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NON-PARAMETRIC STATISTICS * 

(http://www.Statsoft.com) 

 

1. GENERAL PURPOSE 
1.1 Brief review of the idea of significance testing 

To understand the idea of non-parametric statistics (the term non-parametric 

was first used by Wolfowitz, 1942) first requires a basic understanding of 

parametric statistics.  The Elementary Concepts chapter of the manual 

introduces the concept of statistical significance testing based on the 

sampling distribution of a particular statistic (you may want to review that 

chapter before reading on).  In short, if we have a basic knowledge of the 

underlying distribution of a variable, then we can make predictions about how, 

in repeated samples of equal size, this particular statistic will “behave,” that is, 

how it is distributed.  For example, if we draw 100 random samples of 100 

adults each from the general population, and compute the mean height in 

each sample, then the distribution of the standardized means across samples 

will likely approximate the normal distribution (to be precise, Student’s t 

distribution with 99 degrees of freedom; see below).  Now imagine that we 

take an additional sample in a particular city (“Tallburg”) where we suspect 

that people are taller than the average population. If the mean height in that 

sample falls outside the upper 95% tail area of the t distribution then we 

conclude that, indeed, the people of Tallburg are taller than the average 

population. 

 

1.2 Are most variables normally distributed? 
In the above example we relied on our knowledge that, in repeated samples 

of equal size, the standardized means (for height) will be distributed following 

the t distribution (with a particular mean and variance).  However, this will only 

be true if in the population the variable of interest (height in our example) is 

normally distributed, that is, if the distribution of people of particular heights 

follows the normal distribution (the bell-shape distribution). 

 
*  This material is a verbatim presentation. 

University of Pretoria.etd



Appendix 4 

Page 2 

 

For many variables of interest, we simply do not know for sure that this is the 

case.  For example, is income distributed normally in the population? – 

Probably not.  The incidence rates of rare diseases are not normally 

distributed in the population, the number of car accidents is also not normally 

distributed, and neither are very many other variables in which a researcher 

might be interested. 

 

For more information on the normal distribution, see Elementary Concepts; for 

information on tests of normality, see Normality tests. 

 

1.3 Sample size 
Another factor that often limits the applicability of tests based on the 

assumption that the sampling distribution is normal is the size of the sample of 

data available for the analysis (sample size; n).  We can assume that the 

sampling distribution is normal even if we are not sure that the distribution of 

the variable in the population is normal, as long as our sample is large enough 

(e.g., 100 or more observations).  However, if our sample is very small, then 

those tests can be used only if we are sure that the variable is normally 

distributed, and there is no way to test this assumption if the sample is small.  

 

1.4 Problems in measurement 
Applications of tests that are based on the normality assumptions are further 

limited by a lack of precise measurement.  For example, let us consider a 

study where grade point average (GPA) is measured as the major variable of 
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interest.  Is an A average twice as good as a C average? Is the difference 

between a B and an A average comparable to the difference between a D and 

a C average? Somehow, the GPA is a crude measure of scholastic 

accomplishments that only allows us to establish a rank ordering of students 

from "good" students to "poor" students.  This general measurement issue is 

usually discussed in statistics textbooks in terms of types of measurement or 

scale of measurement.  Without going into too much detail, most common 

statistical techniques such as analysis of variance (and t-tests), regression, 

etc. assume that the underlying measurements are at least of interval, 

meaning that equally spaced intervals on the scale can be compared in a 

meaningful manner (e.g, B minus A is equal to D minus C).  However, as in 

our example, this assumption is very often not tenable, and the data rather 

represent a rank ordering of observations (ordinal) rather than precise 

measurements. 

 

1.5 Parametric and non-parametric methods 
Hopefully, after this somewhat lengthy introduction, the need is evident for 

statistical procedures that allow us to process data of "low quality," from small 

samples, on variables about which nothing is known (concerning their 

distribution). Specifically, non-parametric methods were developed to be used 

in cases when the researcher knows nothing about the parameters of the 

variable of interest in the population (hence the name non-parametric).  In 

more technical terms, non-parametric methods do not rely on the estimation 

of parameters (such as the mean or the standard deviation) describing the 

distribution of the variable of interest in the population. Therefore, these 

methods are also sometimes (and more appropriately) called parameter-free 

methods or distribution-free methods. 

 

2. BRIEF OVERVIEW OF NON-PARAMETRIC METHODS 
Basically, there is at least one non-parametric equivalent for each parametric 

general type of test. In general, these tests fall into the following categories:  

 

• Tests of differences between groups (independent samples) 

University of Pretoria.etd



Appendix 4 

Page 4 

• Tests of differences between variables (dependent samples) 

• Tests of relationships between variables 

 

2.1 Differences between independent groups 
Usually, when we have two samples that we want to compare concerning 

their mean value for some variable of interest, we would use the t-test for 

independent samples in Basic Statistics.  Non-parametric alternatives for this 

test are the Wald-Wolfowitz run test, the Mann-Whitney U test, and the 

Kolmogorov-Smirnov two-sample test. If we have multiple groups, we would 

use analysis of variance (see ANOVA/MANOVA) the non-parametric 

equivalents to this method are the Kruskal-Wallis analysis of ranks and the 

Median test. 

 

2.2 Differences between dependent groups 
If we want to compare two variables measured in the same sample we would 

customarily use the t-test for dependent samples (in Basic Statistics for 

example, if we wanted to compare students' math skills at the beginning of the 

semester with their skills at the end of the semester).  Non-parametric 

alternatives to this test are the Sign test and Wilcoxon's matched pair test.  
If the variables of interest are dichotomous in nature (i.e., "pass" vs. "no 

pass") then McNemar's Chi-square test is appropriate.  If there are more than 

two variables that were measured in the same sample, then we would 

customarily use repeated measures ANOVA. Non-parametric alternatives to 

this method are Friedman's two-way analysis of variance and Cochran Q 

test (if the variable was measured in terms of categories, e.g., "passed" vs. 

"failed"). Cochran Q is particularly useful for measuring changes in 

frequencies (proportions) across time. 

 

2.3 Relationships between variables 
To express a relationship between two variables one usually computes the 

correlation coefficient.  Non-parametric equivalents to the standard correlation 

coefficient are Spearman R, Kendall Tau, and coefficient Gamma (see Non-

parametric correlations).  If the two variables of interest are categorical in 
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nature (e.g., "passed" vs. "failed" by "male" vs. "female") appropriate non-

parametric statistics for testing the relationship between the two variables are 

the Chi-square test, the Phi coefficient, and the Fisher exact-test. In addition, 

a simultaneous test for relationships between multiple cases is available: 

Kendall coefficient of concordance.  This test is often used for expressing 

inter-rater agreement among independent judges who are rating (ranking) the 

same stimuli. 

 

2.4 Descriptive statistics 
When one's data are not normally distributed, and the measurements at best 

contain rank order information, then computing the standard descriptive 

statistics (e.g., mean, standard deviation) is sometimes not the most 

informative way to summarize the data.  For example, in the area of 

psychometrics it is well known that the rated intensity of a stimulus (e.g., 

perceived brightness of a light) is often a logarithmic function of the actual 

intensity of the stimulus (brightness as measured in objective units of Lux). In 

this example, the simple mean rating (sum of ratings divided by the number of 

stimuli) is not an adequate summary of the average actual intensity of the 

stimuli. (In this example, one would probably rather compute the geometric 

mean.)  Non-parametrics and distributions will compute a wide variety of 

measures of location (mean, median, mode, etc.) and dispersion (variance, 

average deviation, quartile range, etc.) to provide the "complete picture" of 

one's data. 

 

3. WHEN TO USE WHICH METHOD 
It is not easy to give simple advice concerning the use of non-parametric 

procedures. Each non-parametric procedure has its peculiar sensitivities and 

blind spots. For example, the Kolmogorov-Smirnov two-sample test is not only 

sensitive to differences in the location of distributions (for example, 

differences in means) but is also greatly affected by differences in their 

shapes.  The Wilcoxon matched pairs test assumes that one can rank order 

the magnitude of differences in matched observations in a meaningful 

manner.  If this is not the case, one should rather use the Sign test.  In 

general, if the result of a study is important 
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(e.g., does a very expensive and painful drug therapy help people get 

better?), then it is always advisable to run different non-parametric tests; 

should discrepancies in the results occur contingent upon which test is used, 

one should try to understand why some tests give different results. On the 

other hand, non-parametric statistics are less statistically powerful (sensitive) 

than their parametric counterparts, and if it is important to detect even small 

effects (e.g., is this food additive harmful to people?) one should be very 

careful in the choice of a test statistic.  

 

3.1 Large data sets and non-parametric methods 
Non-parametric methods are most appropriate when the sample sizes are 

small.  When the data set is large (e.g., n > 100) it often makes little sense to 

use non-parametric statistics at all.  The Elementary Concepts chapter of the 

manual briefly discusses the idea of the central limit theorem. In a nutshell, 

when the samples become very large, then the sample means will follow the 

normal distribution even if the respective variable is not normally distributed in 

the population, or is not measured very well.  Thus, parametric methods, 

which are usually much more sensitive (i.e., have more statistical power) are 

in most cases appropriate for large samples.  However, the tests of 

significance of many of the non-parametric statistics described here are based 

on asymptotic (large sample) theory; therefore, meaningful tests can often not 

be performed if the sample sizes become too small.  Please refer to the 

descriptions of the specific tests to learn more about their power and 

efficiency. 

 

4. NON-PARAMETRIC CORRELATIONS 
The following are three types of commonly used non-parametric correlation 

coefficients (Spearman R, Kendall Tau, and Gamma coefficients).  Note that 

the chi-square statistic computed for two-way frequency tables, also provides 

a careful measure of a relation between the two (tabulated) variables, and 

unlike the correlation measures listed below, it can be used for variables that 

are measured on a simple nominal scale. 
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• Spearman R 
Spearman R (Siegel & Castellan, 1988) assumes that the variables under 

consideration were measured on atleast an ordinal (rank order) scale, that 

is, that the individual observations can be ranked into two ordered series.  

Spearman Rcan be thought of as the regular Pearson product moment 

correlation coefficient, that is, in terms of proportion of variability 

accounted for, except that Spearman R is computed from ranks. 

 

• Kendall tau 
Kendall tau is equivalent to Spearman R with regard to the underlying 

assumptions. It is also comparable in terms of its statistical power. 

However, Spearman R and Kendall tau are usually not identical in 

magnitude because their underlying logic as well as their computational 

formulas are very different. Siegel and Castellan (1988) express the 

relationship of the two measures in terms of the inequality:  

 

-1 ≤ 3 * Kendall tau - 2 * Spearman R ≤ 1 

 

More importantly, Kendall tau and Spearman R imply different 

interpretations: Spearman R can be thought of as the regular Pearson 

product moment correlation coefficient, that is, in terms of proportion of 

variability accounted for, except that Spearman R is computed from ranks.  

Kendall tau, on the other hand, represents a probability, that is, it is the 

difference between the probability that in the observed data the two 

variables are in the same order versus the probability that the two 

variables are in different orders. 

 

• Gamma 
The Gamma statistic (Siegel & Castellan, 1988) is preferable to Spearman R 

or Kendall tau when the data contain many tied observations. In terms of the 

underlying assumptions, Gamma is equivalent to Spearman R or Kendall tau; 

in terms of its interpretation and computation it is more similar to Kendall tau 

than Spearman R.  In short, Gamma is also a probability; specifically, it is 
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computed as the difference between the probability that the rank ordering of 

the two variables agree minus the probability that they disagree, divided by 1 

minus the probability of ties.  Thus, Gamma is basically equivalent to Kendall 

tau, except that ties are explicitly taken into account. 
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