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Abstract 

The so-called conventional approach to implement finite automata is by mean of a matrix 

to represent the transition function. Of course, if the transition table is very sparse, linked 

lists might be used as an alternative. Such approaches therefore depend on the computer's 

main memory capabilities to optimally hold the table for better processing. 

For various computational problems using finite automata as a basic solution-model, the 

processing may be an important factor to be considered. This work aims to investigate a 

relatively new implementation approach that relies on hardcoding. A hardcoded algorithm 

uses simple instructions to represent the transition table. T he algorithm is written in such 

a way that the transition matrix is part of its instructions as opposed to the traditional 

table-driven approach in which the table is external data that is to be accessed by the 

algorithm. This work includes a general performance analysis of both approaches through 

an empirical study. We firstly investigate the processing speed required to accept or reject 

a symbol by some randomly generated single states of some automata. Then, a more 

advanced experiment is performed based on the previous, for the test of acceptance of 

randomly generated strings by randomly generated finite automata. 

The main result of this work is that the hardcoded implementations of finite automata 

outperform the table-driven implementation up to some threshold. T his therefore empha

sizes that many applications using finite automata as basic model may be optimized by 

replacing the table-driven implementation with a hardcoded implementation, resulting to 

better performances. 

Keywords: Hardcoding, Automata, Pattern matching, Lexical analyzer, Algorithms, 

Experimentation, Performance, Grammars, Language, Parsing 
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