

BIO-ARTIFICIAL LIVER SUPPORT SYSTEM: An evaluation of models used in demonstrating or improving metabolic and clinical efficacy

by MARTIN NIEUWOUDT

BIO-ARTIFICIAL LIVER SUPPORT SYSTEM: An evaluation of models used in demonstrating or improving metabolic and clinical efficacy

by Martin Nieuwoudt

Thesis submitted in fulfillment of a PhD in Chemical Technology

in the Department of Chemical Engineering, University of Pretoria, Pretoria, South Africa

Supervisor: Prof. P de Vaal Co-supervisor: Prof. S van der Merwe

BIO-ARTIFICIAL LIVER SUPPORT SYSTEM: An evaluation of models used in demonstrating or improving metabolic and clinical efficacy

ABSTRACT

Acute liver failure (ALF) is a rare but devastating clinical syndrome with multiple causes and a variable course. The mortality rate is high. Orthotopic liver transplantation is the only therapy of proven survival benefit but the limited supply of donor organs, the rapidity of progression and the variable course of ALF limit its use. A need therefore exists for a method to 'bridge' patients, that is, provide temporary support, to either the spontaneous regeneration of the innate liver or transplantation. One possibility includes bio-artificial liver support systems (BALSS). This technology is composed of an extracorporeal circulation system incorporating a bioreactor that contains parenchymal liver cells (hepatocytes) to perform the detoxifying, transforming and synthetic properties of a liver. However, the development of a BALSS holds particular challenges. Despite approximately four decades of research, bioartificial liver (BAL) technology globally remains in a pre-commercial stage. The University of Pretoria (UP) and the Council for Scientific and Industrial Research (CSIR) have developed a BALSS with novel characteristics. These include a computationally optimized radial-flow primary porcine hepatocyte bioreactor perfused with blood plasma, and a perfluorocarbon oxygen carrier which replaces hemoglobin. There are also novel design properties in the circulation system itself. Demonstrating the metabolic and clinical efficacy of a BAL device requires implementing, in vitro (cell biology), in vivo (animal) and mathematical modeling studies. These studies are a formal necessity but are inherently 'models' of the *in vivo* human clinical circumstance. That is, they are limited by their experimentally controlled configuration/s. In investigating these, this thesis firstly provides a foundation by reviewing the clinical and biological context of ALF and BAL technology, then presents and evaluates particular studies/models that have been implemented over several years in the course of the UP-CSIR BAL project. For each section, thoughts and recommendations regarding future work that will facilitate the development of BAL technology are discussed in detail. The thesis is concluded with an evaluation of success and the consensus-agreed requirement of continued research and innovation in the field.

Keywords: acute liver failure, bio-artificial liver, hepatocyte bioreactor cell biology, animal models, compartmental pharmacokinetic models, prognosis modeling, bioprocess monitoring, state estimator.

BIO-KUNSMATIGE LEWER ONDERSTEUNINGSTELSEL: 'n Evaluasie van modelle wat gebruik is in die demonstrasie of verbetering van metaboliese en kliniese doeltreffendheid

SAMEVATTING

Akute lewerversaking (ALV) is 'n seldsame maar vernietigende kliniese sindroom met veelvuldige oorsake en uiteenlopende nagevolge. Die sterftesyfers is hoog. Leweroorplanting is die enigste terapie met bewese oorlewingsvoordele, maar die tekort aan oorplantingsorgane en die verskeie nagevolge van ALV beperk die gebruik daarvan. Daar is dus 'n behoefte aan 'n 'oorbruggingsmetode', om pasiënte te ondersteun terwyl spontane regenerasie van die bestaande lewer kan plaasvind, of voordat 'n leweroorplanting gedoen word. Een so 'n moontlikheid is 'n bio-kunsmatige lewerondersteuningstelsel (BKLOS). Hierdie tegnologie is 'n buiteliggaamlike sirkulasiestelsel insluitende 'n bioreaktor wat lewerselle (hepatosiete) bevat wat die suiwering, transformasie en sintese eienskappe van die lewer vervul. Die ontwikkeling van 'n BKL-ontwerp hou definitiewe uitdagings in. Ten spyte van vier dekades se internasionale navorsing, bly bio-kunsmatige lewer tegnologie in 'n prekommersiële stadium. Die Universiteit van Pretoria (UP) en die Wetenskaplike en Nywerheidnavorsingsraad (WNNR) het 'n BKLOS met uitsonderlike kenmerke ontwikkel. Dit sluit in 'n rekenaar-geoptimiseerde radiaal-vloei primêre varkhepatosiet bioreaktor wat deurentyd gevul word met bloedplasma en 'n perfluorostikstof suurstofdraer wat hemoglobien vervang. Die sirkulasiestelsel self het ook unieke ontwerpeienskappe. Die demonstrasie van die metaboliese en kliniese doelteffendheid van 'n BKL-ontwerp vereis die implementering van in vitro (selbiologie), in vivo (diere) en wiskundige modeleringstudies. Alhoewel sulke studies noodsaaklik is, is hulle inherent 'modelle' van die in vivo menslike kliniese omstandigheid. In hierdie proefskrif is eerstens 'n basis gebou deur die kliniese en biologiese samehang van ALV en BKL tegnologie te ondersoek. Daarna stel dit voor en evalueer spesifieke studies/modelle wat oor verskeie jare in die loop van die UP-WNNR BKL projek geïmplementeer is. Na elke afdeling is voorstelle bespreek in verband met toekomstige werk wat die ontwikkeling van BKL tegnologie sal vergemaklik. Die proefskrif word afgesluit met 'n evaluering van suksesse tot op datum asook behoeftes aan voortgesette navorsing en ontwikkeling in die veld.

	CO	JTENTS		PAGE
	List	ract evatting of Figures and Tables is and abbreviations		iii iv v viii
1	INTI	ODUCTION		1
	1.1	Background		1
	1.2	Defining Models		3
	1.2	Problem statement		4
	1.3	Thesis structure		4
	1.4	Copyright and authorsl	nip issues	6
2	THE	CLINICAL AND BIOLC	GICAL BACKGROUND OF ACUTE LIVER	8
	FAILURE AND LIVER SUPPORT TECHNOLOGY			
	2.1	Introduction		8
	2.2	Defining ALF		8
	2.3	Epidemiology and etiol)gy	9
	2.4	Pathogenesis and the cli	inical syndrome	10
		2.4.1 Hepatic encephale	opathy	11
		2.4.2 Cerebral edema		13
		2.4.3 Coagulopathy		14
		2.4.4 Metabolic abnorm	nalities	14
		2.4.5 Renal Failure		15
		2.4.6 Multi-organ failur	e	16
	2.5	Prognostic scoring syste	ems	16
	2.6	Orthotopic Liver Trans	plantation	18
	2.7	Liver support systems		19
		2.7.1 Non-biological liv	ver support	20
		2.7.2 Biological liver st	upport	21
		2.7.3 Biological princip	ples in the design of BAL devices	24
		2.7.3.1 Cell typ	e, source and mass	24
		2.7.3.2 Cellular	oxygenation	27

			2.7.3.3	Cell support matrices	28
			2.7.3.4	Flow rates, exchange rates and the priming volume	29
			2.7.3.5	Detoxification devices and multiple optimized bioreactors	30
3	THI	e desic	GN OF TH	HE UP-CSIR BALSS	32
	3.1	Biore	actor optin	mization	32
	3.2	Circu	lation syst	tem optimization	35
4	IN	VITRO	CELL BIO	LOGY STUDIES overview	42
	4.1	A larg	ge scale au	itomated method for hepatocyte isolation	43
		4.1.1	Introduct	tion	43
		4.1.2	Materials	s and Methods	43
		4.1.3	Results		51
		4.1.4	Discussio	on	55
	4.2	A stu	ly to deter	rmine hepatocyte function in the UP-CSIR radial-flow	57
		biorea	actor using	g a perfluorocarbon oxygen carrier	
		4.2.1	Introduct	tion	57
		4.2.2	Materials	s and Methods	58
		4.2.3	Results		60
		4.2.4	Discussio	on	63
	4.3	Imagi	ng glucos	e metabolism in hepatocyte-stellate co-culture bioreactors	67
		using	positron e	emission tomography	
		4.3.1	Introduct	tion	67
		4.3.2	Materials	s and Methods	69
		4.3.3	Results		75
		4.3.4	Discussio	on	81
	4.4	Thoug	ghts and r	recommendations	84
		4.4.1	Develop	ments in cell sources	85
			4.4.1.1	Genetically engineered swine	85
			4.4.1.2	Chimeric animals	86
			4.4.1.3	Concerns regarding other cell types	87

5	IN V	/ <i>IVO</i> A	NIMAL STUDIES overview	90
	5.1 Non-toxicity of IV injected perfluorocarbon oxygen carrier in a		oxicity of IV injected perfluorocarbon oxygen carrier in an animal	91
		mode	l of liver regeneration following surgical injury	
		5.1.1	Introduction	91
		5.1.2	Materials and Methods	92
		5.1.3	Results	95
		5.1.4	Discussion	101
	5.2	Stand	ardization criteria for an ischemic surgical model	103
		of ac	ute hepatic failure in pigs	
		5.2.1	Introduction	103
		5.2.2	Materials and Methods	104
		5.2.3	Results	107
		5.2.4	Discussion	114
	5.3	Thou	ghts and recommendations	119
		5.3.1	Clinical evaluation of the BALSS using the ischemic model	119
		5.3.2	Alternate animal models of ALF	126
		5.3.3	Ammonia metabolism, measurement and reduction strategies	128
		5.3.4	Which artificial toxin clearance system?	132
6	МАТ	ГНЕМА	TICAL MODELING STUDIES overview	135
	6.1	A pha	armacokinetic compartment model of the UP-CSIR BALSS	136
		6.1.1	Introduction	136
		6.1.2	Materials and methods	137
		6.1.3	Data	137
		6.1.4	Results	138
		6.1.5	Discussion	143
	6.2	Devel	oping an <i>on-line</i> predictive clinical monitoring system	147
		for a	cute liver failure patients	
		6.2.1	Introduction	147
		6.2.2	Methods	148
			6.2.2.1 Data processing	148

		6.2.2.2	Conceptual (system) modeling	149
		6.2.2.3	Numerical modeling	154
	6.2.3	Results		156
		6.2.3.1	Class associations	156
		6.2.3.2	Quantification of states	156
		6.2.3.3	The PI equations	158
		6.2.3.4	First-order assumptions	159
		6.2.3.5	The BI equations	159
		6.2.3.6	Model sensitivity	162
		6.2.3.7	Assumptions of normality	162
		6.2.3.8	Factors affecting BI accuracy	163
	6.2.4	Model V	Verification	163
		6.2.4.1	ANOVA	163
		6.2.4.2	Relative error	164
		6.2.4.3	Comparison with prospectively acquired un-trained BALSS	165
			treatment data	
	6.2.5	Discussi	ion	167
6.3	Thou	ghts and	recommendations	175
	6.3.1	Refining	g prognostic models	176
	6.3.2	Non-lin	ear and multivariate regression experiments	176
	6.3.3		meta-model to combine the state estimator and the	178
		-	cokinetic model	
	6.3.4	Addition	nal notes on bioprocess monitoring systems	181
				105
SUMMARY AND CONCLUSION 185				
	ERENC			189
			206	
				206
	-	-	<i>In vivo</i> study methods	210
	-	•	The derivation of the compartmental model equations	213
	Ap	pendix D	: On line model sensitivity and verification	221

Acknowledgements

	LIST OF FIGURES	PAGE
3.1	First iteration, non-flow optimized bioreactor	33
3.2	CFD model of velocity contours of a plasma-PFC mixture over the PUF cell aggregation matrix in the non-optimized bioreactor configuration	33
3.3	Optimized bioreactor design.	34
3.4	CFD model of velocity contours of the plasma-PFC mixture over the PUF cell aggregation matrix in the optimized bioreactor configuration	35
3.5	Schematic of the UP-CSIR BALSS	36
3.6	The BALSS mark I system	37
3.7	Annotated image of the UP-CSIR mark II BALSS	38
3.8	Graphical user control interface for the mark II model	39
3.9	Intensive care unit in the evaluation of the mark II BALSS	40
3.10	Animal undergoing a BALSS treatment	40
4.1.1	Schematic of Perfusion Apparatus	45
4.1.2	Oxygenation flask	46
4.1.3	The BRAT machine	48
4.1.4	Disposable BRAT apparatus	48
4.1.5	BRAT bowl	49
4.1.6a	BRAT Bowl prior to addition of Percoll	50
4.1.6b	BRAT Bowl after addition of Percoll	50
4.1.7	Flow Cytometry: DNA profile after BRAT procedure with and without oxygenation and prior to culturing	54
4.1.8	Flow Cytometry: DNA profile after 3 and 7 days culturing	54
4.2.1	Simplified <i>in vitro</i> dynamic model of the BALSS	59
4.2.2	SEM image of open-cell PUF cell adhesion matrix with cell aggregations	61
4.2.3	SEM Image of a single large cell aggregate in the PUF adhesion matrix	62
4.2.4	^{99m} Tc-DISIDA isotope scan of PUF cell aggregation matrix.	62
4.2.5	Increased PFOB volume fraction increases the oxygen carrying capacity of emulsions	65
4.2.6	Simulation of bioreactor O ₂ requirements	66
4.3.1	The dual bioreactor <i>in vitro</i> model/s of the BALSS	72
4.3.2	CT and PET scan of hypoxic gas mix cell-seeded bioreactor without PFC	78
4.3.3	CT and PET scan of hypoxic gas mix cell-seeded bioreactor with PFC	79
5.1.1	Liver regeneration projections, assuming linear re-growth	98
5.2.1	Magnitude of correlations of absolute values of systemic indices during surgery $[T<0]$ with duration of survival	112
5.2.2	Magnitude of correlations of biochemical trends following surgery (T>0) with duration of animal survival	113
6.1.1	Compartmental diagram of the BALSS system connected to a patient	137
6.1.2	BALSS sub-circulation concentration profiles for ammonia	139
6.1.3	The influence of bioreactor cell loading on ammonia accumulation	140
6.1.4	Influence of blood exchange rate on ammonia accumulation in the patient	141
6.1.5	The influence of the clearance to production ratio on blood ammonia concentration	142
6.1.6	Variation in reported values of ammonia clearance	145
6.2.1	Class diagram for data attributes of the patient-ALF-system	150
6.2.2	A system state transition diagram for the ALF-patient system	153

6.3.1	UML meta-model of the combined ALF-patient-BALSS compartment models	180
6.3.2	UP-CSIR BALSS FI sampling manifold with ion-specific electrodes	183
D.2.1	Linearity of variable trends	223
D.3.1	Tornado diagram for PI model (T<0)	224
D.3.2	Tornado diagram for PI model (T>0)	225
D.3.3	BI Model Sensitivity for BcAA/AroAA (BI)	225
D.3.4	BI Model sensitivity for creatinine	226
D.3.5	PI Model (T<0) prediction variation using normal distributions of independent variables	227
D.3.6	PI Model (T>0) prediction variation using normal distributions of independent variables (T>0)	227
D.3.7	PI Model (T>0) prediction variation using uniform distributions of non- Gaussian variables	228
D.6.2.1	Relative prediction error for the PI (T<0)	233
D.6.2.2	Relative error for PI (T>0)	233
D.6.2.3	Relative error for the BI (Prothrombin time)	234
D.6.2.4	Relative error for the BI [BcAA/AroAA]	234

LIST OF TABLES

2.1	Grade scale for hepatic encephalopathy	12
2.2	Some historically commonly used prognostic criteria for ALF	17
2.3	Summary of non-biological and biological liver support systems	19
2.4	System characteristics and outcomes of clinical trials	23
2.5	The advantages and disadvantages of various cell sources for BAL's	25
2.6	The relative advantages and disadvantages of culture configurations	29
4.1.1	Yield and viability of hepatocytes per liver, following isolation using	52
	Centrifuge and BRAT technology	
4.2.1	Variation in results for porcine hepatocytes	64
4.3.1	PET counts (FDG-uptake) and blood gas results at 24 hours post isolation	77
4.3.2	Steady state biochemistry at 24 hours post isolation	80
4.4.1	Simple accounting of expense differences for primary and transformed cells	88
5.1.1	The experimental sub-groups	93
5.1.2	Measured variables and units	95
5.1.3	Weight changes, biochechemistry and haematology	96
5.2.1	Measured variables	108
5.2.2	Values of measured variables	109
5.2.3	Standardization criteria for a porcine surgical (ischemic) model of AHF	116
5.3.1	Record of large animal experiments	121
5.3.2	Definition of variables and units	122
5.3.3	Comparison between BALSS treated and non-treated animals	123
5.3.4	Control and experimental groups in animal trials	128
6.2.1	Attributes (clinical variables) for the class diagram	151
6.2.2	Examples of state and sub-state definitions	157
6.2.3	Model equations and weights for the PI	158
6.2.4	Variable candidates for the BI	160
6.2.5	BI model equations	161

6.2.6	Comparison of predicted to actual BALSS test data with the PI	166
6.2.7	Review of variables that have demonstrated prognostic value in ALF	169
6.2.8	Examples of commercially available FI systems	173
6.3.1	Differences between the state estimator and the compartmental model	179
A.4.1	Modified-HGM cell culture media components	209
D.1	Numerical associations in and between classes	221
D.4.1	Normality of independent variables in the PI	229
D.5.1	The independent variables used to calculate each biochemical in the BI	230
D.6.1	ANOVA results for the PI and BI model/s	231
D.6.2.1	Comparative accuracy of the PI and BI models (using 'trained' data)	235

LIST OF TERMS AND ABBREVIATIONS

The majority of definitions were taken from the *on-line* medical dictionary of the University of Newcastle Upon Tyne (available at http://cancerweb.ncl.ac.uk/omd/).

Term	Meaning
<i>a priori</i> acidosis/ alkalosis	previously defined or assumed (facts) a metabolic condition, characterized by an increase or decrease in hydrogen ion concentration
allocompatibility	immunological compatibility of substance/fluid from another person or organism
average relative accuracy/error region	the product of the measurement range and the standard deviation of the relative error (see below)
bioanalytical/bioprocess monitoring system	a (typically) predictive, <i>on-line</i> monitoring system for a contained biological process (normally for commercial purposes)
biochemical	a molecule characterized or produced by chemical reactions in a living organism
bioreactor	a closed device housing cells used for generating/metabolizing biological substances
bioresorbable	a material that may be metabolized/absorbed when inserted into an organism's tissues
biosensor	a sensor for particular biological stimuli in a bioprocess
bio-systems model	a computational representation of a biological system or bioprocess
boolean switching net	a network of switches employing Boolean rules
bootstrapping	a statistical method for generating theoretical data where limited or no measured data is available
cardiac arythmia	an irregular electrical pattern of cardiac activity
cell aggregation/support matrix	a synthetic or biological three dimensional matrix into which aggregation dependent cells are seeded
chemokine	cytokines that are chemotactic for leucocytes (e.g. IL-6)
disseminated intravascular coagulopathy	a complication of septic shock where endotoxin induces systemic blood clotting, depletion of coagulation factors and thrombocytopenia leading to widespread spontaneous bleeding.
chemotactic	the responsiveness of motile cells to concentration gradients of particular dissolved substances
cytokines	small molecules released by cells and having specific effects on cell-cell interaction, communication and behaviour (e.g. IL- 1β)
data driven modeling	modeling procedures based on empirically observed (rather than theoretical) trends in measured data
devascularization	surgical occlusion or all or most of the blood vessels to an organ or tissue
endotoxin	toxic membrane lipopolysaccharides of gram negative bacteria
epileptiform activity	brain electrical activity normally associated with epileptic seizures
etiology	a branch of medical science concerned with the

flow injection analysis

gluconeogenesis

genotype glomerular filtration

glycolysis haemodynamic hepatectomy hepatocytes

hepatotoxic hepatotrophic hyper/hypocapnia

hyper/hypoglycemia hyper/hypokalemia hyper/hypometabolic hyper/hyponatremia hyper/hypotension hyper/hypotension hyper/hypovolemia hyperammonemia

hypoxic immunosuppression

in situ

in silico in vitro

in vivo ischemic

Kalman filter

knowledge-based laparotomy leucocyte linearization

lipohylic/phobic

causes or origins of diseases the analysis of a chemical substance by removing a sample from a flow stream and mixing it with a reagent to produce a measurable reaction for a detector and subsequent data logging device the synthesis (mainly be the liver) of glucose from non-carbohydrate precursors the total genetic constitution of a cell or organism filtration function performed by the glomerular cells of the kidney the anaerobic conversion of glucose to pyruvate relating to physical aspects of the blood circulation the surgical removal of the liver the epithelial cells composing (approximately) 80% of the liver toxic to the liver causing liver growth or regeneration an excess or deficiency in carbon dioxide in the blood resulting from hypo or hyper ventilation and leading to acidosis or alkalosis respectively an excess or deficiency of glucose in the blood an excess or deficiency of potassium in the blood

an excess or deficiency in metabolic activity

an excess or deficiency of sodium in the blood

persistently high or low arterial blood pressure

a pathologically increased blood ammonia

the suppression of T or B lymphocytes with

in a natural or normal bodily compartment without

a computer-based simulation or model of a system observable in an artificial environment (e.g. a

a lacking in oxygen supply to the organs commonly

a linear bioprocess observer used to reconstruct the state of a system (including the estimation of nonmeasurable variables) and to decrease measurement noise. It has time varying observer gain and the descriptive equations are a linear combination of

increased or decreased blood volume

due to a decrease in blood perfusion

ordinary differential equations.

derivatives at a point of interest

lipid/fat soluble or insoluble

general abdominal surgery

a system incorporating clinical knowledge

a member of the group of white blood cells

a mathematical procedure by which a (non-linear) function is estimated in terms of the expansion of its

a lack of oxygen (low pO_2)

entering any other place

within a living body

concentration

particular drugs

laboratory)

an excess or deficiency of phosphate in the blood

ix

mass transfer	the concentration gradient of a particular substance at a defined interface
metabolic zonation	the ability of tissues within an organ to adapt to different metabolic requirements
microdialysis	very low volume flow injection method for analyzing biological fluids
mitogenic	the ability of a substance to induce mitosis (division) in eukaryotic cells i.e. growth or regeneration
model	an experimentally controlled simulation of an objective system, circumstance or reality.
model standardization	the reduction of a complex system to particular
monte carlo analysis	criteria or rules determining its validity or success a statistical method in which (bound) random data is generated to overcome limitations in the amount of massured data, available (as 'boatstranning')
necrosis	measured data available (see 'bootstrapping') a form of cell death
nephrotoxic	toxic to kidneys
object oriented model	a model in which the functional units of a system are
Occam's razor	defined as objects having characteristics that are definable using particular computational methods (e.g. the UML)
Occam s razor	The principle, by which particular predictions of a model are excluded, based on their not being observed in reality. Alternately, 'the simplest explanation is the best'
off-line	not measurable at the time at which a process takes place i.e. results are only available subsequently
on-line	measurable at the time at which a process takes place so that results may potentially be input into a control system
parenchymal/non parenchymal	tissues/cells composing (or not composing) the general functional framework or stroma of an organ
perfusate	a body fluid perfusing a particular stream in a system (e.g. a plasma perfused bioreactor)
periportal	surrounding or close to the intrahepatic portal vein branches (i.e. high oxygen content blood at the inlet of the liver)
perivenous	surrounding or close to the central vein (i.e. low oxygen content blood at the outlet of the liver)
petri net	describes a process in terms of places (circles), transitions (rectangles) and arcs (lines). The formal mathematical semantics used to define discrete distributed systems
pharmacokinetic compartmental model	a closed systems of physiological compartments between which the mass transfer (production or
	clearance) of particular substances may be described using ordinary differential equations (i.e. as defined by Michaels-Menten kinetics)
phenotype	the expressed functional characteristics of a cell or organism resulting from the interaction of its genotype to particular environmental conditions
point error	the difference between corresponding predicted to measured values as a fraction of each measured value

prognostic criteria	particular rules or metabolic indices that may be used to forecast the probable outcome of a clinical intervention or disease process
prophylaxis	preventive treatment for a disease
real-time	sinonymous with <i>on-line</i> i.e. data measurable during an experiment or procedure
relative error	a percentile value for the point error divided by the standard deviation of the measured population
software sensor	an indirect computational method for estimating a non-measurable process variable
spectrophotometric detection	a method for determining biochemical
	concentrations in a sample based on the
	absorbance/transmission of light at particular wavelengths
splanchnic circulation	blood circulation to the internal organs and lower limbs
state estimator	a system which produces estimates of measurable and non-measurable state variables in a bioprocess
state machine/diagram	a UML graphical representation of the behaviour of a system i.e. the total set of states and transitions through which the system may proceed
stellate cell	Star-shaped, non parenchymal cells in the liver facilitating the phenotypic stabilization of hepatocytes during liver regeneration
systemic	pertaining to the integrated functions of the body as a whole
tornado diagram	a diagram displaying the sensitivity of the outputs of a model in term of its inputs
tumorigenic	tendency to cause cancer
vasoconstriction/dilation	the diminution/enlargement of vascular diameters
	(especially arterioles) leading to a decrease or
	increase in blood perfusion to tissues/organs
	downstream
xenogenic	originating from outside and introduced into an organism (i.e. a foreign material)
zoonosis	the transmission of a disease from an animal or non- human species to a human

Abbreviation Meaning

ABG	arterial blood gas
ABP	arterial blood pressure
AHF	acute hepatic failure (synonymous with acute liver failure)
ALF	acute liver failure
AMC-BAL	Amsterdam Medical College bio-artificial liver
ANN	artificial neural network
ANOVA	analysis of variance
ARDS	acute respiratory distress syndrome
BAL	bio-artificial liver
BALSS	bio-artificial liver support system
BLSS	bio-artificial liver support system
CE	cerebral edema

CED	commutational flow demonstra
CFD CPP	computational flow dynamics
CSIR	cerebral perfusion pressure Council for Scientific and Industrial Research
CVP	
CVP CVVHDF	central venous pressure continuous veno-venous hemodiafiltration
DIC	
ECG	disseminated intravascular coagulopathy electrocardiogram
EEG	electroencephalogram
EGF	epidermal growth factor
ELAD	extracorporeal liver assist device
FDA	US federal drug administration
FHF	fulminant hepatic failure
GCP	good clinical practice
GFR	glomerular filtration rate
GMP	good manufacturing practice
GUI	graphical user interface
HAL	hepatic artery ligation
HBAL	hybrid bio-artificial liver
HBV	hepatitis B virus
HE	hepatic encephalopathy
HGF	hepatocyte growth factor
HIV	human immuno virus
HRS	hepato-renal syndrome
ICP	intracranial pressure
IL-1β	interleukin-1beta
IL-6	interleukin six
INR	international normalized ratio
IVC	inferior vena cava
K _m	Michaelis constant
MAP	mean arterial pressure
MARS	molecular adsorbents recirculation system
MCA	monte carlo analysis
MELS	modular extracorporeal liver support
MEM	minimum essential medium
MOF	multi-organ failure
NAC	N-acetylcysteine
NO	nitric oxide
OLT	orthotopic liver transplantation
OUR	oxygen uptake rate
PCA	porto-caval anastomosis
pCO ₂	partial pressure of carbon dioxide
PET	positron emission tomography
PERV	porcine endogenous retrovirus
PFC	perfluorocarbon
PFOB	perfluorooctyl bromide
pO_2	partial pressure of oxygen
PROM	Prometheus artificial liver support system
PT	prothrombin time
PUF	polyurethane foam
RFB	radial flow bioreactor
SFHF	subfulminant hepatic failure
SIRS	systemic inflammatory response syndrome

SOM	self organizing map
TECA-HAL	TECA-hybrid artificial liver support system
TGF-α	transforming growth factor alpha
TNF-α	tumour necrosis factor alpha
UML	unified modeling language
UP	University of Pretoria
UPBRC	University of Pretoria Biomedical Research Centre
V_{max}	Michaelis-Menten kinetics V max value