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CHAPTER V  - STATIC FRACTURE ANALYSIS OF CONCRETE STRUCTURES 

 

5.1 Introduction 

 

In Chapter IV, the implementation of the crack model (subprogram) on simple 

pure-tension specimens was preliminarily validated. These pure-tension members are only 

subject to the mode I fracture response and the directions of crack propagation are fixed 

and a priori known. Thus a fixed, single-crack model can be accurately employed to 

simulate the fracture behaviour. The validation exercise is extended in this chapter to 

mode I and mixed-mode fracture simulation of more complicated concrete structures, such 

as a three-point, single-notched, centrally loaded beam and a four-point, single-notched 

shear beam.  

 

A three-point, single-notched, centrally loaded beam is first adopted to benchmark the 

proposed bilinear mode I tensile softening diagram and the related numerical 

implementation. The specimen is mode I dominant because no shear fracture deformation 

would occur in this specimen due to the symmetry of the geometry and the loading 

conditions. Therefore, a fixed, single-crack model is sufficient to simulate the fracture 

process in such a specimen.  

 

A well-investigated, single-notched shear beam under four-point, mixed-mode static 

loading conditions is further used to validate the crack model adopted with study of the 

fracture parameters. 

 

Mesh objectivity is definitely both a requirement and a necessity for any crack model 

proposed for finite element (FE) fracture analysis in any sensible fracture evaluation of 

concrete structures. For this reason, three differently meshed FE models of the same 

geometry were considered to test the objectivity regarding the mesh discretization of the 

crack model adopted and the numerical technique developed. 

 

All the models of the following three verification problems employ plane stress, and are 

four-noded and four-Gauss point isoparametric elements, with the exception of the 

second-order, eight-noded nine-Gauss point isoparametric elements used in case 3 for the 
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validation of the crack models and the implementation on second-order elements. 

A modified Newton-Raphson solution procedure is adopted. 

 

5.2 Case 1: three-point, centre-loaded, single-notched beam  

 

A symmetrical centre-notched concrete beam under three-point bending (two supports and 

a midpoint load) is used to validate the implementation of the cracking model with a 

parametric study. The beam has a length of 838 mm, a span of 788 mm and a cross-section 

of 102 mm x 102 mm. The notch:depth ratio (a/d) is 0.5. Malvar & Fourney (1990) carried 

out 12 experimental tests and also a numerical simulation on the beam.  

 

The beam is symmetrical along its centreline so that only half the beam (as modeled by 

Malvar & Fourney 1990) needs to be modelled in the FE analysis, as shown in Figure 5.1. 

The material properties used are as follows: 

 

 
Linear, bilinear and non-linear exponential strain-softening branches are used to 

investigate the cracking behaviour of the beam, as shown in Figure 5.2. This symmetrical 

specimen is not sensitive to shear softening since the crack propagates along the centre of 

the beam. No shear deformation would occur in the crack formation zone. Numerical 

studies are compared with the experimental results from Malvar & Fourney (1990), as 

shown in Figure 5.3.  

 

Cornelissen et al. (1986) conducted a series of tests to determine the crack-softening 

characteristics of normal-weight concrete and proposed an empirical formula obtained by 

curve fitting the test data: 

 

)(3
1

0

)(
3

0
1

20
2

)1()(1 C
C

t

eCeC
f

−
−

+−⎥
⎦

⎤
⎢
⎣

⎡
+=

δ
δ

δ
δσ δ

δ

                      (5.1) 

Young’s modulus E = 21 700 MPa;   Tensile strength ft = 3.1 MPa  

Poisson’s ratio υ = 0.2;            Fracture energy Gf = 0.0763 N/mm  

Crack characteristic length hc = 10 mm (width of element at the crack) 
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Where C1 = 3, C2 = 6.93, δ  is the crack opening and 0δ  is the crack opening at which the 

crack stress can no longer be transferred. This stress-crack opening relationship in 

equation (5.1) is transformed into a crack stress-strain law for this study, as shown in 

Figure 5.2. 

 

As shown in Figure 5.3, the calculated linear softening response (labelled as LS) yields the 

highest peak loading of all the softening relationships. This indicates that if linear 

softening is assumed when concrete fracture is modelled, then the resistance of the 

structure will be overestimated. The calculated non-linear softening response based on the 

experimental softening relationship derived by Cornelissen et al. (1986) (labelled as CS), 

yields the closest load-displacement relationship to the experimental results.   

 

The bilinear softening models (labelled as BLS) improve the response significantly when 

compared with the linear softening model. Therefore, the bilinear softening model is able 

to provide a reasonably accurate prediction of the cracking response, while remaining 

relatively simple to implement. The investigation demonstrates the importance of adopting 

bilinear softening analysis in concrete structures, instead of the general application of 

linear softening in concrete cracking analysis used in the past. Although Cornelissen et 

al.’s exponential non-linear softening relationship remains the most accurate, it requires 

greater effort to implement in an FE analysis compared with the simpler bilinear softening 

model. 

 

A series of constitutive parameters for bilinear softening curves was investigated for the 

purpose of calibrating the correct range of shape parameters 1α  and 2α  for concrete 

structures.  

 

A parameter study was conducted to determine the bilinear softening model parameters 

1α  and 2α  that best fit the experimental response. The results of the parameter study are 

shown in Figures 5.2 to 5.7, in which it can be seen that by setting the bilinear shape 

parameters 1α  to between 1/3 and 0.44 and 2α  to 0.1 respectively, good agreement with 

the experimental results can be obtained. 
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By selecting 2α  as constant and equal to 0.1, and setting 1α  to 0.25, 1/3 and 0.44, it can 

be seen that the first part of the bilinear softening modulus becomes steeper as 1α  

increases (see Figure 5.2), while the predicted response improves when compared with the 

experimental results (Figure 5.3). 

 

From Figures 5.5 and 5.7, in which 1α  is fixed at 0.25 and 1/3 respectively (see Figures 

5.4 and 5.6), while 2α  is varied from 0.1 to 0.3, it can be seen that as 2α  decreases from 

0.3 to 0.1, the first part of the bilinear softening modulus becomes steeper and the second 

part of the bilinear softening branch becomes flattener (see Figures 5.4 and 5.6), while the 

predicted response improves. It is concluded that the first part of the bilinear softening 

modulus is of greater importance than the second part, although it is the combination of 

the bilinear shape parameters 1α  and 2α  that determines the complete softening 

response. It is important to note that the particular values of 1α  and 2α  would depend on 

the concrete mix of the particular structure and need to be carefully determined 

experimentally. 

 

Compared with the numerical investigation by Malvar & Fourney (1990), this study has 

produced a better simulation of the experiment results. 

 

It is evident that the cracking model and the calculation procedure can accurately predict 

the cracking behaviour of concrete, provided a suitable softening response is adopted. 
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Figure 5.1 - Finite element model (Case 1) 

Figure 5.2 - Linear, bilinear and non-linear strain softening 
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Figure 5.4 - Bilinear strain softening with 1α  = 0.25 and 2α = 0.1, 0.2 and 0.3 

Figure 5.3 - Load-load point deflection for strain-softening branches in Figure 5.2 
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Figure 5.6 - Bilinear strain softening with 1α  = 1/3  and 2α = 0.1, 0.2 and 0.3 

respectively  

Figure 5.5 - Load-load point deflection for strain-softening branches in Figure 5.4 
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5.3 Case 2: single-notched shear beam  

 

A single centre-notched shear beam, loaded at points A and B and supported at two points 

at the bottom, is shown in Figure 5.8. The generality and accuracy of the crack model and 

the code developed are to be investigated. The beam has been tested experimentally by 

Arrea & Ingraffea (1981) and is widely used as a benchmark for numerical fracture 

analysis models (Rots & de Borst 1987; Bhattacharjee & Leger 1994). 

 

The FE model is shown in Figure 5.8 and the material properties and constitutive 

parameters are as follows.  

 

 

Young’s modulus E = 24 800 MPa;   Tensile strength ft = 2.8 MPa  

Poisson’s ratio υ = 0.18;           Fracture energy Gf = 0.1 N/mm 

Thickness of the beam = 156 mm     Bilinear shape parameters 1α  = 1/3 and 2α  =0.2 

Crack characteristic length hc = 13.5 mm 

Figure 5.7 - Load-load point deflection for strain-softening branches in Figure 5.6 
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During laboratory testing the load was applied to the specimen by means of a stiff steel 

beam, ACB. Since the steel beam is statically determinate, the ratio between its reactions 

at A and B (acting on the concrete beam) and the applied load can be easily determined. 

The load in this study was therefore applied directly to the concrete beam at A and B, 

using the same ratios as in the laboratory test. The crack opening is measured as a crack 

mouth sliding displacement (CMSD) and a crack mouth opening displacement (CMOD), 

as defined in Figure 5.13.  

 

Snap-back behaviour has been modelled numerically by several researchers (Rots & 

Blaauwendraad 1989; Rots & de Borst 1987; Bhattacharjee & Leger 1994), using an 

indirect displacement control strategy with the CMSD as controlling parameter. Due to the 

limitations in the FE package, which lacks the mechanism for an indirect displacement 

control solution, the author had to resort to a manual solution procedure. A peak load was 

firstly obtained by identifying the load beyond which the beam experienced unstable 

cracking and the solution was unable to converge. Subsequently, manual unloading 

beyond the peak load is achieved by defining the unloading path. It should be noted that 

the CMSD response of the beam is sensitive to the unloading path, which explains why 

CMSD was adopted to control the applied load directly or indirectly in the experimental 

and numerical investigations carried out by other researchers. 

 

Three solutions are presented: two linear softening models (labelled as LS) with β = 0.05 

and 0.1 respectively, and one bilinear softening model with β = 0.05 (labelled as BLS). 

A comparison with the experimental results for the load – CMSD response is shown in 

Figure 5.9. In the post-peak regime, the results of the linear softening model with β = 0.1 

fall outside the range of the experimental results, producing a less accurate post-peak 

response than the other two solutions. The results of the bilinear softening model are well 

within the experimental scattering range and show a significant improvement over the 

linear softening solutions. It is also observed that the CMSD response is very sensitive to 

the shear-softening parameters selected for this specimen due to the mixed-mode fracture. 

The numerical results agree well with the results of other researchers. 

 

The load–crack mouth opening displacement (CMOD) response obtained in this study, 

together with the results from Rots & de Borst (1987) (labelled as R&D 1987), are shown 
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in Figure 5.11. It must be noted that a mode I fracture energy of 0.1 N/mm is used in this 

investigation (for the purpose of comparison with other investigations) whereas a fracture 

energy of 0.075 N/mm was adopted by Rots & de Borst (1987). Most past investigations 

have adopted a mode I fracture energy of 0.1 N/mm such as Bhattacharjee & Leger (1994) 

and Rots & Blaauwendraad (1989) and others. For comparison with the results from the 

more available past investigations (mainly to compare with the work done by 

Bhattacharjee & Leger 1994), a mode I fracture energy of 0.1 N/mm was also adopted in 

this research. This is the main reason for the post-peak CMOD response of this 

investigation being slightly higher than those from Rots & de Borst (1987). In general, 

however, good agreement has been achieved. 

 

As pointed out by Rots & de Borst (1987), the beam responded in both mode I and II 

fracture propagations, with mode I being the main fracture mechanism in this application. 

This is confirmed by the ultimate CMOD response being approximately twice the 

corresponding CMSD response. 

 

The load-vertical displacement response at point C obtained in this study for the three 

cases mentioned above, together with the results from Rots & Blaauwendraad (1989) 

(labelled as R&B 1989) and Bhattacharjee & Leger (1994) (labelled as B&L 1994), are 

shown in Figure 5.10. The deflection at point C is obtained from the deflections at points 

A and B by assuming that the steel beam ACB used in the experimental test was infinitely 

stiff. Good agreement with the results obtained by Rots & Blaauwendraad (1989) and 

Bhattacharjee & Leger (1994) is exhibited for the snap-back behaviour. A mode I fracture 

energy of 0.1 N/mm was selected in the latter two references (Rots & Blaauwendraad 

1989; Bhattacharjee & Leger 1994).  

 

The final crack zone and the deformed shape of the beam are shown in Figures 5.12 and 

5.13. Figure 5.12 demonstrates that there is some discrepancy between the smeared cracks 

and the crack profile observed in the test. As shown in Figures 5.9 to 5.11, the post-peak 

structural resistance does not reduce to zero, indicating that stress-locking (which is 

inherent in smeared crack models) is present. This phenomenon was also observed in the 

other investigations using smeared crack models (Rots & Blaauwendraad 1989; 

Bhattacharjee & Leger 1994). 
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Figure 5.8 - Finite element model (Case 2) 

Figure 5.9 - Load – CMSD 
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Figure 5.10 - Snap-back in load – deflection at point C  

Figure 5.11 - Load – CMOD 
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Figure 5.12 - Crack profiles 

Figure 5.13 - Predicted deformation 
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5.4 Case 3: mesh objectivity and second-order elements validation  

 

A single-notched, three-point loaded beam is used to validate the mesh objectivity of the 

FE analysis of concrete fracture and the use of second-order elements for the 

implementation of the cracking model. This specimen was tested experimentally by 

Bažant & Pfeiffer (1987) and numerically investigated by Bhattacharjee & Leger (1993). 

 

The material properties are adopted from Bhattacharjee & Leger (1993) and are listed 

below. The specimen is shown in Figure 5.14. Linear strain softening is selected for 

comparison purposes. Shear softening does not influence the peak load in this specific 

application in which mode I fracture propagation is dominant. 

 

 
The crack characteristic length hc is dependent on the size of the elements at the crack in 

the different FE models used. 

 

Three FE models with 6, 12 and 24 elements through the depth of the beam are created for 

the mesh objectivity study, as shown in Figures 5.15 to 5.17 (namely model 1). The three 

FE models in Figures 5.15 to 5.17 are also modelled by the eight-noded, second-order 

elements with full integration for the purpose of verifying the crack models implemented 

with high-order elements. 

 

The loads 0P  required to cause a crack-tip tensile stress equal to the tensile strength tf  are 

determined using elastic bending theory and are given in Table 5.1 for the three FE 

models. The peak loading resistances uP  from the analyses for each of the three FE 

models are also shown in Table 5.1. Figure 5.18 compares the experimental results, the 

conventional elasto-brittle strength-based fracture analysis (labelled as SBM) and the 

numerical analysis done by Bhattacharjee and Leger (1993) (labelled as B&L 1993), by 

plotting the 
0P

Pu  ratio versus the mesh fineness. Also shown in Figure 5.18 are the results 

Young’s modulus E = 27 413 MPa;   Tensile strength ft = 2.886 MPa  

Poisson’s ratio υ = 0.18;           Fracture energy  Gf = 0.04029 N/mm 

Thickness of beam = 38.1 mm;      Depth of beam d = 304.8 mm 

 
 
 



139 

  

from this research (labelled as LS), which appear to be mesh objective since the fineness 

of the mesh has practically no influence on the predicted response, unlike the SBM 

analyses. The difference in results between the strain-softening models and the 

experimental findings, as explained by Bhattacharjee and Leger (1993), stems from the 

fact that the constitutive model parameters had to be assumed since they were not 

available from the experimental results. 

 

The peak loading resistance uP from the analyses of the three FE models of the second-

order elements and the related 
0P

Pu  ratio are shown in Table 5.2. 

 

The results from the first-order element models and the second-order element models for 

the three different mesh finenesses in Figures 5.15 to 5.17 are compared in Figure 5.19. It 

is clear that the analyses based on the implemented crack models are objective with regard 

to the different order elements used. 

 

 

 

Mesh fineness (number of elements 

through the depth) 
0P  

(kN) 

uP  

(kN) 0P
Pu  

Coarse mesh – 6 elements 6.65 7.304 1.098 

Medium mesh – 12 elements 6.42 7.064 1.100 

Fine mesh – 24 elements 6.31 6.936 1.099 

 

TABLE 5.1 - Loads from elastic bending theory and FE analyses for different mesh 

 finenesses – first-order elements
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Mesh fineness (number of elements

through the depth) 
0P  

(kN) 

uP  

(kN) 0P
Pu  

Coarse mesh – 6 elements 6.65 7.330 1.102 

Medium mesh – 12 elements 6.42 7.036 1.096 

Fine mesh – 24 elements 6.31 6.860 1.087 
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Figure 5.14 - Geometric configurations and boundary conditions  

TABLE 5.2 - Loads from elastic bending theory and FE analyses for different mesh

 finenesses – second-order elements 
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Figure 5.15 - Coarse model 1 – 6 elements in depth

Figure 5.16 - Medium model 1 – 12 elements in depth 
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Figure 5.17 - Fine model 1 – 24 elements in depth 

Figure 5.18 - Comparison of mesh objectivity (models 1) 
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The above mesh objectivity verification analyses have the following limitations: 

 

• The width of the notch in the three meshes is not fixed but varies with the element 

size used in the mesh. 

• The loadings in the three mesh models are not applied at the same distance to the 

centreline of the models, but vary with the element size used. 

 

Therefore, a further mesh objectivity study was carried out to eliminate the above-

mentioned limitations. The following three mesh models (namely model 2) (see Figures 

5.20 to 5.22) are created in this study based on the same beam configurations. All the 

material properties and boundary conditions are the same as above. The only difference 

between these three mesh models (Figures 5.20 to 5.22) and those in the previous mesh 

objectivity study (Figures 5.15 to 5.17) is that the position of the loadings and the width of 

the notches are kept the same in order to achieve the aim of this mesh objectivity 

verification.   

 

Figure 5.19 - Comparison of element objectivity (models 1) 
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Figure 5.20 - Coarse model 2 – 6 elements in depth 

Figure 5.21 - Medium model 2 – 12 elements in depth  
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The results of the analyses are shown in Figure 5.23 in which it can be seen that the crack 

analysis method and procedures developed can be regarded as mesh objective. Different 

meshes only result in a maximum discrepancy of approximately 7% in the result of the 

0P
Pu  ratio. 

 

It can be concluded from the verification studies on mesh objectivity that the proposed 

crack model and the numerical technique developed achieve the goal of mesh objectivity.   

 

 

 

Figure 5.22 - Fine model 2 – 24 elements in depth  

 
 
 



146 

  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

6 12 18 24
Mesh fineness (elements in depth)

Pu
/P

o

Experiment Linear softening
 

 

 

5.5 Conclusion 

 

In this chapter, a comprehensive study on the versatility and accuracy of implementation 

of the proposed smeared crack FE model, based on non-linear fracture mechanics for 

concrete structures, has been carried out for the purpose of eventually applying the 

constitutive model in predicting the crack behaviour of concrete dams and in evaluating 

dam safety. 

 

A three-point, single-notched beam was considered for the comparative study on linear, 

bilinear and non-linear experimental curved softening, with experimental load-deflection 

relationships. The parametric bilinear shape study shows that if 1α  and 2α  are set in the 

vicinity of 1/3 and 0.1 respectively, which is a good approximation to the experimental 

non-linear softening curve of Cornelissen et al. (1986), very good numerical results are 

obtained compared with the results of the experiment. It can be concluded that a bilinear 

softening analysis yields significantly better results than the linear softening solutions 

mostly adopted in concrete cracking analysis, and that it can be applied with confidence in 

the fracture analysis of concrete structures. 

Figure 5.23 - Comparison of mesh objectivity  (models 2) 
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Normal and shear stress field prevailingly exists in concrete structures. Therefore, it is 

very important to validate the adopted numerical procedure in mixed mode application. A 

mixed-mode fracturing beam were analysed with the results demonstrating that bilinear 

mode I softening is superior to the linear strain softening. 

 

The mesh and element-order objectivity of the numerical method developed was observed 

in the analysis of a three-point, single-notched beam. 

 

Based on these case studies, the following conclusions are drawn: 

 

• The crack model is valid for both mode I and mixed-mode fracture analysis. 

• The proposed bilinear softening model remains relatively simple to implement, but 

significantly improves the prediction of the softening response. 

• The proposed method is mesh objective and could overcome problems such as 

non-convergence and snap-back. 

• The proposed method is element-order objective. 
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