
Hardcoding Finite Automata

By

ERNEST KETCHA NGASSANI

Supervisors:

Bruce W. Watson and Derrick G . Kourie

Submitted in partial fulfilment of the requirements for the degree of

MAGISTER SCIENTIA (Computer Science)

in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria

NOVEMBER 2003

© University of Pretoria

To Maurice fj Madeleine N gassam i late Pierre Tatchou

Tchoukwam i late Pauline Tchetgnia i fj late Jean Petji.

ii

Abstract

The so-called conventional approach to implement finite automata is by mean of a matrix

to represent the transition function. Of course, if the transition table is very sparse, linked

lists might be used as an alternative. Such approaches therefore depend on the computer's

main memory capabilities to optimally hold the table for better processing.

For various computational problems using finite automata as a basic solution-model, the

processing may be an important factor to be considered. This work aims to investigate a

relatively new implementation approach that relies on hardcoding. A hardcoded algorithm

uses simple instructions to represent the transition table. T he algorithm is written in such

a way that the transition matrix is part of its instructions as opposed to the traditional

table-driven approach in which the table is external data that is to be accessed by the

algorithm. This work includes a general performance analysis of both approaches through

an empirical study. We firstly investigate the processing speed required to accept or reject

a symbol by some randomly generated single states of some automata. Then, a more

advanced experiment is performed based on the previous, for the test of acceptance of

randomly generated strings by randomly generated finite automata.

The main result of this work is that the hardcoded implementations of finite automata

outperform the table-driven implementation up to some threshold. T his therefore empha

sizes that many applications using finite automata as basic model may be optimized by

replacing the table-driven implementation with a hardcoded implementation, resulting to

better performances.

Keywords: Hardcoding, Automata, Pattern matching, Lexical analyzer, Algorithms,

Experimentation, Performance, Grammars, Language, Parsing

III

Acknowledgements

I would like to thank Derrick G. Kourie and Bruce W. Watson, my supervisors, for

their constant supports and unterminated suggestions during this research.

All my gratitude to Professor Bruce Watson for providing me the idea leading

to the achievement of this work . Many thanks to Professor Derrick Kourie for its

constant proof reading and critics throughout this research.

Of course , I am gratefu l to my parents, Maurice and Madeleine Ngassam, for their

patience and love. Without them this work would never have come into existence.

My thanks go also to my daughter Orline Ketcha, my son Ryan Ketcha, and my wife

Liliane Ketcha who provided me with all the moral support needed to achieve such a

work.

Finally, I wish to thank the following: Lisette Ngassam, Guy Ngassam, Laurent

Ngassam, j\,!Iirabelle Ngassam, Orline Ngassam and Floriant Ngassam for their con

stant support and love through the path of achieving this goal.

Pretoria Ernest Ketcha Ngassam

October 31, 2003

IV

Table of Contents

Abstract III

Acknowledgements IV

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 The Problem 1

1.2 F As in Context 3

1.3 Objective of the dissertation 4

1.4 Nlethodology 4

1.5 Dissertation Outline 5

2 Background and Related Work 7

2.1 Introduction 7

2.2 Finite Automata 8

2.2.1 Deterministic Finite Automaton (DFA) 9

2.2.2 Complexity of DFA String Recognition. 10

2.2 .3 Non-Deterministic Finite Automata (NFA) 11

2.2.4 Equivalence DFA and N FA 12

2.3 Finite Automata and Regular Expressions 13

2.3 .1 Operands and Operators of a Regular Expression 13

2.3.2 Equivalence of Finite Automata and Regular Expressions 14

2.3.3 Summary of the Section 15

2.4 Pattern Matching 15

2.4.1 General Pattern Matching Algorithm 15

v

2.4.2 String Keyword Pattern Matching and Finite Automata 16

243 Summary of the section 17

2.5 Lexical Analysis. 17

2.5.1 Summary of the section 18

2.6 Context Free Grammars 18

2.6.1 Definition 19

2.6.2 Context Free Grammars and Regular expressions 20

2.6.3 Push Down Automata 20

2.6.4 Parsing and Code Generation 23

2.7 Related Work 29

2.7.1 Pennello........... . 29

2.7.2 Horspool and Whitney 33

2.7.3 Bhamidiapaty and Proebsting 35

2.8 Summary of the chapter 36

3 Problem Domain Restriction 38

3.1 Introduction 38

3.2 The Table-Driven Algorithm 39

33 The Hardcoded Algorithm . 40

3.4 Comparison of Hardcoding and Table-Driven Algorithms 42

3.5 Problem Restriction. 44

3.6 Single Symbol Recognition 46

3.7 Hardcoding Single Symbol Recognition 48

3.8 Summary 49

4 Tools and Methodology 50

41 Introduction. 50

4.2 Hardware Considerations. 50

4.3 Software Considerations . 51

4.4 The Intel Pentium Read Time Stamp Counter Instruction 52

4.5 Random Number Generation. 52

4.6 Methodology 54

4.7 Chapter Summary 55

5 Implementation 57

5.1 Introduction 57

5.2 The Random Transition Array. 57

5.3 Table-Driven Implementation . 59

5.4 Hardcoded Implementations .. 61

5.4.1 Use of the Nested Conditional Statements 66

5.4.2 Use of the Switch Statements 67

VI

5.4.3 Use of a Jump Table . 69

5.4.4 Use of a Linear Search 72

5.4.5 Use of a Direct Jump. 74

5.5 Data Collection 76

5.6 summary of the chapter 78

6 Experimental Results 79

6.1 Introduction: 79

6.2 Table-Driven Experimental Results 79

6.3 Hardcoding Experimental Results . 80

6.3.1 High-Level Language Hardcoding 81

6.3.2 Low-Level Language Hardcoding 83

6.3.3 Overall Results of Hardcoding 87

6.4 Final Results 88

6.5 Summary of the chapter 89

7 String Recognition Experiments 94

7.1 Introduction: 94

7.2 Exercising Nlemory on Intel Pentium Architecture 95

7.2.1 A Simple Experiment and Results. 97

7.3 The String Recognition Experiment 104

7.3.1 Experimental Results. 107

7.4 Summary of the Chapter . 111

8 Summary and Future Work 113

8.1 Summary and Conclusion 113

8.2 Future V/ork 118

A Random Number Generator 120

B Data Collected 126

Bibliography 137

V11

List of Tables

3.1 Evaluation of algorithm 3 and 4 . . 	 43

B.1 The Table-driven Experiment Data 	 128

B.2 The Switch Statements Data 	 129

B.3 the Nested Conditional Statements Data 	 130

B.4 The Jump Table Data . 	 131

B.5 The Linear Search Data 	 132

B.6 The Direct Jump Data . 	 133

B.7 	 Averaged Data collected independently to the problem size 134

B.8 	 Sample Data for the two-alphabet symbols Experiments .. 135

B.9 	 Sample Data for the String Recognition Experiment with Searching

and JJuect Indexmg. .. 1;)0

Vlll

List of Figures

2.1 A finite automaton 	 9

2.2 A state transition diagram 	 9

2.3 A Push Down Automa.ton 	 21

3.1 	 A state in the transition diagram of some finite automaton 47

3.2 	 A transition array for a state of some automaton 47

4.1 	 Process diagram indicating how the hardcoded implementation were

compared to the table-driven implementation 56

6.1 	 A verage processing speed for Table-driven implementation (accepting

and rejecting symbols) 80

6.2 	 Accepting symbol performance for NCSs 82

6.3 	 Rejecting symbol performance for NCSs 83

6.4 	 Performance based on ASs for SSs 84

6.5 	 Performance based on RSs for SSs 85

6.6 	 Performance based on hardcoding implementation in high-level language 86

6.7 	 Performance based on ASs for JT . 87

6.8 	 Performance based on RSs for JT . 88

6.9 	 Performance based on ASs for LS 89

6.10 	 Performance based on RSs for LS 90

6.11 	 Performance ba.sed on ASs for DJ . 91

6. 12 	Performance based on RSs for DJ . 91

IX

6.13 Performance of low-level hardcoded implementations 92

6.14 Performance based on hardcoding implementation .. 92

6.15 Average processing speed per implementation technique. 93

7.1 Bardcoded time against automaton size for two symbols alphabet 101

7.2 Table-driven time against automaton size for two symbols alphabet 104

7.3 table-driven and hardcoded multiple states for two symbols alphabet 105

7.4 Table-driven and hardcoded performance using linear search 108

7.5 Table-driven and hardcoded performance using direct index. 110

7.6 Table-driven and hardcoded performance using direct index. 110

7.7 Performance based on searching and direct indexing 111

x

	FRONT
	Title page
	Deication
	Abstract
	Acknowledgements
	Table of contents
	List of tables
	List of figures

	Dissertation
	Back

