
Chapter 3: Parameters that Influence Pure Tone Threshold

Prediction Accuracy with Distortion Product Otoacoustic

Emissions and Artificial Neural Networks

The preceding chapter formulated the need for an objective audiologic procedure to

aid in the assessment of difficult-to-test populations. Limitations in current objective

procedures inspired the ongoing effort to attempt to predict pure tone thresholds

(PITs) accurately across a wide frequency range. Despite the complex relation

between DPOAEs and PTTs, many researchers turned to distortion product

otoacoustic emissions as the possible new objective method due to promising

predictions of normal hearing, especially in the high frequencies.

Efforts to predict impaired hearing thresholds, and hearing ability at low frequencies

have been problematic for several reasons such as difficulties to determine a non-

linear correlation between two data sets of which the one is complex and described in

neural network terms as "fuzzy" or incomplete. Other relevant issues that contribute

to the struggle are the interfering low frequency noise levels caused by subject

breathing and electric equipment interference and the fact that pure tone thresholds

involve a much broader evaluation of the whole auditory system and not just the

evaluation of outer hair cell functioning as in the case of OAEs. Furthermore, the PTT

prediction process is made more complex by the large number of critical factors or

variables involved in the generation of the stimuli necessary to elicit a DPOAE. These

factors are interrelated and influence the amplitude and occurrence of the distortion

product. The choice of parameters used to elicit the DPOAE influences the DPOAE

 
 
 



data set, therefore also the correlation to be determined between DPOAEs and PTTs

and the accuracy of the prediction. An optimal set of parameters has to be identified to

attempt to find the best combination of variables to accurately predict PTTs with

DPOAEs. Lastly, the efficiency and accuracy of the data processing technique used

also influences the PTT prediction process. Conventional statistical methods used in

multivariate correlation studies have been found to be limited in their ability to solve

complex nonlinear problems where hundreds of factors are at play (Nakajima et al.

1998; Kimberley et al. 1994a). Artificial neural networks (ANNs) have been found to

have a superior ability in dealing with correlation determination in noisy nonlinear

data sets (Nelson & Illingworth, 1991) and prediction of outcomes where numerous

factors influence the data set (Rahimian et al. 1993). There are however many

different kinds of networks available with different topologies and training methods

and the choice and design of an appropriate network is one aspect that greatly

influences the accuracy of prediction of PTTs with DPOAEs.

The aim of this chapter is to discuss all the factors that influence prediction

accuracy of PTTs with DPOAEs and ANNs. First, all the parameters of the

distortion product that play a role in PTT prediction will be discussed and the

second half will concern itself with all the factors of neural network choice and

design that influence prediction accuracy.

In the generation of DPOAEs, two pure tones are used as stimuli with a frequency

ratio that results in a partial overlap of the vibration fields in the cochlea. The ratio of

 
 
 



the two stimulus frequencies fl and f2, as well as their loudness levels, L1 and L2,

determine where in the cochlea the maximum stimulation occurs (Kemp, 1997).

A study by Harris, et al. (1989) investigated which f2/fl ratio yielded the maximal

DPOAE amplitude. They used stimulus frequencies and level ranges that were

representative of clinical audiograms and found that on the average, a ratio of 1.22

elicited the largest acoustic distortion products for emissions between 1 and 4kHz.

Nielsen et al. (1993) measured the cubic distortion product at six probe tone

frequency ratios varying between 1.15 and 1.40 using equal level primaries of 75 dB

SPL. The results showed that a frequency ratio between 1.20 and 1.25 optimizes the

amplitude of the distortion product. A frequency ratio between 1.20 and 1.25 is also

most applicable to the standard frequencies used in pure tone audiometry.

Other studies that described the optimum frequency ratio included fl/f2 = 1.225

(Gaskill & Brown, 1990), fl/f2 = 1.23 (Avan & Bonfils, 1993) and fl/f2 = 1.3

(Stover, et al. 1996a).

It would therefore seem that a frequency ratio of fl/f2 = 1.2 to 1.3 yields the best

DPOAE amplitudes (Avan & Bonfils, 1993; Gaskill & Brown, 1990; Harris et al.

1989, Nielsen, et al. 1993; Stover et al. 1996a).

Another factor that influences DPOAE amplitude, apart from the frequency ratio, is

the loudness level ratio of the primaries, namely L1 and L2. It is very important to

 
 
 



choose the right frequency and loudness level ratios that yield maximum DPOAE

amplitudes. These variables should be chosen in such a manner that the stimulus

levels and frequency ranges are representative of clinical audiograms, to enable

comparisons between the DPOAEs and pure tone thresholds (Moulin, et al. 1994).

Mills (1997) studied the effect of the loudness levels of the primaries on the distortion

product. The author concluded that the cubic distortion emission amplitude is not

symmetric, so that given the same L1, higher emission amplitudes can occur for L2 >

L1 compared to L1 = L2. Authors such as Stover et al. (1996a) found maximal

DPOAE amplitudes when L2 > L1 by 10dB and Gaskill and Brown (1990) L1 > L2

by 15dB. Gorga, et al. (1993) found that 65/55 dB SPL primaries (Ll/L2) resulted in

maximal separation between normal and impaired ears. Some other studies reported

best DPOAE amplitudes for Ll =L2, but used very high stimulus levels, such as 75 dB

SPL that might have triggered passive emissions from the cochlea (Rasmussen, et al.

1993). To elicit active DPOAE responses with the largest amplitude possible, most

researchers recommend Ll/L2 ratios in the range of 10-15dB" (Mills, 1997; Stover et

al. 1996a; Gaskill & Brown, 1990).

It seems that there are different mechanisms involved in high and low level stimulated

DPOAEs (Harris & Probst, 1997). DPOAEs evoked with low level primaries « 62

dB SPL) are dominated by active cochlear mechanical processes and are strongly

correlated with auditory thresholds. DPOAEs evoked with high level primaries on the

 
 
 



other hand, are dominated by passive cochlear mechanics and do not provide

frequency specific information on the local cochlear state (Avan & Bonfils, 1993;

Kummer et al. 1998; Mills, 1997).

Bonfils et al. (1991) investigated the level effect of the primaries on the distortion

product. Equilevel primaries ranging from 84 dB SPL to 30 dB SPL were delivered

over a geometric mean frequency range of 485 Hz to 1000 Hz. They found that I/O

functions tested with low level primaries (intensities below 60 dB SPL) and frequency

ratios around 1.2 showed saturated growth. When primary intensities exceeded 66 dB

SPL or when frequency ratios were greater than 1.3 or lower than 1.14, the input

output functions became linear without any clear saturating plateau. The authors

concluded that DPOAEs generated by primary intensities below 60 dB SPL probably

have their origin in the outer hair cells. With high level stimuli however, it is probable

that only passive properties of the cochlea contribute to the emission.

Apart from all the parameters that should be specified, there are also two different

ways to construct DPOAE testing.

In the measurement of DPOAEs, either the frequencies are changed and the loudness

level kept constant (this is sometimes referred to as a "distortion product audiogram"

or DP Gram) or the frequencies are being kept constant while the loudness level is

changed (an input/output function (I/O Function) is obtained). It should be noted that

the "distortion product audiogram" does not include the concept of threshold, as does

the conventional audiogram in this case.
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The threshold of a DPOAE depends almost entirely on the noise floor and the

sensitivity of the measuring equipment whereas the DPOAE amplitude is greatly

influenced by the frequency ratio and decibel ratio of the primaries (Norton & Stover,

1994; Martin et al. 1990b).

To determine the normalcy of an I/O function, the detection threshold (i.e. the

stimulus level where the DPOAE reaches a criterion level, for example 3 dB, above

the noise floor) is compared to average detection thresholds of normal hearing

individuals (Lonsbury-Martin & Martin, 1990). The DPOAE threshold should not be

confused with the pure tone audiogram threshold, and cannot be directly compared

(Norton & Stover, 1994).

There is not yet clear consensus on the best testing procedure to identify normal and

impaired ears. Most researchers use a combination of the two procedures or perform

both procedures separately (Martin, et al. 1990a, Spektor et al. 1991 and Smurzynski,

Leonard, Kim, Lafreniere, Marjorie and lung, 1990; Moulin et al. 1994; Kimberley &

Nelson, 1989). It seems plausible to gain as much DPOAE threshold and amplitude

information as possible by combining the two procedures.

Subject age and gender influence many aspects of auditory function (Hall III, Baer,

Chase & Schwaber, 1993). Within the first decade after the discovery of auditory

brainstem response (ABR), many studies were conducted to investigate the influence

 
 
 



of age and gender. Significant differences were found between different age and

gender groups. Ever since then, these two factors have been routinely taken into

consideration in the interpretation of ABR results (Weber, 1994) and are always

investigated in new diagnostic audiology fields.

There is some debate about the effect of age on DPOAEs. Some authors found

statistically significant decreases in amplitudes of other emission types such as

TEOAEs with increasing age (Norton & Widen, 1990). In the case of DPOAEs, it

seems that DPOAEs are present from birth (Popelka, et al. 1998) and is as easily

measurable in an infant as in an adult (Lasky 1998b). Some researchers believe that

age affects the amplitude of DPOAEs negatively (Lonsbury-Martin et al. 1990) and

others argue that age related differences could be attributed to sensitivity changes

related with aging, rather than aging itself (He & Schmiedt, 1996). There are also

researchers that found that DPOAE amplitudes for adults and neonates are similar, but

some differences in the fine structure of the distortion product can be measured

(Lasky, 1998a+b). Some of these studies will be discussed briefly.

Lonsbury-Martin et al. (1990) indicated that in the presence of normal hearing (pure

tone thresholds lower than 10 dB HL), DPOAE amplitudes and thresholds, especially

those associated with high frequency primary tones were significantly correlated with

the subject's age. The subjects ranged from 21-30 years of age. It should be noted

however, that the authors described the audiograms of the 30 year old subjects as

"exhibiting a high frequency hearing loss pattern" (Lonsbury-Martin et al. 1990:10)

with hearing thresholds around 10dB HL. The younger subjects had pure tone

 
 
 



thresholds of 0-5 dB HL. The lower DPOAE amplitudes and thresholds found in the

results of the 30-year-old subjects can therefore be partly explained by higher pure

tone thresholds and not solely by the subject's age.

Another study by Karzon, et al. (1994) investigated DPOAEs in the elderly to

determine the age effect on DPOAEs. DPOAE results of 71 elderly volunteers

ranging from 56-93 years were compared to DPOAE results of normal hearing young

adults, age 19-26 years. The authors found that the amplitudes of DPOAEs did not

increase significantly with age, when adjusted for pure tone levels. "Although

DPOAEs are reduced with age, this effect is largely mediated by age-related loss of

hearing sensitivity." (Karzon et al. 1994:604). Avan and Bonfils (1993) confirmed

this viewpoint and stated that many of the age related effects were due to high

frequency hearing losses even when subjects were "normal" within their age category.

He and Schmiedt (1996) also stated that when pure tone thresholds are controlled,

there is not a significant aging effect on DPOAE amplitudes and that the negative

correlation between DPOAE levels and age is due to changes in hearing threshold

associated with aging rather than age itself.

Lasky (1998b) found that I/O functions of newborns and adults were similar; it was

only in the fine spectrum where differences could be observed such as a more linear

I/O function in adults with saturation at higher primary levels. The amplitudes of

DPOAE measurements in adults and neonates were within 1.5 dB of each other for all

age groups (Lasky, 1998a). Abdala (1999) found that DPOAEs could even be

measured in premature neonates although the fine structure characteristics at 1500 Hz

and 6000 Hz were different than measured in adults and suspect that there may be an

 
 
 



immaturity in cochlear frequency resolution prior to term birth. No differences were

observed at 3000 Hz.

When it comes to the prediction of PITs with DPOAEs however, some researchers

found that age enhanced predictive accuracy considerably (Lonsbury-Martin et al.

1991; Kimberley et al. 1994a; Kimberley et al. 1994b; De Waal, 1998). For all these

studies, more accurate PTT predictions were made when subject age was included. It

seems that subject age is a very important factor to be included in any prediction

scheme based on DPOAE levels. Even though amplitudes of adults and children seem

similar, there is much information in the differences measured in the fine structure

across different age groups that enhances predictive accuracy of PTTs.

Another potentially relevant factor may be the influence of gender on the prevalence

of distortion product otoacoustic emissions.

Gender differences have been reported in other emission types. Cacace, et al. (1996)

reported spontaneous otoacoustic emissions to be more prevalent in females than

males and higher incidence of SOAEs in right ears than left ears. Hall III et al. (1993)

indicated that TEOAE amplitudes are significantly larger for females than males.

Lonsbury-Martin et al. (1990) conducted a study to investigate basic properties of the

distortion product including the effect of gender on the prevalence of DPOAEs. A

comparison of DPOAE amplitudes and thresholds failed to reveal any significant

differences except at 4 kHz. Women revealed significantly lower DPOAE thresholds

 
 
 



at 4 kHz (about 10 dB lower). The pure tone audiometry thresholds for men and

women at 4 kHz were the same. Gaskill and Brown (1990) and Cacace et al. (1996)

reported that DPOAEs were significantly larger in female than male subjects tested in

the frequency range of 1000- 5000Hz. Both studies however, indicated that the female

subjects in their studies had more sensitive auditory thresholds than the males (an

average of 2.4 dB better). The differences found between the two groups could

therefore not be explained by gender only.

Cacace et al. (1996) attempted to explain some of the reasons why the females had

higher amplitudes than the males in the higher frequencies. One reason is the

existence of a spontaneous otoacoustic emission (SOAE) in conjunction with DPOAE

measurement. Several authors described the effect that a SOAE could have on a

DPOAE (Moulin et al. 1994; Probst & Hauser 1990; Kulawiec & Orlando, 1995). Ifa

spontaneous emission exists within 50 Hz of the primary frequencies used to elicit a

DPOAE, the spontaneous emission could enhance the DPOAEs amplitude

significantly under certain experimental conditions (Kulawiec & Orlando, 1995;

Probst & Hauser, 1990). Spontaneous emissions are more prevalent in females than in

males and could therefore possibly explain the higher DPOAE amplitudes in females.

This amplitude amplification effect that SOAEs have on DPOAEs cannot always

clearly be seen. Cacace et al. (1996) reported that no systematic peaks or notches

could be observed in DPOAE responses in the presence of a spontaneous otoacoustic

emission in any of the subjects they tested. The mere presence of a SOAE in a

frequency region close to the primaries cannot be taken as evidence of amplitude

 
 
 



amplification. It is however so, that this gender effect is greatly reduced when only

subjects with no SOAEs are considered.

Gender effects on DPOAEs are apparently limited to minor differences in DPOAE

amplitudes.

3.4 Which Aspect of the DPOAE can best be Correlated with Pure

Tone Thresholds

In the first two decades after DPOAEs were discovered, it was not clear whether it is

the fl, f2, the GM frequency or the 2fl-f2 frequency that is actually being stimulated

on the basilar membrane. Most authors agreed that DPOAEs appear to be generated in

the region stimulated between the primary frequencies, rather than the frequency at

the distortion product (Martin et al. 1990b; Kimberley et al. 1994b; Smurzynski et al.

1990; Moulin et al. 1994; Harris et al. 1989). Some studies supported the notion that

the generation of the distortion product correlates best with the cochlear place near the

geometric mean (GM) of the primaries (Martin et al. 1990b; Lonsbury-Martin &

Martin, 1990; Bonfils et al. 1991). These authors concluded that the acoustic

distortion product at 2fl-f2 should be correlated with PITs near the GM of the

primaries.

According to research conducted by Kimberley et al. (1994b) and Harris et al. (1989),

the features that best correlate with PITs are those associated with f2 values close to

the pure tone threshold frequency. The distortion product, according to these authors,

is generated very close to the f2 cochlear place and therefore they correlated PTTs

with the f2 frequency of the distortion product.

 
 
 



Recent research on the exact location of the basilar membrane that is simulated with

the 2fl-f2 distortion product described a two source model for DPOAE generation

(Knight & Kemp, 1999a; Mauermann, et al. 1999a+b; Talmadge, Long, Tubis & Dhar

1998; Shera & Guinan, 1998). According to this theory, there is not just one, but there

are two areas on the basilar membrane that contribute to the energy measured in

DPOAE testing. The first source of energy comes from the overlap region of the two

primary frequencies. Although the waves of the two primaries are spread out over the

whole basilar membrane, it is the area about Imm around the f2 region on the basilar

membrane that contributes to most of the energy measured in a DPOAE. This area is

known as the "f2 site" (Mauermann, et al. 1999a). DPOAE levels are however not just

determined by the health of the cochlea at the f2 place (Talmadge et al. 1998). There

is a second source on the basilar membrane that contributes to the energy being

measured and it comes from the distortion product wave component that travels

apically from the overlap region and is reflected at the 2fl- f2 site, also known as the

"re-emission site." The spectral fine structure observed in the ear canal is a reflection

of energy coming from both these sources.

The fact that more than one area of the basilar membrane contribute to a DPOAE

response influences the method in which a correlation is determined between

DPOAEs and PITs. If the two source model of DPOAE generation is the case, it

could be argued that one cannot merely correlate the f2 value or merely the 2fl-f2

value with a PIT frequency, but that the data processing technique has to be able to

use both frequencies in the correlation determination process. Artificial neural

networks are capable of using any number of frequencies in the correlation

 
 
 



determination with one PTT frequency and can determine the significance of each

frequency separately. This aspect makes it a very desired data processing technique to

use for PTT prediction with DPOAEs.

The following section discusses the artificial neural network as a data processing

technique and how it operates in more detail.

3.5 Aspects of the Artificial Neural Network that influences Prediction

Accuracy of PTTs

Designing a neural network is somewhat of a mysterious process. The learning

process of a neural network is a tedious and painstaking trial-and-error effort. There

are no standards for learning algorithms for ANNs, partly because every data set and

how the information can be presented to the network is highly unique. Another factor

of importance influencing the learning process is the quality of the material that is

used to train on, how noisy it is and how significant the correlation is between the

data sets.

One has to have a clear understanding of what a neural network is, how it operates,

learns and predicts to understand how the design of the network influences the

outcome. The following discussion will serve as background to understand the whole

process.

Artificial neural networks (ANNs) are a new information processing technique that

attempts to simulate or mimic the processing characteristics of the human brain

 
 
 



(Medsker, Turban & Trippi, 1993). An artificial neural network is an algorithm for a

cognitive task, such as leaning or optimization, recognition of a pattern or retrieval of

large amounts of data (Muller & Reinhardt, 1990). Hiramatsu (1995:58) defined

neural networks quite effectively: "A neural network is generally a multiple-input,

multiple-output non-linear mapping circuit, which can learn an unknown non-linear

input-output relation from a set of examples."

ANNs were inspired by studies of the central nervous system and the brain (Medsker

et al. 1993; Klimasauskas, 1993) and therefore share much of the terminology and

concepts with its biological counterpart. This biological analogy will be discussed in

the next section.

3.5.2 "Anatomy" and "Physiology" of Artificial Neural Networks: A

Discussion of Concepts and Terms

Neural networks were initially developed to gain a better understanding of how the

brain works. It resulted in computational units, called neural networks, that work in

ways similar to how we think the neurons in the human brain work. Several human

characteristics such as "learning, forgetting, reacting or generalizing" and also the

biological aspects of networks consisting of neurons, dendrites, axons and synapses

were ascribed to these artificial neural networks in order to promote understanding of

these abstract terms (Nelson & Illingworth, 1991). Some of the terminology of neural

networks will be reviewed briefly.

 
 
 



The human brain is composed of cells called neurons and estimates of the number of

neurons in the human brain range up to 100 billion (Medsker, et al. 1993). Neurons

function in groups called networks. Each network contains several thousand highly

interconnected neurons where each neuron can interact directly with up to 20 000

other neurons (Nelson & Illingworth, 1991). This architecture can be described as

parallel distributed processing, where the neurons can function simultaneously

(Muller & Reinhardt, 1990). In contrast with conventional computers which process

information serially, or one thing at a time, the human brain's parallel processing

ability enables it to outperform supercomputers in some areas regarding complexity

and speed of problem solving such as pattern recognition (Blum, 1992).

A typical biological neuron (Figure 3.3) consists of a cell body containing a nucleus,

dendrites which provides input to the cell and an axon, which carries the output

signal from the nucleus (Hawley, Johnson & Raina, 1993). Very often, the axon of

one neuron merges with the dendrites of a second neuron. Signals are transmitted

through synapses. A synapse is able to increase or decrease the strength of the

connection and causes inhibition or excitation of a subsequent neuron (Nelson &

Illingworth, 1991). Although there are many different neurons, this typical neuron

serves as a functional basis to make further analogies to artificial neural networks.
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Figure 3.5: Inputs to several nodes to form a layer (From Nelson & Illingworth,

1991: 49).

In this representation, the middle layer is highly interconnected with the inputs (all

inputs are connected to all middle level neurons) but only forwardly connected with

the outputs. Middle layer neurons can also be highly interconnected to output

neurons: the way in which neurons are connected to other layers is specified in the

neural network design. The dots in the middle layer suggests that any number of

neurons in this layer is possible and is determined by trial-and-error during network

training so suit the complexity of the data. To form an artificial neural network,

several layers are connected to each other. This is illustrated in Figure 3.6.
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Figure 3.6: Connection of several layers to form a network (From Nelson &

Illingworth, 1991:50).

From figure 3.6 it is clear that several different layers can be distinguished. The first

layer that receives the incoming stimuli is referred to as the input layer. The

network's outputs are generated from the output layer and all the layers in between

are called the hidden layers or middle layers. In this four-layered network, all input

and middle or hidden layers are highly interconnected with each other.

The "anatomy" of artificial neural networks has just been reviewed. The terminology

used in the "physiology" or working of an artificial neural network will be discussed

next.

The first layer of neurons, called the input layer, receives the incoming stimulus. The

next step is to calculate a total for the combined incoming stimuli. In the calculation

of the total of the input signals, there are certain weighting factors: Every input is

 
 
 



given a relative weight (or mathematical value), which affects the impact or

importance of that input. This can be compared to the varying synaptic strengths of

the biological neurons. Each input value is multiplied with its weight value and then

all the products are added up for a weighted sum. If the sum of all the inputs is greater

than the threshold, the neuron generates a signal (output). If the sum of the inputs is

less than the threshold, no signal (or some inhibitory signal) is generated. Both types

of signals are significant (Blum, 1992; Nelson & Illingworth, 1991). These weights

can change in response to various inputs and according to the network's own rules for

modification. This is a very important concept because it is through repeated

adjustments of weights that the network "learns" (Medsker, et al. 1993).

Medsker, et al. (1993) summarized the crucial steps of the learning process of an

artificial neural network very effectively:

"An artificial neural network learns from its mistakes. The usual process of learning

or training involves three tasks:

1) Compute outputs.

2) Compare outputs with desired answers.

3) Adjust the weight and repeat the process." (Medsker et al. 1993:10)

The learning process usually starts by setting the weights randomly. The difference

between the actual output and the desired output is called ~. The objective is to

minimize ~, or even better, eliminate ~ to zero. The reduction of ~ is done by

 
 
 



comparing the actual output with the desired output and by incrementally changing

the weights every time the process is repeated until the desired output is obtained.

Hawley, et aI. (1993) compared the learning process of an artificial neural system

(ANS) with the training of a pet: "An animal can be trained by rewarding desired

responses and punishing undesired responses. The ANS training process can also be

thought of as involving rewards and punishments. When the system responds

correctly to an input, the "reward" consists of a strengthening of the current matrix of

nodal weights. This makes it more likely that a similar response will be produced by

similar inputs in the future. When the system responds incorrectly, the "punishment"

calls for the adjustment of the nodal weights based on the particular learning

algorithm employed, so that the system will respond differently when it encounters

the same inputs again. Desirable actions are thus progressively reinforced, while

undesirable actions are progressively inhibited." (Hawley, et aI. (1993:33).

The learning of a neural network takes place in its training process. Every neural net

has two sets of data, a training set and a test set. The training phase of a neural

network consists of presenting the training data set to the neural network. It is in this

training process, that the network adjusts the weights to produce the desired output for

every input. The process is repeated until a consistent set of weights is established,

that work for all the training data. The weights are then "frozen" and no further

learning will occur. After the training is complete, the data in the test set is presented

to the neural network. The set of weights as calculated by the training set is then

applied to the test set. The presentation of the test set is the final stage in the neural

network where the answer is given whether it is to predict an outcome, find a

 
 
 



correlation, or recognize a pattern (Blum, 1992; Nelson & Illingworth, 1991;Medsker,

etaI.1993).

Another term that justifies some explaining is the programming of a neural

network. "Artificial neural networks are basically software applications that need to

be programmed" (Medsker, et al. 1993:22). A great deal of the programming is about

training algorithms, transfer functions and summation functions. According to

Medsker, et al. (1993) it makes sense to use standard neural network software where

computations are preprogrammed. Several of these preprogrammed neural networks

are available on the market. Every person using an artificial neural network however,

has certain additional programming that needs to be done. It might be necessary to

program the layout of the database, to separate the data into two sets, namely, a

training set and a test set, and lastly to transfer the data to files suitable for input into

the standard artificial neural network.

The basic components of a general neural network have been discussed. The next

section will review different types of neural networks.

There are different types of neural networks, categorized by their topology (the

number of layers in the network). To provide just a limited overview of the basic

types of neural networks, the single layer network, the two layer network and multi

layer networks will be discussed briefly (Rao & Rao, 1995).

 
 
 



The single layer network has only one layer of neurons and can be used for pattern

recognition. The specific type of pattern recognition in this case is called

autoassociation, where a pattern is associated with itself. When there is some slight

deformation of the pattern, the network is able to relate it to the correct pattern.

Some models have only two layers of neurons, directly mapping the input patterns to

the outputs. Two layer models can be used when there is good similarity of input to

output patterns. When the two patterns are too different, hidden layers are necessary

to create further internal representation of the input signals. Two layer networks are

capable of heteroassociation where the network can make associations between two

slightly different patterns (Blum, 1992; Nelson & Illingworth, 1991).

Several types of multi layer networks exist. The most common multi layer network is

the feedforward network with a backpropagation learning algorithm. According to

Rao & Rao (1995), over 80% of all neural network projects in development use

backpropagation. "Back propagation is the most popular, effective, and easy-to-Ieam

model for complex, multi layered networks." (Nelson & Illingworth, 1991:121). Most

backpropagation networks consist of three layers, an input layer, an output layer and a

hidden or middle layer (Figure 3.7). The connections between the layers are forward

and are from each neuron in one layer to every neuron in the next layer.
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Figure 3.7: Diagram of a feedforward backpropagation neural network (From

Blum, 1992: 56).

 
 
 



The error signals of the output are propagated back into the network for each cycle. At

each backpropagation, the hidden layer neurons adjust the weights of connections and

reduce the error in each cycle until it is finally minimized (Blum, 1992).

This process is clearly summarized by Nelson and Illingworth as follows: (1991:

122): "The whole sequence involves two passes: a forward pass to estimate the error,

then a backward pass to modify weights so that the error is decreased."

Backpropagation networks require supervised learning where the network is trained

with a set of data (training set) similar to the test set.

Now that the functioning of a neural network is understood, attention can be given to

the factors in ANN design that influence prediction accuracy of PTTs with DPOAEs

andANNs.

3.5.4 ANN Factors Influencing Prediction Accuracy ofPTTs with

DPOAEs

Even when a standard preprogrammed artificial neural network is used, certain

parameters has to be specified and can be experimented with to produce a more

desired outcome. These parameters include the topology, error tolerance levels and

the format of the input data.

The topology of a network is determined by the number of layers in the network and

the number of nodes in each layer.

 
 
 



When there is good similarity between input and output data, only two layers are

needed, but when the structure of the input pattern is quite different from the output,

hidden layers are needed to create an internal representation from the input signals

(Nelson & Illingworth, 1991). The ability of the network to process information

increases in proportion to the number of layers in the network. In the design of a

neural network, hidden layers can be added one by one until suitable outputs can be

achieved. According to Hornik, Stinchcombe and White (1989) however, when a

multilayered feedforward network is used, only one hidden layer is enough for any

complex problem, provided that there are enough neurons in the hidden layer.

According to these authors, failures in feedforward networks with one layer can be

attributed to inadequate learning or the presence of a stochastic or random relation

rather than a deterministic relation between two data sets. It would therefore seem that

a feedforward backpropagation network with three layers, one input layer, one output

layer and one hidden layer is sufficient for this application.

The number of nodes in the input layer is determined by the amount of data that is fed

into the network. For example, if all the present and absent DPOAE responses of 11

frequencies at eight loudness levels serve as input information, then there should be at

least 88 input nodes to represent this data numerically. If gender is added as a variable

then one more node has to be added to represent gender as either a one or a zero.

Every additional input variable needs extra input nodes, and the number of nodes

needed is determined by the way in which the data is presented to the network. The

 
 
 



input layer therefore only serves as a buffer in which information can be "fanned"

through to the next layer (Blum, 1992).

The number of nodes in the output layer is determined by the objective of the neural

network and the format in which it is presented. For example, if the objective is to

predict a pure tone threshold at a certain frequency and the format is to predict it into

one of eight categories of 10dB each, then there will be eight nodes in the output

layer. The output layer merely makes the network information available to the outside

world (Nelson & Illingworth, 1991).

The determination of the number of nodes in the hidden layer is less straightforward.

This number influences network capacity, generalization ability, learning speed and

the output response. Fujita (1998) argues that on the one hand it is best to have as

many hidden layer neurons as possible for capacity and universality in application to

function approximation. On the other hand, from the standpoint of generalization, the

number should not be too large for heuristic learning systems in which the best

network configuration is unknown beforehand. Too many hidden layer neurons can

also reduce the speed of the network considerably. It is difficult to determine the

middle level neuron quantity before the learning is done, and it is best to adjust node

numbers during learning.

According to Blum (1992), the best size is determined by familiarity with the

application. Nelson and Illingworth (1991) describe it as a trial and error effort to

determine which size yields optimum results.

 
 
 



A feedforward neural network propagates information from the input level to the

middle level to the output level, but errors are backpropagated during training. The

purpose of the backpropagation of errors is to change the weights between layers to

handle the prediction better the next time it encounters the same information. Errors in

the output indicates that there are errors in the two sets of weights connected to the

hidden layer and are used as a basis for adjustment of the weights between the input

and hidden layer and output and hidden layer. The weights connected to the hidden

layer have to be adjusted repeatedly until prediction error falls within a specified

level. Error tolerance therefore refers to how accurately a network predicts the

answer, but also how effectively it trains or learns (Blum 1992; Rao & Rao 1995).

When prediction error is set as close to zero as possible, only answers that are

completely correct are accepted. Although it might seem logical to set error tolerance

levels as close to zero as possible, it is not always practical, for two reasons. A

network with error tolerance of as close to zero as possible trains much longer before

accurate enough predictions can be made. Sometimes the training phase becomes so

long for each experiment (from hours to days to weeks) that it becomes unpractical to

run hundreds of experiments, which is the case when 120 ears have to be predicted at

four frequencies. The second disadvantage of very small error tolerance levels is the

network's ability to generalize decreases. When a DPOAE data set slightly out of the

ordinary has to be predicted, a network with very low error tolerance levels is often

incapable of a general prediction and can not reach a training set that falls within the

specified error tolerance level.

 
 
 



Error tolerance levels, just as in the case of the number of middle level neurons, have

to be experimented with to find the optimal error tolerance level. Due to the fact that

each data set, experiment objective and way in which data is presented to the ANN is

so unique, there are not yet standards for acceptable error tolerance levels and it has to

be determined for each situation by using a trial and error effort (Yuan & Fine, 1998).

"It has been suggested that most of the "black magic" in neural networks comes in

defining and preparing the training input set" (Nelson & Illingworth, 1991:154).

Neural networks only deal with numeric input data. All factors that serve as input data

has to be numerically transcribed, for example, the gender variable can be predicted

with a one or a zero. Sometimes the network requires that the input information be

scaled or normalized. For example if DPOAE amplitude serves as input data and

could be any number from 0 - 40 dB, it can be scaled by depicting it as a fraction of

40 dB, a DPOAE level of30 dB would therefore have a value of 0.75. Only one extra

input node is needed in this case. Another option for depicting input values is the

dummy variable technique where categories are created to depict a certain value and

values are depicted with ones and zeros depending on the category in which it falls. In

the case of the DPOAE level between 0 - 40 dB, four 10 dB categories can be

created, category one depicts DPOAE levels from 0 - 10dB, category two from 11 -

20 dB, category three from 21 - 30 dB and category four from 31 - 40 dB. A DPOAE

level of 30 dB would therefore be depicted as 0010, indicating that the DPOAE level

falls in the third category. If this method is used, more input nodes are needed

depending on the number of categories created to depict the value, in this case four

 
 
 



extra input nodes will be needed. With more input nodes, the neural network gets

more complex and usually more middle level neurons are needed.

There are many ways in which input data can be presented to the network; the

possibilities are as limited as the imagination of the person creating the neural

network. Different input strategies often influence the prediction accuracy of the

neural network and therefore there has to be experimented with different ways to

present the information to the network. All the different ways in which input data was

manipulated for this research project will be discussed in detail in Chapter 4, Research

Methodology.

When it comes to the prediction of PITs with DPOAEs and ANNs, there are many

factors influencing the occurrence and levels of DPOAEs and therefore also the

correlation that has to be determined between DPOAEs and PITs and prediction

accuracy of the ANN. From an in-depth literature study, the optimal set of stimulus

parameters that influence DPOAE occurrence and levels were identified for the

measurement of DPOAE. The identified stimulus parameters for DPOAE

3.6.1 Factors of the DPOAE Influencing DPOAE Occurrence and

Levels:

• A primary f2/fl frequency ratio of about 1.2 has been proven to elicit largest

DPOAE amplitudes between 1 and 4 kHz (Gaskill & Brown, 1990; Avan &

Bonfils, 1993; Stover, et al. 1996a).

 
 
 



• The loudness levels of the primaries should preferably be 10 - 15 dB apart

(Gorga et al. 1993; Mills, 1997).

• The level of stimulation should not exceed 65 - 75dB to prevent the

evaluation of passive properties of the cochlea and to gain more frequency

specific information (Avan & Bonfils, 1993; Kummer et al. 1998; Mills,

1997).

• The way in which testing should be constructed is preferably a combination

between I/O functions and DP Grams to gain as much information as possible

of the DPOAE's threshold and amplitude (Kimberley & Nelson, 1989; Martin,

et al. 1990a; Smurzynski et al. 1990).

• The subject variable age seems to have a positive influence for PTT prediction

with DPOAEs and should be included in the correlation determination and

prediction process (Lonsbury-Martin et al. 1991; Kimberley et al. 1994a;

Kimberley et al. 1994b; De Waal, 1998).

• The frequency variable of the DPOAE to correlate with PITs should

preferably include not only the f2 frequency but the 2f1-f2 frequency as well

(Mauermann et al. 1999a; Talmadge et al. 1998).

When it comes to the use of artificial neural networks as a data processing technique,

several aspects regarding the choice, design and functioning of the network were

identified. These aspects influence accuracy of predictions made by the network and

are as follows:

 
 
 



3.6.2 Factors of the ANN that Influence Prediction Accuracy ofPTTs

with DPOAEs:

• From the description of the functioning of a neural network it became clear

that a multi-layered ANN is needed for the prediction of PITs with DPOAEs

(Blum, 1992).

• The topology of the network influences prediction accuracy and

experimentation is needed to determine the optimal number of neurons or

nodes in each layer (Hornik et al. 1989; Nelson & Illingworth, 1991).

• Error tolerance during training and prediction is another factor that influences

speed and efficiency of network operation and is also determined by trial-and-

error experimentation (Rao & Rao, 1995; Yuan & Fine, 1998).

• There are many ways in which input data can be manipulated and the best way

to present input information to the network requires careful consideration and

experimentation (Nelson & Illingworth, 1991).

This chapter served as an identification and discussion of all DPOAE and ANN

variables that influence PTT prediction accuracy. An optimal set of parameters

were identified for the measurement of DPOAEs that will be applied in the

testing procedure in the following chapter. However, the process to attempt to

predict PTTs with DPOAEs and ANNs involve numerous possibilities in the

experimentation to establish optimal neural network configuration and error

tolerance levels. There are also different ways to present DPOAE measurements

to the network that influence the accuracy of PTT predictions that lead to

further necessary experimentation. These experiments to optimize PTT

 
 
 



prediction , as well as the research methodology for the entire research project

will be discussed in the following chapter.

 
 
 



Chapter 4: Research Methodolo2Y

One very interesting viewpoint on the essence of research methodology was given by

Leedy (1993 :9). "The process of research, then, is largely circular in configuration: It

begins with a problem; it ends with that problem solved. Between crude prehistoric

attempts to resolve problems and the refinements of modem research methodology

the road has not always been smooth, nor has the researcher's zeal remained

unimpeded. "

The problem inspiring this research project has already been extensively stated in

Chapter 1 and 2. In short, the need for an objective, non-invasive and rapid test of

auditory functioning has led to numerous previous studies attempting to develop such

a procedure despite the fact that there are many aspects contributing to pure tone

thresholds that is not evaluated with otoacoustic emissions. Shortcomings in

conventional statistical methods prevented accurate predictions of PTTs with

DPOAEs due to the complex non-linear relationship between DPOAEs and PTTs and

the noisy nature of DPOAE measurements. A new form of information processing

called artificial neural networks (ANNs) was identified as a suitable data processing

technique to attempt to solve this problem.

The study preceding this one (De Waal, 1998) attempted to predict pure tone

thresholds with DPOAEs and artificial neural networks. First, PTTs were categorized

as normal or impaired (normal defined as < 20 dB HL) with DPOAEs and ANNs and

correct classification of normal hearing was 92 % at 500, 87% at 1000, 84% at 2000

98

 
 
 



and 91% at 4000 Hz. Predictions of impaired hearing was less satisfactory partly due

to insufficient data for the ANN to train on and also possibly because of lack of

experimentation with optimal topologies, error tolerance levels and optimal

representation of input data for the neural network.

The aim of this chapter is to describe the research method that developed in the

expansion and broadening of the basic work on DPOAEs and ANNs in order to

enhance prediction accuracy of PTTs.

To improve prediction of pure tone thresholds (PITs) at 500, 1000, 2000, and 4000

Hz with distortion product otoacoustic emission (DPOAE) responses in normal and

hearing impaired ears with the use of artificial neural networks (ANNs).

The first sub aim is to determine optimal neural network topology to ensure accurate

predictions of hearing ability at 500, 1000, 2000 and 4000 Hz. The number of input

nodes and number of output neurons are determined by the number of input- and

output data. The number of middle layer neurons however, should be determined by

trial and error until the required accuracy of prediction in the training stage is reached.

 
 
 



The second sub aim is to experiment with different ANN error tolerance levels to

enhance neural network performance and efficiency during training and prediction.

The third sub aim is to determine if different manipulations of input data into the

neural network improves prediction accuracy of PITs with DPOAEs such as different

ways to present the age variable, and DPOAE amplitude to the neural network.

The fourth sub aim is to experiment with the inclusion and omission of noisy low

frequency DPOAE data to determine its effect on prediction accuracy.

The last sub aim is to investigate the effect of DPOAE threshold on prediction

accuracy with DPOAEs when DPOAE threshold is defined as 1, 2 or 3 dB above the

noise floor.

For this research project, the chosen research design was a multivariable correlational

study (Leedy, 1993). The correlation between DPOAE measurements and pure tone

thresholds (PITs) was studied by the use of artificial neural networks (ANNs). This

correlation was then applied to make predictions of hearing ability in subjects of

various ages, demonstrating different levels of sensorineural hearing loss or normal

hearing to investigate to what extent DPOAEs can be used as a diagnostic or

screening procedure in the objective evaluation of pure tone sensitivity. If DPOAEs

can accurately predict pure tone thresholds objectively in a population with varying

degrees of sensorineural hearing loss and at different ages, it would be a significant

contribution to aid in the evaluation of difficult-to-test populations.

 
 
 



For the purpose of this study, 70 subjects (42 females, 28 males, 8-82 years old) were

recruited from a school for the hard of hearing and a private audiology practice.

Subjects were evaluated in terms of their pure tone thresholds (PITs) and DPOAE

measurements. The results from these two tests were used to train a neural network to

find a correlation between the two data sets, and to use that correlation to make a

prediction ofPTTs given only the DPOAEs.

The measured variables for this study consisted of:

• PTT measurements at 500, 1000, 2000 and 4000 Hz

• DPOAE responses at eleven 2fl-f2 frequencies ranging from 2fl-f2 = 406 Hz

to 2fl-f2 = 4031 Hz

Controlled variables for this study included:

• The frequencies of the two primaries, f1 and f2, ranging from f1 = 500 Hz to

fl = 5031 Hz, with a primary frequency ratio of 1.2.

• The loudness levels of the primaries ranging from Ll = 70 dB to Ll = 35 dB

with a loudness difference ofLl > L2 by 10dB.

Manipulated variables for this study to investigate the effect on PTT prediction

accuracy included:

• Subject age presented to the ANN as a 5-year category or a 10-year category

(see 4.8.1.3).

• DPOAE threshold defined as 1,2 or 3 dB above the noise floor (see 4.8.1.5).

 
 
 



• Presentation of the amplitude of the DPOAE to the ANN input as one of four

possible methods (AMP 100, AMP 40, ALT AMP or No AMP-see 4.8.1.4).

• The inclusion or omission of noisy low frequency DPOAE results for ANN

training (see 4.8.1.1).

• Three different middle level neuron counts for ANN training and prediction

(see 4.8.3.4).

• Three different error tolerance levels for ANN prediction and training (see

4.8.3.5).

Neural network results do not consist of predictions of frequencies in a decibel form,

but of predictions of PTTs into one of eight possible 10 dB categories. Interpretation

of data consists of the analysis of prediction accuracy of the neural network's ability

to predict hearing at a specific frequency accurately into a specific 10 dB category.

For this study, data obtained from 70 subjects (120 ears, in some cases only one ear

fell within subject selection specification) were used to train a neural network to

predict pure tone thresholds given only the distortion product responses. Subjects

were recruited from a private audiology practice as well as a school for hard of

hearing children. The subjects included 28 males and 42 females, ranging from 8 to

82 years old.

 
 
 



In order to train a neural network with sufficient data to make an accurate prediction

of hearing ability, data across all groups of hearing impairment was needed. For this

study, subjects were chosen that had varying hearing ability, ranging from normal to

moderate-severely sensorineural hearing impaired. To obtain an equal amount of data

in different areas of hearing impairment, data in three different categories of hearing

impairment were included, namely normal hearing ability, mild hearing losses and

moderately-severe hearing losses.

There are two general classification systems to classify hearing level as being normal

or impaired (Yantis, 1994). The first method converts hearing levels into a rating

scale based on percentage. A Pure tone threshold average (PTA) for the frequencies

500, 1000, 2000 and 3000 Hz is calculated, 25dB is subtracted (which is assumed to

be the normal range) and the answer is multiplied by 1.5% to find percentage of

impairment for each ear.

The second approach to describe normal ranges and hearing impairment also uses

monaural PTA in the speech frequencies but ads additional descriptors to the different

levels. Clark (1981) modified Goodman's (1965) recommendations into the following

categories:

-10 to 15dB

16 to 25dB

26 to 40dB

Normal hearing

Slight hearing loss

Mild hearing loss

 
 
 



41 to 55dB

56 to 70dB

91dB plus

Moderately severe hearing loss

Severe hearing loss

Profound hearing loss

For subject selection, the second approach to classification of hearing impairment (as

recommended by Clark, 1981) was used. Subjects with normal hearing, slight hearing

loss, mild hearing loss and moderately-severe sensorineural hearing loss were

included in the study. To divide the subjects into three groups of 40 ears each, the

PIT thresholds of the group with normal hearing ranged from 0 dB to 15 dB. The

group with slight and mild hearing loss had PTT thresholds that ranged from 16 to

35dB and the moderately-severe hearing-impaired group had PTA's in the range of36

- 65dB. It should be noted that according to Clark's (1981) specification the moderate

hearing loss group only includes hearing losses of up to 55 dB, whereas the severely

hearing impaired group extends to 70 dB. DPOAEs have been reported in ears that

have a hearing threshold as high as 65dB HL (Moulin, et al. 1994) at the frequencies

close to the primaries. It was therefore decided to combine the category of moderate

and severe hearing impairment to form the category moderately severe hearing

impairment ranging from 36 to 65 dB HL.

The data was divided into three groups merely to ensure that an equal amount of data

was obtained in each category. Another modification to Clark's classification system

has been made. In addition to the frequencies used by Clark (1981) to determine the

PTA, namely 0.5kHz, 1kHz, 2kHz and 3kHz, for this study 4kHz was also taken in

consideration in the classification of hearing impairment. The reason for this

 
 
 



modification is that DPOAE measurements are required at 4 kHz to predict the pure

tone threshold at 4 kHz.

The second selection criterion was normal middle ear functioning. Otoacoustic

emissions can only be recorded in subjects with normal middle ear function. Only a

very small amount of energy is released by the cochlea and is transmitted back

through the oval window and ossicular chain to vibrate the tympanic membrane.

Normal middle ear function is crucial to this transmission process (Norton, 1993;

Osterhammel, Nielsen & Rasmussen, 1993; Zhang & Abbas, 1997; Koivunen, et al.

2000). The requirement for normal middle ear functioning is also the reason why only

sensorineural hearing impaired subjects are included in the impaired hearing group

described in 4.4.1.1.

Normal middle ear functioning was determined by otoscopic examination and

tympanometry.

Only persons that were able to cooperate for approximately an hour were included in

the study. Subjects had to be able to follow instructions and sit quietly and still in one

position for about forty minutes for DPOAE testing. Subjects demonstrating

inadequate ability to follow instructions or cooperate during pure tone audiometry,

tympanometry or DPOAE testing were not included in the study. Some of the reasons

subjects were excluded from the study in this regard include very young age, ill health

and hyperactivity.

 
 
 



There is some debate regarding the effect of age on distortion product otoacoustic

emissions. In a study by Lonsbury-Martinet al. (1991), a negative correlation between

DPOAE measurements and age for subjects 20-60 years was reported. In their report

however, it is suggested that this negative correlation is due to changes in hearing

threshold associated with aging. A study by He & Schmiedt, (1996) also indicated

that the difference in DPOAEs between younger and older subjects can be attributed

to the sensitivity changes, rather than the aging itself. According to He and Schmiedt

(1996) a 60 year old person with normal hearing (PTA < 15dB) will therefore have

the same DPOAEs as a 12 year old with the same pure tone threshold levels.

There was therefore no selection criteria regarding age. The only population that was

excluded in this study is the pediatric population, due to differences in middle ear

properties such as canal length, canal volume and middle ear reverse transmission

efficiency that may cause differences in DPOAE amplitudes (Lasky, 1998a; Lasky,

1998b; Lee, Kimberley & Brown, 1993).

There was also no selection criteria regarding gender. Gaskill and Brown (1990) and

Cacace et al. (1996) reported that DPOAEs were significantly larger in female than

male subjects tested in the frequency range of 1000- 5000Hz. Both studies however,

indicated that the female subjects in their studies had more sensitive auditory

thresholds than the males (an average of 2.4 dB better). The differences found

between the two groups could therefore not be explained by gender only.

 
 
 



Lonsbury-Martin et at. (1990) conducted a study to investigate basic properties of the

distortion product including the effect of gender on the prevalence of DPOAEs. A

comparison of DPOAE amplitudes and thresholds failed to reveal any significant

differences except a minor difference at 4 kHz.

Gender effects on DPOAEs are apparently limited to minor insignificant differences

in DPOAE amplitudes and thresholds and therefore gender was not one of the

selection criteria for this study.

Even though subjects were not selected regarding age or gender, a subject's age and

gender were used as input information for the neural network. The reason for this is

that previous studies that attempted to predict PITs with DPOAEs found that age

enhances prediction accuracy and recommended to use age as a variable in PTT

prediction studies (Lonsbury-Martin et at. 1991; Kimberley et at. 1994a; Kimberley et

at. 1994b). The previous study by De Waal (1998) also indicated that the combination

of age and gender as prediction variables had a greater positive effect on prediction

accuracy than the inclusion of age alone.

The procedure in which subjects were selected started with a brief interview,

following otoscopic examination of the external meatus, tympanometry and pure tone

audiometry .

 
 
 



A short interview was performed to obtain a limited case history and some personal

information. The research project was also discussed with the subject in a very brief

manner and any questions answered. The purpose of the case history was firstly to

obtain enough personal information to open a new subject file and obtain the subject's

age and gender for later studies of these effects on DPOAEs. Secondly, information

regarding hearing status such as any complaints of tinnitus and vertigo, the amount of

noise exposure and complaints of middle ear problems was obtained.

In the analysis of data, some subjects may exhibit abnormal DPOAEs in conjunction

with normal pure tone thresholds. In a study by Attias, et al. (1995), it was found that

in some cases, subjects with normal pure tone thresholds of 0 dB exhibited abnormal

otoacoustic emissions, due to noise exposure. The effects of noise exposure can

clearly be seen long before the actual hearing loss occurs. This is also true for ototoxic

medication (Danhauer, 1997). Cases with exposure to noise, ototoxic medication or

subjects with tinnitus and vertigo were included in the research project, this

information merely serves as background to formulate reasons for possible

abnormalities in DPOAE responses.

Appendix A reviews the aspects that were addressed in the short interview. This

interview lasted approximately 10 minutes.

 
 
 



Otoscopic examination of both ears was performed to determine the amount of wax in

the ear canal, for excessive wax might block the otoacoustic emission microphone and

prevent the reading of a response. The second aspect that was investigated was the

light reflection on the tympanic membrane, indicative of a healthy tympanic

membrane (Hall III & Chandler, 1994). Otoscopic examination's duration was about

3-5 minutes.

A subject's tympanometry results must have been within the following specifications

to be included in the study.

A normal type A tympanogram was one of the criteria for normal middle ear

functioning. A type A tympanogram has a peak (or point of maximum admittance) of

o to -100 daPa. The peak may even be slightly positive, for example +25daPa (Block

& Wiley, 1994). A type A tympanogram's static immittance when measured at 226

Hz ranges from about 0.3 to 1.6 cc (Block & Wiley, 1994). Subjects demonstrating

type A tympanograms within these specifications were accepted for the study.

Tympanometry was performed in both ears and the duration of the procedure was

about 5 minutes.

 
 
 



Data obtained from the pure tone audiogram was not only used in the selection of

subjects, but also forms part of the measured variables for this study and was used to

train the artificial neural network. The determination of the pure tone audiogram will

therefore be discussed in detail.

If the subject had normal middle ear functioning, the subject selection procedure

continued. A pure tone audiogram was then obtained from the subject. The

frequencies that were tested during pure tone air conduction were 125, 500, 1000,

2000, 4000,and 8000 Hz. Even though only 500, 1000, 2000 and 4000 Hz were used

to train the neural network, pure tone results at 125 Hz and 8000 Hz could sometimes

indicate a slight hearing loss even though hearing at the four middle frequencies was

normal. Hearing thresholds at 125Hz and 8000 Hz were never used in the

determination of the category in which a subject fell for subject selection (see 4.4.1.1)

but were used merely as background information to formulate reasons for possible

abnormal DPOAEs.

If a hearing loss was present, or if any of the frequencies except 8000 Hz had a

threshold> 15 dB, then pure tone bone conduction was also performed to ensure that

the hearing loss was of a sensorineural nature. Only subjects with sensorineural

hearing losses (no gap between air conduction and bone conduction) were accepted

for the study. Threshold determination was in 5dB steps and a threshold was defined

as 50% accurate responses at a specific dB level (Yantis, 1994).

 
 
 



Audiograms from subjects were then analyzed. All audiograms indicating normal

hearing (500, 1000, 2000, 3000 and 4000 Hz below 15 dB) were included in the first

group. Audiograms indicating hearing loss were analyzed in terms ofthe degree ofthe

hearing loss. Mild hearing losses, indicating a hearing loss between 16 - 35 dB in the

frequency region 500 - 4000 Hz were categorized in the second group, namely mild

hearing losses. Audiograms indicating hearing losses of 36 - 65 dB in the frequency

region of 500 - 4000 Hz were categorized in the third group, namely moderately

severe hearing losses. 40 audiograms were included in each category.

If a subject demonstrated normal middle ear functioning and a pure tone audiogram

that could be categorized into one of the three groups, DPOAE measurements were

performed within the next hour. This procedure will be discussed in 4.7 "Data

collection procedures".

Figure 4.1 depicts the gender distribution for subjects included in this study. Figure

4.2 depicts the age distribution of subjects into 10-year categories.

 
 
 



o Female

Male

.# Subjects 10

5

o
0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90

1O-year Age Categories

Table 4.1 indicates the distribution pattern for different types of hearing loss that the

120 ears in the data set exhibited.

 
 
 



Table 4.1: Distribution pattern for different types of hearing loss in the 120 ear
data set.

# Ears Group 1: # Ears Group 2: # Ears Group 3:
PTAs 0-15 dB HL PTAs 16-35 dB HL PTAs 36- 65dB HL

Flat audiogram:
Not more than 20dB 40 11 16
variation between

0.5 -4 kHz.

Gradual slope:
PITs increases gradually 0 9 24

as frequency increases

Ski-slope:
Flat configuration up to 2 0 10 1

kHz with >20dB PIT drop
in high frequencies

Low frequency loss:
0.5 - 1 kHz more impaired 2 0 0

than
2-4 kHz

Notch:
Notch shaped loss around 4 3 0

1 -3 kHz

 
 
 



• For determination of auditory pure tone thresholds, the GSI 60 Audiometer,

calibrated April 1997 was used. The model of the earphones on the audiometer

was 296 D 200-2. Pure tone thresholds were measured in a sound proof booth.

• The measurement of Distortion Product Otoacoustic Emissions were conducted

with a Welch Allyn GSI 60 DPOAE system and the probe was calibrated for a

quiet room in January, 1998. All measurements were made in a quiet room.

• For determination of auditory pure tone thresholds, the GSI 60 Audiometer,

calibrated April 1997 was used. The model of the earphones on the audiometer

was 296 D 200-2. Pure tone thresholds were measured in a sound proof booth.

• For the preparation of data files, a 600 MHz Pentium computer was used. The

software included Excel for Windows 2000.

• For the training of the neural network, the backpropagation neural network

from the software by Rao and Rao, 1995 (software supplied in addition to their

book) was used. The neural network was trained on three 600 MHz Pentiums.

 
 
 



Purpose Result Outcome

Confirmation of Case one had perfect PTTs (OdB) but no airtight Only cases with air
normal middle ear seal could be obtained as a result of grommets in tight seals of the probe
functioning (Type A the tympanic membrane. This subject displayed in the external meatus
tympanogram, and very high levels of low frequency background to allow measurement
compliance of >O.3cc) noise during DPOAE testing and it was difficult to of a tympanogram
as subject selection distinguish the DPOAE responses from the noise were included in the
criteria in cases where floor at most of the low and mid frequencies. study.
PTT results fell within

Case two had a mild sensorineural hearing loss but Only demon-selection criteria but cases

with small variations displayed compliance measurements of less than strating at least O.3cc in

in tympanometric O.3cc during tympanometry. DPOAE responses tympanometry were

results. were virtually indistinguishable from the noise allowed in the study.
floor due to high levels of low and mid frequency
noise.

 
 
 



Table 4.2 Continues

Purpose Result Outcome

Confirmation of levels Some tests revealed that when very high intensity It was therefore
for primary tone pairs primaries were used (such as 70- 80dB SPL), in decided not to use
not to exceed 70 dB some instances one could observe "passive" stimuli levels higher
SPL. emissions from the ears of severely hearing than 70dB.

impaired subjects. The reason for passive
emissions, according to Mills, (1997) is that very
high level stimuli can stimulate broad areas of the
basilar membrane and phase relations between
traveling waves can cause these "passive"
emissions that do not correspond well to hearing
sensitivity and has poor frequency specificity. In
this preliminary study, passive emissions were
only observed when stimuli levels were higher
than 70dB.

Confirmation of Another aspect that became apparent after a few Therefore, for this
subject selection tests were conducted was the absence of DPOAEs study, only subjects
criterion that hearing in persons with hearing losses greater than 65dHL. were included with
loss should not exceed This confirmed studies by Moulin et al. (1994) and sensorineural hearing
65dB HL. Spektor et al. (1991), which found that when losses of up to 65 dB

stimuli lower than 65dB SPL are used, DPOAEs HL.
cannot be measured in ears with a hearing loss
exceeding 65dB HL.

 
 
 



There are however a few stimulus parameters that require some experimenting in

order to determine applicability and practicality for a certain research project. One

such example is the configuration setup, or specifically, the number of frames of data

that will be collected in each measurement. The GSI-60 DPOAE system offers two

possibilities, a screening option and a diagnostic option. These options will be

reviewed in more detail than the section of the preliminary study concerned with

confirmation of subject variables in a table format because a thorough understanding

of test acceptance conditions is required to clarify later definitions of DPOAE

threshold as 1, 2 or 3 dB above the noise floor.

The screening option collects a maximum of 400 frames before stopping each primary

tone presentation. Not every test runs up to 400 frames, if a very clear response is

measured, the measurement can be made in as little as 10 frames. Test acceptance

conditions for the screening configuration are a cumulative noise level of at least -

6dB SPL and either a DPOAE response amplitude that is 10 dB above the noise floor

or a cumulative noise level of at least -18 dB SPL (GSI-60 manual, p2-44). A

maximum of 400 frames is measured, and if no clear response was present, the results

are labeled "timed out."

The diagnostic option runs up to 2000 frames for each primary tone presentation. The

minimum number of accepted frames is 128. Test acceptance conditions are that the

distortion product minus the average noise floor should be at least 17 dB.

After a few measurements in both configurations it became clear that the diagnostic

option requires much more testing time. Testing time of one single DP Gram

 
 
 



measured at low level stimuli in the diagnostic configuration could increase testing

time up to 12 minutes. Even though the general noise floor was slightly lower during

the diagnostic option, it was not practical to conduct 8 DP Grams in each ear with

tests lasting 6-12 minutes each. It would take between 60 minutes to 105 minutes to

measure one ear alone with DPOAEs. It was therefore not practical to evaluate 120

ears with the diagnostic option. The screening option with a testing time of up to 2

minutes per DP Gram was selected for this study. One ear could be evaluated in about

15 minutes with DPOAEs and the screening procedure yielded very much the same

information.

Lastly, the stimulus parameter that required some experimenting was the selection of

the frequencies of the primary tone pairs. The GSI-60 DPOAE system has a "Custom

DP" function where the examiner can choose any primary frequencies for DPOAE

measurement. After a few tests it became clear that care should be taken when

selecting primary tones. Not only should the frequency ratio of the primaries

preferably be 1.2, but also should frequency values from one tone pair to the next be

at least one octave apart to avoid interaction between stimuli (GSI-60 manual, p2-39).

The GSI-60 measures the noise floor from the first primary tone pair per group, and if

frequency pairs are selected too close to each other, very high levels of noise are

being measured. So after a lot of changes in primary tone pairs were made to avoid

interaction between stimuli, the researcher ended up with stimuli very similar to the

default stimuli of the GSI-60. It was therefore decided to use the default primary

frequencies of the GSI-60 for this study by activating all four octaves. (It seems that

those stimuli are set as default for a very obvious reason.)

 
 
 



Just for practicality, a few test runs that incorporated the whole data collection

procedure were conducted to determine the amount of time required testing each

subject. This was determined in order to schedule appointments. As seen in Table 4.3,

the whole data collection procedure lasted about an hour. In some cases, especially in

the case of subjects with a hearing loss, more time was required for bone conduction

but on the average, one hour was sufficient to test one subject.

Subject history 5 minutes

Audiometry 15 minutes

Otoscopic examination 5 minutes

Tympanometry 5 minutes

DPOAE measurements left ear 15 minutes

DPOAE measurements right ear 15 minutes

Total testing time 60 minutes

Two sets of data are needed to train a neural network to predict PTTs with DPOAEs:

each subject's pure tone thresholds and each subject's DPOAEs.

 
 
 



The necessary pure tone audiometry data has already been obtained during subject

selection and the collection procedure for this set of data has been described in the

section 4.4.2.4. Pure Tone Audiogram.

The second set of data that was collected was each subject's DPOAE responses. There

are many stimulus parameters that should be specified to be able to repeat this

research project and need to be fully described.

4.7.1.2.1 Specification of Stimulus Parameters for DPOAE

Measurements

There is a four dimensional space in which the stimulus parameters for DPOAE

measurement should be specified (Mills, 1997). The frequencies of the two primary

stimulus tones fl and f2 (fl>f2), the frequency ratio off2/fl (how many octaves apart

the two frequencies are), the loudness level of fl (which is L1) and the loudness level

of f2 (which is L2). Furthermore, the difference in loudness level between L1 and L2

should also be specified.

In the case of the GSI-60 Distortion Product otoacoustic emissions system, the

number of octaves that should be tested can be specified as well as the amount of data

points to plot between octaves. The octaves available are 0.5 - I kHz; 1-2 kHz; 2-4

kHz and 4 -8 kHz. All of these octaves were selected for DPOAE testing because
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information regarding all these frequencies was required to make comparisons with

the audiogram in the frequency range 500 - 4000 Hz. The amount of data points

between frequencies could be any number between 1 and 20. The more data points

per octave, the longer the required test time since more frequency pairs are tested

between frequencies. The GSI-60 manual suggests 3 data points per octave to be

adequate, not increasing the test time too much but yielding enough information

regarding DPOAE prevalence between frequencies. In the case of the pure tone

audiogram, in-between frequencies were only tested when hearing losses between

frequencies varied more than 15 dB (to measure the slope of the hearing loss) and

only 1 or in extreme cases 2 in-between frequencies were evaluated. The selection of

3 data points between octaves in the case of DPOAE measurement should therefore

The frequencies tested by the GSI-60 when all four octaves are activated and 3 data

points per octave is specified amount to 11 frequency pairs. The eleven frequency

pairs are presented in Table 4.4.

Table 4.4: The eleven frequency pairs tested by the GSI-60 DPOAE system when

all four octaves are activated.

PAIR 1 2 3 4 5 6 7 8 9 10 11

flHz 500 625 781 1000 1250 1593 2000 2531 3187 4000 5031

flHz 593 750 937 1187 1500 1906 2406 3031 3812 4812 6031

 
 
 



4.7.1.2.1.2 The Selection of the Frequency Ratio of the Primary

Frequencies (fl/f!)

Several studies investigated the effect of the frequency ratio on the occurrence of

DPOAEs (Cacace et aI. 1996; Popelka, Karzon & Arjmand, 1995; Avan & Bonfils,

1993; He & Schmiedt, 1997).

It appears that the frequency ratio of 1.2 - 1.22 is most applicable to a wide range of

clinical test frequencies (0.5-8kHz) and a wide range of stimulus loudness levels. A

stimulus ratio off2/fl = 1.2 was therefore selected for this study.

4.7.1.2.1.3 The Selection of the Loudness Levels of the Primaries, L1

and L2.

There are two ways of eliciting a DPOAE response. Either the frequencies are

changed and the loudness level kept constant, this is sometimes referred to as a

"distortion product audiogram" (DP Gram), or the frequencies are being kept constant

while the loudness level is changed (an input/output function (I/O) is obtained). In this

case, several DP audiograms were obtained. All the frequencies selected for all four

octaves were presented to the subjects at different loudness levels, starting with

maximum loudness levels at L1 = 70 dB; L2 = 60 dB. Loudness levels were decreased

in 5 dB steps until DP "thresholds" (lowest intensities where DP responses can be

distinguished from the noise floor) for all the frequencies were obtained. The lowest

loudness level for the primaries that was tested was L1 = 35 dB; L2 = 25dB. Eight

loudness levels were therefore evaluated resulting in eight DP "audiograms" for each

 
 
 



An overview of several studies indicated the following loudness level ratios to be

most suitable for the detection of DPOAEs: L1 > L2 by 10 dB (Stover et al. 1996a),

L1 > L2 by 15 dB (Gorga et al. 1993) and L1 > L2 by 10 - 15 dB (Norton & Stover,

1994). A study by Mills (1997) indicated that more DPOAEs were recorded when

L1>L2 than L1 = L2.

The detection threshold for a distortion product otoacoustic emission depends almost

entirely on the noise floor and the sensitivity of the measuring equipment (Martin et

al. 1990b). A distortion product with amplitude less than the noise floor cannot be

detected (Kimberley & Nelson, 1990; Lonsbury-Martin et al. 1990). Most researchers

specify a DP response to be present if the DP response is 3-5 dB above the noise

floor. Harris and Probst (1991:402) specified a DP response as "the first response

curve where the amplitude of 2f1-f2 is ;?: 5 dB above the level of the noise floor."

Lonsbury-Martin et al. (1990) reported detection thresholds for DPOAE

measurements 3 dB above the noise floor. Lonsbury-Martin (1994) set the criterion

level for a DPOAE threshold at ;?: 3 dB.

For this study, there will be experimented with detection thresholds for DPOAEs as 1

dB, 2 dB or 3dB above the noise floor to investigate if more accurate PTT predictions

can be made with lower detection thresholds.

 
 
 



DPOAE measurements were performed directly after the subject selection procedure.

Subjects were instructed to sit next to the GSI 60 DPOAE system, not to talk and to

remain as still as possible. Subjects were allowed to read as long as they kept their

heads as still as possible. First, a new file was opened for the subject. Then the

DPOAE probe tip was inserted into the external meatus in such a manner that an

airtight seal was obtained.

Eight tests or DP Grams were performed in each ear. Every DP Gram consisted of

eleven frequency pairs. Every frequency pair consisted of two pure tones, f1 and f2

presented to the ear simultaneously. (See Table 4.4 for the eleven frequency pairs).

The eleven frequency pairs were presented to the ear in a sweep, one at a time starting

with the low frequencies, ending with the high frequencies.

The first DP Gram was conducted on the loudness levels FI = 70dB SPL, F2 = 60dB

SPL. The second DP Gram was conducted 5 dB lower at FI = 65 dB SPL, F2 = 55 dB

SPL. A total of eight DP Grams were conducted, each one 5 dB lower than the

previous one. The lowest intensity DP Gram that was performed was FI = 35 dB SPL,

F2 = 25 dB SPL.

The procedure was repeated for both ears if both ears fell within selection criteria.

The duration of DPOAE testing of eight DP Grams for one ear was between 15-20

minutes. If a subject was tested binaurally, the duration of DPOAE testing was

approximately 30-40 minutes.

 
 
 



In the data preparation process, there were three interrelated processes that happened

in parallel and influenced each other in such a way that it is challenging to describe

the process with a logical serial or start-to-finish approach. One of the processes was

to determine how input information was to be presented to the neural network and

which variables or combinations of variables to experiment with. Another process was

to determine optimal neural network error tolerance levels and topology, specifically

the number of hidden layer neurons. The last process was the creation of data files

that serve as input into the neural network that represent all the chosen variables and

combinations thereof.

These three processes were highly interrelated: The combination of variables to use

and how to present them determined how the data file looked that served as input

information into the ANN. The input, or specifically the number of nodes in the input

layer necessary to represent all variables, determined the complexity of the network

and therefore the number of hidden layer neurons needed as well as suitable error

tolerance levels. Failures in network operation and prediction in its turn influenced

how new experiments were constructed to present input data in new ways, to include

new variables or new combinations thereof, or to experiment with different numbers

of middle level neurons and error tolerance levels, all in an attempt to make more

accurate predictions.

 
 
 



The three interrelated processes namely the choice of how input data is presented to

the network, the creation of the data file and the determination of network topology

and error tolerance and will be discussed one at a time.

4.8.1 Experiments to Determine ANN Prediction Accuracy by

Manipulating the Input and Output Data

The data that served as possible input information into the ANN was the presence or

absence of DPOAE responses, defined by 1dB, 2dB and 3dB thresholds, the DPOAE

amplitude of all present responses, subject gender and subject age.

For some experiments, DPOAE occurrence at all eleven frequencies and all eight

loudness levels (or DP Grams) were used. For some experiments only DPOAE

occurrence at the eight high frequencies for all eight DP Grams were used (fl = 500,

625 and 781 Hz were omitted). DPOAEs measured at the low frequencies are often

noisy or absent and these experiments attempted more accurate predictions by

omitting the noisy data to prevent pollution of data.

When DPOAE occurrence at all eleven frequencies were used for all eight DP

Grams, at least 88 input nodes were needed in the input layer to present this map of all

present and absent responses to the ANN. When only the eight high frequencies

(starting at fl = 1000 Hz to fl = 5031 Hz) for all eight DP Grams were used, only 64

input nodes were needed to present DPOAE responses to the ANN.

 
 
 



Subject gender was always included and always depicted with a one or a zero. Subject

gender therefore always added just one input neuron to the input layer.

Subject age was always included in the training and prediction of the ANN but

different ways were used to present it to the neural network. Subject age in this study

varied from 8 - 82 years old. The dummy variable technique was used to depict a

subject's age into either a 10-year category, or a 5-year category.

In the 10-year category method, there were ten possible 10-year categories and the

subject's age was depicted with zeros and a single one corresponding to the

appropriate category: A 12 year old subject was therefore depicted as 01000 00000.

When this method was used to depict subject age, ten extra input nodes were needed

for the input layer.

In the 5-year category method, there were 20 possible 5-year categories. A 12 year old

subject would therefore be depicted as 01000 00000 00000 00000. This method

required 20 extra input nodes for the input layer. This method specified subject age

more accurately but also made the neural network more complex due to a larger

number of input nodes.

 
 
 



The first amplitude representation of the DPOAE response was depicted as a fraction

of 100 (This experiment is referred to as AMP 100). Instead of depicting the presence

or absence of a response with a one or a zero, the magnitude of the response was used.

A present DPOAE response of 30 dB's input into the neural network would therefore

be 0.3. The same 88 input nodes were used that depicted presence or absence of a

response, only now with a value indicating the amplitude of the DPOAE. This method

of amplitude representation caused the neural network to spend much more time to

converge (to reach the required error tolerance level for every ear in the training set).

It took about 2 hours per experiment for the network to converge, which is incredibly

long if 120 ears have to be predicted at 4 frequencies. 960 hours (40 days) were

needed just to reach the optimal error tolerance level before prediction can begin.

Some of the experiments were run with this method of amplitude representation but

other more effective ways were needed to present amplitude to the ANN.

The second amplitude representation of the DPOAE response was depicted as a

fraction of the largest DPOAE amplitude measured in this population of subjects in

other words a percentage (This experiment is referred to as AMP 40). (The largest

DPOAE response ever measured in this population of subjects was 39dB.) This

experiment also used the original 88 input nodes that depict DPOAE occurrence but

instead of just a zero indicating absence or a one indicating a present response, the

magnitude of the response as a fraction of 40 was used. A 30 dB DPOAE was

 
 
 



therefore depicted as 0.75. For AMP 40 convergence was much faster, only about 40

minutes per experiment.

The third amplitude representation of the DPOAE response was depicted with the

dummy variable technique by indicating into which one of four 10 dB categories the

amplitude fell (This experiment is referred to as ALT AMP). A 30 dB DPOAE was

depicted as 0010. For this experiment, every one of the 88 input nodes had to receive

four categories to indicate the category in which the amplitude fell. This increased the

number of nodes in the input layer needed to represent this information with four

times. An experiment involving all 11 frequencies for all eight DP Grams therefore

needed 352 input nodes, instead of the usual 88. This drastic increase in input neurons

contributed to a much more complex neural network that required more middle level

neurons. For this experiment, the middle layer neurons were always doubled to

compensate for the large quantity of input data.

The last amplitude experiment was when the amplitude of the DPOAE was omitted

(This experiment is referred to as No AMP). The usual 88 input nodes were used and

a DPOAE response was indicated as present with a one and absent with a zero. The

presence of a DPOAE response is defined as a certain dB level above the noise floor.

This brings us to the next experiment type, regarding the threshold of a DPOAE.

 
 
 



Harris and Probst (1991) and Krishnamurti (2000) defined DPOAE threshold as

DPOAE response :?: 5 dB above the noise floor, According to Lonsbury-Martin &

Martin (1990) the DPOAE should be 3 dB above the noise floor to be regarded as

For this research project, it was decided to use different thresholds for DPOAE

responses namely IdB, 2dB and 3dB above the noise floor. This threshold reduction

had more present DPOAE responses as a result. Ifthe IdB and 2dB thresholds yield

more valid DPOAE responses, the network will be able to make more accurate

predictions. If the extra responses gained are not valid but just part of the noise floor,

prediction accuracy will not be increased but may be decreased.

4.8.1.6 Number of Ears or Data in Every Output Category to be

Predicted

From the previous study (De Waal, 1998) it became apparent that the number of ears

in every category to be depicted had a great influence on prediction accuracy of the

neural network. The reason for this is that the network needs adequate representation

in every category to learn the correlation between DPOAEs and PTTs to make an

accurate prediction. In some instances in the previous study, certain categories had

very little hearing-impaired data such as in the case of 500 Hz for example. Many of

the subjects with hearing losses had normal hearing at 500 Hz (such as subjects

demonstrating ski slopes). Category 7 in the case of the 500 Hz prediction had only

data for one ear. Category 6 had only data for six ears and category 5 only data for

 
 
 



five ears. It could be possible that the neural network did not have sufficient data in

every category to train on and this aspect influenced the accuracy of the prediction.

To test the significance of the number of ears in every category, it was decided in the

previous study to enlarge the categories depicting hearing impairment to 15 dB, in

order to attempt to include more hearing-impaired data in every category. It was

referred to as scenario five, and hearing ability was divided in five categories.

Categories that depicted normal hearing spanned 10 dB whereas categories that

depicted hearing impairment spanned 15 dB. The five categories are presented in

Table 4.5.

Category 1 0-10dBHL

Category 2 11 -20 dB HL

Category 3 21-35 dB HL

Category 4 36-50 dB HL

Category 5 51- 65 dB HL

The significance of the number of ears in every category was also tested for this

research project. The best experiments for each frequency were selected after the

completion of ANN training and prediction and were run in this scenario five method,

by enlarging the categories depicting hearing loss to 15 dB for the output ofthe neural

network. The input data, number of middle level neurons, error tolerance, dB

threshold above the noise floor and presentation of the age and amplitude variables to

the network were kept exactly the same, only in this scenario, the output of the
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network was changed to predicted hearing loss into three possible 15 dB categories in

stead of the usual seven. It will also be referred to as scenario five method in the

present study.

Lastly, one aspect that was experimented with was the amount of data or number of

pure tone thresholds in the input data of every category.

Pure tone thresholds are routinely evaluated in 5 dB increments (Hall III & Mueller

III, 1997), as was also the case in this study. The possibilities for pure tone threshold

values are therefore always rounded up to an increment of 5 dB. In the previous study

(De Waal, 1998), all the first categories of all experiments spanned 0 - 10 dB. This

implied that pure tone threshold values of 0 dB, 5 dB and 10 dB were included in this

category, a total of three possible measurements from the audiogram. All second

categories in the previous study always spanned 11-20dB, but since thresholds are

only evaluated in 5 dB increments, the possible values to be included in the second

category only consisted of measurements obtained at 15dB and 20dB, therefore only

two possible measurements from the audiogram. This lead to an uneven distribution

of the number of measurements in every category that possibly lead to poorer

predictions of categories with less input information for the ANN to train on.

For this study, it was decided to have an equal number of possible thresholds in every

category to ensure optimal distribution of input data across all categories for the

network to train on. Two possible threshold values from the audiogram were allowed

into every category. Category one therefore consisted of data from ears that exhibited

 
 
 



threshold values at 0 dB and 5 dB, category two consisted of PTT values of 10 dB and

15 dB and so forth. The PTT data distribution for each category can be seen in Table

4.6.

PTT data permitted into each category (dB HL)

Category 1 OdB 5 dB

Category 2 10 dB 15 dB

Category 3 20 dB 25 dB

Category 4 30 dB 35 dB

Category 5 40 dB 45 dB

Category 6 50dB 55 dB

Category 7 60 dB 65 dB

Category 8 70 dB 75 dB

For the previous study, the first two categories were evaluated to investigate

prediction accuracy when it comes to the separation of normal hearing and hearing

impaired ears. Normal hearing was defined as 0 - 20 dB, according to the definition

of normal hearing by Jerger, (1980). For the present study, the first three categories

were investigated to determine how accurately the network could separate normal

from hearing impaired ears (normal = 0 - 25 dB HL) according to the definition of

Goodman (1965), which is also the recommendation of the American Academy of

 
 
 



Otolaryngology and the American Council of Otolaryngology (AAO-ACO) in 1979

for normal hearing.

A few experiments were run with the same PTT distribution as the previous study (De

Waal, 1998) of three values in the first category and two in every category thereafter

for two reasons: The first reason was to be able to make valid comparisons between

the previous and present study. To make accurate comparisons between category one

of the previous study and category one of the present study, the PIT distribution for

ANN training have to be the same. The second reason was to accommodate Jerger

(1980)'s definition of normal hearing, which is 0 - 20 dB HL and spanning the first

two categories of this procedure.

Another process in the data preparation involved transcribing raw data into data files

suitable for ANN input.

The way in which the raw data was transcribed into files was constructed in such a

way that each ear had its own file for every frequency. Each ear therefore had four

files depicting information at 500, 1000, 2000 and 4000 Hz. A file is merely a row of

numbers, depicting the test results in a certain order. Table 4.7 represents a raw data

set for one DP Gram. 8 DP Grams for each ear were conducted. The complete raw

data set for one ear would therefore have 88 rows of data under each column number.

The column numbers in the top row is explained to indicate which measurement that

column represents in the section following Table 4.7.

 
 
 



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 R 500 70 593 60 406 8 0 N 0 0 5 0 0 0 24 F

1 1 R 625 70 750 60 500 9 -1 TIO 0 0 5 0 0 0 24 F

1 1 R 781 70 937 60 625 14 -6 A 0 0 5 0 0 0 24 F

1 1 R 1000 70 1187 60 812 3 -2 N 0 0 5 0 0 0 24 F

1 1 R 1250 70 1500 60 1000 12 -6 A 0 0 5 0 0 0 24 F

1 1 R 1593 70 1906 60 1281 -1 -9 A 0 0 5 0 0 0 24 F

1 1 R 2000 70 2406 60 1593 13 -7 A 0 0 5 0 0 0 24 F

1 1 R 2531 70 3031 60 2031 5 -8 A 0 0 5 0 0 0 24 F

1 1 R 3187 70 3812 60 2562 7 -9 A 0 0 5 0 0 0 24 F

1 1 R 4000 70 4812 60 3187 8 -6 A 0 0 5 0 0 0 24 F

1 1 R 5031 70 6031 60 4031 5 -6 A 0 0 5 0 0 0 24 F

Explanation of column numbers for Table 4.7:

I Subject number.

2 Number of DP Gram.

3 Ear that is being tested (right or left).

4 Frequency of fI in Hz.

5 Loudness level of LI in dB SPL.

6 Frequency of f2 in Hz.

7 Loudness level of L2 in dB SPL.

8 Distortion product frequency in Hz.

9 Distortion product amplitude in dB SPL.

10 Loudness level of noise floor in dB SPL.

11 Test status (A= accepted, N= noisy, T/O= timed out response).

12 Pure tone threshold of 250 Hz in dB HL.

13 Pure tone threshold of 500 Hz in dB HL.

14 Pure tone threshold of 1000 Hz in dB HL.

15 Pure tone threshold of 2000 Hz in dB HL.

16 Pure tone threshold of 4000 Hz in dB HL.

17 Pure tone threshold of 8000 Hz in dB HL.

18 Subject age.

19 Subject gender.

 
 
 



The program that wrote the raw data into files was named CSV 2 EXP (Comma

separated values to experiments) and the C++ code for this program can be seen on

the accompanied CD. The newly created data files looked different for every

experiment, depending on which variables were chosen for that specific experiment

and the way the input data was presented to the neural network. If, for example, all

frequencies were used for an experiment and age was presented to the network in 5

year categories, that data file would look different from a data file where only the high

frequencies were used or if age was presented to the network in 10 year categories.

Table 4.8 is an example of a fraction of a newly created data file for a "No AMP"

experiment where all 11 frequencies were used as input data, threshold was defined as

3 dB above the noise floor, gender was included and age was depicted in 10 year

categories to attempt to predict the PTT frequency 500 Hz.

 
 
 



"Subject I "Right,O,I,O,O,O,O,O,O,O,O, 0, 0,0,0,0,1,1,1,0,0,0,0, 0,0,0,0,0,1,1,0,0,0,0, 0,0,0,0,1,0,0,1,0,0,0,0,0,0,0, 1,0,0,1,0,0,0, 0,0,0,0,0,1,1,0,0,1,0, 0,1,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,0,1,1,0,0,0,0,1,0,0,0,0,0,0,0, 0,0,0,0,0,1,0,0,

"Subject I "Left,O,I,O,O,O,O,O,O,O,O, 0, 0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,1, 0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,1,1,1,0, 0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,

"Subject 2 "Right,O,O,O,O,I,O,O,O,O,O, I, 0,0,0,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0, 0,0,1,0,0,0,0,0,1,0,0, 0,0, I, 1,0,0,0, 1,0, 1,0,0,0,0,0,1,0,0,0,1,1, 1,0,1,0,0,0,0,1,0,0,0,0, 0,1,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,1,0,0,

"Subject 3"Right,0,0,0,0,1,0,0,0,0,0, 0, 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0,0,0,0,1,1,1,0, 0,0,0,0,0,0,0,1,1,0,0, 0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0, I, 1,1,0,0,0,0,0,0,0,1,1,1, I, 1,0,0,0,0,0,0,1,1,1,1,1, 1,0,0,0,0,0,0,0,

"Subject 3"Left,0,0,0,0, 1,0,0,0,0,0, 0, 0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,0, I, 1,0,0,0,0,0,0,1,0,0, I, I ,0,0,0,0,0,0,0,0,1,1,1, 1,0,0,0,0,0,0, I, 1,1, I, 1,0,0,0,0,0,0,1,1, I, 1,1, 1,0,0,0,0,0,0,0,

"Subject 4"Right,0, I ,0,0,0,0,0,0,0,0, I, 0,0,0,0,0,0,0, I ,0,0,0, 0,0,0,0,0,0,0,0,0, I ,0, 0,0,0,0,0,0,0,0,0, I ,0, 0,0,0,0,0,0, I ,0,0, I ,0, 0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0, I ,0, I ,0,0, 0,0,0,0, I ,0,0,0,0, I ,0, 0,0,0,0,0, I ,0,0,

" Subject 5 "Right,O,O,I,O,O,O,O,O,O,O, 0, 0,1,0,0,1,1,1,1,0,1,0,0,0,0,0,1,0,1,1,1,1,1,0,1,0, I, 1,0, 1,1,1,1, 1,0, I, 1,1, 1,0, I, 1,1,1,1,0,0,0,1,1,1, I, 1,1,1 ,0,0,1, I, I, I, I, 1,1,1,1,0,0,0,1, I, I, I, 1,1, 1,1,0, 0,0,1,0,1,1,1, I, I, I, I, 1,0,0,0,0,0,0,0,

" Subject 5 "Left,O,O, I ,0,0,0,0,0,0,0, 0, 0,0,0,0,0,0,0,0, I, I ,0, 0,0,0,0,0,0,0, I, I, I ,0, 0,0,0,0,0, I ,0, I, I, I ,0, 0,0,0,0,0,0,0, I, I, I ,0, 0,0,0,0,0,0,0, I, I, I, I, 0,0,0,0,0,0,1,1, I, I ,0, 0, I, I ,0,0, I ,0, I, I, I, I, 0,0,0,0,0,0,0, I, 1,1, I, 1,0,0,0,0,0,0,0,

" Subject 6 "Right,O,O,I,O,O,O,O,O,O,O, 0, 0,0,1,0,0,0,0,1,1,1,0,0,0,1,1, I, 1,0,0,1,1,1,0,0,1,1,1,1,1,1,1,1,0, I, I, I, I, 1,1, I, 1,1, 1,1,0,0, I, 1,1 ,1,1, I, 1,1, 1,0,0,1,1, I, 1,1,1,1, 1,1,0,1,1,1,1,1, I, 1,1, 1,1,0,1,0,1,1,1,1, I, 1,1, I, 1,0,0,0,0,0,0,0,

" Subject 6 "Left,O,O,I,O,O,O,O,O,O,O, 0, 0,0,0,1,1,0,0,0,1,0,0, 0,1,1,1,1,1,0,0,1,1,0, 0,1,1,1,1,1,1,1,1,1,0, 0,1,1,1,1,1,0,1,1,1,1, 0,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,0,1,1,1, 1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1, 1,0,0,0,0,0,0,0,

" Subject 7 "Right,O,O,O,O,O,I,O,O,O,O, 0, 0,0,0,1,0,0,1,0,0,1,0,0, I, 1,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0, 1,1, I, 1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0, 1,0,0,1,0,0,0,1,0,0,0, I, 1,0,0, 1,0,1,0,0,0,0,0,1,0,0,1,1,0,0, 0,1,0,0,0,0,0,0,

" Subject 7 "Left,O,O,O,O,O,I,O,O,O,O, 0, 0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0, I, 1,0,0, I ,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0, 0,0,0,1,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,1,1,0,0, 0,1,0,0,0,1,0,1,0,0,0, 0,0,0,1,0,0,0,0,

" Subject 8 "Right,O,I,O,O,O,O,O,O,O,O, I, 0,0,0,0,0,1 ,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0, 1,0,0,0,0,0,0,0, I, 1,0,0,0,0,0,1,0,1,0,0,1,1,0, 0,0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,1,1,1,0,1,0, 0,0,0,0,0,1,0,0,

"Subject 8 "Left,O,I,O,O,O,O,O,O,O,O, I, 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0, I, 1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1, 1,0,0,0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0, I, 1,1, I ,1,0,0,0,0,1,1,0,1,1,1,1,0, 0,0,1,0,0,0,0,0,

" Subject 9 "Right,O,O,I,O,O,O,O,O,O,O, 0, 0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,1,0,0,0, 0,0,0,0,0,0,0,1,1,1,0, 0,0,0,0,0,0,0,1,1,1,0, 0,0,0,0,0,1,0,1,1,1,0, 0,0,0,0,0,0,1,1,1,1,0, 0,0,0,0,0,1,1,1,1,1,1, 0,0,0,0,0,1,1,1,1,1,1, 0,1,0,0,0,0,0,0,

"Subject 9 "Left,O,O,I,O,O,O,O,O,O,O, 0, 0,0,0,0,0,0,0,1,0,1,1, 0,0,0,0,0,0,1,1,1,1,0, 0,0,0,0,0,0,1,1,1,1,0, 0,0,1,1,1,1,1,1,1,1,1, 0,1,1,1,1,0,1,1,1,1,1, 0,0,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1, 0,1,1,1,1,1,1,1,1,1,1, 1,0,0,0,0,0,0,0,

"Subject 10 "Right,O,I,O,O,O,O,O,O,O,O, 0, 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0, 1,0,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,0,1,0,1,1, 1,1,0,0,0,0,0,0, I, 1,1,1,1,0,0,0,1,1,1, I, 1,1, 1,1,0,0,0,0, I, I, I, I, 1,1, 1,0,0,0,1,1,1, I, I, I, I, I, 0,1,0,0,0,0,0,0,

"Subject II "Right,O,I,O,O,O,O,O,O,O,O, I, 0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1, I ,0, 1,0, 1,1,0,0,0,1,0,0,0,1,1,1,1,0,0,0,1,0,0, I, 1,1,1, 1,0,0,0,0,1,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1, I, I, 1,0,0,1,1,1,1,1,1,1,1, I, 0,0,1,0,0,0,0,0,

"Subject II "Left,O,I,O,O,O,O,O,O,O,O, I, 0,0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,1,1,0,0, 0,0,0,0,1,1,0,1,1,1,0, 1,0,0,0,1,0,0,1,1,1,1, 0,0,0,1,1,1,1,1,1,1,0, 0,1,1,1,1,1,1,1,1,1,1, 0,0,1,0,1,1,1,1,1,1,0, 0,0,1,1,1,1,1,1,1,1,1, 0,0,1,0,0,0,0,0,

"Subject 12 "Right,O,O,O,1,O,O,O,O,O,O, 0, 0,0,0,0,0,0,1,0,1,0,0, 1,0,0,1,0,1,0,0,0,0,1,0,0,1,0,1,0,0,1,0,0, 1,0,0,1,1,0,0,0,1,1,0,0,0,0,1,1, I, I, 1,1,0,0, I, I, I, I, 1,1,1,1,1,0,0,0,0, I, I, 1,1,1, 1,1, I, I ,0, 0,1,1,1,1,1,1 ,1,0,1,0, 1,0,0,0,0,0,0,0,

"Subject 12 "Left,O,O,O,I,O,O,O,O,O,O, 0, 0,0,0,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,1,0,0,0,0, I, 1,0,0,0, 1,0,0, 1,0,1,1,1,0,0, I, 1,0,0,1,0,1, I, 1,0, 1,0, 1,1,1,0, 1,1,1,1,1,0,0,1,0,1,0, I, I ,1,1, 1,1, I, 1,0,0,0, 1,1,1,1,1,1,1,1,1,1,0, 1,0,0,0,0,0,0,0,

"Subject 13 "Right,O,O,I,O,O,O,O,O,O,O, I, 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,1,1,0,0,0, 0,0,0,1,1,1,1,1, I, 1,0, I, 1,1,0,1,0,0,1,1,1,0, 1,0,0,1, I, I, 1,1,1, 1,0,0,0,0,1,1,1,1,1, I, 1,0,0,0,1, I, I, I, 1,1, 1,1,0,0,1,1,1,1,1,1 ,I, 1,1,0, 1,0,0,0,0,0,0,0,

"Subject 13 "Left,O,I,O,O,O,O,O,O,O,O, I, 0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,1,0, 0,0,0,1,1,1,1,0,0,0,0, 0,1,1,1,1,0,1,1,1,1,0, 1,1,1,1,1,0,1,1,1,1,0, 0,1,1,1,1,0,1,1,1,1,0, 1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1, 0,1,0,0,0,0,0,0,

 
 
 



After the data manipulation and creation of data files it became clear what the

requirement for neural network topology is.

4.8.3 Experiments to Determine Neural Network Topology and Error

Tolerance Levels

For this project a three-layer backpropagation neural network was chosen. One input

layer presented all data to the network, one output layer gave the prediction of pure

tone threshold at a given frequency and one hidden layer with a set of weights on each

side of it connected the input and output layers. According to Hornik et al. (1989), one

hidden layer is enough provided that there are enough middle level neurons for the

complexity of the problem.

Many of the ideas on requirements for network topology and data manipulation

techniques came from trial runs that were done in the previous study (De Waal, 1998).

A short overview of the previous study's trial runs will be given to promote

understanding of current topology and the history of methods tried and how it

influenced the current way of thinking.

4.8.3.1 History of Trial Runs Done in the Previous Study (De Waal,

1998)

At first, a very simple approach was tried: The neural network had 11 input nodes,

representing the L1 dB SPL value where the DPOAE threshold was measured. The

neural network had to predict hearing ability at 500, 1000, 2000 and 4000 Hz in dB

SPL and had 4 output neurons. The number of middle level neurons was set at 20 and

the acceptable prediction error during the training period at 5 dB for this test run.

 
 
 



After a few hours it became clear that the neural network was unable to converge

during the training period and that no accurate predictions could be made. For the

next few trial runs, middle level neurons were increased up to 100 or the acceptable

prediction error during the training period were decreased to 1 dB. All these changes

did not improve convergence or prediction ability. The reason was lots of missing

data due to absent responses: All the lowest L1 values where a DPOAE response was

measured were used as input data for the neural network. There were however some

of the hearing impaired subjects that did not have any DPOAE responses at certain

frequencies, and no DPOAE threshold values were available to use as input data. All

these absent DPOAE thresholds were depicted with a "zero". It became clear that the

absence of DPOAE thresholds in the hearing impaired population (about 66% of the

subjects) called for a different data preparation method.

As a second approach, the input data was manipulated to present absent and present

responses in a different way. Up to now, input data consisted of decibel sound

pressure level (SPL) quantities, depicting either a DPOAE threshold at a certain L1

value or DPOAE amplitude. Output data also predicted hearing thresholds in decibel

sound pressure level (dB SPL) values. For this approach all data was rewritten in a

binary format. The presence of a DPOAE response was depicted with a "1" whereas

the absence of a DPOAE response was depicted with a "0".

The criteria for the presence of a DPOAE response were that the DPOAE response

had to be 3 dB above the noise floor and that the test status had to be "accepted". All

responses less than 3 dB above the noise floor or with a test status that was "noisy" or

"timed out" were regarded as absent responses. (It should be noted that Kemp (1990)

 
 
 



warned that in order to determine if a response is 3 dB above the noise floor, one

could not merely subtract the noise floor from the DPOAE amplitude in its decibel

form. The two values should be converted back to its pressure value (watt/m2
), and

then subtracted.)

It was during this approach that the 88 input nodes, all zeros and ones, depicting

DPOAE presence or absence for all eight DP Grams and 11 frequencies were

formulated. The only information available to the neural network in this trail run was

therefore the pattern of absent and present responses at all eight loudness levels and

no information regarding the amplitudes of DPOAEs were available. For the present

study, DPOAE amplitude was reintroduced as described in 4.8.1.4 "DPOAE

amplitude."

This binary approach offered the first solution to the problem of absent DPOAE

results. For the first time all the data could be used and the neural network could be

trained with data across all categories of hearing impairment.

The way in which the output data was presented was also changed from dB SPL

output at a given frequency to the binary dummy variable technique where PTTs were

predicted into one of seven 10dB categories.

The effects of in the inclusion of gender and age variables were determined. Age was

presented in the dummy variable technique into one of nine 10-year categories,

gender with a one or a zero. The network had 98 input nodes, 140 middle level

neurons and seven output neurons for prediction into one of seven 10dB categories.

 
 
 



Prediction error during training was set at 5%. Age had a very positive effect on

prediction accuracy. Gender had very little effect. The neural network run that

included both variables at the same time had the best prediction accuracy. It was

therefore decided to include both these variables in the present study for every neural

network run.

A very important aspect to keep in mind is that for the previous study, the network

was trained with the data of 119 ears to predict the one remaining ear. This process

was repeated 120 times to predict every ear once. This means that a subject's one ear

was included in the training set while the other ear was predicted. It is quite possible

that a subject's PTTs for both ears might be related, for example in the case of noise

exposure, the two ears might look very similar. For this research project, both ears of

a subject were removed out of the training set. The network was trained with 118 ears

and predicted the remaining two ears one at a time. The following section discusses

network topology for the present study.

As described in the input data manipulation section, the number of input data sets

determines the number of nodes that are needed in a neural network's input layer. The

number of input neurons needed for each experiment was determined by the variables

that served as input data as well as the way in which they were represented. Table 4.9

is a summary of how to determine how many input nodes were needed for each type

of experiment. The base input of nodes is when low frequency DPOAEs were

omitted. The other columns serve as an indication of how many input nodes have to

be added for that situation or experiment.

 
 
 



a e . : e ermma Ion 0 enum er 0 mpu no es
Base input Low Hz Age 5 year Age 10year Gender
# of nodes Included catel!ories catel!ories

No AMP 64 +24 +20 +10 +1

AMP 100 64 +24 +20 +10 +1

AMP 40 64 +24 +20 +10 +1

ALT AMP 256 +96 +20 +10 +1

 
 
 



middle level neurons were not enough. For the ALT AMP experiments, the number of•

 
 
 



changed to lengthen the training process or if the weights will be frozen to start with

the prediction phase. The lower (closer to zero) the error tolerance level, the more

accurate the learning and prediction but also the longer the training phase. Another

aspect that is influenced by error tolerance levels is the networks' ability to

generalize. For error tolerance set close to zero, the network might have difficulty

predicting a PIT for a DPOAE set that is slightly out of the ordinary. Higher error

tolerance levels might have slightly less accurate predictions but training is faster and

generalization is better.

For this study, all experiments were run with error tolerance levels of 0.001 (within

0.1% accurate), 0.002 (0.2%) and 0.003 (within 0.3% accurate). The effect of the

difference in prediction accuracy for the various error tolerance levels will be

discussed in the chapter interpreting results.

Now that network topology, error tolerance and representation of input data in files

are finalized, the network is ready to start the training and prediction processes.

• Threshold of DPOAEs specified as 1, 2 or 3 dB above the noise floor.

• Age depicted as 10-year or 5-year increments.

• Amplitude depicted as ALT AMP, AMP 100, AMP 40 or No AMP.

• Middle level neurons as 80, 100 or 120 for AMP 100, AMP 40 and No AMP.

• Middle level neurons as 160,200 or 240 for ALT AMP.

 
 
 



• Error tolerance levels as 0.1%, 0.2% or 0.3%.

• Low frequency DPOAE responses present or absent during training.

If all combinations of variables were run, the number of possible experiments would

be 1728 possible combinations. All 1728 were run to determine the optimal set of

DPOAE and ANN parameters for the prediction of PITs. An additional 24

experiments were run: 12 in the "scenario five method" described in 4.8.1.6 "Number

of ears or data in every output category to be predicted" to investigate the effect that

the number of ears in each category has on prediction accuracy ofPTTs. The other 12

were run with the same PIT input distribution as the previous study (De Waal, 1998)

described in 4.8.1.7 "Number of PTTs in every input category for ANN training" to

make comparisons between the two studies possible. That brings the total number of

experiments to 1752. Each experiment took 80 minutes to run. 94 days were needed

for neural network training and prediction. This process was done in parallel on three

600 MHz Pentiums. A third of the experiments were run on each computer to save

time. It therefore took four and a half weeks for training and prediction of the four

pure tone threshold frequencies.

The c++ program that fetched every data file and presented it to the neural network

for training was called EXP 2 RES: (experiments to results) and the c++ code for this

program can be viewed on the accompanied CD.

For the training of the neural network, both ears of a subject were left out to prevent

contamination of data due to the inclusion of a related ear. The three-layered

 
 
 



backpropagation neural network by Rao and Rao (1995) was used (software was

supplied in addition to their book).

At the end of the four and a half weeks, the output data consisted of 1752 predictions

of a pure tone threshold at a certain frequency depicted as different values in all of the

eight possible 10-dB categories. The 10 dB categories were presented in Table 4.6.

An example of the raw output file of the network's predictions is presented in Table

4.10.

 
 
 



ok_73

ok_51

ok_55

ok_l08

ok_88

ok_54

ok_77

ok_62

ok_70

ok_79

ok_57

ok_72

ok_61

ok_l26

ok_78

ok_57

ok_68

okJ,()

ok_63

ok_64

ok_80

ok_79

ok_63

ok_90

ok_81

ok_90

ok_75

ok_72

ok_64

ok_75

ok_77

ok_58

ok_69

ok_76

ok_64

ok_l03

 
 
 



In order to determine which category the PIT was predicted, the category with the

highest value were chosen. The program that performed this task was called RES 2

ANA (results to analysis) and the C++ code for this program can be viewed on the

accompanied CD.

The second function of RES 2 ANA was to determine how many predictions were

accurate (within the same 10 dB category), how many were one 10 dB category out

and how many predictions were wrong (more than one 10 dB category out). These

calculations were made for each of the 10 dB categories as well as for the overall

prediction ability of the network across all categories for that specific frequency.

False positive and false negative predictions were calculated for each category.

Another calculation made by RES 2 ANA was to determine how accurately normal

hearing (0 - 25 dB) was predicted as normal, and also how accurately very good

hearing (spanning 0 - 15 dB) was predicted as normal (within 0 - 25 dB). An

example of how the data looked after this step can be seen in Table 4.11. The reason

why category eight has no information is because maximum hearing loss at 500 Hz

was 65 dB HL and falls in category seven. Category eight was created for 4000 Hz:

Nine ears exhibited a PTT of larger than 65dB HL at 4000 Hz. There were therefore

no data in category eight at 500, 1000 and 2000 Hz.

The last function of RES 2 ANA was to create a file that was compatible with

Microsoft Excel 2000's spreadsheet to be able to use Excel to manipulate data and

make visual representations of results.

 
 
 



Experiment 62308

AI = 10, LF, Mid = 200, Err = 0.002, Th = 1 dB, Hz = 500, ALT AMP**

category Correct One category out Wrong False False negative
positive

prediction prediction

C1 35/42 83.3% 4/42 9.5% 3/42 7.1% 2% 0%

C2 8/31 25.8% 17/31 54.8% 5/31 16.1% 8% 0%

C3 1/16 6.3% 10/16 62.5% 5/16 31.3% 0% 9%

C4 2/12 16.7% 2/12 16.7% 8/12 66.7% 0% 5%

C5 0/9 0% 1/9 11.1% 8/9 88.9% 0% 4%

C6 0/7 0% 0/7 0% 7/7 100% 0% 1%

C7 0/3 0% 0/3 0% 3/3 100% 0% 1%

C8 0/0 0% 0/0 0% 0/0 0% 0% 0%

Overall correct prediction for all categories 46/120 38%

OveralI one category out for all categories 34/120 28%

Overall wrong predictions 40/120 33%

0-10 dB predicted as normal (0 - 20 dB) 39/42 92%

0- 20 dB predicted as normal (0 - 20 dB) 60/73 82%

AI
LF
Mid
Err
Th
Hz
ALTAMP

= Age increment represented as 10 or 5 year categories
= Low frequencies present, No LF = Low frequencies absent
= number of middle level neurons
= Error tolerance level
= Threshold specified as 1,2 or 3 dB above noise floor
= Frequency to be predicted
= method of amplitude presentation

 
 
 



categorical value. Four different networks were trained for the four prediction

frequencies 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz. Data analysis consisted of

analyzing the actual and predicted values of all 120 ears and to determine how many

were predicted accurately, how many within one 10 dB class and how many were

predicted incorrectly. Data was further manipulated in Excel for Windows 2000 to

create visual representations.

There are numerous variables that influenced the outcome of this research project. It

is quite possible that different DPOAE settings such as other frequency ratios or

different loudness levels could reveal different results (Cacace et al. 1996). It is also

possible that a different type of neural network or a network with a different topology

could affect the results significantly (Nelson & Illingworth, 1991). It was attempted to

specify all the stimulus variables that could have an effect on the outcome of this

research project in great detail in the preceding chapters.
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