

Appendix A: Publications and conference proceedings

Publications:

- Moyo L., Focke, W. W., Labuschagne, F. J., Heidenrich, D. & Radusch, H.-J. (2013) Properties of layered double hydroxide micro- and nanocomposites. *Materials Research Bulletin*. (48) 1218-1227.
- Moyo L., Focke, W. W., Labuschagne, F. J. & Verryn, S. (2012). Layered double hydroxide intercalated with sodium dodecyl sulphate *Mol. Cryst. Liq. Cryst.*, 555(1): 51–64.
- Focke, W.W., Nhlapo, N. S., Moyo, L. & Verryn, S. M. C. (2010). Thermal properties of lauric- and stearic acid-intercalated layered double hydroxides. *Mol. Cryst. Liq. Cryst.*, 521(1), 168–178.

Pending publications:

• Focke, W. W., Moyo L., Labuschagne, F. J. W. & Ramjee, S. Fatty acid intercalated hydrotalcite as a rheology modifier in Jojoba oil (November 2012).

Conference contributions:

- Moyo L, Heidenrich, D., Labuschagne, F. J., Radusch, H.-J. & Focke, W. W. (2011). Impact strength of LDH-St polymer composites. Poster presentation at the 15th International Conference on Polymeric Materials, Halle (Saale), Germany, September 2011.
- Moyo, L., Focke, W. W., Labuschagne F. J. & and Verryn, S. (2011). Layered double hydroxide intercalated with sodium dodecyl sulphate. Oral and poster presentation at the 11th International Conference on Frontiers of Polymers and Advanced Materials, Pretoria, South Africa, May 2011.
- Moyo, L, Heidenrich, D., Labuschagne, F. J., Androsch, R. & Focke, W. W. (2010). The effect of matrix polarity on the impact properties of LDH-stearate polymer composites. Poster presentation at the 14th International Conference on Polymeric Materials, Halle (Saale), Germany, September 2010.

Appendix B: Fatty acid-intercalated layered double hydroxides

Figure B-1. Fatty/carboxylic acids used in the study

Figure B-1 shows the fatty acids used in the intercalation reaction. Oleic acid was also intercalated to demonstrate the close packing phenomenon. Due to the presence of the *cis*-double bond, the molecules pack with difficulty as this bond limits chain flexibility and decreases adhesion to adjacent chains. The limiting area of oleic acid is about 32 Å², which is much greater than that of saturated fatty acid chains, which is ≈ 21 Å².

The basic method was adapted from Nhlapo et al. (2008) for the one-pot synthesis. The LDH-carbonate precursor was obtained from Chamotte Holdings and used as is.

		Temperature	
Sample I.D	AEC (Acid)	(°C)	pН
LDH- stearate A	4	80	~9-10
LDH- stearate B	4	80	~9-10
LDH- stearate C	4.5	80	~9-10
LDH-laurate/jojoba oil	2 lauric + 1 jojoba oil	85	~9-10
LDH-stearate/jojoba oil (1AEC)	1 stearic + 2 jojoba oil	85	~9-10
LDH-stearate/jojoba oil (2AEC)	2 stearic + 1 jojoba oil	85	~9-10
LDH-stearate/Jojoba oil (2AEC)	2 stearic + 1 jojoba oil	85	~9-10
LDHSt 1 AEC	1	80	~9-10
LDHSt 2AEC	2	80	~9-10
LDH-myristate 1	4	70	~9-10
LDH-myristate 2	4	70	~9-10
LDH-myristate 3	3	70	~9-10
LDH-myristate 4	4	70	~9-10
LDH- palmitate 1	3	75	~9-10
LDH-palmitate 2	4.5	75	~9-10
LDH- palmitate 3	4.5	75	~9-10
LDH- palmitate 4	4	75	~9-10
LDH-palmitate/stearate	2 palmitic + 2 stearic	80	~9-10
LDH-behenate 1	4	90	~9-10
LDH-behenate 2	3.5	90	~9-10

Table B-1. Summary of intercalation experiments

X-Ray Diffraction

Figure B-2. XRD diffractograms for LDH-myristate

Sample	Reflections					
	2θ(°)	d ₀₀₃	2θ(°)	d ₀₀₆	2θ(°)	d ₀₀₉
Myristic acid	2.94	3.50	5.77	1.78	8.63	1.19
LDH-myristate 1	2.48	4.14	4.86	2.11	7.26	1.41
LDH-myristate 2	2.30	4.46	4.58	2.24	6.84	1.50
LDH-myristate 3	2.26	4.55	4.41	2.32	6.57	1.56
LDH-myristate 4	2.18	4.71	4.34	2.37	6.50	1.58

Figure B-3. XRD diffractograms for LDH-palmitate

Sample	Reflections					
-	2θ(°)	d ₀₀₃ (nm)	2θ(°)	d ₀₀₆ (nm)	2θ(°)	d ₀₀₉ (nm)
Palmitic acid	2.94	3.50	5.77	1.78	8.63	1.19
LDH-palmitate 1	2.32	4.43	4.60	2.23	6.86	1.50
LDH-palmitate 2	2.30	4.46	4.58	2.24	6.84	1.50
LDH-palmitate 3	2.26	4.55	4.41	2.32	6.57	1.56
LDH-palmitate 4	2.18	4.71	4.34	2.37	6.50	1.58

Table B-3. Observed 20 reflections of XRD of neat palmitic acid and LDH-palmitate

The average d-spacing observed for LDH-palmitate samples was 4.538 nm. However, it is clear that there are palmitic acid impurities in the case of LDH-palmitate 4. This further substantiates the observations by Kuehn and Poelmann (2010) that a second layer of undissociated acid will lead in greater d-spacings.

Figure B-4. XRD diffractograms for LDH-behenate

Sample	Reflections					
	2θ(°)	d ₀₀₃ (nm)	2θ(°)	d ₀₀₆ (nm)	2θ(°)	d ₀₀₉ (nm)
Behenic acid	2.22	4.62	4.35	2.36	6.45	1.59
LDH-behenate 1	1.69	6.08	3.33	3.09	4.96	2.07
LDH-behenate 2	1.68	6.12	3.31	3.10	4.96	2.07

Table B-4. Observed 2θ reflections of XRD of neat behenic acid and LDH-behenate

The average d-spacing observed for LDH-behenate samples was 6.097 nm.

Co-intercalation Trials

Two different fatty acids were used in the intercalation reaction, i.e. palmitic acid and stearic acid. The resultant intercalation product had a d-spacing of 4.56 nm (Figure B-5). This is substantially higher than what is normally obtained for bilayer LDH-palmitate (4.46 nm), yet it is lower than that of bilayer LDH-St (4.88 nm). This is an indication that the fatty acids will orient themselves in such a manner that they can accommodate each other, despite the difference in chain length.

In other scenarios, an attempt was made to co-intercalate Jojoba oil and stearic acid into LDH in a ratio of 2:1 and 1:2 respectively. However, co-intercalation was only observed in the later ratio of Jojoba oil to stearic acid (Figure B-5).

Figure B-5. XRD diffractogram of co-intercalated organo-LDH

Co-intercalation of stearate anion and Jojoba oil yielded a mixed-order product with crystallites with d-spacings of 5.06 and 4.46 nm. The latter is assumed to be a constituent of Jojoba oil; its phases are marked by means of asterisks in Figure B-5. This points to the possible exchange/incorporation of the Jojoba oil constituents with the LDH interlayer anions. The narrow symmetric peaks observed are indicative of a highly crystalline and well-ordered material. This is primarily explained by the fact that Jojoba oil wax esters have a chain length of C_{34} - C_{50} with an alcohol/acid combination of C_{16} - C_{26} , and hence allow interaction with the interlayer anions. The fatty acid and alcohol component of the ester is usually unsaturated, both possessing a cis-ethylenic bond between the 9th and the 10th carbon, counting from either of the terminal methyl groups (Miwa, 1984³). The cis-geometry has bends at the position of the double bond. The ill-defined secondary peak is due to co-intercalation of a Jojoba oil constituent. However, as mentioned earlier, the fact that the Jojoba oil esters possess a double bond imposes some steric challenges. Hence, minimal intercalation is observed as well as poor ordering/absorption within the interlayer.

Table B-5 shows the elemental composition as determined by ICP-EOS.

Intercalated Anion	Aluminium mol		
	ratio to		
	Mg	Na	x
Carbonate	2.33	0.14	0.30
Pal/St	2.33	0.02	0.30
St/Jojoba oil	1.80	0.29	0.36

Table B-5. Compositional data and formulae of co-intercalated organo-LDHs

³ Miwa, T.K. (1984). Structural determination and uses of Jojoba Oil. Journal of the American Oil Chemists'Society. 61(2), 407E410.

Morphology

Figure B-6 shows the typical platelet morphology of the co-intercalated LDHs described above.

LDH- Stearate /Palmitate

LDH- Jojoba oil/ Stearate

Figure B-6. SEM micrographs of co-intercalated LDHs

EDS Analysis of Clay Platelets

During the study some samples showed unusually high AEC levels or elavated levels of organic incorporation. For this reason the composition of the clay platelets was investigated.

Figure B-7. LDH-CO₃ SEM microgragh, X-ray and composition of platelets

Weight % Error (+/- 1 Sigma)				
	Mg	Al		
LDH-myristate_ptl	+/-0.7	+/-0.8		
LDH-myristate_pt2	+/-0.4	+/-0.6		
LDH-myristate_pt3	+/-0.6	+/-0.7		

Figure B-8. LDH-myristate SEM microgragh, X-ray and composition of platelets

Weight 9	% Error (+/- 1 Sigma)	
	Mg	
LDH-palmitate_pt1	+/-2.3	

Figure B-9. LDH-palmitate SEM microgragh, X-ray and composition of platelets

Figure B-10. LDH-St SEM microgragh, X-ray and composition of platelets

Figure B-11. LDH-behenate SEM microgragh, X-ray and composition of platelets

Thermogravimetric Analysis

The formulae used in the calculation of the clay content on a dry basis; actual clay and percentage organic content are:

Clay content on a dry basis = $\frac{\% \text{ Residue at } 900 \degree \text{C}}{\% \text{ Residue at } 150 \degree \text{C}}$

Actual clay content is obtained by multiplying the ratio of the clay content on a dry basis to that of 100% clay of the LDH precursor. For example, using LDH-CO₃,

Clay content on a dry basis = 57.33/98.51= 58.19%

Ratio of clay on a dry basis to 100% = 100/58.19

% Organic content = 100 - Actual % clay

Sample identity	Residual mass	loss (wt.%) at	Carboxylate/Al mol ratio
-	150 °C	900 °C	
LDH-CO ₃	98.10	57.68	-
LDH-myristate 1	92.90	23.63	1.19
LDH-myristate 2	96.88	14.61	2.64
LDH-myristate 3	97.77	48.59	0.17
LDH-myristate 4	96.83	13.65	2.88
LDH-palmitate 1	95.99	21.05	1.36
LDH-palmitate 2	96.23	20.54	1.42
LDH-palmitate 3	95.50	26.54	0.90
LDH-palmitate 4	95.73	14.92	2.24
LDH-stearate	95.40	13.11	2.39
LDH-behenate 1	96.45	8.71	3.36
LDH-behenate 2	96.04	10.72	2.60

Table B-6. Summary of thermogravimetric data and estimates for the degree of intercalation

Figure B-12. LDH-palmitate and myristate TG profile

Figure B-13. LDH-behenate TG profile

Table B-7.	7. Summary of thermogravimetric data, estimates for the degree of int	ercalation and
	d-spacing	

Sample identity	Residual mass loss (wt.%)		Carboxylate/Al mol	d-spacing (nm)
<u>-</u>	8	nt	ratio	
	150 °C	900 °C		
LDH-CO ₃	98.10	57.68	-	0.76
LDH- stearate 1	95.15	15.05	1.98	5.06
LDH- stearate 2	95.10	13.30	2.34	4.93
LDH- stearate 3	94.29	13.66	2.23	4.94
LDH- stearate 4	94.75	11.80	2.72	5.04
LDH- stearate 5	95.40	13.11	2.39	4.98
LDH- stearate 6	95.28	13.55	2.29	4.95
LDH- stearate 7	95.18	14.92	2.01	4.93
LDH- stearate 8	95.44	13.78	2.24	4.89
LDH- stearate 9	95.57	11.62	2.80	4.95
LDH- stearate 10	94.71	11.17	2.91	5.00
LDH- stearate 11	94.94	11.29	2.88	5.06
LDH- stearate 12	94.99	10.84	3.03	5.02
LDH- stearate 13	94.68	10.29	3.22	4.68
Average	95.04	12.64	2.54	4.96
Standard deviation	0.36	1.56	0.40	0.10
LDH- stearate 14	95.27	9.29	3.67	4.98
LDH- stearate 15	95.27	9.62	3.52	4.94
LDH- stearate 16	95.52	9.73	3.48	4.98
Average	95.35	9.55	3.56	4.97
Standard deviation	0.14	0.23	0.10	0.02

The division indicates samples prepared by two different individuals. The bottom three exhibit exceptionally high carboxylate/Al mol ratios. Discrepancies could have arisen from the pH regulation during synthesis, as well as the washing procedure used for the sample.

Appendix C: LDH-based polymer composites

Injection Moulding Comments

Mould:	ASTM T.S			
		Set point	Indicated	
Temperatures:		(°C)	(°C)	
	Barrel 1	170	170	
	Barrel 2	175	176	
	Barrel 3	180	182	
	Melt	180	182	
	Mould	-	RT	
Injection tir	ne	12 s		
Injection sp	eed	8 mm/s		
Injection pr	essure	180 bar		
Hold on pressure		85 bar		
Back pressu	ire	10 bar		
Screw speed	d	50 %		
Cooling tim	ne	25 s		
		22		
Stroke		$\frac{22}{mm(q)}$		
Clamping for	orce	350 kN		
Clamping N		550 KIV		
Remarks:		Fed with difficulty Moulded with ease		
		Mouldings ver Moulded all sa conditions	Mouldings very rubbery Moulded all samples under the same moulding conditions	
		Short cycle tin	nes	

Table C-1. Injection moulding comments on EVA and derivative composites

Mould:	ASTM T.S			
		Set point	Indicated	
Temperatu	res:	(°C)	(°C)	
	Barrel 1	190	189	
	Barrel 2	195	195	
	Barrel 3	200	200	
	Melt	200	200	
	Mould	-	RT	
Injection tir	ne	15 s		
Injection sp	eed	15 mm/s		
Injection pr	essure	180 bar		
Hold on pre	essure	85 bar		
Back pressu	ire	10 bar		
Screw speed	d	50 %		
Cooling tim	ie	25 s		
Stroke		22 mm(g)		
Clamping for	orce	350 kN		
Remarks:		Fed with ease		
		Moulded with e	ase but stuck to the stationary	y half of the mould
		Mouldings very	hard	
		Moulded all sar	nples under the same moulding	ng conditions
		Mouldings ham	mered out after each shot; lon	ng cycle time

Table C-2: Injection moulding comments on EVAL and derivative composites

Mould:	ASTM T.S			
		Set point	Indicated	
Temperatu	ires:	(°C)	(°C)	
	Barrel 1	220	219	
	Barrel 2	210	210	
	Barrel 3	200	200	
	Melt	191	190	
	Mould	-	RT	
Injection tir	me	10 s		
Injection sp	beed	10 mm/s		
Injection pr	essure	180 bar		
Hold on pressure		75 bar		
Back pressure		10 bar		
Screw spee	d	50 %		
Cooling Tir	ne	25 s		
Stroke		22 mm(g)		
Clamping for	orce	350 kN		
Remarks:		Fed with ease Moulded with e Mouldings tend Moulded all sam	ease led to shrink mples under the same me	oulding conditions

Table C-3. Injection moulding comments on LLDPE and derivative composites

Polymer resin product sheets

Polymer-E 百利满-E Ethylene-Vinyl Acetate Copolymer Resin 乙烯醋酸乙烯酯樹脂

產品 Products		單位	檢驗方法	發泡及鑄膜級		
物性		Unit	Test Method	Foaming & Casting Grades		Grades
Physical Properties			(ASTM)	EV101	EV102	EV103
主要用途 Application				鞋材 運動器材 發泡 流延膜 Shoe Soles Sport Goods Foaming Extrusion Casting	鞋材 運動器材 發泡 Shoe Soles Sport Goods Foaming Extrusion Casting	鞋材 運動器材 發泡 流延膜 Shoe Soles Sport Goods Foaming Extrusion Casting
特 性 Characteristics				優異的發泡加工性 優異的成品物性 Good Processability Good Physical Properties	優異的發泡加工性 優異的成品物性 Good Processability Good Physical Properties	優異的發泡加工性 優異的成品物性 Good Processability Good Physical Properties
熔融指數 / Melt Index		公克/10分鐘 g/10min	D1238	1.8	1.5	1.5
密度 / Density		公克应方公分 g/cm ³	D1505	0.941	0.938	0.943
混濁度 / Haze		%	D1003	1.50	652	=
光澤度 (60°) / Gloss (60°)		%	D523		-	9
抗衝擊強度 / Impact Strength		公克,50% F g/50% Failure	D1709		05. 05.	5. 51
摩擦係數 / Coefficient of Friction		-	D1894	-	-	-
斷裂點抗張強度(薄膜) Ultimate Tensile (Film) Strength	MD TD	公斤/平方公分 Kg/cm ²	D882	-	-	-
(模壓)/ (Molded)			D638	210	200	220
1%伸長彈性係數(薄膜) 1% Secant Modulus(Film)	MD TD	公斤/平方公分 Kg/cm ²	D882	-	-	-
伸長率 (薄膜) Elongation (Film)	MD TD	%	D882	-	-	-
(模壓)/ (Molded)			D638	730	700	750
抗撕裂強度 (薄膜) Tear Strength (Film)	MD TD	公斤/公分 Kg/cm	D1922	-	-	-
低溫脆裂溫度 Low Temperature Brittleness		°C	D746	<-70	<-70	<-70
韋氏軟化點 Vicat Softening Point		°C	D1525	65	73	63
硬度 Hardness		蕭氏 D Shore D	D2240	35	38	33
熱變形溫度 (66 psi) Heat Deflection Temp. (66 psi)		°C	D648	40	42	38
熔點 / Melting Point		°C	APC Method	82	86	79
醋酸乙烯含量 / VA Content		%	APC Method	18	14	21

Notes : (1) For general purpose and thin gauge film applications, film properties are based on thickness of 1.25 mil (32 micron) extruded on a blown film line at 330°F(165°C) and 2.1 BUR. For Heavy Duty films, properties are based on thickness of 7mil(180micron) and blown at 420°F (215°C) and blow-up ratio 1.8:1. (2) The data reported are typical properties for reference only and are not to be construed as specification.

說明: (1) 上述之抗張強度、光學性、抗衝擊強度等各項物性是以 50 m/m, L/D 26:1 之擠壓機, 吹袋比 2.1:1 和1.8:1 條件, 製出厚度為 32 micron/180 micron薄膜樣品之測試結果。

(2) 上遠資料均經本公司細心編撰,惟因使用情況之變化,非受本公司控制,恕不負保證之責。

LLDPE - Product Data Sheet

HR 411

Date of Issue: February 2002

Information Polymer technology centre P O Box 72 Modderfontein 1645 South Africa

Tel: +27 (0) 11 458 0700 Fax: +27 (0) 11 458 0734

Cape Town Tel: +27 (0) 21 686 7740 Durban Tel: +27 (0) 31 267 0777

www.sasol.com/polymers

Sasol Polymers Polythene Business

Rotational moulding/injection moulding

Melt index: 3.5 Density: 0.939

Features	Additives	Applications	
<i>High rigidity Excellent impact strength Excellent chemical resistance Good ESCR Tough and abrasion resistant Colourable Hexene copolymer</i>	Antioxidant	Large mouldings Thick walled containers Articles for indoor use	

Performance properties - HR 411

Test	Value	Unit	Test method
MFI (190°C/2.16kg)	3.5	g/10min	ASTM D1238
Nominal density	0.939	q/cm ³	ASTM D1505
Tensile strength at yield	19	MPa	ASTM D638 1)
Tensile strength at break	24	MPa	ASTM D638 ¹⁾
Elongation at break	820	%	ASTM D638 1)
Flexural modulus	846	MPa	ASTM D790
ESCR F50	>500	hr	ASTM D1693 ²⁾
Impact energy at -40°C	35	l/mm	ASTM D3029 3)
Vicat softening temperature	121	°C	ASTM D1525
Shore D hardness	61	Shore D	ASTM D2240

1) Crosshead speed 50mm/min

²⁾ 100% Igepal C0630

³⁾ Tested on rotomoulded product

LLDPE - Product Data Sheet

Processing (Rotomoulding)

An air temperature of 270°C to 300°C is recommended for processing of HR 411. Temperatures above 300°C should be avoided as this would narrow the processing window considerably and could result in poor physical properties.

Processing (Injection moulding)

HR 411 has a medium melt viscosity making it unsuitable for moulds with long flow paths. Typical melt temperatures would be 200°C - 280°C. Parts can be demoulded at relatively high temperatures due to the material's high melting point and rigidity.

Typical temperature profile (Injection moulding)

Presentation

Supplied in pellet form packed in 25kg bags. Grinding of pellets is required to make it suitable for rotomoulding.

Handling

Workers should be protected from the possibility of skin or eye contact with molten polymer. Safety glasses are suggested as a minimal precaution to prevent possible mechanical or thermal injury to the eyes. Fabrication areas should be ventilated to carry away fumes or vapours.

Combustibility

Polyethylene resins will burn when supplied with adequate heat and oxygen. They should be handled and stored away from contact with direct flames and/or other ignition sources. In burning, polyethylene resins contribute high heat and may generate a dense black smoke. Fires can be extinguished by conventional means, with water and water mist preferred. In enclosed areas, fire fighters should be provided with selfcontained breathing apparatus.

Pigmentation (Rotomoulding)

For colouring purposes inorganic pigments should be added at the lowest possible concentration and mixed in using a high speed mixer or a tumble blender, prior to moulding. Pigment preparations should contain only minimal amounts of dispersants.

Food Packaging

This material complies with F&DA regulation 177.1520 when used unmodified and according to good manufacturing practices for food contact applications. Accordingly, this material may be used in all food contact applications (except holding food during cooking).

Conveying

Conveying equipment should be designed to prevent accumulation of fines and dust particles that are contained in all polyethylene resins. These fines and dust particles can, under certain conditions, pose an explosion hazard. We recommend the conveying system used:

- 1. be equipped with adequate filters;
- is operated and maintained in such a manner to ensure no leaks develop;
- 3. that adequate grounding exists at all times.

We further recommend good housekeeping be practised throughout the facility.

Storage

As ultraviolet light may cause a change in the material, all resins should be protected from direct sunlight during storage.

This information is based on our current knowledge and experience. In view of many factors that may affect processing and application, this data does not relieve processors from the responsibility of carrying out their own tests and experiments, neither does it imply any legally binding assurance of certain properties or of suitability for a specific purpose. It is the responsibility of those to whom we supply our products to ensure that any proprietary rights and existing laws and legislation are observed.

EV	AL	EU	RO	PF
_		-0		

Julus loci I Jpio	al Properties of EVAL™ F	Resin		
LVAL TIUID	Test met	hod	Unit	Value
Ethylene Content	Kuraray Me	ethod	mol %	32
Oxygen Transmission Rate	ISO 14663-2 annexC	20°C 0%RH	cm³.20µm/m².day.atm	0.23
	ISO 14663-2 annexC	20°C 35%RH	cm ^a .20µm/m ² .day.atm	
	ISO 14663-2 annexC	20°C 50%RH	cm³.20µm/m².day.atm	
	ISO 14663-2 annexC	20°C 65%RH	cm ³ .20µm/m ² .day.atm	0.5
	ISO 14663-2 annexC	20°C 85%RH	cm ^s .20µm/m ² .day.atm	1.8
	ISO 14663-2 annexC	20°C 90%RH	cm³.20µm/m².day.atm	
	ISO 14663-2 annexC	20°C 100%RH	cm³.20µm/m².day.atm	
Water Vapour Transmission Rate	ASTM E9	6-E	g.30µm/m².day.	37
Density	ISO 118	33	kg/m ^a	1.17
Yield Stress	ISO 52	7	MPa	
Stress at Break	ISO 52	7	MPa	
Yield Strain	ISO 52	7	%	
Strain at Break	ISO 52	7	%	
Young's Modulus	ISO 52	7	MPa	
Flexural Modulus	ISO 170	ISO 178		
zod Impact Strength	ISO 180	D	kJ/m²	
zod at -40°C	ISO 180			
Charpy Impact Strenght	ISO 179	kJ/m ²		
Charpy at -40°C	ISO 179-1		kJ/m²	
Rockwell Hardness	ISO 2039-2		M	
Melting Temperature	ISO 113	57	°C	183
Crystalisation Temperature	ISO 113	57	°C	161
Glass Transition Point	ISO 113	57	°C	69
Vicat Softening Point	ISO 306	6	°C	
Melt Mass-Flow Rate	ISO1133	190°C	g/10min	1.7
	ISO1133	210°C	g/10min	4.3
	ISO1133	230°C	g/10min	
	ISO1133	250°C	g/10min	
Contact: Data updated on: Layout updated on:	EVAL Europe nv Haven 1053 - Nieuwe Weg 2070 Zwijndrecht (Antwerp) Tel +32 3 250 9733 Fax +32 3 250 9745 18-nov-04 11-dec-06	1, bus 10), Belgium	in good faith. However, no liabi	ify warran

FT-IR of Composites

Figure C-1 shows the FTIR results of the LDH-stearate and each of the 10 wt% composites prepared. The LDH-CO₃ exhibits a broad band at 3455 cm⁻¹, which is characteristic of the hydroxyl stretching vibration of free hydrogen, hydrogen bonded to the octahedral layer and water molecules. The LDH-CO₃ has a peak at 1360 cm⁻¹, which is attributed to carbonate anions. For the LDH-St there is minimal carbonate contamination as the peak within the specified area is weak or in some cases absent. The OH stretching vibrations are also observed, as well as a shoulder between 3247 and 3225 cm⁻¹, which is attributed to the water molecules bonded to the interlayer anion by hydrogen bonding. The peaks between 2940 and 2847 cm⁻¹ are assigned to -CH₂ asymmetric and symmetric vibrations of aliphatic groups, while the peaks at 1630 and 1462 cm⁻¹ are due to O-H deformation of entrapped water molecules and CH₂ deformation respectively. The CH₂ wagging modes are also observed in the 1300–1250 cm⁻¹ range. The 1534 cm⁻¹ peak is due to the symmetric stretching mode of the ionised -C-O group. The M-O in-plane stretching and deformation of the LDH metal lattice is observed between 1000 and 719 cm⁻¹. Generally, all these peaks are preserved in the composite materials. However, a few peaks from the polymer overlap with those in the LDH stearate, e.g. the OH band overlaps with that of the LDH-St and EVAL due to the existence of OH groups in the polymer itself. However, the -OH band in the EVAL/LDH-St composite broadens and its intensity is reduced. This could be attributed to the interaction of the -OH groups of the metal hydroxide with that of the polymer. This band is retained in the EVA and LLDPE composites, pointing to no interaction of the aforementioned functional groups. The peaks at 1735 and 1235 cm⁻¹ in the EVA samples are a result of O-C=O carbonyl stretching vibrations of the ester and asymmetric vibration of the C-O-C bond respectively.

Figure C-1. FTIR of the neat and composite derivatives

Figure C-2. TEM micrographs of the 5 wt.% LDH-carbonate polymer composites

Figure C-3. TEM micrographs of the 5 wt.% LDH-stearate polymer composites

Figure C-4. Dynamic mechanical properties of 5% filler formulations

Mechanical Properties

Figure C-5. Tensile strength and tensile impact test summary of neat EVAL and derivative composites

Figure C-6. Tensile strength and tensile impact test summary of neat EVA and derivative composites

Figure C-7. Tensile strength and tensile impact test summary of neat LLDPE and derivative composites

Figure C-8. Tensile test results

Fracture Behaviour

Figure C-9. SEM micrographs of fractured surfaces from the Charpy impact test and corresponding data (composites of 10 wt.% LDH)

Figure C-9 shows SEM micrographs of the Charpy impact specimens of the LDH/polymer composite samples. As mentioned earlier, breaks were observed in the EVAL and LLDPE samples. The two matrix systems show two different types of break, i.e. a brittle and a ductile break for the EVAL and LLDPE composites respectively. The EVAL specimens show a classic brittle break, with a mirror region extending radially outward from the initial flaw, forming a hackled region. Normally, fracture is perpendicular to polymer fibres, but angular cracks and breaks are observed in the composite samples. A closer look at the inserts of EVAL composites shows a granular fracture, implying that the addition of the LDH induces strong association within the polymer matrix. It is clear that the adhesion between the EVAL and the LDH is good as there is no clear distinction between the platelets and the polymer. The polymer continued to cover the LDH particles at the time of fracture.

Figure C-10. DSC scans of EVA and derivative composites

Figure C-11. DSC scans of EVAL and derivative composites

Figure C-12. DSC scans of LLDPE and derivative composites

The figures below are DSC scans of the 5% LDH loading. A slight change is observed in the melting and crystallisation temperatures of each of the filled systems.

Figure C-13. DSC scans of EVAL and derivative composites

Figure C-14. DSC scans of EVA and derivative composites

Figure C-15. DSC scans of LLDPE and derivative composites

Figure C-16. TG data of EVA and derivative composites

Figure C-17. TG data of EVA and derivative composites

Evolved Gas Analysis

Figure C-18. Evolved gas analysis of neat EVAL by TG-FTIR

Figure C-19. Evolved gas analysis of EVAL/5% LDH-St by TG-FTIR

Figure C-20. Evolved gas analysis of EVAL/10% LDH-St by TG-FTIR

Figure C-21. Evolved gas analysis of EVAL/5% LDH-CO₃ by TG-FTIR

Figure C-22. Evolved gas analysis of EVAL/10% LDH-CO₃ by TG-FTIR

Figure C-23. Evolved gas analysis of neat EVA by TG-FTIR

Figure C-24. Evolved gas analysis of EVA/5% LDH-St by TG-FTIR

Figure C-25. Evolved gas analysis of EVA/10% LDH-St by TG-FTIR

Figure C-26. Evolved gas analysis of EVA/5% LDH-CO₃ by TG-FTIR

Figure C-27. Evolved gas analysis of EVA/10% LDH-CO₃ by TG-FTIR

Appendix D: Organo-LDH / Jojoba oil suspension

Fatty Acid-Jojoba Oil Formulation

Table D-1. Stearic acid in Jojoba oil formulation (J stands for Jojoba oil and S for stearic acid and their respective compositions)

Sample ID	Weight of acid	Weight of Jojoba oil	
Formulation ratio	(g)	(g)	
J-S 95-5	0.5001	9.5028	
J-S 90-10	1.004	9.0151	
J-S 80-20	2.003	8.0044	
J-S 70-30	3.007	7.0023	

Table D-2. Palmitic acid in Jojoba oil formulation (J stands for Jojoba oil and P for palmitic acid and their respective compositions)

Sample ID	Weight of acid	Weight of Jojoba oil	
Formulation ratio	(g)	(g)	
J-P 95-5	0.5003	9.5011	
J-P 90-10	1.001	9.0034	
J-P 80-20	2.009	8.0166	
J-P 70-30	3.000	7.023	

Figure D-1. Viscosity-temperature curve of different stearic acid compositions in Jojoba oil

Figure D-2. 20 wt.% of stearic acid in Jojoba oil heated and cooled to 24 °C (measurement bar is 40 μ m)

Figure D-3. DSC curves of different stearic acid compositions in Jojoba oil

Figure D-4. Viscosity-temperature curve of different palmitic acid compositions in Jojoba

oil

Figure D-5. 20 wt.% palmitic acid in Jojoba oil heated and cooled to 25 °C (measurement bar is 40 μm)

It is interesting to note that fatty acid crystallisation behaviour in Jojoba oil differs for stearic and palmitic acid. This could also explain the different gels obtained from the LDH-stearate and from the LDH-palmitate. Crystal shape, size and density were found to affect the physical properties of the final solid fat matrix (Rye *et al.*, 2005)

FT-IR Spectra

Figure D-6. FTIR spectra of neat Jojoba oil, 30 wt.% LDH-stearate/Jojoba oil formulation and stearate

The Jojoba oil peaks are the same as those observed in Le Dreau et al., 2008.

Rheology of Fatty Acid-Intercalated LDH/Jojoba Oil Formulation

Sample ID	Carbon	Orientation of	Appearance:	Appearance:
	chain	intercalated	unheated treated	heated treated
	number	anion	formulation	formulation
LDH-myristate	C ₁₄	Bilayer	Runny	Thickens slightly on standing
LDH-palmitate	C ₁₆	Bilayer	Slightly runny	Thickens slightly on standing
LDH-stearate	C ₁₈	Bilayer	Dropping consistency	Thickens slightly on standing
LDH-oleate	C ₁₈	Bilayer	Runny	No change
LDH-behenate	C ₂₂	Bilayer	Soft dropping consistency	Thickens slightly on standing

Table D-3. Visual observation of different 30 wt% of intercalated LDHs

Figure D-7. The effect of shear rate and temperature on the viscosity of Jojoba oil suspensions (the LDH-stearate content was 30 wt.% and the shear rate was kept constant at

5 s⁻¹)

Figure D-8. Viscosity as a function of temperature of the neat Jojoba oil

Figure D-9. Summary of rhombohedral-shaped LDH-palmitate: A – SEM image of morphology of particles; B – XRD diffractograms with a d-spacing of 4.7 nm; C – TGA data indicating organic content; D – viscosity curve as a function of temperature of the derivative 30 wt.% formulation

Figure D-10. Summary of subhedral-shaped LDH-palmitate: A – SEM image of morphology of particles; B – XRD diffractograms with a d-spacing of 4.46 nm; C – TGA data indicating organic content; D – viscosity curve as a function of temperature of the derivative 30 wt.% formulation

Complex viscosity behaviour was observed for the C_{16} - C_{22} intercalated LDHs.

Figure D-11. Summary of subhedral-shaped LDH-behenate: A – SEM image of morphology of particles; B – XRD diffractograms with a d-spacing of 6.08 nm; C – TGA data indicating organic content; D – viscosity curve as a function of temperature of the derivative 30 wt.% formulation

Other formulations were attempted with LDH-palmitate and behenate/Jojoba oil systems, and similar results were obtained. However, the products were found to have a higher viscosity that the LDH-stearate derivatives and became grease-like. This could be explained by the fatty acid-platelet association, which results in the release of a hydrogen ion (H^+) . The hydrogen attacks the unsaturated bonds of the Jojoba oil. Hydrogenation of these bonds

results in the change of properties from oil (liquid) to wax (solid-like). Hence, fatty acidintercalated LDHs may potentially be used as rheological modifiers. As a result it is recommended that further analysis and experimentation be conducted to determine the effect that LDH-fatty acid has on the rheological behaviour of Jojoba oil.

The co-intercalated samples also showed this complex viscosity, i.e. for the palmitic and stearic acid co-intercalated LDH (LDH-Pal-St), and for the Jojoba oil and stearic acid-intercalated LDH (LDH-Jojoba/stearate).

Figure D-12. Summary of subhedral-shaped LDH-Pal-St: A – SEM image of morphology of particles; B – XRD diffractograms with a d-spacing of 4.56 nm; C – TGA data indicating organic content; D – viscosity curve as a function of temperature of the derivative 30 wt.% formulation

Figure D-13. Summary of subhedral-shaped LDH-(Jojoba/stearate): A – SEM image of morphology of particles; B – XRD diffractograms with d-spacings of 5.06 and 4.46 nm; C – TGA data indicating organic content; D – viscosity curve as a function of temperature of the derivative 30 wt.% formulation