
 

 

6. Mathematical MODELING STUDIES 
 

Overview 

 

The following section presents two mathematical modeling studies that have been 
developed with BAL system design-optimization and improvement in mind. These 
models are abstractions of a numerical rather than biological nature and differ in this 
respect to the preceding sections. The models presented are to some extent functionally 
complimentary and one logically leads to the next.  
 
The first study details a pharmacokinetic compartment ‘mass balance’ model of the BAL-
patient system. The value of models of this type include determining the effect of system 
parameters (such as for example the minimal hepatocyte mass, blood exchange rates, 
internal circulation rates and the system volume) on the accumulation of endogenous 
toxin by the patient. The minimal requirements for an effective BAL design are 
consequently provided by the findings of this model. A discussion follows regarding the 
limitations of models of this type, including measurement variations and their units, the 
type of variables that may be employed and the off-line nature of the predictions.    
 
The second study describes a data-driven statistical model of ALF. This model is defined 
following conceptual UML modeling of the disease syndrome and the analysis of clinical 
data generated in the ischemic animal model experiments as described in the in vivo 
section preceding this one.  This model functions as an on-line prognosis indicator and is 
designed for patient monitoring and parallel use during BAL clinical treatments. The 
findings are presented along with comparison to BAL treatment data on which the model 
had not previously been trained. A discussion details the merits and limitations of 
presently existing ALF prognosis systems, the conceptual and mathematical methods 
employed in this study and the practicalities of implementing the proposed on-line 
system.  
 
The thoughts and recommendations that follow reviews the value/success of the above 
models then discusses the requirement of refining existing prognostic systems, additional 
mathematical experiments conducted on the above data, a means of combining the 
models of the above two studies and additional practical considerations in implementing 
on-line bioprocess monitoring systems. 
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6.1 A pharmacokinetic compartment model  

of the UP-CSIR BALSS 

 
Moolman FS, Nieuwoudt MJ, Shatalov MY. 

 

Manuscript in preparation.  

 

6.1.1 Introduction 

 

Pharmacokinetics has historically been employed in quantitatively evaluating the 

functions of absorption, production and elimination of drugs or metabolites by BALSS 

bioreactors [250,251]. Pharmacokinetic compartment models employ the principle of the 

conservation of mass within a closed system. Ordinary differential equations (ODEs) are 

used to describe the molar concentration changes or flows of the substance/s between the 

compartments of the modeled system.  

 

The value of such models includes comparing endogenous toxin production rates by the 

patient with bioreactor clearance rates and the effect on the above of system parameters 

such as circulation rates and reservoir volumes. Indications of the requirements of an 

effective BALSS design are also provided, such as the minimal hepatocyte mass in the 

bioreactor and the system’s blood exchange and internal circulation rates.  

 

The in-principle results of models of this type have been well elucidated [251-254]; 

however, few authors have provided actual quantitative results in prior studies [255-257]. 

This may be due to: Difficulties in obtaining reliable and comparable in vitro data on 

drug or metabolite clearance/production rates. The fact that the ideal functions of a 

BALSS bioreactor are incompletely defined [1,68], and possibly due to unappealing 

predictions of efficacy from the models themselves. For example, in-principle models 

have demonstrated that a BALS’s clearance/production ability is directly proportional, to 

a first order, to the amount of cells in the bioreactor. Since the majority of researchers 

have used only between 2 and 5 % of the total mass of hepatocytes in a liver, the 
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expected metabolic capacity of the bioreactor cannot significantly exceed that range 

[251]. The limiting effects of the cell isolation procedures on hepatocyte phenotype and 

function can also not be ignored. 

 

The results provided in this study are instructive in indicating innate limitations in 

BALSS clinical efficacy imposed by design factors. The findings of other authors and 

limitations in pharmacokinetic modeling methods are also examined.  

 

6.1.2 Materials and methods 

 

A simplified compartmental pharmacokinetic model of the UP-CSIR BALSS was built in 

Mathcad1. The diagram below (figure 6.1.1) is a simplified compartmental representation 

of the BALSS, with each part of the circuit numbered (compare with figure 2.5). For the 

model’s derivation, nomenclature, units and parameters used, please refer to Appendix C.   

 
Figure 6.1.1 Compartmental diagram of the BALSS system connected to a patient 

 

6.1.3 Data  

 

The type of input data for such models is limited to drugs or metabolites that are 

alternately cleared and/or produced by the bioreactor and patient respectively. This 
                                                 
1 The conceptual model was originated by Dr S Moolman of the M&Mtek [CSIR] and the author. All in 
vitro data was generated by the author. The numerical Mathcad modeling was performed by Dr M Shatalov 
of Materials and Manufacturing [CSIR]. Model derivation is in Appendix C. 
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allows the quantification of the conserved molar flow of the input variable between the 

compartments of the system, in terms of volume and concentration units per time. Since 

few drugs/metabolites other than arterial ammonia (which is endogenously produced in 

ALF) fit this characteristic, ammonia data was collected in two sets of experiments: 

Specifically, hepatocyte bioreactor clearance values measured in in vitro configurations 

of the BALSS (section 4.2) and in vivo endogenous ammonia production rates in animals 

that had surgically-induced ischemic ALF as previously described (section 5.2).  

Additional reasons for selecting ammonia data included: 

1. The existence of a readily accessible clinical laboratory measurement method 

with accuracy on the µmol/l level. 

2. The fact that ammonia is the predominant substrate for the production of urea by 

hepatocytes, and is therefore a measure of liver function. 

3. Several research groups have reported ammonia clearance values for porcine 

primary hepatocytes. 

4. The overproduction of ammonia in ALF is considered to be an important cause of 

HE, and thus prognosis for survival.  

5. It was approximately linearly endogenously produced in the ischemic ALF model 

previously described (section 5.2).  

6. The possibility that the output of the pharmacokinetic model could be used as the 

input of another model subsequently investigated (section 6.2 below) 

 

6.1.4 Results 

 

The effect of adjusting particular system parameters on the model’s outputs are as 

follows (figures 6.1.2-5): 
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Figure 6.1.2 BALSS sub-circulation concentration profiles for ammonia.  
Parameters: 1.5 x 1010 cells, Vmax = 2.2 x 10-17 mol/s/cell, rp = 4.2 x 10-8 mol/s, 120 
ml/min blood exchange rate 
 

1. The effect of including/excluding cells in a bioreactor (figure 6.1.2). Ammonia 

concentrations in the various parts of the BALS system can be seen to follow similar 

rising trends regardless of the presence of a cell-loaded bioreactor or not. However, the 

presence of cells (in this case 1.5 x 1010 or approximately 10 % of liver hepatocyte mass) 

will function to decrease the rate of accumulation. i.e. ammonia will always accumulate 

in an ischemic model of ALF due to the presence of a non-functional and progressively 

necrotizing liver, but treating with a cell loaded bioreactor will decrease the rate. A 

dilution effect in the system, caused by the saline priming volume of the BALSS, is 

observable in the first 30 minutes of the treatment. This effect has been indicated as a 

possible cause of improvements in patient survival in human clinical tests [251]. 

However, this is a limited perspective in that prognosis in ALF is multifactorial. i.e. it is 

not limited to blood toxin accumulation or artificial ALF treatment methods would 

historically have demonstrated improvements in survival. 
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Figure 6.1.3 The influence of bioreactor cell loading on ammonia accumulation 
Parameters: Vmax = 2.2 x 10-17 mol/s/cell, rp = 4.2 x 10-8 mol/s 120 ml/min blood exchange rate 
 

2. The effect of cell numbers in the bioreactor (figure 6.1.3). As cell numbers increase, 

the equilibrium concentration tends to a limit that is higher than the starting (or normal) 

blood ammonia concentration. A human adult liver contains approximately 1- 2 x 1011 

hepatocytes. Thus, adding cells even to the point of replacing the entire hepatocyte mass 

is insufficient to replace a liver’s function. This is due to the fact that a BAL is an 

extracorporeal circulation system with a lower blood exchange/perfusion rate than an in 

vivo liver. Since the bioreactor is intrinsically unable to clear all of the ammonia, the 

above observation validates the use of adding an additional artificial detoxification device 

in the BAL circuit. Of interest, an increase in the bioreactor’s cellular ability to 

metabolize ammonia, i.e. the Vmax, would also result in a decrease in equilibrium blood 

ammonia levels.  This demonstrates the desirability of improving cell functionality. 
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Figure 6.1.4 Influence of blood exchange rate on ammonia accumulation in the patient 
Parameters: 5 x 1010 cells, Vmax = 2.2 x 10-17 mol/s/cell, rp = 4.2 x 10-8 mo/s 
 

3. The effect of the patient’s blood exchange rate with the BALSS (figure 6.1.4). Lower 

exchange rates between the patient and the BALSS lead to higher ammonia 

concentrations in the patient. As the exchange rate increases the dilution effect becomes 

more pronounced, but compresses into progressively shorter time periods. A limit in 

ammonia concentration is reached at very high exchange rates, e.g. above 1000 ml/min. 

However, rates above approximately 200 ml/min are difficult to reach, due to e.g. the 

plasma separator pressure rating. Thus, it is clear that BAL toxin clearance is inherently 

limited in terms of replacing liver function.  
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Figure 6.1.5 The influence of the clearance to production ratio on blood ammonia 
concentration.  Graph key: Cr = ratio of actual to initial (normal) concentration,  
R = ratio of maximum to actual generation rates 

 

4. The effect of the clearance rate (indirectly ‘cell functionality’) (figure 6.1.5).  At low 

clearance rates ammonia concentration continues to rise and even after 10 hours of 

treatment, an equilibrium concentration (between actual and starting) may not be reached. 

At high ratios of clearance to production, an equilibrium may be reached within as little 

as an hour and at a low starting concentrations. This illustrates the importance of 

examining actual cell numbers and cell functionality when designing a BALSS. 

Interestingly, the initial ammonia concentration (Cp0) influences the shape of the surface, 

but not the ultimate equilibrium value. 
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6.1.5 Discussion 

 

Hepatocytes are the cells accounting for the majority of liver toxin clearance functions 

and the synthesis of hepatotrophic (liver regenerative) substances. However, artificial 

blood toxin clearance devices, such as for example activated charcoal filters, are known 

to be better at clearing toxins than most bioreactors [251]. It is presumably for these 

reasons that cell-based biological systems have shown improvements in survival (of 

treated animals), while purely artificial liver support technologies have not (despite the 

extensive use of the latter in human treatments).  

 

Iwata et al (2004) [251] clearly elucidated the results of BAL modeling efforts. Our 

simulations confirmed these findings. In summary, 

 

1. The clearance value of a BALSS is proportional, to a first approximation, to the 

number of hepatocytes in the system. i.e. the blood toxin concentration of a 

patient treated with a device containing a small number of hepatocytes will 

stabilize at a concentration that is several times higher than the normal (starting) 

concentration, even after long-term assistance. 

2. If an adult is treated with a BAL containing, say, 10 % the hepatocyte mass of an 

innate liver, the patient’s blood toxin concentration will stabilize at a 

concentration that is approximately 10 times higher than that of the normal 

(starting) concentration, even after long-term assistance. There is an 

approximately inverse linear relationship between the hepatocyte mass and the 

eventual toxin concentration. A liver weighs approximately 1500 g, of which 80 

% or 1200 g are hepatocytes. The majority of current BAL bioreactors employ in 

the region of 50-100 g of hepatocytes.  

3. The clearance value of a bioreactor cannot exceed the perfusate flow rate, thus, 

the plasma exchange rate provides the upper limit for the clearance of toxins. 

However, the clearance values of most artificial detoxification modules is 

between 10 and 15 times greater than that of existing bioreactors, thus, the use of 

these modules is attractive in terms of blood toxin removal in liver support. No 

existing BAL design can eliminate toxins, such as ammonia, as rapidly from the 
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systemic circulation as an adult liver. However, should an artificial clearance 

device be added to a BAL system care should be taken to ensure that filtration 

does not exclude desirable low molecular weight substances, such as growth 

factors, from entering the patient and providing regenerative benefits.   

4. Since a bioreactor contains, say, only 10 % the hepatocytes of a normal liver, it 

can only produce a maximum of 10 % of the plasma proteins of a healthy person, 

even if the patient is treated for an extended period. Thus, supporting a patient by 

means of plasma exchange is likely to be more efficient than with a BAL alone. 

However, large amounts of plasma are expensive and animal sources for the 

treatment of human patients are unacceptable due to concerns regarding 

xenogenicity. Difficulties also reside in isolating and culturing the very large 

quantities of metabolically functional cells required.  

5. Only a BALSS that has an exchange rate that is capable of matching the blood 

inflow rate of an innate liver will match the functionality of a normal liver. The 

blood inflow rate of an adult in vivo liver is in the region of 1500 ml/min, while 

blood exchange rates to a BALSS lie in the 100 - 300 ml/min region. Thus, in 

terms of treatment, only OLT is able to meet this objective, which may explain 

why existing systems that have undergone human clinical trials have not shown 

significant survival benefits. It also explains why the benefit of BAL treatments is 

expressed as a ‘bridging’ therapy to OLT. 

 

However, there are limitations to pharmacokinetic modeling methods: 

 

1. Measurement variations. As was evidenced in section 4.2, the pharmacokinetic 

clearance/production values reported for porcine hepatocytes are exceptionally 

variable. Accurately simulating clearance or production ability of a bioreactor 

may consequently be difficult. A basic review indicates an excess of a 10 000-fold 

divergence across reported values (table 4.2.1 and figure 6.1.6). 
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Figure 6.1.6 Variation in reported values of ammonia clearance 

 

2. Measurement units. The means by which clearance values are reported may 

prevent the direct comparison of values. Data is often reported in units of 

µg/hr/109 cells, which is normally calculated directly from the slope of, e.g. the 

graph of ammonia, concentration against time and the number of hepatocytes in 

the system. However, this does not indicate the inherent ability of the cells in the 

system to clear ammonia. Other factors may affect the results, for example, the 

starting concentration of ammonia in the system and the ratio of the number of 

cells to the reactor volume. It would seem highly unlikely that primary porcine 

hepatocytes would exhibit 10 000 fold variations in ammonia clearance rates 

based on relatively small changes in reactor size, flow rates or scaffold materials. 

In an attempt to enable more accurate comparisons between reported values we 

calculated the parameters Vmax and Km from the raw data (as described in 

Appendix C). In this case a reduced Vmax (Vrmax) was used, taking into account 

the cell loading per reactor volume ratio. 
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3. Measurable variety of liver functions. Pharmacokinetic modeling is limited to 

only the clearance of toxins and/or synthesis of plasma proteins or metabolites. 

These must also be readily measurable. While these functions are necessary, there 

are also other important liver functions in the context of ALF, for example, 

regeneration. In this process numerous cytokines, chemokines and growth factors 

participate in complex cell-signaling cascades that initiate and control each step. 

Hepatocyte growth factor (HGF), epidermal growth factor (EGF) and 

transforming growth factor alpha (TGF-α) are viewed as the primary stimuli, 

which are potently mitogenic, but require that hepatocytes first be primed by other 

soluble factors, including tumour necrosis factor (TNF) and interleukin-6 (IL-6) 

[258,259]. In ALF, the concentrations of HGF and EGF in the plasma may rise to 

a maximum of only10 ng/ml, yet this is sufficient to initiate regeneration. This 

may be viewed as a complex non-linear on-off switch, rather than a linear 

response to the extent of liver damage.  

4. Off-line, after-the-fact, single metabolite per simulation methodology. Although 

pharmacokinetic models are a necessary and desirable part of finalizing BAL 

design they provide predictions regarding the clearance or production of only 

single substances at a time and only after rates of production and or clearance 

have been measured in in vitro and in vivo experiments. However, once this data 

is available and if one assumes they will remain the same in a treatment, the 

model can be adapted for an on-line application in which, say ammonia is 

measured on a constant basis. 

 

In summary, while compartmental pharmacokinetic models provide information of value 

in especially the design of a BALSS, they are limited to describing only the clearance and 

or production of individual biochemicals. ALF is a complex; multisystemic process that 

is incompletely understood and consequently the full range of BAL functions are not 

precisely defined. Other analysis and modeling methods are additionally required. 
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6.2 Developing an on-line predictive clinical monitoring system 

 for acute liver failure patients 
 

Nieuwoudt M, Bond R, van der Merwe SW, Cilliers P. 

 

Manuscript in preparation. 

 
6.2.1 Introduction 

 
A variety of prognostic criteria have historically been proposed for the early 

identification of acute liver failure (ALF) patients that are likely to die and therefore 

require orthotopic liver transplantation (OLT), the only treatment of proven benefit. 

These criteria have, without exception, been defined based on the multivariate analysis of 

clinical variables measured on patient admission to the clinic [52-56,239-241,260-269]. 

Owing to the multiplicity of etiologies and pathogenesis in ALF [24-26,72] a large range 

of variables with prognostic value have been identified, and studies of new/additional 

variables have subsequently continued [239-241,267,268].  

 

The rate at which a clinician is able to update a patient’s prognostic score is based on the 

regularity at which the involved clinical variables are sampled. For example, blood 

indices are typically measured 12 or 24 hourly. However, the progress of ALF is rapid 

with a high mortality rate within 5-10 days following diagnosis. Thus, a pressing need 

remains for prognostic criteria which are able to provide early and repetitively accurate 

estimates of prognosis in ALF. Clinical microdialysis (www.microdialysis.se) has recently 

become an attractive addition to the ICU in that bedside systems are able to provide on-

line indications of physiologically interesting ‘biomarkers’ using sterile probes and low 

volume sampling techniques [270,271].  Thus, a possibility exists to combine high-

frequency systemic and biochemical monitoring in the ICU with one or more prognostic 

models. This would be a ‘dynamic’ prognostic system which would be of value to 

critically ill ALF patients in whom rapid clinical decision-making is necessary. Predicting 

outcomes in (expensive) animal experiments may also allow earlier terminations and thus 

benefit researchers investigating, for example, bio-artificial liver (BALSS) devices.  
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This study proposes a variety of modeling and hardware implementation methods for the 

development of a combined on-line biochemical and prognosis monitoring system. The 

underlying models include a conceptual part defined using the Unified Modeling 

Language (UML) followed by a numerical part employing a multivariate statistical 

approach. The UML is a graphical systems engineering tool that specifies systems 

structure (composition) and behaviour (function). It is often used to define software 

architectures [272-278] and has been proposed as an ideal method for integrating 

biological data into in silico models and meta-models in hierarchical levels of complexity 

[276-278]. Both the UML and subsequent statistical models aim to represent the multi-

systemic pathogenesis of ALF. Technically, the resulting model is a state estimator 

[11,279-283] of ALF and is data-driven [284] in that it is based on trends in raw clinical 

data collected in irreversible (i.e. resulting in death) surgically-induced ALF experiments 

in pigs, as previously described by our group [213]. It is understood that the proposed 

model/s are currently relevant to the animal circumstance. Future efforts combining 

additional animal and human data may subsequently facilitate the implementation of an 

on-line system in the human clinical scenario. 

 
6.2.2 Methods 

 

6.2.2.1 Data processing 

 
The data of a large number of systemic and biochemical variables was collected in the 

course of experiments aimed at standardizing an ischemic surgical model of ALF in pigs 

as previously described [213] (tables 5.2.1,2). Of this, 8 cases were selected as ideally 

representative of future experiments and were used as the training subset in defining the 

numerical models described below. Thereafter, the un-trained data of 8 animals, which 

were involved in subsequent clinical evaluations of the UP-CSIR BALSS, was used in 

testing the accuracy of the model. Excel 2003 was used as the spreadsheet for all data, 

including linearity testing, a macro for Tornado sensitivity diagrams [285], Monte Carlo 

analysis [286,287] using the random number generator facility and analysis of variance 

(ANOVA-single factor without replication, 0.05 confidence level). Statistix 8 (Analytical 
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software, Tallahassee, FL, USA) was used to calculate parametric and non-parametric 

correlation coefficients and Shapiro-Wilks normality tests.   

 

6.2.2.2 Conceptual (system) modeling 

 

The UML diagrams were made using an IBM-Rational Rose UML modeling tool. The 

class diagram (figure 6.2.1) provides a hypothetical structural framework for the data 

attributes of the objects (organs-systems) of the ALF patient-system as a whole. Each 

class contains the measurable attributes (variables) for the minimally involved organs or 

organ-systems.  The associations (arrows) between classes indicate the ‘inheritance’ of 

each sub-system, i.e. the composition of each class. Some associations are necessarily bi-

directional in that the components (organs) of a physiological system are inter-related. 

Not all of the variables listed in the class diagram were measured in the pig experiments. 

The list of attributes (table 6.2.1) is composed of those variables identified in a range of 

studies [24-26] (and by speakers at the European association for the study of the liver 

(EASL), Acute Liver Failure congress of 2007 [288,289]) as useful in indicating 

particular stages in the pathogenesis of ALF in a patient. Naturally, more data attributes 

may be added or subtracted as knowledge of their prognostic utility develops. 
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Figure 6.2.1 Class diagram for data attributes (clinical variables) of the patient-ALF-
system. Each class represents an organ-system where the measured variables provide 
information of prognostic value in ALF. Not all the variables were measured in the animal 
experiments. These may be incorporated into subsequent numerical modeling instances. 
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Table 6.2.1 Attributes (clinical variables) for the class diagram.  
The highlighted variables were not measured in the animal experiments (section 5.2). 

 

Class Attribute 
(variable) 

Description Units Behaviour 
over time 

Systemic 
metabolism 

Gluc blood glucose mmol/L homeostatic 
Lact blood lactate  mmol/L increasing 
Pyr blood pyruvate mmol/L homeostatic 
Hb blood hemoglobin g/dL/hr decreasing 
Hkt blood  hematokrit % decreasing 
pH blood pH pH homeostatic 
pO2 partial pressure of O2 mmHg homeostatic 
pCO2 partial pressure of  CO2  mmHg homeostatic 
HCO3act blood activated bicarbonate mmol/L homeostatic 

Systemic/ 
pulmonary 
circulation 

Temp temperature  oC increasing 
SaO2, SvO2 central arterial and venous O2 saturation ml/dl decreasing 
FiO2 % inspiratory O2 concentration %  
PoP pulmonary occlusion pressure mmHg  
Pulse pulse rate beats/min homeostatic 
CI cardiac index ratio  
Stroke vol left ventricular stroke volume ml  
MAP mean arterial pressure. mmHg decreasing 
CVP central venous pressure mmHg  
RAP right atrial pressure mmHg  
RVP right ventricular pressure mmHg  

Cerebral 
Functions 

SrjO2 reverse jugular venous  O2 saturation ml/dl decreasing 
ICP intracranial pressure mmHg increasing 
CBF cerebral blood flow velocity ml/min  
PI Pulsatile index ratio  
CPP cerebral perfusion pressure mmHg  
CMR cerebral metabolic rate µmol/g/min  
NOS nitric oxide synthase µmol/L  
cytokines see IL and TNF below µmol/L  
Glut glutamine µmol/L  
Lact lactate mmol/L  
ammonia ammonia µmol/L  

Splanchnic 
circulation 

portal pressure hepato-portal pressure mmHg  
IAP intra abdominal pressure mmHg  

Hepatic 
Functions 

ammonia ammonia in blood µmol/L increasing 
bilirubin bilirubin in blood µmol/L increasing 
amino acids ratio of branched-chains to aromatic ratio decreasing 
complement C3-a and C5-a in blood µmol/L  

Gut glutamate glutamate in blood µmol/L  
ketones ketones in blood µmol/L  

Renal 
Functions 

Urine urine volume mL constant 
Na+ change of [sodium] mmol/L decreasing 
K+ rate of change of [potassium] mmol/L increasing 
Creat rate of change of [creatinine] µmol/L increasing 
Urea rate of change of [urea] mmol/L decreasing 
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Note:  In the surgical ischemic experiments all biochemicals/metabolites were measured in whole 
blood or plasma. Where behaviour over time is not included the trend must still be determined. 
 
 
The purpose of a state transition diagram (figure 6.2.2) is to describe the behaviour of a 

system. In this case specifically the pathogenesis of ALF, albeit in a simplified way. In 

general the state of an object changes over time and transitions may be reversible. For 

example, in the human clinical scenario early ALF may revert to health (the initial state) 

owing to the innate regenerative ability of the liver. However, the degree of disease 

progression determines the likelihood of reversion (i.e. the further down in the diagram 

the worse the prognosis). In the ischemic surgical animal model, on the other hand, state 

transitions were irreversible in that death (the terminal state) was always the end-point. 

For this reason the resulting models are dependent on the particular data employed at this 

stage. Each state or sub-state may be defined based on a set of numerical values of the 

attributes (variables) of the organ-systems of the patient at any given time (table 6.2.2). 

 

Class Attribute 
(variable) 

Description Units Behaviour 
over time 

Coagulatory 
Functions 

PT rate of change of prothrombin time secs increasing 
APTT rate of change of activated partial 

thromboplastin time  
secs increasing 

Fibrinogen rate of change of [Fibrinogen] g/L decreasing 
PLT rate of change of platelet count 109/L decreasing 
WBC rate of change of white blood cell count 109/L increasing 
Clott Factors II percentage of normal clotting factors II, 

V, VII, IX, X in blood 
% decreasing 

AntiThrombin 
 

rate of change of percentage of normal 
anti thrombin in blood 

% decreasing 

Inflammatory 
functions 

IL-1,6,10,  interleukins 1,6,10 µmol/L  
TNF-alpha tumour necrosis factor-alpha µmol/L  
endotoxin endotoxin pmol/L increasing 
immunoglobulins immunoglobulins µmol/L  
PAF platelet activating factor µmol/L  
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Figure 6.2.2 A system state transition diagram for the ALF-patient system in the 
ischemic surgical model. Defining state diagrams requires collaborative agreement 
between researchers and clinicians. Since ALF is only partially understood at present the 
above is understood as an iterative instance.  
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6.2.2.3 Numerical modeling 

 

This was based on clinical variables that were found to have prognostic value in the 

porcine surgical model of ALF. Analysis of the data revealed that prognosis was 

intrinsically multivariate, with many variables simultaneously determining survival and 

none predominating [213]. 

 

Briefly, the ‘raw data’ was divided into two depending on the period in which it was 

acquired. In the initial surgical period (T < 0) in each experiment, the impact of the 

surgically-induced ALF intervention/s was measured in terms of predominantly systemic 

absolute-valued indices. In the latter intensive care (ICU) stage (T > 0), the progress of 

the disease was measured in terms of the rates of change (first derivatives) of 

predominantly biochemical variables. These rates were the mean gradients of the best-fit 

linear equations derived for each of the animals in each of the biochemical variables as a 

function of time and were considered the ‘derived data’. Non-parametric (Spearman) 

correlation coefficients, for small data sets, were calculated between the durations of 

survival, the raw data from the surgical period and the derived data from the ICU 

respectively. Multivariate linear equations (internally weighted by their correlations) 

were then derived between the durations of survival (dependent variable), the surgical 

systemic data and the ICU biochemical trends (independent variables). 

 

The method used was as follows: The dependent variable,  

 

( ) i

N

i
i wxfY ⋅= ∑

=1
         (6.1) 

 

where N = the total number of equations used to determine the dependent variable Y ,  

( )ixf , is the linear function between each independent variable ix , and the dependent 

variable in question. The percentile weight, iw  is the following ratio:  

iw  = (the specific weight between the ( )ixf  and Y ) / (the sum of specific weights 

to N ),            (6.2) 
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where the ‘specific weight’ is the Spearman correlation coefficient between each 

independent and dependent variable. Thus, the sum of percentile weights would be equal 

to one. i.e. 

 

∑
=

N

i
iw

1
=1          (6.3) 

 

The independent variables for the model were selected based on their satisfying the 

following criteria:  

1. As high a correlation, or ‘weight’, with the dependent variable as possible (i.e. a 

clinical association of relevance in the animal ALF model). 

2. As linear over time as possible, and 

3. The existence of sensors and equipment for their on-line measurement during 

experiments. 

 

This method aimed to model the multi-systemic nature of ALF with a multivariate 

numerical approach. This stabilized the model’s predictive ability by proportionally 

assigning weight to variables according to their prognostic value. This method is akin to 

estimating a multivariate non-linear function at any particular time by the Taylor 

expansion of its composing derivatives [286,290].  

 

Two instances of the numerical model were created: a Prognostic indicator (PI) and a 

Biochemical Indicator (BI). These were designed to provide on-line predictions of, 

respectively, the duration of survival as a primary end-point measure of prognosis, and 

the numerical value of normally off-line biochemicals as secondary ‘biomarker’ end-

points. i.e. the BI provides values for biochemicals normally requiring off-line laboratory 

analysis. Future iterations of such a model may have different end-points.  
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6.2.3 Results 

 

For purposes of efficiency much of the model sensitivity and verification results have 

been moved to Appendix D. Only the results critical to demonstrating the accuracy of the 

model are presented below. For more information please refer (to Appendix D) as 

accordingly referenced.    

 

6.2.3.1 Class associations  

 

A simple physiological reasoning was initially applied to identify numerical associations 

of biological interest for potential quantification at a later stage. Correlational statistical 

analyses investigated the presence of numerical associations (arrows) within classes (i.e 

internal associations) and between classes (i.e. external associations) as shown in the 

class diagram (figure 6.2.1). A clearly multi-variate profile, as was found in section 5.2 

was apparent. Since not all pairs of the associated variables are measurable on-line, these 

associations were of a theoretical interest at this point. Please refer to table D.1.1 in 

Appendix D. 
 
 

6.2.3.2 Quantification of states  

 

Thereafter, the states/sub-states of the state transition diagram (figure 6.2.2) using the 

attributes (variables) of the class diagram (figure 6.2.1) were numerically quantified 

(table 6.2.2). The value in quantifying these states is that an appropriately programmed 

on line monitoring system will be able to provide real time indications of changes in the 

patient’s clinical state. This will facilitate more rapid clinical decision-making than has 

previously been possible.  

 
 
 
 
 
 
 
 

156

 
 
 



 

 

Table 6.2.2 Examples of state and sub-state definitions (for reference see section 2.4) 

Note: 
1. The above are definitions arising from the human scenario; each state may be further 
numerically resolved in terms of limits in measured variables at particular time points. 
 
 

 

 

State  Sub-state Definition 
Healthy  Mean values of all variables at start of experiments 
Early liver disease  Values < 6 hrs after start 
Severe liver failure  Values > 8 hrs after start 
 Systemic 

Inflammatory 
Response (SIR) 

2 or more of: 
a) fever (Temp > 38 oC) or hypothermia ( Temp < 36  oC) 
b) tachypnoea (Respiration rate >24 breaths/min) 
c) tachycardia (Pulse > 90 beats/min) 
d) leukocytosis (>12000/µl), leukopenia (< 4000/µl), or >10% 
bands which may have a non-infectious aetiology 

 Coagulopathy International Normalized Ratio >1.5 
 Hepatic 

Encephalopathy 
(HE)  

I. Behaviour changes with minimal change in level of 
consciousness  
II. Gross disorientation , drowsiness, possible asterixis, 
inappropriate behaviour  
III. Marked confusion, incoherent speech, sleeping most of the 
time but arousable to vocal stimuli 
IV. Comatose, unresponsive to pain, decorticate or decerebrate 
posturing

Sepsis  Inflammatory response to a proven / suspected infectious 
etiology

Hypovolemic 
Shock 

 hypotension (arterial blood pressure < 90mmHg systolic, or 
40mmHg less than normal) for > 1 hr despite adequate fluid 
resuscitation OR Need for vasopressors to maintain systolic 
blood pressure > 90mmHg or MAP > 70mmHg 

Hepato-Renal 
Syndrome (HRS) 

 a. creatinine level > 220 µmol/L with portal hypertension 
b) no sustained improvement in renal function after volume 
expansion with isotonic saline solution 
Urine – a) volume < 500ml/d, b) Na < 10mEq/L, c) osmolality 
greater than plasma osmolality, d) red cell count < 50 per high 
power field, e) serum Na < 130mEq/L 

Blood loss  Loss > 20% of total blood volume
Multi Organ 
Failure (MOF) 

 Dysfunction of more than 1 organ, requiring intervention to 
maintain homeostasis

 Renal failure Renal urine output < 0,5ml/kg/hr for 1 hr despite adequate fluid 
resuscitation;

 Cardiac 
Decompensation 

Adequate fluid resuscitation – pulmonary artery wedge 
pressure > 12mmHg or central venous pressure > 8mmHg 
 

 Acute Respiratory 
Distress Syndrome 

Respiratory PaO2/FIO2 < 250 or, if the lung is the only 
dysfunctional organ, < 200 

Death  Mean values at termination of experiments 

157

 
 
 



 

 

 6.2.3.3 The PI equations 

 

Using the numerical method described above the PI was defined as follows: 

 
Table 6.2.3 Model equations and weights for the PI 
 

 Notes:  
1. The above variables were chosen as indicators of survival due to their availability for on-line 
measurement, linearity with time and clinical relevance in ALF. Subsequent modeling iterations 
may employ different variables.   
2. In the initial period (T<0), the independent variables were chosen so as to indicate the impact 
of the surgical interventions. They were composed of absolute values, e.g. the suffix ‘ _isch’ was 
the mean value of the particular variable during the ischemic clamping time. The suffix ‘_post’ 
was the mean value after the ischemic time was over. 
2. In the latter ICU period (T>0) the independent variables were for the rates at which the listed 
variables changed over time.  
 

 

The underlying assumptions of the numerical model were tested as follows:  

 

 

Independent 
Variable 
[x] 

Time 
period 

Survival 
 Y = f(x) 
(hours) 

Weight 
[Spearman 
correlation]

Percentile 
Weight 

Used 

Survival data 
used for 
training 

Body weight 
Ischemic time 
MAP_isch 
MAP_post 
Pulse_isch 
Pulse_post 
Temp_post 
Urine_oper 
Range 
Mean 
TOTAL 

 
 
 

 
T<0 

 

y = -0.003x + 26 
y = -1.16x + 43 
y = 0.06x +22.2 

y = -0.083x + 32.2 
y = 0.072x + 14.3 
y = 0.006x + 25 

y = -0.87x + 57.4 
y = 0.021x + 23 

 

0.103 
0.805 
0.012 
0.417 
0.196 
0.258 
0.264 
0.218 

 
 

2.274 

0.045 
0.354 
0.005 
0.183 
0.086 
0.113 
0.116 
0.096 

 
 

1.0 

 
 
 
 
 
 
 
 

20-36 hrs 
*24.875 hrs 

8 cases 
rAmmonia 
ave_pH 
rHb 
rHkt 
rK+ 
rMAP 
Range 
Mean 
TOTAL 

 
 
 

T>0 

y = -0.2218x + 36.412 
y = -75.627x + 589.2 
y = -6.6337x + 32.459 
y = 10.415x + 32.459 
y = -19.914x + 28.019 
y = 5.5301x + 34.909 

 
 

0.485 
0.256 
0.400 
0.412 
0.230 
0.679 

 
 

2.463 

0.25 
0.15 
0.20 
0.23 
0.10 
0.08 

 
 

1.0 

 
 
 
 
 
 

20-36 hrs 
*26.625 hrs 

8 cases 
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6.2.3.4 First-order assumptions   

 

The predictive ability of the numerical model relies on the degree to which the 

independent variables of its composing first-order equations approximate either linear 

appreciation or depreciation over time. This assumption was investigated by determining 

the best-fit linear equation for each data set of all variables according to time. A mean R2 

value, the numerical square of the Pearson coefficient was calculated for all variables.  

The majority of all variables had R2 values above 0.5 (i.e. Pearson coefficients > 0.7) 

indicating that variables did linearly change over time and justified the numerical design 

of the model.  

 

In general, the variables used for prediction during the surgical interval (T<0) had lower 

R2 values (were less linear) than those used during the ICU period (T>0). This validated 

the use of a larger number of variables in the T<0 period, each with relatively less weight 

than in the T>0 period. It was also expected that the T<0 part would be less accurate than 

the T>0 part. For more details on these results refer to Appendix D.2. 

 

6.2.3.5 The BI equations  

 

The linearity of the variables in the T>0 part was intrinsic to defining the BI part of the 

model (tables 6.2.4,5). In this case, highly linear derived variables that were of prognostic 

value in ALF (and which could be monitored on-line) were chosen as independent 

variables. Firstly, best-fit linear equations were determined for the dependent variables 

according to time. Then first-order equations were derived that related the derivatives of 

the independent variables to the derivatives of the dependent variables.  

 

The purpose was to determine the absolute value of a biochemical (that cannot be 

monitored on-line) at any particular time in an experiment using the rate at which a 

highly linear, independent variable (that can be monitored) was changing in real-time. 

The difference with the PI is that the absolute value of an off-line variable may be 

determined through the relationship of its first derivative with the derivative of another 

independent on-line variable. 
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Table 6.2.4 Variable candidates for the BI  

Notes:1. The inclusion criteria for the independent variables were: 
a. The variables had to be of interest in ALF. 
b. The R2 value, indicating linearity, should be > 0.5.  
c. The Spearman (ranked) correlation coefficient, indicating correlation with the duration of 
survival, must be > 0.5. (K+ was judged sufficiently close to this value for inclusion). 
2. The inclusion criteria of the dependant variables were the same as for a. and b. above. 
However, as can be seen, the dependant variables demonstrated less correlation with survival than 
the independent variables. The weighted structure of the model was used to ‘stabilize’ 
predictions.

Independent 
variables 

Ranked 
survival 
correlation 

Linearity
with time
(R2) 

Dependant 
variables 
 

Ranked 
survival 
correlation 
 

Linearity 
with time 
(R2) 

Ammonia 
K+ 
Hb  
Hkt 

0.772 
0.492 
0.599 
0.535 

0.912 
0.569 
0.872 
0.808 

BcAA/AroAA
Glutamine 
Bilirubin 
Fibrinogen 
PT 
Antithrombin 
Factor II 
Factor VII 
Factor X. 
ALP 
AST 
LD 
ALT 
Creatinine 
Urea 

0.734 
0.248 
0.010 
0.327 
0.370 
0.120 
0.208 
0.337 
0.347 
0.280 
0.220 
0.216 
0.010 
0.460 
0.301 

0.733 
0.608 
0.805 
0.880 
0.922 
0.878 
0.882  
0.821 
0.785 
0.904 
0.832 
0.823 
0.781 
0.632 
0.508 
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Table 6.2.5 BI model equations 

Notes: 
1. The arbitrary inclusion criterion for any particular equation was that there must be a Spearman correlation coefficient of magnitude no less 

than 0.25 between the dependant (y’) and independent variables (x) in question. The empty parts of the table represent those equations that did 
not meet the inclusion criterion. Some of the outputs are described by only a single input; consequently, these predictions are likely to be less 
accurate than those predicted by several inputs. 

2. The Spearman correlation coefficients were used as weights in determining a summated product for the particular biochemical rate in question. 
3. Once a dependant variable’s summated value was determined, an absolute value for the biochemical could be calculated from the function of 

the biochemical raw data with time (first column). 
4. The above statistical trends were determined from the data of a total of 12 animals. These were animals that successfully met the criteria of 

inclusion (table 5.3). 
5. The shaded dependant variables (rGlutamine, rCreat and rUrea) were considered for subsequent omission from the model, due to the 

divergence of predicted values from those measured. 

 
 

Independent  
variables (x) 

       

Function of initial 
variable (y) 
with time (t) 

Dependant 
variables (y’) rAmmonia weight rK+ weight rHb weight rHkt weight 

BcAA/AroAA = y’t +3.58 rBcAA/AroAA y’ = -0.0016x + 0.0004 0.387 y’ = -0.4736x - 0.0521 0.460 y’ = 0.2276x - 0.051 0.407 y’ = 0.0556x - 0.0489 0.339 
Glutamine = y’t +152.10 rGlutamine y’ = 0.0832x + 3.6009 0.317 y’ = 22.124x + 6.4388 0.400       
Bilirubin = y’t +4.53 rBilirubinTOT       y’ = -3.8422x + 1.1073 0.564    
Fibrinogen =  y’t +2.47  rFibrinogen y’ = -0.0004x - 0.077 0.464 y’ = -0.1245x - 0.0895 0.536 y’ = 0.1973x - 0.0692 0.429 y’ = 0.0561x - 0.064 0.657 
PT = y’t + 10.28 rPT    y’ = 1.2325x + 0.7003 0.400       
Antithrombin = y’t +91.43 rAntiThrombin       y’ = 4.4269x - 1.4852 0.250 y’ = 0.9887x - 1.5065 0.267 
Factor II = y’t +51.65  rFactor II    y’ = 2.2772x - 2.0043 0.446       
Factor VII = y’t +57.64 rFactor VII    y’ = 1.9639x - 2.4117 0.436       
Factor X = y’t +74.59 rFactor X          y’ = 2.275x - 1.6933 0.479 
ALP = y’t + 107.3 rALP    y’ = 57.521x + 16.998 0.525 y’ = -49.387x + 15.048 0.291 y’ = -16.927x + 12.141 0.264 
AST = y’t + 64.4 rAST y’ = 4.4629x + 59.621 0.555          
LD = y’t + 330.0 rLD y’ = 6.6529x - 135.8 0.373 y’ = 1049.2x + 141.74 0.427       
ALT = y’t + 39.7  rALT y’ = 0.1495x + 5.3928 0.282          
Creatinine = y’t +86.92  rCreat  y’ = 0.1556x - 3.1144 0.355 y’ = 49.361x + 1.4321 0.643 y’ = -35.25x + 0.1292 0.346 y’ = -8.6656x + 0.4563 0.273 
Urea = y’t + 3.03  rUrea       y’ = 0.2484x - 0.0129 0.618    
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6.2.3.6 Model sensitivity 

 

This was tested using Tornado diagrams and Monte Carlo numerical simulation methods. A 

selection of the resulting graphs are presented in Appendix D.3. 

 

1. Tornado diagrams [285]. 

These diagrams display the sensitivity of the output of a model in terms of the numerical 

range of its input variables. This method assumes Gaussian normality in the input 

populations. As was expected in this case, the weight appropriated to each of the input 

variables strongly influenced their effect on the model’s output. This was true in both the 

PI and BI parts of the model and further validated the weighted numerical design of the 

model. 

 
2. Monte Carlo (MC) simulation [286,287]. 

Populations of random numbers, either normal on uniformly-distributed, were also used as 

input to the model. This was done both individually and in combination, i.e. either one 

variable was randomized independently while retaining all other variables on their mean 

values, or all variables were randomized simultaneously, followed by the summation of the 

results and graphical projection. In all cases, each of and a combination of the input 

variables very closely approximated the measured mean values (i.e. < 10 %). However, 

there was consistently less variation in the predicted values than in the measured 

population. This may have been due to the limited size of the training population. The 

effect of using uniform distributions was to slightly under-estimate the output. The model 

would therefore tend to produce more conservative estimates with non-normally distributed 

data.  

 

5.2.3.7 Assumptions of normality 

 

The predictive ability of the numerical model is also dependent on the degree to which its 

input popoultions are normally distributed. To investigate this assumption the measured 

raw input data was tested for normality using Shapiro-Wilk tests. Despite the small size of 

the population from which the model’s equations had been derived, normality was only 
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excluded in the derived variables rHb and rAmmo (PI model). Similar to the above, the 

effect of uniformly distributed populations was to marginally underestimate the measured 

results. Thus, prediction error would tend to be conservative. In practice therefore, the 

requirement of clinical interventions would be indicated earlier rather than later (a good 

thing!). 

 
The above results are presented in Table D.4.1 in Appendix D. 
 

 
6.2.3.8 Factors affecting BI accuracy 
 

The following four factors potentially determining the prediction accuracy of the BI were 

identified: 

 

1. The number of independents used to determine each dependent variable (see table D.5.1 

in Appendix D).  

2. The accuracy of measurement of the independent variable/s. Specifically, the large 

measurement deviation in the biochemical variables (section 5.2), and 

3. The strength of correlation between the variables. 

 

It was consequently expected that the BI would not be as accurate as the PI. 

 

6.2.4 Model Verification 

 

This was performed using a variety of statistical techniques, including analysis of variance 

(ANOVA), ‘relative error’ calculation and direct comparison with prospectively acquired, 

un-trained data. For more detail on these techniques refer to Appendix D.6. Briefly,  

 

6.2.4.1 ANOVA 

 

After calculating mean and standard deviations and percentage deviations between all 

measured and predicted populations it was found that the predicted means very closely 

approximated the measured means, i.e. < 1%. In certain biochemical variables, such as 
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Factor X, urea, creatinine and glutamine the percentage error was unacceptably large, 

indicating their potential exclusion from the BI part of the model.  

 

An ANOVA comparison was drawn between all predicted and measured populations. It 

was found that the variances were similar although that in the predicted populations tended 

to be greater. In summary, it was not possible to detect significant differences between the 

populations in any of the parts of the model. These results were taken as a positive 

indication of the accuracy of the model. 
 

6.2.4.2 Relative error 

 

For visual and statistical indications of prediction error-range and magnitude the 

following was done:  

 

The point error error (i.e. the deviation of each predicted to corresponding measured 

value as a fraction of each measured value) was calculated. This was then divided by the 

standard deviation (std dev) of the measured population to give relative error (re). As re 

approaches zero, the greater the model’s prediction accuracy. These results were 

graphically projected. Significant differences were taken to be where the point error 

exceeded 100 % of the std dev of the measured population. The std dev of the re (SDre) 

indicates the predicted error range. To overcome potential weaknesses in this method 

associated with variables demonstrating large measurement variations the measurement 

range was multiplied with the standard deviation of the relative error (SDre) for a 

quantitative comparison. The larger the returned value, the larger the prediction error 

region. For details of these results please refer to Appendix D.6.2. 

 

In the surgical period (T<0) the PI’s point errors all fell within + 8 %, and in the post-

surgical period (T>0) it fell within + 3.5 %. In the BI, only in urea did the relative error 

fall outside of the 100 % mark. These findings agreed with that previously found. 

Specifically, the PI was more accurate than the BI. In the latter case this was not 
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considered critical since its purpose (the BI’s) was to have on-line estimations for 

biochemical variables for which there were no sensors.  

 

6.2.4.3 Comparison with prospectively acquired un-trained BALSS treatment data  

 

Following the definition of the model, data was subsequently collected during 8 

BALSS treatment experiments, including with-cells versus without-cells (control) 

bioreactor configurations (table 6.2.6).  (The evaluation of this data was also previously 

described in section 5.3)  

 

The PI, based on the rate of change of biochemical variables in the ICU (T>0), was 

accurate to within less than 10 % in all cases. As expected, the PI was less accurate in 

the T < 0 period than in the T >0 period and also more accurate in the BALSS with-

cells versus without-cells configurations.  In the first instance this was likely due to the 

greater number of absolute-valued, less ‘weighted’ (i.e. in total, less linear first-order) 

variables used in the surgical versus ICU periods. In the second instance, the lower 

accuracy, specifically the survival over-estimation in the cell-free configurations, would 

seem to indicate that the model was missing something, i.e. there were changes in 

variables that the model was not designed to register. As per our prior evaluation 

(section 5.3), the likely explanation lay in the observed coagulation problems in those 

experiments. Indeed, in this model’s instance, neither part (T < or > 0) was designed to 

predict prognosis based on coagulatory variables. This was as a result of the fact that 

there were no on-line sensors for any coagulatory variables at the time. This 

circumstance has subsequently changed. Since ALF is multi-systemic, a prognosis 

model should employ (ideally on-line) independent variables representing as many of 

the involved organ-systems as possible.  

 

Importantly, the ischemic animal trials were terminated prior to completion (due to 

financial deadlines) limiting the amount of data available for the prospective 

verification of the model. Despite the observed accuracy, a larger data set would 

obviously have been preferable.  
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Table 6.2.6 Comparison of predicted to measured un-trained BALSS test data with the PI 
 

 

 

 

 

 

 

 

 

 

 

 

Note: The sensitivity of the numerical scale should be considered, e.g. one hour is 5 
% of 20 hours (the mean survival). The time of death was often measured to only an 
accuracy of 30 minutes. Thus, predicting to within less than 2 hours in these (rather 
difficult) experiments qualifies as accurate and validates the prognostic value of the 
variables used in the model. 
 

 

 Measured 
survival 

(hrs) 

Predicted survival 
 

Percentage 
Difference 

Group  T<0 T>0 T<0 T>0 
 20.5 23.7 21.7 + 15.6 + 5.9 
 29 29.3 28.1 + 1.0 - 3.1 

BALSS + cells 30 29.6 32.3 - 1.3 + 7.7 
 24.5 27.3 22.1 + 11.4 - 9.8 
 21 26.9 19.0 + 28.1 - 9.5 

absolute mean N = 5   11.5 7.2 
      
 14.5 25.9 25.3 + 78.6 + 74.8 

BALSS – cells 10.6 26.8 18.1 +152.8 + 70.8 
 17.5 26.9 18.7 + 53.7 + 6.8 

absolute mean N = 3    95.03  50.8 
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6.2.5 Discussion 

 

The prognosis of surviving ALF has steadily globally improved over the last 4 

decades. This has been as a result of improvements in the molecular understanding of 

the disease and intensive care methods [24-26]. As yet, no BAL device has 

demonstrated sufficient efficacy in the human clinical scenario to lead to a 

commercially available product. This is despite great efforts in this respect. Artificial 

liver systems have also not shown improvements in patient survival in randomized 

clinical trials although improvements in patient biochemistry have often been 

demonstrated [72,82]. A picture that appears to have emerged is that improving 

patient biomarkers does not translate to improvements in survival. However, the 

value of an on-line biomarker system is obvious: Knowledge of the degree of 

progression of a highly acute disease will almost certainly provide a benefit to the 

clinician and therefore the patient.  

 

In the above regard, a recent study investigating the clinical efficacy of the MARS 

artificial liver support system employed the MELD score (and the SOFA score, 

Glasgow coma scale and APACHE II criteria) on ALF patients at admission and at 3 

months follow up after a treatment series [269]. It was discovered that the treatments 

resulted in improvements in the MELD score, but that improvements in survival were 

not calculable based on the small patient cohort. Importantly, the MELD score is 

defined in terms of biomarkers and fundamentally assumes a correlation between 

mortality and the resulting score. By implication, an improvement in biomarkers was 

associated with an improvement in survival. 

 

A basic review of existing prognostic systems [52-55,239-241,261-269], independent 

of etiology, reveals that the extensive range of variables that have been employed are 

mostly of a biochemical nature (table 6.2.7). i.e. they are metabolic biomarkers. 

Despite extensive historical efforts no single prognostic criteria system has achieved 

worldwide use (although the MELD score appears to be becoming progressively 

more universally applied).  This circumstance may be due to regional demographic 

167

 
 
 



 

 

and etiological differences in ALF, with consequently varying pathogenesis. In 

general, first world countries have more cases resulting from self harm attempts (e.g. 

acetaminophen), while third world countries present with more of a viral origin (e.g. 

HBV). This fact may limit the accuracy and specificity of prognostic criteria 

employed on different patient groups to those on which they were defined. 

Investigations into the prognostic value of new/additional clinical variables are 

ongoing [239-241,267].   

 

Without exception, the historical biomarkers of ALF have been identified using 

multivariate statistical analysis of patient data on admission to the hospital/clinic. An 

underlying principle seems apparent, namely that several variables representing the 

multi-systemic nature of ALF should ideally be incorporated into any particular 

prognostic system. Such an approach would ensure the representation of all 

physiological systems, even if any one variable failed to demonstrate a routinely high 

correlation with survival. For example, using variables from the following possible 

organ-systems may result in a more molecularly representative prognostic model than 

has been available to date:  

1. coagulatory system variables, e.g. INR, PT , clotting factor 5. 

2. immunological variables, e.g. IL-6, TNF-α. 

3. liver toxin clearance variables, e.g. ammonia, bilirubin. 

4. liver synthetic functions, e.g. AFP, complement (C3a, C5a). albumin. 

5. kidney function, e.g. creatinine. 

6. cerebral functions, e.g. HE, coma, ICP, SrjO2, PI. 

7. systemic metabolism, e.g. pH, lactate and/or pyruvate. 

8. systemic circulatory and/or pulmonary functions, e.g. FiO2, serum Na+, and  

9. perhaps a demographic variable, such as age. 

Notes: This list is tentative and variables may be added/subtracted following the 

resolution of their prognostic value. For an explanation of the meaning of 

abbreviations please refer to table 6.2.1. 
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Table 6.2.7 Review of variables that have demonstrated prognostic value in ALF 

Footnotes: 
1. The above studies were selected to represent prognostic criteria for all causes of ALF (i.e. mostly paracetamol, viral, cirrhotic). The table is not 
intended as an exhaustive review, and it does not provide the parameter values used in each system. Sequential organ failure assessment (SOFA) 
and acute physiology and chronic health evaluation (APACHE) III scoring systems are not included since they were designed with all, rather than 
only liver forms of organ failure in mind.   
2. Additional independent predictors of poor prognosis: presence of coma, hepatitis B virus marker (HBsAg) 
3. Additional independent predictors of poor prognosis: alanine, acetate, calcium, lactate. 
4. Additional independent predictors of poor prognosis: pH, age, HE, cerebral oedema, bilirubin, albumin, PT, bicarbonate. 
5. Additional independent predictors of poor prognosis: high MELD score, CVVHF, vasopressors, bicarbonate. 
Entries in brackets indicate variables that had prognostic value but were not primarily studied. 
6. Abbreviations: KCC = King’s College criteria (London), Cliché criteria (France), MELD = Model for end-stage liver disease (US), CTP = 
Child-Turcotte-Pugh criteria, RFH = Royal Free Hospital criteria, HVPG = hepatic venous pressure gradient, INR = international normalized ratio, 
AFP = serum α-fetoprotein, ser- = serum, Ph-ala = phenyl alanine, FiO2 = % inspiratory O2 concentration, FOS = Failing organ system 
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KCC [52,53,260]                      
2Cliché [55,261]                      
MELD+modified 
[262,263]                      

CTP+modified 
[264,265]                       

RFH [266]                       
3Dabos et al [267]                   ( )   
Bernal et al [268]                      
4Bhatia et al [239]  ( ) ( )  ( )  ( )  ( )    ( )          
Clemmesen et al 
[240]                       
5Bernal et al [241] ( )       ( )     ( )      ( )   
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One variable of particular interest is arterial ammonia owing to its historic absence in 

prognostic criteria. It is surprising that despite impressive progress in understanding the 

central role of ammonia in the pathogenesis of ALF [35-40], studies have only recently 

undertaken to investigate its importance as a biomarker with prognostic value in ALF 

[239,241]. Interestingly, Bernal et al (2007) [241] found that their uni- and multi-variate 

models were more accurately predictive of survival when combined with the MELD 

score, which is itself a multi-systemic prognostic system. In any case, the data of the 

animal model on which the second of the above animal studies was based (section 5.2) 

clearly demonstrated a strong correlation between rising arterial ammonia levels and the 

duration of survival. However, this may be unsurprising in view of the toxicity of the 

ischemic model. 

 

On-line ICU patient monitoring technologies and time-series data analysis methods have 

been available for some time [291-295], however, only in recent years has there been any 

effort to make prognosis scoring systems ‘dynamic’. For example, a recent study 

demonstrated that the prognostic accuracy of sequential organ failure scores (SOFA) of 

patients in an ICU was significantly improved if the trend or change in the daily 

evaluations were incorporated into subsequent mortality prediction models, rather than 

using only the single admission score as has been done to date [296,297]. There seems 

little doubt that a mortality model’s value, both to patient and clinician, will increase with 

the regularity with which it is updated. 

 

Both the UML and numerical methods employed in this study aimed to model the multi-

systemic character of ALF. The UML has repeatedly been indicated as well-suited to data 

integration in systems biology. To paraphrase Rouquié et al [276-278], firstly, ‘an entity 

considered to be a system can be represented as the interface between an internal and 

external environment on which it is acting and in which it is evolving’, and secondly, ‘its 

behaviour is describable as a state trajectory in a time, space and form frame’. The UML 

is useful as a metamodel in that it can integrate the data of underlying models that may be 

of such complexity that it is impossible to contain them all in a single model. Take a 

genomic, proteomic, cellular, organ and metabolic system as a single hierarchical 

example.  
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On a minimal level, in this study the UML was useful for specifying a hypothetical ALF-

patient-system in terms of the variables (data) composing its organ-system structure, and 

perhaps more importantly, its functions in terms of a state trajectory in time. Obviously, 

modeling a complex system such as ALF is error-prone. At this stage a relatively greater 

value of the proposed model/s lies in their methodological foundation/s rather than the 

particular clinical instance.  In the future it will be desirable to include additional animal 

and human data.  

 

The numerical approach above resulted in a summed, weighted multivariate combination 

of absolute-valued data representing the surgical intervention and the rates of change of 

systemic circulation and biochemical data for which on-line detection equipment existed. 

The variables that were selected had previously established prognostic value in ALF, 

linearity over time and the availability of on-line sensing equipment. The benefits of this 

approach were:  

1. Non-linear analysis methods, such as Kohonen self-organizing maps (SOMs), in 

the neural network toolbox in Matlab (www.mathworks.com), did not produce 

useful results on the small data sets.  

2. Verification demonstrated that first order (linear appreciation/depreciation with 

time) assumptions were justified in the employed variables. This meant that based 

on the duration of the experiments ( > 20 hours), the more time-linear and 

accurate latter part of the numerical model would be more extensively employed 

than the former. 

3. The model satisfied Occam’s razor in that a conceptually simple method modeled 

a process for which no a priori descriptive equations existed. The relative ease 

with which new variables may be incorporated into the numerical model is an 

attractive part of its design. For example, in future modeling iterations it may be 

attractive to investigate more biochemically oriented variable sets and to include 

transcranial doppler (CBF, PI, SrjO2, CMR, CPP), cerebral microdialysis or 

intracranial pressure (ICP) variables (which are good predictors of HE in ALF 

[26, 297-299]). 
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4. The linearization about some point of interest along a non-linear function is a 

common procedure in bioprocess technology (although the regularity of on-line 

measurements then determines the model’s accuracy [11,279-283]). 

 

It was noteworthy that numeric verification using an untrained dataset demonstrated 

accuracy in the PI model’s ability to predict the duration of survival, specifically in the 

BALSS with-cells group and particularly in view of the numerical method’s multi-

systemic representation of ALF. However, larger sample sizes would obviously have 

preferable. 

 

Regarding the biochemical indicator however, although intrinsically possible and even 

relatively accurate on its training dataset, the BI is understood to be somewhat contrived. 

Prior studies have found little correlation between independently measured metabolic 

biomarkers in ALF. For example, only ammonia and bilirubin levels were found to 

correlate (p = 0.01) in a study investigating the prognostic value of arterial ammonia 

[239]. This is why not all the BI’s results were provided and why additional verification 

was not carried out on the un-trained treatment dataset.  It should be recalled that the BI 

is a ‘software sensor’ [279,283] that was defined to provide indications of biomarkers in 

the absence of on-line equipment. It is obvious that an on-line approach remains the ideal 

solution.     

 

In terms of system implementation, the proposed numerical model is well suited to 

application as a ‘Kalman filter’ (KF). This is a linear state estimator used for calculating 

the value of bioprocess variables that are normally not measurable on-line (e.g. the 

biomass or product/substrate concentrations in a production bioprocess [11,279-283]). 

This method involves continuously updating a pre-defined process model with on-line 

sensor measurements for independent variables. An effective KF has two basic 

requirements: 

1. The process model must be accurate and insensitive to measurement errors, and  

2. The system and measurement noise should be determinable.  
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This raises the following points: 

 

The proposed model is unavoidably reliant on the accuracy of sensors for the independent 

variables. In fact, the variables were chosen owing to the commercial availability of on-

line sensors. Ensuring measurement accuracy is possible using noise-filtering techniques, 

such as first or second order filters or a moving average of measurements. A data 

integration/processing system with a graphical user interface (GUI) would consequently 

also be necessary. In this respect, an active virtual state estimator, as represented by 

figure 6.2.2, would be a useful component of a GUI.  

 

Bioprocesses are harsh environments for sensors in that protein fouling of surfaces may 

cause measurement problems. A solution to this is sample extraction from the process 

loop with a subsequent buffer-washout phase, as is already used in flow injection systems 

[270,271]. For example, clinical microdialysis (table 6.2.8) is a technique designed to 

monitor tissue chemistry (often cerebral) during or after pharmacological, physiological 

and surgical interventions. Very small diameter sterile catheters are employed; these have 

semi-permeable membranes to allow the appropriate tissue fluid to pass through. Sample 

volumes are also kept very small to avoid patient haemodynamic instability. 

 
Table 6.2.8 Examples of commercially available FI systems which are potentially 
attractive in ALF 

 

Device/s Primary 
application 

Chemistries Sample 
volume 

Cost Reference 

YSI7100 
MBS 

Bioprocess 
monitoring and 
control 

glucose, lactate, 
glutamate, glutamine, 
ammonium, and 
potassium.  

10-15 µl +R 300 000 
incl. initial 
buffers and 
calibration 
fluids 

www.YSI.com 

CMA600 
analyzer  

Neuro-
microdialysis 

glucose, lactate, 
pyruvate, glutamate, 
glycerol, and urea. 

0.5  µl +R 500 000 
incl. initial 
buffers and 
calibration 
fluids 

www.microdial
ysis.se 
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 Since there are currently no bioprocess monitoring systems designed for ALF, the state 

estimator in this study was designed for use with equipment normally available in 

surgical and ICU settings: For example, electrocardiographic (ECG) instruments and 

arterial blood gas (ABG) technology. In the post-surgical part all but ammonia may be 

detected using an ABG machine. A variety of sensors for ammonia are commercially 

available (www.spectronic.co.uk). A sensor for creatinine is not yet commercially 

available, however, research has been underway to produce one [304]. Perhaps, the most 

ideal sensors are biosensors employing enzymatic amperometric or optical methodologies 

for detection [305-308]. 

 

Assuming the success of modeling ALF in animals, doing so in humans may present 

more of a challenge. Standardized animal models are ‘pure’ images of ALF and the 

interventions are mostly minimized. Interventions in the human scenario tend to be 

excessive in the hope of saving the patient’s life. Linear approaches are therefore likely to 

be less successful due to these complicating effects. However, extensive clinical ‘know-

how’ exists and this is obviously the basis for successful support of ALF patients. 

‘Knowledge-based’ combined with structured non-linear models may therefore be of 

value in the human scenario. The UML, as an object oriented meta-modeling method, is 

likely to continue being useful in integrating these [273,309,310]. 
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6.3 Thoughts and recommendations 
 
 

In the above two studies, a compartmental pharmacokinetic and an on-line prognostic 

model were investigated. These provide information regarding BAL system performance 

during treatments, and on-line biomarkers and prognosis respectively.  

 

In terms of the former, although the pharmacokinetic modeling approach is a necessary 

and desirable part of developing a BAL, it provides predictions regarding the clearance or 

production of only single substances at a time and only after rates of production and or 

clearance have been measured in in vitro and in vivo experiments. As has become 

apparent, the clinical syndrome of ALF is a complex, multisystemic process, which 

cannot be limited to only individual clearance and/or production variables. The addition 

of bio-analytical monitoring tools designed to investigate changing clinical variables that 

participate in known or suspected ways in ALF may help to prevent assumptions 

regarding pathogenesis and the efficacy of any potential treatment.  

 
Subsequently, a bioprocess state estimator was proposed for a porcine surgical ischemic 

model of acute liver failure. Its purpose was to create an on-line system providing 

indications of experimental animal prognosis and biochemistry. In the instance described 

above the model’s ease of extension and numerical accuracy would suggest that the 

diagrammatic and statistical modeling methods were indeed successful. That is, the 

selected independent variables did accurately determine the particular dependent 

variables. This also implies that clinical interventions should aim to minimize or reverse 

changes in these variables to demonstrate the benefit of the treatment. For example, blood 

sampling should be minimized to prevent haemodynamic instability and the accumulation 

of ammonia should be minimized using an appropriate means of clearance (e.g. an 

artificial toxin clearance column and biochemical ammonia minimization strategies). 

Unlike the pharmacokinetic model, the value of this model resides more in clinical 

patient management than in BAL design. 

 

The following additional thoughts are relevant:  
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6.3.1 Refining prognostic models 
 

In view of the fact that studies investigating new variables and those comparing existing 

systems have continued, one can assume that the final word on prognostic criteria for 

ALF has not yet been written.  

 

The complexity of ALF will doubtless require several collaborative modeling attempts 

prior to acceptance as ‘complete’. It is therefore sensible, in principle, to proceed with 

ALF process modeling in animals before attempting application in the human context. 

Since the outcomes of previous UP-CSIR BALSS trials were apparently affected by the 

toxicity of the ischemic model (section 5.3) future trials aim to use the anhepatic model 

[5,220,226,230] to hopefully ‘unmask’ the benefit/s of the treatment as previously 

mentioned. As stated, the anhepatic is a type of ‘control’ for the ischemic, i.e. subtracting 

the rates of endogenous toxin accumulation will indicate the contribution/extent of 

hepatic necrosis. This information is useful in the numerical definition of an ALF process 

model. Additionally, it would be desirable to include several new coagulatory, 

immunological and cerebral variables (table 6.2.1), in future experiments. 

 

In the human scenario thereafter, spontaneous liver regeneration and clinical 

interventions aimed at improving prognosis will likely alter biological processes that 

appeared to linearly appreciate/depreciate with time in the animal scenario/s. Thus, future 

modeling efforts may benefit from larger sample sizes and non-linear techniques. Pattern 

recognition and rule-based artificial intelligence systems have successfully been applied 

to model complex medical problems [291-293]. For this reason, it is probable that a 

human process model of ALF would benefit from a hybrid learning and rule-based 

design approach [294] which has (apparently) not been attempted before.  

 

6.3.2 Non-linear and multivariate regression experiments 

 

After defining the ALF process model on the ‘ischemic-standardization’ data, the 

prospective acquisition of the BALSS treatment data created the possibility of re-

examining the new and larger raw dataset with additional analysis and modeling efforts: 
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The aim was to explore the possibility of there being a prognostic model contained in the 

data that was composed of variables that were more biochemically-oriented. In particular, 

variables more similar to those identified in the review of prognostic studies (table 6.2.7) 

than those defined in the above numerical modeling instance. This effort was in part 

focused on finding prognostic variables that were preferably not measured by either ABG 

or ECG instruments since these would in any case be in an ICU. 

 

Kohonen self organizing maps (SOMs in Matlab) were initially re-employed and were 

once again found to be ineffective, likely due to the still too small sample size. 

Incidentally, SOMs are a single-layer form of artificial neural networks (ANN 

[11,311,312-316]) which are useful for indicating multidimensional relationships in an 

intra-related data space.  The problem in this case lay in the biochemical sampling 

interval: The laboratory variables were sampled 4-hourly to minimize costs and to 

prevent animal haemodynamic instability (as a result of blood loss). Although the ABG 

and ECG data was collected on a much higher frequency, including this into the final 

‘summated dataset’ required limiting the sampling interval to the lowest common 

denominator (i.e. only the data points of all variables on the 4-hourly intervals). SOMs 

were simply not the appropriate tool for the task.  

 

Subsequently, an un-weighted least squares linear multivariate regression (as is available 

in SPSS 17.0) was performed on the raw data. Combined as a single set, the following 

variables were selected:  pH, bicarbonate (HCO3), potassium (K+), hemoglobin (Hb), 

lactate, pyruvate, ammonia, bilirubin, creatinine, urea,  prothrombin time (PT) and the 

clotting factors 2,7 and 10. Thereafter, a process of stepwise exclusion of variables not 

demonstrating significant p-values in the combined-model form was followed to 

determine the final multivariate model. On completion the following remained, K+, 

ammonia, bilirubin, creatinine, PT and urea. The individual p-values were all below 0.05, 

in fact, the highest was 0.011 for bilirubin. The similarity of this model to the variables 

identified in the review (table 6.2.7) is indeed noteworthy, particularly to the studies of 

Dabos et al [267], Bhatia et al [239] and Bernal et al [241]. 
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The difference between this (multi-variate) model and the previous numerical model 

(state estimator) lies in their derivation methods. The variables in the state estimator were 

mean rates of change (the gradients) calculated from the first-order relationships of each 

of the variables of interest in each of the animals, i.e. they related the duration of survival 

to ‘derived’ data. The multi-variate model, on the other hand, directly related the raw data 

to time. The value of this multivariate model lies in demonstrating that the assumption 

previously made was justified, namely that the rates of change (first derivatives) of the 

above listed variables are indeed linearly related to the duration of survival. This 

validates building a dynamic on-line prognostic system based on the rates of change of 

appropriately selected variables. As stated before, such a system will formally require 

either on-line sensors for all of the variables or a process model [300-303] with data 

inclusion methods for the off-line (laboratory) variables.   

 

6.3.3 A UML meta-model to combine the state estimator and the BALSS 

pharmacokinetic model 

 

A variety of systems have been used to model biological systems, the choice of which is 

normally determined by the postulated underlying structure of the system, for example, 

petri nets, boolean switching nets, electronic circuits or ANNs. Each of these systems 

have advantages and disadvantages determined by the quality and quantity of data, the 

understood complexity of the system and the degree to which this requires accurate 

emulation [302,303,315-317]. 

 

With this in mind, it is interesting to compare the above state estimator with the 

pharmacokinetic compartmental model (table 6.3.1). What becomes apparent from the 

comparison is that the two systems complement each other in that they are designed to 

examine system pharmacokinetic performance and the patient’s prognosis (state 

trajectory) respectively.  
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Table 6.3.1 Differences between the state estimator and the compartmental model 

 
 

Combining these two systems might involve their interaction in terms of in and outputs 

(i.e. output for one may be input for the other). As previously stated, the UML is 

attractive for combining models of different levels into a meta-model without internal 

conflict. In this regard, there are convenient extensible markup language (XML) 

procedures to convert UML diagrams to code. 

 
To achieve this proposed systems integration the following meta-model may be proposed: 
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ALF-state estimator
patient prognosis

ALF-patient-BALSS 
system

BALSS compartment 
model

pharmacokinetics

 
Figure 6.3.1 UML metamodel of the combined ALF-patient-BALSS compartment 
models. The inheritance of the meta-model includes all the attributes and functionality of 
the two underlying models.      
 

Obviously certain basic requirements would need to be met in terms of the 

implementation of such a system. For example, in addition to reaching a more final 

version of the ALF-patient state estimator, a state trajectory for the compartment model, 

i.e. the pharmacokinetic dynamics of the BALSS, would also require definition. The 

result would be a combined ALF-patient-BALSS state model with behaviour inherited 

from the attributes of the two underlying systems.  

 

In this regard, suitable in and outputs linking the two models would need to be selected. 

Although the hardware of a bioprocess monitoring system is an independent system 

(which need not communicate with any particular model), any variables selected to 

enable communication between the above models would need to match the criteria for 

inclusion in both i.e.: 

1. drugs or metabolites that are alternately cleared and/or produced by the bioreactor 

and patient respectively, 

2. The existence of sensors and equipment for their on-line measurement during 

experiments 

3. As high a correlation, or ‘weight’, with the dependent variable as possible (i.e. a 

clinical association of relevance in the animal ALF model). 

4. As linearly appreciating/depreciating over time (i.e first-order) as possible. 
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For example, assuming the on-line detection of ammonia, potentially in various sites in 

the system (e.g. arterial in the patient and in the various compartments of the BALSS), 

the measured data could function as input for both pharmacokinetic and prognosis 

models. Depending on the use of an animal or human treatment model other variables 

may also match the above characteristics. In an anhepatic model a variety of plasma 

proteins (e.g. coagulation factors) and endotoxins may be suitable candidates.  

 

As mentioned previously, it is important to realize that the above models are iterative 

instances and will benefit from extension in the future. For example, the pharmacokinetic 

model may additionally include; an artificial toxin clearance device, with known toxin 

clearance dynamics over time, or the effect of supplementing the patient with blood 

plasma or albumin. The prognosis model could also be extended to include several of the 

variables (listed in table 6.2.1) not previously measured. In either case, an appropriate on-

line monitoring system that is independent of the underlying models will remain a formal 

requirement. 

 

Finally, assuming both models are well understood, an in silico meta-model of the above 

could be used to simulate the likely behaviour of the combined system. A virtual system 

such as this would be highly attractive in terms of BALSS system design finalization and 

therefore time and expense savings prior to proceeding to human clinical trials.  

 

6.3.4 Additional notes on bioprocess monitoring systems 
 
 
Of the previously mentioned FI systems the CMA system is more attractive than the YSI 

system for the following reasons: 

1. Several input channels are available in the CMA system. Thus, the cerebral 

biochemical data of several patients along with data from any additional devices may 

simultaneously be monitored.   

2. In clinical, as opposed to laboratory bioprocess systems, feedback control is not 

required. The CMA device has a data integration software system (ICU Pilot) that is able 

to simultaneously display trends in several systemic variables (ECG, EEG, ICP, MAP 

etc) and the measured biochemicals.   
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3. Since the sampling catheters may be adapted for both cerebral interstitial-fluid and 

blood plasma, in a BALSS treatment, one catheter could be used to monitor brain 

chemistry while another monitors plasma chemistry. In this case the sterility issues 

regarding the in situ application of a clinical device have been adequately attended to. 

This is not so with the YSI machine although a neurological application has not been 

excluded. In addition, in the ischemic experiments HE, which is a diagnostic 

characteristic of ALF, could not be diagnosed on the basis of EEG results as these are 

known to be influenced by sedation, nor by ICP since it was not monitored. Instead, HE 

was diagnosed via alterations in Fischer’s ratio, which relies on after-the-fact biochemical 

analyses of plasma amino acid ratios. The CMA machine will allow an on-line diagnosis 

of HE via cerebral biochemical indicators potentially integrated with an ICP 

measurement system. The concentration of the cerebral amino acids may also be 

compared to the plasma amino acids, as measured in the BALSS-patient circulation loop, 

and this is likely to provide valuable prognostic information.  

 

Assuming the development of a data inclusion system (Kalman filter) a variety of off-

line, biochemistry analyzers are ave recently become commercially available that would 

provide prognostically valuable data for the ALF process model. For example, the 

Diagostica Stago STA-compact device (www.stago.fr) that measures a variety of 

coagulatory variables (PT, APTT, fibrinogen, thrombin time, clotting factors and 

antithrombin) or the large range of Siemens analyzers that perform immuno-assay, 

chemistry and hematology analyses (www.siemens.com/diagnostics). In addition to the 

flow injection technology mentioned up to this point, there is also a possibility of 

incorporating new high-throughput molecular technologies with electronic signal 

transduction, potentially enabling measurement updates several times a second [2]. The 

latter will obviously require specification of the correct sensors.   

 

In the course of developing the UP-CSIR BALSS a FI sub-system was designed to take 

samples from the re-circulating plasma circuit during the course of a treatment (figure 

6.3.2). The sampling volume is small, 2 ml, and the sampling interval is programmable: 

Once every 30 minutes would be sufficient for statistical purposes in an animal model 

and would also have a minimal haemodynamic impact. Each sampling cycle is followed 
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by saline washout from an off-line reservoir. However, due to inconvenient electrode 

sterilization and calibration procedures, the system has not yet been clinically applied. A 

stand-alone system such as the CMA device, in which all of the problems associated with 

a clinical application have been solved, remains a more attractive solution. 

 

 
 
Figure 6.3.2 UP-CSIR BALSS FI sampling manifold with ion-specific electrodes. From 
left to right carbonate (HCO3

-), potassium (K+) and ammonium (NH4
+) electrodes, with 

peristaltic pump and controller in the rear. 
 

The considerations in developing a bioprocess monitoring device for a BALSS are likely 

to be the same as those for renal dialysis technology: The treatments are (and will be) 

very expensive and one possible way to meet these costs is to improve the diagnostic and 

treatment competence of the system. A system that integrates the signals of several 

monitored variables will improve the understanding of the links between 

haemodynamics, metabolism and physiological regulatory systems and will therefore 

improve diagnosis and treatment regimens [316]. 
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A monitoring system such as the proposed state estimator could potentially function as a 

monitoring device in any similar bioprocess. For example, in laboratory toxicological, 

biotransformation and drug screening research, primary hepatocytes and non-

parenchymal co-cultures are a popular in vitro model owing to the resemblance of the 

system to an in vivo circumstance [316]. The cost of process development accounts for a 

large fraction of bringing a drug to market. Thus, there is also a strong economic 

incentive for improved monitoring tools in the bioprocess engineering market [317]. The 

critical problem remains a paucity of suitable, affordable sensors and integrated 

monitoring tools. 
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7. SUMMARY AND CONCLUSION 
 

 
“It would be an unsound fancy and self-contradictory to expect that things which have 

never yet been done can be done except by means which have never yet been tried”. 
 

 
Francis Bacon, Novum Organum VI, 1620 

 

In evaluating the overall success of this thesis, it is instructive to examine the 

recommendations for future research made in a recent US-based, acute liver failure 

workshop, Lee et al (2008) [243], paraphrased as follows:  

• Continued prospective monitoring to identify epidemiological trends in ALF. 

• Use of new molecular methodologies to study ALF (especially ‘indeterminate’ 

cause ALF), including, genomics, proteomics, metabolomics etc. 

• More basic research into ALF and multiorgan failure pathogenesis. 

• Initiation of prospective, well-designed clinical trials for various ALF therapies. 

• Improvement in predictive markers, modeling of prognosis and identification of 

new biomarkers. (This task was also reiterated in a subsequent independent 

study, Freeman et al (2009) [318]). 

• More basic research in hepatocyte and stem cell growth and proliferation for the 

purpose of a therapeutic cell source. 

• Continuance of in vitro and animal studies for BAL devices, to enable eventual 

human trials. 

• Additional tissue engineering work to develop an effective BAL device for 

humans.   

 

Importantly, the purpose of this thesis was to present and evaluate a variety of types of 

models and in this respect the following was done and/or achieved: 

• After reviewing the clinical and biological background of acute liver failure and 

bioartificial liver technology and describing the development of the UP-CSIR 

BAL, 

• Three studies involving in vitro lab-scale models of the BAL were presented and 

evaluated: The first established a sterile, numerically large-scale cell source for 
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seeding BAL bioreactors. This model remains highly successful, despite its 

regionally limited application due to the xenogenic primary cell origin.  The 

second study successfully demonstrated bioreactor metabolic function, but also 

revealed methodological difficulties associated with the use of the perflurocarbon 

O2 carrier. In response, the third study employed novel methods such as radio-

transparent bioreactor materials and positron emission tomography. In so doing, it 

demonstrated that the O2 carrier did indeed benefit bioreactors under hypoxic 

(ALF-like) treatment conditions. The cost and metabolic appropriateness of 

transformed cell sources were identified as factors at least partially responsible for 

preventing BAL-device entry into the commercial arena.  New research 

directions, including genetically engineered transgenic and chimeric animals, 

were mentioned as promising possibilities. 

• Two studies involving in vivo animal ALF models were presented: The first 

successfully demonstrated that IV injected PFC was not toxic in either healthy or 

liver-injury scenarios, and thus, a potential PFC leakage would not be toxic or 

hinder the recovery of a severely liver-compromised patient undergoing a BAL 

treatment. The second clinically standardized a large animal surgically-induced 

ischemic model of ALF in which it was possible to statistically identify 

prognostically important clinical variables (such as ammonia). However, the 

unstable and multi-systemic nature of the model was also recognized and this 

contributed to the inconclusive demonstration of efficacy in the clinical evaluation 

of the UP-CSIR BALSS subsequently described. Despite this, valuable 

information resulted, including: parameters for BAL system re-design (such as 

including an artificial toxin device), the benefit of using alternate animal ALF 

models and the measurement of additional/new prognostically important clinical 

variables.  

• Two mathematical modeling studies were presented: The first, a mass-balance 

pharmacokinetic compartmental model using actual in vitro and in vivo data 

measured in the studies above, simulated the BAL-patient system in a clinical 

treatment. Valuable BAL design and operation information resulted, including the 

minimal requisite cell quantities, exchange and circulation rates and (once again) 

incorporating an artificial toxin clearance device. The second model was an ALF-
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bioprocess state estimator defined using conceptual modeling methods (UML) 

and a weighted-multivariate numerical approach. This model proved accurate on 

both ‘trained’ and prospectively collected ‘un-trained’ in vivo data in the large 

animal and BAL clinical experiments described above. However, the benefit of 

larger sample sizes in future studies was identified. Nonetheless, the model 

proved in principle that it is possible to create an on-line clinical monitoring 

device with ALF prognostic prediction or ‘state estimator’ capabilities. The means 

of implementing such a device, additional non-linear and multivariate statistical 

experiments conducted on the animal data, along with shortcomings and potential 

improvements to existing prognostic models were discussed. Based on the 

complimentarity of the above two models, a method for potentially combining 

them into a single in silico model with the benefits of both was discussed. 

 

On at least a scientific level, it is safe to state that the models defined in this thesis 

achieved their purpose, specifically to generate information regarding BAL system design 

and clinical and metabolic performance and thereby to facilitate development in the 

technology. At least half (particularly the latter half) of the list of Lee et al (and Freeman 

et al) above was addressed. 

 

Globally, on the other hand, owing to the many variations in BAL design, the cost and 

technical challenges associated with the requisite studies, and (perhaps as a result) the 

fact that the literature is littered with examples of initial enthusiasm followed by 

disappointing outcomes; It might also be said that additional work is required in all of the 

segregated sections (in vitro, in vivo, and mathematical models), before the technology 

will proceed beyond a pre-commercial developmental stage. Since this is clearly not a fait 

accompli today, in this thesis thoughts and recommendations regarding research progress 

were provided per section rather than all being lumped into this conclusion. I hope this 

has been helpful rather than a hindrance to the reader. 

 

Finally, it seems illogical when considering the extensive previous efforts, that the 

obstacles remaining in the path to BAL commercialization will be solved using 

repetitions of historical strategies. In agreement with other authors [1,2,9,17,243], it is 
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probable that developing a clinically effective device will require ongoing innovations 

and the integration of the new with existing technologies. In particular, aside from the 

stated requirement of a cell source that meets the needs of all regulatory-authorities, it is 

probable that mathematical modeling, (in for example, bioreactor design optimization, 

BAL system performance, biomarker identification and on-line clinical and prognosis 

monitoring amongst others) will enjoy greater application than has occurred in the past. 

The expense of clinical trials certainly validates in silico modeling.  

 

 

 

188

 
 
 


	Front
	Chapters 1-2
	Chapters 3-4
	Chapter 5
	CHAPTER 6
	6.1 A pharmacokinetic compartment model of the UP-CSIR BALSS
	6.2 Developing an on-line predictive clinical monitoring system for acute liver failure patients
	6.3 Thoughts and recommendations

	CHAPTER 7
	Back



