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CHAPTER IV - NUMERICAL TECHNIQUE AND PROGRAM FOR FINITE ELEMENT 

CONSTITUTIVE CRACKING ANALYSIS 

 

The main purpose of this chapter is to develop a sub-program which is to be incorporated 

into the commercial general-purpose finite element (FE) program – MSC.Marc – and to 

test the sub-program using elementary, simple specimens of both plane stress and plane 

strain elements. The sub-program should have the capacity to simulate the cracking 

process in concrete, using the adopted constitutive relationships of crack softening 

outlined in Chapter III. 

 

Very few general-purpose commercial FE packages can accommodate the non-linear 

cracking analysis of concrete structures. MSC.Marc is an FE program which can model 

concrete cracking with linear post-peak strain softening and a constant shear retention 

factor β. Bilinear or non-linear strain softening, and arbitrary crack-opening-dependent 

reduced shear modulus in the constitutive modelling of concrete cracking are not available 

in this program. However, MSC.Marc allows users to develop and substitute their own 

sub-programs in the package. This feature provides users with a powerful way of solving 

non-standard problems, such as crack simulation in concrete.  The program was available 

for the author to use for this research. 

  

The FE method basically has six steps. The success of any FE program depends partly on 

how the program implements these steps. A description of the FE method (including the 

following six steps) and the algorithm used in MSC.Marc is given in the Annexure. 

 

Step 1: Choose shape functions  

Step 2: Establish material relationship  

Step 3: Compile element matrices  

Step 4: Assemble to form the overall structural stiffness matrix  

Step 5: Solve equations  

Step 6: Recover the stresses and strains. 
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4.1  Program framework for the cracking analysis of concrete  

 

4.1.1  Framework for the implementation of the constitutive model in the FE analysis of concrete 

structures 

 

The flow chart shown in Figure 4.1 illustrates the general FE procedure for the crack 

analysis of concrete structures. 

 
Figure 4.1 - General FE crack analysis procedure for concrete structures 
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4.1.2  Sub-program coded in MSC.Marc to implement the crack constitutive model 
 

Modelling bilinear or non-linear mode I and II softening requires the development and 

programming of a subroutine in MSC.Marc. The lack of advanced fracture-modelling 

capacity in this FE package (and in other generally available FE packages) requires a 

considerable programming effort to implement crack modelling.  

 

A subprogram called HYPELA, incorporated into MSC.Marc, was specially and 

independently developed for this research on the FE modelling of the cracking behaviour 

of concrete structures. The subroutine has the capacity to simulate the cracking process in 

concrete, using the adopted constitutive relationships of crack softening outlined in 

Chapter III.  

 

The cracking analysis starts with the linear elastic stress-strain law. In the subprogram 

HYPELA, the following steps are performed (refer to Figure 4.2 for the flowchart of these 

steps): 

 

Step 1:  Material properties and parameters related to concrete strain softening, such as the 

fracture energy Gf, Young’s modulus E, Poisson’s ratio ν, tensile strength ft, mode I 

softening parameters )/( 21 αα , maximum mode II shear reduced factor βmax, etc. are input 

for a specific crack analysis application. 

 

Step 2:  The utility routine ELMVAR is called to retrieve element data (e.g. stresses σij, 

strains εij) from the MSC.Marc program’s internal data storage. ELMVAR is provided 

with the following information: element post code (icode); element number (m); 

integration point number (nn); layer number (kc) and requested variables (var). 

 

Step 3:  A further subroutine – STRM –was specially coded for this research to be called 

in the subprogram HYPELA in order to calculate the principal stresses and their direction 

cosines from the stress tensor 
⎥
⎥
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In the subroutine STRM, the principal stresses and direction cosines at a Gauss point are 

calculated as follows (refer to Chen 1982): 

 

• Calculate the first invariant of the stress tensor: I1 = σ11 + σ22 + σ33           (4.1) 

 

• Calculate the mean normal stress: 13
1 Im =σ                            (4.2) 

 

• Obtain the stress deviator tensor 
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• Calculate the second invariant of the stress tensor: 
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• Calculate the third invariant of the stress tensor: 
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• Calculate 
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where θ is the angle of similarity. 

 

• Calculate the principal stresses: 
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• Set σ = σ1, solve 
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and 12
1

2
1

2
1 =++ nml ;                                           (4.9) 

 

The Cramer method in matrix algebra is adopted to obtain the direction cosines of the 

first principal stress to the global coordinates l1, m1 and n1. 

 

• Similarly, set σ = σ2 and σ = σ3 to obtain the direction cosines of the second and third 

principal stresses to the global coordinates l2, m2, n2 and l3, m3, n3 respectively.  

 

Step 4:  Check the crack initiation criterion (σ1 ≥ ft) for a Gauss point which has not 

cracked before. Also check new crack conditions for an existing crack at a Gauss point (σ1 

≥ ft, or whether the angle between the previous crack and the present crack at a Gauss 

point is greater than the threshold angle). For a Gauss point that has not cracked before, if 

the crack initiation criterion is met, then the point is assumed to be cracking. Otherwise, 

the point remains linear elastic. For an existing crack point, if either of the conditions is 

met, then a new additional crack is assumed at that point, at an angle to the previous crack.  

 

Step 5:  For the cracking points, using the direction cosines calculated from STRM, form 

the transformation matrix [ ]L21 NNN =  (see equations 3.9, 3.26 and 3.30 in Chapter III 

for 3-D, plane stress and plane strain application respectively) and transform the strains 

from global coordinates to local coordinates. 

 

Step 6:  Check the status of stress and strain at the cracking points to see if the crack is 

still opening, or unloading/reloading, or closing (see Figures 3.9 and 3.10). 

 

Step 7:  According to the different crack statuses, define the mode I stiffness modulus I
iD  

for crack opening, or crack unloading/reloading, or crack closing accordingly in 
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 for the constitutive matrix crD   (refer to equation 3.16 and 

Figures 3.9 and 3.10 in Chapter III). After that, form the constitutive relationship of 

equation 3.22. 

 

Step 8:  Transform the stresses and the stiffness matrix from local coordinates to global 

coordinates. 

 

In the subprogram, the transformation of stresses, strains and the stiffness matrix between 

the global and local coordinate systems is carried out using the following equations (4.13 

to 14.15): 

 

Transformation matrix R, in which l1, l2, l3, m1, m2, m3, n1, n2, n3 are the direction cosines 

of the axes defined in Tables 3-1 and 3-2 in Chapter III, is as follows: 

 

For 3-D analysis: 
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For 2-D plane stress analysis: 
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For 2-D plane strain analysis: 
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{ } [ ]{ }εε R=' ;      { } [ ] { }'1 εε −= R                                   (4.13) 

 

{ } [ ] { }σσ TR −=' ;     { } [ ] { }'σσ TR=                                   (4.14) 

 

[ ] [ ] [ ][ ] 1' −−= RKRK T ;   [ ] [ ] [ ][ ]RKRK T '=                                (4.15) 

 

Where { }'ε is the local strain vector;        { }ε is the global strain vector 

      { }'σ is the local stress vector;       { }σ is the global stress vector 

      [ ]'K is the local constitutive matrix;   [ ]K is the global constitutive matrix. 

 

Step 9:  Return to the main program – MSC.Marc. 

 

 The HYPELA subprogram developed has the overall organization for the coding process 

as shown in Figure 4.2.  

 

4.1.3  Possible numerical implementation problems 

 

In the implementation of the constitutive model, concrete fracture modelling problems 

could be encountered, such as snap-back, non-convergence or hour-glass modes. 

 

‘Snap-back’ behaviour (in which the deflection response decreases after peak-point 

loading) could occur in the strain-softening analysis of concrete structures (Rots & de 

Borst 1987). Normal direct displacement control, installed in general FE programs, was 

demonstrated as being inadequate in modelling this “dramatic” behaviour to get a fully 

converged solution after peak load (de Borst 1986). An indirect displacement control 

technique, developed by de Borst (1986) for snap-back behaviour, has proved to be 

successful. However, this technique could not be implemented in MSC.Marc due to the 
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limitations of the package. In general, the limitations of FE packages require a special 

solution strategy to solve snap-back problems. The implementation of such a solution 

strategy is demonstrated in verification case 2 in Chapter V. 

 

Non-convergence is a problem frequently encountered in highly non-linear analyses. The 

computation process is terminated at the stage where numerical difficulties, which can be 

caused by many factors (such as an ill-conditioned stiffness matrix or unstable crack 

propagation) cannot be overcome. 

 

A further potential problem in modelling the cracking of concrete is ‘hour-glass’ modes, 

which have been reported by several researchers (de Borst 1986; Rots & de Borst 1987). 

These are spurious zero-energy modes that could cause non-convergence by developing a 

singular, or nearly singular, global stiffness matrix. They are often encountered when 

using reduced integration, although full-integration elements are not free from this 

phenomenon. Mixed-mode softening (normal and shear softening) and multiple crack 

simulation are potential factors that could trigger hour-glass modes. 
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Figure 4.2 - Flow chart of the overall organization for coding the sub-program HYPELA  
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To save computer time, two groups of elements could be defined in the FE model: 

(1) elements that are not allowed to crack for the region where cracking under the given 

loadings is unlikely; and (2) elements which could possibly crack. The elements that could 

crack are called by the subprogram HYPELA, developed as explained above. The 

elements that are defined as not cracking are run as normal in MSC.Marc. The flow 

diagram in Figure 4.3 illustrates the implementation position of the subprogram HYPELA 

in the FE process of MSC.Marc. 
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Figure 4.3 - Flow diagram for finite element analysis process in MSC.Marc 
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4.2  Verification study with MSC.Marc and other specimens investigated in the past 

 
For the purpose of verifying the general application of the subroutine developed, it is 

logical to test the subroutine thoroughly on specimens that are fracture-sensitive.  

 

Prior to cracking, concrete is assumed to be linear elastic and isotropic until the maximum 

principal stress exceeds the material’s tensile strength. When this strength-based crack-

initiating criterion is violated, cracks form in the direction perpendicular to the maximum 

principal stress. The strain-softening process starts at those Gauss points by moderating 

the isotropic, linear elastic stress-strain stiffness matrix to the adopted cracking stress-

strain laws that have been selected for this testing purpose.  

 

Four cases – called specimens 1, 2, 3 and 4 using plane stress elements, are verified in this 

section. 

 

4.2.1  Built-in crack model in MSC.Marc for specimens 1 and 2 (with reference to MSC.Marc 

Volume A: Theory and User Information) 

 

MSC.Marc has a built-in cracking model that can be used to handle concrete and other 

low-tension material. The model can predict crack initiation and simulate tension 

softening, plastic yielding and crushing. The cracking model is built on the uniaxial stress-

strain diagram shown in Figure 4.4. 
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Figure 4.4 - Uniaxial stress-strain diagram 

 

In this model, a crack develops in a material perpendicular to the direction of the 

maximum principal stress if the maximum principal stress σ1 in the material exceeds a 

certain value σcr (see Figure 4.4 and Figure 3.1 in Chapter III). Linear tension softening, 

characterized by a descending branch as shown Figure 4.4, is then adopted. The shear 

modulus across the crack is reduced by a constant shear retention factor. This model is by 

nature an orthotropic model, similar to the mode I and II improved Rashid model (smeared 

model 3 in Chapter II). At a material point, a second crack can only form perpendicular to 

the first crack. 

 

An opened crack can close again if the loading is reversed. If crack closing occurs, it is 

assumed that the crack has the capability to carry full compressive stress. 

 
4.2.2  The smeared model adopted for specimens 1 and 2 

 

In Chapter II, all the major crack models are reviewed and elaborated on. The crack model 

adopted for this verification purpose is briefly as follows: 

 

Verification crack model (refer to smeared model 3 in Chapter II for a description of the 

mode). This model is used for verification purposes mainly for two reasons:  
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1. It is similar to the built-in crack model in MSC.Marc and can be used to validate the 

subprogram by comparing the results from the two methods. 

 

2. It has the general capacity to model mode I and II fracturing in concrete. 

 

4.2.3  The smeared crack model adopted for specimens 3 and 4 
 

The non-orthogonal, multi-directional crack models outlined in Chapter III that are 

implemented in the subprogram HYPELA are used to verify specimens 3 and 4 in this 

section.  

 

4.2.4  FE models benchmarked 
 

Four test specimens are designed or selected for the verification exercise. Due to the fact 

that the built-in crack model in MSC.Marc can only handle linear mode I softening and a 

constant shear retention factor β to account for the loss of shear modulus after cracks, only 

the elementary simple-tension specimens (specimens 1 and 2) are believed to be adequate 

for the verification of the subprogram in the application of basic NLFM analysis. The 

results obtained from the subprogram are compared with the related results from either the 

built-in elastic, linear softening crack model in MSC.Marc or those from past 

investigations. 

 

Description of the element type and solution method used for the verification  

 

For this verification, a four-node quadrilateral isoparametric element with bilinear 

interpolation is adopted. A full 2 x 2 Gauss integration (four integration points) rule is 

used for the computation of the element stiffness matrix (see Figure 4.5). All the 

specimens used for verification purposes in this section are modelled as plane stress 

elements. 

 

Each node in the element has two degrees of freedom (Ux, Uy), which results in a total of 

eight degrees of freedom in one single element. 
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Figure 4.5 - First-order plane stress element with full integration 

 

The element is formed by mapping from the x-y plane to the ξ, η plane. Both the mapping 

and the assumed displacement function take the form: 

 

x =  a0  +  a1 ξ  +  a2 η  +   a3 ξ η                                         (4.16) 

 

y =  b0  +  b1 ξ  +  b2 η  +   b3 ξ η                                         (4.17) 

 

Either the coordinate or the displacement function can be expressed in terms of the nodal 

quantities by the interpolation functions. 
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The full Newton-Raphson method is adopted for the solution of the stiffness formulation.  

 

An adapted stepping procedure is adopted to automatically adjust the step time in the 

increment. 

 

Convergence: the relative residual criterion is used with the default tolerance Tol = 0.01 

(see equation A.15) 

 

 Description of the test specimens used for the verification 

 

Un-reinforced concrete structures are the most fracture-sensitive. Plain concrete uniaxial 

tension specimens are probably more sensitive to fracture than any other type. For this 

reason, the following four plain concrete specimens are believed to provide a good test for 

the fracture sensitivity of the FE crack models.  

 

1). Specimen 1 (tension specimen with one side fixed and node displacements applied at 

the other end – Figure 4.6). This model is considered for the purpose of checking the 

accuracy of the stress-update procedure in the subprogram.  

 

The crack directions are fixed after the cracks have formed. Three mode I linear softening 

moduli Es of 2 000, 20 000 and 50 000 MPa are adopted to test the sensitivity of the 

subprogram to the mode I softening parameters. An arbitrary non-zero shear retention 

factor β is selected to stabilize the numerical solution as the β value will not influence the 

response of this pure tensile fracture mode I analysis. The built-in crack model in 

MSC.Marc is also run for the same crack parameters for this verification purpose. 

 

The material properties and crack softening parameters are shown in Figure 4.6. 

 

An increase in node displacements is applied gradually up to the maximum value and then 

gradually released to zero as shown in Figure 4.7. 
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Figure 4.6 - FE model and model input  (specimen 1) 

 

 

 

 

 

 

 

 

 

Figure 4.7 - Applied displacement load vs. time (specimen 1) 

 

2). Specimen 2 (tension specimen of four elements fixed at one end and node 

displacements applied at the other end – Figure 4.8). This model was designed to further 

test the subprogram developed for correct stress-strain interaction between the cracked 

element and neighbouring uncracked elements. Only one element adjacent to the fixed 

boundary is allowed to soften, as shown in Figure 4.9.  

 

Similar to specimen 1, the crack directions are fixed after the cracks have formed. Three 

mode I linear softening moduli Es of 2 000, 5 000 and 20 000 MPa are adopted to test the 

sensitivity and correctness of the program to the mode I softening parameters. Again, an 

arbitrary non-zero shear retention factor β is selected only to stabilize the numerical 

solution as the β value will not influence the response of this pure tensile fracture mode I 
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Young’s modulus E = 20 000 MPa 

Poisson’s ratio υ = 0 

Tensile strength ft = 1.2 MPa 

Shear retention factor β = 0.2 (arbitrary) 

Applied node displacement = 0.0008 mm 
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analysis. The built-in crack model in MSC.Marc is also run for the same crack parameters 

for this verification purpose. 

 

The material properties and crack softening parameters are shown in Figure 4.8. 

 

An increase in node displacements is applied gradually up to the maximum value and then 

gradually released to zero, as shown in Figure 4.10. 

 

 
Figure 4.8 - FE model – beam of four elements (specimen 2)  

 

 

 

 

 

 

 

 

 

Figure 4.9 - Only one element softening      Figure 4.10 - Applied load vs. time 

          (specimen 2)                          (specimen 2) 

 

3). Specimen 3 (tension specimen fixed at one end and pulled by node displacements at 

the other end). This specimen has the same model size (2 mm x 10 mm), the same material 

properties and the same boundary conditions as Specimen 2. As widely reported (de Borst 
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Tensile strength ft = 1.2 MPa 

Shear retention factor β = 0.2 (arbitrary) 

Applied node displacement = 0.0021 mm 
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1986), local softening constitutive modelling of concrete could cause mesh-dependent 

results and even snap-back behaviour if the FE mesh is discretized differently for the same 

model. This non-objectivity regarding the mesh size could be eliminated if the non-local 

formulation, or the fracture energy based NLFM by adjusting the slope of the softening 

branch according to the magnitude of the fracture energy, is introduced into the 

constitutive model. This specimen is used to demonstrate that the phenomenon reported 

previously by de Borst (1986) can be modelled by the subprogram developed if the 

constitutive law is not adjusted according to the element size or other factors. The analysis 

of this specimen is designed to test the post-peak mesh-dependent problem existing in 

material fracture. The strain-softening constitutive relationship is shown in Figure 4.11.  

The ultimate strain u
nε  is assumed to be four times the strain e

nε  at the tensile strength. The 

shear retention factor β is arbitrarily assumed to be 0.2 as its value would not affect the 

results of this pure-tension specimen. The various subdivisions of the specimen are shown 

in Figures 4.13 to 4.17. In each case only the element on the left adjacent to the fixed 

boundary is allowed to crack. 

 

The loading of node displacements is applied gradually up to the maximum value, as 

shown in Figure 4.12. 

 

 

 

 

 

 

 

 

 

Figure 4.11 - Strain-softening diagram (specimen 3) 

Young’s modulus E = 20 000 MPa 

Poisson’s ratio υ = 0 

Tensile strength ft = 1.2 MPa 

Shear retention factor β = 0.2 (arbitrary) 

Applied node displacement = 0.0021 mm 

Softening modulus Es = -6 666.67 MPa 
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          Figure 4.12 - Applied load vs. time (specimen 3) Figure 4.13 - Scenario 1: One element  

 

 

 

 

 

 

 

 

 

 Figure 4.14 - Scenario 2: Two elements       Figure 4.15 - Scenario 3: Three elements 

 

 

 

 

 

 

 

 

 

Figure 4.16 - Scenario 4: Four elements       Figure 4.17 - Scenario 5: Five elements  

 

4). Specimen 4 (A simple pure-tension specimen subjected to a constant stress field). 

A specimen (supported at one end, pulled at the other end – see Figure 4.18) of the unit 

thickness analyzed previously by Bhattacharjee & Leger (1993) is adopted to validate the 
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numerical implementation of the cracking model. This simple case is useful to confirm that 

the stress-strain response corresponds exactly to that of the material model. The FE model 

and the material properties are taken as the same as in the analysis of Bhattacharjee & 

Leger (1993) and are shown in Figure 4.18.  For comparison purposes, a linear strain 

softening (see Figure 4.19) is selected and only the two elements at the fixed boundary are 

allowed to crack (see Figure 4.21).  An arbitrary non-zero shear retention factor β is 

selected to stabilize the numerical solution since the β value will not influence the 

response of this mode I fracture analysis.  

 

The loading of node displacements is applied gradually up to the maximum value, as 

shown in Figure 4.20. 

 

 
Figure 4.18 - FE model – beam of 16 elements (specimen 4) 

 

 

 

 

 

 

 

 

 

Figure 4.19 - Strain-softening diagram       Figure 4.20 - Applied load vs. time 

          (specimen 4)                          (specimen 4) 
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Tensile strength ft = 2.0 MPa 

Fracture energy  Gf = 0.04 N/mm 
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Figure 4.21 - Only the elements adjacent to rigid boundary softening (specimen 4) 

 

4.2.5  Discussion of results of the verification 
 

The results from the four specimens analyzed are shown and discussed in this section. 

 

Specimen 1. As seen from the following plots (Figures 4.22 to 4.24) of different softening 

moduli of 2 000, 20 000 and 50 000 MPa, the results from HYPELA are in very good 

agreement with those from the built-in crack model in MSC.Marc. This preliminary study 

shows that the subprogram HYPELA is capable of simulating cracking in this very simple 

one-element model.  
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Specimen1: Strain softening modulus (-2000 MPa) 
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Figure 4.22 - Stress-strain plots for softening modulus Es = -2 000 MPa (specimen 1) 

Specimen1: Strain softening modulus (-20000 MPa) 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5E-05 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004
Horizontal strain 

H
or

iz
on

ta
l s

tr
es

s 
(M

Pa
)

MSC_Marc Built_in model Sub-program:  HYPELA
 

Figure 4.23 - Stress-strain plots for softening modulus Es = -20 000 MPa (specimen 1) 

 
 
 



115 

  

Specimen1: Strain softening modulus (-50000 MPa) 
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Figure 4.24 - Stress-strain plots for softening modulus Es = -50 000 MPa (specimen 1) 

 

Specimen 2. The following stress-strain plots (Figures 4.25 to 4.27) of node 2 (shown in 

Figure 4.8) for different softening moduli of 2 000, 5 000 and 20 000 MPa show that the 

results from HYPELA are in excellent agreement with those from the built-in crack model 

in MSC.Marc. This again shows that the subprogram HYPELA is capable of simulating 

cracking in this four-element model.   
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Specimen2: Strain softening modulus (-2000 MPa)
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Figure 4.25 - Stress-strain plots (softening modulus Es = -2 000 MPa) (specimen 2) 

 

Specimen2: Strain softening modulus (-5000 MPa)
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Figure 4.26 - Stress-strain plots (softening modulus Es = -5 000 MPa) (specimen 2) 
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Specimen2: Strain softening modulus (-20000 MPa) 
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Figure 4.27 - Stress-strain plots (softening modulus Es = -20 000 MPa) (specimen 2) 

 

Specimen 3. The model shows that when one element is cracking, the other elements are 

unloading correctly. Figure 4.28 shows that after the assumed tensile strength ft = 1.2 MPa 

has been reached, as the FE model is meshed with an increasing number of elements, the 

averaged horizontal strain of the model decreases until a value of zero averaged strain 

increment is obtained when the model is meshed with four elements. This four-element 

model of zero averaged strain increment corresponds to the linear strain-softening modulus 

chosen, which has an ultimate strain u
nε  four times the strain at the tensile strength (refer 

to Figure 4.11). If the number of elements in the model is greater than four, the snap-back 

phenomenon appears. In other words, as the model is discretized with more and more 

elements (up to five elements), the averaged strain of the model is gradually decreased and 

even snapped back as indicated by de Borst (1986).  
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Specimen3: Strain softening modulus (-6666.67 MPa)
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Figure 4.28 - Averaged strain for different numbers of elements in the model (specimen 3) 

 

Specimen 4. This simple, pure-tension beam was designed for the verification of mode I 

(opening) concrete fracture, which is widely regarded to be the dominant mode for most 

concrete structures. The calculated force-displacement response is shown in Figure 4.29 

demonstrating very close agreement with the results of Bhattacharjee & Leger (1993) and 

further validating the numerical implementation of HYPELA for the crack models 

adopted. 
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 Figure 4.29 - Force-displacement response (specimen 4) 

 
 
4.3  Verification study with DIANA 

 

The commercial general-purpose FE program DIANA (DIANA 1998) is a well-known 

code for non-linear crack analysis. Three cracking-verification cases in DIANA are 

selected to further benchmark the subprogram HYPELA.  

 

Second-order plane strain elements with four integration points are used in this 

verification study (Figure 4.30).  
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Figure 4.30 - Second-order plane strain element  

 

The specimens are fixed on one side and pulled at the other side by a horizontal 

deformation δx = 1.0E-4, which is multiplied by a factor of f, as shown in Figure 4.31.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.31 - Boundary and loading  

 

The purpose of these case verifications is to check the consistency of the crack status, 

crack strain and total stress for the integration point P after each loading step.  
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4.3.1  Cracking with linear tensile softening – plane strain (called PET1CR in DIANA) 
 

Smeared cracking with linear tension softening and full shear retention are applied. The 

loading is deformation, applied in six steps up to f = 41,1. The results shown in 

Figure 4.32 indicate that the proposed smeared crack model coded in the subprogram 

HYPELA produces the same results as those from DIANA.  
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Figure 4.32 - Crack stress and crack strain response (PET1CR)  

 
 
4.3.2 Cracking with bilinear tensile softening – plane strain (PET2CR) 

 
Smeared cracking with bilinear tension softening and full shear retention are applied. The 

loading is deformation, applied in six steps up to f = 41,1. The results in Figure 4.33 show 

that the HYPELA subprogram produces the same results as those from DIANA. 
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PET2CR - Bilinear softening 
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Figure 4.33 - Crack stress and crack strain response (PET2CR)  

 

4.3.3  Cracking with alternating loading – plane strain (PECLOP) 
 

Smeared cracking with linear tension softening and full shear retention are applied. The 

loading is deformation, applied in ten alternating steps, as shown in Figure 4.34. The crack 

closes and reopens due to the alternating loading. The results shown in Figure 4.35 

indicate that the HYPELA subprogram developed in this chapter can correctly model 

crack closing and reopening.  
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PECLOP - Linear softening 
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Figure 4.35 - Crack stress and crack strain response (PECLOP)  

 

4.4  Concluding remarks 

 

Incorporated into the commercial general-purpose FE program MSC.Marc, a subprogram 

called HYPELA has been coded to model the non-linear cracking process in concrete, 

using the smeared crack models developed previously for constitutive stiffness 

adjustment. For the plane stress elements, the subprogram was thoroughly benchmarked 

and verified in the four chosen FE models (mode I), either specially designed for this 

verification purpose or previously numerically tested. The HYPELA subprogram was 

further verified using plane strain elements, which showed good correlation with DIANA.  

 

Based on this first-stage benchmark exercise, which was intended to test the 

implementation procedure on elementary, simple specimens, the subprogram developed 

for this research can be used with confidence for further validation on more complicated 

concrete cracking structures, including concrete gravity dams, and eventually for the 

constitutive cracking analysis of a real concrete dam. 

 

The crack model outlined in Chapter III will also be used to benchmark and validate the 

crack models and the numerical implementation procedure in the analysis of mode I and 

mixed-mode concrete beams in Chapter V and in the analysis of concrete gravity dams in 

Chapter VI. The benchmark studies in Chapters V and VI are more detailed and 
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complicated for the purpose of thoroughly testing the versatility of the coded subprogram. 

Eventually, the crack models and numerical techniques that have been developed will be 

applied in the cracking analysis of a real gravity dam in South Africa and in the evaluation 

of the safety of the dam. 
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