
Chapter 5

Fault-tolerant control

5.1 Introduction

In the existing papers on train handling as well as the previous chapters, all the con-
trollers are designed on the assumption that the train is well set up and all the actuators
(traction efforts and braking efforts of locomotives and wagons) and sensors (speed sen-
sors) work as designed, which is an ideal condition. In practice, some of the actuators
and/or sensors may be faulty, and even worse, the train structure may be changed. For
example, the speed sensor has a constant bias, or the amplifier in the sensor circuit
has a fault, which leads to a gain fault of the sensor. The air pressure in the brak-
ing pipe may be different from expected because of a fault in the pressure sensor in
the air recharge system or air leakage, which makes the braking forces acting on the
wheels less than expected. When a fault happens, the controller, designed on the basis
of the faultless train model, cannot work as well as expected, and sometimes it even
leads to unsafe running, such as train-breaking and derailment, i.e., the safe running
of trains cannot be promised. Some safe running methods are therefore necessary in
train handling.

Actually, in some fault modes of train handling, it is possible to assure train per-
formance with suitably redesigned controllers. That is what is studied in this chapter.

In nature, the above-mentioned controller redesign is a fault-tolerant control prob-
lem. In the literature, there are many papers about such problems. Some survey
papers, such as [48, 49, 50, 51, 52, 53, 54, 55], provide excellent reviews on the subject
of fault-tolerant control. For linear systems, geometric approaches are proposed for
fault detection and isolation (FDI), e.g. in [56, 57, 58]. A combined input-output and
local approach is proposed in [59] for the problem of FDI of nonlinear systems modelled
by polynomial differential-algebraic equations. A high-gain observer-based approach
for FDI of an affine nonlinear system is advanced in [60], where a sufficient condition is
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given. In [61], a geometric approach to FDI of nonlinear systems is proposed, while a
necessary condition for the existence of FDI is exploited based on a geometric concept–
unobservability distribution introduced by the authors in [62]. For the solution of FDI,
a sufficient condition is also given. A stability- and performance-vulnerable failure of
sensors can be identified with the approach in [63] for nonlinear systems. The switch
between two robust control strategies based on normal operation and faulty operation
is used to realize fault-tolerant control. An information-based diagnostic approach is
investigated in [64] for a class of SISO nonlinear system in a triangular structure. In
[65], a fault diagnosis approach is proposed based on adaptive estimation by combin-
ing a high gain observer and a linear adaptive observer. As is known, the high-gain
observer is sensitive to measurement noise. In speed regulation of heavy haul trains
with measurement (speeds) feedback, noise is inevitable, so a high-gain observer is not
considered in this study. Recently, compared to [61], a relaxed formulation of FDI of
nonlinear systems is proposed in [66], where a residual has been designed to detect a
set of faults.

In train handling, such problems have been investigated in [69, 70] for some faults
with induction motors. The fault detection and isolation of diesel engines are seen
in [67, 68]. Paper [70] is in essence on fault-tolerant control of the induction motor,
which can also be seen in [71]. In this chapter, the fault-tolerant control of the whole
train is studied. The faulty modes of a train include the gain faults of speed sensors,
the locomotive actuators (induction motors, in this study), and wagon actuators (the
braking systems). The locomotive fault signal is assumed to be acquired from other
FDIs and is available in its fault-tolerant controller redesign. Based on the train model
and fault modes, a fault-tolerant speed regulator (including the FDI part and FTC
part) is designed for the faults of sensors and braking systems, respectively. The fault-
tolerant speed regulator of sensors’ faults is based on the approach in [61], while the
fault-tolerant speed regulator of the braking system fault is based on steady state
calculation.

In this chapter, a geometric approach to fault detectability is quoted from [61] in
section 5.2. The approach in [61] is employed for the FDI of sensor faults. Then the
fault modes of train handling are assumed with sensor faults and actuator faults, re-
spectively. Considering the convenience of application considered, the sensor equipment
structure of a train is suggested and the train structure is assumed for the subsequent
study. The third part, the application condition of the result in section 5.2, is justified
for the speed sensors as well as for the wagon actuators. An FDI for the sensor faults is
designed on the basis of the approach in [61] and an FDI for the wagon actuator faults
is designed on the basis of an approach proposed in this thesis. Based on the fault
signals, the fault-tolerant controller is very convenient to be redesigned. Simulation for
the proposed approaches is also given in the last part of this chapter.

Electrical, Electronic and Computer Engineering 88

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  ZZhhuuaann,,  XX    ((22000077))  



Chapter 5 Fault-tolerant control

5.2 Fault detectability

Based on a concept of the observability co-distribution in [62], a geometric approach is
proposed in [61] for the fault detection problem of nonlinear systems. This approach
will be adopted to justify the detectability of the train faults.

Consider a nonlinear system in the following form,

ẋ = f(x) + g(x)u+ l(x)uf + p(x)w,

y = h(x),
(5.1)

where x ∈ X ⊂ Rn is the state with X a neighbourhood of the origin, u ∈ Rmu is the
control input, uf ∈ R is a fault signal (input), w ∈ Rd is the disturbance and/or other
fault signals, and y ∈ Rq is the output. g(x) = [g1(x), · · · , gmu

(x)] and it is assumed
g0(x) = f(x). p(x) = [p1(x), · · · , pd(x)]. The vector fields gi(x), i ∈ [0,mu], pj(x), j ∈
[1, d], h(x) are assumed to be smooth and f(0) = 0, h(0) = 0.

The task of fault detection is to design a filter (residual generator) in the form of

˙̂x = f̂(x̂, y) + ĝ(x̂, y)u,

r = ĥ(x̂, y),
(5.2)

where x̂ ∈ X̂ ⊂ Rn̂, r ∈ Rq̂, q̂ ≤ q, and the vector fields f̂(x̂, y), ĝ(x̂, y), ĥ(x̂, y) are
smooth and f̂(0, 0) = 0, ĥ(0, 0) = 0 such that the output r of the cascade system
composed of (5.1) and (5.2) depends only on the fault signal uf , is decoupled from
the disturbance w and asymptotically converges to zero whenever uf is identically zero
with any input u.

This problem is formulated in a geometric concept in [61].

The system (5.1) can be rewritten as follows without the fault and disturbance
signals considered:

ẋ = g0(x) +
mu∑

i=1

gi(x)ui,

y = h(x).

(5.3)

Based on this system, some concepts are given below.

ker{dh} is the distribution annihilating the differentials of the rows of the mapping
h(x).

span{dh} is the co-distribution spanned by the differentials of the rows of the map-
ping h(x).

A distribution ∆ is said to be conditioned invariant ((h, f) invariant, f = g0) of the
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system (5.3) if it satisfies

[gi,∆ ∩ ker{dh}] ⊂ ∆,∀i ∈ [0,mu], (5.4)

A co-distribution Ω is said to be conditioned invariant if

Lgi
Ω ⊂ Ω + span{dh},∀i ∈ [0,mu]. (5.5)

The symbol Ωo denotes the smallest co-distribution invariant under gi, i ∈ [0,mu]
which contains span{dh}.

The cascade system of (5.1) and (5.2) can be written as

ẋe = ge
0(x

e) +
mu∑

i=1

ge
i (x

e)ui + le(xe)uf +
d∑

i=1

pe
i (x

e)wi,

r = he(xe),

(5.6)

where xe =

(
x
x̂

)

, ge
0(x

e) =

(
f(x)

f̂(x̂, h(x))

)

, ge
i (x

e) =

(
gi(x)

ĝi(x̂, h(x))

)

, i ∈ [1,mu],

le(xe) =

(
l(x)
0

)

, pe
i (x

e) =

(
pi(x)

0

)

, i ∈ [1, d],

he(xe) = ĥ(x̂, h(x)). Let Ωe
o denote the smallest co-distribution invariant under

ge
i , i ∈ [0,m] which contains span{dhe}.

The local nonlinear fundamental problem of residual generation (lNLFPRG) can
be formulated in a geometric way [61].

Problem: Given a system (5.1), find, if possible, a dynamic system in the form of
(5.2) such that the smallest co-distribution invariant Ωe

o defined in (5.6) satisfies

i) span{pe
1, · · · , pe

d} ⊂ (Ωe
o)

⊥;

ii) span{le} 6⊂ (Ωe
o)

⊥;

iii) there exists a neighbourhood of Xe ∈ Rn+n̂ containing the origin, such that the
output r of system (5.6) asymptotically converges to zeros when uf (t) = 0 and
xe(0) ∈ Xe.

The fault detectability of nonlinear systems is incorporated with the conditioned
invariant distribution and observability co-distribution [61].
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An algorithm is given in [61] for a conditioned invariant distribution for the system
(5.3) as follows. The nondecreasing sequence of distributions is defined:

S0 = P̄ ,

Sk+1 = S̄k +
mu∑

i=0

[gi, S̄k ∩ ker{dh}], (5.7)

where P = span{p1(x), · · · , pd(x)} and S̄ denotes the involutive closure of S. Then the
following lemma holds.

Lemma. Suppose there exists an integer k∗ such that

Sk∗+1 = S̄k∗ , (5.8)

and set ΣP
∗

= S̄k∗ . Then ΣP
∗

is involutive, contains P and is the smallest conditioned
invariant.

One can see that (ΣP
∗
)⊥ is the maximal conditioned invariant co-distribution, which is

locally spanned by exact differentials and contained in P⊥.

An algorithm is also given for an observability co-distribution of the system (5.3).
Let Θ be a fixed co-distribution and define the following nondecreasing sequence of
co-distributions

Q0 = Θ ∩ span{dh},

Qk+1 = Θ ∩
(

mu∑

i=0

Lgi
Qk + span{dh}

)

.
(5.9)

Suppose that all co-distributions of this sequence are nonsingular, so that there exists
an integer k∗ ≤ n − 1 such that Qk = Qk∗ ,∀k > k∗, and set Ω∗ = Ωk∗ = o.c.a(Θ),
where “o.c.a” stands for “observability co-distribution algorithm”. Then the following
holds.

Proposition. Suppose all the co-distributions generated by the algorithm above are
nonsingular. Then repeat the algorithm above with Θ′ = o.c.a(Θ), that is,

Q0 = Ω∗ ∩ span{dh},

Qk+1 = Ω∗ ∩
(

mu∑

i=0

Lgi
Qk + span{dh}

)

.
(5.10)

As a consequence, Ω∗ = o.c.a(Ω∗). If the co-distribution Θ is conditioned invariant, so
is Ω∗.

A co-distribution Ω is said to be an observability co-distribution for the system
(5.3) if

Lgi
Ω ⊂ Ω + span{dh},∀i ∈ [0,mu],

o.c.a(Ω) = Ω.
(5.11)
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A distribution ∆ is an unobservability distribution if its annihilator Ω = (∆)⊥ is an
observability co-distribution.

Also it is true that the co-distribution o.c.a(Θ) is the maximal observability co-
distribution contained in Θ. If the distribution ΣP

∗
is well-defined and nonsingular, and

ΣP
∗
∩ ker{dh} is a smooth co-distribution, then

o.c.a((ΣP
∗
)⊥) is the maximal observability co-distribution, which is locally spanned by

exact differentials and contained in P⊥.

A necessary condition for the solvability of lNLFPRG is that

span{l} 6⊂
(
o.c.a(ΣP

∗
)⊥)
)⊥
. (5.12)

A sufficient condition is also given in [61].

Consider a system (5.1), determine the co-distribution o.c.a(ΣP
∗
)⊥), the largest ob-

servability co-distribution locally spanned by exact differentials and contained in P⊥,
and suppose the necessary condition (5.12) is satisfied. Then the system (5.1) can be
rewritten as follows

ż1 = f1(z1, z2) + g1(z1, z2)u+ l1(z1, z2, z3)uf ,

ż2 = f2(z1, z2, z3) + g2(z1, z2, z3)u,

ż3 = f3(z1, z2, z3) + g3(z1, z2, z3)u,

y1 = h1(z1),

y2 = z2,

(5.13)

with a coordinate change

z = Φ(x) =





z1

z2

z3



 =





Φ1(x)
H2h(x)
Φ3(x)



 , (5.14)

where Φ(x) is determined as described below.

When the fault signal and the disturbance signals are not considered, the system
(5.1) is the one (5.3). Consider this system, let Ω be an observability co-distribution and
n1 = dim(Ω). Suppose Ω is spanned by exact differentials and span{dh} is nonsingular.
q − n2 = dim(Ω ∩ span{dh}). Suppose there exists a surjection Ψ1 : Rp → Rp−n2 such
that

Ω ∩ span{dh} = span{d(Ψ1 ◦ h)}.

At xo ∈ X, a neighourhood of the origin (yo = h(xo)), there exists a selection
matrix H2 (i.e., a matrix in which any row has all zero entries but one, which is equal
to one) such that

Ψ(y) =

(
y1

y2

)

=

(
Ψ1(y)
H2y

)

(5.15)

Electrical, Electronic and Computer Engineering 92

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  ZZhhuuaann,,  XX    ((22000077))  



Chapter 5 Fault-tolerant control

is a local diffeomorphism at yo ∈ Rp. Choose a function Φ1 : U o → Rn1 , where U o is a
neighbourhood of xo, such that in U o,

Ω = span{dΦ1}.

Then there exists a function Φ3 : U o → Rn−n1−n2 such that Φ(x) in (5.14) is a local
diffeomorphism at xo ∈ U o. With this coordinate change, the system (5.3) is described
in the following form,

ż1 = f1(z1, z2) + g1(z1, z2)u

ż2 = f2(z1, z2, z3) + g2(z1, z2, z3)u,

ż3 = f3(z1, z2, z3) + g3(z1, z2, z3)u,

y1 = h1(z1),

y2 = z2.

(5.16)

If p(x) is a vector field in the annihilator of Ω, (which is true when Ω ⊆ ΣP
∗
,) and the

condition (5.12) is satisfied, then in the new coordinates, the system (5.1) is in the
form

ż1 = f1(z1, z2) + g1(z1, z2)u+ l1(z1, z2, z3)uf ,

ż2 = f2(z1, z2, z3) + g2(z1, z2, z3)u+ l2(z1, z2, z3)uf + p2(z1, z2, z3)w,

ż3 = f3(z1, z2, z3) + g3(z1, z2, z3)u+ l3(z1, z2, z3)uf + p3(z1, z2, z3)w,

y1 = h1(z1),

y2 = z2.

(5.17)

It is very interesting to study the following z1-system of (5.16), which is locally weakly
observable with inputs u, y1, and y2 if g1(z1, z2) is a sum of a vector field of z1 and a
vector field of z2.

ż1 = f1(z1, y2) + g1(z1, y2)u,

y1 = h1(z1).
(5.18)

The following system is also locally weakly observable,

ż1 = f1(z1, y2) + g1(z1, y2)u+ l1(z1, z2, z3)uf ,

y1 = h1(z1).
(5.19)

As assumed in (5.12), l1(z1, z2, z3) is non-zero. So the occurrence of the fault signal uf

may be detected by an appropriate observer.

5.3 Fault modes of trains

The previous train model is repeated as follows,

miv̇i = ui + fini−1
− fini

− fai
, i = 1, · · · , n,

ẋj = vj − vj+1, j = 1, · · · , n− 1.
(5.20)
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With open loop scheduling, one can get the equilibria. Then a difference system
between the train model and the equilibria is as (3.21), which can be rewritten as

δv̇ = f11(δv) + A12δx+Bδu,

δẋ = A21δv.
(5.21)

where δv = col(δv1, ..., δvn), δx = col(δx1, ..., δxn−1), f11(δv) = [f 1
11(δv1), ..., f

n
11(δvn)]T

in which f i
11(δvi) = (c1i

+ 2c2i
vr)δvi + c2i

δv2
i ,

B = diag(
1

m1

, · · · , 1

mn

),

A12 =










− k1

m1
0 · · · 0 0

k1

m2
− k2

m2
· · · 0 0

· · · · · · · · · · · · · · ·
0 · · · 0 kn−2

mn−1
− kn−1

mn−1

0 · · · 0 0 kn−1

mn










,

A21 =







1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 −1






.

The variables ki, i = 1, · · · , n− 1 are chosen to be constant.

In this thesis, the fault modes include speed senor faults and actuator faults.

5.3.1 Speed sensor faults

The states of a train include the speeds of cars and the relative displacement of the
couplers (in-train forces). It is practical to measure the speeds of cars. The speed
sensor may be faulty with a constant bias, and/or with a gain fault due to the gain
change of the amplifier in the circuit. In the former case, such a fault can be corrected
by the calibration before its application. In this chapter, the latter case is considered,
that is, the sensor for the ith car’s speed is faulty with a gain fault,

vi = (1 +mf
vi
)vo

i , (5.22)

where the variable vi is the sensor output for the ith car’s speed, vo
i is the real speed,

and mf
vi

is the constant gain fault of the sensor.

Assuming there are q sensors equipped for q cars of the train, and they are located
at the positions ls1, · · · , lsq, then, the dynamics of a train with speed measurement
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(5.21) is as follows,

δv̇ = f11(δv) + A12δx+Bu,

δẋ = A21δv,

yi = (1 +mf
vlsi

)vlsi
− vr, i = 1, · · · , q,

(5.23)

where the variable mf
vlsi

is the constant gain fault of the ith sensor.

5.3.2 Actuator faults

The actuators of a train include the locomotives’ engines (traction efforts or dynamic
braking forces) and the wagons’ brakes (braking efforts). However, the actuators are
sometimes faulty. For example, one locomotive in a locomotive group (composed of
nl locomotives) does not work, then the actual output of the locomotive group is nl−1

nl

of the expected. The air pressure in the braking pipe is sometimes different from the
designed one owing to air leakage or a fault of the pressure sensor in the air recharging
system, which leads to less braking effort in the braking system. In train handling,
every locomotive has its own engine, whose running condition is independent with the
others while all wagons share the same braking pressure in the air pipe along the train,
whose fault leads to the same faults on all wagons.

In the above cases, the outputs of the actuators may not be equal to those expected,
but proportional to the expected ones, i.e.,

uf
i = (1 −mi

f )ui, i = 1, · · · , n, (5.24)

in which ui, u
f
i are expected output and real output, respectively. The output in-

cludes the open loop part uo
i and the closed-loop part Ui. The coefficient mi

f is a fault
coefficient. In (5.24), 0 ≤ mi

f ≤ 1.

In the following analysis, one assumes the locomotives’ faults are independent and
the wagons’ faults are the same, i.e.,

uf
li

= (1 −mli
f )uli , i = 1, · · · , k,

uf
j = (1 −mw

f )uj, j = 1, · · · , n, j 6= li.
(5.25)

5.4 Fault detection and isolation

5.4.1 Sensor fault detection and isolation

The sensors in train handling are the speed sensors. When the faults of these sensors
are considered and viewed as pseudo-actuators’ faults, the train model described in
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(5.23), is as follows.
δv̇ = f11(δv) + A12δx+BU,

δẋ = A21δv,

v̇f
lsi

= −vf
lsi

+ uf
lsi
vlsi

,

yi = δvlsi
+ vf

lsi
, i = 1, · · · , q,

(5.26)

where uf
lsi

is the pseudo-actuator of the sensor fault. When there is no fault with the

sensor, i.e., vf
lsi

= 0, the dynamics are v̇f
lsi

= −vf
lsi

+uf
lsi
vlsi

, in which uf
lsi

must be zero.

When there is a fault with the sensor, i.e., vf
lsi

6= 0, one has uf
lsi

=
v

f
lsi

vlsi

6= 0 in steady

state. So uf
lsi

can be thought of as the sensor fault signal.

In the previous chapter, it is assumed that there is a speed sensor for the first
car (usually a locomotive). It is convenient to assume that this sensor is always in
good condition and the output of this sensor is y1, which can be guaranteed by some
hardware structures, for example, a hardware redundancy. With this assumption, for
every sensor fault mode (the output of this sensor is yi, i = 2, · · · , q), the train is
modelled as

δv̇ = f11(δv) + A12δx+BU,

δẋ = A21δv,

v̇f
lsi

= −vf
lsi

+ uf
lsi
vlsi

,

y1 = δv1,

yi = δvlsi
+ vf

lsi
, i = 2, · · · , q.

(5.27)

When the ith sensor fault uf
lsi

is considered as uf in (5.1), the other sensor faults

(uf
lsj
, j ∈ [2, q], j 6= i) are thought as w in (5.1) to be decoupled. Then in the form of

(5.1), one has x = [δv, δx, vf
ls]

T , u = U, uf = uf
lsi
, w = (uf

lsj
), j ∈ [2, q], j 6= i,

f(x) =

[
f11(δv) + A12δx

A21δv

]

,

g(x) = B,

l(x) = [

n−2+i
︷ ︸︸ ︷

0, · · · , 0, vlsi
,

q−i
︷ ︸︸ ︷

0, · · · , 0]T ,

pj(x) = [

n−2+j
︷ ︸︸ ︷

0, · · · , 0, vlsj
,

q−j
︷ ︸︸ ︷

0, · · · , 0]T , j ∈ [2, q], j 6= i,

and

h(x) =







δv1

δvls2

· · ·
δvlsq






.

Electrical, Electronic and Computer Engineering 96

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  ZZhhuuaann,,  XX    ((22000077))  



Chapter 5 Fault-tolerant control

For the system (5.27), assuming the co-distribution

Θ = Ω0 = span{d(δv1), · · · , d(δvn), d(δx1), d(δxn−1)}
in the observability co-distribution algorithm (5.9), one has,

span{dh} = span{d(δv1), d(δvls2
+ vf

ls2
), · · · , d(δvlsq

+ vf
lsq

)},
Q0 = Ω0 ∩ span{dh} = span{d(δv1)},

Q̄0 =
m∑

i=0

Lgi
Q0 + span{dh}

= span{d(δv1), d(δx1), d(δvls2
+ vf

ls2
), · · · , d(δvlsq

+ vf
lsq

)},
Q1 = Ω0 ∩ Q̄0 = span{d(δv1), d(δx1)},

Q̄1 =
m∑

i=0

Lgi
Q1 + span{dh}

= span{d(δv1), d(δv2), d(δx1), d(δvls2
+ vf

ls2
), · · · , d(δvlsq

+ vf
lsq

)},
Q2 = Ω0 ∩ Q̄1 = span{d(δv1), d(δv2), d(δx1)},

· · · ,
Q2n−1 = span{d(δv1), · · · , d(δvn−1), d(δx1), · · · , d(δxn−1)},

Q̄2n−1 =
m∑

i=0

Lgi
Q1 + span{dh} = span{d(δv1), · · · , d(δvn),

d(δx1), · · · , d(δxn−1), d(δvls2
+ vf

ls2
), · · · , d(δvlsq

+ vf
lsq

)},
Q2n = span{d(δv1), · · · , d(δvn), d(δx1), · · · , d(δxn−1)}.

Then Qk = Q2n,∀k > 2n, which results in o.c.a(Ω0) = Q2n = Ω0.

Considering the co-distribution Ω = Ω0 + span{d(vf
lsj

)}, i.e.,

Ω = span{d(δv1), · · · , d(δvn), d(δx1), d(δxn−1), d(v
f
lsj

)},∀j ∈ [2, q],

one has o.c.a(Ω) ⊇ o.c.a(Ω0).

Then from (5.10), one has Q′

i ⊇ Qi and Q̄′

i ⊇ Q̄i where Q̄′

i and Q′

i are the calculation
results with Ω and Q̄i and Qi with Ω0. Then one has Q̄′

2n−1 ⊇ Q̄2n−1 and furthermore

Q′

2n = (Ω ∩ Q̄′

2n−1)

⊇ (Ω ∩ Q̄2n−1)

= span{d(δv1), · · · , d(δvn), d(δx1), d(δxn−1), d(v
f
lsj

)}
= Ω,

which means o.c.a(Ω) ⊇ Q′

2n ⊇ Ω. As is known, o.c.a(Ω) ⊆ Ω, so o.c.a(Ω) = Ω.

Furthermore, one has

Lgj
Ω ⊂ Ω = Ω + span{dh},∀j ∈ [0,m]. (5.28)
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The conditions in (5.11) are satisfied, i.e., Ω is an observability co-distribution.

It is obvious that the vector field pj, j ∈ [2, p], j 6= i is in the annihilator of Ω while
span{l} ⊂ Ω. So it is possible to transform the train dynamics with sensor faults (5.27)
into the form of (5.17), which means the possibility of fault detection of ith sensor
fault.

A residual generator for the ith sensor can be in the following form,

ξ̇1 = f11(ξ1) + A12ξ2 +BU + L11(y1 − ξ11) + L13(yi − ξ1,lsi
),

ξ̇2 = A21ξ1 + L21(y1 − ξ11) + L23(yi − ξ1,lsi
),

ξ̇3 = −ξ3 + L31(y1 − ξ11) + L33(yi − ξ1,lsi
),

ri = (yi − ξ1,lsi
)/(vr + ξ1,lsi

), i ∈ [2, p].

(5.29)

where ξ1 = col(ξ11, · · · , ξ1n) ∈ Rn, ξ2 = col(ξ21, · · · , ξ2,n−1) ∈ Rn−1, ξ3 ∈ R. In the
above equation, Lij are chosen by observer design approaches, such as pole placement
(Luenberger observer) or optimization control (Kalman filter).

Especially, when L13 = 0, L23 = 0, it is also possible for the above form of dynamics
to be a residual generator, because the original system without the faulty output is
also observable, which has been proved in the previous chapter. It is very interesting
to observe that this residual generator is naturally a fault identifier because the fault
signal does not affect the states ξ1, ξ2, and the residual signal is actually the identifier
signal of the fault. Furthermore, in this way, the residual generators and identifiers of
all the sensor faults can share the same dynamics with different outputs, i.e.,

ξ̇1 = f11(ξ1) + A12ξ2 +BU + L11(y1 − ξ11),

ξ̇2 = A21ξ1 + L21(y1 − ξ11),
(5.30)

and the output (a residual generator as well as a identifier) for the ith sensor fault is

ri =
y2 − ξ1,lsi

ξ1,lsi
+ vr

. (5.31)

5.4.2 Actuator fault detection and isolation

A locomotive group effort is sometimes not the same as the expected one for some
reasons, such as one locomotive of the locomotive group not working. The braking
efforts of wagons may be different from the expected, because of the pressure change
in the braking pipe. In the following, only the fault modes as in (5.24) are studied.

When this happens, the efforts of the cars are proportional to the expected efforts,
that is, the fault mode described in (5.25) is repeated as follows,

δv̇ = f11(δv) + A12δx+BU +Bf (U + uo),

δẋ = A21δv,
(5.32)
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where Bf = diag(ml1
f /m1,

n−2
︷ ︸︸ ︷

mw
f /m2, · · · ,mw

f /mn−1,m
l2
f /mn).

To detect the actuators’ faults, some states are assumed to be measurable. In this
study, the train is assumed to be composed of n cars with one locomotive (group) at the
front and one at the rear. The wagons are between these two locomotives (locomotive
groups). The speeds of the two locomotives and the two wagons next to the locomotives
are also available, i.e.,

y =







v1

v2

vn−1

vn






. (5.33)

The two kinds of fault modes (sensor fault and actuator fault) are studied separately,
because there are some difficulties in studying these two kinds of faults simultaneously,
which will be discussed later. So, in the study of actuator faults, the speed sensors are
assumed to be in good condition.

Locomotive fault detection and isolation

The locomotive group fault diagnosis is not studied in this chapter. Some approaches
may be used to supervise the running states of the locomotives, such as in [69, 70, 67,
68, 71]. In this thesis, one assumes that the fault diagnosis signals and fault isolation
signals are given, and when a fault happens, one’s task is to reconfigure/redesign the
controller.

Wagon fault detection and isolation

When the wagon faults in the system (5.32) are concerned, in the form of (5.1) for the
algorithms in section 5.2, one has

x =

[
δv
δx

]

∈ R2n−1,

u = U,

uf = mw
f ,

w =

[
m1

f

mn
f

]

,

f(x) =

[
f11(δv) + A12δx

A21δv

]

,

g(x) = B,
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l = [0, (U2 + uo
2)/m2, · · · , (Un−1 + uo

n−1)/mn−1,

n
︷ ︸︸ ︷

0, · · · , 0 ]T ,

p1 = [(U1 + uo
1)/m1,

n−2
︷ ︸︸ ︷

0, · · · , 0,
n

︷ ︸︸ ︷

0, · · · , 0 ]T ,

p2 = [

n−1
︷ ︸︸ ︷

0, · · · , 0, (Un + uo
n)/mn,

n−1
︷ ︸︸ ︷

0, · · · , 0 ]T ,

and
h(x) = [δv1, δv2, δvn−1, δvn]T .

According to the algorithm (5.7), one has

S0 = P̄ = span{p1, p2},
S̄0 ∩ ker{dh} = 0,

· · · ,
Sk∗ = span{p1, p2}.

from which one has

(ΣP
∗
)⊥ = span{δv2, · · · , δvn−1, δx1, . . . , δxn−1}.

Furthermore, applying the algorithm (5.9) with Θ = (ΣP
∗
)⊥, one has

span{dh} = span{d(δv1), d(δv2), d(δvn−1), d(δvn)},
Q0 = Θ ∩ span{dh} = span{δv2, δvn−1},

Q̄0 =
m∑

i=0

Lgi
Q0 + span{dh} = span{d(δv1), d(δv2), d(δvn−1), d(δvn),

d(k1δx1 − k2δx2), d(kn−2δxn−2 − kn−1δxn−1)},
Q1 = Θ ∩ Q̄0 = span{d(δv2), d(δvn−1),

d(k1δx1 − k2δx2), d(kn−2δxn−2 − kn−1δxn−1)},

Q̄1 =
m∑

i=0

Lgi
Q1 + span{dh}

= span{d(δv1), d(δv2), d(δv3), d(δvn−2), d(δvn−1), d(δvn),

d(k1δx1 − k2δx2), d(kn−2δxn−2 − kn−1δxn−1)},
Q2 = Θ ∩ Q̄1 = span{d(δv2), d(δv3), d(δvn−2), d(δvn−1),

d(k1δx1 − k2δx2), d(kn−2δxn−2 − kn−1δxn−1)},
· · · ,

Qk∗ = span{d(δv2), · · · , d(δvn−1), d(k1δx1 − k2δx2),

· · · , d(kn−2δxn−2 − kn−1δxn−1)},
that is,

Ω = o.c.a((ΣP
∗
)⊥) = span{d(δv2), · · · , d(δvn−1), d(k1δx1 − k2δx2),

· · · , d(kn−2δxn−2 − kn−1δxn−1)}.
(5.34)
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Repeat the above algorithm with Θ = Ω, and one has

Ω = o.c.a(Ω).

The second condition in (5.11) is satisfied. Then one can verify the first condition in
(5.11).

LgΩ = span{d(k1δv1 − (k1 + k2)δv2 + k2δv3),

· · · ,
d(kn−2δvn−2 − (kn−2 + kn−1)δvn−1 + kn−1δvn),

d(k1δx1 − k2δx2),

· · · ,
d(kn−2δxn−2 − kn−1δxn−1)},

and

Ω + span{dh} = span{d(δv1), d(δv2), · · · , d(δvn−2), d(δvn−1),

d(k1δx1 − k2δx2), · · · , d(kn−2δxn−2 − kn−1δxn−1)},

so Lgj
Ω ⊂ Ω + span{dh},∀j ∈ [0,m].

The conditions in (5.11) are satisfied with Ω defined above, which means the co-
distribution Ω is the maximal observability co-distribution contained in P⊥.

Assuming z11 = δv2, z12 = δv3, · · · , z1,n−2 = δvn−1, and z1,n−1 = k1δx1 − k2δx2, · · · ,
z1,2n−4 = kn−2δxn−2 − kn−1δxn−1, the z1-system of (5.13) is as follows:

ż11 = f 2
11(z11) + z1,n−1/m2 + U2/m2,

· · · ,
ż1,n−2 = fn−1

11 (z1,n−2) + z1,2n−4/mn−1 + Un−1/mn−1,

z1,n−1 = k1δv1 − (k1 + k2)z11 + k2z12,

z1,n = k2z11 − (k2 + k3)z12 + k3z13,

· · · ,
z1,2n−5 = kn−3z1,n−4 − (kn−3 + kn−2)z1,n−3 + kn−2z1,n−2,

z1,2n−4 = kn−2z1,n−3 − (kn−2 + kn−1)z1,n−2 − kn−1δvn

y1 = col(z11, z1,n−2),

y2 = col(δv1, δvn).

(5.35)

It can also be seen that span{l} ⊂ Ω, which means the possibility of detectability of
the wagon fault.
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A residual generator is in the following form,

ξ̇11 = f 2
11(ξ11) + ξ21/m2 + U2/m2 + L11(ξ11 − y11) + L12(ξ1,n−2 − y12),

· · · ,
ξ̇1,n−2 = fn−1

11 (ξ1,n−2) + ξ2,n−2/mn−1 + Un−1/mn−1

+ Ln−2,1(ξ11 − y11) + Ln−2,2(ξ1,n−2 − y12),

ξ̇2,1 = k1y21 − (k1 + k2)ξ11 + k2ξ12

+ Ln−1,1(ξ11 − y11) + Ln−1,2(ξ1,n−2 − y12),

ξ̇2,i = kiξ11 − (ki + ki+1)ξ1,i + ki+1ξ1,i+1

+ Li+n−2,1(ξ11 − y11) + Li+n−2,2(ξ1,n−2 − y12), i = 2, · · · , n− 3,

ξ̇2,n−2 = kn−2ξ1,n−3 − (kn−2 + kn−1)ξ1,n−2 + kn−1y22 + L2n−4,1(ξ11 − y11)

+ L2n−4,2(ξ1,n−2 − y12),

y1 = col(δv2, δvn−1),

y2 = col(δv1, δvn),

(5.36)

where the matrix L = (Lij) is suitably chosen with observer design approaches, such
as pole placement (Luenberger observer) or optimization control (Kalman filter).

From (5.36), it can be seen that the dimension of the observer is 2n− 4. For a long
train, n is very large. To avoid such a high-dimension observer, one considers another
approach to identify the wagons’ faults. The full train model is repeated as follows:

miv̇i = (1 −mi
f )ui + fini−1

− fini
−mi(c0i

+ c1i
vi + c2i

v2
i ) − fpi

, i = 1, · · · , n,
ẋj = vj − vj+1, j = 1, · · · , n− 1,

(5.37)

where fin0
= 0, finn

= 0.

When mi
f = 0, one has reached an equilibrium (steady state, v̇ = 0, ẋ = 0) vi =

vr, i = 1, · · · , n, and f 0
inj

(x0
j), with ui = u0

i .

v̇r = u0
i + f 0

ini−1
− f 0

ini
−mi(c0i

+ c1i
vr + c2i

v2
r) − fpi

, i = 1, · · · , n,
ẋ0

j = vr − vr, j = 1, · · · , n− 1.
(5.38)

Thus one has a difference system (5.21) with δvi = vi − vr, δxj = xj − x0
j , which is also

denoted as follows,
Ẋ = f(X) +BU. (5.39)

A speed regulator designed in the previous chapter for this difference system is
repeated as follows,

ż = f(z) +BU +G1(ym − Cmz),

U = c(w) +K(z − π(w)),
(5.40)
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The closed-loop dynamics are

Ẋ = f(X) +BU,

ż = f(z) +BU +G1(ym − Cmz),

U = c(w) +K(z − π(w)).

(5.41)

When the train is faultless, the train speed will track the reference speed under
the above controller. How are the train’s dynamics when mi

f 6= 0? One first checks
whether the train dynamics are stable. If they are, then one will study the new steady
states.

The locomotives’ faults are assumed to be detected and isolated through other
approaches, so only the faults of the wagons with mi

f = mw
f , i = 2, · · · , n − 1 are

considered in the following identification.

When mw
f 6= 0, the closed-loop dynamics (5.41) in cruise phase is as follows

Ẋ = f(X) +BU −Bf (U + uo),

ż = f(z) +BU +G1(ym − Cmz),

U = Kz,

(5.42)

where Bf = diag(0,

n−2
︷ ︸︸ ︷

mw
f /m2, · · · ,mw

f /mn−1,

n
︷ ︸︸ ︷

0, · · · , 0 ).

Assuming A = ∂f(0)
∂X

, (from the above, one knows A+BK < 0, A+G1Cm < 0,) one
has a linearized model as follows:

Ẋ = AX + (B −Bf )Kz −Bfu
o,

ż = −GCmX + (A+G1Cm +BK)z.
(5.43)

If the K, G are chosen such that

[
A (B −Bf )K

−GC A+GC +BK

]

< 0,

then the above system (5.43) is stable.

The steady state of the train can be denoted as (v̇ = 0, ẋ = 0) vi = vf
r , i = 1, · · · , n,

and f f
inj

(xf
j ), with ui,

m1v̇
f
r = u1 − f f

in1
−m1(c01

+ c11
vf

r + c21
(vf

r )2) − fp1
,

miv̇
f
r = ui + f f

ini−1
− f f

ini
−mi(c0i

+ c1i
vf

r + c2i
(vf

r )2) − fpi
−mi

fui, i = 2, · · · , n− 1,

mnv̇
f
r = un + f f

inn
−mn(c0n

+ c1n
vf

r + c2n
(vf

r )2) − fpn
,

(5.44)
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The locomotive fault is identifiable with other approaches and only the fault of
wagons with mi

f = mw
f , 2, · · · , n − 1 is considered. Furthermore if vf

r is known, then

there are only n unknown variables f f
ini
, i = 1, · · · , n− 1,mw

f in the above n equations.
Especially when summing up the first n equations, one has

0 =
n∑

i=1

ui −
n∑

i=1

mi(c0i
+ c1i

vf
r + c2i

(vf
r )2) −

n∑

i=1

fpi
−

n−1∑

j=2

mi
fui. (5.45)

It is possible to solve them, which means the identifiability of the wagon fault.

Although it is impossible for a train to reach steady states in practical running, it
is practical to assume that the train can approximate its steady state, at least within
a cruise phase. The practical steady-state speed of the running train is defined with
the analysis of differences of the measurable speeds (v1, v2, vn−1, vn) in this chapter.

When all the wagon are faultless and the train is running in its steady state, one
has,

0 =
n∑

i=1

uo
i −

n∑

i=1

(
mi(c0i

+ c1i
vr + c2i

(vr)
2) + fpi

)
. (5.46)

With (5.45) and (5.46), if all the wagons’ faults are the same, i.e., mi
f = mw

f , i =
2, · · · , n− 1, one has

(1 −mw
f )

n∑

i=1

ui −
n∑

i=1

uo
i =

n∑

i=1

mi

(
c1i
vf

r + c2i
(vf

r )2 − (c1i
vr + c2i

v2
r)
)
, (5.47)

from which one can get mw
f .

5.5 Fault-tolerant control (FTC)

5.5.1 FDI and FTC in the case of sensor faults

The residual generator in the case of sensor faults is as in equations (5.30) and (5.31),
where function f11 is linearized and thus the observer is a linear system. The matrices
L11, L21 are determined through the function LQR in MATLAB. If the sensor fault
model is linearized as

ż = Az +BU,

ym = Cmz,

yi = (1 +mf
vi
)vi − vr, i = 2, · · · , p,

(5.48)

then one assumes Cm1 = Cm(1, :), Q = I(2n−1)×(2n−1), R = 1, and with the function
L = lqr(A′, C ′

m1, Q,R), L = L′, one gets the residual generator.
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In the controller, one assumes the outputs of the residual generator are v̄i and
the measured speeds vmi. The reference speed is vr. In the control process, for the
output vmi of the ith speed sensor, one will take Ksensor

i × vmi as the real speed of
the corresponding car, where Ksensor

i is a coefficient, which will be modified when the
sensor fault is detected and isolated. A constant Vth is set as the threshold of fault
diagnosis. For the fault detection and isolation, one has other arrays in the programme,
KDsensor

i,1:11 , Nsensori. The former is used to store the past 11 coefficients of the sensor
and the latter the times of continuous violations of the fault-free condition.

The fault detection and isolation programme is shown as Fig. 5.1, whereKDsensor
i,1:11 =

01×11, N
sensor
i = 0 and Ksensor

i = 1 are initialized. This programme is executed once a
second.

It is known that there is a possibility of false rejections and a possibility of false
acceptances for a fault-tolerant controller, which should be considered. The first pos-
sibility is that it does not detect or isolate the fault well when a fault occurs. The
second is that it takes a faultless system as a fault system. The choice of the thresh-
olds affect these two possibilities. Generally, when one possibility is reduced with a set
of thresholds, the other one is increased. When the threshold is to be determined, the
balance between the two possibilities should be considered. From Fig. 5.1, it is impos-
sible to avoid the above two possibilities. However, the effects of the possibility of false
acceptance can be discussed qualitatively. If a fault is falsely accepted, for example, a
sensor with a gain 1 is falsely identified with a gain 1.05, then with the FTC, the speed
of the train will be underestimated, and thus the train will be overspeed. In that case,
the FDI will further identify a gain fault lower than 1 to correct the false acceptance.
It is in the way of “negative feedback” to track the real value of the gain. Such an
approach in Fig. 5.1 does not obviously affect the train performance. That can be seen
from the simulation results of an FTC in a faultless system.

In this thesis, the two possibilities from theoretic viewpoints will not be discussed,
nor will the time delay between the fault occurrence and fault isolation. Instead, they
will be discussed on the basis of the simulation results.

5.5.2 Controller redesign in the case of a locomotive fault

As described before, fault detection and isolation of locomotive faults are not studied
in this thesis. Here, only the fault-tolerant control of a locomotive fault is considered.

In the following simulation, one assumes the fault is detected and identified 60 sec-
onds after it occurs. When it is identified, the controller will be redesigned. According
to the fault, the parameters of the train are modified and then the controller is re-
designed with the new parameters. For example, assuming the coefficient of its input
in the train model is Bt(i, :), if the locomotive group u(i) loses half its effort, the new
coefficient is Bt(i, :)/2.
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Figure 5.1: Sensor fault detection and isolation programme
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5.5.3 FDI and FTC in the case of a wagon fault

When a wagon fault is detected and identified, similar to the case of a locomotive fault,
the controller will be redesigned according to the updated parameters of the train. The
key is fault detection and isolation. In the current simulation, this is done following
the approach proposed in section 5.4.2.

In this approach, one employs the algorithm as Fig. 5.2 to detect and identify the
fault; this is executed once a second. In the figure, the matrix Bb is the coefficient
matrix of the brake inputs in the train model, which is equal to diag(1/mi) when the
braking system is faultless. The variables vm, vr are the measured speed and reference
speed, respectively. The variable Kf

brake is a ten-dimension array used to store the past

ten estimated fault signals, while N f
brake is a counter number of the continuous violation

of fault condition.

There are the same possibilities in the FDI of a wagon fault as in the FDI of a
sensor fault. Similar to the latter, the FDI of wagon faults is also “negative feedback”
to track the real value of the wagon actuator. The effect of false acceptance on the
train performance will not be discussed in a theoretic way, but is discussed with the
simulation results. The time delay between the fault occurrence and fault isolation will
not be discussed either.

5.6 Simulation

The simulation setting of the train is the same as previous chapters as well as the speed
profile and track profile. When all sensors and actuators are faultless, the controller is
the speed regulator with Ke = 1, Kf = 1, Kv = 1, designed in part 4.3. When a fault
occurs, the controller will be redesigned. The controller redesign includes two parts:
the redesign of the optimal scheduling and the redesign of the speed regulator.

5.6.1 Simulation of sensor faults

In simulation, the sensor fault detection and isolation programme is only working
during the cruise phase. The simulation setting is the same as in section 4.3. The fault
diagnosis parameter setting is as in Fig. 5.1.

There are two kinds of errors with the gains of speed sensors. One is a random
error, which depends on the accuracy of speed sensor. The other one is a systematic
error with gain, which is a real fault and should be corrected. From the simulation, it
will be seen that the former has little impact on the performance of controllers, while
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Figure 5.2: Wagon fault detection and isolation programme
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the latter has much greater impact.

In the following description, the accuracy 1±α% of a speed sensor means the output
of the sensor is randomly 1 ± α% of the measured speed, while the gain fault β% of
a sensor means the output of the sensor is 1 + β% of the measured speed with the
accuracy 1.

The effects of the random errors of the speed sensors on the non-FTC (a controller
without fault-tolerant capacity) and the FTC (a controller with fault-tolerant capacity)
are discussed firstly. The following three groups of figures are the simulation results
with non-FTC of a faultless system, FTC of a faultless system and FTC of a faulty
system, respectively.

Fig. 5.3 and Fig. 5.4 are the simulation results of a faultless system with non-FTC.
All sensors in the former case have accuracies of 100%, while those in the latter have
accuracies of 1 ± 5% from the beginning.
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Figure 5.3: Non-FTC (sensor accuracy of 100%)

Fig. 5.5 and Fig. 5.6 are simulation results of a faultless system with an FTC.
All sensors in the former case have accuracies of 100%, while those in the latter have
accuracies of 1 ± 5% from the beginning.

Fig. 5.7 and Fig. 5.8 are the simulation results of a faulty system (the second sensor
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Figure 5.4: Non-FTC (sensor accuracy of 1 ± 5%)
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Figure 5.5: FTC (sensor accuracy of 100%)
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Figure 5.6: FTC (sensor accuracy of 1 ± 5%)

is faulty with a gain fault +5%). All sensors in the former case have accuracies of 100%
while those in the latter have accuracies of 1 ± 5%.

Comparing Fig. 5.3 with Fig. 5.4, one can see that the random error has very
little effect on the speed regulators without fault-tolerant capacity when there is no
fault with the sensors. Comparing Fig. 5.5 with Fig. 5.6, it can be seen that the
random error makes the performance a little worse with the fault-tolerant controller
even though no fault occurs. The effects are, however, very small. The performance
index is referred to in Table 5.1. From a comparison of Fig. 5.7 with Fig. 5.8, one sees
that the random errors of sensors have little impact on the performance of the fault-
tolerant controllers when a fault occurs with the second sensor. From a comparison of
the last two pairs, it is concluded that random errors have effects on the performance of
the fault-tolerant controllers, but the effects are limited. The result is still acceptable.
In the following simulation of this study, one therefore seldom considers the random
errors of the sensors. From the above discussion, it is clear the results are not affected.

A discussion of the effects of the FTC on the performance of a speed regulator is
as below.

The figures from Fig. 5.3 to Fig. 5.9 are compared. Fig. 5.9 is the simulation result
of a faulty system (the second sensor is faulty with a gain fault +5%) with all sensors
having accuracies of 1 ± 5%. The controller in this simulation is a non-FTC.
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Figure 5.7: FTC (sensor accuracy of 1 + 0% and second sensor gain fault of +5% )

 

10

12

14

16

sp
ee

d(
m

/s
) ref speed

front speed
rear speed
mean speed

 
−500

0

500

1000

in
tr

ai
n 

fo
rc

e(
kN

)

max in−train force
min in−train force
mean in−train force

−4000 −2000 0 2000 4000 6000 8000 10000
−2

0

2

4

distance (m)

no
tc

h

front notch
rear notch

Figure 5.8: FTC (sensor accuracy of 1 ± 5% and second sensor gain fault of +5%)
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Figure 5.9: Non-FTC (sensor accuracy of 1± 5% and 2nd sensor gain fault of +5%)

One first compares Fig. 5.3 with Fig. 5.5, in which the sensors have accuracies of
100% and the system is faultless. The former is controlled with a non-FTC while
the latter is controlled with an FTC. From these two figures, one can see that the
performance is visually very similar although from Table 5.1 the last one appears to
be slightly worse.

Then Fig. 5.4 is compared with Fig. 5.6, in which the sensors have accuracies of
1± 5% and the system is faultless. The former is controlled with a non-FTC while the
latter is controlled with an FTC. The speed performance of the latter is a little worse
than that of the former, and even the latter has a steady speed error. This is because
the random errors of the sensors have an effect on the performance of an FTC. Even
so, the FTC does not explicitly worsen the performance of the speed regulator. The
result is still acceptable.

The advantage of an FTC can be seen when a fault occurs. Fig. 5.9 and Fig. 5.8
represent simulation of a faulty system (all sensors with accuracies of 1 ± 5% and the
second one has a gain fault of +5%) with a non-FTC and with an FTC, respectively.
It is seen that the speed performance of the latter is obviously better than that of the
former. That is the contribution of the FTC. From the above comparison, one can
conclude that

1) When no fault occurs and all sensors have accuracies of 100%, the speed perfor-
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mance of an FTC is very similar to that of a non-FTC.

2) When no fault occurs and all sensors have accuracies of 1±5%, the speed perfor-
mance of an FTC is a little worse than that of a non-FTC. However, the result
is still thought as a good result.

3) When a small fault (the second sensor has a gain fault of +5%) occurs and all
sensors have accuracies of 1 ± 5%, the speed performance of an FTC is much
better than that of a non-FTC.

From the above, it is concluded that the FTC for the sensors’ faults is suitable.

In the above simulations, only the FTC for the second sensor fault is given. In the
following, one can see the FTC applied in the faults of the third and fourth sensors,
and in the concurrent faults of the second and fourth ones. Since the accuracy of a
sensor does not explicitly affect the performance of the controller, without a special
description, the sensor accuracy is assumed to be 100% in the rest of this thesis.

Fig. 5.10 shows an FTC with the third sensor having a gain fault of +7% from the
beginning. Fig. 5.11 shows an FTC with the fourth sensor having a gain fault of −20%
from the beginning. Fig. 5.12 shows an FTC with the fourth sensor having a gain fault
of +20% from the beginning.

A kind of concurrent fault (the second sensor has a gain fault of +43% and the
fourth one has a gain fault of +12% from the beginning) is shown in Fig. 5.13 with an
FTC. Another kind of concurrent fault (the second sensor has a gain fault of +30%
from the distance of 2, 000 m and the fourth one has a gain fault of −30% from the
distance of 4, 000 m) is shown in Fig. 5.14 with an FTC.

The comparison of these figures in performance is shown in Table 5.1. The statistical
items are the same as those in the Table 4.1.

From an analysis of the figures and a comparison with Table 5.1, one can conclude
that the application of FTC of sensor faults in the speed regulation explicitly improves
performance in the case of fault occurrence and does not explicitly worsen performance
in the case of a faultless train.

5.6.2 Simulation of locomotive faults

In the previous parts, fault detection and isolation of locomotive faults are assumed to
be done by other approaches and only fault-tolerant control is considered in this thesis.
The fault signal is assumed to be given when a fault occurs.

In the train setting of simulation, there are two groups of locomotives at the front
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Figure 5.10: FTC (third sensor with a gain fault of +7%)
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Figure 5.11: FTC (fourth sensor with a gain fault of −20%)
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Figure 5.12: FTC (fourth sensor with a gain fault of +20%)
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Figure 5.13: FTC (concurrent faults)
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Figure 5.14: FTC (concurrent faults)

Table 5.1: Comparison of non-FTC and FTC of sensor faults

|δv̄|(m/s) |fin|(kN) E
max mean std max mean std (MJ)

Fig. 5.3 2.9813 0.3277 0.5321 331.1579 58.5970 63.0519 12,400
Fig. 5.4 2.9102 0.3163 0.5129 323.3944 56.4624 63.8505 12,200
Fig. 5.9 3.5348 0.7831 0.5225 343.8927 57.7336 63.6908 13,100
Fig. 5.8 3.0783 0.3329 0.4672 316.3416 59.3843 65.0268 12,600
Fig. 5.7 2.9780 0.3718 0.5181 343.3660 59.7467 63.4535 12,900
Fig. 5.5 2.9812 0.3324 0.5288 331.1538 59.5132 63.5522 12,800
Fig. 5.6 3.1587 0.4667 0.5230 338.3691 55.7556 65.5126 13,200
Fig. 5.10 2.9825 0.3902 0.5132 338.7165 58.7065 64.1423 13,000
Fig. 5.11 2.9782 0.5067 0.5788 28.4991 60.5036 63.3990 12,600
Fig. 5.12 2.9810 0.4066 0.5102 343.1219 58.9628 64.1343 13,100
Fig. 5.13 2.9840 0.6170 0.5842 336.3811 63.6549 62.9222 13,400
Fig. 5.14 3.3412 0.6047 0.6593 345.4785 65.6464 62.0612 13,500
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and at the rear, respectively. Every group is composed of two locomotives. In simu-
lation of an FTC, one assumes that the fault is that one locomotive in a locomotive
group does not work. When the two locomotive in a group do not work, distributed
power control cannot apply, which is not discussed in this study. So, in the simulation,
it is assumed that the fault is detected 60 second after it happens and the controller is
then redesigned. There are three types of faults:

1) Front-loco-fault: one locomotive of the front locomotive group does not work;

2) Rear-loco-fault: one locomotive of the rear locomotive group does not work;

3) Both-loco-fault: one locomotive of the front locomotive group and one of the rear
group do not work;

Fig. 5.15 and Fig. 5.16 are simulation results of Front-loco-fault with an FTC and
a non-FTC, respectively. One of the locomotives at the front does not work from the
distance 1, 500m.

Fig. 5.17 and Fig. 5.18 are simulation results of rear-loco-fault with an FTC and
a non-FTC, respectively. One of the locomotives at the rear does not work from the
distance 1, 500m.

Fig. 5.19 and Fig. 5.20 are simulation results of Both-loco-fault with an FTC and
a non-FTC, respectively. One locomotive at the front and one at the rear do not work
from the distance 1, 500m.

From comparing Fig. 5.15 and Fig. 5.16, it can be seen that the performance of an
FTC is better than that of a non-FTC during the period when the train is passing over
a hill. (In these figures, the track profile is the same as that of previous simulation
and is not shown.) That can also be seen from the front locomotive effort. When the
effort of the front locomotive group is zero, then there is no difference between the
FTC and non-FTC. When the front locomotive group uses traction power, the speed
performance of the FTC is better.

The above conclusion is also clear from a comparison of Fig. 5.17 with Fig. 5.18
and Fig. 5.19 with Fig. 5.20. The performance comparison of these figures is shown in
Table 5.2.

The advantage of an FTC in the locomotive fault does not seem obvious in the above
simulation. This is because the locomotive groups make no effort (unpowered) during
most of the travel period. When the locomotive groups make efforts, the advantage is
obvious.
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Figure 5.15: Front-loco-fault with an FTC
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Figure 5.16: Front-loco-fault with a non-FTC
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Figure 5.17: Rear-loco-fault with an FTC
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Figure 5.18: Rear-loco-fault with a non-FTC
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Figure 5.19: Both-loco-fault with an FTC
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Figure 5.20: Both-loco-fault with a non-FTC
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Table 5.2: Comparison of non-FTC and FTC of locomotive faults

|δv̄|(m/s) |fin|(kN) E
max mean std max mean std (MJ)

Fig. 5.15 3.0302 0.4068 0.56 338.40 56.57 65.32 11,600
Fig. 5.16 2.9863 0.4061 0.55 361.80 60.19 65.19 10,800
Fig. 5.17 2.9773 0.3498 0.54 339.61 64.53 63.98 12,200
Fig. 5.18 2.9786 0.4505 0.65 372.29 64.31 65.98 9,680
Fig. 5.19 3.0244 0.4180 0.57 370.39 60.00 64.87 11,400
Fig. 5.20 3.1717 0.5349 0.73 355.97 58.80 66.31 7,800

5.6.3 Simulation of wagon faults

In previous sections, an approach of calculation of the steady-state speed difference as
an FDI of the wagons’ brake fault was proposed. In simulation, all faults occur from
the distance 1, 500 m. The simulation results are shown below.

Fig. 5.21 depicts the simulation of an FTC of the wagon braking system with a
faultless system. The corresponding simulation of a non-FTC is the same as Fig. 4.2.
In comparing these two figures, one can see that the FTC does not explicitly worsen
the performance of the speed regulator.

Fig. 5.22 and Fig. 5.23 represent the simulation results of an FTC and a non-FTC
when the braking system makes only 97% of the expected braking efforts. This fault is
very small. From a comparison of the FTC and the non-FTC, the difference between
them is very small. Also from comparing Fig. 5.22 with Fig. 5.21, one knows such a
small fault does not affect the performance of the speed regulator.

When a more serious fault occurs (the braking system makes 70% of the expected
braking efforts), the difference between the FTC and the non-FTC is obvious, which
can be seen from a comparison of Fig. 5.24 with Fig. 5.25. The former is with an FTC
and the latter with a non-FTC.

When only part of the braking efforts are faulty, the performance of an FTC is also
better than that of a non-FTC, although the FTC is designed for the whole braking
system, which can be seen from a comparison of Fig. 5.26 with Fig. 5.27. In Fig. 5.26
and Fig. 5.27, the outputs of wagons numbered from 2 to 31 are 70% of the expected.
The performance comparison is shown in Table 5.3.

From the above comparison, one can draw the following conclusions:

1) A small fault in the braking system has very little effect on the performance of
the speed regulator.

2) The application of an FTC together with a speed regulator does not explicitly
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Figure 5.21: Faultless train with an FTC of braking system
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Figure 5.22: Small fault in an FTC of braking system
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Figure 5.23: Small fault in a non-FTC
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Figure 5.24: Big fault in an FTC of braking system
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Figure 5.25: Big fault in a non-FTC
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Figure 5.26: Partial fault in an FTC of braking system
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Figure 5.27: Partial fault in a non-FTC

Table 5.3: Comparison of non-FTC and FTC of wagon faults

|δv̄|(m/s) |fin|(kN) E
max mean std max mean std (MJ)

Fig. 5.21 2.9227 0.3480 0.49 323.89 56.64 63.99 12,300
Fig. 4.2 2.9863 0.4061 0.55 361.80 60.19 65.19 10,800
Fig. 5.22 2.8723 0.3458 0.48 321.31 55.86 63.70 12,300
Fig. 5.23 2.8913 0.3299 0.50 321.64 56.79 63.51 12,299
Fig. 5.26 2.7629 0.3728 0.47 315.71 78.30 66.15 12,256
Fig. 5.27 3.6407 0.5251 0.56 322.02 75.93 63.79 11,957
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worsen the performance of the speed regulator when the system is faultless.

3) When a small fault occurs, there is little difference between the application of an
FTC and a non-FTC.

4) The application of an FTC can improve the performance when a big fault of the
braking system occurs.

5) Even if a fault occurs in part of the braking system, which is different from the
assumed fault in (5.25) (fault with the whole braking system), the application of
an FTC can improve the performance of the speed regulator.

5.7 Conclusion

In this chapter, the fault-tolerant control of the handling of heavy haul trains is dis-
cussed. The discussion is based on the redesign of the speed regulator with measure-
ments proposed in chapter 4.

The FDIs for the gain faults of the sensors and the braking system are respectively
studied, while the FDI of the locomotive fault is not studied in this thesis, but can
be done following some other approaches, such as one proposed in [69]. The FDI of
sensor faults is based on a geometric approach proposed in [61]. The FDI of a braking
system is based on observation of the steady-state speed. From the difference of the
steady speed between the fault system and the faultless system, one can get the fault
information.

These two kinds of FDIs are studied separately, but need to be studied further
together. In the opinion of the researcher, it is possible to apply them together, because
the FDI of a sensor fault is based on the difference between the measured speed of a
sensor and the estimated speed of the observer while the FDI of a braking fault is based
on the difference between the measured speeds (steady-state speeds) and the reference
speed. In the former, a necessary condition for the diagnosis of a fault is that there are
differences among the measured speeds while in the latter, a necessary condition for a
diagnosis of a fault is that there are nearly no differences among the measured speeds
(because a steady state is assumed). This is, however, just a theoretical discussion. In
fact, because of the accuracy of the sensor and the ideal assumption of a steady state,
the judgement of the difference among the measured speeds depends on a threshold.
This is a difficult problem. The setting of a threshold affects the performance of the
two FDIs, which is not discussed in this chapter.

In simulation, tests were conducted on the suitability of the two FDIs and the
redesign of speed regulators according to the fault signals from the FDIs of sensor
faults and braking system faults, and the FDI (not included in this study) of locomotive
faults.
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Simulation shows that the random errors of the speed sensors have very little impact
on the train’s performance. It is also shown that the proposed fault-tolerant controller
does not explicitly worsen the performance of the speed regulator in the case of a
faultless system, while it obviously improves the performance of the speed regulator in
the case of a faulty system. It should be pointed out that the approach in this chapter
cannot guarantee performance in the case of the occurrence of a serious fault.
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