst-

terminal-node operator is as follows:

1. Select Nx (as shown in figure 4.9) such that 'iNi E Ix: (conx =I Nil) 1\ (EMS (Nx) ::;

EMS(Ni))'

2. Select an individual Iro from the fragment pool.

3. Set the consequent conx of node Nx to Iro.

Intuitively, the model described by the terminal node of an individual may be a poor fit

of the data covered by the path of that terminal node. The perturb-worst-terminal-node

operator randomly selects a new individual from the fragment pool to replace the current
model.

• Perturb-any-terminal-node operator: The perturb-any-terminal-node operator selects

and perturbs a terminal node in an individual Ix. The perturb-any-terminal-node operator

 
 
 

 
 
 



This operator allows for the perturbation of any terminal node, in order to prevent slow

convergence in the case that the high mean squared error of the worst terminal node is
due to high variation in the dataset.

• Reinitialise operator: The reinitialise operator is a re-invocation of the initialisation

operator.

The crossover operator implements a standard genetic program crossover strategy. Two indi-

viduals (Ia and [13)are chosen by tournament selection from the population and a crossover

point is chosen for each individual. The two crossover points are spliced together to create a

new individual [y. The pseudo-code for the crossover operator is as follows:

 
 
 

 
 
 



Like all evolutionary computing paradigms, the fitness function is the most important aspect

of a genetic program, in that it serves to direct the algorithm toward optimal solutions. The

fitness function used by the genetic program is an extended form of the adjusted coefficient of

determination (the GASOPE fitness function) from equations (3.15) and (3.16):

 
 
 

 
 
 



where s is the size of the sample set, bi is the actual output of pattern i, bi i is the predictedx'
output of individual Ix for pattern i, and the model complexity d is calculated as follows:

[Ixl { 1+~IIOlI~[T~I A-
d = L L..1;=1L..'t=l 1;,'t

,u=l 1

if con,u =f Nit

if con,u =Nit

where Ix is an individual in the set GGP of individuals, IIxl is the number of nodes in Ix, Iro is

the model at a terminal node, T1; is a term of Iro and A-1;,'t is the order of term T1;' This fitness

function penalises the complexity of an individual Ix by penalising the size of an individual

and the complexity of each of the non-terminal nodes of that individual, i.e. the number of

nodes and the complexity of each leaf node as shown equation (3.16).

This section discusses the experimental procedure and results of the GPMCC method vs.

NeuroLinear and Cubist, applied to various data sets obtained from the VCI machine learning

repository and a number of artificially created datasets. Section 4.4.1 presents the various data

sets. The influence of a number of key GPMCC parameters are discussed in section 4.4.2.

Section 4.4.3 presents the experimental results for the functions listed in section 4.4.1. The

quality of the generated rules is discussed in section 4.4.4.

The GPMCC method was evaluated on a number of benchmark approximation databases from

the machine learning repository as well as a number of artificial databases [14]. Table 4.1

describes each of the VCI databases used in this thesis. The artificial databases used in this

thesis were created to analyse various approximation problems not sufficiently covered by the

VCI machine learning repository, e.g. time-series, and to provide a number of large databases,

exceeding 10000 patterns, with which to analyse the performance of the GPMCC method.

The House-16H data set in table 4.1 is a particularly difficult problem. Apart from being

large, the data set also has very large values for its attributes. The performance in terms of rule

accuracy of the various data mining algorithms used later in this thesis is expected to be poor,

as is shown by this and the next section. Because the adjusted coefficient of determination is

 
 
 

 
 
 



Table 4.1: Databases obtained from the UCI machine learning repository (Attributes: N =
Nominal, C = Continuous)

Dataset Samples Attributes Prediction task

Abalone 4177 1N,7C Age of abalone specimens

Auto-mpg 392 7C Car fuel consumption in miles per gallon

Elevators 16599 18C Action taken for controlling an F16 aircraft

Federal Reserve Economic Data 1049 16C I-Month credit deficit rate

House-16H 22784 16C Median value of homes in 50 US states

Housing 506 13C Median value of homes in Boston suburbs

Machine 209 6C Relative CPU performance

Servo 167 2N,2C Response time of a servo mechanism

used as a fitness function for the GPMCC method, the scaling of attributes will not improve

the accuracy of the GPMCC method.

The function describing the Machine data set in table 4.1 is piecewise linear. Therefore,

the GPMCC method is not expected to perform substantially better, in terms of the number of

rules generated, than other methods.

In addition to the problems listed in table 4.1, the following problems were also used:

• The function example database represents a discontinuous function, defined by a number

of standard polynomial expressions:

1.5x2-7x+2 if (type ='C') A (x > 1)

y=U(-I,I)+
x3 +400 if (type ='C') A (x ~ l)
2x if (type ='A')
-2x if (type ='B')

where x E [-10,10] and type E {'A',' B' ,'C'}. The database consists of 1000 patterns,

with 3 attributes per pattern .

• The Lena Image database represents a 128 x 128 grey-scale version of the famous

"Lena" image, which is used for comparing different image compression techniques

[88]. The data consists of 11 continuous valued attributes, which represents a context

(or footprint) for a given pixel. The objective of an approximation method is to infer

 
 
 

 
 
 



rules between the context pixels and the target pixel. The database is large and consists

of 16384 patterns.

• The Mono Sample database represents an approximately 4 second long sound clip,

sampled in mono at 8000 hertz (the chorus of U2's "Pride (In the name of love)").

The database consists of 31884 patterns, with 5 attributes per pattern. The objective of

an approximation method is to infer rules between a sample and a context of previous

samples.

• The Stereo Sample database represents an approximately 4 second long sound clip,

sampled in stereo at 8000 hertz (the chorus ofU2's "Pride (In the name oflove)"). The

database consists of 31430 patterns, with 9 attributes per pattern. The objective of an

approximation method is to infer rules between a sample in the left channel and a number

of sample points in the left and right channels.

• The Time-series database represents a discontinuous application of components of the

Rossler and Lorenz attractors (from section 3.4.1), the Henon map and a polynomial

term:

Xn+l if (xn ~ 0)
Yn+l if (xn < 0) 1\ (Yn ~ 0)
Zn+l if (xn < 0) 1\ (Yn < 0) 1\ (Zn ~ 0)

Wn+l if (xn < 0) 1\ (Yn < 0) 1\ (Zn < 0)

where Xo,Yo,zo, Wo rv U( -5,5). The database consists of 1000 patterns, with 4 attributes

per pattern, generated using the Runga-Kutta method with order 4 [16].

 
 
 

 
 
 



• the fragment lifetime, which controls how long unused fragments remain in the frag-
ment pool,

• the leaf optimisation rate, which controls how often the GASOPE method is called to

obtain a model for a terminal node,

• and fragment pool initialisation, which controls the initial terminal set of the GPMCC

method.

The databases used to test the influence of key GPMCC parameters were the artificial

databases of the previous section. The artificial databases were used because they are well

defined, easily understandable and diverse. Four databases from the VCI machine learning

repository have been selected, i.e. Abalone, Elevators, Federal Reserve Economic Data and

House-16H, to provide additional problem diversity.

Each of the databases was split up into a training set, a validation set and a generalis a-

tion set. The training set was used to train the GPMCC method, the validation set was used

to validate the models of the GASOPE method and the generalisation set was used to test

the performance of the GPMCC method on unseen data. The training set for each database

consisted of roughly 80% of the patterns, with the remainder of the patterns split evenly among

the validation and generalisation sets (80% : 10% : 10%). The GPMCC initialisation for each

of the databases is shown by table 4.2. For all datasets the maximum polynomial order was set

to 5, except for the house-16H dataset, for which the maximum polynomial order was set to
10.

Generally speaking, the parameters prefixed by "Function" in table 4.2 have the same

meaning as that of section 3.4.2 and control the behaviour of the model optimisation algorithm

of the fragment pool. These parameters are soft options for the GPMCC method, because

they are automatically adjusted if they violate any of the restrictions of section 3.4.2. The

parameters prefixed by "Decision" control the behaviour of the genetic program for generat-

ing model trees. In general, "consequent" refers to terminal nodes and "antecedent" refers

to non-terminal nodes. The mnemonic "C~' stands for continuous antecedent, "NA" stands

for nominal antecedent, "ME" stands for mutate expand and "MN" stands for mutate node

(perturb).

 
 
 

 
 
 



Parameter Value
SyntaxMode I
Clusters 30
ClusterEpochs 10
FunctionMutationRate 0.1
FunctionCrossoverRate 0.2
FunctionGenerations 100
FunctionIndividuals 30
PolynomialOrder 5
FunctionPercentageSampleSize om
FunctionMaximumComponents 10
FunctionElite 0.1
FunctionCutOff 0.001
DecisionMaxNodes 30
DecisionMEWorstV sAnyConsequent 0.5
DecisionMECreate VsRedistributeLeatN odes 0.5
DecisionMNAntecedentV sConsequent 0.5
DecisionMNWorstV sAny Antecedent 0.5
DecisionMNWorstV sAnyConsequent 0.5
DecisionReoptimize VsSelectLeaf 0.1
DecisionMutateExpand 0.3
DecisionMutateShrink 0.3
DecisionMutateNode 0.3
DecisionMutateReinitialize 0.1
DecisionNAAttribute VsClassOptimize 0.2
DecisionCAAttributeOptimize 0.1
DecisionCAClassOptimize 0.6
DecisionCAConditionOptimize 0.3
DecisionCAClass VsGaussian 0.1
DecisionCAClassPartition 0.1
DecisionCAConditionalPartition 0.1
DecisionPoolN oClustersStart 30
DecisionPoolN oClustersDivision 2
DecisionPoolN oClusterEpochs 1000
DecisionPoolFragmentLifeTime 50
DecisionInitialPercentageSampleSize 0.1
DecisionSampleAcceleration 0.005
DecisionNoIndividuals 100
DecisionNoGenerations 10
DecisionElite 0.0
DecisionMutationRateInitial 0.2
DecisionMutationRateIncrement 0.01
DecisionMutationRateMax 0.6
DecisionCrossoverRate 0.1
Cross Validation 0

 
 
 

 
 
 



The GPMCC method utilises a variable mutation rate. The mutation rate is initially set

to a default parameter ("DecisionMutationRateInitial"). Every time the accuracy of the best

individual in a generation does not increase, the mutation rate is increased (by the amount

specified by "DecisionMutationRateIncrement") up to a maximum mutation rate (given by

"DecisionMutationRateMax") .

This variable mutation rate helps to prevent stagnation. If the accuracy of the best individ-

ual does not improve over a number of generations, the increase in mutation rate injects more

new genetic material into the population. However, if the accuracy of the best individual does

improve, then the mutation rate is reset to the initial mutation rate.

A dagger, t, on the right hand side of results listed in tables 4.3 to 4.28 indicate the best

result for a particular experiment set. In the event of ties between results, two other types of

daggers are used: tt indicates that a particular result was judged the best of the experiment

set using the adjusted coefficient of determination, and to indicates that a particular result was

judged the best of the experiment set using the mean squared error.

The fragment lifetime ("DecisionPooIFragmentLifetime" in table 4.2) controls how long an

unused GAS OPE fragment remains in the fragment pool. Intuitively, a longer fragment life-

time results in a larger memory overhead to store unused fragments. A larger pool may result

in slower convergence due to the increased number of fragments that could be selected at a

leaf node. A smaller pool could result in sub-optimal convergence due to over-fitting.

Tables 4.3 - 4.7 show the effect of the fragment lifetime on the outcomes of the GPMCC

method. Generally speaking, the fragment lifetime has a definite effect on the average simula-

tion completion time t. A decrease in the fragment lifetime results in a decrease in the average

simulation completion time. The fragment lifetime has no significant effect on any of the other

outcomes (MSE, number of nodes, R2, R~ etc.).

A fragment lifetime of 5 seems to result in over-fitting for some of the databases. Abalone,

House-16H, and Function Example (shown in table 4.3) show a significant increase in both

the average generalisation mean squared error GMSE and the standard deviation of the mean

squared error (JGMSE. Even though the fragment lifetime has no significant effect on general-

isation accuracy, four of the nine datasets obtained their best generalisation performance with

 
 
 

 
 
 



Dataset TMSE OTMSE GMSE °GMSE

R2
°R~ R2

oRbT G

R~T °R~T R~G °R~G

Nodes ONodes t TMSE
r;;;;;sF

Abalone 4.5854 0.0275 7.3979 10.1001
0.5614 0.0026 0.5126 0.1065
0.5571 0.0025 0.4765 0.1009
4.0000 1.4622 1264.3700 t 0.6198

Elevators 0.0000 tT 0.0000 0.0000 tT 0.0000
0.8832 t 0.0065 0.8796 t 0.0076
0.8822 t 0.0063 0.8705 t 0.0078
7.8667 2.2087 1873.5300 t 1.0000 tt

Federal 0.0441 t 0.0032 0.0521 0.0189
Reserve 0.9961 t 0.0003 0.9954 0.0017
Economic 0.9960 t 0.0003 0.9928 0.0027
Data 5.5333 1.7367 636.3330 t 0.8477
Function 0.4687 1.4012 0.4804 1.4807
Example 1.0000 0.0000 1.0000 0.0001

1.0000 0.0000 1.0000 0.0001
7.8000 1.4480 953.1670 t 0.9757

House-16H 1691964000.0000 t 63812800.0000 2320560000.0000 2949560000.0000
0.3916 t 0.0229 0.3606 0.0743
0.3887 t 0.0224 0.3375 0.0699

11.0667 3.3418 2940.3000 t 0.7291
Lena 121.2942 3.9576 127.1936 6.7631
Image 0.9402 0.0020 0.9377 0.0033

0.9398 0.0019 0.9348 0.0035
13.8000 3.7729 1671.2700 t 0.9536 t

Mono 301.4220 6.7250 302.9520 8.6692
Sample 0.6873 0.0070 0.6799 0.0092

0.6868 0.0070 0.6761 0.0093
10.2000 2.0745 2437.8300 t 0.9950

Stereo 200.4300 t 1.0665 200.3480 t 1.1636
Sample 0.8241 t 0.0009 0.8191 t 0.0011

0.8239 t 0.0009 0.8174 t 0.0010
5.1333 1.2794 4584.1300 t 1.0004 t

Time- 1.1065 t 1.7963 1.0884 1.6558
series 0.9912 t 0.0143 0.9894 0.0162

0.9905 t 0.0155 0.9396 0.1840
7.0000 1.8937 687.4000 t 1.0167

 
 
 

 
 
 



Dataset TMSE crTMSE GMSE crGMSE

R2
crR} R2 cr

RbT G

R~T crR~T R~G crR~G

Nodes crNodes t TMSE
r.;:;;sp

Abalone 4.5661 0.0304 5.1339 t 0.4080
0.5632 0.0029 0.5660 t 0.0345
0.5588 0.0028 0.5279 t 0.0390
4.1333 1.2521 1376.5300 0.8894 t

Elevators 0.0000 0.0000 0.0000 0.0000
0.8811 0.0069 0.8771 0.0088
0.8802 0.0068 0.8696 0.0084
6.9333 2.1961 2045.0700 1.0000

Federal 0.0450 0.0022 0.0477 0.0034
Reserve 0.9961 0.0002 0.9958 0.0003
Economic 0.9959 0.0002 0.9938 t 0.0008
Data 5.3333 1.0613 743.3330 0.9418
Function 0.1004 0.0032 0.0915 0.0034
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
7.8667 1.3578 967.4000 1.0974

House-16H 1706552000.0000 68102200.0000 1775414000.0000 t 89054600.0000
0.3864 0.0245 0.3755 t 0.0313
0.3836 0.0243 0.3529 t 0.0330
8.7333 t 2.4486 3442.2700 0.9612 t

Lena 119.9730 t 3.6204 125.8572 t 4.6576
Image 0.9408 t 0.0018 0.9383 t 0.0023

0.9405 t 0.0017 0.9354 t 0.0025
13.3333 3.6040 1894.8000 0.9532

Mono 301.6280 5.3602 302.7020 6.9376
Sample 0.6871 0.0056 0.6802 0.0073

0.6866 0.0055 0.6765 0.0073
9.3333 2.1064 2740.8000 0.9965

Stereo 201.4300 2.1446 201.5580 2.5642
Sample 0.8233 0.0019 0.8180 0.0023

0.8231 0.0019 0.8163 0.0024
5.0000 1.7420 4675.4700 0.9994

Time- 1.1449 1.4470 0.9168 t 1.0918
series 0.9909 0.0115 0.9910 t 0.0107

0.9902 0.0124 0.9691 0.0546
7.2000 1.8458 795.3670 1.2489

 
 
 

 
 
 



Dataset TMSE OTMSE GMSE OGMSE

R2
OR} R2

ORbT G

R~T °R~T R~G °R2~
Nodes °Nodes t TMSE

r;;::;m;
Abalone 4.5658 0.0355 16.0463 59.4182

0.5632 0.0034 0.5418 0.1074
0.5587 0.0032 0.5046 0.1009
3.9333 1.1427 1471.9700 0.2846

Elevators 0.0000 0.0000 0.0000 0.0000
0.8827 0.0078 0.8776 0.0092
0.8819 0.0076 0.8700 0.0081
6.7333 t 2.3916 2062.2000 1.0000

Federal 0.0452 0.0019 0.0476 t 0.0051
Reserve 0.9961 0.0002 0.9958 t 0.0005
Economic 0.9959 0.0002 0.9936 0.0013
Data 5.1333 1.0417 845.3670 0.9501 t
Function 0.1001 t 0.0025 0.0908 t 0.0030
Example 1.0000 to 0.0000 1.0000 to 0.0000

1.0000 to 0.0000 1.0000 to 0.0000
7.4000 t 0.8137 1008.2700 1.1017 t

House-16H 1708182000.0000 59607800.0000 1816690000.0000 257592000.0000
0.3858 0.0214 0.3642 0.0737
0.3831 0.0214 0.3434 0.0707
9.1333 3.0596 3571.0700 0.9403

Lena 121.5576 3.4550 127.4858 5.1076
Image 0.9400 0.0017 0.9375 0.0025

0.9397 0.0017 0.9350 0.0027
12.4000 3.3280 2024.3700 0.9535

Mono 300.2160 5.0925 300.9340 6.2382
Sample 0.6885 0.0053 0.6821 0.0066

0.6881 0.0053 0.6783 0.0065
10.0000 1.9476 2773.1000 0.9976

Stereo 201.3880 2.4986 201.5300 2.9388
Sample 0.8233 0.0022 0.8181 0.0027

0.8231 0.0022 0.8165 0.0027
4.6667 2.0398 4819.2300 0.9993

Time- 1.3721 1.4380 1.2856 1.2400
series 0.9891 O.ot15 0.9874 0.0121

0.9882 0.0124 0.9301 0.1829
6.6667 1.4933 859.4000 1.0673

 
 
 

 
 
 



Dataset TMSE CJTMSE GMSE CJGMSE

R2
CJR} R2

CJR~T G

R~T CJR~T R~G CJR2~
Nodes CJNodes t TMSE

~
Abalone 4.5606 t 0.0409 5.3216 0.8711

0.5637 t 0.0039 0.5501 0.0736
0.5592 t 0.0034 0.5088 0.0866
4.2000 1.6274 1483.3700 0.8570

Elevators 0.0000 0.0000 0.0000 0.0000
0.8823 0.0054 0.8777 0.0068
0.8813 0.0053 0.8693 0.0061
7.6667 2.1867 2117.2ooo 1.0000

Federal 0.0447 0.0021 0.0591 0.0373
Reserve 0.9961 0.0002 0.9948 0.0033
Economic 0.9959 0.0002 0.9919 0.0050
Data 5.4000 1.4288 826.8670 0.7555
Function 0.1005 0.0028 0.0919 0.0040
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
7.4667 1.2521 1147.8700 1.0933

House-16H 1730830000.0000 49356800.0000 1826146000.0000 124870200.0000
0.3777 0.0177 0.3576 0.0439
0.3750 0.0174 0.3351 0.0484
9.0667 2.7029 3542.1300 0.9478

Lena 121.6324 3.4741 129.2850 9.8847
Image 0.9400 0.0017 0.9366 0.0048

0.9397 0.0017 0.9339 0.0050
12.2667 2.8031 2066.8000 0.9408

Mono 300.9200 5.6947 302.1420 7.3790
Sample 0.6878 0.0059 0.6808 0.0078

0.6873 0.0059 0.6771 0.0077
9.5333 2.0965 2845.7000 0.9960

Stereo 202.2480 2.6624 203.5020 5.1323
Sample 0.8225 0.0023 0.8163 0.0046

0.8223 0.0023 0.8147 0.0048
4.6667 1.4933 5001.7700 0.9938

Time- 1.1618 1.4913 0.9247 1.2046
series 0.9907 0.0119 0.9910 0.0118

0.9901 0.0128 0.9612 0.1351
6.7333 1.5522 915.8330 1.2564 t

 
 
 

 
 
 



Dataset TMSE CJTMSE GMSE CJGMSE

R2
CJR} R2

CJRbT G

R~T CJR~T R~G CJR~G

Nodes CJNodes t TMSE
(';MSF

Abalone 4.5682 0.0340 5.5379 1.6687
0.5630 0.0033 0.5383 0.1071
0.5588 0.0030 0.5023 0.1012
3.6667 t 1.2130 1575.8000 0.8249

Elevators 0.0000 0.0000 0.0000 0.0000
0.8819 0.0074 0.8782 0.0094
0.8810 0.0072 0.8702 0.0086
7.0667 2.4344 2172.7300 1.0000

Federal 0.0449 0.0028 0.0518 0.0218
Reserve 0.9961 0.0002 0.9954 0.0019
Economic 0.9959 0.0002 0.9932 0.0032
Data 5.0000 t 1.3896 904.9330 0.8667
Function 0.1004 0.0030 0.0912 0.0036
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
7.4000 1.1017 1198.7000 1.1007

House-16H 1705792000.0000 65710600.0000 1856478000.0000 390526000.0000
0.3867 0.0236 0.3592 0.0728
0.3839 0.0230 0.3374 0.0685
9.5333 3.5982 3578.9000 0.9188

Lena 122.2352 3.7588 130.0164 9.8415
Image 0.9397 0.0019 0.9363 0.0048

0.9394 0.0018 0.9336 0.0051
12.1333 t 3.2242 2017.7300 0.9402

Mono 299.7100 t 4.0271 300.2380 t 4.6945
Sample 0.6890 t 0.0042 0.6828 t 0.0050

0.6886 t 0.0042 0.6792 t 0.0050
9.2667 t 1.5522 2799.3000 0.9982 t

Stereo 200.5820 1.7623 200.5640 2.1152
Sample 0.8240 0.0015 0.8189 0.0019

0.8238 0.0015 0.8173 0.0020
4.6667 to 1.8257 5066.8300 1.0001

Time- 1.3141 1.5510 1.1545 1.1890
series 0.9895 0.0124 0.9887 0.0116

0.9889 0.0130 0.9740 t 0.0307
6.2667 t 1.8557 982.1000 1.1382

 
 
 

 
 
 



a fragment lifetime of 50. Additionally, eight of the datasets where distributed between a frag-

ment lifetime of 5 and 100. Therefore, a fragment lifetime of 50 appears to be the best choice

for this parameter, since it is both consistent and computationally less expensive than the larger

fragment lifetimes.

The leaf optimisation rate ("DecisionReoptimizeVsSelectLeaf" in table 4.2) controls the rate

at which a leaf node is optimised using the GASOPE method. The GASOPE method takes

±1.5 seconds to perform an optimisation (refer to section 3.4.3). A larger leaf optimisation

rate should thus result in the GPMCC method taking longer to complete each simulation.

Tables 4.8 - 4.11 show the effect of the leaf optimisation rate on the outcomes of the

GPMCC method. As expected, an increase in the leaf optimisation rate resulted in an increase

in the average simulation completion time t. An increase in the leaf optimisation rate also

resulted in an increase in training accuracy (TMSE, R} and R~T)' However, there was no

significant increase in generalisation accuracy (GMSE, Rb and R~G)' except in the case of the

Abalone data set where the generalisation accuracy actually decreased. In table 4.11, over-

fitting was observed in some instances (Abalone, Federal Reserve Economic Data and Time-

series), but not in others (House-16H, Function Example, Lena Image, Mono Sample and

Stereo Sample).

Interestingly, seven of the nine databases achieved the best training-generalisation ratio

~~~~ for a leaf optimisation value of 0.05 (shown in table 4.8). This clearly shows that the
generalisation accuracy is not significantly affected by an increase in the leaf optimisation

rate. A low leaf optimisation rate is clearly desired, because the performance gain in terms

of the average simulation completion time outweighs any increase in training performance,

particularly if there was no significant increase in generalisation performance. For this reason,

a leaf optimisation rate of 0.05 appears to be the best choice for this parameter.

Windowing is controlled by two parameters; the initial window size as a percentage of the

total number of training patterns ("DecisionInitialPercentageSampleSize" in table 4.2) and the

acceleration rate by which patterns are injected into the window ("DecisionSampleAccelera-

 
 
 

 
 
 



Dataset TMSE crTMSE GMSE crGMSE

R2 crR} R2
crR~T G

R~T crR~T R~G crR~G

Nodes crNodes t TMSE
"f'fMS'F.

Abalone 4.5836 0.0308 6.4099 6.7010
0.5615 0.0029 0.5426 0.1079
0.5572 0.0028 0.5071 0.1027
4.0000 1.5536 991.6330 t 0.7151

Elevators 0.0000 0.0000 0.0000 0.0000
0.8805 0.0062 0.8783 0.0084
0.8797 0.0061 0.8709 0.0077
6.5333 1.6344 1648.6700 t 1.0000 tt

Federal 0.0452 0.0034 0.0480 t 0.0068
Reserve 0.9960 0.0003 0.9957 t 0.0006
Economic 0.9959 0.0003 0.9935 t 0.0014
Data 5.0000 t 1.2865 485.3330 t 0.9428 t
Function 0.1000 0.0034 0.0910 0.0035
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
7.6000 1.1919 539.4330 t 1.0997 t

House-16H 1698136000.0000 68116800.0000 1807944000.0000 113766200.0000
0.3894 0.0245 0.3640 0.0400
0.3865 0.0242 0.3395 0.0463

10.2667 3.7318 2762.8700 t 0.9393
Lena 122.2988 3.4490 128.1206 4.3605
Image 0.9397 0.0017 0.9372 0.0021

0.9394 0.0017 0.9346 0.0012
12.8000 t 3.2947 1681.1700 t 0.9546 t

Mono 301.5540 6.3549 302.2460 8.1705
Sample 0.6871 0.0066 0.6807 0.0086

0.6867 0.0066 0.6769 0.0086
9.6667 2.1227 2414.7300 t 0.9977 t

Stereo 201.3500 1.6139 201.4480 2.1278
Sample 0.8233 0.0014 0.8181 0.0019

0.8231 0.0014 0.8165 0.0021
4.9333 1.7006 3953.2300 t 0.9995 t

Time- 1.4509 2.0606 1.0484 1.4091
series 0.9884 0.0164 0.9897 0.0138

0.9874 0.0181 0.8855 0.3011
6.4000 t 1.4044 474.0330 t 1.3840 t

 
 
 

 
 
 



Dataset TMSE CJTMSE GMSE CJGMSE

R2 CJR} R2
CJRbT G

R~T CJR~T R~G CJR2~
Nodes CJNodes t TMSE

~
Abalone 4.5705 0.0355 5.2330 t 0.6863

0.5628 0.0034 0.5576 t 0.0580
0.5580 0.0033 0.5156 t 0.0680
4.2000 1.7100 1436.9000 0.8734 t

Elevators 0.0000 0.0000 0.0000 0.0000
0.8799 0.0053 0.8748 0.0050
0.8790 0.0051 0.8674 0.0048
6.3333 t 2.1867 2128.3300 1.0000

Federal 0.0447 0.0029 0.0485 0.0055
Reserve 0.9961 0.0003 0.9957 0.0005
Economic 0.9959 0.0003 0.9932 0.0013
Data 5.7333 1.3374 794.2670 0.9223
Function 0.0997 0.0035 0.0915 0.0040
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
7.7333 1.4368 996.5330 1.0918

House-16H 1715448000.0000 61350600.0000 1787912000.0000 90663800.0000
0.3832 0.0221 0.3711 0.0319
0.3807 0.0218 0.3511 0.0314
8.6000 t 2.5407 3481.7300 0.9595 t

Lena 120.0606 3.4722 125.8182 5.7197
Image 0.9408 0.0017 0.9383 0.0028

0.9404 0.0017 0.9354 0.0028
13.0667 3.5422 2017.5700 0.9542

Mono 301.0520 5.7343 302.2340 7.2463
Sample 0.6877 0.0060 0.6807 0.0077

0.6872 0.0059 0.6771 0.0075
8.8667 t 1.8889 2803.7000 0.9961

Stereo 201.6580 2.9872 202.6600 5.4989
Sample 0.8231 0.0026 0.8170 0.0050

0.8229 0.0026 0.8153 0.0050
5.0667 1.7006 4757.1300 0.9951

Time- 1.4052 1.9056 1.0292 t 1.3389
series 0.9888 0.0152 0.9899 t 0.0131

0.9880 0.0164 0.9694 t 0.0696
6.7333 2.0833 819.9670 1.3654

 
 
 

 
 
 



Dataset TMSE aTMSE GMSE aGMSE

R2
aR} R2

aRbT G

R~T aR~T R~G aR~G

Nodes aNodes t TMSE
r.MSF

Abalone 4.5632 0.0300 6.8353 8.6463
0.5635 0.0029 0.5367 0.1142
0.5592 0.0025 0.5010 0.1089
3.7333 t 1.2299 2480.1300 0.6676

Elevators 0.0000 0.0000 0.0000 tT 0.0000
0.8847 0.0071 0.8809 t 0.0089
0.8837 0.0068 0.8723 t 0.0078
7.9333 3.0050 2898.1700 1.0000

Federal 0.0443 0.0028 0.0496 0.0078
Reserve 0.9961 0.0002 0.9956 0.0007
Economic 0.9960 0.0002 0.9934 0.0013
Data 5.3333 1.5830 1494.1000 0.8927
Function 0.0999 0.0031 0.0909 0.0038
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
7.4667 t 1.0080 2015.8300 1.0990

House-16H 1681026000.0000 63924800.0000 2019260000.0000 1377860000.0000
0.3956 0.0230 0.3654 0.0762
0.3929 0.0228 0.3437 0.0729
8.7333 2.8154 4715.7700 0.8325

Lena 118.9782 3.0875 126.2072 5.8012
Image 0.9413 0.0015 0.9382 0.0028

0.9410 0.0015 0.9353 0.0029
12.9333 3.5809 2626.0700 0.9427

Mono 300.5480 5.1244 301.2480 6.7504
Sample 0.6882 0.0053 0.6817 0.0071

0.6877 0.0053 0.6780 0.0072
9.4000 1.8495 3468.6000 0.9977

Stereo 201.2660 1.8135 201.4240 1.9861
Sample 0.8234 0.0016 0.8182 0.0018

0.8232 0.0016 0.8166 0.0019
4.3333 t 1.2130 6513.7000 0.9992

Time- 1.3655 t 1.6599 1.2416 1.2834
series 0.9891 t 0.0132 0.9879 0.0126

0.9883 t 0.0141 0.9682 0.0380
6.4667 1.5698 1682.8300 1.0998

 
 
 

 
 
 



Dataset TMSE crTMSE GMSE crGMSE

R2
crR} R2

crRbT G

R~T crR~T R~G crR~G

Nodes crNodes t TMSE~
Abalone 4.5585 t 0.0221 25.8332 111.4494

0.5640 t 0.0021 0.5183 0.1117
0.5594 t 0.0018 0.4785 0.1070
4.0000 1.1447 4367.6300 0.1765

Elevators 0.0000 tt 0.0000 0.0000 0.0000
0.8847 t 0.0058 0.8798 0.0077
0.8837 t 0.0057 0.8707 0.0080
7.6000 2.2376 5008.1700 1.0000

Federal 0.0427 t 0.0031 0.0500 0.0057
Reserve 0.9963 t 0.0003 0.9956 0.0005
Economic 0.9961 t 0.0003 0.9930 0.0013
Data 5.3333 1.5830 3115.8300 0.8537
Function 0.0988 t 0.0031 0.0904 t 0.0030
Example 1.0000 to 0.0000 1.0000 to 0.0000

1.0000 to 0.0000 1.0000 to 0.0000
7.8667 1.3578 3809.7000 1.0925

House-16H 1651170000.0000 t 79038000.0000 1750206000.0000 t 119859600.0000
0.4063 t 0.0284 0.3843 t 0.0422
0.4034 t 0.0280 0.3596 t 0.0411

10.3333 2.6436 6268.5300 0.9434
Lena 117.2918 t 4.8566 123.7744 t 7.4047
Image 0.9421 t 0.0024 0.9393 t 0.0036

0.9418 t 0.0023 0.9361 t 0.0035
14.7333 4.6307 3968.4000 0.9476

Mono 298.7060 t 3.8851 299.6060 t 5.1041
Sample 0.6901 t 0.0040 0.6835 t 0.0054

0.6896 t 0.0041 0.6793 t 0.0059
10.5333 2.5015 4645.1700 0.9970

Stereo 200.4060 t 0.8277 200.6060 t 0.8389
Sample 0.8242 t 0.0007 0.8189 t 0.0008

0.8240 t 0.0007 0.8172 t 0.0006
4.7333 1.7991 9672.4300 0.9990

Time- 1.4194 1.6810 1.3092 1.3016
series 0.9887 0.0134 0.9872 0.0127

0.9880 0.0141 0.9740 0.0234
5.8667 1.7953 3558.8300 1.0842

 
 
 

 
 
 



Dataset TMSE crTMSE GMSE crGMSE

R2
crR} R2 crR~T G

R~T crR~T R~G crR~G

Nodes crNodes t TMSE
r.M"W

Abalone 4.5765 0.0363 10.6855 25.6446
0.5622 0.0035 0.5241 0.1451
0.5581 0.0033 0.4907 0.1368
3.5333 t 0.8996 1322.4300 t 0.4283

Elevators 0.0000 0.0000 0.0000 0.0000
0.8819 0.0060 0.8783 0.0075
0.8809 0.0059 0.8701 0.0070
7.1333 1.8144 1896.2700 t 1.0000

Federal 0.0457 0.0026 0.0492 0.0078
Reserve 0.9960 0.0002 0.9956 0.0007
Economic 0.9958 0.0002 0.9935 0.0013
Data 4.9333 t 1.4368 745.0670 t 0.9272 t
Function 0.1008 0.0027 0.0926 0.0033
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
7.3333 t 0.7581 836.9670 t 1.0886

House-16H 1719960000.0000 58444000.0000 2192540000.0000 1932294000.0000
0.3816 0.0210 0.3427 0.0954
0.3790 0.0207 0.3232 0.0903
8.4667 3.0596 3128.1000 t 0.7845

Lena 121.0116 3.4832 126.7218 6.5353
Image 0.9403 0.0017 0.9379 0.0032

0.9400 0.0017 0.9351 0.0032
12.8667 3.9631 1798.3300 t 0.9549

Mono 301.8660 6.6957 302.8780 8.5772
Sample 0.6868 0.0070 0.6800 0.0091

0.6864 0.0069 0.6765 0.0090
9.2667 t 2.2118 2390.7300 t 0.9967 t

Stereo 202.0540 2.9447 202.2560 3.6260
Sample 0.8227 0.0026 0.8174 0.0033

0.8225 0.0026 0.8160 0.0033
4.1333 t 1.5477 4334.7700 t 0.9990

Time- 1.4959 1.8987 1.1953 1.3302
series 0.9881 0.0151 0.9883 0.0130

0.9871 0.0164 0.9532 0.0883
6.7333 1.7207 757.9330 t 1.2515 t

 
 
 

 
 
 



Dataset TMSE crTMSE GMSE crGMSE

R2
crR} R2

crRbT G

R~T crR~T R~G crR2~
Nodes crNodes t TMSEm:.rsF.

Abalone 4.5640 0.0382 5.2366 0.6709
0.5634 0.0037 0.5573 0.0567
0.5589 0.0036 0.5192 0.0598
4.2000 1.3493 1595.7700 0.8716

Elevators 0.0000 tT 0.0000 0.0000 0.0000
0.8845 t 0.0084 0.8803 0.0104
0.8836 t 0.0082 0.8726 0.0094
7.0000 2.4635 2151.3000 1.0000

Federal 0.0435 0.0025 0.0567 0.0264
Reserve 0.9962 0.0002 0.9950 0.0023
Economic 0.9960 0.0002 0.9922 0.0033
Data 5.7333 1.3374 849.7670 0.7679
Function 0.0999 0.0033 0.0912 0.0041
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
7.6667 1.0933 1157.3300 1.0954

House-16H 1694530000.0000 77536200.0000 OOסס.1791446000 120896200.0000
0.3907 0.0279 0.3698 0.0425
0.3880 0.0274 0.3468 0.0403
9.2667 3.8141 3746.1000 0.9459

Lena 119.4946 4.0812 127.8456 8.5962
Image 0.9411 0.0020 0.9374 0.0042

0.9407 0.0019 0.9344 0.0043
13.9333 3.9908 1990.3000 0.9347

Mono 300.2680 5.3172 301.3240 6.7600
Sample 0.6885 0.0055 0.6816 0.0071

0.6880 0.0055 0.6779 0.0073
9.7333 1.8557 2686.7700 0.9965

Stereo 200.9620 1.1458 201.0280 1.6687
Sample 0.8237 0.0010 0.8185 0.0015

0.8235 0.0010 0.8170 0.0018
4.4667 1.2794 5559.3700 0.9997

Time- 0.9358 1.3316 0.7544 1.0153
series 0.9925 0.0106 0.9926 0.0099

0.9920 O.oI14 0.9697 0.0792
7.1333 1.8144 855.1000 1.2406

 
 
 

 
 
 



Dataset TMSE crTMSE GMSE crGMSE

R2
crR} R2

crRbT G

R~T crR~T R~G crR2~
Nodes crNodes t TMSE

~
Abalone 4.5545 0.0264 11.7964 35.9028

0.5643 0.0025 0.5382 0.1113
0.5596 0.0024 0.4987 0.1051
4.2667 1.3374 1741.9000 0.3861

Elevators 0.0000 0.0000 0.0000 0.0000
0.8811 0.0078 0.8764 0.0085
0.8803 0.0077 0.8687 0.0077
7.2000 2.4269 2309.2300 1.0000

Federal 0.0441 0.0024 0.0497 0.0094
Reserve 0.9961 0.0002 0.9956 0.0008
Economic 0.9960 0.0002 0.9935 0.0014
Data 5.0667 1.6174 931.5000 0.8879
Function 0.1004 0.0026 0.0900 0.0031
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
7.7333 1.2299 1367.6000 1.1159

House-16H 1699556000.0000 63065400.0000 1897644000.0000 532012000.0000
0.3889 0.0227 0.3536 0.0782
0.3862 0.0221 0.3322 0.0744
9.9333 3.0505 3856.1700 0.8956

Lena 119.3798 3.8368 125.1458 6.5550
Image 0.9411 0.0019 0.9387 0.0032

0.9408 0.0019 0.9356 0.0034
14.2667 4.1184 2085.0700 0.9539

Mono 300.4640 5.1975 301.5520 6.2393
Sample 0.6883 0.0054 0.6814 0.0066

0.6878 0.0054 0.6774 0.0066
10.6000 2.0611 2833.8700 0.9964

Stereo 200.2760 t 1.3597 200.3160 t 1.3913
Sample 0.8243 t 0.0012 0.8192 t 0.0013

0.8241 t 0.0011 0.8175 t 0.0011
4.8667 2.161310 5928.9700 0.9980

Time- 1.1903 1.3186 1.0331 1.0850
series 0.9905 0.0105 0.9899 0.0106

0.9897 0.0117 0.9157 0.2131
6.8667 1.2794 954.6000 1.1521

 
 
 

 
 
 



Dataset TMSE OTMSE GMSE °GMSE

R2
OR} R2

ORbT G

R~T °R~T R~G °R~G

Nodes ONodes t TMSE
r.MIT

Abalone 4.5529 t 0.0370 5.1910 0.4104
0.5645 t 0.0035 0.5611 0.0347
0.5600 t 0.0030 0.5225 0.0339
4.1333 1.2521 1749.6700 0.8771

Elevators 0.0000 0.0000 0.0000 0.0000
0.8804 0.0078 0.8752 0.0087
0.8796 0.0076 0.8678 0.0082
6.6000 t 2.429700 2514.7700 1.0000

Federal 0.0436 0.0021 0.0522 0.0111
Reserve 0.9962 0.0002 0.9954 0.0010
Economic 0.9960 0.0002 0.9930 0.0017
Data 5.6667 1.4223 927.9000 0.8356
Function 0.1001 0.0033 0.0893 t 0.0046
Example 1.0000 0.0000 1.0000 to 0.0000

1.0000 0.0000 1.0000 to 0.0000
8.2000 1.7889 1308.5000 1.1204

House-16H 1687488000.0000 70731200.0000 1761580000.0000 t 86005600.0000
0.3932 0.0254 0.3803 t 0.0303
0.3906 0.0252 0.3594 t 0.0295

10.0000 3.2270 3861.4000 0.9579
Lena 119.0428 t 4.1056 127.3112 8.0203
Image 0.9413 t 0.0020 0.9376 0.0039

0.9409 t 0.0020 0.9347 0.0037
13.8000 3.6237 2102.4700 0.9351

Mono 300.5620 5.7319 302.1180 7.1440
Sample 0.6882 0.0059 0.6808 0.0075

0.6877 0.0059 0.6767 0.0077
10.0000 2.6130 3106.6300 0.9948

Stereo 201.5460 3.0197 201.8520 3.7076
Sample 0.8232 0.0027 0.8178 0.0033

0.8230 0.0026 0.8161 0.0033
4.8000 1.4239 6203.1700 0.9985

Time- 0.4407 t 0.6411 0.3631 t 0.4587
series 0.9965 t 0.0051 0.9964 t 0.0045

0.9963 t 0.0054 0.9913 t 0.0171
7.1333 1.0417 904.2330 1.2137

 
 
 

 
 
 



Dataset TMSE <rTMSE GMSE <rGMSE

R2
erR} R2

<rRbT G

R~T <rR~T R~G <rR2~
Nodes <rNodes t TMSE

~
Abalone 4.5658 0.0338 10.1196 26.2766

0.5632 0.0032 0.5315 0.1207
0.5586 0.0030 0.4922 0.1191
4.0000 1.1447 1455.6300 0.4512

Elevators 0.0000 0.0000 0.0000 0.0000
0.8834 0.0062 0.8790 0.0079
0.8825 0.0060 0.8711 0.0077
7.0667 1.9989 2100.6700 1.0000

Federal 0.0438 0.0026 0.0496 0.0068
Reserve 0.9962 0.0002 0.9956 0.0006
Economic 0.9960 0.0002 0.9933 0.0012
Data 5.5333 1.4794 771.4000 0.8815
Function 0.1004 0.0026 0.0915 0.0030
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
7.5333 1.0417 1004.9700 1.0975

House-16H 1708888000.0000 74731200.0000 1769664000.0000 104933800.0000
0.3855 0.0269 0.3775 0.0369
0.3829 0.0267 0.3564 0.0364
9.6000 2.3577 3297.7000 0.9657 t

Lena 121.3112 3.4365 126.8750 4.8966
Image 0.9402 0.0017 0.9378 0.0024

0.9398 0.0017 0.9348 0.0024
13.4667 3.8483 1951.9700 t 0.9561

Mono 301.8080 6.3805 303.3280 8.5357
Sample 0.6869 0.0066 0.6795 0.0090

0.6864 0.0066 0.6758 0.0090
9.5333 1.8889 2722.3000 0.9950

Stereo 200.8280 1.7459 200.9520 2.1067
Sample 0.8238 0.0015 0.8186 0.0019

0.8236 0.0015 0.8171 0.0019
4.4000 1.5888 4850.8300 0.9994

Time- 1.2285 1.5279 1.0462 1.2766
series 0.9902 0.0122 0.9898 0.0125

0.9894 0.0133 0.9400 0.1847
6.3333 t 1.3218 839.3330 1.1742

 
 
 

 
 
 



Dataset TMSE C5TMSE GMSE C5GMSE

R2
C5R} R2 C5

RbT G

R~T C5R~T R~G C5R2~
Nodes C5Nodes t TMSE

~
Abalone 4.5643 0.0285 6.5100 7.0911

0.5634 0.0027 0.5402 0.1087
0.5588 0.0024 0.5019 0.1038
4.0000 1.0171 1654.7300 0.7011

Elevators 0.0000 0.0000 0.0000 0.0000
0.8810 0.0074 0.8774 0.0094
0.8801 0.0073 0.8698 0.0087
6.7333 1.8742 2291.3000 1.0000

Federal 0.0431 0.0033 0.0482 t 0.0049
Reserve 0.9962 0.0003 0.9957 t 0.0004
Economic 0.9961 0.0003 0.9933 t 0.0010
Data 6.0000 1.2595 902.0670 0.8937
Function 2.3835 11.4882 0.3013 1.1123
Example 1.0000 0.0004 1.0000 0.0000

1.0000 0.0004 1.0000 0.0000
8.1333 1.5477 1228.1700 7.9112 t

House-16H 1705032000.0000 68749600.0000 1767764000.0000 90879600.0000
0.3869 0.0247 0.3782 0.0320
0.3842 0.0244 0.3558 0.0302
9.3333 3.0663 3954.6000 0.9645

Lena 119.9782 4.1011 203.0900 403.0240
Image 0.9408 0.0020 0.9053 0.1711

0.9405 0.0020 0.9025 0.1705
12.5333 t 3.4314 2107.5000 0.5908

Mono 302.7440 6.6125 304.9620 8.3493
Sample 0.6859 0.0069 0.6778 0.0088

0.6855 0.0068 0.6741 0.0086
9.4000 2.5407 3180.5700 0.9927

Stereo 200.5580 1.0425 200.5260 1.2339
Sample 0.8240 0.0009 0.8190 0.0011

0.8238 0.0009 0.8173 0.0012
5.0667 1.6174 5454.8000 1.0002 t

Time- 0.9743 1.3699 0.9567 1.3130
series 0.9922 0.0109 0.9906 0.0128

0.9917 0.0116 0.9761 0.0315
6.8000 1.5177 915.3000 1.0184

 
 
 

 
 
 



Dataset TMSE aTMSE GMSE aGMSE

R2
aR} R2

aRbT G

R~T aR~T R~G aR2~
Nodes aNodes t TMSEr.mF

Abalone 4.5585 0.0377 5.1005 0.3779
0.5639 0.0036 0.5688 0.0320
0.5594 0.0029 0.5310 0.0309
3.9333 1.1427 1733.3700 0.8937

Elevators 0.0000 0.0000 0.0000 tT 0.0000
0.8841 0.0087 0.8807 t 0.0106
0.8832 0.0085 0.8731 t 0.0094
7.4000 2.3134 2400.4000 1.0000 tt

Federal 0.0441 0.0029 0.0811 0.1728
Reserve 0.9962 0.0003 0.9928 0.0153
Economic 0.9960 0.0002 0.9879 0.0299
Data 5.4667 1.5477 933.7000 0.5437
Function 0.0999 0.0030 0.0900 0.0036
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
8.1333 1.2521 1372.0700 1.1108

House-16H 1698038000.0000 73046600.0000 1818504000.0000 229100000.0000
0.3894 0.0263 0.3605 0.0796
0.3866 0.0259 0.3375 0.0762

10.1333 3.0027 3985.0300 0.9338
Lena 119.2130 3.8666 123.7320 t 6.0586
Image 0.9412 0.0019 0.9394 t 0.0030

0.9409 0.0019 0.9365 t 0.0031
14.3333 3.6515 2153.5300 0.9635 t

Mono 300.2740 5.1783 301.5820 6.6504
Sample 0.6885 0.0054 0.6814 0.0070

0.6880 0.0053 0.6774 0.0069
10.1333 2.3887 3157.3700 0.9957

Stereo 201.4200 2.3580 201.7480 2.9485
Sample 0.8233 0.0021 0.8179 0.0027

0.8231 0.0021 0.8161 0.0027
5.4667 1.5477 5540.6700 0.9984

Time- 1.1575 1.5759 1.0481 1.3298
senes 0.9908 0.0126 0.9897 0.0130

0.9900 0.0138 0.9689 0.0463
6.8667 1.4794 956.7670 1.1044

 
 
 

 
 
 



Dataset TMSE C5TMSE GMSE C5GMSE

R2
C5R} R2 C5

RbT G

R~T C5R~T R~G C5R2~
Nodes C5Nodes t TMSE

~
Abalone 4.5607 0.0280 5.079160 t 0.3547

0.5637 0.0027 0.570595 t 0.0300
0.5591 0.0022 0.531629 t 0.0305
4.2667 1.2299 1737.4000 0.8979 t

Elevators 0.0000 0.0000 0.0000 0.0000
0.8834 0.0074 0.8791 0.0085
0.8825 0.0073 0.8712 0.0078
6.8667 1.8144 2456.1300 1.0000

Federal 0.0428 t 0.0023 0.0504 0.0078
Reserve 0.9963 t 0.0002 0.9955 0.0007
Economic 0.9961 t 0.0002 0.9930 0.0015
Data 5.6667 1.6046 947.6000 0.8486
Function 0.0995 t 0.0028 0.0901 0.0036
Example 1.0000 to 0.0000 1.0000 0.0000

1.0000 to 0.0000 1.0000 0.0000
8.1333 1.3578 1358.8300 Ll045

House-16H 1675820000.0000 t 71386200.0000 34665600000.0000 179898600000.0000
0.3974 t 0.0257 0.3566 0.1065
0.3944 t 0.0254 0.3346 0.1005

1Ll333 2.7258 3942.6000 0.0483
Lena 119.6078 3.1367 128.6118 10.1046
Image 0.9410 0.0015 0.9370 0.0050

0.9406 0.0015 0.9340 0.0051
14.6000 3.8739 2175.1700 0.9300

Mono 300.3680 5.5149 301.5000 6.9080
Sample 0.6884 0.0057 0.6815 0.0073

0.6879 0.0057 0.6777 0.0073
9.7333 2.2581 3296.1000 0.9962

Stereo 201.5320 2.8834 201.7980 3.3606
Sample 0.8232 0.0025 0.8178 0.0030

0.8230 0.0025 0.8160 0.0030
5.4000 2.3723 5862.5000 0.9987

Time- 0.8319 1.2699 0.8069 0.9965
series 0.9934 0.0101 0.9921 0.0098

0.9928 0.0111 0.9447 0.1809
7.2667 1.6386 943.7000 1.0310

 
 
 

 
 
 



Dataset TMSE (JTMSE GMSE (JGMSE

R2 (JR} R2 (JRbT G

R~T (JR~T R~G (JR2~
Nodes (JNodes t TMSE

~
Abalone 4.5575 0.0314 5.1746 0.3875

0.5640 0.0030 0.5625 0.0328
0.5596 0.0028 0.5248 0.0335
4.2000 1.1265 1779.1700 0.8807

Elevators 0.0000 0.0000 0.0000 0.0000
0.8827 0.0077 0.8791 O.oI05
0.8818 0.0075 0.8712 0.0097
7.1333 2.4598 2490.6300 1.0000

Federal 0.0446 0.0019 0.0494 0.0063
Reserve 0.9961 0.0002 0.9956 0.0006
Economic 0.9959 0.0002 0.9933 0.0011
Data 5.8667 1.1366 961.1330 0.9022
Function 0.0999 0.0023 0.0907 0.0034
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
7.6000 1.0700 1471.8700 1.1014

House-16H 1696134000.0000 63944000.0000 2047700000.0000 1140178000.0000
0.3901 0.0230 0.3426 0.0994
0.3876 0.0226 0.3230 0.0944
9.8000 2.6050 4036.0700 0.8283

Lena 120.1524 3.7302 132.8084 33.1722
Image 0.9407 0.0018 0.9349 0.0163

0.9404 0.0018 0.9316 0.0176
14.6667 3.9683 2269.8000 0.9047

Mono 299.0820 t 4.0010 300.1520 t 5.1448
Sample 0.6897 t 0.0042 0.6829 t 0.0054

0.6892 t 0.0041 0.6788 t 0.0055
11.0667 3.2156 3149.5700 0.9964

Stereo 201.8060 3.1868 202.1960 3.7328
Sample 0.8229 0.0028 0.8175 0.0034

0.8227 0.0028 0.8157 0.0034
5.2667 1.7991 6296.5000 0.9981

Time- 0.6623 1.2698 0.5565 0.8542
series 0.9947 0.0101 0.9946 0.0084

0.9944 0.0108 0.9879 0.0197
6.8000 1.3235 930.4670 1.1902

 
 
 

 
 
 



tion"). A larger injection rate intuitively leads to a longer optimisation time, because more

patterns are iterated over to calculate fitness values etc. Similarly, a larger initial window size

leads to a longer optimisation time. A window acceleration of less than 0.005 has the conse-

quence that not all patterns are presented to the GPMCC method before the maximum number

of generations are reached.

Tables 4.12 - 4.20 show the effect of various initial window sizes and window acceler-

ation rates on the outcomes of the GPMCC method. As expected, a larger initial window

and window acceleration leads to an increase in the average simulation completion time t.
However, there is no general relationship between the two window parameters and any of the

other outcomes (MSE, nodes, R2, R~ etc.).

The windowing parameters are problem specific, but what is interesting to note is that the

continual presentation of all training patterns (shown by table 4.20) was not the strategy that

resulted any optimal outcomes (with the exception of the mono dataset). Therefore, the initial

window parameter should be chosen as 0.05 and the window acceleration parameter should be

chosen as 0.005, because these parameters ensure that all training patterns are presented in a

timely manner (this would not be the case if the initial window parameter was less than 0.05).

Also, these parameter choices result in the smallest training times.

The fragment pool initialisation is controlled by two parameters: the number of initial clusters

("DecisionPooINoClustersStart" in table 4.2) and the split factor ("DecisionPooINoClusters-

Division"). The initial size of the fragment pool is determined by the two parameters, e.g.

if the initial number of clusters is 30 and the split factor is 2, the initial size of the fragment

pool is 30 + 15 + 7 + 3 = 55. As was discussed in section 4.3.3, the parameters also control

the number of piecewise approximations fitted over the training patterns. These piecewise

approximations are then used as terminal nodes for the GPMCC method.

Tables 4.21 - 4.28 show the effect of various initial clusters numbers and window acceler-

ation rates on the outcomes of the GPMCC method. There is no general relationship between

the two fragment pool initialisation parameters and any of the outcomes (MSE, nodes, R2, R~

etc.). The initialisation parameters are thus fairly problem specific. Therefore, the two param-

eters can be chosen arbitrarily. For the remainder of this thesis the number of initial clusters

 
 
 

 
 
 



Dataset TMSE °TMSE GMSE OGMSE

R2
OR} R2

ORbT G

R~T °R~T R~G °R2~
Nodes ONodes t TMSE

~
Abalone 4.5595 0.0348 5.1538 t 0.5150

0.5638 0.0033 0.5643 t 0.0435
0.5589 0.0027 0.5215 0.0476
4.5333 1.6344 1556.9700 0.8847 t

Elevators 0.0000 0.0000 0.0000 0.0000
0.8818 0.0069 0.8763 0.0078
0.8809 0.0067 0.8684 0.0071
6.5333 t 2.1453 2275.1300 1.0000

Federal 0.0447 0.0030 0.0472 t 0.0054
Reserve 0.9961 0.0003 0.9958 t 0.0005
Economic 0.9959 0.0003 0.9939 t 0.0011
Data 5.0000 1.3896 879.2000 0.9467 t
Function 0.1005 0.0025 0.0920 0.0028
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
7.4000 0.8137 1078.2300 1.0931

House-16H 1719294000.0000 59086400.0000 1806200000.0000 76553400.0000
0.3818 0.0212 0.3646 0.0269
0.3792 0.0209 0.3432 0.0257
9.6000 3.0240 3538.8000 0.9519

Lena 121.3478 3.7463 126.8866 6.0072
Image 0.9401 0.0018 0.9378 0.0029

0.9398 0.0018 0.9353 0.0031
12.0667 t 4.4793 2212.6300 0.9563

Mono 304.8100 7.1109 307.0360 9.0024
Sample 0.6838 0.0074 0.6756 0.0095

0.6833 0.0073 0.6716 0.0093
10.2000 2.9989 3060.1700 0.9928

Stereo 202.5780 2.9978 203.1580 3.4670
Sample 0.8223 0.0026 0.8166 0.0031

0.8220 0.0026 0.8149 0.0031
4.8667 1.8144 5669.7000 0.98

Time- 1.1491 1.6181 1.0057 1.3210
series 0.9908 0.0129 0.9902 0.0130

0.9900 0.0143 0.9142 0.2508
6.5333 1.4559 906.6670 1.1425

 
 
 

 
 
 



Dataset TMSE (JTMSE GMSE (JGMSE

R2
(JR} R2 (JRbT G

R~T (JR~T R~G (JR~G

Nodes (JNodes t TMSE
Ti'i'<'i'

Abalone 4.5804 0.0278 5.2324 0.4345
0.5618 0.0027 0.5576 0.0367
0.5574 0.0025 0.5186 0.0386
3.8667 1.0080 1531.5000 t 0.8754

Elevators 0.0000 0.0000 0.0000 0.0000
0.8820 0.0067 0.8783 0.0086
0.8811 0.0066 0.8703 0.0082
6.8000 1.8458 2218.2700 1.0000

Federal 0.0446 0.0030 0.0490 0.0068
Reserve 0.9961 0.0003 0.9957 0.0006
Economic 0.9959 0.0003 0.9934 0.0014
Data 5.6000 1.4994 816.4330 0.9102
Function 0.1009 0.0027 0.0913 0.0039
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
7.8000 1.3493 1051.6000 1.1057

House-16H 1726956000.0000 58523200.0000 1921038000.0000 370382000.0000
0.3790 0.0210 0.3344 0.0831
0.3766 0.0207 0.3149 0.0822
9.2667 3.3930 3597.3300 0.8990

Lena 121.3546 3.7759 130.8084 23.9748
Image 0.9401 0.0019 0.9359 0.0117

0.9398 0.0018 0.9332 0.0124
12.6667 3.0663 2083.3000 0.9277

Mono 306.3280 7.4583 308.5400 9.5733
Sample 0.6822 0.0077 0.6740 0.0101

0.6818 0.0077 0.6706 0.0099
8.5333 t 2.5560 3178.8700 0.9928

Stereo 202.4640 2.3244 202.8180 3.0523
Sample 0.8224 0.0020 0.8169 0.0028

0.8222 0.0021 0.8154 0.0029
4.4000 1.1919 5500.2000 0.9983

Time- 0.8853 0.9890 0.7180 0.6632
series 0.9929 0.0079 0.9930 0.0065

0.9925 0.0084 0.9514 0.1807
6.8667 1.2794 847.0670 1.2329 t

 
 
 

 
 
 



Dataset TMSE (JTMSE GMSE (JGMSE

R2
(JR} R2

(JR~T G

R~T (JR~T R~G (JR2~
Nodes (JNodes t TMSE

'TAAW

Abalone 4.5750 0.0295 17.6606 67.9024
0.5624 0.0028 0.5365 0.1071
0.5576 0.0026 0.4963 0.1018
4.1333 1.1366 1629.5000 0.2591

Elevators 0.0000 0.0000 0.0000 0.0000
0.8821 0.0058 0.8783 0.0079
0.8811 0.0057 0.8702 0.0081
7.0000 2.1656 2090.2300 1.0000

Federal 0.0438 t 0.0028 0.0485 0.0073
Reserve 0.9962 t 0.0002 0.9957 0.0006
Economic 0.9960 t 0.0002 0.9935 0.0016
Data 5.2000 1.5177 842.9670 0.9037
Function 0.0991 t 0.0040 0.0906 0.0045
Example 1.0000 to 0.0000 1.0000 0.0000

1.0000 r 0.0000 1.0000 0.0000
7.6667 1.0933 1047.4000 1.0931

House-16H 1715464000.0000 58716400.0000 1799968000.0000 152635400.0000
0.3832 0.0211 0.3668 0.0537
0.3806 0.0209 0.3457 0.0538
8.8000 2.7966 3466.3000 0.9531

Lena 120.5956 3.2237 126.3778 4.7560
Image 0.9405 0.0016 0.9381 0.0023

0.9402 0.0016 0.9352 0.0026
13.5333 3.9977 2006.9700 0.9542

Mono 301.5000 5.6420 302.7800 6.9198
Sample 0.6872 0.0059 0.6801 0.0073

0.6868 0.0058 0.6766 0.0073
9.0667 1.5298 2751.3700 0.9958

Stereo 201.4420 2.1989 201.5840 2.5408
Sample 0.8232 0.0019 0.8180 0.0023

0.8231 0.0019 0.8164 0.0023
4.6667 1.4933 4860.7700 0.9993

Time- 1.1043 1.4290 1.0168 1.2497
series 0.9912 0.0114 0.9901 0.0122

0.9906 0.0122 0.9749 0.0405
6.6667 1.4933 807.4330 1.0860

 
 
 

 
 
 



Dataset TMSE crTMSE GMSE crGMSE

R2 crR} R2 crRbT G

R~T crR~T R~G crR2
-5&

Nodes crNodes t TMSE
~

Abalone 4.5708 0.0315 5.3082 0.5044
0.5628 0.0030 0.5512 0.0426
0.5586 0.0027 0.5147 0.0436
3.6667 t 1.0933 1654.1300 0.8611

Elevators 0.0000 0.0000 0.0000 0.0000
0.8831 0.0049 0.8789 0.0055
0.8822 0.0048 0.8705 0.0058
7.2667 2.3332 2065.1300 1.0000

Federal 0.0441 0.0024 0.0541 0.0109
Reserve 0.9961 0.0002 0.9952 0.0010
Economic 0.9960 0.0002 0.9929 0.0017
Data 5.5333 1.3830 764.8000 0.8151
Function 0.0999 0.0033 0.0901 t 0.0038
Example 1.0000 0.0000 1.0000 to 0.0000

1.0000 0.0000 1.0000 to 0.0000
7.6667 1.5162 1029.6700 1.1085 t

House-16H 1701230000.0000 72622800.0000 1948646000.0000 735114000.0000
0.3883 0.0261 0.3484 0.0893
0.3858 0.0258 0.3278 0.0873
8.8000 2.4269 3403.9300 0.8730

Lena 120.4616 3.0208 125.6458 5.0534
Image 0.9406 0.0015 0.9384 0.0025

0.9403 0.0015 0.9358 0.0024
12.9333 3.8768 1928.7700 t 0.9587

Mono 301.0580 5.6103 302.0440 6.8308
Sample 0.6876 0.0058 0.6809 0.0072

0.6872 0.0058 0.6768 0.0070
10.3333 2.6436 2722.6000 t 0.9967

Stereo 201.9240 2.3849 202.2740 2.7546
Sample 0.8228 0.0021 0.8174 0.0025

0.8226 0.0021 0.8158 0.0025
4.5333 1.6344 4850.4000 0.9983

Time- 1.0636 1.4651 0.9553 1.3346
series 0.9915 0.0117 0.9907 0.0131

0.9909 0.0124 0.9779 0.0316
7.1333 2.0297 810.4670 1.1133

 
 
 

 
 
 



Dataset TMSE crTMSE GMSE crGMSE

R2
crR} R2 crRbT G

R~T crR~T R~G crR2
-5J!i

Nodes crNodes i TMSE
~

Abalone 4.5531 t 0.0359 5.3183 0.6657
0.5645 t 0.0034 0.5504 0.0563
0.5598 t 0.0032 0.5081 0.0649
4.2000 1.4480 1641.3000 0.8561

Elevators 0.0000 0.0000 0.0000 tT 0.0000
0.8830 0.0071 0.8798 t 0.0088
0.8820 0.0071 0.8714 t 0.0088
7.1333 1.8889 2032.7700 1.0000 tt

Federal 0.0445 0.0024 0.0502 0.0074
Reserve 0.9961 0.0002 0.9956 0.0007
Economic 0.9959 0.0002 0.9931 0.0018
Data 5.6000 1.6733 781.1000 0.8870
Function 0.0997 0.0031 0.0914 0.0046
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
7.4667 t 1.0080 996.4330 1.0915

House-16H 1697054000.0000 72796600.0000 1785874000.0000 123829600.0000
0.3898 0.0262 0.3718 0.0436
0.3871 0.0259 0.3492 0.0435
9.0667 2.0667 3447.9000 0.9503

Lena 120.1176 4.2472 123.9618 t 7.9181
Image 0.9407 0.0021 0.9393 t 0.0039

0.9404 0.0020 0.9364 t 0.0037
13.8000 4.1223 1945.0700 0.9690 t

Mono 300.0740 t 5.3272 301.0620 t 6.6463
Sample 0.6887 t 0.0055 0.6819 t 0.0070

0.6882 t 0.0055 0.6783 t 0.0071
9.2667 2.0160 2756.1300 0.9967

Stereo 201.0540 1.9399 201.2580 2.3755
Sample 0.8236 0.0017 0.8183 0.0021

0.8234 0.0017 0.8167 0.0022
4.8000 1.6060 4654.4000 t 0.9990

Time- 1.3801 1.6197 1.1452 1.2081
series 0.9890 0.0129 0.9888 0.0118

0.9883 0.0138 0.9739 0.0296
6.4000 1.6733 825.5330 1.2051

 
 
 

 
 
 



Dataset TMSE crTMSE GMSE crGMSE

R2
crR} R2

crR~T G

R~T crR~T R~G crR2~
Nodes crNodes t TMSE

TMSF
Abalone 4.5626 0.0367 5.4460 1.4684

0.5636 0.0035 0.5426 0.1087
0.5587 0.0029 0.5016 0.1042
4.3333 1.4223 1610.3300 0.8378

Elevators 0.0000 tT 0.0000 0.0000 0.0000
0.8832 t 0.0076 0.8792 0.0091
0.8823 t 0.0075 0.8713 0.0086
7.0000 2.0342 2029.2000 1.0000

Federal 0.0443 0.0024 0.0510 0.0093
Reserve 0.9961 0.0002 0.9955 0.0008
Economic 0.9960 0.0002 0.9933 0.0014
Data 5.2667 1.1427 772.4670 0.8681
Function 0.1006 0.0027 0.0911 0.0034
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
7.8667 1.3578 1041.3700 1.1033

House-16H 1689180000.0000 76237000.0000 1763444000.0000 91387200.0000
0.3926 0.0274 0.3797 0.0321
0.3898 0.0271 0.3565 0.0311
9.7333 2.8519 3276.7700 t 0.9579

Lena 119.8186 3.2694 128.9602 12.2305
Image 0.9409 0.0016 0.9368 0.0060

0.9406 0.0016 0.9339 0.0061
12.6667 3.6797 2015.2000 0.9291

Mono 300.6600 6.1792 301.5380 7.8649
Sample 0.6881 0.0064 0.6814 0.0083

0.6876 0.0064 0.6778 0.0082
9.8667 2.3302 2787.3300 0.9971 t

Stereo 201.7160 2.4743 202.0160 3.3177
Sample 0.8230 0.0022 0.8176 0.0030

0.8228 0.0022 0.8161 0.0031
4.8000 1.3235 4686.8700 0.9985

Time- 1.4982 1.7086 1.2820 1.4768
series 0.9881 0.0136 0.9875 0.0145

0.9872 0.0145 0.9581 0.0639
6.2667 t 1.7006 845.2000 1.1686

 
 
 

 
 
 



Dataset TMSE crTMSE GMSE crGMSE

R2
crR} R2

crRbT G

R~T crR~T R~G crR2
----5ill

Nodes crNodes t TMSE
~

Abalone 4.5563 0.0303 5.1816 0.3516
0.5642 0.0029 0.5619 0.0297
0.5596 0.0025 0.5218 t 0.0323
4.0667 1.2576 1590.4700 0.8793

Elevators 0.0000 0.0000 0.0000 0.0000
0.8830 0.0062 0.8789 0.0074
0.8821 0.0060 0.8711 0.0074
7.0000 2.1656 2030.0300 1.0000

Federal 0.0446 0.0022 0.0478 0.0069
Reserve 0.9961 0.0002 0.9958 0.0006
Economic 0.9959 0.0002 0.9937 0.0011
Data 4.9333 t 1.229900 814.633000 0.9322
Function 0.1003 0.0029 0.0920 0.0034
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
7.6667 1.0933 1007.6700 0.8793

House-16H 1681064000.0000 t 71950200.0000 1749322000.0000 t 91357200.0000
0.3955 t 0.0259 0.3846 t 0.0321
0.3930 t 0.0256 0.3636 t 0.0309
8.8000 t 2.9408 3485.8700 0.9610 t

Lena 119.7560 t 3.0794 124.9156 5.7129
Image 0.9409 t 0.0015 0.9388 0.0028

0.9406 t 0.0015 0.9361 0.0027
12.8667 3.6741 1972.9000 0.9587

Mono 301.5620 6.5922 302.7680 8.1946
Sample 0.6871 0.0068 0.6801 0.0087

0.6867 0.0068 0.6765 0.0084
9.1333 2.2854 2825.9300 0.9960

Stereo 201.7360 2.7894 202.0880 3.4211
Sample 0.8230 0.0024 0.8176 0.0031

0.8228 0.0024 0.8160 0.0032
4.5333 t 1.4559 4715.5700 0.9983

Time- 0.7055 t 1.0167 0.6232 t 0.8189
series 0.9944 t 0.0081 0.9939 t 0.0080

0.9939 t 0.0087 0.9749 t 0.0524
7.4667 1.2521 750.5000 t 1.1321

 
 
 

 
 
 



Dataset TMSE aTMSE GMSE aGMSE

R2
aR} R2

aRbT G

R~T aR~T R~G aR~G

Nodes aNodes t TMSE
~

Abalone 4.5692 0.0342 5.2241 0.4925
0.5629 0.0033 0.5583 0.0416
0.5585 0.0030 0.5204 0.0447
3.7333 1.1121 1617.7000 0.8746

Elevators 0.0000 0.0000 0.0000 0.0000
0.8819 0.0075 0.8783 0.0090
0.8810 0.0073 0.8701 0.0085
7.1333 2.5695 1972.7000 t 1.0000

Federal 0.0442 0.0024 0.0488 0.0060
Reserve 0.9961 0.0002 0.9957 0.0005
Economic 0.9960 0.0002 0.9933 0.0015
Data 5.6000 1.5888 751.1000 t 0.9043
Function 0.0999 0.0031 0.0907 0.0042
Example 1.0000 0.0000 1.0000 0.0000

1.0000 0.0000 1.0000 0.0000
8.0667 1.6386 948.8670 t 1.1013

House-16H 1708460000.0000 77513400.0000 1779002000.0000 128243800.0000
0.3857 0.0279 0.3742 0.0451
0.3830 0.0276 0.3521 0.0444
9.6000 2.5271 3325.8700 0.9603

Lena 120.2276 3.6120 125.0488 5.6104
Image 0.9407 0.0018 0.9387 0.0027

0.9404 0.0018 0.9359 0.0027
13.4667 2.8616 1976.2000 0.9614

Mono 303.2560 6.3768 305.3640 8.0327
Sample 0.6854 0.0066 0.6774 0.0085

0.6849 0.0066 0.6734 0.0086
9.4667 2.3887 2876.6000 0.9931

Stereo 200.6680 t 1.7839 200.7440 t 2.1620
Sample 0.8239 t 0.0016 0.8188 t 0.0020

0.8237 t 0.0015 0.8170 t 0.0019
4.8000 1.9191 4771.5700 0.9996 t

Time- 1.0371 1.5863 0.8519 1.2269
series 0.9917 0.0127 0.9917 0.0120

0.9912 0.0136 0.9803 0.0358
6.6667 1.2954 786.6330 1.2175

 
 
 

 
 
 



is set to 30 and the split factor is set to 2. This should provide enough clusters to cover the

turning points of a dataset.

Although a large number of initial parameters were introduced in the previous section, the

GPMCC method appears to be fairly robust in that different values for parameters do not have

a significant effect on accuracy. This section compares the GPMCC method to two other

methods discussed earlier in this thesis.

The first comparison method is Setiono's NeuroLinear method from section 4.2.1. Setiono

presents a table of results, obtained by running NeuroLinear on 5 databases from the DCI

machine learning repository [91]. The databases used by Setiono are the Abalone, Auto-Mpg,

Housing, Machine and Servo databases discussed in section 4.4.1. Setiono performed one 10-

fold cross validation evaluation on each of the previously mentioned datasets. The predictive

accuracy of NeuroLinear was tested in terms of the generalisation mean absolute error:

~IPI I -IE - Lti=l Yi - Yi
MA- IPI

Setiono also provided the average number of rules generated for each dataset.

The second comparison method is a commercial version of the M5 algorithm (successor to

C4.5) called Cubist [82]. Cubist internally utilises model trees with linear regression models.

Cubists presents these model trees in the form of a production system. Both Cubist and the

GPMCC method were used to perform 10 lO-fold cross validation evaluations (equivalent to

100 simulation runs) on the datasets mentioned previously, in order to determine the generali-

sation mean absolute error. The average number of generated rules, rule conditions (the length

of the path from the root to the terminal node) and rule terms (the number of terms in the

model) were also obtained for each dataset. Table 4.29 shows the initialisation parameters for

the GPMCC method as determined by the findings of the previous section. For all datasets the

maximum polynomial order was set to 5, except for the house-16H dataset which was set to

10.

Table 4.30 shows the results for Cubist, the GPMCC method and NeuroLinear for the 5

databases mentioned above. In all the cases the GPMCC method was the least accurate of the

 
 
 

 
 
 



Parameter Value
DecisionReoptimize VsSelectLeaf 0.05
DecisionPoolN oClustersStart 30
DecisionPoolN oClustersDivision 2
DecisionPoolFragmentLifeTime 50
DecisionInitialPercentageSampleSize 0.05
DecisionSampleAcceleration 0.005
DecisionCrossoverRate 0.1
Cross Validation 1

Table 4.30: Comparison of Cubist, GPMCC and NeuroLinear (GMAE is the average gener-
alisation mean absolute error, {JGMAE is the standard deviation for the generalisation mean
absolute error, rules represents the average number of rules, {Jrules represents the standard
deviation for the number of rules, conds represents the average number of rule conditions,
{Jconds is the standard deviation for the number of rule conditions, terms represents the average
number of rules per term and {Jterms is the standard deviation for the number of rules per term)

Dataset Method GMAE C50MAE rules C5rules conds C5conds terms C5terms
Abalone Cubist 1.4950 0.0609 12.6500 4.1056 2.6545 0.5700 4.7560 0.4978

GPMCC 1.6051 0.0156 2.5400 0.6264 1.3407 0.3688 8.3213 1.0634
NL 1.5700 0.0600 4.1000 1.4500 n/a n/a n/a n/a

Auto-Mpg Cubist 1.8676 0.2536 5.1000 1.3890 2.0816 0.4225 3.0013 0.4972
GPMCC 2.1977 0.3703 2.1800 0.6724 1.0765 0.4985 7.2195 1.6180
NL 1.9600 0.3200 7.5000 5.0800 n/a n/a n/a n/a

Housing Cubist 1.7471 0.2633 12.6700 3.3727 3.2125 0.4542 5.2164 0.6068
GPMCC 2.8458 0.5217 2.8200 0.7962 1.5103 0.4534 7.6613 1.4220
NL 2.5300 0.4600 25.3000 17.1300 n/a n/a n/a n/a

Machine Cubist 26.9280 7.5873 4.8800 1.4162 1.9367 0.4106 4.6818 0.7785
GPMCC 34.3228 17.0849 3.4600 0.9773 1.8770 0.4983 3.4095 0.9773
NL 20.9900 11.3800 3.0000 3.0000 n/a n/a n/a n/a

Servo Cubist 0.3077 0.1252 9.6100 1.9638 2.7298 0.3027 2.1033 0.2890
GPMCC 0.4496 0.1755 5.1500 1.9456 2.6247 0.8876 2.7935 0.8482
NL 0.3400 0.0800 4.7000 2.3100 n/a n/a n/a n/a

three methods in terms of generalisation accuracy (but not significantly). Cubist, on the other

hand, was the most accurate of the three methods. However, the number of rules generated by

the GPMCC method was significantly less than that of the other methods, with the exception

of the Servo and Machine datasets. Also, the total complexity of the GPMCC method, in terms

of the average number of rules, the average number of rule conditions and the average number

of rule terms was significantly less than that of Cubist.

 
 
 

 
 
 



The GPMCC method and Cubist were also compared on the remaining datasets not shown

in table 4.30. Once again, 10 lO-fold cross validation evaluations were performed in order to

obtain the generalisation mean absolute error. Additionally, the average number of generated

rules, rule conditions and rule terms were obtained for each database. The GPMCC method

was once again initialised using table 4.29.

Dataset Method GMAE crGMAE rules crrules conds crconds terms crterms

Elevators Cubist 0.0019 0.0001 18.0400 2.3047 2.9669 0.3206 2.9493 0.3229
GPMCC 0.0018 0.0000 3.3200 0.9522 1.7929 0.5161 8.8217 0.8498

House-16H Cubist 16355.2840 375.0254 35.7100 4.7637 4.4092 0.4649 4.1570 0.4291
GPMCC 24269.8000 3889.8900 5.1300 1.2032 2.6361 0.5451 7.2623 1.5700

Federal Cubist 0.0999 0.0137 17.0300 4.0613 2.5765 0.3249 4.8203 0.4984
Reserve ED GPMCC 0.1514 0.0366 2.8700 0.6765 1.5553 0.4031 7.6408 1.1640
Function Cubist 0.9165 1.4499 41.4600 5.3756 2.8032 0.2843 1.1384 0.1221
Example GPMCC 1.3713 1.8050 4.1700 0.5695 2.0916 0.2158 2.1400 0.1654
Lena Cubist 5.0160 0.2102 32.8000 4.5969 4.3619 0.4775 3.9577 0.3999
Image GPMCC 6.4107 0.2466 6.5500 1.6229 3.0743 0.5332 7.4953 1.0319
Mono Cubist 13.3550 0.1749 35.2700 4.5480 3.6664 0.3942 4.4224 0.4533
Sample GPMCC 13.7162 0.1762 4.5300 1.1845 2.4217 0.5613 4.7366 0.4293
Stereo Cubist 11.2470 0.1507 11.5500 2.8298 2.9741 0.4580 4.9500 0.5000
Sample GPMCC 11.2498 0.1923 2.6100 0.7092 1.3883 0.4392 7.8308 0.6162
Time- Cubist 0.7664 0.1853 30.2400 3.8379 3.5024 0.3778 3.1646 0.3315
series GPMCC 0.6442 0.3718 3.6700 0.8996 2.0062 0.4271 5.0386 1.6865

Table 4.31 shows the results for Cubist and the GPMCC method for the remaining databases

not used in table 4.30. In all cases the GPMCC method outperformed Cubist in terms of the

average number of rules generated and the total complexity. In fact, the average number of

rules generated by the GPMCC method and the total complexity of the GPMCC method were

significantly less than that of Cubist. Additionally, the GPMCC method even managed to

outperform Cubist in terms of the generalisation mean absolute error on some of the datasets,

i.e. Elevators and Time-series. However, there is no statistically significant difference in accu-
racy.

 
 
 

 
 
 



This section discusses the quality of the rules inferred by the GPMCC method for each of the

datasets in section 4.4.1. Each model tree represents the best outcome of 10 lO-fold cross vali-

dation evaluations in terms of the mean squared error on the generalisation set. The GPMCC

method was initialised using table 4.29. Values between parenthesis show how many patterns

are covered by the antecedent of a rule. Values between angle brackets indicate the mean

squared error of the rule on patterns covered by the antecedent of that rule. For both types of

parenthesis, the first value between parenthesis represents the outcome for the training set and

the second value represents the outcome for the validation set.

if (Sex == "F") {
if (Viscera > 0.545792) {

Rings = 13.6301*pow(Shell,1)
-16.1805*pow(Viscera,1)
-26.6776*pow(Shucked,1)
+13.0827*pow(Whole,1)
+8.99643;

//(1, 0) <48.201, 0>
else {
Rings =-44.7887*pow(Shell,1)*pow(Length,1)

+42.2753*pow(Shell,1)
+132.724*pow(Viscera,3)*pow(Diameter,2)
-21.1746*pow(Viscera,1)
+22.7078*pow(Shucked,2)
-45.8945*pow(Shucked,1)
-6.61542*pow(Whole,2)
+28.4355*pow(Whole,1)
+0.782952*pow(Height,1)
+4.46808;

//(1027,130) <6.01941, 5.99693>
}

else {
Rings 13.1915*pow(Shell,1)

+17.8778*pow(Viscera,1) *pow(Whole,l) *pow(Diameter,l)
-40.99*pow(Viscera, 1)*pow(Length,l)
+59.2038*pow(Shucked,2)

 
 
 

 
 
 



-35.4237*pow(Shucked,1)*pow(Wh01e,1)
-42.489*pow(Shucked,1)
+0.10544*pow(Whole,4)
+27.2256*pow(Whole,1)
+4.30859*pow(Diameter,1)
+3.96395;

//(2313,288) <3.83083, 3.1415>
}
TMSE: 4.51687
VMSE: 4.02955
GMSE: 4.904

The largest order used by the models of the model tree is 5. Also, the first rule represents

an outlier. Obviously this outlier skewed the coefficients of the GPMCC method so

drastically that the GPMCC method had no choice but to isolate it. This indicates that

this training pattern should be removed from the dataset.

if (displacement> 97.2829) {
mpg = -0.061885*pow(model_year, 1)*pow(cylinders, 1)

+0. 933105*pow(model_year, 1)
+0.00151765*pow(weight,1)*pow(cylinders,1)
-0.0147998*pow(weight,1)
-0.037649*pow(horsepower,1);

// (251, 30) <7.37801, 7.72467>
else {
mpg = -1.18039*pow(origin,1)

+0.0479332*pow(model_year,2)
-0.0172612*pow(model_year,1)*pow(cylinders,2)
-5. 99653*pow(model_year, 1)
-0.00545806*pow(weight,1)
-0.0244613*pow(horsepower,1)
-0.0546243*pow(displacement,1)
+14.5401*pow(cylinders,1)
+192.894;

//(61, 10) <17.2217, 3.97088>
}

TMSE: 9.30258
VMSE: 6.78622

 
 
 

 
 
 



Only two non-linear rules where generated. The largest order utilised by the models of
the model tree is 3.

if (SaTime1 < -0.000562935) {
if (diffRollRate > -0.011995) {

Goal = 0.0848297*pow(Sa, 1)*pow(diffClb, 1)
-56.4038*pow(Sa,1)
-9511.27*pow(SaTime4,2)
-0.00331258*pow(SaTime3,1)*pow(climbRate,1)
-1.43111*pow(SaTime1,1)
+0.747046*pow(diffRollRate,1)
+0.00236211*pow(absRoll,1)
+0.00547074*pow(p,1)
+0.0106479;

//(2925, 372) <7.95712e-06, 5.63356e-06>
else {
Goal = -36.6557*pow(Sa,1)

-4101.46*pow(SaTime4,2)
-0.00368597*pow(SaTime3, 1)*pow(climbRate, 1)
+0.0014319*pow(SaTime2,1)*pow(Sgz,1)
+0. 463288*pow(diffRollRate,1)
+0.00154505*pow(absRoll,1)
+0.00781973*pow(q,1)
+0.00305086*pow(p,1)
+0.0123348;

//(1189, 151) <3.92677e-06, 3.27794e-06>
}

else
Goal -25.0523*pow(Sa,1)

+0.116456*pow(SaTime4,1)*pow(diffClb,1)
-0.00669548*pow(SaTime3,1)*pow(climbRate,1)
+0.433775*pow(diffRollRate,1)
+0.00126904*pow(absRoll,1)
+0.00372367*pow(p,1)
+0.016304;

//(2886, 353) <4.34178e-06, 4.5439ge-06>

 
 
 

 
 
 



}

TMSE: 5.78198e-06
VMSE: 4.78845e-06
GMSE: 4.41977e-06

A large number of terms were utilised by the models of the model tree. However, the

maximum polynomial order of the models in the model tree is 4.

if (Y3TCMR > 15.8756) {
M1CDR = 0.04954*pow(TWEIMC,1)

+0.00308282*pow(M3TBRAA,2);
//(3, 1) <0.246856, 0.641734>
else {
if (M3TBRSM > 11.1668) {

M1CDR = -0.132345*pow(TLLACB,1)
+0.0941262*pow(TCD,1)
+0.56461*pow(M1MS,1)
-0.162584*pow(BCACB,1)
+0.206319*pow(Y3TCMR,1)
-0.0400925*pow(M3TBRAA,1)
+0.446434*pow(Y30CMR,1);

// (82, 8) <0.11477, 0.0222504>
else {
M1CDR = 0.450881*pow(M1MS,1)

-0.0102812*pow(DDCB,1)
+0.00126507*pow(CCMS,1)
+0.0538425*pow(BCACB,1)
-0.00205841*pow(Y5TCMR,2)
-0.356311*pow(Y5TCMR,1)
+0.00877064*pow(Y3TCMR,2)
+0.00308282*pow(M3TBRAA,2)
+0.69845*pow(Y30CMR,1)
-0.11687;

//(754,96) <0.0422099, 0.0382938>

}

TMSE: 0.0500334
VMSE: 0.0428185
GMSE: 0.0250136

 
 
 

 
 
 



A large number of terms were utili sed by the models of the model tree. The maximum

polynomial order of the models in the tree is 2.

if (type == "A") {
Y = 2.01245*pow(x,1)

+0.512857;
// (266, 22) <0.0912585, 0.0873773>
else {
if (type == "e") {

if (x > 0.997578) {
y = 1.48816*pow(x,2)

-6.83703*pow(x,1)
+2.09168;

//(66, 9) <0.0959942, 0.0494538>
else {
y = 1.01387*pow(x,3)

+400.504;
//(204, 31) <0.100298, 0.0883689>

}

else {
y = -1.9986*pow(x,1)

+0.512857;
//(264,38) <0.0853964, 0.0836496>

}

TMSE: 0.0920197
VMSE: 0.0828551
GMSE: 0.0811045

What is interesting to note, is that the model tree is almost identical to the generating
function of section 4.4.1.

if (P11p4 < 0.00635415) {
price = -249056*pow(H10p1,1)*pow(P16p2,1)

-150165*pow(P27p4,3)
+286593*pow(P16p2,1);

 
 
 

 
 
 



// (123, 12) <3.1888ge+09, 4.06234e+09>
else {
if (H40p4 < 0.0122007) {

if (H13p1 < 0.847563) {
price = 287953*pow(H13p1,2)

-292744*pow(H13p1,1)
-1987.53*pow(H8p2,1)
+45552.3*pow(H2p2,1)
+318809*pow(P27p4,1)*pow(P16p2,1)
+130331*pow(P14p9,6)*pow(P6p2,2)*pow(P1,1)
-1789.72*pow(P11p4,4)
+12.4096*pow(P1,1)
+70607.7;

//(3177, 397) <1.2344ge+09, 6.54793e+08>
else {
price = 49642.6*pow(P15p1,1);
//(57, 6) <1. 19254e+09, 5.26761e+08>

}
else {
if (H10p1 > 0.965729) {

if (H13p1 < 0.707063) {
price = 1.42302e+06*pow(H18pA,1)*pow(H10p1,8)

-1.5027ge+06*pow(H18pA,1)
-1.42104e+06*pow(H13p1,4)
+1.78124e+06*pow(H13p1,2)*pow(H10p1,3)
-960514*pow(H13p1,1)
-2.91708e+06*pow(H10p1,1)
+491007*pow(P27p4,1)*pow(P16p2,1)
-97214.2*pow(P14p9,1)
+3.09173e+06;

// (12264, 1542) <1.58384e+09, 1.18774e+09>
else {
price = 49642.6*pow(P15p1,1);
// (61, 2) <1.7607e+09, 1.05144e+09>

}

else {
if (P18p2 < 0.0693344) {

price = -49761.3*pow(H40p4,1)
+741151*pow(H18pA,2)
-352497*pow(H18pA,1)
+27277.1*pow(H10p1,2)

 
 
 

 
 
 



-86146*pow(H2p2,1)
+2.0637ge+06*pow(P27p4,1)*pow(P5p1,1)
-5.10314e+06*pow(P18p2,1) *pow(P5p1, 1)
+179486*pow(P16p2,2)
-8558.44;

//(2543, 320) <2.70133e+09, 2.22773e+09>
else {
price = 49642.6*pow(P15p1,1);
//(1, 0) <1.8252ge+08, 0>

}
TMSE: 1.6889ge+09
VMSE: 1.2542e+09
GMSE: 1.29921e+09

A large number of non-linear rules were obtained from the dataset. The maximum

utili sed polynomial order for the rules was 9.

if (OIS < 1.81274) {
MEOV = 0.0311044*pow(LSTAT,2)

-0.0852524*pow(LSTAT, 1)*pow(PTRATIO, 1)*pow(NOX, 1)
-0.596869*pow(LSTAT,1)
+0.431583*pow(RAO,1)*pow(CHAS,1)
-1.35841*pow(OIS,1)
+0.119659*pow(RM,3)
-11.7921*pow(RM,1)
-0.108755*pow(CRIM,1)
+83.3143;

//(63, 8) <33.3665, 3.50684>
else {
MEOV = -0.767679*pow(LSTAT,1)*pow(NOX,1)

-0.729239*pow(PTRATIO,1)
-0.0137382*pow(TAX,1)
-0.255243*pow(RAO,1)*pow(RM,1)
+1.71962*pow(RAO,1)
-0.59144*pow(OIS,1)

 
 
 

 
 
 



+2.81649*pow(RM,2)
-30.0403*pow(RM,1)
+1.5585*pow(CHAS,1)
+124.502;

// (341, 43) <10.7152, 7.98617>
}

TMSE: 14.2475
VMSE: 7.28353
GMSE: 6.29143

Only two non-linear rules were obtained. The maximum order of the models of the

model tree is 3.

if (blend[7] < 203.273) {
intensity = -0.0123416*pow(across,1)

+0.00189951*pow(blend[7],2)
-0.0477566*pow(blend[6],1)
+0.326583*pow(blend[5],1)
+0.694096*pow(blend[4],1)
-0.00194599*pow(blend[3],2)
+0.22087*pow(blend[3],1)
-0.132875*pow(blend[2],1)
-0.0649604*pow(blend[1],1)
+1.96046;

//(12328,1532) <127.918, 120.595>
else {
if (blend[3] > 118.928) {

if (blend[O] > 49.8796) {
if (across < 55.2729) {

intensity = 0.507778*pow(blend[7],1)
-0.0444378*pow(blend[6],1)
+0.354999*pow(blend[5],1)
+0.659356*pow(blend[4],1)
-0.303265*pow(blend[3],1)
-0.176485*pow(blend[2],1);

//(38, 6) <351.494, 62.1143>
else {
intensity = 0.0105132*pow(blend[7],2)

 
 
 

 
 
 



-0.0205424*pow(blend[7],1)*pow(blend[4],1)
-0.00172814*pow(blend[5],2)
+0.00143276*pow(blend[5],1)*pow(blend[1],1)
+0.317081*pow(blend[5],1)
+5.42638*pow(blend[4],1)
-0.543182*pow(blend[1],1)
-0.167443*pow(blend[0],1)
-391.867 ;

//(734,100) <150.048, 128.225>
}
else {
intensity = 1.94436*pow(blend[2],1);
//(2, 0) <1.63576, 0>

}

else {
intensity 1.47793*pow(blend[5],1)

-0.62556*pow(blend[2],1)
+0.263644*pow(blend[1],1);

<0.00493363, 1451.8>

}
TMSE: 129.747
VMSE: 121.659
GMSE: 106.126

Essentially, the rules consist of linear blends of the context pixels to obtain the predicted

pixel value. One of the rules represents an outlier. Also, the maximum polynomial order

of the models is 2.

if (CACH < 128.391) {
if (MMIN < 25112.4) {

PRP = 0.0347948*pow(CHMAX,1)*pow(CACH,1)
-0.14693*pow(CHMIN,2)
+0.00117564*pow(CHMIN,1)*pow(MMIN,1)
+0.00558463*pow(MMAX,1)
-0.0010641*pow(MMIN,1);

//(160, 21) <1212.63, 568.998>
else {

 
 
 

 
 
 



PRP = 31.0917*pow(CHMIN,1)
+0.00430516*pow(MMIN,1);

//(1, 0) <127.71, 0>
}

else {
PRP = -2.33197*pow(CHMAX,1)

+30.9474*pow(CHMIN,1)
+0.00440527*pow(MMIN,1);

//(6, 0) <736.413, 0>
}

TMSE: 1189.02
VMSE: 568.998
GMSE: 333.024

A small number of linear rules where generated. The largest order utili sed by the models

of the model tree is 2. Once again one of the rules represents an outlier.

if (t < 10566.2) {
if (buf [0] > 130.813) {

Y = 0.869102*pow(buf[2],1)
-0.398713*pow(buf[1],1)
+0.436347*pow(buf[0],1)
+11.8149;

//(3932, 497) <307.129, 311.468>
else {
y = 0.8834*pow(buf[2],1)

-0.454296*pow(buf[1],1)
+0.475617*pow(buf[0],1)
+12.0682;

//(4510, 540) <314.362, 334.597>
}

else {
if (t < 20022.7) {

if (buf[l] < 145.598) {
Y = -0.00243541*pow(buf[2],1)*pow(buf[1],1)

+1.17106*pow(buf[2],1)
+0.00179399*pow(buf[1],2)
-1.04915*pow(buf[1],1)

 
 
 

 
 
 



+0.721939*pow(buf[0],1)
+28.1399;

//(5460, 692) <332.485, 356.925>
else {
y = 0.00263594*pow(buf[2],2)

-0.447044*pow(buf[1],1)
+0.566219*pow(buf[0],1)
+61.1108;

//(2109, 235) <286.787, 252.748>
}

else {
y = 1.08554*pow(buf[2],1)

-0.646192*pow(buf[1],1)
+0.366292*pow(buf[0],1)
+24.683;

//(9495, 1225) <263.164, 249.476>

}

TMSE: 295.787
VMSE: 297.108
GMSE: 294.327

A small number of linear rules where generated. The largest order utili sed by the models

of the model tree is 2.

if (motor == liD II ) {

class = -0.343752*pow(pgain,1)
+2.13126;

//(17, 2) <0.267481, 0.999964>
else {
if (motor == "E") {

if (screw == "A") {
class = -0.0971804*pow(vgain,1)*pow(pgain,1)

+0.59491*pow(vgain,1)
-0.489579*pow(pgain,3)
+7.57494*pow(pgain,2)
-38.6539*pow(pgain,1)
+65.5058;

 
 
 

 
 
 



//(6, 1) <1.43629, 0.00659144>
else {
class = -0.343752*pow(pgain,1)

+2.13126;
//(19, 2) <0.126267, 0.00564462>

}
else {
class = -0.122795*pow(vgain,1)*pow(pgain,1)

+0.730519*pow(vgain,1)
-0.447423*pow(pgain,3)
+7.05858*pow(pgain,2)
-36.4128*pow(pgain,1)
+61. 5672;

//(91, 12) <0.39332, 0.016951>

}

TMSE: 0.386136
VMSE: 0.13066
GMSE: 0.0315292

A small number of rules where generated, however some of the rules are non-linear. The

maximum order of the models of the model tree is 3.

if (t > 23500.3) {
Y = 0.510853*pow(left[3],1)

+0.754001*pow(right[2],1)
-0.0890549*pow(left[2],1)
-0.677194*pow(right[1],1)
+0.333603*pow(left[1],1)
+0.393169*pow(right[0],1)
-0.180878*pow(left[0],1)
-5.84898;

//(6356, 797) <198.139, 195.359>
else {
if (t > 7772.91) {

if (left[l] < 167.104) {
Y = 0.595663*pow(left[3],1)

+0.584884*pow(right[2],1)

 
 
 

 
 
 



-0.14832*pow(left[2],1)
-0.646768*pow(right[1],1)
+0.375642*pow(left[1],1)
+0.477733*pow(right[0],1)
-0.185438*pow(left[0],1)
-6.5451;

//(11317, 1434) <219.241, 215.915>
else {
y = 0.616402*pow(left[3],1)

+0.603696*pow(right[2],1)
-0.18247*pow(left[2],1)
-0.623408*pow(right[1],1)
+0.39671*pow(left[1],1)
+0.452291*pow(right[0],1)
-0.199426*pow(left[0],1)
-8.13588 ;

// (1241, 133) <211. 091, 152.021>
}
else {
y = 0.716837*pow(left[3],1)

+0.639319*pow(right[2],1)
-0.394613*pow(left[2],1)
-0.560577*pow(right[1],1)
+0.459409*pow(left[1],1)
+0.430266*pow(right[0],1)
-0.211955*pow(left[0],1)
-9.64711;

//(6230, 779) <173.144, 164.914>

}

TMSE: 202.083
VMSE: 195.358
GMSE: 189.556

Essentially, the rules consist of linear blends of the left and right channels to obtain the

predicted sample.

 
 
 

 
 
 



if (tl < 0.0263429) {
if (to> 0.00343757) {

y = -2.63082*pow(tO,1)
+0.972257*pow(t1,1)*pow(t2,1)
-0.0932611*pow(t2,1)
+0.326075;

//(101, 12) <0.123809, 0.0717015>
else {
y = 1.00471*pow(tO,1)*pow(t1,1)*pow(t2,1)

+0.669822;
//(97, 8) <0.102582, 0.037943>

}

else {
y = -0.19592*pow(t1,1)

+0.979469*pow(t2,1)
+0.342466;

//(193, 25) <0.0924138, 0.0926662>
}
else {
y = 0.305796*pow(t1,1)

-1.39869*pow(t2,2)
+1.4918;

//(409, 55) <0.0823577, 0.0943271>
}
TMSE: 0.0924692
VMSE: 0.086686
GMSE: 0.0857686

What is interesting to note, is that the model tree is almost identical to the generating function
of section 4.4.1.

From the best solutions listed above, the maximum utilised polynomial order was 9 (for

the house-16H dataset). This suggests that a maximum polynomial order of larger than 9

will result in no improvement in generalisation performance. For a large proportion of the

above solutions, the utilised polynomial order was no greater than 3. This indicates that cubic

surfaces sufficiently describe most databases, including time-series.

For some of the above results, outliers in the dataset were detected and isolated by rules.

This indicates that there is still redundancy to be removed from the model tree solutions.

Also, the removal of these outliers will improve the generalisation accuracy of the models.

 
 
 

 
 
 



These outliers should be removed by some heuristic, e.g. rules that cover a smaller number of

patterns than some threshold should be removed and the patterns covered by the rules should

be discarded from the training set. Thus, further improvements in accuracy and complexity

are possible.

This chapter discussed a genetic program for the mining of continuous-valued classes (GPMCC).

The performance of the GPMCC was evaluated against other algorithms such as Cubist and

NeuroLinear for a wide variety of problems. Although the generalisation ability of the GPMCC

method was slightly worse than the other methods, the complexity and number of generated

rules were significantly smaller than that of other methods. The GPMCC method was also

fairly robust, in that the parameter choices did not significantly effect any outcomes of the

GPMCC method. The success of the GPMCC method can be attributed to the specialised

mutation and crossovers, and can also be attributed to clustering. Another important aspect

to the GPMCC method is the development of a fragment pool, which served as a belief space

for the genetic program. The fragments of the fragment pool resulted in structurally optimal

models for the terminal nodes of the GPMCC method. The fitness function was also crucial,

because it penalised chromosomes with a high level of complexity.

Although the genetic program presented in this chapter seems to be fairly effective both in

terms of rule accuracy and complexity, the algorithm was not particularly fast. The speed of the

algorithm is seriously affected by the recursive procedures used to perform fitness evaluation,

crossover and mutation on the chromosomes (model trees). This problem can be solved in

two ways: implement a model tree as an array or change the model tree representation to a
production system.

If the model trees of the genetic program are represented as an array, clever indexing of

the array will negate the need for any recursive functions. However, the array would have to

represent a full binary tree which could unnecessarily waste system memory if the model trees

are sparse. If the model tree representation is changed to a production system, the mutation

and crossover operators will have to be re-investigated.

Envisioned future developments to the GPMCC method include the revision of the attribute

 
 
 

 
 
 



tests. These attribute tests could be revised to implement non-linear separation boundaries

between continuous classes. The GASOPE method could then be used to efficiently approx-

imate these non-linear separation boundaries. The fragment pool discussed in this chapter

could be used to implement a function set for the separation boundaries, in a manner similar

to that of the terminal set.

The next chapter presents the conclusion to this thesis.

 
 
 

 
 
 



Chapter 5

CONCLUSION

This chapter briefly summarises the findings and contributions of this thesis, followed by a

discussion of directions for future research

Data mining is becoming increasingly important as a means of automating and enhancing

traditional knowledge discovery processes. In order to completely satisfy the four objectives

of data mining, i.e. accuracy, comprehensibility, crispness and novelty, new tools need to be

developed. However, the development of new tools should also satisfy a number of qualita-

tive requirements, i.e. scalability, efficiency, reliability etc .. The mining of continuous-valued

classes provides its own unique challenges, evident in the relatively small number of data

mining algorithms that exist for the mining of continuous classes.

This thesis developed a new genetic programming approach for the mining of continuous

classes (GPMCC). Essentially, the GPMCC method evolved model trees in order to describe

a data set, which was made up of patterns with continuous targets. The models for the model

trees were obtained from a fast, efficient genetic algorithm that evolved structurally optimal

polynomial expressions (GASOPE). Both the GASOPE and the GPMCC method utili sed a

fast, rough clustering algorithm in order to reduce the search space.

The GASOPE method evolves a population of individuals, which represent polynomial

expressions. Specifically, the GASOPE method optimises the structure of the polynomial

expressions, i.e. the GASOPE method determines the best term architecture, and the discrete

 
 
 

 
 
 



least squares method is employed to obtain the coefficients of the terms in an expression. A

modified k-means clustering algorithm is utilised by the GAS OPE method to continually draw

stratified random samples of the training patterns during the learning process. This stratified

random sampling strategy drastically reduces the computation time required by the method.

The GPMCC method evolves a population of individuals, which represent model trees.

The models are obtained from a fragment pool, which implements a belief space of terminal

symbols. The fragment pool implements mutation and crossover operators to adjust this belief

space periodically. An iterative learning strategy is utilised by the GPMCC method in order to

reduce the number of training patterns presented to the GPMCC learning process. In addition,

the iterative learning strategy results in increased generalisation accuracy.

Experimentally, the GASOPE method was compared to a standard back-propagation neural

network, which implemented gradient descent. The GASOPE method performed significantly

better than the neural network both in terms of generalisation accuracy and training time. In
fact, the training time of the GASOPE method was orders of magnitude faster than that of

the neural network. The GASOPE method was also shown to produce the best approximating

polynomial structure for a given data set.

The GPMCC method was compared to both NeuroLinear and Cubist. Although the GPMCC

method was not significantly less accurate than both NeuroLinear and Cubist, the GPMCC

method was shown to generate a substantially smaller number of rules. The rules generated

by the GPMCC method were also less complex than those of the other methods. Overall, the

GPMCC method proved to be a very capable tool for the mining of continuous-valued classes.

Throughout this thesis a number of new directions for future research presented themselves.

These ideas are briefly summarised below:

Both the GASOPE and the GPMCC methods of chapters 3 and 4 introduce a number of new

parameters, some of which were determined experimentally to be fairly robust. These parame-

ters can be directly optimised using the evolutionary strategies approach of section 2.2.3. This

 
 
 

 
 
 



As was mentioned in section 3.5, polynomial structures are poor predictors of periodic data,

particularly when applied to extrapolation tasks. This problem can be solved in one of two

ways: Build an expression that utilises a periodic function such as cosine or sine, or use only

linear predictors at the ends of the approximation interval.

The speed of the GPMCC method is seriously affected by the recursive procedures used to

perform fitness evaluation, crossover and mutation on the chromosomes (model trees). This

problem can be solved in two ways: implement a model tree as an array or change the model

tree representation to a production system.

The attribute tests of the GPMCC method could be revised to implement non-linear separa-

tion boundaries between continuous classes. The GASOPE method could then be used to

efficiently approximate these non-linear separation boundaries. The fragment pool discussed

in section 4.3.3 could be used to implement a function set for the separation boundaries, in a

manner similar to that of the terminal set.
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Appendix A

SYMBOLS

 
 
 

 
 
 



Symbol Meaning
a Input attribute
b Target output
b Vector of target outputs
b· Predicted output
c Number of classes
d Model complexity
connections Artificial neuron inputs
fAN Artificial neuron activation function,
fAN Artificial neuron activation function derivative
g Evolutionary computing generation counter
h Artificial neural network hidden unit iterator
i Artificial neural network input unit iterator or pattern iterator
j Term iterator
k Number of clusters, classes, coefficients or complexity (clear from context)
I Pattern iterator
m Total number of input attributes
n Generic maximum, mostly used to mean the maximum order of a polynomial
net Artificial neuron weighted sum variable
0 Test outcomes
p Maximum number of terms
r Real-valued coefficient
r Vector of real-valued coefficients
s Sample size
t Artificial neural network output unit iterator
v Possible attribute value
v Artificial neural network output weight vector
w Artificial neural network weight
w Cluster centroid vector or artificial neural network hidden weight vector
x Input value
y Target output
y. Predicted output
A Attribute or Attribute matrix (clear from context)
Co Cluster
C.1f Class
C.l'Ubscript Antecedent term
E Error term
EMA Mean absolute error
EMS Mean squared error
EQ Quantisation error
Ess Sum squared error
Fro Fragment in a fragment pool
G Evolutionary computing population
GOA Genetic algorithm population
GFP Fragment pool
Gop Genetic program population

 
 
 

 
 
 



Symbol Meaning
H Total number of hidden units in an artificial neural network
I Total number of input units in an artificial neural network
la Parent individual to be involved in crossover
Ip Parent individual to be involved in crossover
Iy Child individual resulting from crossover
Iw Individual in a GAS OPE population or fragment pool
Ix Individual in a GPMCC population
M Maximum number of generations
L 3-Piece piecewise linear approximation
N Maximum number of individuals
Nx An arbitrary node in Ix
0 Evolutionary computing temporary population
p Training set or penalty term (clear from context)
Q A set of patterns belonging to some case
R A set of patterns covered by a rule
S Sample set
T Total number of output units in an artificial neural network
T1; One of the sets of term-coefficient mappings in and individual Iw
Usubscript User defined parameter
X Test
0, Artificial neural network momentum term
o,subscript Intercept
~.I'ubscript Gradient
8 Cluster iterator
C Artificial neural network epochs iterator
csub.l'cript Penalty terms
1'\ Artificial neural network learning rate
e Artificial neuron threshold
A Control parameter for the sigmoid function
A,l'Ub.l'cript Natural valued order
~ Term-coefficient iterator
cr Artificial neural network error signal
't Input attribute iterator or bias (clear from context)
PI Pattern
<j> Outcome iterator
X Population iterator for a genetic program

'I' Class iterator
ill Individual iterator

 
 
 

 
 
 



Index

allele, 13

antecedent, 5, 6

approximation

discrete least squares, 38

function, 37

architecture selection, 28

artificial neural network

feed forward, 22

functional link, 22

recurrent, 22

Elman, 22

Jordan, 22

artificial neural networks, 20, 43, 81

child, 6

chromosome, 12

classification, 5

clustering, 31

hierarchical, 31

k-means, 31, 45

partitional, 31

coefficient

correlation, 40

coevolution, 17

consequent, 5, 6

context modelling, 93

correlated, 40

covers, 6

criterion
gain, 8

gain ratio, 8

crossover

one-point, 14

two-point, 14

uniform, 14

data preparation, 26

decomposition

singular-value, 63

determination

adjusted coefficient of, 40, 56

coefficient of, 40

distance
Euclidean, 32-34

Manhattan, 32

divide-and-conquer, 8

domain specific knowledge, 18

error

mean absolute, 141

mean squared, 24

quantisation, 34

 
 
 

 
 
 



 
 
 

 
 
 



crossover, 13,55,94, 105

elitism, 13

mutation, 13,51,94,98

selection, 13

rank-based, 14

tournament, 14

selective learning, 29

self organising maps, 33

space

belief, 17, 92

population, 17

split-and-merge, 35

systems

classification, 6

regression, 6

particle swarm optimisation, 23, 28

path, 6, 94

phenotype, 13

polynomials

Lagrange, 41, 68

Taylor, 41

production rule, 6

production system, 6
decision, 6, 87

model, 10, 87

regression, 10, 87reduction

Gauss-Jordan, 63

regression, 5, 40

non-linear, 91

symbolic, 85
regularisation, 28

relationships

predator-prey, 17

symbiotic, 17
root, 6

product, 21

summation, 21

variable

dependent, 40

independent, 40

sample

stratified random, 45

scaled conjugate gradient, 23

selection

proportional, 14

random, 13
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