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Abstract

An investigation into popular methods for constructing
yield curves
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September 2011

In this dissertation we survey a variety of methods for constructing zero-coupon
yield curves. We show that, when accuracy is of the utmost importance, the
bootstrap described by Hagan and West (2006), Smit (2000), and Daeves and
Parlar (2000) provides the ideal framework. This bootstrap requires the use
of an interpolation algorithm, and a large portion of this dissertation will thus
be devoted to the task of establishing an ideal method for interpolating yield
curve data.

Only two of the interpolation methods considered in this dissertation are seen
to perform promisingly: the monotone convex method developed by Hagan
and West (2006), and the monotone preserving r(t)t method developed in this
dissertation. We show that the monotone preserving r(t)t method performs
slightly better than the monotone convex method, in terms of the continuity of
the forward curve, and in terms of the stability of the interpolation function.

When economic appeal is of the utmost importance, we find parametric models
to be more suitable than bootstrapping. However, we show that bootstrapping
can be used to obtain a hypothetical set of zero-coupon bond prices, which
can be used to calibrate parametric models. We compare the performance of
the Nelson and Siegel (1987) and Svensson (1992) models, when applied to a
historic set of South African swap curves, and show that the Svensson (1992)
model performs better than the Nelson and Siegel (1987) model on a consistent
basis.
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Nomenclature

Notation (*) Description
r(t0, t) The continuously compounded spot rate of interest, appli-

cable from t0 to t.
f(t0 : t1, t2) The continuously compounded forward rate of interest, ob-

served at time t0, applicable from t1 to t2.
f(t0 : t) The instantaneous forward rate observed at time t0, appli-

cable to time t.
Z(t0 : t) The cost at time t0, of a zero-coupon bond maturing at

time t. Z(t0 : t) is referred to as the time t discount factor.
C(t0 : t) The value that one unit of currency invested at time t0

would accumulate to at time t. C(t0 : t) is referred to as
the time t capitalisation factor.

[A] The rounded all-in price at time t0, of a coupon paying
bond settling at time tsettle ≥ t0.

Rn The equilibrium n-year swap rate observed at time t0.
F (t0 : t1, t2) The equilibrium t1 × t2 FRA rate observed at time t0.
Ffuture(t0 : t1, t2) The yield at time t0, on a short-term interest rate future

that expires at time t1, and that references the forward rate
from t1 to t2.

Note, the abovementioned notation is aimed to be consistent with that of
Hagan and West (2006), and Hagan and West (2008).

Much of the mathematics associated with zero-coupon yield curves is greatly
simplified when working with continuously compounded rates. As such, through-
out this dissertation, unless explicitly stated otherwise, we will assume that
all rates are continuously compounded.

(*) Note: throughout this dissertation, unless explicitly stated otherwise, we
will assume that t0 = 0, and omit t0 from the defined notation. Furthermore,
r(t) will never be used to denote the so-called short rate of interest.
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Chapter 1

Introduction

The term structure of interest rates measures the relationship among the yields
on zero-coupon bonds (referred to as spot rates) that differ only in their term
to maturity. A yield curve is then a plot depicting the spot rate of interest for
a continuum of maturities, in some time interval. Yield curves have a number
of roles to perform in the functioning of a debt capital market, including:

1. The valuation of any future cash flow (series of cash flows) is done off a
yield curve.

2. Various risk metrics particular to fixed income portfolios are calibrated
from either historical or simulated yield curves.

3. Yield curves give an important indication as to the market’s expectation
regarding the state of future interest rates.

4. Yield curves are often analysed for the purpose of establishing fixed in-
come trading strategies.

5. Yield curves are used to calibrate no-arbitrage term structure models,
like the models of Ho and Lee (1986), Hull and White (1990), and Cox
et al. (1977).

As noted by Andersen (2007), only a finite set of fixed income securities trade in
practice, very few of which are zero-coupon bonds. As such, a model is required
to interpolate between adjacent maturities of observable securities, and to
extract spot rates from more complicated securities such as coupon bonds,
swaps, and Forward Rate Agreements (FRAs). Academics and practitioners
have been researching such curve building models for decades. As noted by
the Bank for International Settlements (2005), these models can broadly be
categorised as parametric or spline-based models.
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CHAPTER 1. INTRODUCTION 2

Under parametric models, the entire yield curve is explained through a single
parametric function, with the parameters typically estimated through the use
of some least-squares regression technique. Important contributions in this
field have come from Nelson and Siegel (1987), and Svensson (1992). As noted
by Andersen (2007), the resulting fit of such parametric functions to observed
security prices is typically too loose for mark-to-market purposes, and may
result in highly unstable term structure estimates. As such, financial institu-
tions involved in the trading of fixed income securities rarely rely on parametric
models.

Under spline-based models, the yield curve is made up of piecewise polynomi-
als, where the individual segments are joined together continuously at specific
points in time (called knot points). Such methods involve selecting a set of knot
points, extracting the corresponding set of spot rates, and finally interpolating;
in order to obtain spot rates for a continuum of maturities. Mcculnosh (1971)
was the first article to suggest modelling the yield curve in such a fashion.

Various methods exist for extracting the set of zero-coupon spot rates cor-
responding to the chosen set of knot points. Typically, a multivariate opti-
misation routine is employed whereby the objective is to establish the set of
spot rates, which, when combined with an appropriate method of interpola-
tion, produces a yield curve that minimises pricing errors. Such methods have
been proposed by Mcculnosh (1975), Vasicek and Fong (1982). Fisher et al.
(1995), Waggoner (1997) and Tangaard (1997). The problem with this type of
approach is that the resulting yield curve is rarely capable of exactly pricing
back all inputs .

Hagan and West (2006) describe an alternative procedure for extracting the
set of spot rates which corresponds to the chosen set of knot points. These
authors describe a process called bootstrapping, whereby:

1. The set of knot points are chosen to correspond to the maturity dates of
the set of input instruments.

2. The set spot rates which corresponds to the set of knot points are found
via a simple iterative technique.

The above-mentioned iterative procedure will converge to a set of spot rates,
which, when combined with the chosen method of interpolation, will produce
a curve that exactly prices back all input securities. This bootstrap is a gen-
eralisation of the iterative bootstrap discussed in Smit (2000). The process of
bootstrapping, however, was first described in Fama and Bliss (1987).

Regardless of how spot rates corresponding to the chosen set of knot points
are extracted, careful consideration has to be given to the chosen method of
interpolation. Some methods result in discontinuities in the forward rate curve
whilst others are incapable of ensuring a strictly decreasing curve of discount
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factors. Both scenarios are unacceptable in a practical framework. Discontinu-
ities in the forward rate curve makes no sense from an economic, or an intuitive
point of view (unless the discontinuities are on or around meetings of mon-
etary authorities), whilst a non-decreasing curve of discount factors implies
arbitrage opportunities (see Appendix A). A large component of this report
will be devoted to the topic of interpolation. We will attempt to establish the
most appropriate method for interpolating yield curve data.

The simplest method for interpolating between two points is by connecting
them through a straight line. Such methods can be applied to a variety of
functions, such as the spot rate function, the discount factor function, the
negative log discount factor function etc. Some variations of linear interpo-
lation are capable of ensuring a strictly decreasing curve of discount factors,
however, all variations of linear interpolation imply discontinuities in the for-
ward rate curve.

In order to produce continuous forward rate curves, researchers often apply
cubic methods of interpolation. Under such methods, cubic polynomials are
fitted between curve input data at adjacent knot points. The parameters
of the polynomials can then be solved to satisfy a variety of criteria, such
as continuity, differentiability, monotonicity etc. Such methods can also be
applied to a variety of yield curve functions.

Hagan and West (2006) note that all of the “traditional” cubic methods are
incapable of ensuring strictly positive forward rates (which is synonymous with
non-decreasing discount factors). Furthermore, as noted by Andersen (2007),
some cubic methods have an inherent lack of locality, in the sense that a local
perturbation of curve input data will cause “ringing”, and cause changes in the
data far away from the perturbed data point.

Hagan and West (2006) developed the monotone convex method of interpo-
lation, which is claimed to be capable of ensuring a positive and (mostly)
continuous forward rate curve. In this dissertation, we perform an in-depth
review of the monotone convex method, and assess the method’s suitability for
interpolating yield curve data. Furthermore, we introduce our own method of
interpolation, and prove that this method (which we label the monotone pre-
serving r(t)t method) is capable of ensuring a positive and continuous forward
rate curve.

The motivation for the monotone preserving r(t)t method follows from the
observation that negative forward rates imply non-decreasing discount factors,
and vice versa. Constructing an interpolation algorithm capable of preserving
the monotonicity of the discount factors, is thus sufficient for ensuring positive
forward rates. Monotonicity in the discount factors implies monotonicity in
r(t)t, which is achieved by applying the work done in the field of shape pre-
serving cubic Hermite interpolation, by authors such as Akima (1970), Fritsch
and Carlson (1980) and de Boor and Swartz (1977).
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When constructing a particular yield curve, deciding on an appropriate method
of calibration is only half of the problem; we also have to decide on a set
of benchmark securities to which we can calibrate our model. As noted by
Hagan and West (2008), by excluding too many securities one runs the risk of
disposing of meaningful market information. On the other hand, by including
too many securities one runs the risk of obtaining implausible yield curves,
with a multitude of turning points. As such, we will devote an entire chapter
to the topic of benchmark securities in the South African market.

Ultimately, the objective of this dissertation will be to establish the “best”
method for constructing yield curves; where “best” should be interpreted in
terms of:

1. Accuracy

2. Economic appeal

3. Stability

Note, the concept of a “best” method for constructing yield curves might not
be universal, and might depend on which of the abovementioned attributes
one chooses to place the most emphasis on.
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The structure of this dissertation will be as follows:

Chapter Objective
Chapter 2 To give background on the South African fixed income market.

The aim here will be to give the reader an understanding of the
securities that are typically used to calibrate yield curves in the
South African market.

Chapter 3 To survey available literature in the field of yield curve con-
struction. We will consider various parametric and spline-based
models in an attempt to eliminate offhand, any models which we
consider to be ill-suited.

Chapter 4 To survey a variety of “traditional” methods of interpolation, and
to illustrate the dangers associated with each of these methods.

Chapter 5 To survey the monotone convex method of interpolation, and to
assess the method’s suitability for interpolating yield curve data.

Chapter 6 To introduce the monotone preserving r(t)t method of interpo-
lation, and to assess the method’s suitability for interpolating
yield curve data.

Chapter 7 To distinguish between the monotone convex, and the mono-
tone preserving r(t)t methods of interpolation. We base our
assessment on the performance of these methods, when applied
to historic market data. Furthermore, we illustrate how para-
metric models, like the models of Nelson and Siegel (1987), and
Svensson (1992), can be used as a technique for “smoothing”
spline-based yield curve models.

Chapter 8 To conclude our findings and make an assessment as to the “best”
method for constructing yield curves.

Appendix A To introduce the mathematical concepts that are necessary in
order to obtain an understanding of how the prices of various
fixed income securities are related to zero-coupon yield curves.

Appendix B To give a graphical illustration of the various shapes that have
been adopted by the South African swap and bond curves.

Appendix C To illustrate, by way of an example, the potential for arbitrage
that exists in a world where a unified method of interpolation is
not agreed upon.

Appendix D To provide the VBA and python code used to generate the results
referenced in this dissertation.

 
 
 



Chapter 2

Benchmark Securities

The task of constructing a yield curve can be particularly daunting; not only
do we have to decide on a curve building model, but we also need to decide
on a set of benchmark instruments to which we can calibrate the particular
model. The aim of this chapter will be to shed light on the securities typically
used to calibrate yield curves in the South African market.

2.1 Bond Curves and Swap Curves

When constructing a yield curve, one needs to have an understanding of the
concept of credit. The return we expect to receive when lending funds de-
pends on the probability of default, on the part of the entity borrowing the
funds. Constructing a yield curve through the use of securities with different
credit characteristics is thus nonsensical, the credit characteristics of all input
securities should be identical.

Typically, we will need to distinguish between sovereign yield curves, and
interbank yield curves. The standard approach when calibrating sovereign
yield curves is to make use of government bonds and T-bills. As such, these
curves (considered to be a proxy for risk-free yield curves) are often referred
to as bond curves. When calibrating interbank yield curves, the standard
approach is to use Negotiable Certificates of Deposit (NCDs), FRAs and swaps.
As such, interbank curves are often referred to as swap curves.

Figure 2.1 illustrates the basis point spread between the 5-year point on the
South African swap and bond curves, from August 2000 to February 2011. It
is interesting to note that, although we would always expect the spread to be
positive, there are instances where the spread has been negative. The most
logical explanation for this phenomenon would be that during these instances,
there existed a relative over-supply of South African government bonds, or a
relative over-demand for floating for fixed ZAR swaps.

6
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Figure 2.1: Historic spread (%) between the 5-year point on the South African
swap and bond curves.

2.2 The South African Money Market

The term money market refers to the market for short-term (1 year or less)
borrowing and lending. The core of any money market consists of banks bor-
rowing and lending to each other. Typical money market instruments include
T-bills, NCDs, commercial paper and bankers acceptances. In this section,
we describe the typical inputs used to calibrate the money market section of
bonds and swap curves in the South African market.

2.2.1 The Market for Overnight (Call) Deposits

A call account is an account where funds deposited are available on demand.
Funds that are deposited in a call account are typically referred to as money
placed on call. In South Africa, funds placed on call typically earn interest
on an overnight basis, but capitalisation only occurs on the last day of each
month. An investor leaving his/her money on call from time t0 to time D,
where D is the last day of the month in which t0 falls, would thus receive
(1 + r̄α) at time D, where α = (D−t0)

365
, and r̄ is the arithmetic average of the

daily overnight rates observed from t0 to D.

 
 
 



CHAPTER 2. BENCHMARK SECURITIES 8

As noted by West (2009), one possible method which can be used to model
the overnight capitalisation factor, C(t0, t0 + 1

365
), is as follows

C(t0, t0 +
1

365
) =

(
1 +

y

12

)12/365
, (2.2.1)

where y is the quoted overnight call rate. When considering an instrument
that actually pays and accrues overnight interest, at a rate y, the overnight
capitalisation factor will be modelled as

C(t0, t0 +
1

365
) =

(
1 +

y

365

) 1
365
. (2.2.2)

In the absence of an observable overnight capitalisation factor, we would have
to rely on an appropriate method of extrapolation, in order to construct the
overnight section of the yield curve.

2.2.2 SABOR

In South Africa, the South African Benchmark Overnight Rate on deposits
(SABOR) is regarded as a benchmark overnight rate. The SABOR replaced
the South African Overnight Interbank Average (SAONIA) rate on 28 March
2007. As noted by South African Reserve Bank (2006), the objective with
the calculation and publication of the SAONIA rate was to provide a bench-
mark for rates paid on overnight interbank funding as part of enhancing the
transparency and price discovery in the interbank market. In addition, it was
intended to be a reliable indicator of liquidity conditions in the overnight mar-
ket. Despite these intentions, the SAONIA rate suffered from a number of
shortcomings, including:

1. It lacked credibility because the information submitted by banks was not
verified by the South African Reserve Bank (SARB).

2. It was very volatile. Moreover, this volatility was unrelated to changes
in underlying liquidity or market conditions, but rather reflected shifts
of weighting among different categories of banks.

3. It did not reflect market conditions and showed little relation to other
money-market rates.

4. Because it included only interbank transactions, it captured only a very
small portion of the overnight money market.
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The SABOR was designed to address these shortcomings. As described in
Money Market Liaison Group (2007), the SABOR is calculated as a volume-
weighted average of overnight interbank funding at a rate other than the cur-
rent repo rate of the SARB, and the twenty highest rates paid by banks on
their overnight and call deposits, plus a 5% weight for funding through foreign
exchange swaps. Figure 2.2 shows the value of the SABOR from inception (15
June 2007) to 28 February 2011.
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Figure 2.2: Historical values of the SABOR rate (%).

2.2.3 T-Bills and JIBAR

In South-Africa, NCDs are typically quoted for 1, 3, 6, 9 and 12-month ma-
turities, whilst T-Bills are typically auctioned for 91, 182, 273, and 364-day
maturities. Both securities carry no coupons, and are sold at a discount to par.
T-Bills are typically only auctioned once a week, and the secondary market is
considered to be illiquid. As such, many practitioners consider South-African
T-Bills to be ill-suited yield curve inputs.

T-Bills often act as the only guideline as to the rates that investors can re-
ceive when depositing money with the South African government, for tenures
between 1 day and 12 months. Therefore, the purpose for which the curve is
to be used needs to be fully understood before deciding to use or omit such
securities.

The n-month Johannesburg Interbank Agreed Rate (JIBAR) is calculated as
the average mid of the n-month NCD rates quoted by a number (currently 9)
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of local and foreign banks. The average is calculated after excluding the two
highest and the two lowest mid rates. JIBAR is published for n = 1, 3, 6, 9 and
12. Figure 2.3 shows the values of the 3, 6 and 12-month JIBAR rates from 1
February 1999 to 31 March 2011, as well as the values of the 91, 182, 273 and
364-day T-Bill rates from 13 February 2009 to 11 April 2011.
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(b) Historical n−day T-Bill rates

Figure 2.3: Historical JIBAR and T-Bill rates (%).
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2.3 The South African Swap Curve

The SABOR is often used as a reference point for the overnight section of the
swap curve, whilst the 3-month JIBAR rate is often used as a reference point for
the 3-month section of the curve. The 6, 9 and 12-month JIBARs can be used
for constructing the 6, 9 and 12-month sections of the swap curve, however,
the 3× 6, 6× 9, and 9× 12 month FRAs are often preferred due to liquidity
conditions. The 1 to 2-year section of the swap curve is typically constructed
through the use of the 12× 15, 15× 18, 18× 21, and the 21× 24 month FRAs.
The remainder of the swap curve is typically constructed through the use of
vanilla interest rate swaps, with maturities ranging from 2-years to 30-years.

Internationally, Eurodollar Futures (short term futures referencing the three
month London Interbank Offer Rate (LIBOR)) are often the most liquid in-
terbank securities, for maturities between 3-months and 5-years. As such,
Eurodollar futures are often used to calibrate the 3-month to 5-year section
of the swap curve. In South Africa, the JIBAR equivalent of the Eurodollar
future, namely the JIBAR future has recently been introduced to the market.
In time, these instruments might become the benchmark instruments to use
for constructing the 3-month to 5-year section of the swap curve.

Note that when constructing a yield curve, one cannot use two or more secu-
rities with the same maturity date; for example, we cannot use the 21× 24
month FRA, and the 2-year swap as yield curve inputs. Typically, when con-
sidering two instruments with the same maturity date, one should use the
instrument that displays the greatest liquidity.

2.4 The South African Bond Curve

In South Africa, there is typically a lack of transparency in the overnight
section of the bond curve, and as such, the SABOR is often used to anchor
the overnight section of the bond curve. Intuitively, we would expect very
little credit to be embedded in an overnight rate, therefore, we will typically
not add/subtract any credit spread from the SABOR, when using this rate to
anchor the overnight section of the bond curve.

The 91; 182; 273 and 364-day T-Bill rates are often used to anchor the 3;
6; 9 and 12-month sections of the bond curve. As noted earlier, the use of
South African T-Bills for the purpose of constructing the bond curve poses
a number of concerns. If for whatever reason we deem these instruments to
be ill-suited inputs to the bond curve, we can model the 3-month to 1-year
section by adding/subtracting an appropriate spread from the swap curve.
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The 1 to 30-year section of the bond curve is typically constructed through the
use of South African government bonds. More specifically, in order to reduce
the effect of any liquidity premiums, we typically only consider bonds that are
constituents of the GOVI index. The GOVI index is an index that measures
the performance of the 10 (at most) most liquid South African government
bonds, and only bonds with more than one year to maturity are eligible for
GOVI constituency. As such, by only considering GOVI bonds, we avoid any
potential maturity conflicts between bonds and money market inputs.

Figure 2.4 shows historic South African swap and bond curve surfaces. These
surfaces were obtained by considering quarterly data of the BEASSA zero
curves, from September 2000 to June 2011. The methodology behind the
BEASSA zero curves is described in Section 3.1.4.
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(a) Bond curve surface

(b) Swap curve surface

Figure 2.4: Historic South African swap and bond curve surfaces (%), for
maturities ranging from 1 day to 30 years, from September 2000 to June 2011.

 
 
 



Chapter 3

Literature Review

In this chapter we survey available literature in the field of yield curves con-
struction. We survey a number of parametric models, as well as a number of
spline-based models and highlight the strengths and weaknesses of each model.

As mentioned earlier, under parametric models, the entire yield curve is ex-
plained through a single parametric function, with the parameters typically
estimated through the use of some least-squares regression technique. On the
other hand, under spline-based models, the yield curve is made up of piecewise
polynomials, where the individual segments are joined together continuously
at specific points in time (called knot points).

3.1 Spline-Based Models

Spline-based yield curve models typically involve minimising the following
function

min
h(t)

( N∑
i=1

(Pi − P̂i)2
)
, (3.1.1)

where N is the number of securities used as inputs to the model, Pi are the
observed security prices, and h(t) is the chosen method of interpolation (the
spline function) used to compute the fitted security prices P̂i. As noted by
Bliss (1997), h(t) may be defined in terms of the spot rate function, the dis-
count function, or the forward rate function. This section surveys various
methodologies that have been proposed for estimating h(t).

“Polynomials are wonderful even after they are cut into pieces,
but the cutting must be done with care. One way of doing the
cutting leads to so-called spline functions.” I.J. Schoenberg.

14
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3.1.1 Mcculnosh (1975)

Mcculnosh (1971) was the first to introduce the use of a quadratic polynomial
to estimate the discount function, however, Mcculnosh (1975) realised that
modelling the discount function in this fashion produces an instantaneous for-
ward rate curve that “knuckles”. Mcculnosh (1975) overcame the “knuckle”
shape by introducing a cubic spline. Under the Mcculnosh (1975) model, the
discount function is modelled through the use of a set of cubic polynomials,
constrained to be continuous and smooth around each knot point. If t1, t2, ..., tk
is the pre-defined set of knot points, and Z(t1), Z(t2), ..., Z(tk) the correspond-
ing set of discount factors (to be estimated through regression), then under
the Mcculnosh (1975) model, the discount function Z(t), is modelled as

Z(t) = 1 + β1 + β2(t− ti) + β3(t− ti)2 + β4(t− ti)3, (3.1.2)

for ti ≤ t ≤ ti+1, and i = 1, 2, ..., n, where β1, β2, β3 and β4 are parameters to
be estimated. As noted by Zangari (1997), Shea (1984) estimates these pa-
rameters by restricted least squares (RLS).

Objections to modelling the discount function in this fashion include:

1. Modelling the discount function through the use of polynomial splines
leads to unstable forward rates (see Vasicek and Fong (1982)).

2. There is no sensible way to extrapolate a cubic discount function beyond
the longest maturity observed, or before the earliest maturity observed
(see Mcculnosh and Kochin (2000)).

3.1.2 Vasicek and Fong (1982)

Vasicek and Fong (1982) note that discount functions are principally expo-
nential decays, and since polynomials do not have the same curvature as do
exponentials, a polynomial spline function will tend to weave around an ex-
ponential discount function. These authors propose to estimate the discount
function with exponential splines instead of polynomial splines. They define
the variable x = 1− e−αt, where α is some constant. Z(t) can therefore be
defined as the transformation G, where

G(x) = D

(
− 1

α
log(1− x)

)
= Z(t). (3.1.3)
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G(x) can then be estimated through polynomial splines in x. Vasicek and
Fong (1982) define gi(x) : 0 ≤ x ≤ 1,for i = 1, 2, ...,m, as a set of m polyno-
mial functions that span all polynomials in the linear (G, x)-space. Thus, the
functions G and Z have representations as linear combinations of the g-basis
functions, such that

G(x) =
m∑
i=1

βigi(x). (3.1.4)

Shea (1985) notes that although equation (3.1.4) is linear in the spline param-
eters (the β′s), the g-basis functions are non-linear in α. Estimation of the
Vasicek and Fong (1982) parameters therefore cannot avoid the use of non-
linear routines. Shea (1985) further notes that the Vasicek and Fong (1982)
model is just as capable of modelling the term structure as are ordinary poly-
nomial splines, but it brings no practical advantage to the modelling task.
Furthermore, Shea (1985) finds that the resulting term structure estimates are
likely to look very much similar to those from a polynomial spline, and suggests
ordinary spline techniques to be used in preference to exponential splines.

3.1.3 Fisher et al. (1995)

In order to address the oscillating forward rate curve associated with the
method of Mcculnosh (1975), Fisher et al. (1995) fit a cubic spline so as to
minimise the following function

min
h(t)

( N∑
i=1

(Pi − P̂i)2 + λ

∫ tmax

0

h′′(t)2dt

)
, (3.1.5)

where tmax denotes the maximum observed maturity date. For calibrating
their model, Fisher et al. (1995) recommend modelling h(t) as the forward
rate function, and suggest the use of cubic B-splines. The function

λ

∫ tmax

0

h′′(t)2dt, (3.1.6)

is a smoothness penalty, where the parameter λ controls the trade-off between
smoothness and goodness of fit, and it is itself selected as part of the estimation
process. Note, λ has been refined in the variable roughness penalty (VRP)
model of Waggoner (1997), and also by Anderson and Sleath (2001).
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Waggoner (1997) suggests that the variable λ should be a function of time,
and models λ(t) as follows:

λ(t) =


0.1 0 ≤ t ≤ 1
100 1 ≤ t ≤ 10
100, 000 t ≥ 10.

This decision for λ(t) corresponds to the difference between bills, notes, and
bonds. Waggoner (1997) notes that for both in-sample and out-sample tests,
the use of a roughness penalty which varies across time improved the ability
of the method of Fisher et al. (1995) to price short term securities.

Tangaard (1997) and Andersen (2007) suggest modelling h(t) as the discount
function, and suggest the use of hyperbolic tension splines. As noted by An-
dersen (2007), the hyperbolic tension spline can be considered the result of
adding a pulling force (tension) to each end point of a cubic spline; as the
force is increased, excess convexity and extraneous inflection points are grad-
ually reduced until the curve eventually approaches a linear spline.

An obvious objection to these types of smoothing splines, is that they further
reduce model accuracy by imposing a trade-off between smoothness and ac-
curacy. Furthermore, these methods require exhausting computational effort.
Steeley (2008) notes that results in Anderson and Sleath (2001), and the com-
parative studies of Ioannides (2003) and Waggoner (1997), question the extra
effort expended to estimate the yield curve through the use of such splines.

3.1.4 Quant Financial Research (2003)

Define C as the m× n matrix where C(i, j) represents the cash flow of the i’th
input security at time tj. The set of m input securities is thus associated with
n distinct cash flow dates. The objective is to establish a vector of discount
factors Z, such that

CZ = 0. (3.1.7)

Quant Financial Research (2003) notes that Z cannot be solved in the conven-
tional sense, because typically, n > m. However, singular value decomposition
can be performed on C. This expresses C as

C = UWV
′
, (3.1.8)

where
U
′
U = V

′
V = 1. (3.1.9)

 
 
 



CHAPTER 3. LITERATURE REVIEW 18

Note, W is a diagonal matrix, where each diagonal element is greater than or
equal to zero, however, only m of the diagonal elements will be greater than
zero. The n× (n−m) matrix B is then formed by taking those columns of
V for which the corresponding element of W is zero. B is then a basis for the
null space defined by equation (3.1.7). If X is any (n−m)× 1 vector, then
its corresponding discount factor, Dx, is defined as

Dx = BX. (3.1.10)

Dx will satisfy equation (3.1.7). Quant Financial Research (2003) then applies
a multivariate optimisation routine in order to establish the vector X, which
minimises a particular smoothness penalty function. A complete yield curve is
then obtained by applying an appropriate interpolation algorithm to Dx and
T , where T is the set of cash flow dates associated with Dx. For this purpose,
Quant Financial Research (2003) suggests the use of quartic splines, described
in Adams (2001), and Adams and van Deventer (1994).

The biggest objection to the approach proposed by Quant Financial Research
(2003) is that the interpolation method relies on a complex optimisation rou-
tine, and the resulting forward rate curves often display a multitude of turning
points.

3.1.5 Hagan and West (2006)

Under all of the spline-based models that have been considered thus far, the
objective function (3.1.1) is solved through the use of multivariate optimisation
routines. Such routines are often complex, and the probability of obtaining
local optima is high. Thus, the yield curves resulting from these models, almost
always display pricing errors. Researchers often undermine this weakness by
attributing model inaccuracies to factors such as bid offer spreads, liquidity
premiums and transaction costs.

Fama and Bliss (1987) were the first to publish an implementation on a model
capable of pricing back all of its inputs exactly. These authors proposed a
recursive method of forward rate extraction, whereby the discount rate func-
tion is extended each step, by computing the forward rate necessary to price
securities with successively longer maturities, given the discount rate function
fitted to the previously included issues. This method has become known as
the bootstrap method.
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In order to perform the bootstrap described by Fama and Bliss (1987), one
would typically require a set of securities, where each payment date coincides
with the maturity date of one of the securities in the sample. Hagan and West
(2006) describe a generalisation of this bootstrap, and postulate the following
iterative technique for constructing the yield curve:

Inputs: n input securities maturing at times t1 < t2 < ... < tn.

1. Estimate r(t1), r(t2), ..., r(tn).1

2. Interpolate between r(t1), r(t2), ..., r(tn) to estimate the spot rates cor-
responding to each cash flow date of each input instrument.

3. Depending on the type of input instruments (i.e. bonds, swaps, FRAs
or futures), use equations (A.3.10), (A.4.7) or (A.5.1) in order to obtain
new estimates for r(t1), r(t2), ..., r(tn).

4. Repeat steps (2) and (3) until convergence is obtained.

Less general versions of this bootstrap are described in Smit (2000), and Daeves
and Parlar (2000). This bootstrap will converge to a set of zero coupon spot
rates, r(t1), r(t2), ..., r(tn), which, combined with the method of interpolation
used in step (2), defines a yield curve. The only difficulties associated with
this are thus deciding on a set of benchmark securities, and an appropriate
method of interpolation.

The above-mentioned bootstrap will produce a yield curve capable of pric-
ing back all input securities exactly, a feat that is extremely unlikely to be
achieved by any of the spline-based models considered earlier. Furthermore,
the bootstrap can incorporate most of the methods of interpolation proposed
by other spline-based methods. For the remainder of this paper, this is the
only spline-based method that we will consider.

3.2 Parametric Models

Yield curves returned by spline-based methods often display undesirable eco-
nomic properties. Typically these undesirable properties are observed in the
forward rate curve. Researchers have attempted to address this issue by con-
structing yield curves through a single parametric function.

1Recall that r(t) is used as short hand for r(0, t).

 
 
 



CHAPTER 3. LITERATURE REVIEW 20

3.2.1 Nelson and Siegel (1987)

Nelson and Siegel (1987) suggested the following parametric form for the for-
ward rate curve

f(t) = β0 + β1e
−t/λ +

β2t

λ
e−t/λ, (3.2.1)

where λ > 0. The model consists of four parameters: β0, β1, β2 and λ. As noted
by Annaert et al. (2010), equation (3.2.1) consists of three parts: a constant,
an exponential decay function and a Laguerre function.

Gilli et al. (2010) note that β0 is independent of t, and as such, β0 is often
interpreted as the level of long term interest rates. The exponential decay
function approaches zero as t tends to infinity, and β1 as t tends to zero. The
effect of β1 is thus only felt at the short end of the curve. The Laguerre
function on the other hand approaches zero as t tends to infinity, and as t
tends to zero. The effect of β2 is thus only felt in the middle section of the
curve, which implies that β2 adds a hump to the yield curve. The spot rate
function under the model of Nelson and Siegel (1987) is as follows

r(t) = β0 +
β1λ

t

(
1− e−t/λ

)
+
β2λ

t

(
1− e−t/λ

)
− β2e−t/λ. (3.2.2)

From equations (3.2.2) and (3.2.1) it follows that both the spot and for-
ward rate function reduce to β0 + β1, as t→ 0. Furthermore, we have that
lim
t→∞

r(t) = lim
t→∞

f(t) = β0. Thus, in the absence of arbitrage we must have that
β0 > 0, and β0 + β1 > 0.

Suppose we observe n zero coupon bonds, expiring at times t1, t2, ..., tn. Let
p1, p2, ..., pn denote the prices of these bonds. Note that pi will imply the spot
rate of interest corresponding to time ti, for i = 1, 2, ..., n. Let r1, r2, ..., rn
denote these spot rates. If we assume that the value of λ is known, then the
Nelson and Siegel (1987) model reduces to a linear model, which can be solved
using linear regression.

Define:

X =


1 λ(1−e−t1/λ)

t1

λ(1−e−t1/λ)
t1

− e−t1/λ
1 λ(1−e−t2/λ)

t2

λ(1−e−t2/λ)
t2

− e−t2/λ
...

...
...

1 λ(1−e−tn/λ)
tn

λ(1−e−tn/λ)
tn

− e−tn/λ

 , Y =


r1
r2
...
rn

 , B =

β0β1
β2

 .
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We would like to obtain a vector B satisfying XB = Y + ε. By using ordinary
least squares (OLS) estimation, we can solve B as follows

B = (X ′X)−1X ′Y. (3.2.3)

Nelson and Siegel (1987) suggested the following procedure for calibrating their
model:

1. Identify a set of possible values for λ.

2. For each of these λ’s, estimate B.

3. For each of these λ’s and their corresponding B’s, estimate

R2 = 1−
∑n

i=1(ri − r̂i)∑n
i=1(ri − r̄i)

.

4. The optimal λ and B are those associated with the highest value of R2.

The above method of calibration has become known as the grid-search method.
Alternatively, non-linear optimisation techniques can be used to solve all four
parameters simultaneously. However, Ferguson and Raymar (1998), and Cairns
and Pritchard (2001) note that such methods are very sensitive to starting val-
ues, implying a high probability of obtaining local optima. When calibrating
the Nelson and Siegel (1987) model directly to the prices of coupon paying
securities, non-linear optimisation techniques are inescapable, again implying
a high probability of obtaining local optima.

Annaert et al. (2010) note that the estimated parameters obtained by using
the grid-search method behave erratically over time, and have large variances.
These problems result from multicollinearity issues, i.e. high correlation be-
tween the model parameters. Furthermore, this multicollinearity depends on
the time to maturity of the securities used to calibrate the model. Diebold and
Li (2006), Fabozzi et al. (2005) and de Pooter (2007) attempt to address the
multi-collinearity problem by fixing the value of λ over time, whilst Annaert
et al. (2010) address the problem by using a ridge regression approach.
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3.2.2 Svensson (1992)

Svensson (1992) extended the Nelson and Siegel (1987) model by adding a sec-
ond hump term. Under the Svensson (1992) model, the instantaneous forward
rate is modelled as follows

f(t) = β0 + β1e
−t/λ1 +

β2t

λ1
e−t/λ1 +

β3t

λ2
e−t/λ2 , (3.2.4)

where λ1, λ2 > 0. The Svensson (1992) model thus consists of four parts: a
constant, an exponential decay function and two Laguerre functions. The
interpretation of the first three parts are exactly the same as for the Nelson
and Siegel (1987) model. The second Laguerre function approaches zero as t
tends to infinity and as t tends to zero. The effect of β3 is thus only felt in the
middle section of the curve, which implies that β3 adds a second hump to the
yield curve.

The spot rate function under the Svensson (1992) model is as follows

r(t) = β0 +
β1λ

t
(1− e−t/λ1) +

β2λ1

t
(1− e−t/λ1)− β2e−t/λ1

+
β3λ2

t
(1− e−t/λ2)− β3e−t/λ2 . (3.2.5)

From equations (3.2.4) and (3.2.5) it follows that both the spot and forward
rate function reduce to β0 + β1, as t→ 0, exactly the same as for the Nelson
and Siegel (1987) model. Furthermore, lim

t→∞
r(t) = lim

t→∞
f(t) = β0, again, ex-

actly the same as for the Nelson and Siegel (1987) model. In order to prevent
possible arbitrage opportunities, we again impose the constraints β0 > 0, and
β0 + β1 > 0.

The same procedure used to calibrate the Nelson and Siegel (1987) model
can be used to calibrate the Svensson (1992) model, i.e. we can linearise the
model by fixing the values of λ1 and λ2. We can then estimate the values of
β0, β1, β2, β3 using OLS estimation, from where we can calculate R2. Finally,
we can use a multivariate optimisation routine to find the values of λ1 and λ2
that minimizes 1−R2.

The biggest advantage that the Svensson (1992) model has over the Nelson and
Siegel (1987) model, is that the Svensson (1992) model is capable of producing
two yield curve humps. In practice, two yield curve humps are uncommon, but
are certainly observed from time to time. We would thus expect the Svensson
(1992) model to be the more appropriate model to apply in practice. The fit of
both the Nelson and Siegel (1987) and Svensson (1992) models are, however,
considered to be too loose for mark-to-market purposes.
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3.3 Remarks

In this chapter we surveyed a number of spline-based yield curve models, and
found that the bootstrap described by Hagan and West (2006) was the ideal
model for further investigation. In particular, the method of interpolation to
be used in conjunction with the bootstrap deserves special attention. Much
of the remainder of this paper will be devoted to finding suitable methods for
interpolating yield curve data.

We also surveyed the parametric models suggested by Nelson and Siegel (1987)
and Svensson (1992). The Bank for International Settlements (2005) notes
that parametric methods, particularly the model of Svensson (1992) are very
popular amongst central banks. Central banks typically do not require yield
curves that prices back all inputs exactly, when determining monetary policy.
In Chapter 7 we show how parametric models can be seen as a technique for
“smoothing" bootstrapped yield curves.

 
 
 



Chapter 4

Traditional Methods of
Interpolation

Interpolation is a method of constructing new data points within the range
of a discrete set of known data points (called knot points). A rich variety
of interpolation methods have been brought forth by physics applications. In
this chapter we will survey a variety of these “traditional” methods, and assess
their suitability for interpolating yield curve data.

A method for interpolating yield curve data will take as inputs: a set of times
t1 < t2... < tn, and a set of corresponding zero-coupon spot rates r1 < r2... < rn,
and return a piecewise continuous function; the interpolation function r(t)1,
that allows us to find the zero coupon spot rate that corresponds to any point
in time t, where t1 ≤ t ≤ tn. An interpolation function must:

1. Reproduce the input set of spot rates, i.e. we must have that r(ti) = ri,
for 1 = 1, 2, ...., n.

2. Produce a piecewise continuous spot rate function, i.e. we must have
that lim

δ→0
r(ti + δ) = lim

δ→0
r(ti − δ), for 1 = 1, 2, ...., n.

Ideally we would like to obtain an interpolation function which satisfies the
above-mentioned constraints, and which produces a forward rate curve that is
both positive and continuous. Negative forward rates imply arbitrage opportu-
nities (see Appendix A.2, and note that negative forward rates are synonymous
with non-decreasing discount factors), whilst discontinuous forward rates make
little sense from an economic point of view (except if the jumps occur on or
around meetings of monetary authorities).

1The interpolation function can also be defined in terms of f(t), or Z(t), or any trans-
formation thereof.
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4.1 Linear Interpolation

The simplest method of interpolating between two points is by simply connect-
ing them through a straight line. The function value between these points can
then be estimated by simply reading off this line. In this section, we investi-
gate the merits of applying linear interpolation to various yield curve functions
(see Appendix 4 for a description of how the functions r(t), f(t) and Z(t) are
related).

4.1.1 Linear Interpolation on r(t)

When applying linear interpolation directly to the spot rate function, the value
of r(t), for ti ≤ t ≤ ti+1 is modelled as

r(t) = ai + bit. (4.1.1)

By imposing the constraints that r(ti) = ri, and r(ti+1) = ri+1, we can easily
solve for ai and bi to obtain

r(t) = ri
ti+1 − t
ti+1 − ti

+ ri+1
t− ti
ti+1 − ti

. (4.1.2)

The instantaneous forward rate f(t), defined as d
dt
r(t)t, is then given by

f(t) = ai + 2bit, (4.1.3)

for ti ≤ t ≤ ti+1. Let fi denote the value of f(t) at ti, and define f+
i and f−i as

the values of lim
δ→0

f(ti + δ) and lim
δ→0

f(ti − δ) respectively. From equation (4.1.3)
it follows that

f+
i = ai + 2biti, (4.1.4)

whilst
f−i = ai−1 + 2bi−1ti. (4.1.5)

Equations (4.1.4) and (4.1.5) imply that f(t) is sure to have a discontinuity at
ti, unless

ai − ai−1 = 2ti(bi−1 − bi). (4.1.6)

Furthermore, f(t) will be negative if

ri − ri+1

ti+1 − ti
<

1

2t

ri+1ti − riti+1

(ti+1 − ti)
.

Applying linear interpolation to the spot rate function thus suffers from two
distinct drawbacks: the forward curve is likely to have discontinuities, and the
method is not necessarily arbitrage free.
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4.1.2 Linear Interpolation on r(t)t

This method, referred to as “Raw ” interpolation by Hagan and West (2006),
involves applying linear interpolation to the negative log discount factors. In-
terpolating in this fashion preserves the geometry of the discount factors, im-
plying that positive can be guaranteed in forward rate curve (provided the
input set of discount factors are strictly decreasing). The negative log dis-
count factors, i.e. r(t)t is modelled as

r(t)t = ai + bit, (4.1.7)

for ti ≤ t ≤ ti+1.

By imposing the constraints that r(ti)ti = riti, and r(ti+1)ti+1 = ri+1ti+1, we
can easily solve for ai and bi to obtain

ai =
titi+1(ri − ri+1)

ti+1 − ti
(4.1.8)

bi =
ri+1ti+1 − riti
ti+1 − ti

. (4.1.9)

From equation (4.1.7) it follows that f(t) is given by

f(t) = bi, (4.1.10)

for ti ≤ t ≤ ti+1, implying that f(t) will have a discontinuity at ti, unless
bi−1 = bi. It is trivial to see why this method is often referred to as “flat
forward ” interpolation.

4.1.3 Linear Interpolation on C(t)

Applying linear interpolation to the capitalisation factors ensures that the
geometry of the input set capitalisation factors is preserved, which implies
that the geometry of the input set of discount factors is preserved. Thus, like
linear interpolation on r(t)t, linear interpolation on C(t) is capable of ensuring
positive forward rates. The capitalisation factor, C(t), is modelled as

C(t) = ai + bit, (4.1.11)

for ti ≤ t ≤ ti+1. By imposing the constraints that C(ti) = eriti , and that
C(ti+1) = eri+1ti+1 , we can easily solve for ai and bi to obtain

ai =
eri+1ti+1 − eriti

ti+1 − ti
(4.1.12)

bi =
erititi+1 − eri+1ti+1ti

ti+1 − ti
. (4.1.13)
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From equations (A.1.1) and (4.1.11) it follows that

r(t)t = ln
(
ai + bit

)
, (4.1.14)

implying that

f(t) =
bi

ai + bit
, (4.1.15)

for ti ≤ t ≤ ti+1. Note that f(t) will have a discontinuity at ti, unless

bi−1
ai−1 + bi−1ti

=
bi

ai + biti
.

4.1.4 Linear Interpolation on log(r(t))

Linear interpolation can be applied to the log of the zero coupon spot rates,
i.e. log(r(t)) can be modelled as

log(r(t)) = ai + bit, (4.1.16)

for ti ≤ t ≤ ti+1. By imposing the constraints that log(r(ti)) = log(ri), and
that log(r(ti+1)) = log(ri+1), we can easily solve for ai and bi to obtain

ai =
log(ri)ti+1 − log(ri+1)ti

ti+1 − ti
(4.1.17)

bi =
log(ri+1)− log(ri)

ti+1 − ti
. (4.1.18)

From equation (4.1.16) it follows that r(t) is given by

r(t) = eai+bit, (4.1.19)

implying that

f(t) = eai+biti + bite
ai+biti

= ri(1 + bit), (4.1.20)

for ti ≤ t ≤ ti+1. Note that f(t) will have a discontinuity at ti, unless

eai−1+bi−1ti(1 + bi−1ti) = eai+biti(1 + biti).

Equation (4.1.19) implies that it is impossible to obtain negative spot rates
under this particular method, making linear interpolation on logr(t) ill-suited
for interpolating real interest rate. Furthermore, f(t) will be negative if

log(ri)− log(ri+1) >
ti+1 − ti

ti
,

implying that linear interpolation on log(r(t)) is not necessarily arbitrage free.
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Hagan and West (2006) use the curve given in Table 4.1 to illustrate the
inadequacies of various methods of interpolation. This curve will be used
throughout this dissertation for the same purpose. Note that for this particular
curve, the set of discount factors are strictly decreasing, implying that the input
set of rates is arbitrage free. When interpolating this curve, we should obtain
an interpolation function that is still arbitrage free.

ti ri(%) Zi
0.1 8.1 0.922193691
1 7 0.496585304
4 4.4 0.172044864
9 7 0.001836305
20 4 0.000335463
30 3 0.00012341

Table 4.1: Example used by Hagan and West (2006) to illustrate the inade-
quacies of various methods of interpolation.

Figure 4.1 shows the instantaneous forward rate curves associated each of the
variations of linear interpolation that were considered in this chapter, when
applied to the rates in Table 4.1. As expected, all four methods exhibit dis-
continuities at the knot points. Furthermore, the curves produced by linear
interpolation on r(t), and linear interpolation on log(r(t)) are negative between
the 8 to 10 year region.
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Figure 4.1: Forward curves (%) obtained by applying several variations of
linear interpolation to the rates in Table 4.1.

4.2 Cubic Interpolation

The cubic interpolation function is defined as follows

r(t) = ai + bi(t− ti) + ci(t− ti)2 + di(t− ti)3, (4.2.1)

for ti ≤ t ≤ ti+1. Sticking to the notation of Hagan and West (2006), define
hi := ti+1 − ti, and mi := (ai+1 − ai)/hi. The interpolation function is typi-
cally required to satisfy the following conditions:

1. The interpolation function should return all input zero coupon spot rates.

2. The interpolation function should be continuous.

3. It is typically required that the interpolation function be differentiable.
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Condition (1) be met by requiring that

ai = ri, (4.2.2)

for i = 1, 2, ..., n− 1, and that

an−1 + bn−1hn−1 + cn−1h
2
n−1 + dn−1h

3
n−1 = rn := an. (4.2.3)

Condition (2), i.e. continuity in the spot rate function can be achieved by
requiring that r(ti)+ = r(ti)

−, for i = 2, 3, ..., n− 1, i.e. by requiring that

ai + bihi + cih
2
i + dih

3
i = ai+1, (4.2.4)

for i = 1, 2, ..., n− 2.

Condition (3) implies continuity in r′(t), which can be achieved by requiring
that r′(ti)+ = r′(ti)

−, for i = 2, 3, ..., n− 1, i.e. by requiring that

bi + 2cihi + 3dih
2
i = bi+1, (4.2.5)

for 1 = 1, 2, ..., n− 2.

Note that the set of equations (4.2.3), (4.2.4), (4.2.5) and (4.2.6) form a system
of 3n− 4 equations in 4n− 4 unknowns. An extra n constraints are thus
necessary before the system can be solved. Hagan and West (2006) define

bn = bn−1 + 2cn−1hn−1 + 3dn−1h
2
n−1, (4.2.6)

and note that if the values of bi are known, for i = 1, 2, .., n, then the values of
ci and di can easily be obtained. Equations (4.2.3), and (4.2.4) imply that

di =
mi − bi − cihi

h2i
, (4.2.7)

for i = 1, 2, ..., n− 1. Similarly, equations (4.2.5), (4.2.6) and (4.2.7) imply
that

ci =
3mi − bi+1 − 2bi

hi
(4.2.8)

⇒ di =
bi+1 + bi − 2mi

h2i
, (4.2.9)

for i = 1, 2, ..., n− 1.
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4.2.1 Natural Cubic Splines

The so-called natural boundary conditions are as follows:

1. The spot rate function is required to be smooth, i.e. twice differen-
tiable. This can be achieved by requiring that r′′(ti)+ = r′′(ti)

−, for
i = 2, 3, ..., n− 1, i.e. by requiring that

ci + 3dihi = ci+1 (4.2.10)

for i = 1, 2, . . . n− 2.

2. The values r′′(t1) and r′′(tn) are both set equal to zero, i.e. we require

c1 + 3d1h1cn−1 + 3dn−1hn−1 = 0. (4.2.11)

Equations (4.2.3), (4.2.4), (4.2.5), (4.2.6), (4.2.10) and (4.2.11) define a system
of 4n− 4 equations in 4n− 4 unknowns. Burden and Faires (2005) apply the
Crout Factorization Algorithm for Tridiagonal Linear Systems to the resulting
system of equations in order to derive the following solution algorithm:

Input: t1, ..., tn; r1, ..., rn, a1 = r1, ..., an = rn.
Output: ai, bi, ci, di for i = 1, ..., n− 1.

1. for i = 1, 2, ..., n− 1 set

αi =
3

hi
(ai+1 − ai)−

3

hi−1
(ai − ai−1).

2. set l1 = 1, µ1 = 0, z1 = 0.

3. for i = 2, 3, ...., n− 1 set

li = 2(ti+1 − ti−1)− hi−1µi−1,
µi = hi/li,

zi = (αi − hi−1zi−1)/li.

4. Set ln = 1, zn = 0, cn = 0.

5. for i = n− 1, n− 2, ..., 1 set

ci = zi − µici+1,

bi = (ai+1 − ai)/hi − hi(ci+1 + 2ci)/3,

di = (ci+1 − ci)/(3hi).
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The asymptotic properties of a cubic spline applied to the spot rate function
are undesirable from an economic point of view. Typically, we will rely on flat
extrapolation of r(t), i.e. we will set r(t) = r1, for t < t1, and r(t) = rn, for
t > tn. Consider f(tn), equation (A.1.7) implies that

f(tn)+ = rn,

whilst from equation (4.2.1) we have that

f(tn)− = rn + tn
(
bn−1 + 2cn−1hn−1 + 3dn−1h

2
n−1
)
.

It follows that f(t) will have a discontinuity at tn, unless

bi + 2cihi + 3dih
2
i = 0.

Similarly,
f(t1)

− = r1, (4.2.12)

whilst
f(t1)

+ = r1 + t1b1.

It follows that f(t) will have a discontinuity at t1, unless b1 = 0. In an attempt
to remedy these discontinuities, researchers often fit natural cubic splines to
the r(t)t function. Under such circumstances, the interpolation function is
defined as

r(t)t = ai + bi(t− ti) + ci(t− ti)2 + di(t− ti)3. (4.2.13)

Under this approach researchers typically employ flat extrapolation of the
forward rate, and set f(t) = f1, for t < t1, and f(t) = fn, when t > tn. Note,
equation (4.2.13) implies that r(t1)+ = r1, whilst equation (A.1.8) implies that
r(t1)

− = f1. It follows that r(t) will have a discontinuity at t1, unless r1 = f1.
From equation (A.1.7) it follows that

r(t) =
rntn + (tn − t)fn

t
,

for t > tn, i.e.
r(tn)+ = r(tn)− = rn.

A natural cubic spline on r(t)t is thus capable of avoiding discontinuities at
tn, however, the spot rate function is likely to display a discontinuity at t1.
Neither a natural cubic spline on r(t), nor a natural cubic spline on r(t)t is
capable of ensuring a positive forward rate curve. Figure 4.2 shows the forward
rate curves obtained under both of these methods, when applied to the rates
in Table 4.1.
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4.2.2 Cubic Hermite Interpolation

The assumption underlying cubic Hermite interpolation is that the value of the
derivatives (with respect to time) are known at the knot points, let r′i denote
the value of these derivatives, for i = 1, 2, ..., n. The interpolation function is
then constructed such that r′(ti) = r′i, for i = 1, 2, ...., n. Note, the coefficients
ai, ci and di can be solved as before, whilst

bi = r′i, (4.2.14)

for i = 1, 2, ..., n.

In practice, we will rarely be able to observe the values of r′i, and will typically
have to rely on some sort of estimation method. Several methods are possible,
Hagan and West (2006) note one such method where r′i is estimated using a
standard three point difference formula. This method is what de Boor (1978,
2001) refers to as the “Bessel ” method.

Under the Bessel method, r′i is estimated as the slope at ti, of the quadratic
that passes through (ti−1, ri−1), (ti, ri) and (ti+1, ri+1), for i = 2, 3, ..., n− 1.
The end derivative r′1 is estimated as the slope at t1, of the quadratic that
passes through (t1, r1), (t2, r2) and (t3, r3), whilst r′n is estimated as the slope
at tn, of the quadratic that passes through (tn−2, rn−2), (tn−1, rn−1) and (tn, rn).
We thus have that

r′i =
1

ti+1 − ti−1

[(ti+1 + ti)(ri − ri−1)
ti − ti−1

− (ti − ti−1)(ri+1 − ri)
ti+1 − ti

]
,

for i = 2, 3, ..., n− 1, whilst

r′1 =
1

t3 − t1

[(t3 + t2 − 2t1)(r2 − r1)
t2 − t1

− (t2 − t1)(r3 − r2)
t3 − t2

]
,

and

r′n =
1

tn − tn−2

[(tn − tn−1)(rn−1 − rn−2)
tn−1 − tn−2

− (2tn − tn−1 − tn−2)(rn − rn−1)
tn − tn−1

]
.

As with natural cubic splines, extrapolation is performed by assuming that
r(t) = r1, when t < t1, and that r(t) = rn, when t > tn. Again, discontinuities
in f(t), at t1 and tn are extremely likely. The “Bessel ” method can also be
applied to the r(t)t function. Here we assume that the values of the derivatives
of r(t), i.e. the values of f(t), are known at the knot points.

Figure 4.2 shows the forward rate curves obtained by applying the “Bessel ”
on r(t), and the “Bessel ” on r(t)t methods, to the rates in Table 4.1. Clearly,
neither of these methods are capable of guaranteeing a positive forward rate
curve.
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Figure 4.2: Forward curves (%) obtained by applying several variations of
cubic interpolation to the rates in Table 4.1.

4.3 Quartic Interpolation

Adams (2001) suggests modelling f(t) as a fourth degree polynomial, see also
Adams and van Deventer (1994), and Lim and Xiao (2002). By requiring
continuity in f(t), f ′(t), f ′′(t) and f ′′′(t), a system of equations together with a
solution algorithm similar to that developed in Section 4.2.1 can be developed
to solve the coefficients of the spline. Hagan and West (2006), however, show
that such splines can produce forward rate curves that are wildly oscillating.

In this section, we consider a variation of the method proposed by Adams
(2001), and model r(t)t as a fifth degree polynomial, under the assumption
that the values of f d

dt
r(t)t, i.e. the values of f(t) are known at the knot

points. Furthermore, we assume that the values of f ′(t) are known at the knot
points.
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The quartic interpolation function is then defined as

r(t)t = ai + bi(t− ti) + ci(t− ti)2 (4.3.1)
+ di(t− ti)3 + ei(t− ti)4 + gi(t− ti)5,

for ti ≤ t ≤ ti+1. We require the interpolation function to return the val-
ues riti, fi and f ′i , for i = 1, 2, ..., n. Furthermore, we require continuity in
r(t)t, f(t) and f ′(t). Note, if r(ti)t+i = riti, for i = 1, 2, ..., n− 1, the interpo-
lation function will return the set of inputs, riti, for i = 1, 2, ..., n− 1. Con-
tinuity in r(t)t can then be achieved by also requiring that r(ti)− = riti, for
i = 2, 3, ..., n. These requirements imply that

riti = ai, (4.3.2)

and that
ri+1ti+1 = ai + bihi + cih

2
i + dih

3
i + eeih

4
i + eih

5
i , (4.3.3)

for i = 1, 2, ...., n− 1.

Similarly, we will require that f+
i = fi, for i = 1, 2, ..., n− 1, and that f−i = fi,

for i = 2, 3, ...., n, implying that

fi = bi, (4.3.4)

and that
fi+1 = bi + 2cihi + 3dih

2
i + 4eih

3
i + 5gih

4
i , (4.3.5)

for i = 1, 2, ...., n− 1.

Also, we will require that (f ′i)
+ = f ′i , for i = 1, 2, ..., n− 1, and that (f ′i)

− = f ′i ,
for i = 2, 3, ...., n, implying that

f ′i = 2ci, (4.3.6)

and that
f ′i+1 = 2ci + 6dihi + 12eih

2
i + 20gih

3
i , (4.3.7)

for i = 1, 2..., n− 1. From equations (4.3.2) to (4.3.7) it then follows that

ri+1ti+1 − riti − fihi −
1

2
f ′ih

2
i = dih

3
i + eih

4
i + gih

5
i (4.3.8)

fi+1 − fi − f ′ihi = 3dih
2
i + 4eih

3
i + 5gih

4
i (4.3.9)

f ′i+1 − f ′i = 6fihi + 12eih
2
i + 20gih

3
i , (4.3.10)

for i = 1, 2, ..., n− 1.
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Equations (4.3.8), (4.3.9) and (4.3.10) can simultaneously be solved to obtain

di = 10αi − 4βi +
1

2
θi (4.3.11)

ei =
1

hi

(
− 15αi + 7βi − θi

)
(4.3.12)

gi =
1

h2i

(
6αi − 3βi +

1

2
θi
)
, (4.3.13)

where

αi =
1

h3i

(
ri+1ti+1 − riti − fihi −

1

2
fih

2
i

)
βi =

1

h2i

(
fi+1 − fi − f ′ihi

)
θi =

1

hi

(
f ′i+1 − f ′i

)
,

for i = 1, 2, ..., n− 1. As mentioned earlier, the assumption underlying this
method is that the values of fi and f ′i are known, for i = 1, 2, ..., n. Typically,
we will know these values at the outset, but will rather have to estimate these
values by applying the same three point difference formula described in Section
4.2.2. Figure 4.3 shows the forward curve obtained when applying the quartic
method developed here, to the rates in Table 4.1. Clearly, this method is also
incapable of ensuring a positive forward rate curve.
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Figure 4.3: Forward curve (%) obtained by applying quartic interpolation to
the rates in Table 4.1.
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4.4 Remarks

In this chapter, we surveyed a number of “traditional” methods of interpolation.
We considered several variations of linear and cubic interpolation, as well as
a quartic method. Our aim was to assess the suitability of each of these
methods, when applied to yield curve data. Each of the methods considered
in this chapter were found to be ill-suited for interpolating yield curve data;
either in terms of continuity in f(t), or in terms of the monotonicity of Z(t).

 
 
 



Chapter 5

Monotone Convex Interpolation

Hagan and West (2006) introduced the monotone convex method of interpo-
lation. This was one of the first methods specifically designed to interpolate
yield curve data. The merits of a method specifically designed for interpolat-
ing yield curve data is justified in light of the fact that none of the so-called
“traditional” methods are capable of ensuring a forward curve that is both
positive and continuous.

In this chapter we will review the method of Hagan and West (2006), and
assess whether or not this method displays the same difficulties associated
with “traditional” methods. Note that much of this chapter will be a reprise
of Hagan and West (2006), and Hagan and West (2008).

5.1 Suitable Forward Rates

The monotone convex method is defined on f(t). As such, an initial set of
points fi, i = 1, 2, ..., n, is required before interpolation can commence. This
immediately poses a concern seeing as one would almost never start off with a
set of points on the instantaneous forward rate curve. These rates must thus
be estimated.

Consider the set of discrete forward rates fdi , for i = 1, 2, ..., n, calculated as

fdi =
riti − ri−1ti−1
ti − ti−1

. (5.1.1)

The assumption underlying fd1 is that t0 = r0 = 0. Hagan and West (2006)
then model fi, i = 1, 2, ..., n− 1, as the slope at time ti, of the quadratic that
passes through (ti−j, f

d
i−j), for j = 1, 0,−1. The instantaneous forward rates

at the end points, i.e. f0 and fn are chosen so as to ensure f ′0 = 0 = f ′n.

38
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The instantaneous forward rates are thus estimated as

fi =
ti − ti−1
ti+1 − ti−1

fdi+1 +
ti+1 − ti
ti+1 − ti−1

fdi , (5.1.2)

for i = 1, 2, ..., n− 1, whilst

f0 = fd1 −
1

2
(f1 − fd1 ) (5.1.3)

fn = fdn −
1

2
(fn−1 − fdn). (5.1.4)

5.2 The Basic Interpolator

The monotone convex method is defined as an interpolation method on f(t),
and as such, we would expect the method to return the input set of instan-
taneous forward rates; fi, for i = 0, 1, ..., n. Furthermore, we require conti-
nuity in f(t), which can be obtained by requiring that f(ti)

+ = f(ti)
− = fi,

for i = 1, 2, ..., n− 1, i.e. by requiring that f(ti) = fi, and f(ti−1) = fi−1, for
i = 1, 2, ..., n. The interpolation function is also required to return the input
set of zero-coupon spot rates. Note, equation (A.1.9) implies that

r(ti)ti = r(ti−1)ti−1 +

∫ ti

ti−1

f(τ)dτ

=⇒ r(ti)ti − r(ti−1)ti−1 =

∫ ti

ti−1

f(τ)dτ

=⇒ fdi =
1

ti − ti−1

∫ ti

ti−1

f(τ)dτ. (5.2.1)

It follows that if equation (5.2.1) is satisfied, the method will reproduce the
input set of zero-coupon spot rates. The monotone convex method is thus
constrained to satisfy:

f(ti−1) = fi−1 (5.2.2)
f(ti) = fi (5.2.3)

1

ti − ti−1

∫ ti

ti−1

f(τ)dτ = fdi . (5.2.4)

for i = 1, 2, ..., n.
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Hagan and West (2006) then define x(t) = t−ti−1

ti−ti−1
, for ti−1 ≤ t ≤ ti and postu-

late

f(t) = K + Lx(t) +Mx(t)2. (5.2.5)

Equation (5.2.5) can be used in conjunction with conditions (5.2.2), (5.2.3)
and (5.2.4) to produce the following system of equations

fi−1 = K (5.2.6)
fi = K + L+M (5.2.7)

fdi =
1

ti − ti−1

∫ ti

ti−1

[
K + Lx(s) +Mx(s)2

]
ds. (5.2.8)

Note that equation (5.2.8) can be reformulated as

1

2
L+

1

3
M = fdi − fi−1, (5.2.9)

whilst equations (5.2.6), and (5.2.7) imply that

L = fi − fi−1 −M. (5.2.10)

The system of equations implied by equations (5.2.9) and (5.2.10) are then
easily solved to obtain

M = 3fi + 3fi−1 − 6fdi , (5.2.11)

and

L = −2fi − 4fi−1 + 6fdi . (5.2.12)

The instantaneous forward rate f(t), can thus be rewritten as

f(t) =
(
1− 4x(t) + 3x(t)2

)
fi−1 +

(
− 2x(t) + 3x(t)2

)
fi

+
(
6x(t)− 6x(t)2

)
fdi , (5.2.13)

for ti−1 ≤ t ≤ ti.
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5.3 Enforcing Monotonicity on f (t)

In order to analyse the monotonicity of f(t), Hagan and West (2006) define

g(x) = f(t)− fdi . (5.3.1)

From equations (5.2.13) and (5.3.1) it follows that

g(x) = g(0)(1− 4x+ 3x2) + g(1)(−2x+ 3x2), (5.3.2)

from where
g′(x) = g(0)(−4 + 6x) + g(1)(−2 + 6x). (5.3.3)

Hagan and West (2006) seek to construct an interpolation function that pre-
serves the geometry of f(t). This implies that if fi−1 < fdi < fi, then f(t)
should be increasing on [ti−1, ti], whilst if fi−1 > fdi > fi, then f(t) should be
decreasing on [ti−1, ti]. These requirements imply that g should be monotone
when g(0) and g(1) are not of the same sign.

Hagan and West (2006) analyse the monotonicity of g(x) by analysing the
behaviour of g′(x) at 0 and 1. Furthermore, these authors show that the cases
where g′(0) = 0 and g′(1) = 0 correspond to g(1) = −2g(0) and g(0) = −2g(1)
respectively. These two lines can then be seen to divide the g(0)/g(1) plane
into eight sectors, as illustrated in Figure 5.1.

g(0) = −2g(1)

B

g(1) = −2g(0)

A

(i)

(i) (ii)

(ii)

(iii)

(iii)

(iv)

(iv)

g(0)

g(1)

D

C

Figure 5.1: Possibilities for g.
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The eight sectors illustrated in Figure 5.1 are then divided into four groups,
labelled (i) to (iv), defined as:

(i) {g(0) > 0,−1
2
g(0) ≥ g(1) ≥ −2g(1)} or {g(0) < 0,−1

2
g(0)≤ g(1) ≤ −2g(1)}.

(ii) {g(0) < 0, g(1) > −2g(0)} or {g(0) > 0, g(1) < −2g(0)}.

(iii) {g(0) > 0, 0 > g(1) > −1
2
g(0)} or {g(0) < 0, 0 < g(1) < −1

2
g(0)}

(iv) {g(0) ≥ 0, g(1) ≥ 0} or {g(0) ≤ 0, g(1) ≤ 0}.

The monotonicity of g(x) in each of these four groups can then be analysed as
follows:

Group Monotonicity
(i) g(0) and g(1) are of opposite sign whilst g′(0) and g′(1) are of the

same sign; g is thus monotone, as required.
(ii) g(0) and g(1) are of opposite sign whilst g′(0) and g′(1) are also of

opposite sign; g is thus not monotone. The interpolation function
has to be modified for this region. Note, special attention needs to be
given to ensure that the formulas for (i) and (ii) agree on the boundary
A.

(iii) g(0) and g(1) are of opposite sign whilst g′(0) and g′(1) are also of
opposite sign; g is not monotone in this region. The interpolation
function has to be modified for this region. Note, special attention
needs to be given to ensure that the formulas for (i) and (iii) agree on
the boundary B.

(iv) g(0) and g(1) are of the sign; g is not required to be monotone. The
only modifications that are necessary are to ensure that the formulas
for (iv) and (ii) agree on C, and that those for (iv) and (iii) agree on
D.

Note that at A, we have that g(1) = −2g(0), and the interpolation function
for (i) reduces to

g(x) = g(0)(1− 4x+ 3x2)− 2g(0)(−2x+ 3x2)

= g(0)(1− 3x2).

Similarly at B, we have that g(1) = −1
2
g(0), and the interpolation function for

(i) reduces to

g(x) = g(0)(1− 4x+ 3x2)− 1

2
g(0)(−2x+ 3x2)

= g(0)(1− 3x+
3

2
x2).
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The interpolation function can now be defined for (ii) and (iii), where we will
ensure that the interpolation function for (ii) reduces to g(0)(1− 3x2) at A,
and that the interpolation function for (iii) reduces to g(0)(1− 3x+ 3

2
x2) at B.

In order to construct the interpolation formulas for (ii), (iii), and (iv), Hagan
and West (2006) proceed as follows:

1. For the sectors comprising (ii), Hagan and West (2006) model g(x) as

g(x) =


g(0) 0 ≤ x ≤ η

g(1) + (g(1)− g(0))

(
x− η
1− η

)2

η < x ≤ 1

where

η = 1 + 3
g(0)

g(1)− g(0)

=
g(1) + 2g(0)

g(1)− g(0)
.

Constructing g in this fashion ensures that g is monotonic, as desired, and
that

∫ 1

0
g(x)dx = 0. Furthermore, we have that η → 0 as g(1)→ −2g(0),

which implies that g(x) = g(0)(1− 3x2) at A.

2. For the sectors comprising (iii), Hagan and West (2006) model g(x) as

g(x) =

 g(1) + (g(1)− g(0))

(
x− η
1− η

)2

0 ≤ x < η

g(1) η ≤ x ≤ 1

where

η = 3
g(1)

g(1)− g(0)
.

Constructing g in this fashion ensures that g is monotonic, as desired,
and that

∫ 1

0
g(x)dx = 0. Also, η → 1 as g(1)→ −1

2
g(0), implying that

g(x) = g(0)(1− 3x+ 3
2
x2) at B.

3. For the sectors comprising (iv) we seek an interpolation function that
will reduce to the formula given by (ii) at C, and to the formula given
by (iii) at D. Hagan and West (2006) achieve this by defining g as

g(x) =


A+ (g(0)− A)

(
η − x
η

)2

0 < x < η

A x = η

A+ (g(1)− A)

(
x− η
1− η

)2

η < x < 1
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where

η =
g(1)

g(1) + g(0)

A = − g(0)g(1)

g(0) + g(1)
.

The choices forA and η ensures that the formula for (ii) and (iv) converge
at g(0) = 0, and that the formula for (iii) and (iv) converge at g(1) = 0,
and that

∫ 1

0
g(x)dx = 0.

5.4 Enforcing Positivity on f (t)

Equation (5.3.1) implies that f will be positive if

g(x) ≥ −fdi . (5.4.1)

Assume that fdi ≥ 0, for i = 1, 2, ..., n, and fi ≥ 0, for i = 0, 1, ..., n, i.e. assume
the input set of discount factors are strictly decreasing. It is trivial to see that
condition (5.4.1) will be met at ti, for i = 1, 2, ..., n.

The interpolation function is constructed such that g is monotone on the inter-
vals (i), (ii) and (iii). It follows that condition (5.4.1) will be met throughout
each of these intervals (if the inequality is met at the endpoints of the interval,
and the interpolation function is monotone on the entire interval, then the
inequality must be met throughout the entire interval). The only group that
requires further analysis is (iv); consider the following scenarios:

1. g(0), g(1) ≤ 0: Here we have that g′(1) ≤ 0 and g′(0) ≥ 0, implying that
g is concave down. It follows that g(x) ≥ −fdi , for x ∈ (0, 1), since

g(x) ≥ min(g(0), g(1)) ≥ −fdi .

2. g(0,g(1) ≥ 0: Here we have that g′(1) ≥ 0, and g′(0) ≤ 0, implying that
g is concave up, with a local minimum at

g(x) = − g(0)g(1)

g(0) + g(1)
.

It follows that if
− g(0)g(1)

g(0) + g(1)
≥ −fdi ,

then we must have that g(x) > −fdi , for x ∈ (0, 1), since

g(x) ≥ − g(0)g(1)

g(0) + g(1)
≥ −fdi .
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The sufficient condition for f to be positive is thus

g(0)g(1)

g(0) + g(1)
≤ fdi . (5.4.2)

Note that if 0 < g(0), g(1) ≤ 2fdi , then

g(0) + g(1)

g(0)g(1)
=

1

g(0)
+

1

g(1)

≥ 1

2fdi
+

1

2fdi

=
1

fdi
, (5.4.3)

from where
g(0)g(1)

g(0) + g(1)
≤ fdi ,

as long as 0 < g(0), g(1) ≤ 2fdi , which is equivalent to requiring that fi, fi−1 ≤ 3fdi .
The instantaneous forward curve will thus be positive, as long as fi, fi−1 ≤ 3fdi ,
for i = 1, 2, ..., n. Hagan and West (2006) note that the instantaneous forward
curve should be kept well away from any negative values, and thus choose to
enforce a slightly tighter clamping; these authors require that fi, fi−1 ≤ 2fdi .

Figure 5.2 shows the spot and forward rate curves that were obtained by ap-
plying the monotone convex method to the rates in Table 4.1. Of the methods
considered thus far, this is the only method capable of producing a forward
rate curve that is both positive and continuous, for this particular example.
Note that from equation (A.1.9) it follows that the spot rate function can be
calculated as

r(t) =
(
ri−1ti−1 +

∫ t

ti−1

g(x(s))ds+ fdi−1(ti − ti−1)
)
/t, (5.4.4)

where ti−1 ≤ t ≤ ti.
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Figure 5.2: Spot and forward rate curves (%) obtained by applying the mono-
tone convex method to the rates in Table 4.1.

5.5 Continuity in f (t)

In this section we illustrate a potential weakness of the monotone convex
method; after altering the interpolation function to preserve the monotonic-
ity of f(t), the method no longer guarantees continuity in f(t). Consider the
scenario where g(0) = 0. The group under consideration is thus (iv), and the
interpolation function is given by

g(x) =


A+ (g(0)− A)

(
η − x
η

)2

0 < x < η

A x = η

A+ (g(1)− A)

(
x− η
1− η

)2

η < x < 1

where

η =
g(1)

g(1) + g(0)

A = − g(0)g(1)

g(0) + g(1)
.

Under this particular scenario η = 1, A = 0, to the effect that g(x) = 0, for
x ∈ (0, 1), implying that f(t) = fdi , for ti−1 ≤ t ≤ ti. The problem that arises
is that unless fdi = fi, f(t) will have a discontinuity at ti, since we will have
that

f(ti)
− = fdi 6= fi = f(ti)

+. (5.5.1)
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t r(t) fdi fi
0.1 5.00 5.00 5.00
4 5.00 5.00 5.00
10 5.00 5.00 5.00
20 5.00 5.00 4.25
30 4.50 3.50 3.125

Table 5.1: Example illustrating how the monotone convex method can produce
discontinuous forward rates. Note, all rates are expressed as percentages.

Consider the curve in Table 5.1, and note that g(0) is zero for 10 ≤ t < 20.
As such, f(t4)

− = 5% 6= 4.25% = f4 = f(t4)
+, implying that f(t) will have a

discontinuity at t = 20, as seen in Figure 5.3.
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Figure 5.3: Spot curve and forward curves (%) obtained by applying the mono-
tone convex method to the rates in Table 5.1.

5.6 Remarks

In this chapter we surveyed the monotone convex method of interpolation, in-
troduced by Hagan and West (2006). We saw that, of the methods considered
thus far, this is the only method capable of producing a positive and continu-
ous forward rate curve, when applied to the rates in Table 4.1. The forward
rate curves produced under monotone convex interpolation are however non-
differentiable; a problematic property when calibrating term structure models,
like the models of Hull (2006), Ho and Lee (1986) and Cox et al. (1977). Fur-
thermore, we identified a scenario under which the monotone convex method
produces a discontinuity in the forward rate curve.

 
 
 



Chapter 6

Monotone Preserving r(t)t
Interpolation

Much research was done in the 1970’s and 1980’s in the field of shape preserving
cubic Hermite interpolation. Akima (1970), Fritsch and Carlson (1980) and
de Boor and Swartz (1977) are but a few authors that attempted to construct
a cubic interpolation function that is capable of preserving the monotonicity
of its inputs. In this chapter, we will apply the theory of monotone preserving
cubic interpolation, in order to develop an arbitrage free method for interpo-
lating yield curve data. We label this method the monotone preserving r(t)t
method.

6.1 The Interpolation Function

Consider an interpolation function of the following form

r(t)t = ai + bi(t− ti) + ci(t− ti)2 + di(t− ti)3, (6.1.1)

where ti ≤ t ≤ ti+1. We wish to estimate the parameters ai, bi, ci and di so as
to ensure that the interpolation function preserves the monotonicity of r(t)t.
We thus seek an interpolation function that satisfies the following conditions:

1. All input rates must be reproduced. The interpolation function must
thus satisfy r(ti)ti = riti, for i = 1, 2, ..., n.

2. We require continuity in the spot rate, i.e. the interpolation function
must satisfy rit+i = rit

−
i , for i = 1, 2, ..., n.

3. We require continuity in the forward rate curve, i.e. the interpolation
function must satisfy f+

i = f−i , for i = 1, 2, ..., n.

48
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4. We require that the interpolated yield curve be arbitrage free, i.e. r(t)t
must be monotone increasing. We will omit this requirement when deal-
ing with real (i.e. inflation-linked) curves.

A similar analysis to that done in Section 4.2.2 can be used to show that

ai = riti

bi = fi

ci =
3fdi+1 − bi+1 − 2bi

hi

di =
bi+1 + bi − 2fdi+1

h2i
,

for i = 1, 2, ..., n− 1, where we assume that bn = fn, and where fdi is calculated
as

fdi =
riti − ri−1ti−1
ti − ti−1

,

for i = 1, 2, ..., n. At the outset, the values of the fi’s will not be known,
and will have to be estimated. We will use the same three point difference
formula used by Hagan and West (2006) in order to estimate the value of fi,
for i = 1, 2, ..., n. The work done by Akima (1970), Fritsch and Carlson (1980),
and de Boor and Swartz (1977) focusses on methods for estimating the fi’s, so
as to ensure that the interpolation function preserves the shape of its inputs.

6.2 The Monotonicity Region for r(t)t

Hyman (1983) notes a simple generalisation of what was recognised by de Boor
and Swartz (1977), namely that if the data is locally increasing at ti, and if

fi ≤ 3min(fdi+1, f
d
i ), (6.2.1)

then r(t)t will be monotone in the interval (ti, ti+1), for i = 1, 2, ..., n− 1.
Fritsch and Carlson (1980) independently developed the same monotonicity
condition. We will use the analysis developed by Fritsch and Carlson (1980)
to prove the monotonicity region for r(t)t.

Assume that r(t)t is as in equation (6.1.1), and that the set of discrete for-
ward rates fdi , for i = 1, 2..., n, are all positive. Furthermore, assume that the
instantaneous forward rates fi, for i = 1, 2, ...., n, are all positive.
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Note, under this method f(t) is given by

f(t) = bi + 2ci(t− ti) + 3di(t− ti)2

= fi +
2(−2fi − fi+1 + 3fdi+1)

hi
(t− ti)

+
3(fi + fi+1 − 2fdi+1)

h2i
(t− ti)2, (6.2.2)

for ti ≤ t ≤ ti+1, whilst f ′(t) is given by

f ′(t) = 2ci + 6di(t− ti)

=
2(−2fi − fi+1 + 3fdi+1)

hi

+
6(fi + fi+1 − 2fdi+1)

h2i
(t− ti). (6.2.3)

In order to establish the monotonicity condition implied by equation (6.2.1),
we need to distinguish between three different scenarios:

1. fi + fi+1 − 2fdi+1 = 0

2. fi + fi+1 − 2fdi+1 < 0

3. fi + fi+1 − 2fdi+1 > 0.

Consider the scenario where fi + fi+1 − 2fdi+1 = 0. In this case f(t) is a straight
line connecting fi and fi+1. Since fi, fi+1 ≥ 0, we have that f(t) ≥ 0 for
t ∈ (ti, ti+1), implying that r(t)t is monotone increasing under this scenario.

Consider the scenario where fi + fi+1 − 2fdi+1 < 0. In this case f(t) is a parabola
which is concave down, implying that f(t) ≥ min(fi, fi+1) ≥ 0.

Finally, consider the scenario fi + fi+1 − 2fdi+1 > 0. In this case f(t) is a
parabola which is concave up, i.e. f(t) has a unique minimum in [ti, ti+1].
Since fi, fi+1 ≥ 0, it must follow that if this unique minimum is greater than
zero, then f(t) ≥ 0 for t ∈ (ti, ti+1).

The only scenario that requires further analysis is where fi + fi+1 −2fdi+1 > 0.
Observe that under this particular scenario f(t) has a local minimum at

t∗ = ti +
hi(2fi + fi+1 − 3fdi+1)

3(fi + fi+1 − 2fdi+1)
, (6.2.4)

and the value of f at t∗ is given by

f(t∗) = fi −
(2fi + fi+1 − 3fdi+1)

2

3(fi+1 + fi − 2fdi+1)
, (6.2.5)
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It is trivial to note that r(t)t will be monotone increasing in (ti, ti+1) if one of
the following conditions is satisfied:

1. t∗ < ti or t∗ > ti+1.

2. f(t∗) ≥ 0.

Fritsch and Carlson (1980) define α = fi/f
d
i+1, and β = fi+1/f

d
i+1, from where

we can rewrite t∗ and f(t∗) as

t∗ = ti +
hi(2αi + βi − 3)

3(αi + βi − 2)
, (6.2.6)

and
f(t∗) = φ(αi, βi)f

d
i+1, (6.2.7)

where
φ(αi, βi) = αi −

1

3

(2αi + βi − 3)2

αi + βi − 2
. (6.2.8)

Assume that fi + fi+1 − 2fdi+1 > 0. Note, equation (6.2.6) implies that t∗ < ti
when

2αi + βi − 3 ≤ 0. (6.2.9)

Similarly, t∗ > ti+1 when

hi
3

(2αi + βi − 3)

(αi + βi − 2)
− hi ≥ 0, (6.2.10)

which is equivalent to requiring that αi + 2βi − 3 ≤ 0. Since fdi+1 ≥ 0, equation
(6.2.7) implies that f(t∗) ≥ 0, when

φ(αi, βi) ≥ 0

It follows that r(t)t will be monotone increasing on (ti, ti+1) if one of the
following conditions is satisfied:

1. αi + 2βi − 3 ≤ 0

2. 2αi + βi − 3 ≤ 0

3. φ(αi, βi) ≥ 0

4. αi + βi − 2 ≤ 0.

The final condition follows from the fact that f(t) ≥ 0 when fi + fi+1 − 2fdi+1 ≤ 0,
as proved earlier.
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Note, φ(αi, βi) = 0 is the ellipse described by

3αi(αi + βi − 2)− (2αi + βi − 3)2 = 0. (6.2.11)
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Figure 6.1: Region where φ(αi, βi) ≥ 0.

The region in which φ(αi, βi) ≥ 0 is illustrated by the grey shaded area in
Figure 6.1. Combining this ellipse with the three remaining monotonicity
constraints produces the monotonicity region in Figure 6.2. The shaded areas
represent the areas where r(t)t will be monotone increasing. The area bounded
by the α and β axis, and the dotted lines at α = 3 and β = 3 represents the
de Boor and Swartz (1977) monotonicity region. This region implies that if
αi, βi ≤ 3, then r(t)t will be monotone increasing.

Requiring that αi, βi ≤ 3 is equivalent to requiring that fi, fi+1 ≤ 3fdi+1, and
can be achieved by requiring that

fi ≤ 3min(fdi , f
d
i+1), (6.2.12)

for i = 1, 2, ..., n− 1. Note that if condition (6.2.12) is satisfied, then f(t) will
be positive on the interval (tn−1, tn), provided

fn ≤ 3fdn .

 
 
 



CHAPTER 6. MONOTONE PRESERVING R(T )T INTERPOLATION 53

As with the monotone convex method, we will require f(t) to stay well clear
of any negative values, thus, we will clamp fi as follows

fi = min(fi, 2min(fdi , f
d
i+1)), (6.2.13)

for i = 1, 2, ..., n− 1, and

fn = min(fn, 2f
d
n). (6.2.14)

Note that if negative forward rates are allowed, i.e. when considering inflation-
linked yield curves, we will simply omit the clamping proposed by equations
(6.2.13) and (6.2.14).
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Figure 6.2: Fritsch and Carlson Monotonicity Region.

6.3 Extrapolation

We will require that f be constant before t1 and after tn. More specifically,
we will require that f(t) = f1 when t < t1, and we will require that f(t) = fn
when t > tn. From equation (A.1.9) it follows that

r(t)t = r0t0 +

∫ t

0

f1dt

= f1t, (6.3.1)
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when t < t1. Similarly, we will require that

r(t)t = rntn +

∫ t

tn

fndt

= rntn + fn(t− tn), (6.3.2)

when t > tn.

6.4 Earlier Examples

Figure 6.3 shows the spot and forward rate curves that were obtained by
applying the monotone preserving r(t)t method to the rates in Table 4.1.
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Figure 6.3: Spot and forward curves (%) obtained by applying the monotone
preserving r(t)t method to the rates in Table 4.1.

For this particular example we see that both the spot and forward rate curves
produced by the monotone preserving r(t)t method look remarkably similar to
those produced under the monotone convex method. Like the monotone convex
method, the monotone preserving r(t) method is also capable of producing a
positive and continuous forward rate curve, for this particular example.

Figure 6.4 shows the spot and forward rate curves that were obtained by
applying the monotone preserving r(t)t method to the rates in Table 5.1.
The monotone preserving r(t)t method clearly does not suffer from the same
discontinuity in f(t), witnessed under the monotone convex method. However,
the increase in both f(t) and r(t), witnessed in the 10− 20 year region of the
curve makes little intuitive sense.
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Figure 6.4: Spot and forward rate curves (%) obtained by applying the mono-
tone preserving r(t)t method to the rates in Table 5.1.

6.5 Remarks

In this chapter, we introduced a new method for interpolating yield curve data.
This method, labelled as the monotone preserving r(t)t method, is capable of
ensuring forward rate curves that are both positive and continuous. However,
as for the monotone convex method, the forward curves produced under the
monotone preserving r(t)t method are non-differentiable at the knot points.
In Chapter 7 we analyse the locality of this method (amongst others), and we
investigate the performance of this method (amongst others) when applied to
actual market data.

 
 
 



Chapter 7

Implementation

In Chapters 4 to 6 we analysed the adequacy of various methods of interpo-
lation, for the purpose of interpolating yield curve data. Our assessment was
based solely on the continuity and positivity of the forward rate curve. Of the
methods that were considered, only the monotone convex and the monotone
preserving r(t)t methods performed adequately.

In this chapter, we will attempt to distinguish between the monotone convex
and the monotone preserving r(t)t methods, on grounds of locality and sta-
bility. For the sake of comparison, we will also analyse the locality and the
stability of the natural cubic spline method. Analysing the stability of the
aforementioned methods will require the bootstrapping of a historical set of
curves, and for this purpose, we will consider bootstrapping a historic set of
South African bond curves.

Furthermore, we will consider an example of the South African swap curve for
the purpose of:

1. Illustrating the effect that interpolation has on the mark-to-market of
instruments not included in the bootstrap, and to illustrate how arbitrage
opportunities might arise as a result of practitioners not using a unified
method of interpolation.

2. Illustrating how parsimonious models like those of Nelson and Siegel
(1987) (henceforth referred to as the NS model) and Svensson (1992)
(henceforth referred to as the NSS model), can be fitted to bootstrapped
yield curves.
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The smoothing of bootstrapped yield curves might be necessary for a number
of reasons, including:

1. No-Arbitrage models of the short-rate, like the models of Ho and Lee
(1986), and Hull and White (1990), that are calibrated off an observed
yield curve, require a differentiable forward curve. None of the arbitrage-
free methods of interpolation that have been considered thus far satisfy
this property.

2. Bootstrapping frequently produces forward rate curves that make little
sense from an economic point of view. This is of particular concern to
monetary policy makers concerned about expectations of future interest
rates. As such, monetary policy makers often prefer parametric yield
curve models (see the Bank For International Settlements (2005)).

We conclude this chapter with an analysis of the performance of the NS and
the NSS models, when calibrated to a set of bootstrapped South African swap
curves.

7.1 Locality

If we change the value of an input at ti, then we would like to know the interval
(ti−l, ti+u), on which the interpolated yield curve values change. Hagan and
West (2006) define l and u as locality indeces, and use them to determine the
degree to which an interpolation algorithm is local.

7.1.1 Monotone Preserving r(t)t

Under this method, the interpolation function is given by

r(t) =
1

t

(
ai + bi(t− ti) + ci(t− ti)2 + di(t− ti)3

)
, (7.1.1)

for ti ≤ t ≤ ti+1, where

ai = riti

bi = fi

ci =
3mi − bi+1 − 2bi

hi

di =
bi+1 + bi − 2mi

h2i
.
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The discrete set of instantaneous forward rates fi, for i = 1, 2, ..., n, are esti-
mated as follows

fi =
ti − ti−1
ti+1 − ti−1

fdi+1 +
ti+1 − ti
ti+1 − ti−1

fdi , (7.1.2)

for i = 1, 2, ..., n− 1, whilst

fn = fdn −
1

2
(fn−1 − fdn). (7.1.3)

Changing the value of ri would clearly affect the values of fdi and fdi+1. It
follows from equation (7.1.2) that changing the value of fdi would affect the
values of fi and fi−1, whilst changing the value of fdi+1 would affect the values
of fi+1 and fi. Changing the value of ri thus affects the values of fi−1, fi and
fi+1, which in turn, affects the coefficients ci−2, ci−1, ci and ci+1. The value
of r(t) will thus be affected on the interval (ti−2, ti+2). It follows that the
monotone preserving r(t)t method has locality indices l = u = 2.

7.1.2 Monotone Convex

Under this method, the interpolation function is given by

r(t)t = riti +

∫ t

ti

[K + Lx(s) +Mx(s)2]ds, (7.1.4)

for ti ≤ t ≤ ti+1, where1

K = fi (7.1.5)
L = −(4fi + 2fi+1 − 6fdi+1) (7.1.6)
M = 3fi + 3fi+1 − 6fdi+1. (7.1.7)

The instantaneous forward rates under this method are estimated as in equa-
tions (7.1.2) and (7.1.3). A similar analysis to that done for the monotone
preserving r(t)t method can then be used to show that the monotone convex
method also has locality indices l = u = 2.

1Before enforcing any monotonicity or positivity conditions.
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7.1.3 Natural Cubic Splines

The interpolation function under a natural cubic spline on r(t) is given by

r(t) = ai + bi(t− ti) + ci(t− ti)2 + di(t− ti)3, (7.1.8)

for ti ≤ t ≤ ti+1, where ai = ri, and bi, ci and di are found by applying the
Crout factorisation algorithm to the system described in Section 4.2.1. Un-
der the Crout factorisation algorithm, we firstly make use of ri and ti, for
i = 1, 2..., n, in order to obtain bn−1, cn−1 and dn−1. The values bn−i, cn−i, dn−i
for i = 2, 3, ..., n− 1, are then found recursively. It follows that if we change an
input at ti, then r(t) would be affected on the entire interval (t1, tn). It follows
that the natural cubic spline has locality indices l = i− 1 and u = n− i.
In order to illustrate the effect of locality, we consider rates in Table 4.1.
Figure 7.1 illustrates how the spot rate curves would change, under each of
the methods considered here, when changing the input at t = 4, from 4.4% to
5.4%.

7.2 Stability

If we change the value of an input at ti, then we would like to know by how
much the interpolated yield curve values can change in other sections of the
curve. Hagan and West (2006) suggest measuring this noise feature on spot
and forward rate curves via the following norms

‖M(r)‖ = sup
t

max
i

∣∣∣∣∣∂r(t)∂ri

∣∣∣∣∣ (7.2.1)

‖M(f)‖ = sup
t

max
i

∣∣∣∣∣∂f(t)

∂fi

∣∣∣∣∣ . (7.2.2)

Hagan and West (2006) estimate these norms by calculating the maximum
difference, in the supremum norm, between the original curve and any of the
2n curves obtained by changing any of the nodes up or down by one basis
point. These differences can be estimated by testing at discrete points along
the entire curve. The estimated norms are then expressed in terms of basis
points.

 
 
 



CHAPTER 7. IMPLEMENTATION 60

0 5 10 15 20 25 30
t

3

4

5

6

7

8

9

r(
t)

Original Curve
Blipped Curve

(a) Monotone Preserving r(t)t

0 5 10 15 20 25 30
t

3

4

5

6

7

8

9

r(
t)

Original Curve
Blipped Curve

(b) Monotone Convex

0 5 10 15 20 25 30
t

2

3

4

5

6

7

8

9

r(
t)

Original Curve
Blipped Curve

(c) Natural Cubic Spline on r(t)t

Figure 7.1: Original and “blipped” spot rate curves (%) obtained by applying
various methods of interpolation to the rates in Table 4.1. “Blipped” curves
obtained by changing the input at t = 4, from 4.4% to 5.4%.

In order to gauge the stability of the interpolation methods considered in this
chapter, we calculated ‖M(r)‖ and ‖M(f)‖, for a set of South African bond
curves spanning the period from 31 July 2000, to 4 February 2011. ‖M(r)‖ and
‖M(f)‖ were estimated by testing at discrete points along the entire curve, in
steps of one day each. For each of the curves under consideration, we used the
exact same set of inputs as those that were used to construct the corresponding
BEASSA perfect fit bond curves.

Method Mean Std Deviation
Monotone Preserving r(t)t 2.51575 0.94715
Monotone Convex 5.77360 16.41524
Natural Cubic Spline on r(t) 3.08915 1.45311

Table 7.1: Statistics for ‖M(r)‖ obtained by bootstrapping a historic set of
South African bond curves, under various methods of interpolation.
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Table 7.1 shows the average and standard deviation of ‖M(r)‖, obtained by
applying the aforementioned methods of interpolation, in order to bootstrap
our historical set of bond curves. Table 7.2 shows the corresponding statistics
for ‖M(f)‖.

Method Mean Std Deviation
Monotone Preserving r(t)t 18.95963 8.93328
Monotone Convex 40.06395 31.81627
Natural Cubic Spline on r(t) 25.01856 11.33013

Table 7.2: Statistics for ‖M(f)‖ obtained by bootstrapping a historic set of
South African bond curves, under various methods of interpolation.

The results in Table 7.2 and Table 7.1 suggest that both the spot and forward
rate curves produced under the monotone preserving r(t)t method is more
stable than the corresponding curves under the monotone convex method. In
order to justify this statement, consider the South African bond curve on
5 June 2003. Table 7.3 shows the inputs that were used to construct this
particular curve.

Instrument Rate (%)
Overnight call rate 13.00
R194 9.14
R153 9.15
R157 9.20
R186 8.66

Table 7.3: Inputs to the South African bond curve on 5 June 2003. Note, the
overnight call rate is expressed as a simple annual rate, whilst the yields on
the set of bonds are Nominal Annual Compounded Semi-annually (NACS).

Figure 7.2 shows the spot rate curves that were obtained by bootstrapping
the set of instruments in Table 7.3, under each of the interpolation methods
considered in this chapter. Furthermore, Figure 7.2 shows the curves that
were obtained after changing the yield to maturity of the R194, from 9.14%
to 9.15%, and then re-bootstrapping.

Clearly, changing the yield of the R194 has a significant effect on the curvature
of the short end of the yield curve, under the monotone convex method. Be-
cause of the excessive increase in curvature, we end up with a scenario where
changing the yield to maturity of the R194 by one basis point, leads to an
increase in the three day spot rate of around 230 basis points.
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Figure 7.2: Bootstrapped South African bond curves (%) on 5 June 2003,
together with the curves obtained by changing the yield to maturity of the
R194 from 9.14% to 9.15%, under various methods of interpolation.

7.3 Parametric Models

In Section 3.2.1 we discussed a procedure that can be used to calibrate the
Nelson and Siegel (1987) class of parsimonious yield curve models, given a set
of observed zero-coupon bond prices. The problem practitioners face when
attempting to apply this approach, is that we rarely observe a deep and liquid
zero-coupon bond market. We postulate using bootstrapped yield curves to
construct a set of hypothetical zero-coupon bond prices. These hypothetical
prices can then be used to calibrate parametric models.
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As an example, consider the South African swap curve on 10 February 2011.
In particular, consider bootstrapping this curve under each of the interpolation
methods considered earlier, and calculating a hypothetical set of zero-coupon
bond prices corresponding to a discrete set of maturities.

Consider using the calibration procedure discussed in Section 3.2.1 in order to
fit the NS, and NSS models to the abovementioned hypothetical set of zero-
coupon bond prices. Table 7.4 shows the rates that were used for calibration,
under each method of interpolation.

t NCS MC MP
0.003 5.27962 5.27962 5.27962
0.25 5.53633 5.53765 5.53754
0.5 5.57416 5.57474 5.57478
0.75 5.65288 5.65288 5.65288
1 5.76877 5.76877 5.76877
1.25 5.92658 5.92658 5.92658
1.5 6.10477 6.10475 6.10475
1.75 6.29204 6.29213 6.29213
2 6.49294 6.49309 6.49309
3 7.13443 7.13451 7.13451
4 7.58548 7.58556 7.58556
5 7.91565 7.9157 7.91573
6 8.15041 8.15045 8.15049
7 8.32019 8.32027 8.32027
8 8.43365 8.43373 8.43372
9 8.51187 8.51194 8.51193
10 8.55066 8.55072 8.55071
12 8.57822 8.57819 8.57818
15 8.51706 8.51736 8.51735
20 8.30855 8.30792 8.3079
25 8.08958 8.08945 8.08853
30 7.65908 7.66138 7.66073

Table 7.4: Spot rates (%) obtained by bootstrapping the South African swap
curve on 10 February 2011 under various methods of interpolation. NCS de-
notes natural cubic spline, MC denotes monotone convex, and MP denotes
monotone preserving r(t).

Figure 7.3 shows the curves that were obtained after calibrating the NS and
NSS models to the rates in Table 7.4. Both spot and forward curves are seen
to be remarkably similar, for both parsimonious models and across all methods
of interpolation.
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(c) Monotone Preserving r(t)t - NS
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(d) Natural Cubic Spline - NSS
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Figure 7.3: Spot and forward curves (%) obtained by applying the Nelson
and Siegel (1987), and Svensson (1992) models to various bootstrapped South
African swap curves on 10 February 2011.
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Table 7.5 shows the values of R2 that were obtained by calibrating the NS,
and NSS models to the rates in Table 7.4. For this particular example, the
NSS model is seen to perform slightly better than the NS model, across all
methods of interpolation.

Interpolation NS NSS
NCS 0.993564 0.997966
MC 0.993549 0.997970
MP 0.993554 0.997973

Table 7.5: Values of R2 obtained by applying the Nelson and Siegel (1987)
and Svensson (1992) models to the rates in Table 7.4. Here NCS denotes
natural cubic spline, MC denotes monotone convex, and MP denotes monotone
preserving r(t).

Historical Performance

In order to obtain an understanding as to which parsimonious model is best
suited for constructing accurate yield curves, we applied the NS and the NSS
models to a set of daily South African swap curves, spanning 31 August 2000
to 6 February 2011. Each curve was constructed by using the same set of
inputs as those used to construct the corresponding BEASSA swap curves.

Bootstrapping the daily set of swap curves was done by considering one method
of interpolation only, namely the monotone preserving r(t)t method. Since the
spot curves obtained by bootstrapping under different methods of interpolation
are unlikely to differ substantially, we would expect the calibration of any
parsimonious model to be largely unaffected by the method of interpolation
used to perform the bootstrap.

Figure 7.4 shows the values of R2 that were obtained by calibrating the NS
and the NSS models to our historic set of swap curves. Clearly, the NSS model
is capable of capturing the shape of the South African yield curve much better
than the NS model.
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Figure 7.4: Historic values of R2 obtained by applying the Nelson and Siegel
(1987), and Svensson (1992) models to a historic set of bootstrapped South
African swap curves.

Figure 7.4 shows that during the middle stages of 2003, as well as during the
early stages of 2009, the NS model performed extremely poorly at fitting the
South African swap curve. The NSS model was, however, seen to perform
well on a consistent basis. Figure 7.5 attempts to answer why the NS model
performed so poorly during the aforementioned periods. In particular, Figure
7.5 illustrates the fit provided by the NS and NSS models on 14 August 2003,
and on 2 April 2009.

During the middle stages of 2003, as well as towards the early stages of 2009,
the South African swap curve displayed two humps. During these stages,
the South African swap curve was decreasing at the short end (0-2 years),
increasing in the middle section (2-20 years), and again decreasing towards
the latter stages (20-30 years).

From Figure 7.5 it is clear that the NS model is ill-suited for fitting curves
with more than one hump. It is clear that the NSS model should be the model
of choice when attempting to fit a parametric function to observed yield curve
data. As noted by Bliss (1997), the NSS model can be extended further to
handle curves with more than two humps.
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Figure 7.5: Spot curves (%) obtained by applying the Nelson and Siegel (1987),
and the Svensson (1992) models to the South African swap curve on 4 August
2003 and on 2 April 2009.
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7.3.0.1 Asymptotic Properties

Parsimonious yield curve models are designed to make economic sense. We
would thus prefer the asymptotic properties of such models to make economic
sense. Recall from Section 3.2.2 that

lim
t→0

r(t) = β0 + β1,

and
lim
t→∞

r(t) = β0.

Figure 7.6 shows the values of β0 + β1 and r(40), for each of the swap curves
in our sample. We consider r(40) to be a more practical depiction of the level
of long-term interest rates than β0. Figure 7.6 suggests that the asymptotic
properties of the NSS model make economic sense.
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Figure 7.6: Historic asymptotic rates (%) of the Svensson (1992) model, when
applied to a historic set of South African swap curves.

7.4 Remarks

In this chapter we attempted to distinguish between the monotone convex,
and the monotone preserving r(t)t methods of interpolation, on grounds of
locality and stability. We found that, in terms of the stability, the perfor-
mance of the monotone preserving r(t)t method is slightly better. Further-
more, we illustrated how the parsimonious model of Nelson and Siegel (1987),
and the extension to this model by Svensson (1992) can be used to smooth
bootstrapped yield curves. We analysed the accuracy of these parsimonious
models when applied to a historic set of South African swap curves, and found
the model of Svensson (1992) to outperform the model of Nelson and Siegel
(1987) consistently.

 
 
 



Chapter 8

Conclusions

The objective of this report was to establish the “best” method for constructing
yield curves, where “best” is interpreted in terms of accuracy, stability and
economic appeal. The concept of a universally accepted “best” method for
constructing yield curves has a number of appeals, including:

1. The values of derivative securities are likely to be more transparent if all
practitioners agree on the yield curves under which cash flows should be
discounted.

2. Practitioners are more likely to agree on Risk metrics, such as Value at
Risk (VaR), if they agree on the yield curves used to simulate prices.

3. Hedge ratios are easier to justify when the yield curves used to calculate
them are universally accepted.

Along our journey, we identified two types of models: spline-based models
and the parametric models. We assumed that the aforementioned models
were mutually exclusive, and that one of these methods would emerge as the
undisputed champion of yield curve construction.

8.1 Spline-Based Models

In Section 3.1 we surveyed a variety of spline-based yield curve models, in-
cluding the models of Mcculnosh (1971), Mcculnosh (1975), Mcculnosh and
Kochin (2000), Vasicek and Fong (1982), Fisher et al. (1995), Anderson and
Sleath (2001) and Waggoner (1997).
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We discovered that all of the aforementioned models suffer from the following
disadvantages:

1. Calibration is typically performed through the use of complicated mul-
tivariate optimisation routines, implying a high probability of obtaining
local optima.

2. The resulting forward curves often oscillate in an unintuitive manner.
Forward curves that oscillate excessively make little sense from an eco-
nomic point of view.

In Section 3.1.5 we investigated an alternative spline-based model; the boot-
strap proposed by Hagan and West (2006). This bootstrap, a generalisation of
the models described by Fama and Bliss (1987), Smit (2000), and Daeves and
Parlar (2000), was seen to solve the problem of local optima; the method is
implemented through the use of a simple iterative procedure which converges
to a curve that is capable of exactly pricing back all input securities.

Because of its accuracy and simplicity, the bootstrap described in Hagan and
West (2006) was suggested to be the ideal spline-based model. However, the
model depends heavily on an appropriate interpolation algorithm. The choice
of an interpolation algorithm to use when bootstrapping is by no means trivial.
Chapters 4, 5 and 6 were devoted to finding the ideal method for interpolating
yield curve data.

8.2 Interpolation

Interpolation is a method of constructing new data points within the range
of a discrete set of known data points (called knot points). Interpolation is
performed through the use of piecewise functions joined together in a contin-
uous fashion at the knot points. The collective set of piecewise functions is
then referred to as an interpolation function. Various methods of interpolation
exist in the literature, and in Chapters 4, 5 and 6 we surveyed a variety of such
methods.

The best known methods of interpolation are the so-called piecewise linear,
and piecewise cubic methods. Piecewise linear methods involve fitting straight
lines between consecutive knot points, whilst piecewise cubic methods involve
fitting cubic polynomials between consecutive knot points. By transforming
the data at the knot points, an interpolation function can be manipulated to
satisfy a number of desirable properties. Careful consideration should, how-
ever, be given to ensure continuity of the spot rate function. Examples of such
transformations particular to yield curve data include applying interpolation
algorithms on r(t)t, C(t) and log(r(t)).
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A variety of methods exist for performing piecewise cubic interpolation, the
most popular of which is the so-called natural cubic spline. Under natural cubic
splines, the interpolation function is required to be smooth, i.e. twice differ-
entiable. The interpolation function can then be described by a Tridiagonal
linear system, which can be solved through the use of the Crout factorisation
algorithm.

An alternative cubic interpolation algorithm is the so-called cubic Hermite
spline. Under cubic Hermite splines, the derivative of the data at each knot
point is assumed to be known, and the interpolation function is required to be
differentiable. Often, these derivatives will not be known, and will have to be
estimated. One method for estimating these derivatives, described by de Boor
(1978, 2001) as the Bessel method, involves estimating the derivatives through
the use of a three point difference formula.

In Chapter 4 we illustrated through the use of an example, that linear inter-
polation, and “traditional” variations of cubic interpolation suffer from one (or
both) of the following flaws:

1. Discontinuities in the forward rate curve.

2. Failure to ensure strictly decreasing discount factors.

All variations of linear interpolation were seen to produce discontinuities in
the forward rate curve, whilst all variations of cubic interpolation were seen to
be incapable of ensuring strictly decreasing discount factors. Non-decreasing
discount factors are proved in Appendix A.2 to imply arbitrage opportunities,
whilst discontinuous forward rates are unacceptable from an economic per-
spective (unless the discontinuities occur on or around meetings of monetary
authorities).

In Chapter 5 we investigated the monotone convex method of interpolation
proposed by Hagan and West (2006). This method, specifically designed to
interpolate yield curve data, involves fitting a set of quadratic polynomials to a
discrete set of estimated instantaneous forward rates. The method is designed
such that f(t) preserves the shape of the set of discrete forward rates.

The monotone convex method was seen to be capable of ensuring a strictly
decreasing curve of discount factors. However, we identified a specific condition
under which the interpolation function would produce a discontinuity if f(t).

In Chapter 6 we introduced the monotone preserving r(t)t method of interpo-
lation. This method, designed to preserve the geometry of r(t)t, follows from
the work done in the field of shape preserving cubic interpolation by authors
such as Akima (1970), Fritsch and Carlson (1980), de Boor and Swartz (1977)
and Hyman (1983). Essentially, this method involves applying cubic Hermite
interpolation to the r(t)t function, where the derivatives of r(t)t at the knot
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points, i.e. the values of f(t) at the knot points, are estimated in a manner
which ensures positivity in f(t).

Like the monotone convex method, the monotone preserving r(t)t method was
seen to be capable of ensuring positive forward rates. However, unlike the
monotone convex method, this method is also capable of ensuring continuity
in f(t).

In Chapter 7 we attempted to distinguish between the monotone convex, and
the monotone preserving r(t)t methods; on grounds of locality and stability.
In terms of locality, we attempted to establish the interval [ti−l, ti+u] on which
r(t) changes, when changing the value of ri. For both the monotone convex,
and the monotone preserving r(t)t methods we found that l = u = 2.

In terms of stability, we estimated the maximum value by which a point on
the bootstrapped curve would change, after changing the value of one of the
input securities by one basis point. Results were obtained by considering a
historic set of South African bond curves, and the differences were estimated
for both spot and forward rate curves. The results that were obtained suggest
that the monotone preserving r(t)t method performs slightly better in terms
of stability, than the monotone convex method.

Overall, the performance of the monotone convex and the monotone preserv-
ing r(t)t methods was seen to be remarkably similar. We did, however, find
the monotone preserving r(t)t method to perform slightly better in terms of
stability, and in terms of the continuity of f(t). These results suggest that
when bootstrapping, the monotone preserving r(t) method might be the ideal
method of interpolation.

8.3 Parametric Models

Parametric yield curve models attempt to address the key disadvantage of
spline-based models; forward curves that oscillate in an unintuitive manner.
The issue of oscillating forward curves is, however, addressed at the cost of
accuracy. Parametric curves are seldom capable of exactly pricing back all
(or often, any) input securities. In Section 3.2 we considered two of the best
known parametric yield curve models: the models of Nelson and Siegel (1987),
and the extension to this model by Svensson (1992).
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8.3.1 The Nelson and Siegel (1987) Model

The Nelson and Siegel (1987) model consists of four parameters β0, β1, β2 and
λ. We saw that β0 and β1 controls the asymptotic properties of the resulting
spot and forward curves, whilst β1 adds a hump to the middle section of
the spot rate curve. The parameter λ was seen to influence the slope of the
spot rate curve.We saw that if the value of λ is known, then the problem of
calibrating β0, β1 and β2 can be solved through linear regression. Nelson and
Siegel (1987) suggested the following calibration procedure:

1. Identify a set of possible values for λ.

2. For each of these λ’s, estimate β0, β1, β2 using ordinary least squares.

3. For each of these λ’s and their corresponding β’s, estimate R2.

4. The optimal parameter set is the parameter set associated with the high-
est value of R2.

Calibration can be performed through the use of coupon paying-bonds, how-
ever, such calibration requires the use of multivariate optimisation routines,
which imply a high probability of obtaining local optima. In Section 7.3 we
showed how the curve obtained via bootstrapping can be used to obtain a hy-
pothetical set of zero-coupon bond prices. These hypothetical prices can then
be used to calibrate the Nelson and Siegel (1987) model.

8.3.2 The Svensson (1992) Model

Svensson (1992) extended the model of Nelson and Siegel (1987) by adding
an additional hump term. The Svensson (1992) model consists of parameters
β0, β1, β2, β3 and λ1, λ2. The interpretation of β0, β1, β2 and λ1 is the same as
under the Nelson and Siegel (1987) model. The parameter β3 adds a second
hump to the middle section of the curve, whilst λ2 influences the slope of the
curve.

The Svensson (1992) model can be calibrated by using a similar process to the
one used to calibrate the Nelson and Siegel (1987). The optimisation procedure
would, however, be slightly more complicated than that under the Nelson and
Siegel (1987) model, and special attention needs to be given to the choice of
starting values for λ1 and λ2.

In Section 7.3 we investigated the performance of the Nelson and Siegel (1987)
and Svensson (1992) models when calibrated to a historical set of South African
swap curves. The results were emphatic; the Svensson (1992) model was con-
sistently capable of fitting the data accurately, whilst the Nelson and Siegel
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(1987) model was not. The Nelson and Siegel (1987) model was seen to perform
particularly poorly during times of financial crisis. Under such circumstances,
the yield curve typically displays two humps, a feature that the Nelson and
Siegel (1987) model cannot accommodate for. The Svensson (1992) model was
seen to be well equipped for calibrating curves with two humps.

8.4 Final Remarks

The objective of this report was to establish the “best” model for yield curve
construction. We found that certain models perform “best” under certain cir-
cumstances. If accuracy is imperative, bootstrapping should be the method
of choice, and the monotone preserving r(t)t method should be the preferred
method of interpolation. If economic appeal is deemed to be the most impor-
tant characteristic, a parametric model should be the method of choice. More
specifically, the Svensson (1992) model should be the method of choice, and
calibration should be performed through the use of zero-coupon bonds. In the
absence of an observable zero-coupon bond market, bootstrapping should be
used to construct a hypothetical set of zero-coupon bond prices.
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Appendix A

Basic Fixed Income Mathematics

A yield curve is calibrated from a set of instruments trading in the market.
The prices of these instruments are related to a discrete set of points along the
yield curve. Before calibration, we need to understand how the prices of these
instruments are related to these points along the curve. This appendix intro-
duces the mathematical concepts necessary to obtain such an understanding.

A.1 Elementary Relations

C(t) represents the value that one unit of currency, invested at time t0, would
be worth at time t. From elementary calculus it follows that

C(t) = lim
n→∞

(
1 +

r(t)

n

)nt
(A.1.1)

= er(t)t.

Z(t) represents the value at time t0, of one unit of currency to be received
at time t. Z(t) is thus the inverse of C(t), and is referred to as the price at
time t0, of the zero-coupon bond maturing at time t. It follows from equation
(A.1.1) that

Z(t) = e−r(t)t. (A.1.2)

Assume that an investor can invest Z(t1) today, in a zero-coupon bond that
pays one unit of currency at time t1. Furthermore, assume an investor can
invest Z(t2) today, in a zero-coupon bond that pays one unit of currency at
time t2. From the law of one price it must follow that
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Z(t1)Z(t0; t1, t2) = Z(t2), (A.1.3)

where Z(t0; t1, t2) represents the price at time t0, of a zero-coupon bond to
be purchased at time t1, for maturity at t2. The discount factor Z(t0; t1, t2)
is called the forward discount factor from t1 to t2. If f(t1, t2) represents the
continuously compounded rate of interest, as observed at t0, that an investor
can earn from t1 to t2, then equation (A.1.2) implies that

Z(t0; t1, t2) = e−f(t1,t2)(t2−t2). (A.1.4)

Equation (A.1.3) implies that

Z(t0; t1, t2) =
Z(t2)

Z(t1)
, (A.1.5)

From equations (A.1.4), and (A.1.5) it follows that

f(t1, t2) =
r(t2)t2 − r(t1)t1

t2 − t1
. (A.1.6)

The forward rate f(t1, t2), is called the discrete forward rate observed at time
t0, applicable to the period from t1 to t2. Consider rewriting t1 and t2 in
equation (A.1.6), as t, and t+ ε respectively. We then define f(t), by taking
the limit as ε→ 0, and obtain that

f(t) =
d

dt
r(t)t, (A.1.7)

or equivalently

r(t) =
1

t

∫ t

0

f(τ)dτ. (A.1.8)

The forward rate f(t), is called the instantaneous forward rate observed at
time t0, applicable to time t. Finally, note that if t ∈ [ti−1, ti], then it follows
from equation (A.1.8) that

r(t)t =

∫ ti−1

0

f(τ)dτ +

∫ t

ti−1

f(τ)dτ

= r(ti−1)ti−1 +

∫ t

ti−1

f(τ)dτ. (A.1.9)
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A.2 Arbitrage Free Pricing

If we are working with a yield curve that is not inflation-linked, and if Z(t) is
not a monotone decreasing function, then an arbitrage opportunity must exist.
In order to prove this statement, we proceed as follows: Consider a situation
where Z(t1) < Z(t2), for t1 < t2. Under these circumstances, an investor would
be able to buy a zero-coupon bond maturing at t1 and simultaneously sell a
zero-coupon bond maturing at t2, for an immediate profit of Z(t2)− Z(t1). At
time t1, the investor would place the received unit of currency under his/her
mattress, and pay it to the buyer of the time t2 bond, at time t2.

If the abovementioned curve is, however, real (i.e. inflation-linked), then the
arbitrage relation just explained, would not necessarily hold. The reason for
this is that the investor in this scenario would buy an inflation-linked zero-
coupon bond maturing at t1, and simultaneously sell an inflation-linked zero-
coupon bond maturing at t2, for an immediate cash inflow of Z(t2)− Z(t1).
The cash inflows and outflows at t1 and t2 are, however, not known in advance,
seeing as they are inflation dependent. This means that the immediate cash
inflow of Z(t2)− Z(t1) does not necessarily constitute a profit.

A.3 Coupon Bonds

A coupon-paying bond is an instrument that pays periodic interest payments
(called coupons) to the holder of the bond, and a face value at maturity. In
the absence of arbitrage the price of a such a bond must be the discounted
value of all the bond’s future cash flows.

A.3.1 The Bond Pricing Formula

Bonds generally trade on yield to maturity (YTM), which is an annualised rate
(typically NACS) that is assumed to hold from time t0 to the maturity date
of the bond. In South Africa, the BESA bond pricing formula (see the Bond
Exchange of South Africa (2005)) is used to convert the YTM of a particular
bond to an all-in price.

Consider a bond that pays semi-annual coupons c, and let n denote the number
of remaining coupon payment dates, excluding the next coupon payment date.
Furthermore, assume that this particular bond trades at a NACS YTM y.

For the moment, assume that we are pricing the particular bond at time t0,
for settlement at the next coupon payment date (tncd), immediately after the
applicable coupon has been paid. The all-in price of the bond, [A(tncd)], is
then given by
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A(tncd) = c
1

(1 + 0.5y)
+ c

1

(1 + 0.5y)2
+ ...

+ c
1

(1 + 0.5y)n
+R

1

(1 + 0.5y)n
, (A.3.1)

where R denotes the face value of the bond. If we assume that the face value
of the bond is zero, and set z = 1/(1 + 0.5y), then it follows from equation
(A.3.1) that

A(tncd) = cz + cz2 + ...+ cz3 + czn, (A.3.2)

implying that

(
A(tncd)

z

)
= c+ cz + ...+ czn−1. (A.3.3)

Subtracting (A.3.2) from (A.3.3) implies

A(tncd)

(
1− z
z

)
= c− czn (A.3.4)

⇒ A(tncd) =
zc(1− zn)

1− z .

If we now relax the assumption of a face value of zero, then the all-in price
of the bond for settlement immediately after the payment at the next coupon
payment date is

A(tncd) =
zc(1− zn)

1− z +Rzn. (A.3.5)

We can now consider pricing the particular bond for settlement at any time
tsettle, where t0 ≤ tsettle < tncd. Two adjustment have to be made to equation
(A.3.5):

1. If tsettle is in the cum period then we need to add the coupon at the next
coupon payment date to the right hand side of equation (A.3.5).

2. We need to discount the price of the bond from settlement at tncd, to
settlement at tsttle.
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The all-in price of the bond at time t0, for settlement at time tsettle, can thus
be written as

A = z(t0; tsettle, tncd)

(
c× cumex(tsettle) +

zc(1− zn)

1− z +Rn

)
,

where the function cumex is defined as

cumex(tsettle) =


1 tsettle in the cum period

0 tsettle in the ex period.

If the next coupon payment date coincides with the maturity date of the bond,
the bond is deemed to behave like a money market instrument, and the yield
to maturity of the bond is interpreted as a simple rate. As such, the discount
factor, z(t0; tsettle, tncd), is calculated as

z(t0; tsettle, tncd) =


z(tncd−tsettle)/365 tncd 6= maturity date

1

1+0.5y
(
(tncd−tsettle)/365

) tncd = maturity date.

The Bond Exchange of South Africa (2005) calculates the amount of accrued
interest, [Accr(t0, tsettle)], as follows

Accr =


tsettle − tlcd

365
tsettle in the cum period

tsettle − tncd
365

tsettle in the ex period,

where tlcd denotes the last coupon payment date on or before tsettle. The clean
price of the bond, C, is then calculated as

C = A− Accr. (A.3.6)

The rounded all-in price is obtained by rounding C and Accr and adding them
together. Rounding is performed to five decimal places. We will let [A] denote
the rounded all-in price.
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A.3.2 Bond Price Relations

Suppose a bond pays cash flows (c1, c2...., cn) at times (t1, t2...., tn). Note that
ci does not necessarily represent a coupon payment, e.g. c1 = 0 if the bond is
in the ex period, and cn is the sum of a coupon payment and the face value
of the bond. In the absence of arbitrage, we must have that the all-in price
(dirty price) of the bond at time t0, for settlement at time tsettle, is given by

[A] =
i=n∑
i=1

ciZ(t0; tsettle, ti). (A.3.7)

Multiplying throughout equation (A.3.7) with Z(ttsettle) implies that

[A]Z(tsettle) =
i=n∑
i=1

ciZ(ti), (A.3.8)

from where it follows that

[A]Z(tsettle) =
i=n−1∑
i=1

ciZ(ti) + cnZ(tn). (A.3.9)

Equation (A.3.9) implies that

Z(tn) =
1

cn

[
[A]Z(tsettle)−

i=n−1∑
i=1

ciZ(ti)

]

⇒ r(tn)tn = ln(cn)− ln

[
[A]Z(tsettle)−

i=n−1∑
i=1

ciZ(ti)

]
,

from where

r(tn) =
1

tn

[
ln(cn)− ln

(
[A]Z(tsettle)−

i=n−1∑
i=1

ciZ(ti)
)]
. (A.3.10)

Equation (A.3.10) shows that if we know the price of a particular bond (i.e.
if we know [A]), then we can obtain information regarding the spot rate of
interest corresponding to the each of the bond’s cash flow dates.
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A.4 Interest Rate Swaps

Hull (2006) defines a swap as an agreement between two parties to exchange
cash flows in the future. The agreement defines the dates when the cash flows
are to be paid and the way in which they are to be calculated.

With a vanilla interest rate swap, one party agrees to pay cash flows equal to
interest at a predetermined fixed rate on a notional principal. In return, this
party receives interest at a floating rate on the same notional principal.

In South Africa the fixed payments are calculated on an actual/365 basis, are
paid in arrears, and the periods to which the fixed rate apply are typically
three-monthly periods. The floating payments are calculated on the same
day count basis, are paid on the same date, and are calculated on the same
notional. The floating rate is typically set to the 3 month JIBAR rate.

A.4.1 The Value of a Just Started Swap

As shown in Rebonato (1998), the fixed leg of a plain-vanilla interest rate swap
on a notional of one is made up by payments {Bi}ni=1, defined as

Bi = αiRn, (A.4.1)

where αi is the fraction of a year between the (i− 1)′th and the i′th payment,
and Rn is the simple fixed rate contracted at the outset, to be paid by the
fixed rate payer at each payment time. The value of the fixed leg of the swap
at time t0 is then

Vfix = Rn

n∑
i=1

αiZ(ti). (A.4.2)

Similarly, the floating leg is made up by payments {Ai}ni=1, defined as follows

Ai = αiFi, (A.4.3)

where Fi is the αi period spot rate (i.e. the 3-month JIBAR rate in South
Africa), prevailing at time ti−1. The realisations of these spot rates are not
known at time t0 (except off course F1), and therefore the value of the floating
leg of the swap at time t0 is given by

Vfloat = E
[ n∑
i=1

αiFiZ(ti)
]
. (A.4.4)
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Consider the following replicating strategy:

1. Invest one unit of currency at time t0, in a Negotiable Certificate of
Deposit (NCD) that pays α1F1 at time t1.

2. At time t1, reinvest the unit of currency in a NCD that pays α2F2 at
time t2.

3. Keep investing in this fashion up to time tn−1.

Clearly, this strategy replicates the cash flows associated with the floating leg
of the swap, except that the investor does not receive the notional at time tn,
in the case of the swap. The value at time t0 of the replicating strategy is one,
implying that the value of the floating leg of the swap must be

Vfloat = 1− Z(tn). (A.4.5)

The equilibrium swap rate at time t0 is defined as the fixed rate, Rn, which sets
the fixed leg of the swap equal to the floating leg. In the absence of arbitrage,
the fixed rate of a just started swap must be equal to the equilibrium swap
rate. It follows from equations (A.4.2) and (A.4.5) that

Rn =
1− Z(tn)∑n
i=1 αiZ(ti)

⇒ 1− Z(tn) = Rn

( n−1∑
i=1

αiZ(ti) + αnZ(tn)
)

⇒ Z(tn)(1−Rnαn) = 1−Rn

n−1∑
i=1

αiZ(ti)

⇒ Z(tn) =
1−Rn

∑n−1
i=1 αiZ(ti)

(1−Rnαn)
. (A.4.6)

From equation (A.1.2) and equation (A.4.6) it follows that

⇒ r(tn) =
−1

tn
ln

[
1−Rn

∑n−1
i=1 αiZ(ti)

(1−Rnαn)

]
. (A.4.7)

Equation (A.4.7) shows that if we know the fixed rate associated with a partic-
ular swap (i.e. if we know Rn), then we can obtain information regarding the
spot rate of interest corresponding to the each of the swap’s cash flow dates.
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A.5 FRAs

Hull (2006) defines a Forward Rate Agreement (FRA) as an over-the-counter
agreement that a certain interest rate will apply to either borrowing or lending
a certain principal during a specified future period of time. The buyer of
an FRA agrees to pay a fixed rate over the forward period, and receive a
floating rate. In South-Africa, the assumption underlying the contract is that
borrowing or lending would usually be done at JIBAR.

FRAs are issued at par, i.e. at inception, the value of the floating payment
equals the value of the fixed payment. Thus, if an FRA spanning the forward
period from t1 to t2, is issued now, at a simple rate of F (t0; t1, t2), then

Z(t1)

Z(t2)
= 1 + F (t0; t1, t2)α

⇒ er(t2)t2−r(t1)t1 = 1 + F (t0; t1, t2)α

⇒ r(t2) =
1

t2

[
r(t1)t1 + ln

(
1 + F (t0; t1, t2)α

)]
, (A.5.1)

where α denotes the fraction of a year between t1 and t2. The the value at time
t, where t0 ≤ t ≤ t1, of the fixed leg of an FRA issued at F (t0; t1, t2), spanning
the period from t1 to t2, is given by

Vfixed = (1 + αF (t0; t1, t2))Z(t2). (A.5.2)

Similarly, the value of the floating payment is given by

Vfloat = (1 + αF (t; t1, t2))Z(t2), (A.5.3)

where F (t; t1, t2) is the simple forward rate observed at time t, applicable to
the period t1 to t2. The value of a long FRA position is then Vfloat − Vfixed,
whilst the value of a short FRA position is given by Vfixed − Vfloat. The value
of an FRA is thus not only a function of the forward rate from t1 to t2, but also
of Z(t2). FRAs are thus convex instruments, i.e. the value of an FRA does
not evolve linearly as the yield curve shifts up or down in a paralel fashion.
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A.6 Short-Term Interest Rate Futures

A short-term interest rate future is an exchange traded instrument that refer-
ences a forward interest rate at a certain point in time. The price of such a
futures contract expiring at time t1, references the forward rate spanning the
period from t1 to t2, where t2 > t1. More specifically, the price of the futures
contract at expiry equals 100 minus the prevailing α period (the fraction of a
year from t1 to t2) spot rate, i.e. the 3-month JIBAR rate in South-Africa.

The value of these futures contacts are intended to mimic that of a deposit
on a certain notional amount (ZAR 100 thousand in South Africa) made at
time t1. The deposit is assumed to apply to a period of 90 days, and interest
is calculated on actual/360 convention.

The value at time t ≤ t1, of a futures contract spanning the period from t1 to
t2, on a notional of R, trading at a yield of Ffuture(t, t1, t2) is given by

V = 250×R× (1− Ffuture(t; t1, t2)). (A.6.1)

If the notional is one, then the daily margin payment would be set to 0.000025
units of currency per basis point change in Ffuture(t; t1, t2). These futures are
thus linear instruments, i.e. the value of a short-term interest rate future
changes linearly as the yield on the futures contract changes.

Although the margining formula is extremely simple and elegant, it deprives
short-term interest rate futures of the convexity possessed by FRAs. Thus,
we will generally have that the forward rates implied by short-term interest
rate futures (commonly referred to as the futures rates) will not be equal to
the forward rates implied by FRAs. The difference between forward rates and
the futures rates has appropriately been labelled as the convexity bias. The
existence of the convexity bias can be attributed to the following factors:

1. Futures are margined daily whilst FRAs are net settled (either at t1
or t2). As suggested by Cox et al. (1981), daily margining may cause
future and forward prices to diverge. Consider an investor taking a short
position in a short term-interest rate future. Generally, the investor will
receive margin payments when interest rates move up, and make margin
payments when interest rates move down.

In general, the investor will thus invest received margin payments at
yields that are higher than those at which he/she will need to finance
margin payments. The future will thus appear to be a more attractive
investment than the corresponding FRA. The market will counteract this
imbalance by setting the futures rate higher than the forward rate.
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2. Short-term interest rate futures are deprived of the convexity possessed
by FRAs. Consider a short FRA position. As noted by Burghardt and
Hoskins (1994), this position exhibits what is known in the fixed-income
trade as positive convexity. That is, the price increase associated with
a positive parallel yield curve shift, is greater than the price decrease
associated with a negative parallel yield curve shift.

This is not the case for short-term interest rate futures, where the price
increase associated with a positive parallel yield curve shift is equal to the
price decrease associated with a negative parallel yield curve shift. Thus,
if the futures rate is lesser than or equal to the forward rate, then an
investor hedging a short position in an FRA spanning t1 to t2, with short
positions in the equivalent futures contacts, is extremely likely (but not
guaranteed) to make a profit. The market will exhaust this opportunity,
and consequently the futures rate will be higher than the forward rate.

Hull (2006) postulates the following formula, based on the Ho-Lee term struc-
ture, for estimating the forward rate F (t; t1, t2), from the corresponding futures
rate Ffuture(t; t1, t2)

F (t; t1, t2) = Ffuture(t; t1, t2)−
1

2
σ2t1t2, (A.6.2)

where σ is the standard deviation of the change in the short-term interest rate.
Equations (A.5.1) and (A.6.2) show that if we know the forward or futures rate
corresponding to time t1, then we can obtain information regarding the spot
rate of interest corresponding to t1 and t2.
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Historic South African Yield
Curves
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Figure B.1: Historic South African swap and bond curves (%). Note, blue
curves represent bond curve, whilst green curves represent swap curves.
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Figure B.2: Historic South African swap and bond curves (%). Note, blue
curves represent bond curve, whilst green curves represent swap curves.
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Figure B.3: Historic South African swap and bond curves (%). Note, blue
curves represent bond curve, whilst green curves represent swap curves.
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Date Overnight 1 month 3 month
2000/08/07 10.057 10.275 10.394
2001/01/31 10.160 10.344 10.514
2001/10/30 8.620 8.800 9.141
2002/07/30 11.490 11.927 12.216
2003/04/30 12.850 12.944 13.419
2004/01/30 7.690 7.713 7.925
2004/11/01 7.150 7.275 7.450
2005/08/03 6.700 6.861 7.000
2006/05/03 6.750 * 7.079
2007/02/05 8.630 * 9.329
2007/11/07 10.100 * 10.775
2008/08/07 11.690 * 12.200
2009/05/11 8.160 * 8.008
2010/02/11 6.740 6.950 7.190
2010/11/11 5.690 5.720 5.855
2011/05/11 5.230 5.500 5.575

Table B.1: The set of money market inputs (%) used to construct the swap
and bond curves illustrated in Figures B.1, B.2 and B.3. All rates are quoted
as simple annualised rates. Note, * indicates that for the relevant date, the
relevant instrument was not used as a swap or bond curve input.
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Appendix C

Arbitrage Potential

In this appendix we illustrate how arbitrage opportunities might arise in a
world where a unified method of interpolation is not agreed upon. We achieve
this feat by considering an example of the South African swap curve. In
particular, we consider the South African swap curve on 10 February 2011.
Table C.1 shows the inputs that were used to construct this particular curve.

Note that the South African Benchmark Overnight Rate on deposits (SABOR),
and the 1-month and 3-month JIBAR rates were used to anchor the short-
end of the curve. We assume that the SABOR rate is a simple one-day rate
regardless of whether or not the following day is a business day. It follows that
the continuously compounded 1-day spot rate, r( 1

365
), is given by

r(
1

365
) = 365log

(
1 + Sabor(

1

365
)

)
.

Figure C.1 shows the spot and forward rate curves that were obtained by
applying monotone convex interpolation, monotone preserving r(t)t interpola-
tion, natural cubic spline on r(t), and linear interpolation on r(t), to the rates
in Table C.1.

C.1 FRAs

From equation (A.5.1) it follows that the equilibrium FRA rate, F (t0; t1, t2),
for the period spanning t1 to t2 is given by

F (t0; t1, t2) =
er(t2)t2−r(t1)t1 − 1

α
. (C.1.1)

97

 
 
 



APPENDIX C. ARBITRAGE POTENTIAL 98

Deposits Rate FRAs Rate
(%)

Swaps Rate
(%)

Overnight 5.28 1x4 5.6 2 year 6.52
1-month 5.47 2x5 5.65 3 year 7.13
3-month 5.575 3x6 5.65 4 year 7.55

4x7 5.71 5 year 7.85
5x8 5.76 6 year 8.06
6x9 5.85 7 year 8.21
7x10 5.89 8 year 8.31
8x11 6.01 9 year 8.38
9x12 6.16 10 year 8.42
12x15 6.62 12 year 8.46
15x18 7.06 15 year 8.45
18x21 7.5 20 year 8.37

25 year 8.29
30 year 8.15

Table C.1: Inputs to the South African swap curve on 10 February 2011. All
rates are expressed as simple annualised rates.

Table C.2 shows the equilibrium FRA rates obtained for a number of FRAs
not included in our bootstrap, under various methods of interpolation. The
rates n Table C.2 suggest that significant arbitrage opportunities might arise
in a world where a unified method of interpolation is not agreed upon.

Consider the 57x60 FRA. The equilibrium FRA rate obtained for this particu-
lar FRA under linear interpolation is 9.6, whilst the corresponding rate under
the monotone convex method is 9.39, a difference of 21 basis points. Assuming
the pv01 of an FRA is roughly ZAR 25 per million notional, this represents
an opportunity of roughly ZAR 525 per million notional (these figures will be
distorted by bid-offer spreads).

 
 
 



APPENDIX C. ARBITRAGE POTENTIAL 99

0 5 10 15 20 25 30 35
t

4

5

6

7

8

9

10

r(
t)

(a) Natural Cubic Spline

0 5 10 15 20 25 30 35
t

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

r(
t)

(b) Monotone Convex

0 5 10 15 20 25 30 35
t

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

r(
t)

(c) Monotone Preserving r(t)t

0 5 10 15 20 25 30 35
t

5

6

7

8

9

10

r(
t)

(d) Linear on r(t)

Figure C.1: Spot and forward rate curves (%) obtained by bootstrapping the
input securities in Table C.1.

C.2 Forward Starting Swaps

Forward starting swaps are priced at par, i.e. at initiation, the fixed leg of
a forward starting swap is equal to the floating leg of the swap. Consider an
n-year forward starting swap, where the first fixing date is scheduled to be
at time τ0 ≥ t0. Let τ1, τ2, ..., τn denote the set of payment dates, and let αi
denote the fraction of a year between the (i− 1)’th, and the i’th fixing date.
If Rn denotes the equilibrium swap rate, then it follows that the value at time
t0, of the fixed leg of the swap is given by

Vfix = RnZ(τ0)
n∑
i=1

αiZ(t0; τ0, τi), (C.2.1)

whilst the value of the floating leg is given by

Vfloat = Z(τ0)
(
1− Z(t0; τ0, τn)

)
. (C.2.2)
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FRA MC MP NCS L
21x24 7.95 7.95 7.95 7.95
24x27 8.21 8.21 8.23 8.02
27x30 8.45 8.45 8.44 8.35
30x33 8.63 8.63 8.61 8.68
33x36 8.74 8.74 8.76 9
36x39 8.86 8.86 8.89 8.7
39x42 9.01 9.01 9 8.93
42x45 9.11 9.11 9.1 9.16
45x48 9.18 9.18 9.18 9.39
48x51 9.25 9.25 9.26 9.09
51x54 9.35 9.34 9.33 9.26
54x57 9.39 9.39 9.38 9.43
57x60 9.39 9.4 9.41 9.6

Table C.2: Equilibrium FRA rates (%) on 10 February 2011, under various
methods of interpolation. All rates expressed as simple annualised rates. MC
denotes monotone convex, MP denotes monotone preserving r(t)t, NCS de-
notes natural cubic spline on r(t) and L denotes linear on r(t).

It follows that Rn is given by

Rn =

(
1− Z(t0; τ0, τn)

)∑n
i=1 αiZ(t0; τ0, τi)

. (C.2.3)

Table C.3 shows the equilibrium forward starting swap rates on 10 February
2011, for a number of swaps starting on 10 February 2021.

Consider the 1-year forward starting swap. The equilibrium rate implied by
this particular swap under linear interpolation is 8.8, whilst the corresponding
rate under monotone convex interpolation is 8.89, a difference of 9 basis points.
Assuming the pv01 of 1-year swap is roughly ZAR 100 per million notional,
this represents an opportunity of roughly ZAR 900 per million notional.
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Swap MC MP NCS L
1y 8.89 8.89 8.87 8.8
2y 8.81 8.81 8.81 8.81
3y 8.73 8.73 8.74 8.69
4y 8.64 8.64 8.65 8.62
5y 8.57 8.57 8.57 8.57
6y 8.5 8.5 8.49 8.48
7y 8.43 8.43 8.42 8.41
8y 8.36 8.36 8.36 8.35
9y 8.3 8.3 8.3 8.3
10y 8.25 8.25 8.25 8.25

Table C.3: Equilibrium forward starting swap rates (%) on 10 February 2011,
under various methods of interpolation. All rates are expressed as simple
annualised rates. The first fixing date is scheduled for 10 February 2021.
MC denotes monotone convex, MP denotes monotone preserving r(t)t, NCS
denotes natural cubic spline on r(t) and L denotes linear on r(t).
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Code

Figure D.1: Flow diagram illustrating the interaction between different pro-
grammes used in the construction of parametric and spline-based yield curves.
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D.1 Interpolation

A VBA class was created to perform a variety of interpolation functions. In
this section we present this VBA class, called Interpolation.

VERSION 1.0 CLASS
BEGIN

MultiUse = −1 ’True
END
Attr ibute VB_Name = " In t e r p o l a t i o n "
Att r ibute VB_GlobalNameSpace = False
Att r ibute VB_Creatable = False
Att r ibute VB_PredeclaredId = False
Att r ibute VB_Exposed = False
Option Exp l i c i t

’The input s e t o f t imes
Pr ivate t imes ( ) As Double

’The input s e t o f r a t e s
Pr ivate r a t e s ( ) As Double

’The number o f knot po in t s
Pr ivate n As In t eg e r

’ I n t e g e r used to i t e r a t e l oops
Pr ivate i As In t eg e r

’ Array o f in s tantaneous forward r a t e s
Pr ivate f ( ) As Double

’ Array o f d i s c r e t e forward r a t e s
Pr ivate fd ( ) As Double

’Method o f i n t e r p o l a t i o n
Pr ivate interpol_mehod As St r ing

’ Input in fo rmat ion
’================================================

Publ ic Property Let method ( value As St r ing )
’Read the chosen method o f i n t e r p o l a t i o n

interpol_mehod = value

End Property

Publ ic Property Let x_values ( x_values ( ) As Double )
’ Read the input s e t o f t imes

n = UBound( x_values )
t imes ( ) = x_values ( )

End Property

Publ ic Property Let y_values ( y_values ( ) As Double )
’Read the input s e t o f r a t e s

S e l e c t Case interpol_mehod
Case I s = "Raw"

ReDim ra t e s (1 To n)

For i = 1 To n
r a t e s ( i ) = y_values ( i ) ∗ t imes ( i )
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Next i
Case I s = "Linear Log ( r ( t ) ) "

ReDim ra t e s (1 To n)

For i = 1 To n
r a t e s ( i ) = Appl i ca t ion . Ln( y_values ( i ) ∗ 0 . 01 )

Next i
Case I s = "Monotone Convex"

r a t e s ( ) = y_values ( )
Ca l l ForwardCalc

Case I s = "Monotone Prese rv ing r ( t ) t "
r a t e s ( ) = y_values ( )
Ca l l ForwardCalc

Case I s = "Natural Cubic Sp l ine "
r a t e s ( ) = y_values ( )

Case I s = "Linear r ( t ) "
r a t e s ( ) = y_values ( )

End Se l e c t

End Property

’Output in fo rmat ion
’============================================

Sub ForwardCalc ( )
’ Ca l cu la t e the ve c to r s o f d i s c r e t e and ins tantaneous forward r a t e s .
’ Same methodology used f o r monotone convex , and monotone p r e s e rv ing r ( t ) t

methods .

ReDim fd (1 To n) , f (1 To n)

For i = 2 To n
fd ( i ) = ( r a t e s ( i ) ∗ t imes ( i ) − r a t e s ( i − 1) ∗ _

times ( i − 1) ) / ( t imes ( i ) − t imes ( i − 1) )
Next i

fd (1 ) = ra t e s (1 )

For i = 2 To n − 1
f ( i ) = fd ( i + 1) ∗ ( t imes ( i ) − t imes ( i − 1) ) / ( t imes ( i + 1) − _

times ( i − 1) ) + fd ( i ) ∗ ( t imes ( i + 1) − t imes ( i ) ) / ( t imes ( i +
1) − t imes ( i − 1) )

I f f ( i ) > 3 ∗ Appl i ca t ion . Min( fd ( i ) , fd ( i + 1) ) Then
f ( i ) = 2 ∗ Appl i ca t ion . Min( fd ( i ) , fd ( i + 1) )

End I f
Next i

f ( 1 ) = fd (2 ) ∗ t imes (1 ) / t imes (2 ) + fd (1 ) ∗ ( t imes (2 ) − t imes (1 ) ) / t imes
(2 )

f (n) = fd (n) − 0 .5 ∗ ( f (n − 1) − fd (n) )

End Sub

Pr ivate Function LastIndex ( t imes ( ) As Double , t As Double ) As In t eg e r
’ Cac lu la t e i such that t ( i ) <= t < = t ( i +1) .

For i = 1 To UBound( t imes ) − 1
I f t <= times ( i + 1) And t >= times ( i ) Then

LastIndex = i
Exit Function

End I f
Next i

I f t < times (1 ) Then i = 1
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I f t > times (UBound( t imes ) ) Then i = UBound( t imes ) − 1

LastIndex = i

End Function

Pr ivate Function monotone_rtt ( va lue As Double )
’ Monotone p r e s e rv ing r ( t ) t i n t e r p o l a t i o n .

Dim a As Double , b As Double , C As Double , D As Double
Dim h As Double , m As Double

i = LastIndex ( t imes ( ) , va lue )

a = ra t e s ( i ) ∗ t imes ( i )
h = times ( i + 1) − t imes ( i )
m = ( r a t e s ( i + 1) ∗ t imes ( i + 1) − a ) / h
C = (3 ∗ m − f ( i + 1) − 2 ∗ f ( i ) ) / h
D = ( f ( i + 1) + f ( i ) − 2 ∗ m) / (h ∗ h)

S e l e c t Case value
Case I s < times (1 )

monotone_rtt = f (1 )
Case I s <= times (n)

monotone_rtt = (1 / value ) ∗ ( a + f ( i ) ∗ ( va lue − t imes ( i ) ) + _
C ∗ ( va lue − t imes ( i ) ) ^ (2 ) + D ∗ ( va lue − t imes ( i ) )

^ (3 ) )
Case I s > times (n)

monotone_rtt = (1 / value ) ∗ ( r a t e s (n) ∗ t imes (n) + f (n) ∗ ( va lue −
t imes (n) ) )

End Se l e c t

End Function

Pr ivate Function monotone_convex ( va lue As Double )
’ Monotone convex method .
’ Hagan and West (2006) .

Dim a As Double , l As Double , x As Double , f 0 As Double
Dim g0 As Double , g1 As Double , G As Double , eta As Double

i = LastIndex ( times , va lue )
l = times ( i + 1) − t imes ( i )
x = ( value − t imes ( i ) ) / l

g0 = f ( i ) − fd ( i + 1)
g1 = f ( i + 1) − fd ( i + 1)
f0 = fd (1 ) − 0 .5 ∗ ( f (1 ) − fd (1 ) )

I f va lue < times (1 ) Then
monotone_convex = f0

E l s e I f va lue > times (n) Then
monotone_convex = (1 / value ) ∗ ( r a t e s (n) ∗ t imes (n) + f (n) ∗ ( va lue −

t imes (n) ) )
Else

I f ( x = 0 Or x = 1) Then
G = 0

E l s e I f ( g0 < 0 And −0.5 ∗ g0 <= g1 And g1 <= −2 ∗ g0 ) Or ( g0 > 0 And
−0.5 ∗ g0 >= g1 And g1 >= −2 ∗ g0 ) Then
G = l ∗ ( g0 ∗ ( x − 2 ∗ x ^ 2 + x ^ 3) + g1 ∗ (−x ^ 2 + x ^ 3) )

E l s e I f ( g0 < 0 And g1 > −2 ∗ g0 ) Or ( g0 > 0 And g1 < −2 ∗ g0 ) Then
eta = ( g1 + 2 ∗ g0 ) / ( g1 − g0 )
I f x <= eta Then

G = g0 ∗ ( va lue − t imes ( i ) )
El se
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G = g0 ∗ ( va lue − t imes ( i ) ) + ( g1 − g0 ) ∗ ( x − eta ) ^ 3 / (1 −
eta ) ^ 2 / 3 ∗ l

End I f
E l s e I f ( g0 > 0 And 0 > g1 And g1 > −0.5 ∗ g0 ) Or ( g0 < 0 And 0 < g1

And g1 < −0.5 ∗ g0 ) Then
eta = 3 ∗ g1 / ( g1 − g0 )
I f x < eta Then

G = l ∗ ( g1 ∗ x − 1 / 3 ∗ ( g0 − g1 ) ∗ ( ( eta − x ) ^ 3 / eta ^ 2
− eta ) )

Else
G = l ∗ (2 / 3 ∗ g1 + 1 / 3 ∗ g0 ) ∗ eta + g1 ∗ ( x − eta ) ∗ l

End I f
E l s e I f g0 = 0 And g1 = 0 Then

G = 0
Else

eta = g1 / ( g1 + g0 )
a = −g0 ∗ g1 / ( g0 + g1 )
I f x <= eta Then

G = l ∗ ( a ∗ x − 1 / 3 ∗ ( g0 − a ) ∗ ( ( eta − x ) ^ 3 / eta ^ 2 −
eta ) )

Else
G = l ∗ (2 / 3 ∗ a + 1 / 3 ∗ g0 ) ∗ eta + l ∗ _
(a ∗ ( x − eta ) + ( g1 − a ) / 3 ∗ ( x − eta ) ^ 3 / (1 − eta ) ^ 2)

End I f
End I f

monotone_convex = 1 / value ∗ ( t imes ( i ) ∗ r a t e s ( i ) + fd ( i + 1) ∗ (
va lue − t imes ( i ) ) + G)

End I f

End Function

Pr ivate Function n sp l i n e ( va lue As Double ) As Double
’ Natural cub ic s p l i n e i n t e r p o l a t i o n .

Dim h ( ) As Double , alpha ( ) As Double
ReDim h(n − 1) As Double , alpha (n − 1) As Double
Dim l ( ) As Double , u ( ) As Double , z ( ) As Double , C( ) As Double , b ( ) As

Double , D( ) As Double

For i = 1 To n − 1
h( i ) = times ( i + 1) − t imes ( i )

Next i

For i = 2 To n − 1
alpha ( i ) = 3# / h( i ) ∗ ( r a t e s ( i + 1) − r a t e s ( i ) ) − 3 / h( i − 1) ∗ (

r a t e s ( i ) − r a t e s ( i − 1) )
Next i

ReDim l (n) As Double , u (n) As Double , z (n) As Double , C(n) As Double , b (n)
As Double , D(n) As Double

l (1 ) = 1#: u (1 ) = 0#: z (1 ) = 0#
l (n) = 1#: z (n) = 0#: C(n) = 0#

For i = 2 To n − 1
l ( i ) = 2# ∗ ( t imes ( i + 1) − t imes ( i − 1) ) − h( i − 1) ∗ u( i − 1)
u( i ) = h( i ) / l ( i )
z ( i ) = ( alpha ( i ) − h( i − 1) ∗ z ( i − 1) ) / l ( i )

Next i

For i = n − 1 To 1 Step −1
C( i ) = z ( i ) − u( i ) ∗ C( i + 1)
b( i ) = ( r a t e s ( i + 1) − r a t e s ( i ) ) / h( i ) − h( i ) ∗ (C( i + 1) + 2# ∗ C( i )

) / 3#
D( i ) = (C( i + 1) − C( i ) ) / 3# / h( i )
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Next i

I f va lue < times (1 ) Then
n sp l i n e = ra t e s (1 )

E l s e I f va lue > times (n) Then
n sp l i n e = ra t e s (n)

Else
i = LastIndex ( times , va lue )
n sp l i n e = ra t e s ( i ) + b( i ) ∗ ( va lue − t imes ( i ) ) + C( i ) ∗ ( va lue − t imes

( i ) ) ^ 2 _
+ D( i ) ∗ ( va lue − t imes ( i ) ) ^ 3

End I f

End Function

Pr ivate Function l i n I n t e r ( va lue As Double ) As Double
’ Perform l i n e a r i n t e r p o l a t i o n .

Dim a As Double , b As Double

i = LastIndex ( times , va lue )
b = ( r a t e s ( i + 1) − r a t e s ( i ) ) / ( t imes ( i + 1) − t imes ( i ) )
a = ra t e s ( i + 1) − b ∗ t imes ( i + 1)

I f va lue < times (1 ) Then
l i n I n t e r = ra t e s (1 )

E l s e I f va lue > times (n) Then
l i n I n t e r = ra t e s (n)

Else
l i n I n t e r = a + b ∗ value

End I f

End Function

Publ ic Property Get I n t e r p o l a t e ( va lue As Double )
’ Perfrom i n t e r p o l a t i o n .
’ Ca l cu la t e the spot ra t e cor re spond ing to value .

S e l e c t Case interpol_mehod
Case "Monotone Prese rv ing r ( t ) t "

I n t e r p o l a t e = monotone_rtt ( va lue )
Case "Monotone Convex"

I n t e r p o l a t e = monotone_convex ( va lue )
Case "Natural Cubic Sp l ine "

I n t e r p o l a t e = nsp l i n e ( va lue )
Case " Linear r ( t ) "

I n t e r p o l a t e = l i n I n t e r ( va lue )
Case "Raw"

I f va lue < times (1 ) Then
In t e r p o l a t e = l i n I n t e r ( va lue ) / t imes (1 )

E l s e I f va lue > times (n) Then
In t e r p o l a t e = l i n I n t e r ( va lue ) / t imes (n)

Else
I n t e r p o l a t e = l i n I n t e r ( va lue ) / value

End I f
Case " Linear Log ( r ( t ) ) "

I f va lue < times (1 ) Then
In t e r p o l a t e = 100 ∗ Exp( r a t e s (1 ) )

E l s e I f va lue > times (n) Then
In t e r p o l a t e = 100 ∗ Exp( r a t e s (n) )

Else
I n t e r p o l a t e = 100 ∗ Exp( l i n I n t e r ( va lue ) )

End I f
End Se l e c t

End Property
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D.2 Bootstrap

A VBA function was created to perform the iterative bootstrap, given a set
of input securities and a method of interpolation. Separate functions were
created for bootstrapping with a set of coupon paying bonds, and a set of
swaps.

Attr ibute VB_Name = "Bootstrap "
Option Exp l i c i t

Pr ivate Sub Bond_Bootstrapper ( t_s e t t l e As Double , t ( ) As Double , r ( ) As Double
, _

n As Integer , m As Integer , P( ) As Double , DT( ) As Double , _
D( ) As Double , C( ) As Double , Pn( ) As Double , _
interpol_method As St r ing )

’ t_s e t t l e = ( bonds se t t l ement date − va luat i on date ) /365
’ t ( ) = the s e t o f maturity dates o f a l l input bonds
’ r ( ) = the y i e l d s on the input s e t o f bonds
’ n = the number o f bonds used as inputs
’ m = the number o f money market inputs
’ D = the vec to r o f d i s t i n c t cash f low dates
’ C = the matrix o f cash f l ows
’ Pn = the vec to r r ep r e s en t i ng the f i n a l cash f l ows to occur under each bond
’ DT = the vec to r o f d icount f a c t o r s cor re spond ing to D
’ P = the p r i c e s o f the input s e t o f bonds
’ interpol_method = the method o f i n t e r p o l a t i o n

’The i n t e r p o l a t i o n ob j e c t
Set Sp l ine = New i n t e r p o l a t i o n

Sp l ine . method = interpol_method
Sp l ine . x_values = t ( )
Sp l ine . y_values = r ( )

’ Var i ab l e s used to t e s t f o r convergence
Dim conv1 , conv2 , t e s t , count As Double

’The NACC rate cor re spond ing to t_s e t t l e
Dim r_se t t l e As Double

’ Var i ab l e s used to loop i t e r a t i o n s
Dim i , j As In t eg e r

’The array where pv_coupons ( i ) s t o r e s the pre sent value o f a l l coupon payments
, exc lud ing the one at maturity

’ o f the i ’ th input bond
Dim pv_coupons ( ) As Double

ReDim pv_coupons (1 To n)

t e s t = 10

Do While t e s t > 0.0000000001
conv1 = sumarray ( r )

I f count = 1 Then
count = 1

End I f

For i = 1 To UBound(DT)
D( i ) = Sp l ine . I n t e r p o l a t e (DT( i ) )
r_s e t t l e = Sp l ine . I n t e r p o l a t e ( t_s e t t l e )
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D( i ) = Exp(−D( i ) ∗ DT( i ) ∗ 0 . 01 ) ’

For j = 1 To n
pv_coupons ( j ) = pv_coupons ( j ) + C( i , j ) ∗ D( i )

Next j
Next i

For i = 1 To n

’The equat ion o f va lue
r (m + i ) = (1 / t (m + i ) ) ∗ ( App l i ca t ion . Ln(Pn( i ) ) − Appl i ca t ion . Ln(P(

i ) ∗ Exp(− r_s e t t l e ∗ t_s e t t l e ∗ 0 . 01 ) − pv_coupons ( i ) ) ) ∗ 100
pv_coupons ( i ) = 0

Next i

conv2 = sumarray ( r )
t e s t = Abs( conv1 − conv2 )

Set Sp l ine = New i n t e r p o l a t i o n

Sp l ine . method = interpol_method
Sp l ine . x_values = t ( )
Sp l ine . y_values = r ( )

count = count + 1

I f count > 50 Then
MsgBox "The Bond Bootstrap Fa i l ed to Converge"
Exit Sub

End I f
Loop

End Sub

Pr ivate Sub Swap_Bootstrap ( nSwaps As Integer , t ( ) As Double , r ( ) As Double , _
date_vector ( ) As Double , alpha ( ) As Double , _
interpol_method As St r ing )

’ nSwaps = the number o f swaps used as inputs
’ t = the s e t o f maturity dates o f the input swaps
’ r = the zero r a t e s cor re spond ing to t
’ datevec to r = the vec to r o f d i s t i n c t cash f low dates
’ alpha = the vec to r r ep r e s en t coupon tenure s
’ interpol_method = the chosen method o f i n t e r p o l a t i o n

’ I n t e g e r s f o r i t e r a t i n g loops
Dim iCount As Integer , jCount As In t eg e r

’The maximum number o f a l l owab l e i t e r a t i o n s
Dim iterMax As Long

’ Var iab le used to t rack the number o f i t e r a t i o n s
Dim iter_Count As Long

’ Array used to s t o r e the input s e t o f swap r a t e s
Dim Swap_Rates ( ) As Double

’The array used to s t o r e the d i scount f a c t o r s cor re spond ing to the date_vector
Dim DF( ) As Double

’ Var i ab l e s used to t e s t f o r convergence
Dim t e s t As Double , conv1 As Double , conv2 As Double

’The number o f Depos i t s and FRAs used as inputs
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Dim n As In t eg e r

’Dummy va r i ab l e used to s t r o r e the pv , o f a l l cash−f lows , e x l u s i ng the cash
f low at maturity , o f a p a r t i c u l a r swap

Dim pv As Double

iterMax = 50

’The i n t e r p o l a t i o n ob j e c t
Set Sp l ine = New i n t e r p o l a t i o n

Sp l ine . method = interpol_method
Sp l ine . x_values = t ( )
Sp l ine . y_values = r ( )

n = UBound( t ) − nSwaps

ReDim Swap_Rates (1 To nSwaps )
ReDim DF(1 To UBound( date_vector ) )

For iCount = 1 To UBound( date_vector )
DF( iCount ) = Sp l ine . I n t e r p o l a t e ( date_vector ( iCount ) )
DF( iCount ) = Exp(−0.01 ∗ DF( iCount ) ∗ date_vector ( iCount ) )

Next iCount

conv1 = sumarray ( r )

For iCount = 1 To nSwaps
Swap_Rates ( iCount ) = 0.01 ∗ r ( iCount + n)
pv = 0

For jCount = 1 To (Round(4 ∗ t (n + iCount ) , 0) − 1)
pv = pv + DF( jCount ) ∗ alpha ( jCount )

Next jCount

’The equat ion o f va lue
r ( iCount + n) = (−100 / t ( iCount + n) ) ∗ Appl i ca t ion . Ln( (1 − Swap_Rates (

iCount ) ∗ pv ) / (1 + Swap_Rates ( iCount ) _
∗ alpha (Round(4 ∗ t (n + iCount ) , 0) ) ) )

Next iCount

conv2 = sumarray ( r )
t e s t = Abs( conv1 − conv2 )
iter_Count = 0

’ Perform the i t e r a t i v e boots t rap
Do While t e s t > 0.0000000001

conv1 = sumarray ( r )

Sp l ine . method = interpol_method
Sp l ine . x_values = t ( )
Sp l ine . y_values = r ( )

For iCount = 1 To UBound( date_vector )
DF( iCount ) = Sp l ine . I n t e r p o l a t e ( date_vector ( iCount ) )
DF( iCount ) = Exp(−0.01 ∗ DF( iCount ) ∗ date_vector ( iCount ) )

Next iCount

For iCount = 1 To nSwaps
pv = 0

For jCount = 1 To (Round(4 ∗ t (n + iCount ) , 0) − 1)
pv = pv + DF( jCount ) ∗ alpha ( jCount )

Next jCount

’The equat ion o f va lue
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r ( iCount + n) = (−100 / t ( iCount + n) ) ∗ Appl i ca t ion . Ln( (1 −
Swap_Rates ( iCount ) ∗ pv ) / (1 + Swap_Rates ( iCount ) _

∗ alpha (Round(4 ∗ t (n + iCount ) , 0) ) ) )
Next iCount

conv2 = sumarray ( r )
t e s t = Abs( conv1 − conv2 )
iter_Count = iter_Count + 1

I f iter_Count > iterMax Then
MsgBox "The Swaps Bootstrap Fa i l ed to Converge"
Exit Sub

End I f
Loop

End Sub

D.3 Parametric Function

The following python functions were used to calibrate the Nelson and Siegel
(1987), and Svensson (1992) models to a set of zero-coupon bond prices.

import numpy as np
from sc ipy . opt imize import fmin

de f Nelson_Siegel_Parameters ( t , r , k ) :

"""
Find b0 , b1 and b2 under the
Nelson S i e g e l model , g iven a s e t o f t imes t ,
ze ro r a t e s r , and a non −i n ea r parameter k .
"""

n=len ( t )
X=np . z e r o s ( [ n , 3 ] )

f o r i in range (0 , n ) :
X[ i ,0 ]=1
X[ i ,1 ]=(1/ t [ i ] ) ∗k∗(1−np . exp(−t [ i ] / k ) )
X[ i , 2 ]=(1/ t [ i ] ) ∗k∗(1−np . exp(−t [ i ] / k ) )−np . exp(−t [ i ] / k )

X = np . matrix (X)
Y = np . matrix ( r ) .T

return ( (X.T∗X) . I ) ∗(X.T∗Y)

de f Nelson_Siegel_Curve (b0 , b1 , b2 , k , t ) :

"""
Given b0 , b1 and b2 , and a non−l i n e a r parameter k ,
f i nd the zero ra t e cor re spond ing to tme t , under the
Nelson−S i e g e l model .
"""

re turn ( b0 + b1∗k∗(1−np . exp(−t /k ) ) / t+
b2∗k∗(1−np . exp(−t /k ) ) / t − b2∗np . exp(−t /k ) )

de f R_square_NS( Parameters , k , t , r ) :

 
 
 



APPENDIX D. CODE 112

"""
Find the value o f R2 given a s e t o f Nelson−S i e g e l
parameters , a vec to r o f times , and a vec to r o f
ze ro r a t e s .
"""

mean = np . average ( r )
rhat = np . z e r o s ( l en ( t ) )
SStot = 0
SSerr = 0

f o r i in range (0 , l en ( t ) ) :
rhat [ i ] = ( Nelson_Siegel_Curve ( Parameters [ 0 ] ,

Parameters [ 1 ] , Parameters [ 2 ] , k , t [ i ] ) )
SStot = SStot + np . power ( r [ i ]−mean , 2 )
SSerr = SSerr + np . power ( r [ i ]− rhat [ i ] , 2 )

re turn 1− SSerr /SStot

de f Optmize_NS(k , t , r ) :

"""
Find the value o f 1−R2 under the Nelson−S i e g e l model ,
g iven a s e t o f t imes t , ze ro r a t e s r , and a non−l i n e a r
parameter k .
"""

i f k < 0 :
R2=0

e l s e :
Parameters = Nelson_Siegel_Parameters ( t , r , k )
i f ( Parameters [ 0 ] <= 0) or ( Parameters [0 ]+ Parameters [ 1 ] <= 0) :

R2 = 0
e l s e :

R2 = R_square_NS( Parameters , k , t , r )

r e turn 1− R2

k = 0 .5
k = fmin (Optmize_NS , k , args=(t , r ) , maxiter = 1000)

"""
Use 0 .5 as the i n i t i a l guess f o r the non − l i n e a r parameter ,
and then use the Nelder−Mead optmizat ion rou t ine to obta in the optimum value
f o r k .

"""

de f Svensson_Parameters ( t , r , k1 , k2 ) :

"""
Find b0 , b1 , b2 and b3 under the
Svensson model , g iven a s e t o f t imes t ,
ze ro r a t e s r , and non−l i n e a r parameters k1 and k2 .
"""

n=len ( t )
X=np . z e r o s ( [ n , 4 ] )

f o r i in range (0 , n ) :
X[ i ,0 ]=1
X[ i ,1 ]=(1/ t [ i ] ) ∗k1∗(1−np . exp(−t [ i ] / k1 ) )
X[ i , 2 ]=(1/ t [ i ] ) ∗k1∗(1−np . exp(−t [ i ] / k1 ) )−np . exp(−t [ i ] / k1 )
X[ i ,3 ]=(1/ t [ i ] ) ∗k2∗(1−np . exp(−t [ i ] / k2 ) )−np . exp(−t [ i ] / k2 )

X = np . matrix (X)
Y = np . matrix ( r ) .T
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r e turn ( l i n a l g . pinv (X.T∗X) ) ∗(X.T∗Y)

de f Svensson_Curve (b0 , b1 , b2 , b3 , k1 , k2 , t ) :

"""
Given b0 , b1 , b2 , b3 and non−l i n e a r parameters k1 and k2 ,
f i nd the zero ra t e cor re spond ing to time t ,
under the Svensson model .
"""

re turn ( b0 + b1∗k1∗(1−np . exp(−t /k1 ) ) / t+
b2∗k1∗(1−np . exp(−t /k1 ) ) / t − b2∗np . exp(−t /k1 ) +
b3∗k2∗(1−np . exp(−t /k2 ) ) / t − b3∗np . exp(−t /k2 ) )

de f R_square_NSS( Parameters , k1 , k2 , t , r ) :

"""
Find the value o f R2 given a s e t o f Svensson
parameters , non−l i n e a r parameters k1 and k2 ,
a vec to r o f times , and a vec to r o f
ze ro r a t e s .
"""

mean = np . average ( r )
rhat = np . z e r o s ( l en ( t ) )
SStot = 0
SSerr = 0

f o r i in range (0 , l en ( t ) ) :
rhat [ i ] = ( Svensson_Curve ( Parameters [ 0 ] , Parameters [ 1 ] ,

Parameters [ 2 ] , Parameters [ 3 ] , k1 , k2 , t [ i ] ) )
SStot = SStot + np . power ( r [ i ]−mean , 2 )
SSerr = SSerr + np . power ( r [ i ]− rhat [ i ] , 2 )

re turn 1−SSerr /SStot

de f Optmize_NSS(k , t , r ) :

"""
Find the value o f 1 − R2 under the Svensson model ,
g iven a s e t o f t imes and zero rate s , and non−l i n e a r
parameters k1 and k2 .
"""

i f ( k [ 0 ] <= 0) or (k [1]<=0) :
R2=0

e l s e :
Parameters = Svensson_Parameters ( t , r , k [ 0 ] , k [ 1 ] )
i f ( ( Parameters [ 0 ] <= 0) or ( Parameters [0 ]+

Parameters [ 1 ] <= 0) ) :
R2 = 0

e l s e :
R2 = R_square_NSS( Parameters , k [ 0 ] , k [ 1 ] , t , r )

r e turn 1− R2

k = [ 0 . 5 , 0 . 5 ]
opt_k = fmin (Optmize_NSS , k , args=(t , r ) , maxiter = 1000)

"""
Use 0 .5 as the i n i t i a l guess f o r both non , and non−l i n e a r parameters ,
and then use Nelder−Mead optmizat ion rou t ine to obta in the optimum va lues
f o r k1 and k2

"""
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