THE INFLUENCE OF ORTHODONTIC
BRACKET BASE DIAMETER AND MESH
SIZE ON BOND STRENGTH

By:

MARCEL CUCU
DDS (Göteborg, Sweden)

Submitted in partial fulfillment of the
requirements for the degree of

MASTER IN DENTISTRY (ORTHODONTICS)

at the
Department of Orthodontics
in the
Faculty of Dentistry
of the
University of Pretoria
Pretoria
Republic of South Africa

November 1999
THE INFLUENCE OF ORTHODONTIC BRACKET BASE DIAMETER AND MESH SIZE ON BOND STRENGTH

By:
MARCEL CUCU
REGISTRAR
DEPARTMENT OF ORTHODONTICS
UNIVERSITY OF PRETORIA
REPUBLIC OF SOUTH AFRICA

LEADER: Professor C H Driessen
BChD(Hons), MSc(Odont), PhD(Pret)
Associate Professor, Department of Restorative Dentistry
University of Pretoria

CO-LEADER: Doctor P D Ferreira
BChD, MChD(Pret)
Consultant, Department of Orthodontics
University of Pretoria
STATEMENT BY THE CANDIDATE

1, Marcel Cucu, hereby declare that the work on which this dissertation is based, is my own work and has not been presented for any other or similar degree at another university.

The work reported in the dissertation was performed in the Department of Orthodontics, Faculty of Dentistry, University of Pretoria, Pretoria, Republic of South Africa.

All opinions or statements expressed in this dissertation do not necessarily reflect that of the University of Pretoria, the supervisor of the dissertation or the external examiners.

Signed:

Marcel Cucu
Registrar
Department of Orthodontics, University of Pretoria
Pretoria
Republic of South Africa
Date: 15 November 1999
SUMMARY

The directly bonded bracket is the most widely used orthodontic appliance. Previous studies have shown that the size of the foil mesh and surface area of the bracket base has a correlation with bond strength. The purpose of this study was to investigate the in vitro shear bond strength (SBS) of orthodontic brackets with 80 and 100 gauge mesh bases as well as mini and standard size bases.

Eighty discarded human premolar teeth were randomly allocated into four groups of 20 teeth each. Premolar brackets (Ormco Corp., Glendora, California, USA and A Company, Amersfort, the Netherlands) of different mesh and bracket base area sizes were allocated to each of the four groups. Prior to bonding with a conventional ‘two paste’ orthodontic bonding agent (Concise, 3M Corp., Dental Products Division, St. Paul, Minnesota, USA), the enamel surface was etched with 37% phosphoric acid for 60 seconds, rinsed and dried. The SBS was determined using the Bencor Multi-T testing device (Danville Engineering Inc., San Ramon, California, USA) in a Zwick (Zwick GmbH & Co, Ulm, Germany) Universal Testing Machine with a load cell of 10kN and a crosshead speed of 0.5 mm/min. The bond failure sites were assessed visually under a light-optical microscope (Nikon SM2-10, Tokyo, Japan) as well as in the scanning electron microscope (JEOL, JSM 840, Tokyo, Japan). A one way ANOVA and an unpaired t-test were used to determine if the differences were significant at the 0.05 level.

The mean SBS were 9.97±2.94MPa and 10.72±2.54MPa for 80 gauge mini and standard size respectively, and 10.45±3.27MPa and 11.39±3.32MPa for 100 gauge mini and standard size.

The findings revealed that the SBS of the 80 gauge mini and standard size brackets were not significantly different (p<0.05) than for the 100 gauge mini and standard size brackets. There was also no significant difference (p<0.05) between brackets with the same surface area size, but of a different gauge.
mesh size. Bond failure occurred in all groups primarily at the bracket/adhesive interface. There was no statistically significant difference ($p<1.00$) at failure sites between the four groups when employing the Kruskal-Wallis test.
Aanhegtings wat direk op die tand geplaas word is die mees algemene ortodontiese apparaat in gebruik. Vorige studies het getoon dat die grootte van die bladmetaal maas en oppervlakte van die basis van die aanhegting korrelasies toon met bindsterkte. Die doel van hierdie studie was om die *in vitro* skeurbindsterkte (SBS) van ortodontiese aanhegtings met onderskeidelik 80 en 100 fynheidsgraad maas basisse, sowel as mini en standaard grootte basisse, te ondersoek.

Tagtig menslike premolaar tande is luikraak in vier groepe van 20 elk verdeel. Aanhegtings met verskillende maas en aanhegting basis groottes is aan elk van die 4 groepe toegesê.

Voor bondering van die aanhegtings met 'n konvensionele "twee-pasta" ortodontiese bindingshars (*Concise, 3M Corp., Dental Products Division, St. Paul, Minnesota, VSA*) is die glasuur oppervlak geët met 37% fosforsuur vir 60 sekondes, afgespoel en drooggeblaas.

Die Bencor Multi-T toestel (*Danville Engineering Inc., San Ramon, Kalifornië, VSA*) in 'n Zwick (*Zwick GmbH & Co, Ulm, Duitsland*) toets-apparaat met 'n lading van 10kN en 'n breeksped van 0.5mm/min is gebruik om die SBS te bepaal. Beide die glasuur oppervlak en die basis van die aanhegtings is hierna onder die lig-optiese mikroskoop (*Nikon SM2-10, Tokyo, Japan*) en die skandeer elektron mikroskoop (*JEOL, JSM 840, Tokyo, Japan*) geëvalueer. 'n ANOVA en ongepaarde t-toets is gebruik om te bepaal of die verskille beduidend is op die 0.05 vlak.

Die gemiddelde SBS was 9.97±2.94MPa en 10.72±2.52MPa vir 80 fynheidsgraad mini en standaard grootte onderskeidelik, en 10.45±3.27MPa en 11.39±3.32MPa vir 100 fynheidsgraad mini en standaard groottes.
Die bevindings het getoon dat die SBS van die 80 fynheidsgraad mini en standaard grootte aanhegtings nie beduidend verskil (p<0.05) van die 100 fynheidsgraad mini en standaard grootte aanhegtings. Verder is ook gevind dat daar geen beduidende verskil (p<0.05) was tussen aanhegtings met dieselfde grootte basis oppervlakte maar verskillende groottes van die maaas fynheidsgraad.

Bindingsfraktuur het in al vier die groepe primêr tussen die aanhegting en bindingshars plaasgevind. Kruskal-Wallis ontleiding het verder bevestig dat daar geen statisties-betekenisvolle (p<1.00) verskil bestaan tussen die areas van debondering van die vier groepe nie.
DEDICATION

To my wonderful parents Magdalena and Vasile, who gave me an excess of love, high morals and guidance in every way.
My lovely, supportive sister Beatrice, who has always believed in me, and "knew" why I had to come to South Africa.
And most of all, I dedicate this to my fantastic wife Leoné, who constantly supported me with her smile and never-ending love, thus showing me to work, love and live in the glory of GOD.
ACKNOWLEDGMENTS

My sincere thanks and appreciation to:

- Professor Cornel H Driessen, Department of Restorative Dentistry, University of Pretoria, my project supervisor, for invaluable advice, encouragement and always "an open door".

- Professor Fanie Botha and Dr Francien Botha, Centre of Stomatological Research, University of Pretoria, for their help and guidance with the *in vitro* testing, practical help with the IADR (RSA)-1999 presentation and general support.

- Dr Pierre D Ferreira, Department of Orthodontics, University of Pretoria, my project co-supervisor, for "sound orthodontic point of views", his help and advice. Pierre, you're a great consultant!

- Mr Chris van der Merwe and Mr André Botha, Laboratory for Electron Microscopy and Micro-analysis, University of Pretoria, for their assistance with the Scanning Electron Microscopy.

- Professor Piet J Germishuys, Department of Periodontology and Oral Medicine, University of Pretoria, for his expert assistance with the statistical analyses.

- Reinor (Bloemfontein), and particularly Sareze Reinach, for the generous gesture to donate the orthodontic attachments used in this project. Thanks "cousin" for always being so positive!
• 3M(SA) (Dental Products Division, Johannesburg), and Kim Cave, for her nice nominal action to donate the bonding resin used for this research project.

• Henriette Rothmann and Kobus van der Merwe, Department of Audiovisuals, University of Pretoria, for photographic assistance and diagrams.

• Ronnie du Plessis, Waterkloof, Pretoria and Frans Swanepoel, Kempton Park, Johannesburg, for the help of collecting the extracted teeth and being such good friends.

• And the greatest THANK YOU to Cobus Coetzee and Ashraf Laher for being such great colleagues and friends. Your help and friendship during the four years will always be one of my most deeply valued memories from South Africa! Stay positive, flexible and in constant good moods!

"All for one and one for all!"
CONTENTS

TITe PAGe i
RESEArCHER And SUPERVISor ii
DEClARATION iii
SUMMARY iv-v
OPSOMMING vi-vii
DEDICATION viii
ACKNOWLEDGEMENTS ix-x
CONTENTS xi-xiii
LIST OF FIGURES xiv-xv
LIST OF TABLES xvi

CHAPTER 1
INTRODUCTION
1.1 FOREWORD 2-6
1.2 PURPOSE OF THE STUDY 6
1.3 MOTIVATION FOR THE STUDY 7
1.4 RESEARCH HYPOTHESIS 7
CHAPTER 2
LITERATURE REVIEW
2.1 ORTHODONTIC BONDING 9-35
2.1.1 Enamel pretreatment 9-15
2.1.2 Historical background of orthodontic bonding 16-17
2.1.3 Types of adhesives 18-27
2.1.4 Brackets 28-31
2.1.5 Bond strength in orthodontics 32-33
2.1.6 Bond failure in orthodontics 34-35

CHAPTER 3
MATERIALS AND METHODS
3.1 MATERIALS USED IN THIS STUDY 37-40
3.1.1 Concise orthodontic bonding system 37-39
3.1.2 Premolar brackets 39-40
3.2 EXPERIMENTAL PROCEDURE 41-48
3.2.1 Specimen collection and storage 41
3.2.2 Specimen preparation for bonding 41-42
3.2.3 Bonding procedure 42-43
3.2.4 Specimen embedding 43-44
3.2.5 Preparation of teeth for SBS 45-46
3.2.6 Evaluation of fracture sites 47
3.2.7 Preparation of SEM specimens 47
3.2.8 Statistical analysis of the data 48

CHAPTER 4
RESULTS
4.1 SHEAR BOND STRENGTHS (SBS) 50-53
4.2 ADHESIVE REMNANT INDEX (ARI) SCORES 54-56
4.3 SCANNING ELECTRON MICROSCOPY EVALUATION 57-58
CHAPTER 5

DISCUSSION

5.1 SHEAR BOND STRENGTHS 60-66
5.2 ADHESIVE REMNANT INDEX (ARI) SCORES 67-70

CHAPTER 6

CONCLUSIONS

6.1 CONCLUSIONS 72-73

REFERENCES 74-96
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bonding of orthodontic attachments has become contemporary practice in clinical orthodontics</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>The Concise orthodontic bonding system consists of an acid etching liquid, a resin A and B, and a paste A and B</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>Brackets (viewed from slot side) depicting group 1-4</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>Brackets (viewed from mesh side) depicting group 1-4</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>The tooth crowns with their bonded brackets were embedded in the specimen holder rings (SHR) of the Bencor Multi-T (BM-T) system (Danville Engineering Inc., San Ramon, California, USA)</td>
<td>44</td>
</tr>
<tr>
<td>6</td>
<td>The tooth crowns with their bonded brackets were embedded in the specimen holder rings (SHR) of the Bencor Multi-T (BM-T) system (Danville Engineering Inc., San Ramon, California, USA) (perpendicular view)</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>The Bencor Multi-T testing device with a mounted specimen for SBS testing in the Zwick Universal Testing Machine (Model 2010/TND, Zwick GmbH & Co., Ulm, Germany)</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>The SBS components of the Bencor Multi-T system contains a knife-edge guillotine for standardised positioning during force application on the bracket</td>
<td>46</td>
</tr>
<tr>
<td>9</td>
<td>Mean SBS (MPa), minimum values (MPa) and maximum values (MPa) for the four groups of brackets, presented as bar diagrams</td>
<td>52</td>
</tr>
</tbody>
</table>
Figure 10: Adhesive Remnant Index (ARI) scores for 80 gauge brackets 55

Figure 11: Adhesive Remnant Index (ARI) scores For 100 gauge brackets 55

Figure 12: After debonding, the bracket base remained relatively clean, although a small amount of resin can be seen on the top of the bracket (original magnification x27) 57

Figure 13: After debonding, the enamel surface shows that most of the resin remained on the tooth. The mesh markings can be clearly seen (original magnification x27) 57

Figure 14: Even though most of the resin remained on the tooth, a substantial amount can be seen remaining in the mesh (original magnification x150) 58

Figure 15: The mesh markings on the enamel surface shown under higher magnification (original magnification x 200) 58
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Bonding material</td>
<td>37</td>
</tr>
<tr>
<td>Table 2</td>
<td>Orthodontic brackets used</td>
<td>39</td>
</tr>
<tr>
<td>Table 3</td>
<td>Mean SBS (MPa), standard deviation (MPa), minimum values (MPa), maximum values (MPa) and coefficient of variation (CV) for the four groups</td>
<td>51</td>
</tr>
<tr>
<td>Table 4</td>
<td>Comparison of SBS values between the different groups by means of the ANOVA test</td>
<td>53</td>
</tr>
<tr>
<td>Table 5</td>
<td>Adhesive Remnant Index (ARI) scores presented after debonding the different bracket types</td>
<td>54</td>
</tr>
</tbody>
</table>