
A Serendipitous Software Framework for
Facilitating Collaboration in Computational

Intelligence

by

Edwin S. Peer

Submitted in partial fulfilment of the requirements for the degree Magister Scientiae

in the Faculty of Engineering, Built Environment and Information Technology

University of Pretoria

Pretoria, South Africa

October 2004

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

A Serendipitous Software Framework for Facilitating
Collaboration in Computational Intelligence

by

Edwin S. Peer

Abstract

A major flaw in the academic system, particularly pertaining to computer science, is

that it rewards specialisation. The highly competitive quest for new scientific develop-

ments, or rather the quest for a better reputation and more funding, forces researchers

to specialise in their own fields, leaving them little time to properly explore what others

are doing, sometimes even within their own field of interest. Even the peer review pro-

cess, which should provide the necessary balance, fails to achieve much diversity, since

reviews are typically performed by persons who are again specialists in the particular

field of the work. Further, software implementations are rarely reviewed, having as a

consequence the publishing of untenable results. Unfortunately, these factors contribute

to an environment which is not conducive to collaboration, a cornerstone of academia

— building on the work of others.

This work takes a step back and examines the general landscape of computational

intelligence from a broad perspective, drawing on multiple disciplines to formulate a col-

laborative software platform, which is flexible enough to support the needs of this diverse

research community. Interestingly, this project did not set out with these goals in mind,

rather it evolved, over time, from something more specialised into the general framework

described in this dissertation. Design patterns are studied as a means to manage the

complexity of the computational intelligence paradigm in a flexible software implemen-

tation. Further, this dissertation demonstrates that releasing research software under

an open source license eliminates some of the deficiencies of the academic process, while

preserving, and even improving, the ability to build a reputation and pursue funding.

Two software packages have been produced as products of this research: i) CILib,

an open source library of computational intelligence algorithms; and ii) CiClops, which

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

is a virtual laboratory for performing experiments that scale over multiple workstations.

Together, these software packages are intended to improve the quality of research output

and facilitate collaboration by sharing a repository of simulation data, statistical analysis

tools and a single software implementation.

Keywords: Computational Intelligence, Design Patterns, Open Source, CILib, CiClops

Supervisor: Prof. A. P. Engelbrecht

Co-supervisor: Dr. F. van den Bergh

Submitted in partial fulfilment of the requirements for the degree Magister Scientiae.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

Acknowledgements

I would like to take this opportunity to thank the following:

• First and foremost, The Lord God Almighty for giving me the ability to do this

work.

• My parents, Molly and Richard, for providing me with an ideal home environment.

• Hilary, my sister who fortuitously is an English studies graduate, for proof reading

and checking up on my language usage. Not having a background in Computer

Science must have made the work rather boring reading material, making her efforts

all that much more appreciated.

• Andries, my supervisor, for providing me with guidance and putting up with all

the changes in the direction that this work took to get completed.

• My good friend and co-supervisor Frans, who provided me with continuous moti-

vation to get this work finished.

• Nathan, another good friend as well as my music teacher, for his patience during

the music lessons in which I lacked the proper practice due to the time spent on

research and writing for this dissertation.

• All those who have made contributions to CILib1, particularly the early adopters

of the software.

• SourceForge2 for hosting the CILib project.

• The University of Pretoria, for providing me with an excellent undergraduate foun-

dation to build upon and an environment with the necessary resources to conduct

this research.

• The National Research Foundation, for providing financial support. The opinions

expressed in this work and the conclusions arrived at are my own and should not

necessarily be attributed to the National Research Foundation.

1http://cilib.sourceforge.net
2http://www.sourceforge.net

iv

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

Contents

1 Introduction 1

1.1 Project History . 2

1.2 Motivation . 3

1.3 Scope . 4

1.4 Contribution . 4

1.5 Dissertation Layout . 5

2 Computational Intelligence 6

2.1 Problem Classes . 7

2.1.1 Optimisation . 8

2.1.2 NP-Complete Problems . 10

2.1.3 Supervised Learning . 13

2.1.4 Unsupervised Learning . 14

2.2 Neural Networks . 17

2.2.1 Feed Forward Neural Networks 17

2.2.2 Different Network Architectures 20

2.2.3 Learning Vector Quantiser . 21

2.2.4 Self Organising Feature Maps . 22

2.3 Evolutionary Computing . 25

2.3.1 Genetic Algorithms . 27

2.3.2 Genetic Programming . 29

2.3.3 Evolutionary Programming . 30

2.3.4 Evolutionary Strategies . 31

2.3.5 Cultural Evolution . 32

2.3.6 Coevolution . 33

v

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

2.4 Swarm Intelligence . 34

2.4.1 Particle Swarm Optimisation . 35

2.4.2 Ant Systems . 37

2.5 Fuzzy Systems . 42

2.5.1 Fuzzy Sets . 42

2.5.2 Fuzzy Controllers . 45

2.6 Other Paradigms . 47

2.7 Hybrid Approaches . 48

2.8 Software Requirements . 50

3 Design Patterns 52

3.1 Creational Patterns . 54

3.1.1 Abstract Factory . 54

3.1.2 Builder . 55

3.1.3 Prototype . 56

3.1.4 Singleton . 57

3.2 Structural Patterns . 58

3.2.1 Adapter . 58

3.2.2 Composite . 59

3.2.3 Decorator . 60

3.2.4 Facade . 61

3.2.5 Proxy . 63

3.3 Behavioural Patterns . 64

3.3.1 Interpreter . 64

3.3.2 Iterator . 65

3.3.3 Observer . 67

3.3.4 Strategy . 68

3.3.5 Template Method . 69

3.3.6 Visitor . 70

3.4 Discussion . 71

4 Open Source Software (OSS) 73

4.1 Licenses . 74

4.1.1 Academic Free License (AFL) . 75

vi

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

4.1.2 Apache Software License (ASL) 76

4.1.3 Artistic License (AL) . 77

4.1.4 BSD Licenses . 77

4.1.5 Common Public License (CPL) 77

4.1.6 GNU General Public Licenses (GPL and LGPL) 78

4.1.7 MIT License . 79

4.1.8 Mozilla Public License (MPL) . 79

4.1.9 Open Software License (OSL) . 80

4.2 The Open Source Ecosystem . 80

4.3 Business Models . 81

4.4 Open Source in a South African Context 83

4.5 University of Pretoria Intellectual Property 85

4.6 Credits . 87

5 Languages and Tools 89

5.1 XML (eXtensible Mark-up Language) . 89

5.1.1 Well Formed Documents . 91

5.1.2 Document Types and Schemas . 91

5.1.3 Document Object Model (DOM) 94

5.2 Java . 94

5.3 Java 2 Enterprise Edition (J2EE) . 99

5.3.1 Persistence Layer . 100

5.3.2 Application Layer . 101

5.3.3 Presentation Layer . 102

5.3.4 Deployment . 102

5.4 XDoclet . 103

5.5 JUnit . 104

5.6 Summary . 106

6 CILib - Computational Intelligence Library 107

6.1 Coding Conventions . 108

6.2 Implementation Details . 110

6.2.1 Domains and Types . 110

6.2.2 Problem Classes . 116

vii

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

6.2.3 Algorithms . 119

6.2.4 Particle Swarm Optimisers . 123

6.2.5 Stopping Conditions . 129

6.2.6 Measurements . 131

6.2.7 Simulator . 133

6.3 Collaborations . 136

6.4 Limitations . 138

7 CiClops - Collaborative Laboratory 142

7.1 Architectural Overview . 143

7.2 Data Model . 145

7.3 Workers . 147

7.4 Client . 148

7.5 Status . 150

8 Conclusion 151

8.1 Summary . 151

8.2 Future work . 153

A List of Acronyms and Abbreviations 166

B Unified Modelling Language 170

C The Open Source Definition 172

C.1 Free Redistribution . 172

C.2 Source Code . 172

C.3 Derived Works . 173

C.4 Integrity of The Author’s Source Code 173

C.5 No Discrimination Against Persons or Groups 173

C.6 No Discrimination Against Fields of Endeavor 173

C.7 Distribution of License . 173

C.8 License Must Not Be Specific to a Product 173

C.9 License Must Not Restrict Other Software 174

C.10 License Must Be Technology-Neutral . 174

viii

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

D GPL Approval Letter 175

E Popular Open Source Licenses 176

E.1 Academic Free License (AFL) . 176

E.2 Apache Software License (ASL) . 180

E.3 Artistic License (AL) . 184

E.4 BSD License . 188

E.5 Common Public License (CPL) . 189

E.6 GNU General Public License (GPL) . 194

E.7 GNU Lesser General Public License (LGPL) 202

E.8 MIT License . 212

E.9 Mozilla Public License (MPL) . 213

E.10 Open Software License (OSL) . 224

ix

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

List of Figures

2.1 Computational Intelligence Paradigms 7

2.2 Example TSP Network (not to scale) . 11

2.3 TSP Optimal Tour (length = 28) . 12

2.4 Hierarchical Clustering . 16

2.5 Three Layer Feed Forward Neural Network 18

2.6 Two Layer Learning Vector Quantiser . 22

2.7 5x5 Self Organising Feature Map . 24

2.8 Example U-matrix plot . 25

2.9 Crossover Operators . 28

2.10 Genetic Program Tree Representation . 29

2.11 Cultural Algorithm . 32

2.12 Typical Neighbourhood Topologies . 36

2.13 Membership Functions for Age Linguistic Variable 44

2.14 Fuzzy Controller Architecture . 45

3.1 Abstract Factory . 54

3.2 Builder . 55

3.3 Prototype . 56

3.4 Singleton . 57

3.5 Adapter . 59

3.6 Composite . 60

3.7 Decorator . 61

3.8 Facade . 62

3.9 Proxy . 63

3.10 Interpreter . 65

x

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

3.11 Iterator . 66

3.12 Observer . 67

3.13 Strategy . 68

3.14 Template Method . 69

3.15 Visitor . 70

5.1 A Simple XML Phone Book Document 90

5.2 Phone Book Document Type Definition (phonebook.dtd) 92

5.3 Phone Book Schema (phonebook.xsd) . 93

5.4 EJB Entity Relationship . 101

5.5 JUnit Composite Test Framework . 105

6.1 Partial Domain Grammar . 111

6.2 Domain Composite/Interpreter . 111

6.3 Domain Visitor Interface . 113

6.4 Partial Type System . 114

6.5 Domain Builder . 115

6.6 Problem Interfaces . 116

6.7 Solution Classes . 117

6.8 Optimisation Problems . 118

6.9 Fitness Classes . 119

6.10 Algorithm, Stopping Conditions and Events 119

6.11 Optimisation Algorithms . 121

6.12 Overview of PSO Architecture . 123

6.13 Particle Decorators . 125

6.14 Velocity Updates . 126

6.15 Particle Visitors . 128

6.16 Stopping Conditions . 130

6.17 Measurements . 132

6.18 XML Object Factory . 134

6.19 Simple Simulator Configuration . 135

6.20 More Complex Simulator Configuration 137

7.1 CiClops Overview . 144

xi

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

7.2 CiClops Data Model . 146

7.3 Configuring a CILib simulation using CiClops 148

7.4 CiClops monitoring CILib simulations . 149

B.1 Example UML Class . 170

B.2 UML Relationships . 171

xii

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

List of Tables

2.1 Fuzzy Set Theoretic Operators . 43

4.1 Open Source License Characteristics . 76

4.2 Instrumental Open Source Software . 87

5.1 NastyPSO Performance . 97

6.1 Legal Algorithms for Stopping Conditions 131

6.2 CILib Contributors . 138

xiii

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

List of Algorithms

1 Neural Network Back-propagation Training 19

2 Learning Vector Quantiser Training . 23

3 General Evolutionary Computing Framework 26

4 Particle Swarm Optimiser . 37

5 Ant Colony Optimiser for TSP . 39

6 Ant Colony Clustering . 41

xiv

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

Chapter 1

Introduction

“PLAN, v.t. To bother about the best method of accomplishing an accidental

result.” — Ambrose Bierce, Devil’s Dictionary

Some of the most significant discoveries are those stumbled upon unintentionally. His-

tory is scattered with examples of such discoveries that have apparently come about by

accident [97]. Archimedes determined a method of calculating the volume of irregular

shaped objects, using displacement, when he noticed the water level rising while getting

into a bath. Another example is Newton’s inspiration for the theory of gravity resulting

from the falling of an apple. The inspiration for and the discovery of many inventions,

ranging from velcro to penicillin, was due to the sagaciousness of inventors to recognise

the value of something unexpected during another, usually unrelated, activity. The phe-

nomenon of making discoveries in this manner has become known as the “Serendipity

Effect” [48].

WordNet defines serendipity as “accidental sagacity; the faculty of making fortu-

nate discoveries of things you were not looking for”. Although this work may not be

as significant to mankind as the discovery of penicillin, it definitely turned out to be

more important to the Computational Intelligence Research Group at the University of

Pretoria (CIRG@UP)1 than its original focus.

The following section takes the reader through the history of this research detailing

how the project serendipitously grew into something more ambitious than initially in-

tended. Next, the importance of this research is covered in Section 1.2. Since this work

1http://cirg.cs.up.ac.za

1

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 1. INTRODUCTION 2

is only the first step in a collaborative effort, a careful scoping of what is and is not

covered by this dissertation are discussed in Sections 1.3. This introduction concludes

with the contribution of this research in Section 1.4 and a breakdown of the dissertation

layout in Section 1.5.

1.1 Project History

This research set out with the very specific goal of creating a taxonomy of existing

Particle Swarm Optimisers (PSOs, refer to Section 2.4.1) and performing an empirical

analysis of their performance on various optimisation problems. To accomplish this,

several PSOs and benchmark problems were implemented in C++, dubbed PSOLib,

with the intention of having a flexible object oriented design to facilitate experimentation

by making every aspect of the platform as configurable as possible. The lack of reflection

features in C++, however, made it very difficult to configure properties of objects and

their compositions at run time, leading to the investigation of Java as an implementation

platform.

Java turned out to be a viable platform for multiple reasons. Most importantly, its

reflection API (Application Programming Interface) enabled classes to be dynamically

instantiated and composed according to a run time configuration file. Further, the

built-in XML (eXtensible Mark-up Language, refer to Section 5.1) processing API was

convenient, since XML was chosen as the representation for configurations. Finally,

Java’s performance was found to compare favourably to C++ for implementing PSOs

(refer to Section 5.2).

Work began on porting the existing PSOLib code to Java, while at the same time

generalising the platform to support the needs of a wider audience, at which point it

became known as CILib (Computational Intelligence Library, refer to Chapter 6) and

the focus of this work shifted away from PSOs. Initially, CILib was made available to

other members of the CIRG@UP and it was later decided to release the software under

an open source license (refer to Chapter 4) in an attempt to promote collaboration with

third parties outside of the research group. Later, it became evident that there are strong

merits for such a collaborative research platform, which ultimately became the subject

of this research.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 1. INTRODUCTION 3

1.2 Motivation

The following problems, which were identified during a survey of several PSO papers

[89], serve as motivation for effective collaborative research tools:

• Duplication of effort: In the restricted context of a research group, duplication

of effort equates to lost productivity. In general, the science is better served if

researchers can expend their efforts on developing new algorithms instead of writing

implementations for software that already exists elsewhere. A collaborative code

base can save researchers from reinventing the wheel. Further, an awareness of

what is happening in industry can reduce the likelihood of duplicating work in

academia which is already in active use by industry players.

• Failure to take latest developments into account: A collaborative code base

increases awareness of what others are doing, in effect providing all participants

with a more generalised view even though they specialise on their own specific

work.

• Insufficient testing on problems: The No Free Lunch (NFL) theorem [120, 121]

implies that algorithms should be tested on many problems to determine which

problems they are best suited for, since all algorithms are on average equivalent

when all possible problems are considered. Thus, large amounts of empirical data

will need to be generated, which may have value if shared, to draw conclusions

about the relative merit of different algorithms.

• Poor parameter choices: Good parameter choices for algorithms can be commu-

nicated as default values in a shared implementation platform. Further, a shared

repository of simulation results can make researchers aware of the best results

obtained for a given algorithm by other researchers.

• Conflicting results: Ignoring the fact that results cannot be in conflict if every-

one shares the same implementation, a collaborative platform will undergo more

stringent peer review and is likely to be far more reliable than throw away research

code.

• Invalid statistical inference: Shared statistical analysis tools, which provide

decision support for the best analysis method to use in a given context, can reduce

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 1. INTRODUCTION 4

the risk of researchers making incorrect assumptions about the applicability of

statistical tests.

1.3 Scope

Building a collaborative framework to support the needs of a large research community

requires a broad view of the subject matter in order to make it general enough to suit

all parties.

For this reason, the computational intelligence field is examined in detail. Design

patterns are examined as a means to manage the complexity of this broad field, ensuring

a flexible software design capable of supporting the subject matter. Open source licensing

is studied for the benefits it brings to a collaborative software development process.

Further, this work draws on other software, tools and best practices from industry,

which are unlikely to be found in scientific circles, but provide significant benefits for the

software implementation.

The software implementation, however, is only discussed within the context of particle

swarms, which was the original focus of this work, as a specific example demonstrating

the more general framework. Further, an in depth knowledge of Object Oriented (OO)

[21, 49] programming is assumed.

1.4 Contribution

The primary contribution of this work is two software components:

• CILib (Computational Intelligence Library), which is a shared collaborative frame-

work for implementing computational intelligence software. Publishing it under an

open source license maximises its visibility and its availability to potential collab-

orators.

• CiClops (Computational Intelligence Collaborative Laboratory Of Pantological

Software), which is intended to further the collaborative goal by providing a scal-

able simulation environment, a shared repository of empirical data and statistical

support tools.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 1. INTRODUCTION 5

Finally, this dissertation shows how the above mentioned frameworks facilitate collabo-

ration in computational intelligence, while serving the dual purpose of providing docu-

mentation, introducing the framework to potential collaborators.

1.5 Dissertation Layout

The remainder of this dissertation is organised as follows:

• Chapter 2: The computational intelligence field is examined, illustrating its com-

plexity and highlighting requirements for a flexible software framework capable of

handling this complexity.

• Chapter 3: Patterns are explored as a mechanism for implementing good software

design by drawing on the experience of experts.

• Chapter 4: Open source licensing is investigated as a means to facilitate col-

laboration while exposing software developers to reputation rewards and profit

opportunities.

• Chapter 5: The languages and tools which are prerequisites for working with the

software developed for this research are discussed.

• Chapter 6: The implementation of CILib is discussed with particular reference

to the platform’s use of patterns.

• Chapter 7: CiClops is introduced as a mechanism to address some implementa-

tion specific limitations of CILib while improving its viability as a collaborative

platform.

• Chapter 8: This dissertation is concluded and ideas for future work are discussed.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

Chapter 2

Computational Intelligence

“If computers get too powerful, we can organize [sic] them into a committee

– that will do them in.” — Bradley’s Bromide

The formulation of a precise definition for Computational Intelligence (CI) and how it

relates to the broader Artificial Intelligence (AI) field is a challenging task. Arguably,

CI comprises of those paradigms in AI that relate to some kind of biological or naturally

occurring system. General consensus suggests that these paradigms are neural networks,

evolutionary computing, swarm intelligence and fuzzy systems [29, 31, 88, 130]. Neural

networks are based on their biological counterparts in the human nervous system. Sim-

ilarly, evolutionary computing draws heavily on the principles of Darwinian evolution

observed in nature. Swarm intelligence, in turn, is modelled on the social behaviour of

insects and the choreography of birds flocking. Finally, human reasoning using imprecise,

or fuzzy, linguistic terms is approximated by fuzzy systems.

Figure 2.1 shows these four primary branches of CI and illustrates that hybrids be-

tween the various paradigms are possible. Another, more precise, definition describes

CI as the study of adaptive mechanisms to enable or facilitate intelligent behaviour in

complex and changing environments [31]. Yet there are other AI approaches, that sat-

isfy both this definition as well as the requirement of modelling some naturally occurring

phenomenon, that do not fall neatly into one of the paradigms mentioned thus far. Could

it be argued that the definition for CI is in itself complex, changing and fuzzy? A more

pragmatic approach might be to specify the classes of problems that are of interest with-

out being too concerned about whether or not the solutions to these problems satisfy

any constraints implied by a particular definition for CI.

6

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 7

Neural Networks

Swarm Intelligence

Evolutionary Computing

Fuzzy Systems

Hybrid Approaches

Figure 2.1: Computational Intelligence Paradigms

The following section identifies and describes four primary problem classes for CI

techniques. A compendious overview of the main concepts behind each of the widely

recognised CI paradigms is presented in Sections 2.2 through 2.5. Further, paradigms

that are not generally recognised as CI, but that arguably also classify as such are men-

tioned in Section 2.6. Examples of hybrid approaches are given in Section 2.7. Finally,

a discussion, in Section 2.8, concludes with some software implementation requirements

made apparent by the contents of this chapter.

2.1 Problem Classes

Optimisation, defined in Section 2.1.1, is undoubtedly the most important class of prob-

lem in CI research, since virtually any other class of problem can be re-framed as an

optimisation problem. This transformation, particularly in a software context, may lead

to a loss of information inherent to the intrinsic form of the problem. The discussion in

Section 2.8 illustrates how these intrinsic features can be exploited in software.

Section 2.1.2 discusses the well known travelling salesman problem as a model rep-

resentative for the NP-Complete class of problems that are generally thought to be

intractable. Function learning and classification, which are characteristic of supervised

learning, are presented in Section 2.1.3. Finally, unsupervised learning is represented by

clustering in Section 2.1.4.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 8

2.1.1 Optimisation

The process of seeking out values for variables that either minimise or maximise some

objective function is known as optimisation [12]. Stated formally, for the case of min-

imisation:

Given : f : S→ R, find x∗ ∈ S for which f(x∗) ≤ f(x), ∀x ∈ S (2.1)

where S represents the search domain which is typically, but but not necessarily, R
n.

The minimiser, x∗, is the solution to the minimisation problem defined by the objective

function f . The dual problem does not require separate discussion, since, in general,

finding the maximiser for an objective function g : S→ R is exactly the same as finding

the minimiser for f : S→ R with f(x) = −g(x).

When the objective function is defined for a search domain of R
n, further equality and

inequality constraints may be defined to restrict the feasible region in which solutions

are considered. The constrained optimisation problem is defined formally as follows:

Given : f : R
n → R, find x∗ ∈ R

n for which f(x∗) ≤ f(x), ∀x ∈ R
n (2.2)

subject to pi(x) = 0, i ∈ {Z | 1 ≤ i ≤ r} (2.3)

qj(x) ≥ 0, j ∈ {Z | 1 ≤ j ≤ s} (2.4)

where pi(x) and qj(x) are respectively, r equality and s inequality constraint functions

on the components of the vector x ∈ R
n. Constraints of the form a ≤ xk ≤ b for

k ∈ {Z | 1 ≤ k ≤ n} can be rewritten as two instances of the single sided inequality

constraint of Equation (2.4), namely qa(x) = xk − a and qb(x) = −xk + b.

Many algorithms for performing optimisation are designed to be applied to uncon-

strained optimisation problems, so it is desirable to be able to convert a constrained

problem into the form of Equation (2.1) with S = R
n. A simple method to achieve this

is to add to the objective function a suitable penalty term encapsulating the constraints.

Thus, the function under optimisation becomes f(x) = g(x) + P (x) where P (x) is the

penalty term.

Another technique, known as Lagrange’s method [69], can be used to convert a con-

strained problem with equality constraints of the form in Equation (2.3) to an uncon-

strained problem. The Lagrange function is defined as:

L(x, λ) = f(x)−
r

∑

i=1

λipi(x) (2.5)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 9

where f(x) and pi(x) are the same as in Equation (2.2) and (2.3) respectively and the

λi constants are known as Lagrange multipliers. At the optimal point of intersection the

constraint and the objective functions are tangent to each other and so∇f(x) = λi∇pi(x)

provided that ∇pi(x) 6= 0. Given Equation (2.5), this is true if and only if ∇L(x, λ) = 0

so solving the following yields a solution to the original constrained problem:

δL
δxk

=
δL
δλi

= 0, i ∈ {Z | 1 ≤ i ≤ r}, k ∈ {Z | 1 ≤ k ≤ n} (2.6)

which defines a system of r + n equations that can be cast into an unconstrained opti-

misation problem by minimising the SSE (Sum Squared Error) defined by:

f(x, λ) =

n
∑

k=1

(δL
δxk

)2

+

r
∑

i=1

(δL
δλi

)2

(2.7)

where the point (x, λ) can be considered as a single vector argument to a function of the

form f(x) in Equation (2.1) with S = R
r+n. Inequality constraints can be handled in a

similar fashion by introducing slack variables into a modified Lagrangian:

L(x, λ, µ) = f(x)−
r

∑

i=1

λipi(x)−
s

∑

j=1

µj(qj(x)− ej) (2.8)

where qj(x) is the same as in Equation (2.4), the µj constants are additional Lagrange

multipliers and ej is the slack variable corresponding to the jth inequality constraint.

Optimisation can be further extended into the multi-objective case where the task is

to satisfy multiple, possibly conflicting, objectives simultaneously [73]. For example, it

may be required that cost be minimised while at the same time benefit is maximised.

Some kind of trade off is required when objectives such as these clash, since optimising

one necessarily causes deterioration of another. Generally, the goal is to find represen-

tative points belonging to the, possibly infinite, pareto optimum set of minimisers given

a set of objective functions. A pareto [38], or non-dominated, point is a minimiser for

which none of the objectives can be further improved without adversely affecting another.

Each of these pareto minimisers represents a different trade off between objectives.

Multi-objective minimisation is formally stated as:

Given : F (x) = {fk(x) | fk : S→ R}, k ∈ {Z | 1 ≤ k ≤ m}
find X∗ = {x∗ ∈ S | F (x∗) 4 F (x), ∀x ∈ S} (2.9)

where F (x) 4 F (y)⇐⇒ (∀i)(fi(x) ≤ fi(y)) ∧ (∃i)(fi(x) < fi(y))

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 10

where X∗ is a representative set of non-dominated minimisers and F (x) is the set of m

objective functions. The expression F (x∗) 4 F (x) denotes that x∗, a pareto minimiser,

dominates the point x which is not an element of the pareto set. Once again, the search

domain S may be R
n and further constrained by Equations (2.3) and (2.4).

If only a single solution in the pareto set is required then multi-objective optimi-

sation can be converted into a single objective optimisation problem of the form in

Equation (2.1) by defining the objective as:

f(x) =

m
∑

k=1

wkfk(x) (2.10)

which is simply a weighted sum over the set of objective functions that comprise F (x). By

varying the weights wk and performing sequential optimisation passes multiple solutions

in the pareto set may be obtained.

2.1.2 NP-Complete Problems

The Travelling Salesman Problem (TSP) [52], a well known problem in computer science,

belongs to the NP-Complete class of problems and has been chosen for discussion as

a representative for its class. The best known deterministic algorithms able to solve

problems of this class execute in exponential-time, or worse, in proportion to the amount

of input data.

However, they all have Non-deterministic Polynomial-time (NP) solutions that, in

order to yield correct results, require guessing correctly at every decision point during

execution by means of some magical non-deterministic process. While such a magical

algorithm does not have much practical use, this property does at least guarantee the

existence of a short certificate that can be used to validate whether a given solution is

correct or not. No polynomial-time deterministic algorithms are known to exist for these

problems and as such they are considered to be intractable.

Furthermore, a subset of these problems known as NP-Complete are all polynomial-

time reducible amongst themselves, meaning that finding an effective solution to one

problem in NP-Complete implies having an effective solution to all those in NP-Complete.

Certain CI algorithms, which are by their nature non-deterministic, can be applied in an

attempt to yield approximate solutions, given large data sets, in a reasonable amount of

time.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 11

4

7

89

6

10

3

57

3

4

Figure 2.2: Example TSP Network (not to scale)

Problems in NP-Complete include knapsack packing, scheduling, graph colouring

and testing the satisfiability of propositional calculus formulae amongst many other

distinct problems. Some of these appear to be toy problems, such as the monkey puzzle

problem [52], while others have important real world applicability. However, due to

their polynomial-time inter-reducibility, all of them are actually of relatively equivalent

importance.

In particular, the TSP has real world application in route optimisation, circuit design

and the programming of industrial robots [52]. Moreover, the TSP is an ideal candidate

for discussion, because it admits an interesting ant system solution (refer to Section 2.4.2)

and, as described shortly, can also be cast into a constrained optimisation problem, as

defined in the previous section.

The TSP concerns a salesman that must travel from city to city selling his wares

before returning back to his city of origin. Each city must be visited exactly once and

the distance travelled must be minimised. The problem can be characterised by a graph

where each vertex represents a city while the edges correspond to the possible routes

between cities and their associated costs. The goal is to determine the shortest closed

tour that passes through each of the nodes in the graph for a given network. Figure 2.2

shows a possible network of cities while Figure 2.3 illustrates the optimal tour for that

network which is of length 28.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 12

4

6

57

3

3

Figure 2.3: TSP Optimal Tour (length = 28)

By imposing an arbitrary ordering from 1 to n on the cities the problem can be

redefined as determining the permutation π of visits that yield a minimal length tour.

The problem is then reduced to the following constrained optimisation problem [83]:

Given : f(x) =
∑

i,j

ci,jxi,j, i, j ∈ {Z | 1 ≤ i, j ≤ n} (2.11)

find x∗ ∈ Z
n×n for which f(x∗) ≤ f(x), ∀x ∈ Z

n×n

subject to
n

∑

k=1

xk,i − 1 = 0 and
n

∑

k=1

xi,k − 1 = 0 (2.12)

xi,j − 1 ≤ 0 and − xi,j ≤ 0 (2.13)

ui − uj + nxi,j − n + 1 ≤ 0 for j 6= 1 (2.14)

where ci,j is the cost of travelling from city i to j. In general, ci,j = cj,i is not necessarily

true, ci,j =∞ if no route from i to j exists, and ci,j = 0 whenever i = j. Equation (2.13)

restricts the xi,j to the boolean values 0 and 1 so that xi,j = 1 can be taken to mean that

city j is visited immediately after i and Equation (2.12) expresses that exactly one city

just before and exactly one city just after the ith city is visited. By defining π(ui) = i,

so that ui = j implies that i is the jth city visited, a single closed tour is guaranteed by

Equation (2.14). Together these constraints ensure that xi,j = 1 ⇐⇒ π(i) = j and

xi,j = 0 ⇐⇒ π(i) 6= j when Equation (2.11) is minimised.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 13

2.1.3 Supervised Learning

Supervised learning is the process of determining the intrinsic characteristics of a system

using only examples of its operation [84]. The most generic form of supervised learning

is function approximation, stated formally:

Given : P = {(x, t) | x ∈ S, t ∈ T}
find f : S→ T such that f(x) ≈ t, ∀(x, t) ∈ P (2.15)

where P is a set of example patterns that demonstrate the operation of the system

described by the function f . The pair (x, t) is known as a training pattern where x is

an input to the system under learning and t is the target output. S and T may be any

domains. The process is called supervised learning because target values are provided

for given inputs by some external “teacher” that understands the working of the system.

Care must be taken to ensure that the learning process does not over-fit the data [42].

Over-fitting may occur when the target function is afforded more degrees of freedom or

less example patterns than are necessary to describe the system under learning. Under

these circumstances the function may fit noise inherent in the data set or other very

specific features that have no causal relation to the intrinsic characteristics of the system.

Conversely, under-fitting occurs when the target function is not afforded enough degrees

of freedom to properly model the underlying data.

The goal is to find a function that has good generalisation ability. This is measured

by the ability of the learned function to correctly approximate the target output for

inputs that the learning process was not exposed to. For this reason, the example

patterns are typically partitioned into separate training and validation sets. Learning is

performed using the training set while the validation set is used to test for over-fitting

and generalisation ability. An over-fitted function will correctly model the training set

while performing poorly on the validation set. On the other hand, a function with the

ability to generalise well properly describes the intrinsic characteristics of the system

under learning.

Supervised learning manifests itself in many forms including classification, pattern

recognition and control problems. For classification problems, the function f in Equa-

tion (2.15) is a labelling function that assigns a class to an input pattern where T is

some set of classes. Pattern recognition is just a special case of classification problem.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 14

For example, in handwriting recognition, input patterns might correspond to bitmaps of

hand written characters and the set of classes consists of alphanumeric assignments to

those bitmaps. In control problems the function relates the sensory input of a system

under control to the required output actions.

By defining a suitable parameterisation τ that describes the composition of the func-

tion f in Equation (2.15), supervised learning can be reduced to a minimisation problem

of the form in Equation (2.1) as follows:

g(τ) =

n
∑

i=1

(ti − f(xi))
2, where τ ⇒ f (2.16)

so that g(τ) is the SSE over the n training patterns, with t ∈ R, for a function f : S→ R

implied by the parameterisation τ . Any suitable distance based metric can be used to

support targets having arbitrary domains.

There are many ways to define the parameterisation τ . Supervised learning neural

networks define very specific functions that are parameterised by weights (refer to Sec-

tion 2.2). As another example, under the assumption that x ∈ R
m and that the function

can be approximated by a polynomial of degree n in each dimension, the following is a

suitable definition:

f(x, τ) =

m
∑

i=1

n
∑

j=0

τijx
j
i (2.17)

where τ ∈ R
m×(n+1) is a matrix of coefficients that parameterise f . Thus, by optimising

g(τ) in Equation (2.16) a function that models the underlying data is constructed.

2.1.4 Unsupervised Learning

Unsupervised learning, also known as self-organisation, requires that a suitable model

be fitted to observed patterns without a priori knowledge about target outputs for those

patterns.

A common unsupervised learning problem is clustering [60] where the goal is to

partition observations into homogeneous groupings. The patterns in a given group should

be most similar to each other while simultaneously being least similar to observations in

other groups, stated formally:

Given : P = {pt | pt ∈ S}, t ∈ {Z | 1 ≤ t ≤ m}

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 15

find Ci ⊂ P,
⋃

Ci = P, Ci ∩ Cj = ∅, i, j ∈ {Z | 1 ≤ i, j ≤ k, i 6= j} (2.18)

such that pt ∈ Ci ⇐⇒
∑

pα∈Ci

d(pt, pα) ≤
∑

pβ∈Cj

d(pt, pβ)

where d(x,y) is a suitable distance metric that measures the dissimilarity between x and

y. The k clusters, Ci, are subsets of the set of patterns, P , such that the observations in

a given cluster are related by having similar characteristics. If the clusters are pairwise

disjoint then the clustering is a true partition. Equation (2.18) only permits such parti-

tions, however, in general it is possible for a given pattern to belong to multiple clusters,

with some degree of membership (refer to Section 2.5.1), yielding a fuzzy clustering. The

domain, S, of the m input patterns in P can be anything for which a distance metric

can be constructed. If S = R
n then a suitable Minkowski metric [7] may be used:

dp(x,y) = (

n
∑

k=1

|xk − yk|p)
1
p (2.19)

for some specified value for p where d1 and d2 are the well known Manhattan and

Euclidean distances respectively.

The number of clusters inherent to a given data set is generally not known. Choosing

a value for k that is either too large or too small is analogous, respectively, to over-fitting

and under-fitting in supervised learning.

Missing attributes for patterns can be predicted based on related observations in the

same cluster. Appropriate clusters for these patterns are determined using the remaining

attributes. An over-fitted model which groups related patterns into separate clusters will

be unable to accurately predict missing attributes. Similarly, an under-fitted partitioning

that groups unrelated patterns into the same cluster will also have poor prediction ability.

Hierarchical clustering, depicted in Figure 2.4, provides a selection of clusterings

where each level in the hierarchy roughly corresponds to a different choice for the value

of k. Agglomerative clustering is a bottom up approach where each observation is initially

assigned to its own cluster. The closest two clusters are then repeatedly merged until all

the observations fall into the same cluster at the root of the tree.

Various strategies exist for determining the merging criteria for clusters. Complete

linkage clustering utilises the maximum distance between observations in each cluster.

If the minimum distance is used instead then the strategy is known as single linkage

clustering. An average linkage clustering results when the mean distance between ob-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 16

p4 p5

p4 p5 p6

p1 p2 p3 p4 p5 p6

p2 p3 p4 p5 p6p1

p2 p3

p2 p3 p4 p5 p6

Figure 2.4: Hierarchical Clustering

servations of each cluster is used as a criterion. The average linkage distance between

cluster A and cluster B is defined as:

D(A,B) =
1

card(A)card(B)

∑

x∈A

∑

y∈B

d(x, y) (2.20)

where card(X) is the cardinality of cluster X. Metrics based on intra cluster variance

or change in variance (Ward’s criterion) are also possible [5].

The clustering problem can be represented by a constrained optimisation problem for

a given value of k by determining the optimal assignment vector that maps observations

to cluster indexes. One such strategy minimises the distance between observations and

the centroids of their clusters, stated formally:

Given : f(x) =

m
∑

t=1

d(pt, cxt
), i ∈ {Z | 1 ≤ i ≤ m}

find x∗ ∈ Z
m for which f(x∗) ≤ f(x), ∀x ∈ Z

m (2.21)

subject to −xi + 1 ≤ 0 and xi − k ≤ 0

where cj is the centroid of cluster Cj and x ∈ {Zn | 1 ≤ xi ≤ k} is the assignment vector

such that xt = j ⇐⇒ pt ∈ Cj.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 17

Clusters defined by a single centroid vector permit only round cluster boundaries.

Arbitrarily shaped boundaries can be constructed using a technique known as mixture

modelling where each cluster is defined by a weighted density model of different distri-

butions [14].

2.2 Neural Networks

The human brain and nervous system are comprised of billions of nerve cells known as

neurons. Each biological neuron is a single cell with receptors called dendrites and an

effector called an axon. Neurons are arranged into networks so that the axon of any given

neuron can stimulate dendrites of other neurons. When a neuron receives sufficient input

stimulus via its dendrites, it fires a signal along its axon which in turn further stimulates

the dendrites of other neurons. The arrangement of these relatively simple cells into

complex networks generally enables intelligent behaviour in people.

In a similar fashion, the fundamental building block of neural networks in CI is

the artificial neuron. By combining these neurons into more complex structures both

supervised and unsupervised learning problems can be solved. The canonical feed for-

ward neural network, used for supervised learning, is presented in Section 2.2.1. Other

supervised network architectures are mentioned in Section 2.2.2. Unsupervised neu-

ral networks such as the learning vector quantiser and self organising feature maps are

discussed in Sections 2.2.3 and 2.2.4 respectively.

2.2.1 Feed Forward Neural Networks

Feed forward neural networks can be used to represent nonlinear multivariate relation-

ships [31, 88]. Figure 2.5 illustrates a fully connected three layer network. The layers

consist of neurons which compute a function of their inputs and pass the result to the

neurons in the following layer. In this manner, the input signal is fed forward from left

to right through the network.

The output of a given neuron is characterised by a nonlinear activation function, a

weighted combination of the incoming signals, and a threshold value. The threshold can

be replaced by augmenting the weight vector to include the input from a constant bias

unit. By varying the weight values of the links, the overall function which the network

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 18

Bias unit Bias unit

oK

z1

zi

zI yJ

yj

y1 o1

ok

−1 −1

vji wkj

wK,J+1vJ,I+1

vJI wKJ

w11v11

v1i w1j

Figure 2.5: Three Layer Feed Forward Neural Network

realises is altered.

The activation signal, ok for the kth output neuron, for a network with I input, J

hidden and K output neurons is given by:

ok = fok
(

J+1
∑

j=1

wkjyj) (2.22)

= fok

(

J+1
∑

j=1

wkjfyj
(

I+1
∑

i=1

vjizi)
)

(2.23)

where vji and wkj are weights connecting neurons in their respective layers, yj is the

activation signal of the jth hidden neuron, and zi is the ith input signal. The activation

functions fyj
and fok

are typically the sigmoid:

f(x) =
1

1 + e−x
(2.24)

which forces outputs into the range (0, 1). Thus, a feed forward network having I inputs,

K outputs and sigmoid activation functions realises a nonlinear mapping of the form

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 19

R
I → (0, 1)K which is parameterised by the weights vji and wkj. Alternative activation

functions are mentioned in Section 2.2.2.

Training involves finding values for the weights so that the network best approximates

the function for a given supervised learning problem (refer to Equation (2.15)). Since

the network can only realise values in the range (0, 1), target values must be scaled

appropriately. In addition, inputs should also be scaled to fall within the active region of

the activation functions which, in the case of sigmoid activations, is roughly [−
√

3,
√

3].

Classification problems are encoded by dedicating a separate output to each label, so

that each output represents the posterior probability that an observation belongs to the

class associated with that output.

Algorithm 1 Neural Network Back-propagation Training

1: Initialise vji, wkj ∼ U(−1, 1)

2: t← 0

3: repeat

4: for all training patterns do

5: wkj ← wkj + ∆wkj(t) + α∆wkj(t− 1) (refer to Equation (2.25))

6: vji ← vji + ∆vji(t) + α∆vji(t− 1) (refer to Equation (2.26))

7: end for

8: t← t + 1

9: until stopping condition

Pseudocode for back-propagation learning using gradient descent is presented as Al-

gorithm 1 [116]. Weights are uniformly initialised to small random values and are it-

eratively updated for each pattern until some stopping criterion is met. The change in

output layer weights, derived from the derivative of the SSE over the network, is given

by:

∆wkj = η(tk − ok)(1− ok)okyj (2.25)

and the change in hidden layer weights is propagated back using:

∆vkj = zi

K
∑

k=1

(1− yj)wkj∆wkj (2.26)

where tk is the target for the kth output neuron and η is the learning rate. A momentum

term which preserves the velocity of weight updates is specified by α.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 20

Instead of simple gradient descent, scaled conjugate gradient techniques [10] or indeed

almost any optimisation process could be used to determine appropriate weight values.

2.2.2 Different Network Architectures

There are many ways in which supervised neural network architectures can be cus-

tomised. Although the number of input and output neurons is defined by the problem,

the number of hidden neurons can be varied. At the individual neuron level, different

activation functions and methods by which input signals are combined can be utilised.

Finally, the network topology can be altered implicitly through dynamic growing, prun-

ing and regularisation; or explicitly at design time as is the case for recurrent and time

delay neural networks [31].

Varying the number of hidden neurons affects the complexity of mappings that can

be realised by a given neural network. A network with more weights and neurons has

more expressive power than one having fewer degrees of freedom. Increasing the number

of hidden neurons, however, may lead to over-fitting, since the network would be able to

fit inherent noise more easily. Training time is also increased, since more weight updates

are required.

In order to fit arbitrary data without over-fitting, the simplest network possible

is desired. Regularisation [46, 118] involves driving network weights to zero, in effect

removing links to alter the topology, by adding a penalty term to the network error

surface that penalises network complexity. Other approaches involve growing or pruning

the network by adding or removing neurons respectively when certain triggering criteria

are met [31].

Product unit networks [27] utilise higher order combinations of inputs and as such

can realise more complex functions with fewer neurons than ordinary summation unit

networks. The drawback of a product unit network is that many local minima exist in

the error surface causing gradient descent based training algorithms to become trapped

at suboptimal solutions more easily. Functional link networks [43] make higher order

functions of the inputs available to the hidden layer in an attempt to realise more complex

functions with standard summation units.

Sigmoid activation functions are the most common, however, other functions may

be used instead. The type of problems for which supervised networks are used typically

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 21

exhibit nonlinear behaviour. Linear activation functions may be better suited for linearly

related data, but will perform poorly for nonlinear relationships. Step functions model

binary characteristics in data while ramp functions can realise a mixture between binary

and linear relationships. The hyperbolic tangent has a range of (−1, 1), making it suitable

for use in hidden layers, since its output nominally falls within the active input region

of typical activation functions. The training process should, however, cause weights to

be chosen such that inputs lie in the active region irrespective of the output from the

previous layer. Although any conceivable activation function may be used, including

Gaussians, there is by definition of supervised learning no a priori knowledge about the

relationship between inputs and targets. As long as their is no good reason to favour

one activation function over another, the relative simplicity of the sigmoid makes it most

suitable. A combination of sigmoids in the hidden layer and linear output units has also

proven to be a good choice [14].

Various network topologies that attempt to model temporal characteristics in data

are also possible [54]. Recurrent neural networks attempt to model these temporal

characteristics by storing the signal from the hidden or output layers and feeding it back

as additional inputs for subsequent training patterns. In a similar fashion, time delay

networks maintain the inputs from previous passes as additional inputs to the network.

2.2.3 Learning Vector Quantiser

The Learning Vector Quantiser (LVQ), shown in Figure 2.6, is a two layer unsupervised

learning neural network [66]. The input layer has direct connections to the output

neurons and there are no bias units. Unlike supervised networks, the weights in an LVQ

network have a special meaning. The kth output neuron, ok, represents a cluster with

an I-dimensional centroid comprising the incoming weights, vki.

Algorithm 2 outlines the training procedure for an LVQ network. As is the case

for supervised networks, the weights are initialised to small uniform random values and

training patterns are repeatedly presented to the network causing changes to the weight

values.

The weights of the nearest output neurons to a given pattern are updated according

to the following equation:

∆vki(t) = η(t)[zi − vki(t− 1)] (2.27)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 22

z1

zi

zI oK

o1

vki

vJK

v11

v1i

ok

Figure 2.6: Two Layer Learning Vector Quantiser

where η(t) is a decaying learning rate so that η(t) → 0 as t → ∞. The closest output

neuron is determined using the Euclidean distance between the training pattern, z ∈ R
I

and the weight vector, vk, that corresponds to ok. The set κk(t) consists of output neuron

indices considered to be in the neighbourhood of ok at time t. The neighbourhood, like

the learning rate, is also reduced over time so that κj(t)→ {j} as t→∞. In addition to

the absolute winner j, in terms of closest output neuron, the weights of all the neurons

in κj(t) are typically also updated. A conscience factor can be incorporated into the

distance metric in line 5 to penalise output neurons that overly dominate during training

[31]. The result is that cluster centroids, represented by the weights of their respective

output neurons, are moved towards the most appropriate input patterns.

2.2.4 Self Organising Feature Maps

Conceptually, a Self-Organising Feature Map (SOFM) [66] functions similarly to an LVQ.

In fact, the training algorithm is virtually identical. The most notable difference is that

the output layer is a two-dimensional map as shown in Figure 2.7. One of the key benefits

of SOFMs over LVQ is that the topology of the input space is preserved in the map.

That is, if two patterns are closely related in the input space then they usually map to

output neurons that are close to each other in terms of coordinate indices in the map.

Thus, SOFMs project an I-dimensional input space onto a two-dimensional map space

making them a useful data visualisation tool [31].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 23

Algorithm 2 Learning Vector Quantiser Training

1: Initialise vki ∼ U(−1, 1)

2: t← 0

3: repeat

4: for all training patterns do

5: Find j for which d2(z,vj) is minimised (refer to Equation (2.19))

6: for all k ∈ κj(t) do

7: vki ← vki + ∆vki(t) (refer to Equation (2.27))

8: end for

9: end for

10: t← t + 1

11: until stopping condition

Although SOFM weights may also be initialised to small uniformly distributed ran-

dom values, there is a better method of performing initialisation that may improve the

quality of the mapping [107]. The weights corresponding to the four corners of the map

are initialised to the respective four most extreme patterns in the training set. The

remaining weights, vkj, are interpolated as follows:

v1j =
v1J − v11

J − 1
(j − 1) + v11 (2.28)

vKj =
vKJ − vK1

K − 1
(j − 1) + vK1 (2.29)

vk1 =
vK1 − v11

K − 1
(k − 1) + v11 (2.30)

vkJ =
vKJ − v1J

J − 1
(k − 1) + v1J (2.31)

vkj =
vkJ − vk1

J − 1
(j − 1) + vk1 (2.32)

for a JxK map with j ∈ {Z | 2 ≤ j ≤ J − 1} and k ∈ {Z | 2 ≤ k ≤ K − 1}.
The standard SOFM training algorithm is identical to LVQ except that the weight

update for each neuron is now given by:

vkj(t + 1) = vkj(t) + η(t)Φcxy,cjk
(t)[z− vkj] (2.33)

where η(t) is once again a decaying learning rate. The coordinates cxy and cjk are the

locations of the winning and current neurons respectively on the map. Again, the winning

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 24

z1

zi

zI

o11

ojk

oJK

vkji

Figure 2.7: 5x5 Self Organising Feature Map

neuron is the one having the closest weight vector, in terms of Euclidean distance, to the

current training pattern z ∈ R
I . Unlike LVQ, every neuron is typically updated for each

training pattern instead of only updating those neurons in an explicit neighbourhood set.

The neighbourhood function, Φcxy ,ckj
(t), determines the extent which a training pattern

has influence over the weights surrounding the winning neuron. Thus, neurons further

away from the winning neuron, in map coordinate space, are affected less by a given

training pattern. The following Gaussian neighbourhood function is typically used:

Φcxy,cjk
(t) = e

−
||cxy−cjk||22

2σ2(t) (2.34)

where σ(t) gives the width of the kernel and σ(t)→ 1 as t→∞.

A typical SOFM has more output neurons than there are clusters inherent in the

training data. Thus, a single output neuron will not, in general, correspond to a single

cluster centroid. A unified distance matrix (U-matrix) can be constructed to deter-

mine the actual cluster boundaries [31]. The U-matrix is constructed by calculating the

distances between each neuron’s weight vector and its immediate neighbours in map co-

ordinate space. Large values in the U-matrix are indicative of cluster boundaries while

small values indicate groups of neurons belonging to the same cluster. If the map has

a high enough resolution then the U-matrix can be plotted as a two-dimensional image

that is useful for data visualisation. Figure 2.8 is an example of such a plot with clus-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 25

Figure 2.8: Example U-matrix plot

ter boundaries illustrated by white contours that correspond to large U-matrix values.

These high resolution maps allow for arbitrary shaped cluster boundaries.

2.3 Evolutionary Computing

All living organisms, ranging from the single celled Amoeba to complex multi-cellular

human beings, have a genetic blueprint that describes their physical and behavioural

characteristics. This genetic blueprint is made up of DNA (Deoxyribonucleic Acid) ar-

ranged into chains of nucleotides called chromosomes. The precise arrangement of the

different nucleotides, or genes, defines the characteristics of an organism. The infor-

mation encapsulated by the DNA is known as the genotype of an organism, while the

phenotype is the physical expression of that information. The relationship between

genotype and phenotype is typically complex, owing to the influence of pleiotropy and

polygeny [77].

Small changes in the genetic material of a population are realised through random

mutations and recombination during reproduction between individuals. These changes

to the genotype of individuals affect their phenotype and consequently their ability to

survive in a given environment. Darwinian theory states that the evolution of a species

is guided by competition and natural selection [82]. That is, useful changes in genetic

material are preserved from generation to generation, since individuals with better char-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 26

acteristics are the most likely to survive and reproduce.

Algorithm 3 General Evolutionary Computing Framework
1: t← 0

2: P (t)← initialise(µ)

3: F (t)← evaluate(P (t), µ)

4: repeat

5: P ′(t)← recombine(P (t), Θr)

6: P ′′(t)← mutate(P ′(t), Θm)

7: F (t)← evaluate(P ′′(t), λ)

8: P (t + 1)← select(P ′′(t), F (t), µ, Θs)

9: t← t + 1

10: until stopping condition

Evolutionary Computing (EC) is strongly based on the principles of natural evolution.

A general framework for evolutionary optimisation that encompasses these principles is

given in Algorithm 3 [109]. A population of µ individuals is initialised within the search

space of an optimisation problem so that P (t) = {xi(t) ∈ S | 1 ≤ i ≤ µ}. The search

space S may be the genotype or phenotype depending on the particular evolutionary

approach being utilised. The fitness function f , which is the function being optimised,

is used to evaluate the goodness individuals so that F (t) = {f(xi(t)) ∈ R | 1 ≤ i ≤ µ}.
Obviously, the fitness function will also need to incorporate the necessary phenotype

mapping if the genotype space is being searched.

Searching involves performing recombination of individuals to form offspring, ran-

dom mutations and selection of the following generation until a solution emerges in the

population. The parameters Θr, Θm and Θs are the probabilities of applying the recom-

bination, mutation and selection operators respectively. Recombination involves mixing

the characteristics of two or more parents to form offspring in the hope that the best

qualities of the parents are preserved. Mutations, in turn, introduce variation into the

population thereby widening the search. In general, the recombination and mutation

operators may be identity transforms so that it is possible for individuals to survive into

the following generation unperturbed. Finally, the λ new or modified individuals are

re-evaluated before the selection operator is used to pare the population back down to a

size of µ. The selection operator provides evolutionary pressure so that the most fit in-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 27

dividuals survive into the next generation. While selection is largely based on the fitness

of individuals, it is probabilistic to prevent premature convergence of the population.

Genetic algorithms, which generally search the genotype space, are summarised in

the next section. Section 2.3.2 covers a specialisation of genetic algorithms where the

genotype is a space of executable program trees. Evolutionary programming, discussed

in Section 2.3.3, concentrates on searching the phenotype space. Evolutionary strategies,

which dynamically evolve strategy parameters, are discussed in Section 2.3.4. Finally,

cultural and co-evolutionary extensions are considered in Sections 2.3.5 and 2.3.6 respec-

tively.

2.3.1 Genetic Algorithms

Genetic Algorithms (GAs) [47] fit neatly into the general EC framework already pre-

sented in Algorithm 3. Thus, the only remaining requirement, to fully describe a GA,

is the definition of a specific genotype representation along with suitable recombination,

mutation and selection operators.

Traditional GAs [56] represent individuals as binary bit strings. Numeric phenotypes

are usually encoded using Gray’s code in the genotype to reduce pleiotropic variation in

the phenotype. That is, the genotypic Hamming distance is minimised for small differ-

ences in phenotypic values. A real (R) valued genotype, having an identical phenotype,

is also possible, provided that recombination and mutation are suitably defined for real

values. In fact, any representation, for which suitable operators can be defined, may be

used. For example, genetic programming, presented in the following section, is a special

type of GA having a tree based representation.

Reproduction, or the mixing of genetic material, between multiple individuals is

known as crossover in the context of GAs. Figure 2.9 illustrates three types of crossover

that can be defined for binary coded individuals. Each of them is defined in terms

of a binary mask and is able to produce two offspring from a pairing of two parents.

The mask determines the parent from which the offspring inherit their genetic material.

In the case of uniform crossover, a random mask is generated that results in offspring

composed of random components of the two parent’s genetic material. For one-point

crossover, a random offset in the mask is chosen, so that all components up to that offset

are inherited from the one parent and the rest from the other. Similarly, for two-point

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 28

1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 0

Offspring 0:

Offspring 1:

Mask:

Parent 1:

Parent 0:

a) Uniform Crossover b) One−point Crossover c) Two−point Crossover

Figure 2.9: Crossover Operators

crossover, there are two offsets chosen so that only the components between the two

positions are inherited from the one parent. For real valued genes, arithmetic crossover

may be defined for two individuals xa and xb as follows:

xa(t + 1) = ρxa(t) + (1− ρ)xb(t) (2.35)

xb(t + 1) = ρxb(t) + (1− ρ)xa(t) (2.36)

where ρ ∼ U(0, 1) is a uniform random variate.

Mutation is typically performed with a fairly low probability, since existing good

solutions may be disturbed if the mutation rate is too high. A suitable mutation operator

for binary coded individuals inverts bits subject to a given probability, while real valued

mutation can be achieved by adding Gaussian noise.

An elitism operator is usually implemented to select a few good individuals, the elite,

to survive into the following generation. This can be achieved trivially, by adding the

new and modified individuals, obtained through recombination and mutation, to the

existing population and subjecting the entire pool to selection.

Various selection strategies exist, including tournament, proportional, and rank-based

selection [31]. Tournament selection involves repeatedly selecting k individuals randomly

from the population and then selecting the individual with the best fitness out of that

group. A proportional strategy selects individuals in proportion to their fitness by sam-

pling the following distribution:

P (xi(t)) =
f(xi(t))

∑µ
n=1 f(xn(t))

(2.37)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 29

so that P (xi(t)) is the probability of selecting the ith individual from the population at

time t. Finally, rank-based selection techniques sample the rank ordered distribution of

individuals instead of considering absolute fitness values.

2.3.2 Genetic Programming

Any algebraic expression can be trivially represented in tree form. Non-terminal tree

nodes represent mathematical operators so that their children correspond with the

parameters of the operator in question. Variables and constants, in turn, are repre-

sented as terminal nodes in the tree. Figure 2.10 is an example tree for the expression

sin(p
q
)(log(r) − es+1.5). In a similar fashion, a parse tree, for arbitrary computer pro-

grammes in any language, can be constructed.

1.5

log

−

*

r +

/

s

exp

sin

p q

Figure 2.10: Genetic Program Tree Representation

Genetic programmes are nothing more than GAs, with the genotype being parse trees

for executable programmes in a given language [67]. Consequently, the phenotype is the

behaviour of those programmes at execution time. The fitness function is a measure of

how well a programme performs a specified task. Selection is also analogous to GAs, so

all that remains is to define suitable crossover and mutation operators for tree structures.

Crossover is trivial, a random node in each parent tree is selected. These two nodes,

along with their descendents, are swapped, forming two possible offspring. That is, the

selected subtree of one parent is replaced with the selected subtree of the other.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 30

Several mutation operators, which should be used together, can be defined [31]:

• Function node mutation: A randomly selected non-terminal node has its oper-

ator replaced with another operator that has the same cardinality.

• Terminal node mutation: A randomly selected terminal node is replaced with

another valid terminal node.

• Swap mutation: A non-terminal node, having more than one child, is selected

and order of its children are altered.

• Grow mutation: A randomly selected node is replaced with a randomly generated

subtree that has a predetermined maximum depth.

• Gaussian mutation: A terminal node which represents a constant is randomly

selected and mutated by adding Gaussian noise.

• Trunc mutation: A randomly selected non-terminal node is replaced with a valid

terminal node.

2.3.3 Evolutionary Programming

Evolutionary Programming (EP) [36, 37] can be classified in the EC framework in Al-

gorithm 3 by leaving out the fifth step, or equivalently, defining recombination as an

identity transform. That is, EP relies solely on mutation and does not make use of

any recombination. In addition, EP does not explicitly distinguish between genotype

and phenotype. Rather, mutations are defined based on the problem domain, implicitly

making EP a phenotypic optimisation process.

EP was originally developed to evolve finite-state machines by defining the following

mutations: change an output symbol; change a state transition; add a state; delete

a state; or change the initial state. Real valued domains can make use of Gaussian

mutation, as is the case for real valued genotypes in GAs. In any event, the mutation

operator used will be problem specific, since EP performs a search of the phenotype.

Mutation should be biased towards making small changes but should allow for large

mutations, particularly early on in the search, to enable the optimisation process to

avoid local extrema.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 31

2.3.4 Evolutionary Strategies

The general EC framework defined in Algorithm 3 has many parameters that may affect

its performance in various ways. In the context of Evolutionary Strategies (ES) [93, 94],

these are known as strategy parameters. The primary principle of ES is to concurrently

evolve these strategy parameters alongside the solution to the problem under optimisa-

tion. In this way, ES are able to more optimally adapt their strategy to the problem at

hand.

Like other EC paradigms, implementations of ES also define their own representation

as well as recombination, mutation and selection operators. Canonical ES specify mu-

tation and crossover operators defined for vectors of real values, inherently making ES

a phenotypic search process. Thus, the standard representation for ES is a real valued

solution vector augmented by one or more strategy parameters so that:

x(t) ∈ {(Rn, Rs)} (2.38)

for an individual x(t) of solution dimension n with s strategy parameters. It is possible,

however, to apply similar strategy parameters to genotypic search algorithms to enhance

their performance. In general, any parameter that influences the evolutionary process can

be appended to an individual’s representation. Individuals that are performing poorly

may have their strategy parameters adjusted more dramatically under the assumption

that their poor performance is due to a bad choice of strategy.

Specifically, mutation is enhanced by associating additional parameters with each

individual. The simplest of these schemes associates a standard deviation, σ(t), with

each member of the population so that the mutation operator perturbs the solution

vector as follows:

x(t + 1) = x(t) + σ(t + 1)ξ (2.39)

where ξ ∈ R
n with each ξi ∼ N(0, 1) a normally distributed random variate, while the

standard deviation for each successive generation is updated according to:

σ(t + 1) = σ(t)eρ
√

n

(2.40)

where ρ ∼ N(0, 1). More elaborate schemes that include a standard deviation along with

a matrix of rotation angles have also been devised [31].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 32

Crossover can be applied to both the solution vector and the strategy parameters.

ES define different crossover operators to standard GAs. Local crossover resembles uni-

form crossover in that an offspring is created by selecting random components from two

parents. Global crossover, however, selects random components from the entire popula-

tion to generate a single offspring. In addition to simply selecting random components,

arithmetic crossover or simple averaging can be performed between multiple parents.

Two primary selection strategies have been defined for ES. The first, known as (µ+λ),

selects successive generations from the combination of the previous generation and all

the offspring. The second, known as (µ, λ), selects the following generation from the

set of offspring only. The former implicitly implements a form of elitism operator while

the latter does not allow for individuals to survive through successive generations and

requires that 1 ≤ µ < λ <∞.

2.3.5 Cultural Evolution

Cultural evolution [96] is based on the premise that cultural properties in a population

evolve at a faster rate than genetic properties. The search process is biased by a cultural

belief space that focuses the search in areas that the population believes contains good

solutions. This belief space, which stores the best behavioural traits of the population

over time, is used to enhance and accelerate the search process.

Accept

Recombination SelectionMutation

Influence

Belief space

EC based population space

Figure 2.11: Cultural Algorithm

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 33

Cultural algorithms deviate from the model given in Algorithm 3 by maintaining

two separate search spaces. The first, the population space, is an instance of one of the

already mentioned EC algorithms, perhaps a GA or an EP algorithm. Secondly, the

belief space serves as a repository of knowledge gained by the main population during

the entire search process. Figure 2.11 illustrates the relationship between these two

spaces. An acceptance function specifies how this knowledge is communicated from the

main population and incorporated into the belief space. An influence function, in turn,

determines how the search process of the main population is influenced by the knowledge

in the belief space.

The choice of functions that govern acceptance of knowledge into the belief space and

the influence of that knowledge on the population are problem specific. In the case of R
n

domains, the belief space may be defined by the intervals in which the solution is believed

to exist in each dimension. Thus, the acceptance function is defined as the bounding

hyper-rectangle created by a given percentage of the best performing individuals in

the population. Influence of the population is achieved through a modified mutation

operator. Individuals lying further outside the range defined by the belief space are

subjected to larger mutation step sizes while those within the range are mutated by a

smaller amount. In this way, individuals are encouraged to search the belief space more

thoroughly. Constrained optimisation can also be supported by forcing the conformance

of belief space to those constraints.

2.3.6 Coevolution

Coevolution is an extension of EC into multiple competing or cooperating populations

which work together to solve a given problem. The fitness of a given individual becomes

a subjective measure relative to the other populations being co-evolved.

For cooperating populations, the solution vector may be split into smaller dimensions

with each subpopulation solving only the part of the vector for which it is responsible

[117]. In this case, fitness must be measured within the context of the other populations

since the objective function requires a full length solution vector to be calculated. Al-

ternatively, the search space itself may be partitioned into intervals, or a global “black

board” may be used for sharing partial solutions between populations.

In the case of competing populations, a key benefit is that an absolute fitness measure

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 34

is not a requirement. The fitness of an individual in one population is measured relative

to the performance of individuals in competing populations by playing the individuals

against one another [55].

Various sampling strategies for selecting the individuals from other populations that

take part in the relative fitness evaluation exist [31]:

• All versus all: The fitness for a given individual is calculated relative to all the

individuals in other populations.

• Random: Fitness is calculated relative to a random group of individuals selected

from the other populations.

• Tournament: The best individual within a random subgroup of the other popu-

lations is selected and fitness is calculated relative to this individual..

• All versus best: Fitness is calculated relative to the best performing individual

in other populations.

2.4 Swarm Intelligence

Swarm Intelligence models the naturally observed phenomenon of a population, or swarm,

of relatively unsophisticated organisms, through their social interactions, to be able to

realise globally intelligent behavioural patterns. An example of this phenomenon is the

ability of ants to find the most optimal routes to food sources. The individual ants them-

selves are very simple creatures lacking the ability to think or reason, yet as a colony,

they appear able to perform the complex task of determining the optimal routes to food.

Like the EC paradigm discussed in Section 2.3, swarm intelligence approaches are

also population based, however, that is where the similarity ends. EC is primarily

concerned with evolutionary operators, such as mutation and recombination, to bring

about variation in a population, and selection, as a means to focus the search into areas

that promise the best results. Swarm intelligence, on the other hand, concentrates on

modelling the social interactions between individuals in a population, which usually have

a specific task to perform, and typically does not exhibit any kind of selection pressure

that governs the survivability of particular individuals.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 35

Particle swarm optimisation, discussed in the following section, exchanges experien-

tial knowledge about the search surface between particles as a means of social interac-

tion. Section 2.4.2 overviews ant systems where interaction between individuals occurs

indirectly by means of modifications to the environment in which they function. By mod-

elling these social interactions useful algorithms have been devised for solving numerous

problems including function and route optimisation as well as unsupervised clustering.

2.4.1 Particle Swarm Optimisation

Particle swarm optimisation [63, 28] was originally inspired by the flocking behaviour of

birds. In terms of this bird flocking analogy, a particle swarm optimiser consists of a

number of particles, or birds, that fly around a search space, or the sky, in search of the

best location. Each of these particles corresponds to a simple agent that moves through

a multi-dimensional search space sampling an objective function at various positions.

The motion of a given particle is dictated by its velocity which is continuously updated

in order to pull it towards its own best position and the best positions experienced by

the rest of the swarm. This behaviour ultimately results in an optimiser that converges

to good solutions of an objective function of the form f : R
n → R.

The velocity update for each dimension, given by the subscript j ∈ {Z | 1 ≤ j ≤ n},
of the ith particle with position xi(t) ∈ R

n and velocity vi(t) ∈ R
n at time t is given by

the following equation [63, 28, 100]:

vi,j(t + 1) = wvi,j(t) + c1r1,j(yi,j(t)− xi,j(t)) + c2r2,j(ŷi,j(t)− xi,j(t)) (2.41)

where w ∈ {R | 0 ≤ w < 1} is an inertia weight that preserves some of the previous veloc-

ity; c1 and c2 ∈ {R | 0 ≤ c1, c2 ≤ 2} are acceleration coefficients; and r1,j, r2,j ∼ U(0, 1)

are drawn from two independent uniform random distributions. The vector yi(t) ∈ R
n

is the best position found by the individual particle, while ŷi(t) ∈ R
n represents the

best position found by other particles in the swarm. Various neighbourhood strategies

determine which particles participate in the social network of a given particle, so that

ŷi(t) represents the best solution found by the particles in the neighbourhood of the ith

particle.

The second term in Equation (2.41) is known as the cognitive component, since it

takes into account a particle’s own experience of the search terrain. Setting c2 ← 0

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 36

results in a cognition only optimiser having no social interaction between the particles.

Conversely, setting c1 ← 0 leaves only the social component, the third term in the

equation. The acceleration coefficients can be chosen (or varied over time) to prioritise

the influence of a particle’s own cognition or its social interaction with the rest of the

swarm. Whenever:
c1 + c2

2
− 1 < w (2.42)

holds, particles will exhibit convergent trajectories, otherwise they will not stabilise

[113]. Alternatively, a Vmax strategy can be used to reduce the likelihood of divergence

by enforcing an upper bound on particle velocities.

b) LBesta) GBest c) Von Neumann

Figure 2.12: Typical Neighbourhood Topologies

The influence of various neighbourhood topologies on the PSO has been been studied

extensively [29, 101, 61, 64, 108, 90]. Figure 2.12 illustrates the best known neighbour-

hood topologies. The GBest, or global best, topology includes every particle of the swarm

within the social network of every other particle. LBest, or local best, only considers

a particle’s immediate neighbours, in terms of particle index, to be socially connected.

Finally, the Von Neumann architecture, taking the form of a grid with wrap-around, con-

siders the particles above, below, to the left and to the right to be within a given particle’s

neighbourhood. The more densely connected the neighbourhood, the quicker information

about good solutions is communicated amongst particles in the swarm. Neighbourhood

topologies such as LBest and Von Neumann result in superior solutions at the cost of

slower convergence, since diversity within the swarm is maintained longer.

Algorithm 4 outlines the Particle Swarm Optimiser (PSO). Initialisation is performed

by randomly placing the particles within the search space. All velocities are initialised

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 37

Algorithm 4 Particle Swarm Optimiser

1: for all particles i do

2: Initialise xi,j(0) ∼ U(xmin,j , xmax,j)

3: yi(0)← xi(0)

4: ŷi(0)← xi(0)

5: vi(0)← 0

6: end for

7: t← 0

8: repeat

9: for all particles i do

10: if f(xi(t)) > f(yi(t)) then

11: yi(t)← xi(t)

12: if f(xi(t)) > f(ŷi(t)) then

13: ŷi(t)← xi(t)

14: end if

15: end if

16: Update vi(t + 1) according to Equation (2.41)

17: xi(t + 1) = xi(t) + vi(t + 1)

18: end for

19: t← t + 1

20: until stopping condition

to zero and the personal best positions of the particles are their initial positions. Steps

10 through 15 maintain the personal best positions, yi(t), as well as the neighbourhood

best position, ŷi(t), where the fitness function is given by f . Thus, the particle positions

are moved, in step 17, towards their own best positions and the best positions found by

the swarm according to Equation (2.41). Upon termination, the best solution found to

the optimisation problem is given by the position of the particle with the best fitness.

2.4.2 Ant Systems

Artificial ant systems model the social interaction and seemingly intelligent behaviour of

naturally occurring colonies of ants. These social interactions are due to a phenomenon

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 38

known as stigmergy, characterised by a lack of centralised control and indirect commu-

nication by means of modifications to the environment. The emergent behaviour of the

colony is observed in their ability to, amongst others, locate optimal food resources and

perform nest brooming, including cemetery maintenance [31].

This section describes an optimisation algorithm, applicable to the TSP discussed

in Section 2.1.2, followed by an algorithm for performing unsupervised clustering. The

former models the way ants optimise paths to food sources, and the latter is based on

their cemetery maintenance behaviour.

Ant Colony Optimisation

Foraging in ant colonies is governed by pheromone deposits along paths to food. In

general, pheromones are invisible chemicals secreted by organisms which, when detected

by the senses, cause an instinctual reaction in another organism. In particular, foraging

ants tend to follow paths with higher concentrations of pheromone deposits.

Pheromones are deposited along a given path by the ants that traversed that path

at an earlier time. The pheromone following nature of ants combined with the fact

that pheromone deposits evaporate over time, results in the shortest paths containing

the highest pheromone concentrations. This is because an ant that discovers a shorter

path will return sooner, depositing more pheromones, on the way to a food source and

again on the way back, as well as more recent pheromones than an ant on a longer path.

As more and more ants start to follow the shorter path, due to a higher pheromone

concentration, a positive feedback loop is created until virtually all the ants follow the

shortest path. Thus, social interaction and coordination for foraging occurs indirectly

through pheromone deposits which modify the environment.

Algorithm 5 models the foraging behaviour of ants to solve the TSP (refer to Sec-

tion 2.1.2) [26]. Each edge of a TSP graph is associated with a pheromone intensity

between city i and j at time t denoted by τij(t). The probability, Φij,k(t), for ant k at

city i to choose j as the next city to visit is given by:

Φij,k(t) =
τij(t)

αηβ
ij

∑

c∈Ci,k
τic(t)αηβ

ic

(2.43)

where Ci,k is the set of city indices that ant k still needs to visit from city i and ηij is the

economy of travelling from city i to j. The parameters, α and β, control the respective

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 39

Algorithm 5 Ant Colony Optimiser for TSP

1: Initialise τij(0) ∼ U(0, max)

2: Place all ants k ∈ {Z | 1 ≤ k ≤ m} at origin city

3: Let T + be the shortest tour, and L+ its length

4: t← 0

5: repeat

6: for all ants k do

7: Build tour Tk(t) by choosing successive cities with probability Φij,k(t)

(refer to Equation (2.43))

8: Compute length of route, Lk(t)

9: if Lk(t) < L+ then

10: T+ ← Tk(t)

11: L+ ← Lk(t)

12: end if

13: end for

14: Update pheromone deposits using Equation (2.44)

15: t← t + 1

16: until stopping condition

importance of pheromone intensities, τij(t), and local cost information, ηij = 1/dij, where

dij is a suitable Minkowski distance metric.

The algorithm randomly initialises the pheromone intensities, places a number, m,

of ants at the originating city and then proceeds to iteratively build tours, Tk, for each

ant k according to Equation (2.43) while continuously maintaining pheromone updates

according to:

τij(t + 1) = (1− ρ)τij(t) + ∆τij(t) (2.44)

where ρ is known as a forgetting factor which causes pheromone depletion over time.

The net change in pheromone intensity, ∆τij(t), at time t between city i and j is given

by:

∆τij(t) =

m
∑

k=1

∆τij,k(t) (2.45)

which is the sum of the deltas over all ants where the contribution of each ant is, in turn,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 40

given by:

∆τij,k(t) =

{

Q/Lk(t) if (i, j) ∈ Tk(t)

0 if (i, j) /∈ Tk(t)
(2.46)

where Q is of the same order of magnitude as the optimal route length and Lk(t) is the

length of the tour just taken by ant k. The contribution of an ant to the pheromone

intensity between cities i and j is zero if the ant did not traverse that edge during its

tour. When the algorithm terminates, the optimal tour found is given by T + and its

length by L+.

Ant Colony Clustering

Several species of ants have been observed to cluster corpses into cemeteries in order to

tidy their nests. While not much is known about this behaviour, it has provided the

inspiration for an algorithmic solution to the unsupervised clustering problem [15].

Algorithm 6 outlines an approach for clustering using a colony of artificial ants. The

fundamental idea is to allow ants to roam a grid containing data vectors, picking up

those vectors which are dissimilar from their surrounding vectors and dropping them in

areas having more similar vectors.

The local density function, f(zi, r), which is a measure of the average similarity of

the vector zi to the vectors in a neighbourhood around the location r is given by:

f(zi, r) =
1

s2

∑

zj∈Nsxs(r)

[1− d(zi, zj)

α
] (2.47)

where Nsxs(r) is the set of vectors in a square neighbourhood of width s around r and

d(zi, zj) is the dissimilarity, a Minkowski metric, between two vectors zi and zj with α

controlling the scale of the dissimilarity measure.

An unladen ant at location r which is occupied by a vector zi picks up that vector

with probability:

pp(zi, r) =
(k1

k1 + f(zi, r)

)2

(2.48)

where k1 is a constant which can be used to tune the sensitivity of the resultant probabil-

ity to f(zi, r). Equation (2.48) has the property that vectors which are highly similar to

those in their neighbourhood have a low probability of being picked up. Conversely, lower

values of f(zi, r) result in a high probability of zi being picked up, since pp(zi, r)→ 1 as

f(zi, r)→ 0.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 41

Algorithm 6 Ant Colony Clustering

1: Place each data vector zi randomly on grid

2: Place all ants k ∈ {Z | 1 ≤ k ≤ m} randomly on grid

3: repeat

4: for all ants k do

5: Let r be the location of ant k

6: if unladen(k) and occupied(r, zi) then

7: Compute f(zi, r) and pp(zi, r) (refer to Equations (2.47) and (2.48))

8: if U(0, 1) ≤ pp(zi, r) then

9: Pick up data vector zi

10: end if

11: else if laden(k, zi) and empty(r) then

12: Compute f(zi, r) and pd(zi, r) (refer to Equations (2.47) and (2.49))

13: if U(0, 1) ≤ pd(zi, r) then

14: Drop data vector zi

15: end if

16: end if

17: Move ant k to randomly selected neighbouring site not occupied by another ant

18: end for

19: until stopping condition

Alternatively, a laden ant carrying a vector zi at an unoccupied location r drops its

vector with probability:

pd(zi, r) =

{

f(zi, r) if f(zi, r) < k2

1 otherwise
(2.49)

where k2 is a constant that biases towards dropping vectors as k2 is made smaller, since

pd(zi, r)→ 1 as k2 → 0.

An obvious consequence of Algorithm 6 is that the grid must be large enough to

accommodate all the data patterns as well as sufficient ants. Strategies that mitigate

over-fitting, such as having ants moving at different speeds, can also be implemented

[31].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 42

2.5 Fuzzy Systems

Traditional expert systems [45], which typically use first-order predicate calculus to rep-

resent rules, rely on boolean logic where an element either belongs to a set or it does not.

That is, the law of the excluded middle applies and set membership is precise. Fuzzy

inferencing systems, on the other hand, are based on the properties of fuzzy sets [125]

where membership is no longer precise. Instead, an element belongs to a given set with

an associated degree of membership.

The ability to model the fuzzy, or imprecise, membership of an element to a set

enables inferencing based on linguistic terms. Production rules governing a fuzzy con-

troller can be described using words or simple sentences in natural language as opposed

to formal predicate calculus statements. This enables a domain expert, who typically

would not have an advanced knowledge of first-order predicate logic, to describe the rules

that govern a given system using domain specific linguistic terms which may be better

understood.

Section 2.5.1 overviews the theory of fuzzy sets and linguistic variables. Fuzzy con-

trollers, discussed in Section 2.5.2, build on this theory to provide a powerful inferencing

engine that can be used to solve control problems based on domain knowledge provided

by an expert.

2.5.1 Fuzzy Sets

Fuzzy sets [125] are characterised by a membership function of the form:

µA : X → [0, 1] (2.50)

where µA(x), ∀x ∈ X, indicates the degree, or certainty, that x belongs to the fuzzy set

A, and X is known as the universe of discourse. Traditional boolean set membership

can be modelled by a membership function, µA(x), which strictly takes on the values 0

or 1.

Table 2.1 defines fuzzy set theoretic operators that are analogues for their traditional

set counterparts. Two fuzzy sets are equivalent if and only if their membership functions

are identical. A fuzzy set is a superset of another set if and only if it contains all the

elements of the other set to at least the same degree of membership. The complement of

a set contains the same elements as the original set, but with complimentary degrees of

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 43

Table 2.1: Fuzzy Set Theoretic Operators

Operator Definition

Equality A = B ⇐⇒ µA(x) = µB(x), ∀x ∈ X

Containment A ⊂ B ⇐⇒ µA(x) ≤ µB(x), ∀x ∈ X

Complement µA(x) = 1− µA(x), ∀x ∈ X

Intersection µA∩B = min{µA(x), µB(x)}, ∀x ∈ X, or µA∩B = µA(x)µB(x), ∀x ∈ X

Union µA∪B(x) = max{µA(x), µB(x)}, ∀x ∈ X, or

µA∪B(x) = µA(x) + µB(x)− µA(x)µB(x), ∀x ∈ X

membership, so that an element having a high degree of membership has a proportionally

low degree of membership to the complement. The intersection operator may be defined

as the minimum of the degrees of membership of elements to each set, or it may be defined

as the product of the membership functions. The product version is the stronger of the

two operators, resulting in lower degrees of membership for the intersection. Similarly,

the union may be defined in terms of the maximum degree of membership, or it may be

defined algebraically. In the limit, a series of unions cumulatively tends to 1 and a series

of intersections tends to 0, irrespective of the degrees of memberships to the individual

sets.

Linguistic variables and their associated hedges [126, 127, 128] express words and

sentences, in natural language, in terms of fuzzy set memberships. Consider as an

example, the concept of a person’s age as a linguistic variable. The linguistic variable

age might take on values such as young, middle aged and old. Each of these values

defines a fuzzy set, associated with a membership function that models its semantics.

Figure 2.13 illustrates three possible membership functions, defined using Gaussians, for

the values young, middle aged and old respectively. Further, hedges such as very, fairly,

somewhat and slightly may be used to modify a membership function.

Numerous hedges may be defined, with the primary types of hedges given by the

following equations:

Concentrate : µA′(x) = µA(x)p (2.51)

Dilate : µA′(x) = µA(x)1/p (2.52)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 44

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

de
gr

ee
 o

f m
em

be
rs

hi
p

age

young
middle aged

old

Figure 2.13: Membership Functions for Age Linguistic Variable

Intensify : µA′(x) =

{

2p−1µA(x)p if µA(x) ≤ 0.5

1− 2p−1(1− µA(x))p otherwise
(2.53)

Blur : µA′(x) =

{

√

µA(x)/2 if µA(x) ≤ 0.5

1−
√

(1− µA(x))/2 otherwise
(2.54)

where p > 1 may be tuned to control the intensity of the hedges in Equations (2.51)

through (2.53). Concentration hedges, corresponding to linguistic terms such as very,

greatly and decidedly, create modified membership functions where boundaries are shifted

in favour of higher membership values. Dilation hedges have the opposite effect and

correspond to terms such as somewhat, sort of and fairly. Terms such as indeed and,

for higher values of p, extremely, correspond to intensification hedges which emphasise

contrast. Finally, blurring hedges, corresponding to terms such as seldom and more or

less, perform the opposite of intensification by introducing vagueness.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 45

2.5.2 Fuzzy Controllers

Figure 2.14 outlines a simple architecture for a fuzzy controller [75] consisting of three

primary components. First, the condition interface, which is responsible for converting

outputs from the system into a fuzzy form, hence the term fuzzifier, utilised by the fuzzy

inferencing engine. Next, the engine performs inferencing, based on linguistic rules, to

determine an appropriate control action. Finally, the action interface is responsible for

interpreting the output of the inferencing process and converting it back into system

specific actions through a process known as defuzzification. Thus, a feedback loop is re-

alised where the controller constantly monitors the system while effecting control actions

on the system according to its rule base.

Condition Interface

(fuzzifier)

Input Output
System

Action Interface

(defuzzifier)

Fuzzy Inferencing

Engine

Figure 2.14: Fuzzy Controller Architecture

As a somewhat contrived example, consider a fuzzy system used to control a hy-

pothetical cigarette dispensing machine. Rather than blindly supplying smokers with

their selection, this particular machine is designed to wean them off their addiction by

carefully limiting their supply of cigarettes. Further, assume that a domain expert, such

as a lung specialist, has provided a number of linguistic rules. For example, “If the user

is very old and a regular smoker then dispense as many cigarettes as requested.” The

reasoning behind such rule might be that a heavy smoker who has managed to survive to

a ripe old age is likely to die of natural causes long before contracting lung cancer. Other

rules might curtail the number of cigarettes dispensed to younger smokers depending on

their average intake, or limit the provision to zero for casual smokers.

The dispensing machine provides the controller with two inputs requiring fuzzifica-

tion, the actual age of the user and the average number of cigarettes consumed on a daily

basis. Fuzzification entails identifying the fuzzy sets used by the inferencing engine and

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 46

calculating the degrees of membership to each of these sets given the inputs. Continuing

with the example rule, according to Figure 2.13, the membership function for the set

corresponding to the linguistic term very old is given by:

µ[very old](x) = µold(x)2

=

(

e−(x−100)2/1000
)2

if x ≤ 100

1 otherwise
(2.55)

where x is the actual age of the user and the concentration hedge for the term very is

assumed to be implemented with p = 2. A membership function for µ[regular smoker] can

be defined in a similar fashion.

After fuzzifying the inputs, the next step is to perform inferencing using the fuzzy

rule base. Typically, the rule base is made up of a list of rules of the form:

if antecedent −→ consequent (2.56)

where the antecedent consists of one or more fuzzy sets combined using the operators

in Table 2.1 to form a logical expression. In the case of a Mamdani [75] controller, the

consequent consists of a single target fuzzy set. The value of the antecedent, also known

as the firing strength of the rule, determines the degree of membership to the target set

in the consequent. A Takagi-Sugeno [110] controller, on the other hand, permits higher

order consequents.

The antecedent for the example sentence presented earlier may be calculated as either:

µ[very old](x) ∩ µ[regular smoker](y) = min{µ[very old](x), µ[regular smoker](y)} (2.57)

or, the product:

µ[very old](x) ∩ µ[regular smoker](y) = µ[very old](x)µ[regular smoker](y) (2.58)

depending on the choice of intersection operator, where x and y are the age and av-

erage daily cigarette consumption respectively. The firing strengths for the remaining

antecedents in the rule base are calculated in a similar fashion.

The defuzzification processes is performed for each output linguistic variable to deter-

mine a single non-fuzzy, or crisp, value to feed back to the system. In the example rule,

the linguistic variable associated with the cigarette limit has a consequent of unlimited,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 47

however, this must still be combined in a sensible way with the consequents of any other

rules pertaining to the same linguistic variable.

Various defuzzification strategies may be employed, the height of the centroid under

the composite area defined by the chosen strategy is used as the crisp action result:

• max-min strategy: Only the membership function of the consequent associated

with the rule having the highest firing strength is used.

• averaging strategy: All membership functions pertaining to the linguistic vari-

able in question are clipped at the average firing strength of the combined rules.

• root-sum-square strategy: All membership functions pertaining to the linguis-

tic variable in question are scaled to the firing strengths of their respective rules.

• clipped centre of gravity: All membership functions pertaining to the linguistic

variable in question are clipped at the firing strengths of their respective rules.

Thus, all the consequents corresponding to a given linguistic variable are combined,

based on the chosen defuzzification strategy, into a single crisp value. At the one extreme,

the max-min strategy only takes into account the most dominant rule, while the averaging

strategy dilutes the result, giving no preference to rules with higher firing strength.

Further, it is possible to bias the rules, by scaling their firing strengths, based on the

confidence placed on a given rule by a human expert.

2.6 Other Paradigms

One specific example of a relatively new CI paradigm is the Artificial Immune System

(AIS) [24], which is a computational pattern recognition technique, based on how white

blood cells in the human immune system detect pathogens that do not belong to the

body. Instead of building an explicit model of the available training data, an AIS builds

an implicit classifier that models everything else but the training data, making it suited

to detecting anomalous behaviour in systems. Thus, an AIS is well suited for applications

in anti-virus software, intrusion detection systems and fraud detection in the financial

sector.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 48

Further, fields such as Artificial Life (ALife), robotics (especially multi-agent systems)

and bioinformatics are application areas for CI techniques. Alternatively, it can be argued

that those fields are a breeding ground for tomorrow’s CI ideas.

For example, evolutionary computing techniques have been successfully employed

in bioinformatics to decipher genetic sequences [35]. Hand in hand with that comes a

deeper understanding of the biological evolutionary process and improved evolutionary

algorithms.

As another example, consider RoboCup1, a project with a very ambitious goal. The

challenge is to produce a team of autonomous humanoid robots that will be able to beat

the human world championship team in soccer by the year 2050. This is obviously an

immense undertaking that will require drawing on many disciplines. The mechanical

engineering aspects are only one of the challenges standing in the way of meeting this

goal. Controlling the robots is quite another. Swarm robotics [6, 99], an extension of

swarm intelligence into robotics, is a new paradigm in CI that may hold some of the

answers. In the mean time, simulated RoboCup challenges, which are held annually, will

have to suffice.

2.7 Hybrid Approaches

Attempting to produce an exhaustive list of all the possible hybrid approaches here is

certainly an exercise in futility. There are, simply stated, so many ways in which different

CI techniques can be combined that any attempt to survey them would probably require

an entire dissertation dedicated to that task alone. Indeed, hybrid approaches need

not even limit themselves to combining techniques drawn from the CI discipline alone,

making the possibilities virtually endless. Instead, the purpose of this section is to

emphasise the existence of hybrids, by means of a few examples, and to highlight the

importance of a flexible software framework which enables composing various techniques

together in new and interesting ways.

As a first example, consider the PSO, discussed in Section 2.4.1. One hybridised

approach, dubbed the Dissipative PSO (DPSO) [122], builds on concepts borrowed from

thermodynamics. The designers of the DPSO noted that the self organising nature of

the PSO, where particles follow an irreversible process towards higher fitness, ultimately

1http://www.robocup.org

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 49

lacks the capability for sustainable development. By introducing negative entropy into

the algorithm and operating as a dissipative structure, the DPSO is able to maintain

swarm diversity and improve the quality of solutions found by the search. Now, while

it could be argued that the DPSO is not a true hybrid but rather a relatively simple

extension of the PSO, the relevant issue is that a software implementation should, as far

as possible, reuse an existing implementation of the PSO and simply compose it with

something that implements the dissipative capability.

Another method to hybridise the PSO is to update the positions of the best perform-

ing particles using a different optimisation process. Consider the velocity update in Equa-

tion (2.41), the best particles in their respective neighbourhoods will have x = y = ŷ,

resulting in zero cognitive and social components. Eventually, the velocity components

will also degrade to zero, since 0 ≤ w < 1, and these particles will stop moving. Further,

it is possible for the rest of the particles to collapse onto these positions too, resulting in

stagnation of the entire swarm. The Guaranteed Convergence PSO (GCPSO) [114, 113]

replaces the velocity update for the neighbourhood best particles with a modified uni-

modal optimiser [103], in effect creating a hybrid of the two. Properties of the GCPSO

include rapid convergence and a guarantee to at least converge onto a locally optimum

solution. Once again, a software implementation should make provision for this kind of

hybrid, perhaps by having a pluggable optimisation process for the neighbourhood best,

or indeed any particle. This kind of flexibility would enable the optimisation process

for any particle to be replaced by say, gradient descent, LeapFrog [102], an evolutionary

algorithm, or perhaps even another PSO to create a hierarchical PSO-PSO hybrid. Fur-

ther, it may be desirable to simultaneously compose GCPSO and DPSO into yet another

hybrid.

As hinted in Sections 2.1.3 and 2.2.1, neural networks present another opportunity

for hybridisation. By representing network weights as a single vector and the SSE over

the training set as an objective function, neural network training can be re-framed as

an optimisation problem. This opens the door for many hybrids, including using GAs,

EP, ES, cultural evolution or PSOs to train neural networks. Again, a software imple-

mentation should enable neural network training using any optimisation algorithm in a

flexible fashion.

One specific hybrid example, which spans multiple paradigms, is Blondie 24 [34].

Blondie 24 is an advanced game playing framework with the ability to understand and

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 50

develop strategies for a game given only its rules as prior knowledge. The framework

draws on three paradigms: game theory, neural networks and evolutionary computing.

The approach involves evaluating a traditional game tree [85] using a neural network as

an evaluation function. In order to find the optimal network for the task, Blondie 24

employs a competitive coevolutionary approach to evaluate network against network.

Over time, neural networks evolve that are better able to evaluate the game state and

as a result become stronger players. This approach has been taken one step further

[79, 40] by extending the coevolutionary approach to particle swarms, producing a four

way game tree, neural network, coevolution, PSO hybrid. Designing software flexible

enough to support such hybrids is a challenging task.

Other hybrid approaches include fuzzy neural networks [88, 129], a breeding PSO

that leverages evolutionary crossover [74] and evolutionary processes for learning rules

for fuzzy controllers [22].

2.8 Software Requirements

Section 2.7 illustrated the importance of a flexible software framework. It should be pos-

sible to reuse and compose various algorithms in different ways with a minimum amount

of recoding. Ideally, any permutation should be made possible by merely changing the

configuration of the system at runtime.

Section 2.1 demonstrated that most problem classes can be re-framed as optimisation

problems. For this reason, any optimisation algorithm should be able to operate on any

problem which can be cast as an optimisation problem, as defined in Section 2.1.1.

It is tempting to make the next step and simply treat all problems as optimisation

problems, that way the interface between algorithms and problems is reduced to a single

set of interactions. To see why this is a poor idea, consider what the interface for an

optimisation problem might look like. Optimisation algorithms, such as the PSO or a

GA, require only two pieces of information from the problem. Firstly, they need to know

the domain of the problem. Secondly, and most importantly, they need to know the

fitness of a potential solution to the problem. Any more information would not be used

by such optimisation algorithms. Indeed, many optimisation problems, such as function

minimisation, simply cannot provide any more information either. Thus, an optimisation

problem must be characterised by an interface that supplies the domain of the problem

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 2. COMPUTATIONAL INTELLIGENCE 51

and the fitness of a given solution within that domain.

From an implementation perspective, contrast the functioning of a generic optimisa-

tion algorithm, which only needs to query the fitness of potential solutions to a problem,

with a feed forward neural network. The neural network needs access to a set of training

patterns with their associated inputs and targets. Thus, the neural network requires more

information from the problem domain than a generic optimisation algorithm, which is

satisfied with only having access to an objective function. Therefore, the software should

have different interfaces for problems that make different information available to algo-

rithms according to their context. The various algorithms, in turn, should be able to be

applied to whatever types of problems they support, also by means of configuration at

runtime. Further, any problem that can be represented as another type of problem, via

some transformation such as those discussed in Section 2.1, should expose an interface to

do so. For example, a TSP should expose an optimisation problem interface in addition

to its more natural interface, which would expose a graph topology necessary for an

algorithm such as ACO.

Stopping conditions are another important element of algorithms that should be

handled in a pluggable way. All algorithms presented in this chapter loop until some

stopping condition is met. Those stopping criteria exist independently of the partic-

ular algorithm. Any algorithm can have as a stopping criterion a maximum number

of iterations. Optimisation algorithms may have as a stopping criterion a maximum

number of evaluations of the objective function. Particle swarms may have a stopping

criterion based on a minimum swarm diameter. Once again, stopping criteria should be

configurable at runtime for any algorithm.

Finally, since the software will be used for scientific research it is important to be

able to measure certain properties during the execution of any algorithm. Some of these

properties may be dependent on the specific problem or algorithm being used, how-

ever, they should still be implemented in a reusable fashion externally to the algorithm.

Measurements should not clutter the implementation of algorithms and should not even

be present if they are not used, for example, if the software is deployed in a specific

non-research application that has no need for measurements.

Creating a flexible software design is a challenging task. The next chapter presents

patterns which are invaluable aids for creating such designs.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

Chapter 3

Design Patterns

“A common mistake that people make when trying to design something com-

pletely foolproof is to underestimate the ingenuity of complete fools.”

— Douglas Adams

Design patterns succinctly encapsulate the knowledge of experienced programmers by

specifying proven solutions to commonly recurring software design scenarios. Patterns

are not specifically invented or designed, rather, they are discovered by observing best

practices and recurring design solutions that have proven to be useful, efficient, and

extensible in existing software.

The Gang of Four [41], or GoF as the pioneers of the field are usually referred to,

presented a catalogue identifying core design patterns which apply to Object Oriented

Programming (OOP) in general. In addition, catalogues have since been compiled for

the following:

• high level architectural patterns [19, 39];

• distributed systems and concurrency patterns [98];

• database programming patterns [86];

• language or framework specific patterns [4, 80].

Catalogues of design patterns enable software developers to draw upon documented

experience instead of reinventing the wheel. Good design is difficult to accomplish,

particularly for novice programmers, usually requiring a number of redesign iterations.

52

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 53

Pattern catalogues consist of mature and successful designs that have been frequently

found in software written by experienced programmers. In this way patterns capture the

experience of experts, providing it in a concise and easy to digest form.

An entry in a design pattern catalogue consists of four essential components. Firstly, a

short and descriptive pattern name. These names define a vocabulary for communicating

about entire designs at a higher level of abstraction. Secondly, an outline of the problem

and its context together specify when it is appropriate to apply the pattern. The most

important element of any pattern is obviously the solution to this problem. Solutions are

described in abstract terms, along with class structure diagrams, that can be applied as

a template in many different concrete situations. Sample code demonstrating the usage

of the pattern is often presented. Finally, the impact and known consequences of the

pattern are listed.

Software implementing design patterns does not only benefit from the expert experi-

ence derived from the patterns. The patterns themselves serve as documentation for that

software too. Scholars of design patterns should be able to understand the design of such

software with little more documentation than a reference to the applicable pattern and

a brief explanation of any unusual implementation details. Furthermore, programmers

unfamiliar with design patterns can simply refer to the catalogue where the design is dis-

cussed in detail. The self documenting nature of code that uses patterns is an important

reason for patterns being discussed in this work, otherwise the patterns that have been

used in the implementation, although very useful in ensuring good design, may just as

well have been considered an irrelevant implementation detail.

This chapter summarises those GoF patterns that are applicable to CILib and CiClops.

The patterns are separated, based on their purpose, into three distinct categories: cre-

ational patterns, presented in Section 3.1; structural patterns, presented in Section 3.2;

and behavioural patterns, presented in Section 3.3. The intention, describing the primary

purpose of a pattern, is quoted directly from the GoF catalogue [41] as an introduction to

each pattern. The patterns are summarised in a less rigid form than the GoF catalogue

without many examples. Chapters 6 and 7 will serve as adequate examples where the

implementations of these patterns are discussed. High level architectural and framework

specific patterns are implicitly covered, as required, when platforms such as Java 2 En-

terprise Edition (J2EE) are discussed in Chapter 5. This chapter concludes with a short

discussion in Section 3.4

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 54

3.1 Creational Patterns

The common theme amongst the creational patterns is delegating the details of object

creation in a particular system, or client, to other classes external to the client that can

vary independently. That is, there is a decoupling between the use of objects and their

creation.

Section 3.1.1 presents the Abstract Factory pattern, where the instantiation of objects

is delegated to a polymorphic interface. The Builder pattern, in Section 3.1.2, abstracts

the process of instantiating a complex set of objects into a reusable unit that can be

used to construct different representations using the same build process. Section 3.1.3

discusses a pattern for creating objects by cloning existing prototype objects. Finally,

the Singleton pattern, in Section 3.1.4, limits the instances of a given class.

3.1.1 Abstract Factory

“Provide an interface for creating families of related or dependent objects

without specifying their concrete classes” — GoF

Figure 3.1: Abstract Factory

Figure 3.1 illustrates the design of the Abstract Factory pattern. The core participant in

the pattern is the abstract factory interface which defines the contract that its client uses

to instantiate objects. The most important aspect of the pattern is that the client is never

exposed to the implementation details, including the class names, of the concrete factories

or the classes that they create. Each concrete factory is responsible for producing its own

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 55

family of concrete products with the only requirement being that the abstract interfaces

are satisfied. Thus, if the client is written to conform to the abstract interfaces then the

concrete factories, and by extension the products that they produce, may be interchanged

without requiring changes to the client.

The decoupling of a system from how its products are created provides immense

flexibility, to the extent that the entire behaviour of the system can be altered by simply

changing the factory used to create the objects that it uses. Furthermore, dependencies

between a family of products can be enforced, since a single concrete factory is responsible

for all the different products at any given time. Unfortunately, a drawback of the design

is that adding new products is difficult, since it entails a modification of the abstract

factory interface. Such an interface change translates into changes to all existing concrete

factory implementations to support the new product which, in turn, is likely to require

new product implementations to be defined as well.

3.1.2 Builder

“Separate the construction of a complex object from its representation so that

the same construction process can create different representations” — GoF

Figure 3.2: Builder

The Builder pattern, depicted in Figure 3.2, assembles complex objects in a piecemeal

fashion, building them part by part. A director class controls the construction process

while delegating the creation and assembly of parts of the product to an abstract builder

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 56

interface. Thus, a concrete builder has jurisdiction over the implementation details of the

parts as well as how they are assembled to create a larger complex product. Typically,

the functioning of the director is dictated by the traversal of some data structure or

document. The builder interface exposes the set of operations that may be utilised by a

director to construct a product according the structure it traverses.

Products produced by a given concrete builder implementation need not conform to

any given interface. Thus, it is possible for two different concrete builders to create

two very different products using the same construction process, as specified by the

director. Alternatively, different directors may use the same builder interface permitting

different structures to be rendered into the same product representation. In addition, the

director provides finer control over the construction process than the Abstract Factory

which creates each of its products in a single shot.

3.1.3 Prototype

“Specify the kinds of objects to create using a prototypical instance, and create

new objects by copying this prototype” — GoF

Figure 3.3: Prototype

The Prototype pattern creates new objects by copying, or cloning, existing objects. Im-

portantly, the client making a clone of an object need not know the type of object it

is dealing with, only the fact that the object implements the prototype interface. The

responsibility of making the copy falls on the object being cloned, as shown in Figure 3.3.

One of the key benefits of prototypes is that they enable a client to instantiate objects

that have been configured at run time. That is, objects with different run time state or

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 57

object structures that have been composed together in different ways at run time may

conceptually be considered to be instances of different classes. The Prototype allows

these different run time configurations of objects to be treated as new classes that can

be instantiated like any other class. Thus, an application can be configured with new

classes dynamically.

When used in conjunction with the Abstract Factory, the Prototype pattern can mit-

igate the need to create concrete factories for every product. Instead, a single factory

can simply be configured with different prototype instances as products.

The clone operation typically performs a deep copy which has an obvious caveat

pertaining to circular references. Prototypes containing any circular references need to

take appropriate measures to prevent infinite looping.

3.1.4 Singleton

“Ensure a class only has one instance, and provide a global point of access

to it” — GoF

Figure 3.4: Singleton

The Singleton pattern, illustrated in Figure 3.4, is characterised by three properties.

Firstly, any constructors are inaccessible so that clients can not arbitrarily create in-

stances of the class. Secondly, the only existing instance is a static field, also known as

a class scoped field, which is also not directly accessible to clients. Finally, a publicly

accessible static method provides clients with access to the single instance. The single

instance may be statically initialised or it may be initialised in a lazy fashion by the

public accessor the first time it is called.

The purpose of the Singleton is to prevent a shared object from being instantiated

by multiple clients. Limiting the number of instances not only saves memory, but more

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 58

importantly, it prevents difficult to detect programming errors from occurring, where an

object which is supposed to be shared is not being shared properly. Further, a singleton

can be used as a namespace to store global application context cleanly, without resorting

to global variables. Moreover, instead of restricting clients to a single instance, it is trivial

to extend the pattern so that the implementation maintains a limited pool of objects for

applications that require it.

3.2 Structural Patterns

Structural patterns describe methods to compose classes to form larger useful structures.

That is, they illustrate flexible methods of interaction between classes by specifying how

classes should be combined and used together.

The Adapter pattern, in Section 3.2.1, demonstrates how incompatible classes can be

made compatible and used together. Section 3.2.2, the Composite, discusses a pattern

that enables hierarchies of objects and individual objects to be treated in a uniform

fashion. The Decorator pattern, which can be used to dynamically associate additional

behaviour with objects, is discussed in Section 3.2.3. Complex systems of classes can be

simplified into a single interface using the Facade in Section 3.2.4. Finally, the Proxy

pattern provides a way to facilitate or control access to the objects which it stands in

for.

3.2.1 Adapter

“Convert the interface of a class into another interface clients expect. Adapter

lets classes work together that couldn’t otherwise because of incompatible in-

terfaces” — GoF

Figure 3.5 illustrates the most common form of the Adapter pattern, particularly in lan-

guages that only support single inheritance. The adapter class maintains a reference to

the object which it is adapting, the adaptee, while conforming to the target interface

expected by the client. Another form of adapter inherits both the target and adaptee

interfaces which may not always be possible in languages that do not support multiple

inheritance. The multiple inheritance version has the advantage of being able to triv-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 59

Figure 3.5: Adapter

ially override any operations belonging to the adaptee, if necessary, whereas the version

presented here requires an auxiliary class to override adaptee operations.

The amount of work that needs to be done by the adapter is application specific and

depends on how much the target interface differs from that of the adaptee. In some cases,

particularly when reusing legacy classes in a new framework, all that may be required

is changing the the name of an operation or converting the types of its arguments. In

more extreme cases, the interface may be totally different, requiring more work to make

the adaptee conform to the target interface expected in the context of the client.

3.2.2 Composite

“Compose objects into tree structures to represent part-whole hierarchies.

Composite lets clients treat individual objects and the compositions of objects

uniformly.” — GoF

The Composite pattern, depicted in Figure 3.6, represents hierarchical structures of ob-

jects in such a way that clients can treat the individual objects in exactly the same way

as they treat the entire composite. Operations on leaf nodes in a composite structure

behave according to the type of node that the operation is being executed on, whereas

composite nodes typically delegate the requested operation to each of their child nodes.

Hierarchies can be built recursively, since a composite node is itself a component which

in turn contains components.

The primary benefit of the Composite pattern is also its weakness. The fact that

clients should not need to differentiate between operations on leaf nodes and operations

on composite nodes means that the root component interface needs to support all of the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 60

Figure 3.6: Composite

operations supported by any of the components, thus reducing type safety. For example,

operations for maintaining the child nodes of a composite do not usually apply to leaf

nodes, so these operations usually have an empty implementation in the root interface.

Similarly, there may be operations specific to leaf nodes that do not make sense for

composite nodes, or even other types of leaf node for that matter. Thus, even though all

components must implement the same component interface by virtue of inheriting from

it, some of them may have unexpected or default behaviours when certain operations

are called.

3.2.3 Decorator

“Attach additional responsibilities to an object dynamically. Decorators pro-

vide a flexible alternative to subclassing for extending functionality.” — GoF

Structurally, the Decorator pattern, in Figure 3.7, and the Adapter presented in Sec-

tion 3.2.1 are similar. Both delegate operations prescribed by a target interface to

another class which they reference, or wrap. In the case of the Adapter, the adaptee is

an arbitrary class that must be made to conform to a target interface. The Decorator,

however, delegates operations specified by the component interface to another class con-

forming to that same interface with the purpose of adding responsibilities to the original

component, not to make the already compatible interfaces compatible with each other.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 61

Figure 3.7: Decorator

Nevertheless, throughout design pattern literature, both the Adapter and the Decorator

have been referred to by the same alternate name, namely the Wrapper pattern, probably

owing to the fact that both have a similar structure.

Concrete decorator classes add a combination of additional state and behaviour to

a target class without changing the interface that is exposed to the client. Typically,

the base decorator class is simply an identity mapping for the operations defined by the

component interface. That way, a concrete decorator need only override the operations

necessary to achieve its goal. The primary benefit of the decorator is that these ad-

ditional responsibilities can be dynamically added and removed from a component at

run time, whereas extending the responsibilities of a class through normal inheritance

is fixed at compile time and as such is less flexible. Concrete components need not

implement seldom used functionality that can be added by decorators on an as needed

basis. Unfortunately, decorators are not truly transparent, since clients cannot rely on

the equivalence of decorators and their components based on their references.

3.2.4 Facade

“Provide a unified interface to a set of interfaces in a subsystem. Facade

defines a higher-level interface that makes the subsystem easier to use”

— GoF

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 62

Figure 3.8: Facade

The Facade pattern, illustrated in Figure 3.8, decouples a complex system from its clients

by providing a high level interface to access the system in a simplified way. The extra

flexibility and extensibility that other design patterns bring to the table often has the

net result of making a system of classes more complex. For example, a client may be

able to configure a well designed system to better suit its needs by extending some of

the classes that make up that system. The Facade provides a mechanism to counteract

some of this complexity in the cases when a client does not need to alter the default

behaviour of a system.

Structurally, the Facade is also similar to the Adapter, presented in Section 3.2.1,

except that the facade typically maintains references to many objects within the system

instead of only adapting the interface for a single class. In effect, the facade adapts the

interfaces provided by an entire system and presents them as a single simplified interface

to clients.

The most important feature, with respect to making a system more maintainable, is

that the facade decouples the client from the system so that changes to the internals of

the system do not affect clients. Further, the facade interface may be polymorphic so

that the entire system implementation can be switched without the client’s knowledge

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 63

by simply changing the instance of the facade being used. The decoupling provided

by the facade can also be extended to the interface between between different layers

in a multi-layer framework. The refined interface reduces the communication between

layers and thus reduces their dependency on one another while improving performance,

particularly if the layers are implemented in different address spaces.

While the facade provides a simpler interface to the system, there is typically nothing

preventing a client from accessing system classes directly. In fact, the facade interface

may require the client to do so by accepting as arguments or returning system specific

classes. Further, the client may need to use some complex features of the system that

the facade does not provide access to. Obviously, the more that a client directly relies

on the system classes, the tighter the coupling and harder it is to modify the system

without affecting its clients.

3.2.5 Proxy

“Provide a surrogate or placeholder [sic] for another object to control access

to it.” — GoF

Figure 3.9: Proxy

According to Figure 3.9, the Proxy pattern is very similar to the Decorator, presented

in Section 3.2.3. In fact, in certain cases, a proxy can also be considered to be attaching

additional responsibilities to the object for which it stands proxy. The difference lies in

the intent of the pattern, even though they are structurally very similar. The responsi-

bilities associated with a proxy are typically more behind the scenes or house-keeping in

nature than actually adding application specific behaviour to objects.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 64

There are four primary types of proxy. The first, a remote proxy, is a local repre-

sentative that provides access to a complementary object in another address space. An

example of this is a stub object, typically automatically generated, that implements calls

to the same object on a remote machine via Remote Procedure Call (RPC). Secondly,

virtual proxies are place holders, used to create and destroy their objects on demand,

that are usually used to optimise memory or initial start up cost. Third, protection

proxies prevent unauthorised client access to methods by implementing access control

before delegating the method call to the real subject. Finally, smart references can be

used to implement reference counting, locking or copy-on-write semantics.

3.3 Behavioural Patterns

Behavioural patterns model the flow of control and algorithmic interaction between ob-

jects. They specify how responsibility should be assigned to various classes to achieve

communication between objects in the most flexible manner.

The Interpreter pattern, in Section 3.3.1, describes a method to represent a grammar

as objects and use those objects to interpret the language. Section 3.3.2 discusses the well

known Iterator pattern which specifies how objects in a collection should be traversed.

Section 3.3.3 defines the Observer pattern which implements a flexible event model. The

Strategy pattern, in Section 3.3.4, decouples a client from the algorithms it uses so that

the algorithms can be varied independently. The Template Method pattern, discussed in

Section 3.3.5, permits an algorithm to be defined in terms of abstract operations that

are provided by subclasses. Finally, operations on collections or object structures can be

encapsulated using the Visitor pattern, as discussed in Section 3.3.6.

3.3.1 Interpreter

“Given a language, define a representation for its grammar along with an in-

terpreter that uses the representation to interpret sentences in the language.”

— GoF

Figure 3.10 shows the abstract structure of the Interpreter pattern, used to interpret sen-

tences in a language defined by a given grammar. The dynamic, or run time, structure

of the abstract syntax tree reflects a sentence in the language. Terminals in the language

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 65

Figure 3.10: Interpreter

are represented by leaf nodes while non-terminals are represented by internal tree nodes.

For arithmetic expressions, a separate non-terminal class would be defined for each of

the arithmetic operators, while a single terminal expression class would suffice for rep-

resenting constants. The value of the expression is then interpreted by simply calling

the interpret method at the base of the tree, which is recursively propagated down the

tree. Each operator is responsible for providing its own interpretation. For example, the

interpret operation for an addition node would simply add the results of calling interpret

for each of its children. The context is used to store global information, such as the

current position in the sentence being interpreted.

The Interpreter pattern makes implementing and extending the grammar easy, since

classes that represent the grammar have a one-to-one correspondence with its rules.

Representing large grammars, however, requires many classes which becomes difficult to

maintain. In addition, supporting a new interpretation of the grammar requires adding

an operation to each of the expression classes which can become unwieldy if there are too

many classes. Also, the Interpreter pattern does not address the process of parsing the

language into its hierarchical representation, for which a traditional recursive descent or

table-driver parser may be used.

3.3.2 Iterator

“Provide a way to access the elements of an aggregate object sequentially

without exposing its underlying representation.” – GoF

The Iterator pattern, demonstrated in Figure 3.11, provides a method to access elements

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 66

Figure 3.11: Iterator

of an aggregate object, or container, without exposing the client to the internal repre-

sentation of the aggregate. The client obtains a reference to an iterator by calling an

operation to create an iterator, a factory method, provided by the aggregate’s interface.

This operation returns an iterator that is specific to the concrete aggregate but which

supports a well defined interface for performing the iteration. The iterator is responsible

for keeping track of where it is in the traversal of the aggregate while providing opera-

tions for controlling the traversal. Using the iterator interface, the client can move the

iterator to the start of the traversal, obtain the current element, move the iterator to the

next element and determine whether there are any more elements left in the traversal.

As long as all aggregates conform to the same interface, clients can access their elements

in a uniform way.

The most important feature of the iterator is that it provides a standard mechanism

for traversing aggregate structures. The interfaces of aggregates are kept clean, since

new kinds of traversals can be implemented by simply replacing the iterator. Further,

more than one traversal can be pending on the same aggregate because the iterator, and

not the aggregate, is responsible for recording the state of the traversal.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 67

3.3.3 Observer

“Define a one-to-many dependency between objects so that when one object

changes state, all its dependents are notified and updated automatically.”

— GoF

Figure 3.12: Observer

The Observer pattern, illustrated in Figure 3.12, models the dependency between a

subject and its observers. Any number of observers may subscribe, by means of the attach

operation, to be notified whenever the state of the subject changes. After detaching from

a subject, an observer will no longer be notified of events. Upon being notified that the

state of the subject has changed, an observer may query the state of the subject and

take any appropriate actions.

The Observer promotes a very loose coupling between a subject and its observers.

A subject knows nothing about its observers beyond that they conform to the observer

interface. The observer interface presented here is fairly primitive, in that it does not

provide any information about the change in state, other than the fact that some state

change did occur on some subject. This means that an observer may have to expend

considerable effort to determine exactly what state changed. A protocol that is more

specific about any state changes would alleviate this problem. In addition, a single

observer cannot differentiate between events from multiple subjects. Fortunately, the

observer interface can be trivially extended to include a reference to the subject that

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 68

originated the event, making many-to-many dependencies possible. Finally, observers

have no knowledge about other observers attached to the same subject. This means

they are blind to the cost of causing changes to the subject, which may cascade into

more changes by other observers.

3.3.4 Strategy

“Define a family of algorithms, encapsulate each one, and make them inter-

changeable. Strategy lets the algorithm vary independently from clients that

use it.” — GoF

Figure 3.13: Strategy

Figure 3.13 shows the structure of the Strategy pattern. At first glance, it simply looks

like a polymorphic class that implements multiple behaviours. The importance of the

pattern, however, lies in the fact that it is the strategy interface which is polymorphic

and not the context class itself. The context, which plays the role of the client, delegates

the responsibility for a part of its implementation to an external strategy instance. Sub-

classing the context directly to provide the different behaviours would result in a less

flexible design. By encapsulating the behaviour into a strategy, the context is simplified

and different behaviours can be switched dynamically at run time. Also, the context

can depend on multiple strategies, for different parts of its operation, simultaneously,

which would be impossible to support by directly subclassing the context. For example,

a client may rely on one hierarchy of strategies for one part of its implementation while

maintaining an additional reference to another hierarchy of strategies for another. Sub-

classing the context directly would require a new subclass for each combination of the

different strategies that can be independently interchanged.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 69

Another benefit of factoring the strategies into a separate hierarchy is that common

functionality amongst a family of algorithms can be shared at the root of the strategy

hierarchy without cluttering the context. Conditional statements in a client are prime

candidates for factoring into a strategy, each branch is simply implemented as an ad-

ditional concrete strategy, improving flexibility at the cost of increasing the number of

classes in the system. The algorithm interface must provide access to the context data

needed by any of the concrete strategies, which may create additional overheads for

strategies requiring less context data. One possibility is to pass the context itself to the

strategy and allow the strategy to query it directly.

3.3.5 Template Method

“Define the skeleton of an algorithm in an operation, deferring some steps

to subclasses. Template Method lets subclasses redefine certain steps of an

algorithm without changing the algorithm’s structure.” — GoF

Figure 3.14: Template Method

The Template Method pattern, depicted in Figure 3.14, specifies the invariant parts of

an algorithm in terms of primitive operations that may be overridden by subclasses.

Primitive operations are usually abstract methods, however, they may also be empty

methods or have default behaviours creating optional hooks that clients may choose to

customise through subclassing. If any of the primitive operations are abstract then the

template method is said to implement an abstract algorithm.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 70

The template method, particularly if it cannot be overridden, fixes a specific set of

operations and their ordering for subclasses, promoting code reuse. Often, a subclass

needs to perform some additional processing before or after a method in its parent class

is called. A template method with an appropriate hook facilitates this kind of behaviour

with the added benefit that the subclass cannot forget to call the original method which

it would otherwise have overridden directly. Unfortunately, this approach can only be

implemented one level deep without creating new names for the hook at each level of

inheritance. Obviously, the template method doesn’t restrict the placement of hooks to

only the beginning and end of methods, giving a subclass far more flexibility in how it

reuses the code in a parent class.

3.3.6 Visitor

“Represent an operation to be performed on the elements of an object struc-

ture. Visitor lets you define a new operation without changing the classes of

the elements on which it operates.” — GoF

Figure 3.15: Visitor

Figure 3.15 illustrates the Visitor design pattern. The object structure can be any aggre-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 71

gate but is typically a tree structure such as an Interpreter hierarchy, as in Section 3.3.1,

or a Composite, as in Section 3.2.2. A visitor encapsulates an operation which must be

performed on each element of the object structure, while the accept method is responsi-

ble for traversing the object structure and calling the appropriate method for the type

of element being visited. This calling strategy is known as double dispatch, since the

method called to perform the operation is determined by both the type of the element

in the object structure and the type of visitor.

Instead of spreading different parts of the same operation over multiple classes in a

object structure, visitors enable related parts of an operation on multiple elements to be

grouped into the same class. This clean encapsulation of an operation into a single class

makes adding new operations easier, however, adding a new element type to the object

structure requires changing all existing visitors to support it. Many of the special purpose

methods in an Interpreter or Composite structure can be replaced with a single accept

method for visitors that encapsulate those operations externally. Visitors also have the

advantage of being able to accumulate state which may be difficult to distribute over

multiple elements in an object structure. Unfortunately, because a visitor is external to

the object structure, it may be necessary to provide a wider interface on the elements

than would have otherwise been needed if the operations where supported internally

within the structure. Thus, encapsulation for the elements may be adversely reduced so

that visitors can perform their job.

3.4 Discussion

Design patterns are not an exact science. Patterns may be adapted and customised in

the context in which they are being applied. Remember, design patterns are, for the

most part, merely a way to encapsulate expert knowledge in an easy to digest form.

They should be considered as guidelines for a good design rather than strict rules, since

every situation is unique with its own set of constraints. Developers should still be free

to be creative while building upon the knowledge gained from a study of patterns.

Patterns are also inter-related with certain patterns lending themselves to useful com-

binations. A few of these combinations have been hinted at in this chapter. Section 3.1.3

suggests that the Prototype can be used in conjunction with the Abstract Factory to al-

leviate the problem of parallel class hierarchies. The Visitor pattern, as discussed in

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 72

Section 3.3.6, lends itself particularly well to a combination with the Interpreter or

Composite patterns. Further, the Abstract Factory and Facade are often implemented as

a Singleton when their implementations can be shared amongst multiple clients.

Finally, it should be noted that this chapter is not an exhaustive literary study of

design patterns. There are more patterns presented in the GoF catalogue as well as many

more ways that patterns are related to one another. Further, there are other catalogues

that cover even more designs patterns, some of them specific to particular application

domains. The content in this chapter is merely a terse summary of only those patterns

that have been used in the implementation backing this work. Chapters 6 and 7 will

refer back to the patterns presented in this chapter as appropriate.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

Chapter 4

Open Source Software (OSS)

“Gnu: n. [Hottentot gnu, or nju: cf. F. gnou.] (Zo[”o]l.) One of two species

of large South African antelopes of the genus Catoblephas, having a mane

and bushy tail, and curved horns in both sexes. [Written also gnoo.]

Note: The common gnu or wildebeest (Catoblephas gnu) is plain brown; the

brindled gnu or blue wildebeest (C. gorgon) is larger, with transverse stripes

of black on the neck and shoulders.” — Webster’s Revised Unabridged Dic-

tionary.

Open Source Software (OSS) [92], also known as free software [105], is any software dis-

tributed under a license conforming to the Open Source Definition (OSD) as published

by the Open Source Initiative (OSI)1. An unannotated copy of the current OSD is at-

tached as Appendix C, however, later versions may be published on the OSI web site as

the definition is refined. An annotated version, describing the motivation for each clause

of the definition, is also available from the OSI web site. Unlike the OSI, which ap-

proaches OSS from a very pragmatic perspective, the Free Software Foundation (FSF)2

approaches OSS from a more ethical ideology concerned with civil liberties. Essentially,

free software licenses are designed to protect four basic freedoms:

• Freedom of use: Recipients of OSS are granted the right to use the software for

any purpose.

1http://www.opensource.org
2http://www.fsf.org

73

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 74

• Freedom to source: Recipients of OSS are provided free access to the source

code.

• Freedom to modify: Recipients of OSS are granted rights to prepare derivative

works.

• Freedom to distribute: Recipients of OSS are granted rights to distribute the

software, in original or modified form, either for free or for a fee.

While the OSI and FSF have somewhat different motives and are in disagreement

about whether OSS should properly be called free software and vice versa, a common

ground lies in the terms of the licenses that they both advocate. Therefore, the most

popular OSS licenses and their characteristics are surveyed in Section 4.1.

OSS has many benefits for both developers and users of the software. From the user

perspective, the zero marginal cost and high quality of OSS are often cited. Section 4.2

discusses the OSS ecosystem while concentrating on the benefits of OSS to developers.

A common misconception regarding OSS is that it cannot be utilised for financial gain,

however, it is certainly possible to make money from OSS through indirect sale business

models such as those mentioned in Section 4.3. In fact, many large industry players such

as IBM3, Sun Microsystems4 and Novell5 have embraced OSS for profit.

OSS is of particular importance to developing countries. In particular, Section 4.4

discusses OSS in a South African context. Further, certain software pertaining to this

work is distributed under an OSS license. Since this work constitutes University of Pre-

toria intellectual property, strong motives for releasing the software under such a license

are provided in Section 4.5. Finally, this chapter concludes with credits in Section 4.6,

listing the OSS that has been instrumental in completing this work.

4.1 Licenses

The characteristics of the most popular6 and best known OSS licenses are compared in

Table 4.1. The complete text of these licenses are provided in Appendix E as a reference.

3http://www.ibm.com
4http://www.sun.com
5http://www.novell.com
6According to SourceForge, http://sourceforge.net/softwaremap/trove list.php?form cat=14

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 75

Terms and conditions for many other free software licenses are available on the OSI and

FSF web sites. In addition, many OSS licenses have multiple versions and it should be

noted that this work only considers the latest versions of those licenses at the time of

writing. Newer versions will more than likely be published by the OSI or FSF as they

come to exist.

While all of the licenses listed in Table 4.1 are OSI approved and are classified as

free software licenses in terms of the four freedoms presented at the beginning of this

chapter, they can be further divided into two broad categories: those that are copyleft,

or GPL style; and those that are not, such as the BSD or MIT style licenses. Copyleft

licenses place an additional restriction on the software, so they are less permissive and

are therefore arguably less free licenses, requiring that any modifications, if distributed,

must be made available under free terms again. A copyleft clause in a license essentially

prevents free software from becoming non-free, which benefits the free software commu-

nity as a whole even though the rights of any given individual within that community

are curtailed.

The GNU General Public Licence (GPL), developed by the FSF as the license for the

GNU Project7, is probably the most important free software license in existence, with in

excess of 39 thousand SourceForge8 software projects licensed under its terms, including

software developed for this work. The compatibility of other licenses to the GPL is an

important characteristic of a license, since software licensed under incompatible terms

cannot be linked against GPL software.

Table 4.1 further characterises licenses based on whether they permit additional war-

ranty or liability protection to be sold and whether the license grants patent rights in

addition to the four basic freedoms of free software.

Sections 4.1.1 through 4.1.9, in turn, detail the characteristics of each of the licenses

presented in Table 4.1.

4.1.1 Academic Free License (AFL)

The Academic Free License (AFL, version 2.1), in Appendix E.1, is a non-copyleft license

provided by the OSI. Software specific details are avoided in the license terminology,

7GNU: A recursive acronym for GNU’s Not Unix; refer to

http://www.fsf.org/gnu/thegnuproject.html for information about the GNU Project
8http://www.sourceforge.net

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 76

Table 4.1: Open Source License Characteristics

License Copyleft GPL Compat. Warranty Prov. Patent Lic.

AFL X X X
√

ASL X X
√ √

AL X
√ √

X

BSD (original) X X X X

BSD (revised) X
√

X X

CPL
√

X
√ √

GNU GPL
√

-
√

X

GNU LGPL -
√ √

X

MIT X
√

X X

MPL - -
√ √

OSL
√

X X
√

making the license ideally suited for non-software works, such as documents, while still

being general enough to apply to software.

The second clause grants a recipient of a work covered by the license a royalty-free

right to use and sub-license patents. In addition, if a recipient enters into any patent

infringement action against a licensor or licensee, that recipient’s rights under the license

are terminated. The patent termination clause makes the AFL incompatible with the

GPL.

No provision is made for a licensor to sell additional warranty or liability protection.

The work is licensed as is, without any warranties, aside from a warranty that applicable

copyrights and patents are owned by the licensor, and disclaims all liability.

4.1.2 Apache Software License (ASL)

The Apache Software License (ASL, version 2.0) is a free software license with similar

patent grant and termination clauses to the AFL, also making it incompatible with

the GPL. Clause 9 permits anyone who distributes software under the ASL to provide

additional warranty or liability protection. Finally, the license is not copyleft, meaning

that any recipient may distribute the software under different license terms as long as

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 77

all the obligations of the ASL, as specified in Appendix E.2, are met.

4.1.3 Artistic License (AL)

The Artistic License (AL, version 2.0beta4), presented in Appendix E.3, is designed to

protect an originator’s artistic control over future versions of the software. In essence it

requires modified versions to clearly indicate any changes and satisfy one of the following

conditions: i) the changes must be submitted back to the original contributor for con-

sideration in the standard version, ii) the package must be renamed to something that

cannot be confused with the original, or iii) it must be made available under free terms

to whomever it is distributed to.

Although the AL is scattered with hints of copyleft concepts, clause 6(b) clearly allows

the software to be made non-free, so long as any changes are documented and that it

cannot be confused with the original work. The license is, however, GPL compatible

and although no specific clause specifically applies to additional warranty provisions,

the standard warranty disclaimer text, in clause 11, does permit such provisions to be

stipulated in writing. Patent licenses are not covered.

4.1.4 BSD Licenses

The revised BSD license, presented in Appendix E.4, is an extremely permissive non-

copyleft license which primarily ensures that copyright notices are properly maintained.

The original version had an additional advertising clause, requiring the University of Cal-

ifornia, Berkeley and its contributors to be credited in any advertising material, making

it incompatible with the GPL. Neither version permits the names of any contributors

to be used as an endorsement to promote the licensed work. Both forms of the license

explicitly disclaim all liability and warranties while saying nothing about patents.

4.1.5 Common Public License (CPL)

The Common Public License (CPL, version 1.0), in Appendix E.5, has been designed to

facilitate the commercial use and distribution of software. The CPL is not compatible

with the GPL. It has similar patent grant and termination clauses to the AFL and ASL,

but unlike those licenses, it offers some copyleft characteristics.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 78

The copyleft terms in the CPL are not as stringent as the GPL, since separate modules

may be licensed under their own terms. While derivative works are explicitly excluded

from this concession, it is not explicitly clear where the boundary between a module

and a derivative work lies. Binary distribution under another license is also permitted

provided that i) warranty and liability exclusions are carried over, ii) source code is made

available to a recipient on request, and iii) the terms of the other license do not otherwise

conflict with requirements of the CPL.

Warranty and other liability protections may be offered provided that any other

contributors are properly indemnified. That is, a distributor offering additional protec-

tions accepts all responsibility, including defending any legal claims made against any

contributor.

4.1.6 GNU General Public Licenses (GPL and LGPL)

The GNU General Public License (GPL, version 2), presented in Appendix E.6, is a

strong copyleft license. In fact, the GPL is the original definition of copyleft. That

is, the copyleft terminology was coined by the FSF to encompass those properties of

the GPL that keep software free. In the case of the GPL, copyleft is accomplished by

requiring that any derivative work must again be distributed under the free terms of the

GPL, if it is distributed at all. As a consequence, if a portion of a work is licensed under

the GPL then the whole may not be distributed at all, except under terms of the GPL,

since the whole would qualify as a derivative work.

On the other hand, the GNU Lesser, or originally Library, Public License (LGPL,

version 2.1), in Appendix E.7, has more relaxed copyleft requirements. The LGPL

was originally written to enable a free software library to be used by a non-free, or

proprietary, work without requiring the whole to be made freely available. However, any

improvements or other changes to the library itself are still required to be distributed

under the free terms of the LGPL. That is, a work covered by the LGPL will remain free

while any other separate work that links against it, technically a derivative work, is not

required to be released under the terms of the LGPL. Since the LGPL is applicable to

more works than just libraries, it was renamed the Lesser GPL, to reflect the less stringent

copyleft requirements. Any recipient of a LGPL work may choose to redistribute it under

the more restrictive copyleft terms of the GPL.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 79

Incompatibilities with the GPL arise from clauses 6 and 7 of the GPL, which state

that a distributor may not impose any further restrictions on a recipient beyond what the

terms of the GPL permit. To do so would render a work undistributable under the GPL.

For example, a condition of the GPL is a royalty free right to use the software licensed

under its terms, however, if a combined work consists of some non-GPL portions which

would prevent such royalty free use, perhaps due to a patent, then the right to distribute

the GPL portion falls away too, leaving the whole in a state which cannot be distributed

under either license. For this reason, patent termination clauses in other licenses cause

an incompatibility with the GPL. Neither the GPL nor the LGPL explicitly include

a patent grant, however, clauses 6 and 7 do provide free software with a certain level

of protection from patents, in so far as the free software cannot be distributed by a

patent holder under terms other than the GPL. The FSF has recently announced plans

to release a new version of the GPL9, which is likely to have patent terms that are more

compatible with other popular OSS licenses. Since the LGPL is essentially the same as

the GPL, except for the more lenient copyleft terms, it is GPL compatible.

Both the GPL and LGPL grant distributors of software the freedom to offer additional

warranties or liability cover to their recipients.

4.1.7 MIT License

The MIT license, presented in Appendix E.8, is probably the least restrictive free software

license. Permission to use, modify and distribute the software is granted provided that

the copyright and permission notice is preserved. The permission notice also includes a

simple disclaimer which explicitly disclaims any liability or warranties. Since it essentially

does not place any restrictions on the software it covers, it is GPL compatible and non-

copyleft.

4.1.8 Mozilla Public License (MPL)

The Mozilla Public License (MPL, version 1.1), in Appendix E.9, has similar copyleft

properties to the LGPL. Clause 3.7 permits a larger work to be composed and distributed

under a different license provided that the MPL requirements are fulfilled for the covered

code. In addition, patent licenses, subject to litigation termination terms, are granted

9http://www.eweek.com/article2/0,,1730102,00.asp

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 80

by the MPL. Clause 3.5 explicitly provides for warranty support or liability obligations

under the condition that other contributors are properly indemnified. Finally, an initial

developer may, subject to clause 13, choose to license portions, or the whole, of the work

under multiple license terms, including GPL, making those parts GPL compatible.

4.1.9 Open Software License (OSL)

The Open Software License (OSL, version 2.1), presented in Appendix E.10, is virtually

identical to the AFL, except that copyleft properties are ensured by clause 1c, which

requires derivative works to be distributed under terms of the OSL. Like the AFL, the

OSL grants patent licenses, is not GPL compatible and makes no provision for additional

liability or warranty cover.

4.2 The Open Source Ecosystem

Hardin’s tragedy of the commons describes the inevitable demise of any freely shared

resource, the commons, if no resource allocation policy is enforced [51]. As an example,

Hardin considers the scenario of a public pasture which is freely shared amongst a number

of cattle farmers. The grazing cost, in terms of damage to the pasture, of another head

of cattle is diluted by the commons, while any given farmer still retains the full profits

associated with owning more cattle. This imbalance gives each farmer the incentive to

add more and more cattle, to extract the maximum value from the commons as quickly

as possible before it degrades due to over grazing. There is no incentive to contribute to

the maintenance of the commons, since any returns would again be diluted.

Freely available OSS, however, does not suffer this tragedy [92, 44, 104]. There are

two contributing factors to the tragedy of the commons: i) there is a limited supply

of resources; and ii) the lack of an enforced allocation policy drives demand up until

the supply is depleted. Fortunately, in today’s Internet connected world, software costs

virtually nothing to duplicate. As a resource, software is not depleted by the act of

copying, so free riders do not degrade the commons. On the contrary, a larger user base

actually increases the value of OSS. Thus, the demand side of the equation is taken care

of, and tragedy is avoided. On the other side of the equation, there are strong incentives

for developers to contribute to the commons, ensuring sufficient supply of free software.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 81

Compelling reasons why people and organisations contribute to the free software

commons include:

• Peer review and reputation rewards: A large user base can be a free soft-

ware project’s biggest asset. Aside from the benefits of having users provide bug

reports and feature requests, high profile projects also offer the highest reputation

rewards, attracting the attention and cooperation of other developers. The peer

review process associated with more developers, in turn, improves the quality of

the software.

• Cost and risk sharing: Customising existing free software to meet the specific

needs of a user can be cheaper than developing a solution from scratch. Further,

there is a strong incentive to contribute any improvements back to the community,

even ignoring possible copyleft constraints on the existing software. To see why,

consider the situation where a user chooses not to contribute those improvements

back to the community. Now, that user needs to maintain a separate version,

possibly merging it with improvements from the community version from time

to time. This can be an expensive undertaking, particularly if the community

version undergoes incompatible changes. Contributing the changes back avoids

this problem. Thus, it is a reasonable assumption for an initial contributor of

software to expect others to contribute improvements, initiating a cost sharing

development excersise. Also, the community offers safety. The risk of having only

a few people being able to maintain the software can be mitigated by sharing that

maintenance burden with the community, so that more than one entity has a vested

interest in the survivability of the software.

• Growing secondary markets: Very importantly, there is money to be made from

free software. By growing the community around a free software product, related

secondary markets are opened up. The indirect sale business models presented in

the next section exploit this property.

4.3 Business Models

OSS licenses typically do not prevent the distribution of software for a fee, however, some

do require that such a fee be at most the reasonable cost of copying. More importantly,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 82

all OSS licenses explicitly grant any recipient the right to freely distribute the software

again, making it difficult to build a direct sale business based on OSS. That said, several

indirect sale business models exist to exploit free software for financial gain [92]:

• Loss leader/market positioner: Free software is used to maintain or create a

secondary market for other non-free software. Thus, the use of the free product

drives sales of the non-free product. For example, giving away free development

tools in order to maintain the market for application servers, which is what IBM

is doing with the Eclipse platform to drive sales of their WebSphere10 solution.

• Widget frosting: Hardware products typically require accessory software which

does not have any sale value independent of the hardware. For example, drivers

or configuration software. By opening up the software, a hardware vendor can

benefit from a larger developer pool, better reliability through peer review and

maintenance beyond the expected product life cycle. All without sacrificing any

revenue stream, since it is the hardware that brings in the money. A concrete

example is Apple’s11 decision to open source Darwin, the core of MacOS X, since

they are primarily interested in selling the hardware on which the operating system

runs.

• Give away the recipe, open a restuarant: The software is provided freely

and services are sold to the created market. For example, vendors may choose

to sell support contracts, performance assurances, customisation services, training

and maintenance of the software according to the client’s time table. RedHat12, for

example, sells support and patch management for their open source Linux product.

• Accessorising: Accessories to the software are sold. Trivial examples include

mugs and t-shirts, while publishers such as O’Reilly sell high quality books about

free software. Other accessories might include non-free plug-ins that enhance the

functioning of the software.

• Free the future, sell the present: Software is initially sold under a closed

license with the provision that it will be released under a open license at a later

10http://www-306.ibm.com/software/webservers/appserv/was/
11http://www.apple.com
12http://www.redhat.com

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 83

date. Sales volumes are driven by the expectation that the software will become

free later, while the vendor benefits from the reduced maintenance overhead later

in the product life cycle.

• Free the software, sell the brand: The software implementation is free. Cus-

tomers must satisfy compatibility requirements and pay for the certification of the

brand.

• Free the software, sell the content: The software is free, while content sub-

sciptions are sold. For example, a game engine might be given away freely while

the story is sold for a price.

• Dual licensing: This model requires the vendor to own, or at least control, all

copyrights pertaining to the software. The product is released to the public under a

strong copyleft license, such as the GPL, making it impossible to distribute the free

software component as part of other non-free commercial software. Simultaneously,

the software is sold, under a non-free license, to clients that wish to incorporate the

software into commercial software. A community is built around the free version of

the software, building market awareness of the product. Typically, improvements

from the community may only be incorporated into the non-free version with the

permission of a contributor. Vendors may require copyrights to be signed over in

order for improvements to be incorporated into the free reference version. Dual

licensing has been successfully employed by MySQL13, for their database product,

and Sun Microsystems14 , for their StarOffice product which is available in a scaled

down form as OpenOffice15.

The common theme amongst open source business models: software is provided for free

to produce a secondary market where additional value can be sold for a price.

4.4 Open Source in a South African Context

An official open source strategy [3] has been proposed by the local South African gov-

ernment. The proposal addresses the benefits of OSS in a South African context, rec-

13http://www.mysql.com
14http://www.sun.com
15http://www.openoffice.org

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 84

ommendations for building local competencies in open source and a long term strategy

for providing government support for open source projects.

Key economic benefits, amongst others identified in the report, are the development of

local software development skills and the saving of foreign currency, since most commer-

cial software is developed abroad. By leveraging open source as an educational vehicle,

local skills in software development are developed, which in turn will stimulate SMME

(Small, Medium and Micro Enterprises) growth in the IT (Information Technology) sec-

tor. Some responsibilities (quoted directly from the report) of educational institutions

for building a capacity in open source are:

• “It is critical that strong linkages be set up with institutions of higher learning to

build a national collaborative network that can be extended internationally.”

• “Training for OSS developers and OSS users must be available. Institutions of

learning must fulfil a role in this respect.”

• “A well-run research programme will be needed to enable optimal understanding

and decision making on OSS. The model for this research programme should be

built on the networking nature of the OSS development model, harnessing the

potential of institutions of higher leaning and schools.”

The advantages that OSS holds for the local economy makes it the responsibility of

every South African citizen to leverage OSS whenever it makes business sense, reducing

foreign spending on software and creating a demand for local skills in the secondary

markets discussed in the previous section. The Shuttleworth Foundation16 is setting a

fine example by actively promoting OSS in South Africa, targeting the general public

with a wide reaching “Go Open Source”17 awareness campaign, and facilitating the use

of OSS in schools.

16http://www.shuttleworthfoundation.org
17http://www.go-opensource.org/

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 85

4.5 University of Pretoria Intellectual Property

The University of Pretoria (UP)18, like most universities, retains ownership of any Intel-

lectual Property (IP) submitted by students for degree purposes19. This means that any

decision to license the source code pertaining to this work, which is material covered by

UP copyrights, to third parties legally rests with the university’s IP authorities. There-

fore, permission to publish the CILib source code under the GPL needed to be granted

officially. A draft of the letter granting this permission is included as Appendix D. The

following reasons were offered as motivation for obtaining this permission:

• Collaboration, reputation and peer review: The CIRG@UP would like to

solicit the collaboration of third parties to accelerate the development of CILib

through a mutually beneficial sharing of development resources. By releasing the

source code under the GPL, the group hopes to benefit from the OSS peer review

process, with a goal of producing a reliable and error free software platform capable

of engendering a community’s trust in its code base. Further, the copyleft nature

of the GPL should encourage those who find the software useful to contribute any

improvements they may make back to the community. If successful, the University

of Pretoria, as initial contributor and founder of the community, will benefit from

the reputation associated with such a project.

• Use of other GPL software: Distributing software under the GPL enables it to

incorporate other GPL software. For example, CILib makes use of simulation qual-

ity random number generators ported from the GNU Scientific Library (GSL)20,

which is only licensed to the university under the GPL. This also means that CILib

may not be distributed under any license terms besides the GPL. At that time,

the university could have chosen not to distribute the software at all, keeping it

secret and losing out on all the other benefits mentioned here. Since the university

currently owns the rest of the copyrights pertaining to CILib, it may choose to

distribute those components which it owns under its own terms at any point in

the future. That is, provided the GSL components are removed, that version of

CILib may be licensed under other terms, however, the quality of any simulations

18http://www.up.ac.za
19According to the contract signed by students upon application for a degree.
20http://www.gnu.org/software/gsl/

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 86

performed using the software would be severely diminished, reducing the value of

the software as a product. Note that nothing can retroactively revoke any rights

that the university has granted to any third party who has already received a copy

of CILib under the GPL.

• Social Responsibility in a South African context: Given the discussion in

the previous section, it is important for the university to be a good citizen of

the open source community. In fact, the UP is actively pursuing open source

research through initiatives such as digital@SERA [111], a division of the Southern

Education and Research Alliance (SERA)21 which is a joint venture between the UP

and the CSIR (Council for Scientific and Industrial Research)22 focused on fostering

collaborative and sustainable research. CILib is simply another opportunity to

develop local skills while researching the applicability of the OSS development

model with respect to collaborative research.

• Business opportunities: Building a community around a freely available soft-

ware product creates the potential to exploit secondary markets, due to increased

visibility of the product in the market place.

In the case of CILib (refer to Chapter 6), it is conceivable that a future third party

might like to utilise the software in a commercial product offering. As discussed

previously, the university may license the software on its own terms to such a third

party for a fee, provided it satisfies its GPL obligations, by excluding any GPL

material not covered by university copyrights. Further, the university may be able

to co-operate in some kind of profit sharing scheme with other copyright holders

to offer a product of increased value to commercial third parties. Policies requiring

potential contributors to sign over their copyrights or grant permission for their

work to be included commercial offerings should be avoided, since such policies

may discourage contributions.

For CiClops (refer to Chapter 7), the CIRG@UP is still undecided as to an appro-

priate course of action. The university may choose to keep it proprietary, following

a “loss leader/market positioner” business model. Under this model, CiClops is

used to maintain a central repository of CILib simulation data while selling the

21http://www.seralliance.com/
22http://www.csir.co.za

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 87

services of the software and the use of the data repository. The difficulty will be

gaining the trust of third parties, if they cannot access the source code, they can-

not verify the correctness of the software or the integrity of the data repository.

On the other hand, a “free the software, sell the content” model which does not

have this problem could be pursued. In this model, only the data repository and

university computing resources are sold as a service. The danger with this is that

it opens the door to competing repositories, discouraging collaboration on a single

data repository.

4.6 Credits

Table 4.2: Instrumental Open Source Software

Package License Web Site

Apache Ant ASL http://ant.apache.org

CVS GNU GPL http://www.cvshome.org

Dia GNU GPL http://www.gnome.org/projects/dia/

Eclipse EPL http://www.eclipse.org

Emacs GNU GPL http://www.gnu.org/software/emacs/emacs.html

GNU/Linux GNU GPL http://www.fsf.org/gnu/linux-and-gnu.html

http://www.gentoo.org

JBoss GNU LGPL http://www.jboss.org

JUnit CPL http://www.junit.org

Mozilla MPL http://www.mozilla.org

MySQL GNU GPL http://www.mysql.com

NetBeans SPL http://www.netbeans.org

teTeX Various OSS http://www.tug.org/teTeX/

XDoclet BSD (revised) http://xdoclet.sourceforge.net/xdoclet/index.html

Xfig Xfig custom http://www.xfig.org

Table 4.2 presents a list of free software titles which can be credited for making this work

possible. The distribution license and web site where futher information can be obtained

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 88

are also listed alongside each title.

On the software implementation front, Eclipse, distributed under the Eclipse Public

License (EPL), and NetBeans, distributed under the Sun Public License (SPL), have

both been used as development environments. Software version control is maintained

using the CVS (Concurrent Versioning System), since it is the only version control system

currently supported by SourceForge. A recent SourceForge circular announced plans to

support the more modern Subversion23 system in the near future. The Apache project’s

Ant is the tool used to script the build process for all the software developed for this

work. Software unit testing is performed using the JUnit framework. Components of

the software are deployed on a JBoss application server using XDoclet to generate the

necessary deployment descriptors and ancillary interfaces. MySQL has been used to

provide the relational database back-end used by the application server.

This dissertation has been composed using the Emacs text editor and typeset with

the teTeX LATEX processor. All UML diagrams were composed using Dia, while the

remaining figures have been drawn using Xfig. The Mozilla browser has been used for

researching resources on the web. Finally, underlying all this excellent software has been

the GNU/Linux operating system. This work would not have been possible, at least not

within budget constraints, without the aid of free software.

23http://subversion.tigris.org/

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

Chapter 5

Languages and Tools

“Programming today is a race between software engineers striving to build

bigger and better idiot-proof programs, and the Universe trying to produce

bigger and better idiots. So far, the Universe is winning.” – Rich Cook

This chapter addresses various language and tool prerequisites for working with the

software implemented for this research.

Section 5.1 introduces XML, which is used as a configuration and data representation

language. Java and J2EE, which were chosen as implementation platforms are discussed

in Sections 5.2 and 5.3 respectively. Section 5.4 presents the XDoclet tool, which enables

attribute oriented programming. The JUnit framework, used for writing software unit

tests, is introduced in Section 5.5. Finally, the chapter concludes with a brief summary

in Section 5.6.

5.1 XML (eXtensible Mark-up Language)

XML (eXtensible Mark-up Language) is a recommendation by the World Wide Web

Consortium (W3C)1, for defining structured documents [53]. Structure is imposed on

a text document by marking up the content with user defined tags. Figure 5.1 is an

example of a simple XML document, a structured list of phone numbers.

Note that, given the proper choice of tag names, a document is reasonably self de-

scribing. It should be clear, even to somebody unfamiliar with XML, that the example

1http://www.w3c.org/XML/

89

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 90

<?xml version="1.0"?>

<!DOCTYPE phoneBook SYSTEM "phonebook.dtd">

<phoneBook>

<contact>

<name>Joe Bloggs</name>

<phone type="home">012-315-7834</phone>

<phone type="cell">082-243-4244</phone>

</contact>

<contact>

<name>John Doe</name>

<phone type="home">012-514-1423</phone>

<phone type="work">011-612-3431</phone>

<phone type="cell">083-561-9542</phone>

</contact>

<!-- possibly more contacts -->

</phoneBook>

Figure 5.1: A Simple XML Phone Book Document

is a list of contacts in a phone book with their associated phone numbers. More impor-

tantly, because the document is structured, according to the phonebook.dtd document

type definition, software can make sense of it too. The power of XML stems from the

fact that standard tools can be used for manipulating any well formed document and

that the grammar for a particular type of document can be defined and extended to suit

its natural structure.

For example, the logical structure of a book can be broadly defined in terms of

chapters, sections and paragraphs. DocBook [115], which defines an XML document

type for marking up books and technical documentation, enables an author to write

a book based on its natural logical structure. Since the book is just another XML

document, the structure is machine readable and so standard style sheet templates can

be used to transform the document into any format, in any desired medium.

Section 5.1.1 defines the syntax requirements for XML documents to be well formed.

Next, document types and schemas are discussed in Section 5.1.2. Finally, the Document

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 91

Object Model (DOM) is explained in Section 5.1.3.

5.1.1 Well Formed Documents

A document and its tags, more formally known as elements, must satisfy certain rules

in order to be well formed [123]. Any well formed document is guaranteed to be parsed

without error by a standard XML parser.

There are three simple rules pertaining to elements: i) there must be one and only one

root element; ii) an opening tag must be followed by a corresponding closing tag, where

matching is case sensitive; and iii) elements must be properly nested, so an opening tag

which is outside the scope of a nested element must be closed in the same outer scope.

Elements may contain optional attributes, such as the type attribute in the phone

elements in the example. Further, elements may be empty, in which case the element

may be closed, using a shorter syntax, by suffixing the opening tag name with a forward

slash, for example <element/>, instead of <element></element>. Empty elements may

still contain attributes. Special cases include id attributes, which are used to associate a

document scoped unique identifier with an element, and corresponding idref attributes,

which are references that can be followed to elements identified by an id attribute.

Further, there are restrictions on the characters that may be used in attribute and

tag names. Only alphanumeric characters, hyphens, underscores and periods may be

used. Throughout a document, the literal strings “&” and “<” must be used

in place of the “&” and “<” symbols respectively, otherwise they would be mistaken

as mark-up. Similar string literals are defined for quote, apostrophe, and greater than

symbols, but their use is optional. Another way to prevent character data from be-

ing processed as mark-up is to include it within a special CDATA tag, for example

“<![CDATA[text that should not be processed]]>”. Finally, comments are en-

closed within the “<!--” and “-->” tags.

5.1.2 Document Types and Schemas

Documents that conform to a given structure, constrained by either a DTD (Document

Type Definition) or a schema, are known as valid documents. These constraints are

enforced by the XML parser before an application sees a document. Validated documents

permit software to make assumptions about the structure of a document, making XML

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 92

processing software easier, and safer, to write.

<!ELEMENT phoneBook (contact*)>

<!ELEMENT contact (name, phone+)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ATTLIST phone

type CDATA #REQUIRED

>

Figure 5.2: Phone Book Document Type Definition (phonebook.dtd)

Figure 5.2 provides the DTD for the phone book example. A DTD defines all the

valid document elements and their relationships with their children. A suffix of “?”, “*”

or “+” after a child element name determines the number of children elements which

may occur, namely, zero or one, zero or more and one or more respectively. Sequences

are indicated by a comma separated list of children. Thus, the second line indicates

that a contact element must consist of a name element followed by one or more phone

elements. Legal attributes are defined by an ATTLIST description. The PCDATA type

corresponds to character data that will be parsed for further mark-up, while the CDATA

type is ordinary character data. Note that an attribute value may not be of type PCDATA,

it will never be processed as mark-up. The DOCTYPE reference in the document instance

specifies which element in the DTD should be considered as the root element.

Instead of using a DTD, an XML Schema [112, 13] can be used to define a document

type. Schemas have several advantages over DTDs. Firstly, because the schema language

is just another XML document, there is no need to learn a separate DTD language, and

standard parsers and tools can be used to read and manipulate schemas. Furthermore,

XML Schema has a more extensive type system that supports inheritance. Most im-

portantly, because schemas are supported using namespaces, a single document can mix

document elements from multiple schemas, simply by declaring multiple namespaces that

reference different schemas.

The schema for the phone book example is presented in Figure 5.3. The xmlns:xs

attribute in the root element defines the xs namespace. Thus, elements prefixed by

xs: are instances of the http://www.w3.org/2001/XMLSchema schema. In this par-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 93

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="phoneBook">

<xs:complexType>

<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded" ref="contact"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="contact">

<xs:complexType>

<xs:sequence>

<xs:element ref="name"/>

<xs:element minOccurs="1" maxOccurs="unbounded" ref="phone"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="name" type="xs:string"/>

<xs:element name="phone">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string" use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 5.3: Phone Book Schema (phonebook.xsd)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 94

ticular case, the namespace is a reference to the definition of the valid elements for

an XML Schema document, which is also defined in terms of XML Schema. De-

fault namespaces of documents can also be defined by schemas. Thus, in the phone

book example, the DOCTYPE line can be omitted and the root element altered to read

<phoneBook xmlns="phonebook.xsd">, where phonebook.xsd is the file containing the

phone book schema.

5.1.3 Document Object Model (DOM)

The Document Object Model (DOM) provides a language neutral interface for manipu-

lating XML documents programmatically [58]. XML documents are represented by an in

memory tree based object structure, where nodes are defined for all possible components

of an XML document, including elements, attributes, comments and free standing text.

Since DOM bindings exist for all major programming languages, XML content to be

accessed, processed and manipulated in a standard way on any platform.

As an alternative to the DOM, the Simple API for XML (SAX)2 provides an event

model interface for processing documents. SAX, which is an extension of the Observer

pattern in Section 3.3.3, enables documents to be processed without the need to build

a, possibly large, in-memory representation.

5.2 Java

Java is a modern, high level, general purpose, object oriented programming language

[33, 59]. Programs written in Java are compiled into an intermediate language, known

as byte code, which is interpreted at run time by a Java Virtual Machine (JVM). Benefits

of Java include:

• Platform and Vendor Independence: A cornerstone of Java has always been

the concept of write once, run anywhere. This goal has been achieved by virtue of

the JVM, since only the underlying virtual machine need be ported to each plat-

form where Java is supported. Supported platforms include Windows, Linux and

MacOS. Further, the Java specification is guided by the Java Community Process

2http://www.saxproject.org/

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 95

(JCP)3, giving multiple vendors the opportunity to contribute and participate in

the decisions that dictate the future direction of Java. Competing JVM imple-

mentations are available from multiple Java vendors, including Sun Microsystems,

IBM, BEA4 and the Blackdown project5, ensuring diversity in the market place

and the future safety of the Java platform. A completely free JVM implementation

is also being worked on by the GNU Classpath community6, along with a native

Java compiler as part of the GNU Compiler Collection (GCC).

• Garbage Collection: Garbage Collection (GC) relieves a programmer from hav-

ing to explicitly manage memory deallocation, resulting in safer code due to the

reduced risk of introducing difficult to find memory leaks. GC is associated with

at least some overhead, since an additional process must be executed from time to

time to recycle unreferenced memory. Counter intuitively, in spite of this overhead,

GC can have a net increase in the performance of an application7. For example,

heap compaction performed by GC increases the likelihood of cache hits. Further,

since GC only executes when memory is tight, programmes with a low memory

footprint may never need to run a GC cycle. Another factor to consider is that

smart pointer based reference counting techniques, which are typically employed

to simplify memory deallocation in non-GC languages, can carry a much higher

overhead than GC, since counters need to be updated for every assignment. Worse,

reference counting techniques are dangerous because they cannot deal with circular

references or anonymous objects. Finally, explicit destructors can be a significant

performance overhead for stack allocated resources.

• Java Foundation Classes (JFC): The Java platform, which is guaranteed to

be available on any compliant JVM, is defined in terms of the JFC. The JFC, or

Java APIs, provide XML processing, Input/Output (I/O), Graphical User Inter-

face (GUI) and networking services to applications. Further, since version 1.5 of

the JFC, a type safe collections framework using templates is also provided. Also,

the reflection API is a fundamental reason Java was chosen as an implementation

3http://www.jcp.org
4http://www.bea.com
5http://www.blackdown.org/
6http://www.gnu.org/software/classpath/classpath.html
7http://www.digitalmars.com/d/garbage.html

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 96

language for this research. The JFC has been through many revisions, gradually

improving its design, which is heavily based on design patterns. For example, I/O

services such as buffering and compression are provided using Decorators (refer

to Section 3.2.3) and the collections framework supports Iterators (refer to Sec-

tion 3.3.2).

• Tool Support: Many high quality Java development tools are freely available.

At least two good enterprise class development environments are available for free,

namely Eclipse and NetBeans. The Javadoc tool, packaged with the standard

Java SDK (Software Developer Kit), extracts special comments in the source code

into a navigable HTML (HyperText Mark-up Language) format. XDoclet (refer to

Section 5.4), originally based on Javadoc, can be used to generate various artifacts

from meta-data embedded in special Javadoc comments. Debugging distributed

and server side applications can be made simpler with a logging framework such

as Log4j8. JUnit (refer to Section 5.5) is a unit testing framework for Java. The

build process of complex Java projects is script-able using the Apache Ant9 build

tool.

These are only the tools that have been used, or are being considered, for this re-

search. There are many other free third party tools, frameworks and APIs available

for Java, supported by a diverse Java community.

• Performance: Java is still plagued by the stigmatism of poor performance due to

early and immature implementations of the JVM. This situation is further exac-

erbated by the intuition that interpreted languages with additional GC overheads

must have inferior performance to natively compiled languages. Modern HotSpot

[1] JVMs, however, have dramatically improved the performance of Java, to the

point where it is comparable and in certain circumstances superior in performance

to natively compiled languages such as C/C++ [25, 95]. HotSpot JVMs sport

state of the art generational GC algorithms, speculative run time optimisation us-

ing dynamic profiling, and Just In Time (JIT) compiling of critical code, known

as hot spots, to instructions optimised for the local processor. Numerous micro-

benchmarks [72, 76, 23, 70] have been conducted, which show Java performance to

8http://logging.apache.org/log4j/docs/index.html
9http://ant.apache.org

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 97

be on par with other languages.

A simple benchmark, called NastyPSO, was performed around the time the decision to

port the implementation code used in this research to Java was being made. NastyPSO10

is a quick and dirty implementation of a simple particle swarm optimiser (refer to Sec-

tion 2.4.1) in C#, C++ and Java. To make the benchmark fair, no language specific

libraries are used. For example, the random number generator used in the code is

implemented by NastyPSO in each language. Thus, the only differences between the

implementations are syntactic. Further, no OO features of are used, purely testing the

number crunching ability of each language. The source code for NastyPSO is made

available so that the results presented in Table 5.1 can be verified independently by the

reader.

Table 5.1: NastyPSO Performance

Language Compiler / VM Time (seconds)

C++ Intel Compiler (-O3 -march=pentium4) 391.3

C++ Intel Compiler (-O3 -march=pentium4 -mp) 570.6

Java Sun HotSpot VM 1.4.2.03 (-server) 584.6

Java IBM VM 1.4.1 584.8

Java Sun HotSpot VM 1.5.0 beta1 (-server) 600.8

C++ GNU Compiler 3.3.2 (-O3 -march=pentium4) 742.8

C++ GNU Compiler 3.3.2 754.0

Java JRockit 8.1 756.8

Java GNU Compiler (GCJ) 934.4*

Java Blackdown 1.4.1 (-server) 945.0

Java Sun HotSpot VM 992.4*

Java Sun Classic VM 1596.5*

C# Mono 0.28 2572.9

Times recorded are the CPU scheduled time given by the Unix time command, so the

results are invariant to varying load on the machine. Unfortunately, some parameters,

10http://cilib.sourceforge.net/NastyPSO/

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 98

which are hard coded in the implementation, have changed since the time the benchmark

was performed and were not properly recorded. Further, times suffixed by an asterisk

have been interpolated based on a run conducted several months earlier, where the

versions of the compilers and virtual machines were not recorded. The scaling was

performed relative to the performance of the Sun HotSpot (Server) VM, which was a

common denominator in both sets of results, even though the versions may not have

matched. That said, conclusions about the relative performance of the implementations

are still valid, even though the times may not exactly match those produced by the

current version of the code.

The first conclusion evidenced by the results is that the choice of JVM can have a

measurable performance difference. In fact, selecting the server parameter of the Sun

JVM made the difference from one of the worse performing configurations to one of the

best. The server JVM performs more aggressive run time optimisations at the cost of

slower startup times, making it suitable for long running processes. Surprisingly, the

free GNU compiler was unable to match the best JVM performances, even under very

heavy optimisations for the platform. The Intel11 compiler was able to outperform the

best Java configuration, however, if the compiler was forced to reject optimisations that

may affect the floating point precision then this difference was not significant. C# was

tested under the free Mono platform and was found to perform significantly worse than

any of the other configurations. Microsoft’s12 implementation of the .NET platform was

not tested, since it is not platform independent.

Unfortunately, OO polymorphic method calls are still expensive, even in C++ al-

though less so than Java, making object based polymorphic numeric types expensive,

particularly in the tight loop applications needed by CI algorithms. Fortunately, object

in-lining [18] may provide a solution to this problem in future. Object in-lining is a

compile time optimisation that essentially unpacks code into a calling class whenever

polymorphism is not required, so a developer can write clean OO code while leaving the

hard work of making it perform well to the compiler.

11http://www.intel.com
12http://www.microsoft.com

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 99

5.3 Java 2 Enterprise Edition (J2EE)

Java 2 Enterprise Edition (J2EE) is centred around Enterprise Java Bean (EJB) tech-

nology, enabling the development of scalable multi-tiered enterprise class applications

[8]. EJBs are software components that are managed in the context of an application

server container. The container forms the interface between EJB components and the

underlying platform, providing caching, clustering, security, session, transaction, and

persistence management services.

An EJB comprises three essential components: i) an application interface; ii) a home

interface; and iii) an implementation class. The application interface, also known as a

business interface, specifies the services that a bean provides to clients. Programming

to an explicit interface with no direct knowledge of the implementation means that the

implementation can be switched without affecting any clients. The Java Naming and

Directory Interface (JNDI) provides an additional level of indirection, making implemen-

tation classes configurable at application deployment time. Thus, EJB clients are not

aware of the implementing class details, they are only exposed to an abstract JNDI name

for the implementation providing the service. Primarily, home interfaces are responsi-

ble for managing the life cycle of individual beans, providing methods for locating and

creating them. Beans are destroyed by calling a remove method directly on an instance.

Services that apply to more than one particular bean instance are also provided by the

home interface, making those services analogues for class scope, or static, methods. Fur-

ther, EJB interfaces for local and remote clients are differentiated in J2EE, so different

subsets of a bean’s services can be provided to local and remote clients. Finally, an im-

plementation class for an EJB provides the code behind both the home and application

interfaces.

The J2EE architecture is layered, cleanly separating different responsibilities into

separate layers. At the lowest level, the persistence layer, discussed in Section 5.3.1, is

responsible for managing the storage of application data. Above that, the application

layer, in Section 5.3.2, is responsible for handling all the application logic, also known as

business logic. The presentation layer, discussed in Section 5.3.3, provides the interface

to the user. In general, separating the architecture into even more layers is possible, if

it makes sense to do so in the context of the application. The purpose of the layers is

to improve maintainability of the code by decreasing the dependencies between layers,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 100

changes to one layer should at worst affect the layer immediately above it. In addition,

the separation of application and presentation logic means that the same application

logic can be used for multiple presentation mediums. For example, a rich GUI client and

a web interface, both separately implemented in the presentation layer, should share

the same application logic. Finally, the deployment of J2EE applications is discussed in

Section 5.3.4

5.3.1 Persistence Layer

Two types of persistence EJB exist in the J2EE specification, Container Managed Persis-

tence (CMP) beans and Bean Managed Persistence (BMP) beans. BMP beans require

persistence logic to be manually coded by the developer, while CMP beans delegate

persistence logic to the application server container.

Persistence EJBs, also known as entity beans, present an OO view of an underlying

relational database [30], or indeed any data store. Although the object relational map-

ping need not necessarily be a one-to-one correspondence with the underlying database

tables, each entity bean instance typically represents a single row in a relational database

table. Each column corresponds to a property of the CMP bean, where a property has

its usual OO definition of a field with an accessor, or get method, and a mutator, or set

method. Relationships are represented by collection valued properties. These relation-

ships are typically bidirectional, with many-to-many relationships being supported by

collections on each side of the relationship. Figure 5.4 illustrates how the one-to-many

relationship between between a customer and a number of accounts would be represented

by entity beans.

Note how the home interface, only shown for the customer entity, can be used to

locate existing- and create new entities. More importantly, for CMP beans, it is not

necessary to provide implementations for any of the methods, they are simply declared

abstract, and the private fields are omitted. The container provides all the necessary

functionality to query the underlying database and ensure that the interface works as

expected. The database is automatically updated whenever collections are manipulated

or a mutator is called. Further, CMP beans can have a significant performance advantage

over hand crafted database interactions, due to entity caching and preloading.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 101

Figure 5.4: EJB Entity Relationship

5.3.2 Application Layer

Three types of application layer EJBs exist, message driven beans, stateless session beans

and stateful session beans.

Message driven beans provide an asynchronous interface for clients accessing appli-

cation layer objects via the Java Messaging Service (JMS), typically using XML based

messages. A message driven bean’s interface consists of a single on message method,

which must unpack the message and do something sensible with it; perhaps calling other

application layer beans or sending off other messages as a result.

Session beans typically present a session Facade [4] (refer to Section 3.2.4) to clients,

which only exposes those parts of the system which are interesting to a given client. Some

clients may require application state to be stored over multiple synchronous requests. For

example, a shop application would need to store the contents of a shopping cart for the

duration of the user session. A J2EE application server container automatically handles

session state by creating a new instance of a stateful session bean for each client. Sessions

that do not require state should use stateless session beans, enabling the container to

share a single instance amongst multiple clients, if it is more efficient to do so.

Having the server container manage message and session beans means that applica-

tions can easily be scaled up over multiple servers. For load balancing, an application

server simply needs to ensure enough stateless beans are instantiated for a particular ser-

vice to saturate the given hardware. Fault tolerance is achieved by ensuring that stateful

beans are distributed to one or more backup servers. All this is achieved without the

explicit knowledge of the developer, making it easier to write scalable, fault tolerant

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 102

applications.

5.3.3 Presentation Layer

The presentation layer presents a developer with many choices. The interface presented

to users might be a heavyweight rich client implemented using the JFC or it may be a

highly accessible web application powered by a combination of any number of existing

presentation tier frameworks. For example, Struts13 with JSP (Java Server Pages)14

or the recently released JSF (Java Server Faces)15 framework. It could even be a very

thin layer that simply forwards messages to an underlying message driven bean, perhaps

implementing an electronic mail interface.

GUIs should make use of the Model View Controller (MVC) [4] architectural pattern.

The model, which represents data or functionality behind the user interface, is accessed

via session beans in the application layer. A view is responsible for presenting its model

to the user and returning control to the controller after the user takes action. The

controller then determines the next view based on the current view and the action taken

by the user. In the case of Struts, the controller is implemented by a single Servlet16

which directs application flow between various views which are implemented by JSPs.

5.3.4 Deployment

The real power of J2EE stems from the ability to customise an application at deployment

time without altering any source code. Depending on the application server, this deploy-

ment configuration, also known as a deployment descriptor, is usually specified in one

or more XML documents. The following are some of the most important configurable

aspects of J2EE applications:

• Security: J2EE provides a declarative security model based on the Java Authen-

tication and Authorisation Service (JAAS)17 specification. User and role based

access rules for beans and their individual methods are declared in the deploy-

ment descriptor. The container performs run time security checks for each method

13http://struts.apache.org/
14http://java.sun.com/products/jsp/
15http://java.sun.com/j2ee/javaserverfaces/
16http://java.sun.com/products/servlet/index.jsp
17http://java.sun.com/products/jaas/

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 103

call and throws a security exception if a client attempts to call any unauthorised

method. The open source JBoss18 application server provides this functionality by

wrapping EJBs inside a security Proxy (refer to Section 3.2.5), which performs any

necessary checks before delegating requests to the actual bean.

• Entity Relational Mapping: Even though the container can provide the im-

plementation for database interactions, it is still necessary to inform the container

about the type of database, along with table and column names onto which entities

are mapped. Further, the entity methods that participate in relationships need to

be declared.

• Transactions: EJB containers are capable of providing full ACID (Atomicity,

Consistency, Isolation and Durability) transaction support [30]. Transaction bound-

aries are specified in the deployment descriptor for beans and methods. For meth-

ods, a transaction is opened at the start of a method call and is closed again when

the method exits normally. If an EJB exception is thrown then the transaction

is rolled back with no side effects. The Container may also perform deadlock

detection and roll back transactions that cause deadlock. The isolation level of

transactions is typically also configurable. Transaction support is also provided

using a Proxy in JBoss.

• Application Server Configuration: The configuration, pertaining to a given

application, for the application server is usually also specified in the deployment

descriptor. For example, the caching and preloading behaviour for entities is con-

figurable in JBoss. Clustering strategies and other performance related settings,

such as bean instantiation policies, can also be configured.

5.4 XDoclet

XDoclet19 is a free attribute oriented programming tool, which can be used to generate

artifacts from annotations embedded as special Javadoc comments in source code.

XDoclet is an invaluable tool for EJB developers, enabling them to automatically

generate any required interfaces and deployment descriptors directly from an annotated

18http://www.jboss.org
19http://xdoclet.sourceforge.net

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 104

implementation class for an EJB. For example, to mark a method for inclusion in the

application interface, a developer need only include an @ejb.interface-method anno-

tation in the Javadoc comments preceding the method. Declaring JAAS access rules

for a method can be achieved by prefixing the method with an @ejb.permission tag

followed by the appropriate user or role based permissions. Similar tags are defined for

declaring entity relation mappings, transaction boundaries and application server specific

configurations.

The recent syntax enhancements for annotations in Java 1.5 means that future ver-

sions of XDoclet may move their annotations out of Javadoc comments into the actual

code. An advantage of proper annotations will be the ability to query these attributes us-

ing the standard Java reflection API. For example, it would be possible to query security

annotations before calling a method, where currently the only way to determine these

permissions is to attempt the operation and catch the security exception that might be

thrown.

XDoclet is more general than simply an EJB tool, with tags defined for various other

applications, including the Spring framework, Hibernate, JDO, Axis, Struts and JSF

amongst many others.

5.5 JUnit

Unit testing is the practice of performing automated tests on units of code, typically

testing the behaviour of the public interface of individual classes. The fact that the tests

are automated is the most important factor. Automated tests are easy to run, meaning

they can be scripted into the build process to give early warning of something getting

broken during code maintenance. This safety net gives developers more confidence to

work on the code, particularly when maintaining code they did not write, since even

small changes can be tested against the entire test suite, rooting out any unexpected

side effects. If the tests pass then chances are nothing got broken, assuming the tests

are representative of the required behaviour.

Tests should be maintained in tandem with the code. The XP (eXtreme Program-

ming) paradigm [11] advocates writing a complete test suite for a unit before writing its

implementation, so that passing all the tests becomes the measuring standard for the

completeness of the implementation.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 105

Unit tests serve another important purpose, namely documentation. Unlike com-

ments which can easily fall out of synchronisation with the code implementation, auto-

mated tests immediately show any discrepancies that need to be addressed. Unit tests

implicitly document the intended behaviour of the code, since that is precisely what they

are testing.

JUnit20 is a free framework that facilitates unit testing in Java. Figure 5.5 illustrates

the Test Composite (refer to Section 3.2.2) employed by JUnit.

Figure 5.5: JUnit Composite Test Framework

Graphical and command line tools which are capable of executing a Test, which may

be an entire suite of tests, are provided. The TestSuite composite can be used to build

a hierarchy of test cases that mirrors the package hierarchy of the software, with one

TestCase dedicated to each class being tested. Adding new tests for a class is made

trivial, only requiring the developer to write another method prefixed with the string

“test”. The JUnit framework uses the Java reflection API to introspectively call each

test method in turn. The setUp() and tearDown() methods are called by the framework

before and after each test method respectively. These methods can be used to configure

a fixture that is available to all the test methods. Various methods for testing assertions

are inherited in via the Assert class. Assertions that fail are gathered into a test result

and are reported by the tool after all the tests have been executed.

20http://www.junit.org

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 106

5.6 Summary

XML and Java were introduced as languages used in the development of CILib and

CiClops. In particular, Java was motivated as an appropriate choice of implementation

language due to its platform and vendor independence, garbage collection, the Java

foundation classes, good tool support and high performance.

Next, an overview of the J2EE framework, which is used by CiClops, was presented.

J2EE provides powerful services, such as container managed persistence and transactions,

to applications built using EJBs.

Finally, the XDoclet tool and its role in easing EJB development was discussed,

followed by a brief introduction to the JUnit testing framework.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

Chapter 6

Computational Intelligence Library

“Ah, well, I am a great and sublime fool. But then I am God’s fool, and all

His work must be contemplated with respect.” — Mark Twain

CILib (Computational Intelligence Library) is a software framework designed to accom-

modate scientific research in Computational Intelligence, providing implementations for

many CI algorithms, problems definitions and a simulator for conducting experiments.

In order to maximise collaboration and solicit third party peer review, CILib is pub-

lished under the GNU GPL (refer to Section 4.1.6) and is available for download from

SourceForge1. The following high level project goals were identified:

• Flexibility: Design patterns should be exploited to create a reusable framework

capable of supporting the complexity of the CI field. Whenever possible, hybrid

algorithms and new functionality should be achieved by composing various existing

classes in a pluggable fashion.

• Experimentation: The framework should facilitate scientific experimentation,

making it possible to measure any property of an algorithmic simulation. Differ-

ent simulations, in terms of various class compositions and algorithm parameters,

should be configurable at run time without making changes to the source code.

• Efficiency: It is commonly accepted that developer time is more expensive than

CPU time, however, CI algorithms can be very computationally intensive. Thus,

1http://cilib.sourceforge.net

107

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 108

a scientific simulation framework may at times have to trade off clean OO design

against improved performance.

• Separability: There should be a clean separation of algorithms and problems, so

that any algorithm can be applied to any suitable problem. Further, algorithms

should be independent of any scientific simulation and measurement components,

so that algorithms can also be used in non-research applications.

• Reliability: The open source peer review process should increase the probability

of any software errors being found and corrected. A clean OO design and extensive

unit testing should be used to further reduce any chance of errors.

• Collaboration: The framework should maximise collaborative opportunities. By

sharing a common open source code base, researchers may be more aware of what

others are doing and can reuse parts of the framework developed by others without

reinventing the wheel. Good documentation should be provided to keep the barrier

to entry as low as possible.

Section 6.1 recommends some coding conventions for CILib developers. Following that,

the implementation details of CILib are covered in Section 6.2. Collaborative contribu-

tions to CILib are mentioned in Section 6.3. Finally, some limitations of the framework

are discussed in Section 6.4.

6.1 Coding Conventions

To date, no coding conventions have been enforced on contributions to CILib, however,

it is the recommendation of this work that developers adopt the Java coding conventions

published by Sun Microsystems [57], which reflect those presented in the Java Language

Specification [59]. A single coding standard is necessary despite the fact that developers

may have different stylistic preferences. Adopting a standard results in code that can be

unambiguously understood and easily read, since developers know what to expect even

though it may not be their personal preference. This is particularly important in an

open source context, where the source code itself is a primary means of communication

between developers.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 109

The specification outlines some guidelines pertaining to the commenting of code.

Java supports two types of comments, namely implementation comments and doc com-

ments. Implementation comments apply to the implementation details of the code itself,

while doc comments can be extracted as separate documentation independent of the

code using the Javadoc tool [33]. Doc comments should be used to describe the pur-

pose and function of interfaces, classes and methods in an implementation independent

way. Implementation comments should be kept to a minimum, the code should rather

be made as self documenting as possible, since comments can easily fall out of synchro-

nisation with the code. Good doc comments, design patterns, unit testing and careful

consideration of the naming of methods and identifiers should be sufficient documenta-

tion for any developer to understand the implementation. If the implementation is not

self documenting then there is probably something wrong with the design that needs to

be fixed. In the case of implementations of research algorithms, a proper reference to any

pertinent articles should be provided in the doc comments for the implementing class.

JUnit tests (refer to Section 5.5) should be provided whenever possible. Unfortunately,

the stochastic nature of many of the algorithms in CILib means that a researcher is not

likely to know what its acceptable behaviour should be, which is typically what is being

researched in the first place.

Further, the specification lists naming conventions. A convention of prefixing a pack-

age name with the reversed Internet domain of the package owner should be followed, to

ensure there are no conflicts in the package namespace, hence CILib packages fall in a hi-

erarchy under net.sourceforge.cilib. Interface and class names should be mixed case

with the first letter of each word capitalised. Abbreviations should be avoided. Methods

and variables follow the same convention except that the first character is lower case.

Constants should be written in upper case with underscores as word separators.

Finally, the document specifies formatting conventions. A particularly contentious

issue, particularly with C/C++ developers, is the Java convention of having opening

braces for blocks at the end of the line that defines the block. Closing braces should be

indented to align with the statement, method or class that forms the start of the block.

A level of indentation is defined to be four spaces. Further, a space should occur between

keywords and parentheses, after commas in an argument list, between binary operators,

except the class membership operator, between expressions in a for statement and after

a type cast. Blank lines should also be used liberally to group related sections of code,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 110

especially between blocks and methods. Lastly, parentheses should be used to group

arguments in complicated expressions to make them easier to read, instead of relying on

the reader’s knowledge of operator precedence rules.

6.2 Implementation Details

CILib’s implementation is heavily based on design patterns (refer to Chapter 3) to max-

imise its flexibility. The type system used for representing problem domains is discussed

in Section 6.2.1. CILib’s representation for problems and implementation of algorithms

are discussed next in Sections 6.2.2 and 6.2.3 respectively. Section 6.2.4 demonstrates

the framework’s facilities using particle swarms as a specific example. Stopping criteria

for iterative algorithms is handled in Section 6.2.5. Finally, scientific experimentation

is supported by measurements, in Section 6.2.6, and a simulator, which is covered in

Section 6.2.7.

6.2.1 Domains and Types

Domains define a type system based on a string representation of a data type. A par-

tial grammar for describing types consisting of combinations of bits, integers and real

values is provided in Figure 6.1. These domains are used to describe, amongst other

things, the search domains of computational intelligence problems. For example, a multi-

dimensional real valued optimisation problem, as described in Section 2.1.1, would have

a domain representation of “R^N”, where N is replaced with the actual dimension of the

problem. A genetic program which searches a tree space (refer to Section 2.3.2) might

operate on a domain characterised by a description of the valid non-terminal nodes, a

list of terminal symbols and a maximum tree depth.

Vectors of any given type are represented by composite and compound domain com-

ponents. A compound represents a repetition of a type, while a composite is used to

represent a mixture of different types. Further, compound components can represent

variable length vectors.

For example, the compound type “Z^5” represents 5 dimensional vectors of integers.

Equivalently, the composite “[Z,Z,Z,Z,Z]” represents the same 5 dimensional vector type.

Compound domains permit constructs such as “Z^3~2”, which represents an integer

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 111

domain ::= type | compound | composite

composite ::= ’[’ domain { ’,’ domain } ’]’

compound ::= domain ’^’ int [’~’ int]

type ::= ’B’ | ’Z’ [’(’ [int] ’,’ [int] ’)’] | ’R’ [’(’ [real] ’,’ [real] ’)’]

real ::= int [’.’ digit sequence] [(’e’ | ’E’) int]

int ::= [’+’ | ’-’] digit sequence

digit sequence ::= digit { digit }
digit ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

Figure 6.1: Partial Domain Grammar

vector type of length ranging between 3 and 5 inclusive. That is, the second number

which follows the tilde symbol, corresponds to the amount of slack permitted by the type.

A composite type permits constructs such as “[R,R,R,Z,Z]”, or equivalently “[R^3,Z^2]”,

which represents a mixed vector type of 3 real values followed by 2 integers. Note that

compound and composite types can be arbitrarily nested.

Figure 6.2: Domain Composite/Interpreter

Figure 6.2 illustrates how types are mapped into a Composite (refer to Section 3.2.2)

object structure. The object structure can also be considered to be an instance of the

Interpreter pattern, in Section 3.3.1, since the class hierarchy, although it has slightly

more structure, to a certain extent mirrors the grammar. A Singleton (refer to Sec-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 112

tion 3.1.4) component factory is responsible for parsing domain strings and constructing

their corresponding domain description, in terms of a hierarchy of domain components.

Types are divided into three categories: the composite and compound vector types

which have already been discussed; qualitative types which represent ordinal or nominal

data [106]; and quantitative types which represent numeric data. The quantitative types

have the option of declaring bounds. In the grammar, these bounds are represented be-

tween parentheses. For example, a multi-dimensional search space bounded by [−1, 1] in

each dimension is represented by the string “R(-1,1)^N”, where N is the dimension of the

search space. Alternatively, a composite vector can be used to represent different bounds

in each dimension. Lower and upper bounds are taken to be −∞ and ∞ respectively if

they are not specified.

The string representations for integer, real value, and vector types have already been

discussed. Bits are represented by the string “B”. String types are represented by the

text component with representation “T”. Sets are represented by the prefix “S” followed

by a comma separated list of valid elements between braces. Graphs and trees might, in

future, be represented by a prefix “G” followed by a list of terminal and non-terminal

node descriptions. Any type which is not incorporated into the domain hierarchy is

allocated an unknown type with representation “?”.

The most important function of the domain hierarchy is producing random instances

of a type, which are used as initial points in search spaces for optimisation algorithms.

Care has been taken to return the most efficient concrete instance of any given domain.

For example, a single bit returns a java.lang.Byte with a value of one or zero, but a

vector of bits returns a java.util.BitSet instead of a memory inefficient array of bytes.

Vectors of integers and real values return arrays of their respective int and double

primitive types, which provide for the most efficient processing without polymorphic

object overheads. Mixed composites return an array of generic objects containing as

elements the largest possible groupings of more specific types. For example, the domain

string “[R^30,B^20]” would result in a domain hierarchy that returns instances of the

form Object[] { double[30], BitSet }, where the size() method of the bit set has

been overridden to return the logical number of bits, in this case 20, as opposed to the

actual number of bits used by the implementation. All a client of the domain hierarchy

need do is cast the result into the type it expects. Domain validators are provided in the

net.sourceforge.cilib.Domain.Validator package in order for a client to test those

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 113

expectations before performing any casts. Clients that support multiple domains must

query the domain hierarchy to determine what instances of the domain will look like and

deal with them appropriately.

Beyond generating random instances inside a domain, a client may query: the dimen-

sion of a domain; whether a multi-dimensional domain contains mixed types; whether a

given instance falls within the domain; and in the case of quantitative types, the bounds.

The methods to get the dimension and the ith component of a vector present a flattened

view of nested compound and composite vectors, so that indexing components does not

need to take into account any effect of nesting. This means, equivalent domains, such as

“[R^10,R^20]”, “[R^20,R^10]” and “R^30”, are identical from the client’s perspective,

even though they all have different hierarchical structures.

Measurements (refer to Section 6.2.6) are another aspect that require domain infor-

mation, since they can be of any type and a common measurement interface is desired.

The serialisation methods are provided so that instances of a domain, particularly mea-

surements, can be stored and retrieved in a more space efficient fashion than the standard

Java serialisation method.

Figure 6.3: Domain Visitor Interface

Unfortunately, there are some design flaws in the domain strategy presented here.

The most important being that clients cannot treat type instances in a uniform way,

because the types described by a domain do not share a useful polymorphic interface.

That is, a client needs to explicitly know how to deal with every type of domain that

it supports. For example, an algorithm capable of dealing with both real valued and

bit vectors needs to query the domain, directly or using validators, and conditionally

execute one of two branches, one for each type, even though both branches probably

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 114

contain similar logic. The domain Visitor (refer to Section 3.3.6) interface presented in

Figure 6.3 alleviates this problem slightly by providing a cleaner interface for clients, but

it is still clumsy and confusing, since an array of instances on which the visitor operates

needs to be passed around, and its implementation is currently not very speed efficient.

Figure 6.4: Partial Type System

The proper solution, assuming the object in-lining technology mentioned in Sec-

tion 5.2 gets incorporated into future compilers, is to implement a polymorphic type

system. The JFC already provide for numeric types using the java.lang.Number hi-

erarchy. Unfortunately, this hierarchy consists of immutable numeric types, requiring

object creation and collection overheads for even simple arithmetic operations, which

are likely to be executed in tight loops by many algorithms. Thus, work has begun on

the polymorphic type system presented in Figure 6.4.

Note that a client need only care whether it works on a vector or non-vector type,

which is fine, since, for the most part, it will be one or the other exclusively. A client

that does not care about the specific numeric type with which it works can simply utilise

whichever units are most convenient. Those clients that do need to differentiate them,

can make use of a more traditional Visitor (refer to Section 3.3.6) interface which does

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 115

not require instances to be passed around as an additional parameter. Further, bit

vectors and other arbitrary vectors present a uniform interface, meaning clients will not

need to treat vectors of bits as a special case, while still benefiting from the storage

efficiency of a bit set.

The problem with the type system presented in Figure 6.4 is that domain informa-

tion cannot safely or efficiently be incorporated into the hierarchy. Bounds on numeric

types and constraints on vectors can be cleanly implemented using Decorators (refer to

Section 3.2.3), however, the extra level of indirection will have a severe performance

penalty for types used in tight loops. In addition, bounds information which would be

shared by a compound domain must be inefficiently stored for each individual vector

component along with an additional memory reference. Further, although it may seem

like a good idea to store the domain information implicitly in the type system, because

clients have the freedom to modify the type, the integrity of the domain information

may be compromised. For example, if the type system keeps track of the fact that it is

an instance of “R^N” simply by virtue of the fact that it is a vector of real values, then

a client which changes a component into an integer would alter the domain as a side

effect. Finally, while serialisation can be supported in the type system relatively cleanly,

deserialisation and generating random instances within a specified domain become very

clumsy, since the type instance which would contain the necessary information does not

yet exist.

Figure 6.5: Domain Builder

The limitations of the type system just described seem to indicate that a parallel do-

main hierarchy still needs to be maintained, however, another possibility that is currently

being investigated is the use of the Builder pattern (refer to Section 3.1.2) as illustrated

in Figure 6.5. Instead of storing a domain hierarchy explicitly, only the original domain

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 116

string is stored and different concrete builders are used to realise the same functionality.

For example, a type checker can be used to determine whether a given type instance

conforms to the domain string passed to the builder.

6.2.2 Problem Classes

Figure 6.6 demonstrates how the broad problem classes defined in Section 2.1 can be rep-

resented in software. The optimisation problem interface is characterised by: a domain,

which defines the search space; and a fitness function, which evaluates the goodness of a

given solution. Route optimisation problems, such as the TSP (refer to Section 2.1.2, are

simply characterised by the graphs that define their routing networks. Both supervised

and unsupervised learning problems are characterised by their data sets. In the case of

supervised problems, patterns consist of an input part and a target part, which is encap-

sulated by the Pattern type. Both provide traversals of the data set using an Iterator

(refer to Section 3.3.2). Patterns may conform to different domains, which are accessi-

ble via the respective problem interfaces. Additionally, unsupervised problems provide

information about the number of clusters inherent in the data set, or alternatively, the

constant UNKNOWN_CLUSTERS if such information is unknown.

Figure 6.6: Problem Interfaces

These problem interfaces need to be implemented by concrete problem classes that

take into account any context specific to a given situation. Concrete problems that are

defined in terms of data sets, which can be true of any type of problem, can access

their data via the net.sourceforge.cilib.Problem.DataSet interface. The data set

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 117

interface does not enforce any structure on data. It simply provides input stream and

byte array views of the raw data. The responsibility of interpreting the data falls upon

the concrete problem implementation. Some problems may have their data represented

as a structured XML document, while others may be constrained to operate on less

structured data defined by the context of the problem. For example, a clustering problem

defined for banking data may be constrained to the data format utilised by the bank’s

database. Each new application may require another concrete problem description, which

encapsulates the characteristics of the application domain, presenting itself in terms of

one of the general problem interfaces. The general framework will need to be extended

as new problems arise which cannot fit into the model presented in Figure 6.6.

Figure 6.7: Solution Classes

Figure 6.7 shows the solutions corresponding to the given problem interfaces. First

and foremost, solutions must exist within the context of some problem, hence there is

a method providing access to their problems. The solution to an optimisation problem

is characterised by a position and its fitness. Route optimisation solutions consist of

an ordered list of the edges of the graph that form the optimal tour. The learning

problems have solutions that are characterised by a model that fits the data. In the

case of supervised problems, the model provides a method to determine the mapping

for unseen input patterns, while an unsupervised model provides a method to determine

the cluster index for an unseen pattern and access to the clustered training data. Both

provide methods for determining the accuracy of the learned model.

Figure 6.8 illustrates some further specialisations of optimisation problems. Multi-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 118

Figure 6.8: Optimisation Problems

objective optimisation problems turn the hierarchy into a Composite (refer to Sec-

tion 3.2.2) so that a multi-objective problem still presents a single objective view, while

permitting access to individual objectives for algorithms that support multi-objective

optimisation. While the neural network code is currently in an incomplete state, it is

easy to imagine a problem Adapter (refer to Section 3.2.1) that enables neural network

training by means of an optimisation algorithm. In a research context, it is desirable to

test optimisation algorithms on various benchmark functions. For this reason, an exten-

sive set of benchmark functions is provided in the net.sourceforge.cilib.Functions

package. Another Adapter, the FunctionOptimisationProblem class provides the glue

between the optimisation problem interface and a benchmark function. Function op-

timisation is further specialised into minimisation and maximisation problems, which

respectively minimise and maximise a benchmark function.

Earlier versions of CILib treated fitness as a single double value, which was negated

in the case of function minimisation problems, so that larger values of fitness always in-

dicated a more optimal solution. This simplistic approach had limitations when working

with constrained optimisation problems, since constraint handling code needs access to

the unaltered function surface. The fitness hierarchy in Figure 6.9 was introduced to solve

this problem. Fitnesses now implement the comparable interface so that a fitness, when

compared, performs the necessary transformation for minimisation problems, while still

leaving the original function value accessible. Thus, fitness is always maximised, even for

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 119

Figure 6.9: Fitness Classes

minimisation problems. The inferior fitness class always compares worse than other fit-

nesses, and is ideal for initialising the fitness of individuals in a population based search

algorithm that have not yet been evaluated. Switching to a fitness type hierarchy also

added the flexibility to handle discrete optimisation problems in a uniform way.

6.2.3 Algorithms

The Algorithm class, depicted in Figure 6.10, implements behaviour common to all

iterative CI algorithms. These responsibilities include handling stopping criteria, noti-

fication of algorithm events, presenting an interface for threads and any other common

house-keeping tasks.

Figure 6.10: Algorithm, Stopping Conditions and Events

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 120

The run() method is an example of a Template Method (refer to Section 3.3.5), which

delegates the responsibility for executing a single iteration of the algorithm to a sub-

class that must override the abstract performIteration() method. The initialise()

method is also a Template Method, performing initialisation tasks common to all algo-

rithms before deferring to the performInitialisation() method, which is responsible

for any algorithm specific initialisation, if necessary.

Stopping conditions monitor the progress of an algorithm, providing two methods

to measure this progress. Firstly, the isCompleted() method is called for every it-

eration to determine when execution of the run() method should finish. Second, the

getPercentageCompleted() method, which is typically more expensive to calculate, is

primarily intended for updating progress indicators in a user interface, but can also be

used as a value that increases linearly (depending on the particular stopping condition

being used) over the execution duration for those algorithms that need it. Multiple

conditions are accommodated simultaneously by maintaining them in a list, so that

isFinished() returns true as soon as any one of the stopping conditions fires and

getPercentageComplete() returns the average over all the conditions.

The event interface, which is an extension of the Observer pattern (refer to Sec-

tion 3.3.3), is used to notify a list of observers, or listeners, whenever an algorithm, is

started, finished, terminates early or completes an iteration. Unlike the basic Observer,

which provides a listener with very little information about the subject, the event inter-

face provides information about the kind of event that occurred as well as the source of

the event, enabling many-to-many relationships between algorithms and listeners.

The class scope get() method returns a thread local instance of the algorithm which

is currently executing. This provides a global method for objects lower down in the

object reference graph to access the root algorithm class, so that they can navigate

from that point to any required object. This contributes to keeping many interfaces

simpler, reducing the need to pass additional objects around that are only used in rare

circumstances. Also, it enables objects to access parts of the reference graph that were

unforeseen in the design of certain interfaces. Unfortunately, there is a major problem

with this approach, which is yet to be resolved, an object lower in the hierarchy may not

know how to navigate the reference graph, since classes may be composed differently at

run time.

An interface for accepting problems is not specified by the Algorithm class, since

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 121

only its subclasses know what kind of problems they can be applied to. Figure 6.11

illustrates how optimisation problems fit into the CILib framework, showing that any

algorithm implementing the OptimisationAlgorithm interface can be applied to an

OptimisationProblem. For example, since PSO implements OptimisationAlgorithm,

it can be applied to solve optimisation problems. Algorithm interfaces for other types of

problems, such as routing or learning, can be implemented in a similar fashion. Having

an algorithm interface for each type of problem enables an algorithm to be selective

about the problems it can be applied to. Also, an algorithm may implement any number

of these interfaces simultaneously, one for each type of problem that it can be applied

to. For example, a feed forward neural network (refer to Section 2.2.1) would accept

a SupervisedLearningProblem, while a SOFM (refer to Section 2.2.4) would accept

unsupervised learning problems in addition to supervised learning problems.

Figure 6.11: Optimisation Algorithms

Focusing again on optimisation problems, it is clear that any optimisation algorithm,

including EC algorithms such as GAs, and not only PSOs can be implemented within

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 122

the CILib framework by simply implementing the OptimisationAlgorithm interface,

however, care should be taken to factor out any commonalities so that they can be

reused and composed in various ways.

For example, the multi-start PSO (MPSO) [113] calls for restarting a PSO multiple

times in order to find better solutions, since a PSO may prematurely converge onto

suboptimal local extrema. By realising that this behaviour is generally applicable to

all optimisation algorithms and not only PSOs, it can be factored out into a generic

multi-start optimisation algorithm. The multi-start optimisation algorithm re-initialises

a target algorithm whenever a restart condition is satisfied. For example, in the case

of a PSO it may be appropriate to restart the algorithm whenever the average distance

between particles drops below a certain threshold. This threshold would need to be

captured in a stopping condition and applied to the multi-start algorithm as a restart

criterion. Thus, any optimisation algorithm can have multi-start behaviour, provided

a suitable restart condition can be defined. Indeed, it may be sensible to make this

behaviour more general still, so that it can be applied to any algorithm as opposed to only

optimisation algorithms. Such refactoring will be performed when it becomes evident

how best to achieve it, bearing in mind that the multi-start optimisation algorithm needs

to keep track of the best optimisation solution found during all the runs.

Coevolutionary techniques (refer to Section 2.3.6) also apply more generally than

only to EC. As examples, consider the use of particle swarm optimisation instead of

EC for Blondie 24 (refer to Section 2.7) or the cooperative PSO (CPSO) [113] which

applies a technique used for cooperative coevolutionary GAs [91] to PSOs. The coopera-

tive optimisation algorithm implemented in CILib, which factors this common behaviour

into a more generic algorithm, only caters for optimisation algorithms that cooperate

by splitting the solution vector up into smaller components. This is accomplished by a

problem Adapter (refer to Section 3.2.1), which calculates the fitness of a smaller compo-

nent of the vector in the context of the other cooperating algorithms. The cooperating

algorithms, or participants, are created by the cooperative optimisation algorithm us-

ing an Abstract Factory (refer to Section 3.1.1), so that the type of the participants

can be specified externally. Any algorithm used as a participant must implement the

ParticipatingAlgorithm interface, which provides a mechanism for the cooperative

algorithm to access the individual parts of the solution worked on by each participant.

Thus, by implementing the ParticipatingAlgorithm interface, any optimisation al-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 123

gorithm, PSO, GA or otherwise (including combinations of different algorithms at the

same time), can participate in a coevolutionary strategy that splits up the solution vec-

tor amongst multiple cooperating algorithms. Other coevolutionary approaches, such as

sharing solutions using blackboard or having competing populations, are currently being

worked on by another contributor (refer to Section 6.3). Competing populations could

conceivably be implemented relatively transparently using a Fitness Adapter (refer to

Section 3.2.1), which evaluates fitness relative to individuals in other populations.

6.2.4 Particle Swarm Optimisers

This section explores CILib’s PSO (refer to Section 2.4.1) architecture in more detail as

a demonstration of the framework’s support for the implementation of an optimisation

algorithm. Implementations of other algorithms, optimisation or otherwise, were not

provided by the author and as such are not discussed (refer to Section 6.3 for information

about other contributions).

Figure 6.12: Overview of PSO Architecture

An overview of the PSO architecture implemented in CILib is provided in Figure 6.12.

Particle swarms differ in terms of the neighbourhood topology of the particles and veloc-

ity update equation used to govern their trajectories. These two aspects are implemented

as Strategies (refer to Section 3.3.4) which can be varied independently. Thus, any ve-

locity update can be used in combination with any neighbourhood topology and vice

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 124

versa.

The algorithm interface for VelocityUpdate is characterised by a single method,

which is passed to the particle that it must update. The topology interface is more com-

plex, exposing Iterators (refer to Section 3.3.2) based on the standard java.util.Iterator

interface provided by the JFC. The PSO can use iterators to traverse all particles in the

topology or only those particles within the neighbourhood of another particle, for which

it must provide a pointer in the form of another iterator. Topologies in CILib are dy-

namic, particles can be added and removed at will. Removal of particles is achieved

using the remove() method which is available through the iterator interface. Recently,

Visitor (see Section 3.3.6) support was also added to topologies.

The fact that the LBest topology inherits from GBest requires some explanation,

since GBest is a special case of LBest with the neighbourhood being equivalent to the

entire swarm (refer to Section 2.4.1). To see why this is the case, consider that the

LBest topology must implement a special Iterator with the ability to handle wrap-around

in order to traverse the neighbourhood of any given particle. The GBest topology,

however, does not require this specialised behaviour, since it can use an Iterator that

simply traverses the whole array of particles for both the swarm and neighbourhood

cases. Thus, LBest is the more specific case in terms of the implementation. The Von

Neumann topology (refer to Section 2.4.1) is implemented as a two dimensional matrix,

with a special neighbourhood Iterator that traverses the immediate particles in each

compass direction.

Certain PSO algorithms require particles to store additional state or have special

behaviour, an ideal opportunity to apply the Decorator pattern (Section 3.2.3), as illus-

trated in Figure 6.13. Particles may be configured differently depending on the particular

type of PSO being used, but the PSO class is responsible for creating and initialising par-

ticles within the search space. For this reason, Particle implements the Prototype

pattern (refer to Section 3.1.3), enabling the PSO to clone additional particles as nec-

essary from a run time configured prototype. The particle positions are then initialised

using the DomainComponent provided by the optimisation problem, by overriding the

performInitialisation() hook provided by Algorithm. The inheritance depth weak-

ness of the Template Method pattern (refer to Section 3.3.5) is clearly illustrated by this

architecture. For example, both PSO and GCPSO may need to perform additional ini-

tialisation tasks, but only one can override the hook provided by the template method.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 125

Fortunately, in this case, the GCPSO class does not need to override it, but it is conceivable

that some algorithm eventually will need to. In future, it may become necessary to store

a list of initialisers in the base Algorithm class that must be executed in turn during

initialisation, each initialiser performing the initialisation tasks specific to its algorithm.

Figure 6.13: Particle Decorators

Figure 6.13 further illustrates the responsibilities of particles, each having to store its

position, velocity, fitness and a reference to the best particle within its neighbourhood.

In addition, each particle must be allocated a unique identifier, as a side effect of the

Decorator pattern (refer to Section 3.2.3), so that they can be compared without regard

to the dynamic nature of decorators that may be added and removed during the execution

of an algorithm.

The deviation decorator, currently only used by the NichePSO [17], is used to track

the standard deviations of the position and fitness of particles over time. This is an

expensive operation. In terms of space, requiring a number of observations of position

and fitness to be stored for each particle, and in terms of time, since these observations

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 126

need to be updated every time a particle is moved. Thus, it makes sense to separate this

functionality into a decorator that can be dynamically applied only when needed.

Both the GCPSO [114, 113] (refer to Section 2.7) and LFPSO (LeapFrog PSO, also

refer to Section 2.7) algorithms implement a different velocity update equation for the

neighbourhood best particles, each requiring additional state to be stored for these par-

ticles. The GCDecorator and LFDecorator decorators are used to store this additional

state for their respective algorithms.

Specifically, the GCPSO velocity update performs a directed random search for the

neighbourhood best particles. The step size of this search is controlled by a value, ρ

(rho), which is dynamically updated based on the particle’s past history. Particles which

repeatedly improve their positions have their step size increased while particles that

repeatedly fail to find better positions have their step size reduced.

Figure 6.14: Velocity Updates

Figure 6.14 illustrates a number of velocity update Strategies (refer to Section 3.3.4),

including the GCVelocityUpdate class, which implements the velocity update for the

GCPSO. For non-neighbourhood best particles, it simply defers the velocity update to

a standard velocity update instance. Thus, it only performs the directed random search

for the best particle in each neighbourhood.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 127

The StandardVelocityUpdate class implements Equation 2.41, where the values

for w, c1r1 and c2r2 are each delegated to a velocity component Strategy (refer to Sec-

tion 3.3.4), giving a user a great deal of control over the velocity update. For instance,

a linear decreasing inertia can be accomplished by simply replacing the default con-

stant inertia component with a LinearDecreasingValue. By default, accelerations are

implemented using a ScaledRandomComponent with a ConstantValue target, but they

could be replaced with any velocity components, including a ZeroVelocityComponent

to disable their influence, which is the equivalent of a ConstantValue with a value of

zero.

The LinearDecreasingValue class is a good illustration of the usefulness of the

global Algorithm.get() method described earlier, since it needs access to a value that

scales linearly over the execution of the algorithm. A suitable value for this is available

using the getPercentageComplete() method in Algorithm, however, it does not make

sense to clutter the VelocityUpdate interface with this value, since it is not used by

most velocity updates.

The remaining velocity update Strategies (refer to Section 3.3.4) implement a number

of further PSO variants. The LinearVelocityUpdate class implements a variant suited

for linearly constrained optimisation problems [87].

A bare bones PSO [62], which discards the notion of particle velocities and simply

mutates their positions by sampling from a Gaussian distribution, is implemented by the

GaussianVelocityUpdate class.

LFPSO is implemented by the LFVelocityUpdate class by following a similar ap-

proach to the GCVelocityUpdate class. The commonalities between the two approaches

suggest that there may be merit in implementing a generic OptimiserVelocityUpdate

which implements the OptimisationProblem interface, so as to replace the motion of

neighbourhood best particles with the results of any OptimisationAlgorithm as sug-

gested in Section 2.7.

The FIPSVelocityUpdate (for the Fully Informed Particle Swarm [78]) requires ac-

cess to the entire neighbourhood of particles for the particle which is being updated.

Since this was not foreseen when the VelocityUpdate or Particle interfaces were cre-

ated, the current implementation is forced to make use of the global Algorithm.get()

method. Unfortunately, it has to perform a linear search for the particle to obtain an iter-

ator that can be used to access the neighbourhood, since particles do not know anything

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 128

about the topology. This will be fixed in a later version of CILib, either by extending the

Particle interface to make the entire neighbourhood accessible or by making particles

aware of their position within a topology, by means of a Decorator (refer to Section 3.2.3),

so that they can be located efficiently.

Figure 6.15: Particle Visitors

Most of the control logic for a PSO is currently in a monolithic performItertion()

method. This is inflexible because that logic cannot be changed by simply composing

different classes, but only by sub-classing the PSO class. Figure 6.15 represents the

proposed next step in the evolution of the PSO code in CILib, the moving of parts of the

internal PSO logic into external Visitors (refer to Section 3.3.6) which can be composed

and reused in various ways. Of course, treating everything as visitors has the obvious

danger that an inappropriate visitor will be used when something else is expected. Time

will tell if this proposed design is a good idea or not.

The VelocityUpdateVisitor class is an Adapter (refer to Section 3.2.1) which makes

any existing VelocityUpdate conform to the visitor interface. Perhaps velocity updates

should have been implemented as visitors from the start, however, implementing ve-

locity updates as visitors does restrict the VelocityUpdate interface to only accepting

particles with no easy way to extend it. New velocity updates would not even need to

implement the VelocityUpdate interface at all, but could implement ParticleVisitor

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 129

directly. At this time, the global Algorithm.get() method appears to be a general

enough mechanism for obtaining information not provided by the visitor interface.

The PositionUpdateVisitor class is analogous to the velocity update except that

it moves the particle by altering its position instead of changing its velocity. This will

have the side effect of cleaning up the Particle interface by removing the need for a

separate move() method. In addition, the GaussianVelocityUpdate should rather be

implemented as a position update, since it doesn’t affect a particle’s velocity at all.

The InitialisationVisitor class will be used to initialise particle positions based

on a given domain. Delegating initialisation to a visitor enables a PSO to use an alternate

means of initialisation, perhaps not even making use of the domain information, which

is currently not possible.

The Composite (refer to Section 3.2.2) visitor is intended to allow multiple visitors to

be used where only one is expected, with each visit method being called sequentially for

each particle. For example, a position update visitor could be replaced by a composite

containing both the position update and a dissipative visitor, which implements the logic

required for the DPSO [122] (refer to Section 2.7).

Ultimately, subclasses of PSO will have to do far less work, perhaps as little as chang-

ing one of the visitors. This leads to the next improvement, an Abstract Factory, say

PSOComponentFactory, with methods defined for creating particle, initialisation, veloc-

ity update and position update products. Thus, different particle swarm variants can be

realised by merely supplying a different factory to the PSO class, negating the need for

subclasses of PSO for every variant, only those that have radically different algorithms.

6.2.5 Stopping Conditions

Figure 6.16 shows some specific stopping conditions, which were discussed only generally

in Section 6.2.3. Some conditions may be applied to any algorithm, while others are

specific to certain types of algorithms.

For example, the maximum iterations condition can be applied to any algorithm,

causing the algorithm to finish execution when the configured number of iterations has

been reached. It makes use of the getIterations() method in Algorithm to determine

when to fire. The condition for fitness evaluations, as another example, only applies to

optimisation algorithms, which can be stopped when the objective function has been

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 130

Figure 6.16: Stopping Conditions

tested a predetermined number of times. Implementations of conditions that apply to

more specific algorithms must cast the algorithm they are passed into the type they

expect it to be, throwing a ClassCastException if the user attempts to apply an un-

suitable stopping condition to an algorithm. Table 6.1 lists the legal types of algorithm

for each stopping condition.

The minimum swarm diameter condition fires when the average distance between

particles and the global best drops below a threshold. Similarly, the minimum function

optimisation error condition fires when the optimisation error, given by |f(x∗)−f(x)| for

an objective function f with global extremum x∗ and solution x, drops below a thresh-

old. Further, the OptimiserStalled condition fires when the standard deviation of an

optimisation solution over a configurable number of iterations is less than a threshold.

The single iteration condition is a special case condition, which fires after one iteration

and does not permit execution again until it is reset. Finally, the maximum restarts

condition fires whenever the number of restarts of a multi-start optimisation algorithm

exceeds a threshold.

Wherever possible, an implementation should return a linearly increasing value in

the range [0, 1] for the getPercentageComplete() method (refer to Figure 6.10). For

example, the maximum iterations condition returns the fraction (current iteration
maximum iterations

). Con-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 131

Table 6.1: Legal Algorithms for Stopping Conditions

Stopping Condition Legal Algorithms

MaximumFitnessEvaluations Any optimisation algorithm

MaximumIterations Any algorithm

MaximumRestarts Only the multi-start optimisation algorithm

MinimumSwarmDiameter Any particle swarm optimiser

OptimiserStalled Any optimisation algorithm

SingleIteration Any algorithm

MinimumFunctionOptimisationError Only optimisation algorithms applied

to function optimisation problems

ditions such as those based on the swarm diameter or optimisation error cannot make

this guarantee, since they are dependent on the non-linear behaviour of the algorithm.

However, they should still ensure to return a value in the correct range, even if it is only

a binary 0 or 1 based on the output of isFinished().

6.2.6 Measurements

Any platform designed for scientific research must be able to perform proper measure-

ments during an experiment. The framework should enable a researcher to choose any

property to measure and not dictate its type.

The CILib simulator, discussed in the next section, makes use of measurements to

evaluate such properties during the execution of an algorithm. No restrictions are placed

on the type of property, measurements return a java.lang.Object, with each measure-

ment specifying its own domain, as a domain string which can be used to generate a

domain description (refer to Section 6.2.1). Thus, irrespective of the property being

measured, a measurement presents a uniform interface to a client, usually the simulator,

as shown in Figure 6.17.

New measurements can be crafted to access any property in an algorithm’s publicly

accessible object reference graph. That is, measurements access the currently execut-

ing algorithm using the global Algorithm.get() method (refer to Section 6.2.3). Like

stopping conditions, they need to cast the algorithm into the type they are expecting

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 132

Figure 6.17: Measurements

and navigate to the property they are interested in. The implementation, however, may

have difficulty locating properties if objects are composed in unexpected ways, particu-

larly if they are deep in the graph. Using the global algorithm accessor enables a single

measurement instance to be shared, provided they do not store any non-sharable state,

since they do not maintain a reference to the algorithm (in future measurements may be

implemented as Singletons, refer to Section 3.1.4).

Figure 6.17 shows a number of reusable measurements, so a researcher only needs

to create new measurements if they are measuring something unusual. As was the case

for stopping conditions, some measurements are specific to certain types of algorithms.

Measurements have been defined for monitoring the solution and its fitness (for opti-

misation algorithms), number of fitness evaluations, current time, number of restarts

(for the multi-start optimisation algorithm), number of iterations, percentage complete,

swarm diameter (for particle swarms) and function optimisation error (for algorithms

optimising functions). In fact, many of these are precisely the same properties which are

monitored by stopping conditions.

Implementing stopping conditions using measurements has been considered as a

means to reduce these parallel class hierarchies. That way, only two stopping con-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 133

ditions would be necessary, a maximum threshold condition which fires whenever the

measured value exceeds a threshold and a complementary minimum version. For exam-

ple, the maximum iterations stopping condition could be implemented using a maximum

threshold condition and the Iterations measurement. The problem with this approach

stems from the fact that measurements can have any type, numeric or otherwise. Thus,

even for simple numeric types, which are handled very efficiently by stopping condi-

tions, a measurement needs to perform an expensive object instantiation, creating a new

java.lang.Number. Since measurements used by the simulator are typically only exe-

cuted every kth iteration for fairly large values of k, they can afford this inefficiency for

the benefit of being able to deal with any type of property. Further, the measurement

interface would require the stopping condition to perform an additional down cast before

it can use the value. If measurements are to be used in stopping conditions, then the

performance implications of the extra work performed after every iteration needs to be

considered and properly bench-marked first.

Algorithm implementations are not aware of any clients which are performing mea-

surements, since the client simply needs to declare itself as an Observer (refer to Sec-

tion 3.3.3) and can execute any measurements, by calling their getValue() method,

as it sees fit. Thus, all scientific measurement code is kept out of the implementations

of algorithms, which do not need to concern themselves with how their behaviour will

be monitored beyond providing sufficient public accessors for any interesting properties.

This ensures that algorithm implementations do not become polluted with measurement

code, which may not required in all circumstances. For example, if an algorithm is

implemented in a non-research context, as part of another application.

6.2.7 Simulator

The simulator is CILib’s mechanism for configuring and executing experiments. The

heart of the simulator is an XML object factory, which enables algorithms, problems

and measurements to be constructed, configured and composed at run time according to

a simple XML document. The XMLObjectFactory class, which accepts a DOM element

(refer to Section 5.1.3) describing its configuration, can be used over and over again

to construct objects with the same configuration. Further, it can be trivially Adapted

(refer to Section 3.2.1) to be the implementation for any Abstract Factory (refer to

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 134

Section 3.1.1) interface, as shown in Figure 6.18.

Figure 6.18: XML Object Factory

Figure 6.19 is an example configuration for the CILib simulator, using a standard

PSO with a linear decreasing inertia component to find the minimum of the spherical

function on its default domain of “R(-100,100)^30”, given by:

f(x) =
30

∑

i=1

x2
i , with xi ∈ {R | − 100 ≤ xi ≤ 100} (6.1)

while measuring the number of iterations and function optimisation error, by default

every 100 iterations, and outputting the results to a file named “inertia.txt”. By default,

the simulator repeats the experiment 30 times, actually it runs them in parallel threads,

outputting all the results to the same file, where they can be later analysed.

The simulation engine searches the document for <simulation/> elements, each

containing the configuration for running a single algorithm on a given problem while

measuring certain properties. All objects must have a default constructor and should

provide sensible defaults for all of their properties. Any publicly accessible property can

be set by specifying a corresponding tag name in the configuration. The document’s legal

tag names are dictated by the properties available in the source code at run time, using

the Java reflection API, so it is impossible to construct a rigid schema that describes

valid simulator documents (refer to Section 5.1.2).

For example, because the PSO exposes a public velocity update property, via the

setVelocityUpdate(VelocityUpdate vu) method, it can be set using a tag correspond-

ing to that property name. A class attribute specifies the name of a class that should

be instantiated by the factory and passed to the property specified in its element. Class

names are specified relative to the net.sourceforge.cilib package, however, fully

qualified class names are also permitted.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 135

<simulator>

<simulation>

<algorithm class="PSO.PSO">

<addStoppingCondition class="StoppingCondition.MaximumIterations"/>

<velocityUpdate class="PSO.StandardVelocityUpdate">

<inertiaComponent class="PSO.LinearDecreasingValue">

<minimumValue>0.25</minimumValue>

<maximumValue>1.0</maximumValue>

</inertiaComponent>

</velocityUpdate>

</algorithm>

<problem class="Problem.FunctionMinimisationProblem">

<function class="Functions.Spherical"/>

</problem>

<measurements class="Simulator.MeasurementSuite">

<file>inertia.txt</file>

<addMeasurement class="Measurement.Iterations"/>

<addMeasurement class="Measurement.FunctionOptimisationError"/>

</measurements>

</simulation>

</simulator>

Figure 6.19: Simple Simulator Configuration

Strings and primitive typed properties can be set by simply enclosing their value

within the element body. Thus, in the sample, the minimum and maximum values for an

instance of LinearDecreasingValue are set to 0.25 and 1.0 respectively. Similarly, the

name of the file into which the measurement suite will output its results is specified within

a <file/> element, which corresponds to the setFile(String fileName) method in

the MeasurementSuite class.

Arbitrary methods can be called by using the method name as the tag name, the XML

object factory simply provides a short hand for properties (indicated by a method with

the prefix “set”). Thus, multiple stopping conditions and measurements can be added

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 136

using the addStoppingCondition() method in Algorithm and the addMeasurement()

method in MeasurementSuite respectively. Methods with an arbitrary number of param-

eters are also supported by nesting each parameter as a separate element (their names do

not matter) within the method element in the order they appear in the method signature.

Figure 6.20, in turn, illustrates another slightly more complex configuration file. This

example demonstrates how portions of the document can be reused by making use of

ID references (refer to Section 5.1.1). Typically, more descriptive identifiers than “A”,

“B”, “M” and “S” would be used, they were shorted here purely for formatting rea-

sons. Note that the fact that multiple algorithms and simulations are specified within

<algorithms/> and <simulations/> elements is immaterial. The simulator merely

searches for simulation elements and follows any identity links to their targets, irrespec-

tive of where they are defined in the document. Further, the sample demonstrates two

short hand ways to set properties. Primitive and string valued properties can be spec-

ified directly as attributes in the parent element instead of nesting them as separate

elements. Alternatively, they can be specified using the value attribute of their own

property tags instead of placing the value in the body of the element. Properties in

reused portions of the document can be overridden where they are referenced. For ex-

ample, the same measurement suite configuration is used to output to two different file

names. In addition, the measurement suite has two additional properties: i) the number

of repetitions of the experiment, or samples; and ii) the resolution, which specifies how

often results are written to file. Finally, the cooperative optimisation algorithm uses

the XMLAlgorithmFactory Adapter demonstrated in Figure 6.18. An XML algorithm

factory expects its configuration to be specified in a nested <algorithm/> element and

from there on down functions in exactly the same manner as the XML object factory.

Further examples of configuration files are distributed with the CILib source code.

Additional examples which demonstrate all the features of the XML object factory are

also available for download from the CILib project page.

6.3 Collaborations

To date, CILib has relatively mature implementations of particle swarm and ant colony

frameworks. An early EC framework which is in need of some refactoring, to take into

account improvements to the core framework since it was contributed, has also been

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 137

<simulator>

<algorithms>

<algorithm id="A" class="Algorithm.CoOperativeOptimisationAlgorithm">

<algorithmFactory class="XML.XMLAlgorithmFactory">

<algorithm idref="B"/>

</algorithmFactory>

<participants value="10"/>

</algorithm>

<algorithm id="B" class="PSO.PSO">

<topology class="PSO.VonNeumannTopology"/>

<addStoppingCondition class="StoppingCondition.MaximumIterations"/>

</algorithm>

</algorithms>

<problem id="S" class="Problem.FunctionMinimisationProblem">

<function class="Functions.Spherical" domain="R(-50,50)^100"/>

</problem>

<measurements id="M" class="Simulator.MeasurementSuite" samples="50">

<addMeasurement class="Measurement.FitnessEvaluations"/>

<addMeasurement class="Measurement.FunctionOptimisationError"/>

</measurements>

<simulations>

<simulation>

<algorithm idref="A"/>

<problem idref="S"/>

<measurements idref="M" file="data/cpso.txt"/>

</simulation>

<simulation>

<algorithm idref="B"/>

<problem idref="S"/>

<measurements idref="M" file="data/pso.txt"/>

</simulation>

</simulations>

</simulator>

Figure 6.20: More Complex Simulator Configuration

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 138

implemented. In addition, several benchmark functions have been defined for testing

optimisation algorithms. Neural network and coevolutionary game (based on Blondie 24,

refer to Section 2.7) frameworks are currently being worked on by other students as part

of their studies. No significant contributions have been received from parties outside of

the University of Pretoria, but it has not yet been very widely advertised either. Further,

nothing has been implemented in the fuzzy systems paradigm, mainly because nobody

in the CIRG@UP is currently focusing on research in that field. The framework has

been offered as a platform for implementing assignments for postgraduate courses and

has received a fair amount of interest from those students. Table 6.2 lists the names

of significant contributors2, crediting them with the parts of CILib that they have been

primarily responsible for.

Table 6.2: CILib Contributors

Names Contributions

Barla-Szabo, D. LFPSO

Engelbrecht, A. P. Benchmark Functions, PSO Additions

Kroon, J. Nonlinear Mapping Problems [71], Domain Visitor

Naicker, C. NichePSO, Benchmark Functions, EC Framework

Pampara, G. Ant System Framework, Containers

Papaconstantis, E. Coevolutionary Games Framework

Peer, E. S. CILib Core, Benchmark Functions, PSO Framework

Van der Stockt, S. Neural Network Framework

Van Niekerk, F Cooperative Algorithms

6.4 Limitations

CILib successfully meets many of the goals identified at the start of this chapter. The

use of design patterns and the XML object factory provide for a very flexible frame-

work, where classes can be composed at will to produce any permutation permitted by

the design. Experimentation is facilitated by the simulator, which provides for making

2http://sourceforge.net/project/memberlist.php?group id=72233

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 139

measurements of any interesting property during the execution of an algorithm. The

domain system presented in Section 6.2.1 ensures that algorithms can use efficient types

wherever possible, trading off the OO neatness of a polymorphic type system in favour of

better performance, with a view to make the design cleaner as better compilers become

available. A clean separation between algorithms, problems and measurements enables

algorithms to be separated out and used in real world applications, not only within the

research framework. In addition, the open source development model and having mul-

tiple people working on the same code base has forced improvements on the design, to

make it accommodate their needs, and contributed towards numerous bug fixes.

That said, the CILib design is by no means perfect and continuous refactoring will

be necessary as the framework grows to support more. Further, although CILib has

generated numerous collaborative opportunities internally, it has yet to prove itself to

a wider audience. A lack of documentation, which this dissertation hopes to alleviate,

has also contributed to a steep learning curve for those wishing to use the software.

Also, it has been difficult to convince some contributors of the benefits of unit testing

(refer to Section 5.5), particularly when the correct outcomes for stochastic processes

are not known a priori. Thus, there is lack of test cases for much of the implementation.

Already, test cases for certain benchmark functions have proven their worth, where an

error, which was discovered by a unit test, would have resulted in incorrect simulation

results.

The following is a non-exhaustive list of some more specific limitations that have

been identified:

• Expensive fitness evaluations: To accommodate discrete optimisation problems

in CILib, the return value of benchmark functions was altered from a primitive

double value to a java.lang.Object type. This means that every evaluation of an

objective function typically results in an new instance of java.lang.Number being

created. In addition to the extra object creation, the use of objective functions in

tight loops places a severe strain on the garbage collector, since large amounts of

memory will be consumed and need to be reclaimed. The mutable polymorphic

type system presented in Section 6.2.1 may provide an efficient solution for this

problem, since the same object used in the previous evaluation of an individual’s

position during a previous iteration can be reused by passing it as a reference to

an objective function.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 140

• Loose configuration file format: The configuration file format was designed

with hand crafting the document in mind. So, instead of having tags with consistent

names and attributes with values corresponding to property names, it was decided

to shorten the format by having the element name itself refer to the property name.

In retrospect, it would have been better to follow an approach that can be validated

against a static schema, which would have made writing the GUI tools discussed in

the next chapter simpler. For example, instead of implementing a custom schema

validator that needs to introspect the source code to perform its work, it would

have been possible to make use of the XMLBeans3 framework, capable of mapping

an XML document directly onto Java objects.

• Scalability: The simulator spawns a new thread of execution for each sample. The

motivation for this was that Unix tools such as GNU awk4, which can be used for

processing results, operate most conveniently on data presented in columns for each

measurement of each sample. Since text files are most naturally written in rows,

executing experiments sequentially would mean that information for subsequent

columns would not be available. By running the experiments in parallel, it was

hoped that all the information required for a given row would become available at

roughly the same time, avoiding the need to buffer a large quantity of measurement

results, which can quickly grow to hundreds of megabytes in size. Unfortunately,

because of this, the simulator can not scale to large numbers of samples. The extra

scheduling overhead and larger footprint required for keeping multiple executing

algorithms in memory at the same time can become prohibitive. The implicit

assumption that this memory overhead would be less than buffering the results also

does not always hold, particularly if one thread of execution becomes starved of

CPU time, in which case the buffering overhead is incurred anyway. The following

chapter presents a solution to this problem, by storing the results in a structured

database, as well as being able to scale experiments up to a cluster of workstations.

Alternatively, the simulator could trivially be changed to write results in rows,

requiring post processing for tools like awk, or results could be temporarily buffered

to disk so that simulations can be run sequentially.

3http://xmlbeans.apache.org/
4http://www.gnu.org/software/gawk/gawk.html

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 141

In spite of these and other limitations, CILib is already useful in its current state and

has the potential to become an important collaborative resource in the future.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

Chapter 7

CiClops - Collaborative Laboratory

“I abhor averages. I like the individual case. A man may have six meals one

day and none the next, making an average of three meals per day, but that is

not a good way to live.” — Louis D. Brandeis

CiClops (Computational Intelligence Collaborative Laboratory Of Pantological Soft-

ware), still in its early stages of development, was initially designed to address the

scalability limitations of the CILib simulator discussed in the previous chapter, by stor-

ing simulation results in a structured database and distributing simulation workloads

over a cluster of workstations. Further, CiClops is intended to facilitate empirical stud-

ies by maintaining a repository of past simulation data and providing statistical analysis

tools. The following high level goals have been identified for CiClops:

• Scalability: The CiClops framework should support an arbitrary number of sam-

ples per experiment and enable those experiments to be clustered over multiple

workstations.

• Simulation repository: CI simulations can be very computationally intensive,

sometimes requiring days to complete an experiment, even scaled across a cluster

of machines. Complete simulation results should be stored in a shared repository,

so that existing simulation data can be used as a basis for future comparisons

without the need to perform expensive re-computations. Further, the simulation

data should keep track of its dependencies on code and data sets, so that if any

dependencies change then the results can be recalculated to ensure their correct-

ness.

142

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 7. CICLOPS - COLLABORATIVE LABORATORY 143

• Statistical analysis tools: The majority of researchers (90% in one study [16])

apply inappropriate parametric tests without first considering whether the assump-

tions on which those tests are based are satisfied [65]. Further, it has been empir-

ically shown that these assumptions typically do not hold [81, 20]. Thus, CiClops

should implement and provide decision support for sound statistical hypothesis

testing, so that researchers without the necessary statistical background can reli-

ably perform statistical testing without making errors. It would also be convenient

if built-in tools could be used for visualising data in various ways.

• Ease of use: CiClops should provide an intuitive GUI, which facilitates experi-

mentation with different parameters and algorithmic configurations.

• Security: A granular permission system is required to ensure that, while simula-

tion results and configurations should be sharable, they can also be kept private

whenever necessary. For example, it may be desirable to keep results private while

working on a competitive publication. In addition, a full audit trail should be

maintained to discourage misbehaviour and ensure the integrity of results in cir-

cumstances where permissions are permissive. Further, since the services provided

by CiClops may have a salable value, only authorised users should be granted any

access at all.

• Revenue stream: As discussed in Section 4.5, means of turning CiClops into a

revenue generating resource should be investigated.

The following section gives a general overview of the CiClops architecture and Section 7.2

reviews its underlying data model. The software component responsible for executing

units of work on each node of a cluster is discussed in Section 7.3. Next, the CiClops client

interface is covered in Section 7.4. Finally, the current status of CiClops is discussed in

Section 7.5

7.1 Architectural Overview

As shown in Figure 7.1, CiClops is implemented using the J2EE framework (refer to

Section 5.3) and consists of three essential components:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 7. CICLOPS - COLLABORATIVE LABORATORY 144

Figure 7.1: CiClops Overview

• The CILib code base: CILib forms the most important component, since it is

used to conduct the actual simulations. The only change to CILib is the addition

of a different simulator, which executes only a single sample at a time, sending

the results to the CiClops server instead of writing them to a local file. Note,

CiClops periodically (or at the express demand of a user) updates its version of

CILib according the version stored in the CVS repository at SourceForge, so care

should be taken by developers not to break it, which is why testing is emphasised

in the diagram. The CVS code must be kept in a pristine state. Developers must

ensure that they update their local version of the code, merge any conflicts with

the CVS repository and run local test simulations before committing any changes.

If sufficient unit tests are provided to perform proper regression testing, then few

problems should be experienced with this approach. Alternatively, CiClops will

need to implement different namespaces for code used by different developers, which

would inhibit collaboration by spawning multiple versions of the code base.

• A cluster of workstations: Each cluster node, or worker, consists of a light

weight stub which executes tasks, taking the form of CILib simulations, on behalf

of the CiClops server. Workers always execute simulations using the latest available

version of the CILib classes and any data sets by means of remote class loading

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 7. CICLOPS - COLLABORATIVE LABORATORY 145

and efficient local caching of data sets.

• A central server and data store: The CiClops server is implemented as a

J2EE application and deployed on the open source JBoss application server. The

back-end data store is a MySQL relational database, although the J2EE persis-

tence framework makes this largely irrelevant to the application, affecting only the

deployment descriptor, which is generated automatically using XDoclet (refer to

Section 5.4). The server is responsible for configuring experiments, scheduling tasks

on the cluster, archiving simulation results and performing statistical analysis on

the results. The load balancing services provided by the J2EE container (refer to

Section 5.3.2) means that CiClops can also be scaled up to multiple servers if and

when the load of many workers becomes too high for one server to handle.

Finally, some kind of user interface is required to interact with the system. Presently,

this is provided in the form of a rich JFC/Swing based GUI client (refer to Section 7.4),

with a view to providing a web based front end in the future. Fortunately, this should

not be difficult to accomplish, since all the CiClops application logic is executed on the

server, lying within the application tier of the J2EE framework.

7.2 Data Model

The data model, or persistence tier, of CiClops is implemented exclusively using CMP

entity beans (refer to Section 5.3.1). Figure 7.2 illustrates the object relational mapping

employed by CiClops using private attributes, however, it should noted that those private

fields do not physically exist and were provided for the sole purpose of making the

diagram more readable, since they do at least exist conceptually.

The central concept in the data model is that of a simulation, which is characterised

by its name, a description, an XML configuration for CILib and the number of times the

experiment represented by this configuration should be repeated, or simply the number

of samples. For each sample, a simulation stores the results for each measurement, which

are serialised using a CILib domain (refer to Section 6.2.1) and then compressed to save

on database space. The domain string is also stored with each measurement so that

CiClops is able to deserialise it again, using the CILib domain classes via a Proxy (refer

to Section 3.2.5) that makes use of the Java reflection API.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 7. CICLOPS - COLLABORATIVE LABORATORY 146

Figure 7.2: CiClops Data Model

Further, a simulation keeps track of its dependencies on particular CILib classes

and data sets, or conversely, code and data set entities keep track of the simulations

which are dependent on them. Whenever, a class or data set becomes modified they can

Iterate (refer to Section 3.3.2) over their respective collections of simulations marking

each simulation as stale and as a consequence a candidate for rescheduling whenever

the cluster is idle. Fortunately, constraints on the data model like these can be isolated

in the persistence tier and as such no error in application logic can ever cause a class

or data set to become modified without their dependent simulations being marked as

stale, particularly considering the transaction isolation provided by the container (refer

to Section 5.3.4).

A simulation is scheduled over multiple workers and any errors, in terms of exceptions

thrown, experienced by a worker are stored for that simulation to be later examined by

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 7. CICLOPS - COLLABORATIVE LABORATORY 147

the user. Finally, simulations and data sets are organised into a hierarchical name space,

which is imposed by named categories.

7.3 Workers

The data model in the previous section implies that the smallest unit of work that can be

scheduled to a worker is a single sample. Experiments should always be sampled at least

30 times [106], meaning that even a single experiment should be able to saturate a cluster

of 30 workstations. Currently, the CIRG@UP has fewer than 30 dedicated machines at

its disposal and the default number of samples is set to 100 to provide for more robust

statistical analysis that may be accomplished using larger samples. Further, it is expected

that many different experiments will be configured simultaneously, possibly even by

multiple users, enabling CiClops to saturate even hundreds of cluster workstations with

this simple scheduling policy. Further parallelism can only be achieved by implementing

much more complex scheduling rules, which would require cluster aware algorithms in

CILib and incur significantly higher network communication overheads. Responsibilities

of workers include:

• Remote class loading: Most of the worker logic is implemented in the CiClops

simulator, which is actually component of CILib. In fact, the worker part of

CiClops consists of little more than a remote class loader, which overrides the

standard Java class loader, and a Proxy (refer to Section 3.2.5), which is used to

fire up the simulator using the reflection API and pass it the XML configuration

for a simulation. Thus, code that runs on the cluster is stored and executed from

a central location, where it can be upgraded to add new features at any time,

without ever modifying the configuration of a workstation.

• Fetching and caching data sets: Data sets used in simulations can be very

large, and in order to save network bandwidth it makes sense to cache as many as

possible data sets on the cluster workstations. Each worker checks the version of

any locally cached data set against the server before every simulation and updates

its local copy if the versions do not match. The CiClops simulator exposes data

sets using the same net.sourceforge.cilib.Problem.DataSet interface as the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 7. CICLOPS - COLLABORATIVE LABORATORY 148

standard CILib simulator does (refer to Section 6.2.2), so clients do not need to

treat remotely loaded data sets any differently.

• Serialisation and compression of results: Measurements are serialised using

the CILib domain classes (refer to Section 6.2.1) and compressed using the stan-

dard Java java.util.zip.GZipOutputSteam output stream Decorator (refer to

Section 3.2.3), providing a relatively good trade off between compression ratio and

speed, before being sent back to the CiClops server for storage. Compressing the

results on the workstation means that compression load is also distributed across

the cluster and further network resources are spared.

7.4 Client

The CiClops client, which as far a possible conforms to the MVC architectural pattern

mentioned in Section 5.3.3, currently only supports the configuration of simulations,

exporting of their results for external processing and monitoring of the cluster progress.

Figure 7.3: Configuring a CILib simulation using CiClops

Figure 7.3 is a screen-shot of the CiClops client being used to build an XML con-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 7. CICLOPS - COLLABORATIVE LABORATORY 149

figuration for a CILib simulation. The user may choose to edit the XML configuration

directly, however, the hierarchical view of classes and the property editor promote dis-

coverability of CILib features, which the user would otherwise have had to consult the

CILib API documentation to learn about. Since the textual, hierarchical and property

views all make use of the same model, a combination of these mechanisms can be used si-

multaneously to edit the configuration. The XML document is validated by the CiClops

server against a dynamic schema (refer to Section 5.1.2) which reflects the classes stored

in the database.

Figure 7.4: CiClops monitoring CILib simulations

Figure 7.4 is another screen-shot taken of the CiClops cluster monitoring view. The

figure shows three test simulations (indicated in the top pane) being executed on a small

cluster of workstations (indicated in the bottom pane).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 7. CICLOPS - COLLABORATIVE LABORATORY 150

7.5 Status

As stated at the beginning of the chapter, CiClops is at an early stage of its development.

Custodianship of the source code has recently been handed over to the CIRG@UP and

the group as a whole will be continuing its development.

Many of the design goals have already been met, including solving the CILib scala-

bility issue, maintenance of a simulation data repository and the provision of an easy to

use mechanism for configuring simulations, by means of a hierarchical GUI builder.

The J2EE declarative security model using XDoclet tags (refer to Sections 5.3.4

and 5.4) presents some challenges. For example, the fact that the security permissions

do not appear anywhere, except in the deployment descriptor, means that there is no

way for a GUI client to query the security model in order to determine whether or not

to present a specific option to a user, without resorting to custom security code. The

use of code annotations, which can be queried using the reflection API as provided in

the recent Java 1.5 release, for declaring security permissions may provide a solution to

this problem, but still needs to be investigated.

Further, statistical analysis methods still need to be adequately investigated. Instead

of implementing all the required functionality in-house, it may be better to draw on other

software such as the tools available from the Java numerics project1.

Finally, the CIRG@UP still needs to decide how best to market CiClops to the

broader research community, while maximising collaborative and profit opportunities.

1http://math.nist.gov/javanumerics/

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

Chapter 8

Conclusion

“Ask her to wait a moment - I am almost done.” — Carl Friedrich Gauss

(1777-1855), while working, when informed that his wife was dying.

This chapter briefly summarises this work in Section 8.1 and provides some ideas for

future research in Section 8.2.

8.1 Summary

First, this dissertation examined the computational intelligence field, distinguishing be-

tween types of problems and the algorithms that can be used to solve them. The com-

plexities introduced by hybrid algorithms were also explored as well as commonalities

such as stopping criteria, measurements and the representation of problems.

Design patterns capture the experiential knowledge of expert designers as reusable

patterns. Software based on these patterns benefits from more flexible designs that are

more able to support new features, often by merely composing classes in different ways.

Further, open source software was explored as a mechanism to facilitate collaboration

and improved peer review.

CILib demonstrates how design patterns can be applied to provide a flexible compu-

tational intelligence framework. Scientific experimentation is facilitated by this flexibility

and a simulator governed by an XML configuration file, which enables any algorithm,

in any configuration, to be executed on any suitable problem while measuring any num-

ber of properties. The improved peer review of open source software and the liberal

151

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 8. CONCLUSION 152

use of unit testing should result in CILib becoming a very reliable platform. The fact

that CILib is open source software also provides effective incentives for collaboration,

including reputation rewards and sharing of development resources.

CiClops was introduced as a platform that primarily addresses the scalability limi-

tations of CILib, a task greatly facilitated by the services provided by J2EE containers.

Further, the benefits of a shared simulation repository and the need for statistical anal-

ysis tools that provide decision support for their proper use were discussed.

Thus, the combination of CILib and CiClops adequately addresses most of the prob-

lems set out in Section 1.2:

• Duplication of effort: CILib being open source means that any collaborator

is made aware of what others are doing, through a common code base. Further,

CiClops provides a common repository of past simulation data so that expensive

simulations do no need to be executed more than once.

• Failure to take latest developments into account: Once again, the shared

open source code base means that once a new idea is implemented, it is immedi-

ately available to everyone. That is, any specialist implementing a specific feature

immediately makes the platform more general.

• Insufficient testing on problems: CiClops enables new experiments to be con-

figured with ease, reducing the effort required to set up more tests. Further, past

simulation data can be reused in comparisons and simulations can be executed

rapidly on a parallel cluster of workstations.

• Poor parameter choices: Good parameter choices for algorithms can be com-

municated as default values in CILib. Further, CiClop’s simulation repository

improves awareness of better parameter choices.

• Conflicting results: Unit testing, a clean pattern based design and the open

source peer review should all contribute to error free software.

• Invalid statistical inference: This issue is addressed as an item of future work

in Section 8.2

Finally, a number of business models were suggested for exploiting the software for

financial gain.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 8. CONCLUSION 153

8.2 Future work

The following potential avenues of research have been inspired by this work:

• The role of open source in collaborative research: Open source clearly has

benefits for collaborative software development. Its role should be studied further,

to identify and quantify critical success factors when using open source as a means

to facilitate collaborative research, so that these factors may be applied to other

projects. If and when CILib becomes successful as a collaborative tool beyond the

borders of the CIRG@UP, it can be analysed as a case study to achieve this goal.

• PSO Taxonomy and characterisation of optimisation problems: A solid

foundation for performing empirical studies is provided by the combination of CILib

and CiClops. In this light, the original goal of creating a PSO taxonomy and

empirically testing PSOs should be revisited. Further, a method of characterising

optimisation problems should be investigated to determine the type of problems

for which a particular optimisation algorithm is best suited.

• MathML for benchmark functions: Benchmark functions in CILib are imple-

mented using a separate class for each function, resulting in a very large number

of classes and no way to define new functions without resorting to writing code.

MathML, an XML grammar for defining mathematical expressions, [9] should be

investigated as an alternative. A primary concern will be the efficiency of this

approach, since benchmark functions are typically executed in tight loops. One

possibility worth investigating is compiling MathML function descriptions directly

into Java byte code at run time so that they become the equivalent of classes.

• Statistical analysis tools: Tools for hypothesis testing need to be implemented in

CiClops in consultation with a domain expert on statistics. There is a fair amount

of disagreement within the research community regarding the appropriateness of

parametric tests when their assumptions are not satisfied [124]. The robustness

of parametric tests when their assumptions are not met needs to be properly in-

vestigated. Further, alternatives such as Monte Carlo simulations, non-parametric

tests, robust procedures, data transformations and re-sampling techniques should

also be investigated [124].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 8. CONCLUSION 154

• Aspect Oriented Programming: The attribute oriented functionality provided

by XDoclet (refer to Section 5.4) is a subset of the broader Aspect Oriented Pro-

gramming (AOP) paradigm [68, 32]. AOP groups together related pieces of code,

or aspects, which can be applied across multiple classes by means of source code

annotations. For example, the persistence logic provided by a J2EE container is an

aspect which can be applied to entity beans by means of XDoclet tags. AOP should

be investigated as a means to further improve the design of CILib and CiClops.

• Mining simulation data: CiClops has the potential to generate large volumes

of simulation data. Data mining [119, 50] techniques should be investigated to

determine trends in simulation data. In cases where the underlying data mining

algorithms are based on CI techniques, as many are, an interesting question of

whether CI techniques be applied recursively to make sense of CI simulation results

can be answered.

• Improved testing and development methodologies: Unit testing and tra-

ditional development methodologies break down for experimental research code.

Agile methodologies, such as extreme programming [11], should be studied as in-

spiration for composing new development methodologies. Further, robust testing

mechanisms for stochastic processes should be investigated.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

Bibliography

[1] The Java HotSpot Virtual Machine, v1.4.1, Technical White Paper, 2002.

http://java.sun.com/products/hotspot/.

[2] OMG Unified Modeling Language, Version 1.5, An Adopted

Formal Specification of the Object Management Group, 2003.

http://www.omg.org/cgi-bin/apps/doc?formal/03-03-01.pdf.

[3] Using Open Source Software in the South African Government, A proposed strat-

egy compiled by the government information technology officers’ council, 2003.

http://www.oss.gov.za/docs/OSS_Strategy_v3.pdf.

[4] D. Alur, D. Malks, and J. Crupi. Core J2EE Patterns: Best Practices and Design

Strategies. Prentice Hall, 2003.

[5] M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.

[6] R. C. Arkin. Behaviour-Based Robotics (Intelligent Robotics and Autonomous

Agents). Bradford Books, 1998.

[7] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal

algorithm for approximate nearest neighbor searching fixed dimensions. Journal

of the ACM, 45(6):891–923, 1998.

[8] M. Ashnault, Z. Dean, T. Garben, P. R. Allen, J. J. Bambara, and S. Smith. J2EE

Unleashed. Sams, 2001.

[9] R. Ausbrooks, S. Buswell, D. Carlisle, S. Dalmas, S. Devitt, A. Diaz,

M. Froumentin, R. Huner, P. Ion, M. Kholhase, R. Miner, N. Pop-

pelier, B. Smith, N. Soiffer, R. Sutor, and S. Watt. Mathematical

155

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

BIBLIOGRAPHY 156

Markup Language (MathML) Version 2.0, W3C Recommendation, Oct. 2003.

http://www.w3.org/TR/2003/REC-MathML2-20031021/.

[10] R. Battiti. First- and Second-Order Methods for Learning: Between Steepest

Descent and Newton’s Method. Neural Computation, 4:141–166, 1992.

[11] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,

1999.

[12] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

[13] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes, W3C Recommen-

dation, Oct. 2004. http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

[14] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,

1995.

[15] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to

Artificial Systems. Oxford University Press, 1999.

[16] S. J. Breckler. Application of covariance structure modeling in psychology. Psy-

chological Bulletin, 107:260–273, 1990.

[17] R. Brits, A. P. Engelbrecht, and F. van den Bergh. Scalability of Niche PSO. In

IEEE Swarm Intelligence Symposium, pages 228–234, 2003.

[18] Z. Budimlić. Compiling Java for High Performance and the Internet. PhD thesis,

Rice University, Houston, Texas, 2001.

[19] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, P. Sommerlad,

and M. Stal. Pattern-Oriented Software Architecture, Volume 1: A System of

Patterns. Wiley, 1996.

[20] N. Cliff. Answering ordinal questions with ordinal data using ordinal statistics.

Multivariate Behavioral Research, 31:331–350, 1996.

[21] P. Coad and J. Nicola. Object-Oriented Programming. Pearson, 1993.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

BIBLIOGRAPHY 157

[22] O. Cordon, F. Herrera, F. Hoffmann, and L. Magdelena. Genetic Fuzzy Systems:

Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. World Scientific,

2002.

[23] C. W. Cowell-Shah. Nine Language Performance Round-up: Benchmarking Math

& File I/O, 2004. http://osnews.com/story.php?news_id=5602.

[24] L. N. de Castro and J. I. Timmis. Artificial Immume Systems: A New Computa-

tional Intelligence Approach. Springer-Verlag, 2002.

[25] O. P. Doederlein. The Tale of Java Performance. Journal of Object Technology,

2(5):17–40, 2003.

[26] M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a colony

of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics,

26(1):29–41, 1996.

[27] R. Durbin and D. E. Rumelhart. Product Units: A Computationally Powerful and

Biologically Plausible Extension to Backpropagation Networks. Neural Compua-

tion, 1:133–142, 1989.

[28] R. C. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In

Proceedings of the Sixth International Symposium on Micro Machine and Human

Science, pages 39–43, Nagoya, Japan, 1995.

[29] R. C. Eberhart, P. Simpson, and R. Dobbins. Computational Intelligence PC Tools.

AP Professional, 1996.

[30] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addison-

Wesley, 2000.

[31] A. P. Engelbrecht. Computational Intelligence: An Introduction. Wiley, 2002.

[32] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit. Aspect-Oriented Software Devel-

opment. Addison-Wesley, 2004.

[33] D. Flanagan. Java in a Nutshell. O’ Reilly, 4th edition, 2002.

[34] D. B. Fogel. Blondie 24: Playing At The Edge of AI. Morgan Kaufmann, 2001.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

BIBLIOGRAPHY 158

[35] G. Fogel and D. W. Corne. Evolutionary Computation in Bioinformatics. Morgan

Kaufmann, 2002.

[36] L. J. Fogel. Autonomous Automata. Industrial Research, 4:14–19, 1962.

[37] L. J. Fogel. On the Organization of Intellect. PhD thesis, University of California,

Los Agneles, 1964.

[38] C. M. Fonseca and P. J. Fleming. Genetic Algorithms for Multiobjective Opti-

mization: Formulation, Discussion and Generalization. In Genetic Algorithms:

Proceedings of the Fifth International Conference, pages 416–423, 1993.

[39] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford. Patterns of

Enterprise Application Architecture. Addison-Wesley, 2002.

[40] N. Franken and A. P. Engelbrecht. Comparing PSO Structures to Learn the Game

of Checkers from Zero Knowlege. In IEEE Congress of Evolutionary Computation,

2003.

[41] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1995.

[42] S. Geman, E. Bienenstock, and R. Doursat. Neural Networks and the

Bias/Variance Dilemma. (4):1–58, 1992.

[43] J. Ghosh and Y. Shin. Efficient Higher-Order Neural Networks for Classification

and Function Approximation. International Journal of Neural Systems, 3:323–350,

1992.

[44] R. A. Ghosh. Cooking pot markets: an economic model for the trade

in free goods and services on the Internet. First Monday, 3(3), 1998.

http://www.firstmonday.org/issues/issue3_3/ghosh/index.html.

[45] J. C. Giarratano. Expert Systems: Principles and Programming. PWS Publishing,

3rd edition, 1998.

[46] F. Girosi, M. Jones, and T. Poggio. Regularization Theory and Neural Networks

Architectures. Neural Computation, 7:219–269, 1995.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

BIBLIOGRAPHY 159

[47] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley, 1985.

[48] D. Green. The Serendipity Machine. Allen & Unwin, 2004.

[49] C. A. Gunter and J. C. Mitchell. Theoretical Aspects of Object-Oriented Program-

ming: Types, Semantics, and Language Design (Foundations of Computing). MIT

Press, 1994.

[50] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-

mann, 2000.

[51] G. Hardin. The Tragedy of the Commons. Science, 162:1243–1248, 1968.

[52] D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley, 1996.

[53] E. R. Harold and W. S. Means. XML in a Nutshell. O’ Reilly, 3rd edition, 2004.

[54] J. Hertz, A. Krogh, and R. Palmer. Introduction to the Theory of Neural Compu-

tation. Addison-Wesley, 1991.

[55] D. Hillis. Co-evolving parasites improves simulation evolution as an optimization

procedure. Artificial Life II, pages 313–324. Addison-Wesley, 1991.

[56] J. Holland. Outline for a logical theory of adaptive systems. Journal of the ACM,

3:297–314, 1962.

[57] S. Hommel. Code Conventions for the Java Programming Language, 1999.

http://java.sun.com/docs/codeconv/.

[58] A. L. Hors, P. L. Hégaret, G. Nicol, J. Robie, M. Champion, and S. Byrne. Doc-

ument Object Model (DOM) Level 3 Core Specification, W3C Recommendation,

Apr. 2004. http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/.

[59] B. Joy, G. Steele, J. Gosling, and G. Bracha. Java Lanaguage Specification.

Addison-Wesley, 2nd edition, 2000.

[60] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to

Cluster Analysis. Wiley, 1990.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

BIBLIOGRAPHY 160

[61] J. Kennedy. Small worlds and mega-minds: Effects of neighborhood topology on

particle swarm performance. In Proceedings of IEEE Congress on Evolutionary

Computation, pages 1931–1938, Washington D.C, USA, July 1999.

[62] J. Kennedy. Bare bones particle swarms. In Proceedings of the IEEE Swarm

Intelligence Symposium (SIS), pages 88–94, Indianapolis, USA, April 2003.

[63] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings of

IEEE International Conference on Neural Networks, volume IV, pages 1942–1948,

Perth, Australia, 1995.

[64] J. Kennedy and R. Mendes. Population structure and particle swarm performance.

In Proceedings of the IEEE Congress on Evolutionary Computation, Honolulu,

Hawaii USA, May 2002.

[65] H. J. Kesselman, C. Huberty, L. M. Lix, S. Olejnik, R. A. Cribbie, B. Donahue,

R. K. Kowalchuk, L. L. Lowman, M. D. Petoskey, and J. C. Keselman. Statisti-

cal practices of education researchers: An analysis of their ANOVA, MANOVA,

ANCOVA analyses. Review of Educational Research, 68:350–386, 1998.

[66] T. Kohonen. Self-Organizing Maps. Springer, 1995.

[67] J. R. Koza. Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, 1992.

[68] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Manning,

2003.

[69] Larson, Hostetler, and Edwards. Calculus. Heath, 1994.

[70] K. Lea. The Java is Faster than C++ and C++ Sucks.

http://kano.net/javabench/.

[71] J. A. Lee, A. Lendasse, N. Donckers, and M. Verleysen. A robust nonlinear pro-

jection method. In ESANN, pages 13–20, 2000.

[72] J. P. Lewis and U. Neumann. Performance of Java

versus C++, University of Southern California, 2003.

http://www.idiom.com/~zilla/Computer/javaCbenchmark.html.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

BIBLIOGRAPHY 161

[73] G. P. Liu, J. Yang, and J. F. Whidborne. Multiobjective Optimisation & Control.

Research Studies Press, 2002.

[74] M. Lovbjerg, T. K. Rasmussen, and T. Krink. Hybrid Particle Swarm Optimiser

with Breeding and Subpopulations. In Genetic and Evolutionary Computation

Conference, 2001.

[75] E. H. Mamdani and S. Assilian. An Experiment in Linguistic Synthesis with a

Fuzzy Logic Controller. International Journal of Man-Machine Studies, 7:1–13,

1975.

[76] C. Mangione. Performance tests show Java as fast as C++, 1998.

http://www.javaworld.com/javaworld/jw-02-1998/jw-02-jperf_p.html.

[77] E. Mayr. Animal Species and Evolution. Belknap, 1963.

[78] R. Mendes, J. Kennedy, and J. Neves. Watch thy neighbor or how the swarm

can learn from its environment. In Proceedings of the IEEE Swarm Intelligence

Symposium (SIS), pages 88–94, Indianapolis, USA, April 2003.

[79] L. Messerschmidt and A. P. Engelbrecht. Learning to Play Games using a PSO-

based Competitive Learning Approach. In Asia-Pcific Conference on Simulated

Evolution and Learning, 2002.

[80] S. J. Metsker. Design Patterns C#. Addison-Wesley, 2004.

[81] T. Micceri. The unicorn, the normal curve, and other improbable creatures. Psy-

chologica Bulletin, 105:156–166, 1989.

[82] R. E. Michod. Darwinian Dynamics. Princeton University Press, 2000.

[83] P. B. Miltersen. MILP, ILP and TSP: Course notes for Search and Optimization,

2004. http://www.daimi.au.dk/dSoegOpt/ilp.pdf.

[84] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[85] N. J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann, 1998.

[86] C. Nock. Data Access Patterns: Database Interactions in Object-Oriented Appli-

cations. Addison-Wesley, 2003.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

BIBLIOGRAPHY 162

[87] U. Paquet and A. P. Engelbrecht. A New Particle Swarm Optimiser for Linearly

Constrained Optimisation. In Congress on Evolutionary Computation, 2003.

[88] W. Pedrycz. Computational Intelligence: An Introduction. CRC Press, 1998.

[89] E. S. Peer, A. P. Engelbrecht, and F. van den Bergh. CIRG@UP OptiBench: A

statistically sound framework for benchmarking optimisation algorithms. In IEEE

Congress on Evolutionary Computation, 2003.

[90] E. S. Peer, F. van den Bergh, and A. P. Engelbrecht. Using Neighbourhoods with

the Guaranteed Convergence PSO. In Proceedings of the IEEE Swarm Intelligence

Symposium (SIS), pages 235–242, Indianapolis, USA, April 2003.

[91] M. A. Potter and K. A. de Jong. A Cooperative Coevolutionary Approach to

Function Optimization. In The Third Parallel Problem Solving from Nature, pages

249–257, 1994.

[92] E. S. Raymond. The Cathedral and the Bazaar: Musings on Linux and Open

Source by an accidental revolutionary. O’ Reilly, 2nd edition, 2001.

[93] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipien der Biologischen Evolution. Frommann-Holzboog, 1973.

[94] I. Rechenberg. Evolutionsstrategie. Frommann-Holzboog, 1994.

[95] K. Reinholtz. Java will be faster than C++. ACM SIGPLAN Notices, 35(2):25–28,

2000.

[96] R. G. Reynolds. An Introductions to Cultural Algorithms. In Conference on

Evolutionary Computing, pages 131–139, 1994.

[97] R. M. Roberts. Serendipity: Accidental Discoveries in Science. Wiley, 1989.

[98] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software

Architecture, Volume 2, Patterns for Concurrent and Networked Objects. Wiley,

2000.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

BIBLIOGRAPHY 163

[99] A. C. Schultz, L. E. Parker, and F. E. Schneider, editors. Multi-Robot Systems:

From Swarms to Intelligent Automata, volume 2. Kluwer Academic Publishers,

2003.

[100] Y. Shi and R. C. Eberhart. A modified particle swarm optimizer. In Proceedings of

the IEEE Congress on Evolutionary Computation, pages 69–73, Anchorage, Alaska,

May 1998.

[101] Y. Shi and R. C. Eberhart. Empirical study of particle swarm optimisation. In Pro-

ceedings of the IEEE International Congress on Evolutionary computation, pages

101–106, 1999.

[102] J. A. Snyman. A New and Dynamic Method for Unconstrained Minimization.

Applied Mathematical Modelling, 6:449–462, 1982.

[103] F. Solis and R. Wets. Minimization by random search techniques. Mathematics of

Operations Research, 6:19–30, 1981.

[104] D. Spiller and T. Wichmann. Basics of Open Source Software Markets and

Business Models, Free/Libre Open Source Software: Survey and Study, 2002.

http://www.berlecon.de/studien/downloads/200207FLOSS_Basics.pdf.

[105] R. M. Stallman, L. Lessig, and J. Gay. Free Software, Free Society: Selected Essays

of Richard M. Stallman. Free Software Foundation, 2002.

[106] A. G. W. Steyn, C. F. Smit, S. H. C. du Toit, and C. Strasheim. Modern Statistics

in Practice. J. L. van Schaik, 2nd edition, 1996.

[107] M. Su, T. A. Liu, and H. T. Chang. An Efficient Initialization Scheme for the

Self-Organising Feature Map Algorithm. In IEEE IJCNN, 1999.

[108] P. N. Suganthan. Particle Swarm Optimiser with Neighbourhood Operator. In

IEEE Congress of Evolutionary Computation, 1999.

[109] T. Bäck, D. B. Fogel, and Z. Michalewicz. Evolutionary Computation 1: Basic

Algorithms and Operators. Institute of Physics Publishing, 2000.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

BIBLIOGRAPHY 164

[110] T. Takagi and M. Sugeno. Fuzzy Identification of Systems and its Application

to Modeling and Control. IEEE Transactions of Systems, Man, and Cybernetics,

15(1):116–132, 1985.

[111] W. Theunissen, A. Boake, and D. G. Kourie. A Preliminary Investigation of the

Impact of Open Source Software on Telecommunication Software Development. In

Southern African Telecommunication Networks & Applications Conference (SAN-

TAC), 2004.

[112] H. S. Thompson, D. Beech, M. Maloney, and N. Medelsohn. XML

Schema Part 1: Structures, W3C Recommendation, Oct. 2004.

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

[113] F. van den Bergh. An Analysis of Particle Swarm Optimizers. PhD thesis, De-

partment of Computer Science, University of Pretoria, South Africa, 2002.

[114] F. van den Bergh and A. Engelbrecht. A new locally convergent particle swarm

optimizer. In Proceedings of IEEE Conference on Systems, Man and Cybernetics,

Hammamet, Tunisia, Oct. 2002.

[115] N. Walsh and L. Muellner. DocBook: The Definitive Guide. O’ Reilly, 1999.

[116] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the

Behavioural Sciences. PhD thesis, Harvard University, Boston, USA, 1974.

[117] R. P. Wiegand. An Analysis of Cooperative Coevolutionary Algorithms. PhD thesis,

George Mason University, Virgina, 2003.

[118] P. M. Williams. Bayesian Regularization and Pruning Using a Laplace Prior.

Neural Computation, 7:117–143, 1995.

[119] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Morgan Kaufmann, 1999.

[120] D. H. Wolpert and W. G. Macready. No free lunch theorems for search. Technical

Report SFI-TR-95-02-010, Santa Fe Institute, July 1995.

[121] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation, 4:67–82, 1997.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

BIBLIOGRAPHY 165

[122] X. Xie, W. Zang, and Z. Yang. A dissipative particle swarm optimization. In IEEE

Congress on Evolutionary Computing, 2002.

[123] F. Yergeau, T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Ex-

tensible Markup Language (XML) 1.0, W3C Recommendation, Feb. 2004.

http://www.w3.org/TR/2004/REC-xml-20040204/.

[124] C. H. Yu. An Overview of Remedial Tools for the Violation of Parametric Test

Assumptions in the SAS System. In Western Users of SAS Software Conference,

2002.

[125] L. A. Zadeh. Fuzzy Sets. Information and control, 8:338–353, 1965.

[126] L. A. Zadeh. The Concept of a Linguistic Variable and its Application to Approx-

imate Reasoning - I. Information Sciences, 8:199–249, 1975.

[127] L. A. Zadeh. The Concept of a Linguistic Variable and its Application to Approx-

imate Reasoning - II. Information Sciences, 8:301–357, 1975.

[128] L. A. Zadeh. The Concept of a Linguistic Variable and its Application to Approx-

imate Reasoning - III. Information Sciences, 9:43–80, 1975.

[129] Y. Zhang and A. Kandel. Compensatory Genetic Fuzzy Neural Networks and Their

Applications. World Scientific, 1998.

[130] H. Zimmermann, G. Tselentis, M. V. Someren, and G. Dounias. Advances in Com-

putational Intelligence and Learning: Methods and Applications. Kluwer Academic

Publishers, 2002.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

Appendix A

List of Acronyms and Abbreviations

Acronym: Abbreviated Coded Rendition Of Name Yielding Meaning

AFL: Academic Free License

AI: Artificial Intelligence

AIS: Artificial Immune System

AL: Artistic License

API: Application Programming Interface

ASL: Apache Software License

BMP: Bean Managed Persistence

CI: Computational Intelligence

CiClops: Computational Intelligence Collaborative Laboratory Of Pantological Soft-

ware.

CILib: Computational Intelligence Library1

CIRG@UP: The Computational Intelligence Research Group at the University of

Pretoria2.

1http://cilib.sourceforge.net
2http://cirg.cs.up.ac.za

166

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX A. LIST OF ACRONYMS AND ABBREVIATIONS 167

CMP: Container Managed Persistence

CPL: Common Public License

CPU: Central Processing Unit

CVS: Concurrent Versioning System

DOM: Document Object Model

DPSO: Dissipative PSO

DTD: Document Type Definition

EC: Evolutionary Computing

EJB: Enterprise Java Bean

EP: Evolutionary Programming

ES: Evolutionary Strategies

GA: Genetic Algorithm

GC: Garbage Collection

GCC: GNU Compiler Collection

GNU: GNU’s Not Unix

GoF: Gang of Four (Gamma, Helm, Johnson, Vlissides)

GPL: General Public License

GUI: Graphical User Interface

HTML: HyperText Markup Language

I/O: Input/Output

J2EE: Java 2 Enterprise Edition

JCP: Java Community Process

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX A. LIST OF ACRONYMS AND ABBREVIATIONS 168

JFC: Java Foundation Classes

JIT: Just In Time

JMS: Java Messaging Service

JNDI: Java Naming and Directory Interface

JVM: Java Virtual Machine

LGPL: Lesser General Public License

LVQ: Learning Vector Quantiser

NN: Neural Network

NP: Nondeterministic Polynomial-time

OMG: Object Management Group

OOP: Object Oriented Programming

OSD: Open Source Definition

OSI: Open Source Initiative

OSL: Open Software License

OSS: Open Source Software

PSO: Particle Swarm Optimiser

RPC: Remote Procudure Call

SAX: Simple API for XML

SDK: Software Developer Kit

SI: Swarm Intelligence

SOFM: Self-Organising Feature Map

SSE: Sum Squared Error

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX A. LIST OF ACRONYMS AND ABBREVIATIONS 169

TSP: Travelling Salesman Problem

UML: Unified Modelling Language

W3C: World Wide Web Consortium

XML: eXtensible Markup Language

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

Appendix B

Unified Modelling Language

The notation used for class structure diagrams in this dissertation is based on the Ob-

ject Management Group (OMG) Unified Modelling Language (UML) specification [2].

Diagrams were composed using the open source Dia1 tool, which has some minor flaws in

terms of formatting and strict conformance to the UML specification. Nonetheless, the

diagrams still serve their intended purpose of effectively communicating class structure

and relationships.

Figure B.1: Example UML Class

Figure B.1 illustrates how a class is represented in UML. The top rectangle contains

the class name, the middle contains attributes, or fields, and the bottom contains meth-

ods, or operations. The prefix of a plus, minus or hash symbol in front of a class member

indicates public, private and protected access modifiers respectively. Class scope, or

static, members are underlined. In general, an identifier’s type follows after its declara-

tion, preceded by a colon. Method return types are declared to the right of the method

1http://www.gnome.org/projects/dia/

170

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX B. UNIFIED MODELLING LANGUAGE 171

definition, and method parameters are indicated within parentheses. While the class

name must always be specified, method and attribute blocks may be omitted to simplify

a diagram. Annotations are depicted by a piece of paper with a folded corner. Although

not shown in the example, abstract operations and class names are indicated in italics.

Figure B.2: UML Relationships

Figure B.2 shows the possible relationships between classes. Inheritance is indicated

by a line with an open triangle pointing towards the base class. A line that starts with a

diamond represents an aggregation relationship where the arrow points to the class that

is aggregated. Acquaintance, or simply an object reference, is denoted by an arrow line

without a diamond. Whenever possible, the starting point of aggregate or acquaintance

arrows are aligned with the attributes taking part in the relationship. Finally, object

instantiation is indicated by a dotted line with an arrow pointing from the creating class

to the created class.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

Appendix C

The Open Source Definition

Open source doesn’t just mean access to the source code. The distribution terms of

open-source software must comply with the following criteria:

C.1 Free Redistribution

The license shall not restrict any party from selling or giving away the software as

a component of an aggregate software distribution containing programs from several

different sources. The license shall not require a royalty or other fee for such sale.

C.2 Source Code

The program must include source code, and must allow distribution in source code as

well as compiled form. Where some form of a product is not distributed with source code,

there must be a well-publicized means of obtaining the source code for no more than a

reasonable reproduction cost, preferably, downloading via the Internet without charge.

The source code must be the preferred form in which a programmer would modify the

program. Deliberately obfuscated source code is not allowed. Intermediate forms such

as the output of a preprocessor or translator are not allowed.

172

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX C. THE OPEN SOURCE DEFINITION 173

C.3 Derived Works

The license must allow modifications and derived works, and must allow them to be

distributed under the same terms as the license of the original software.

C.4 Integrity of The Author’s Source Code

The license may restrict source-code from being distributed in modified form only if the

license allows the distribution of “patch files” with the source code for the purpose of

modifying the program at build time. The license must explicitly permit distribution

of software built from modified source code. The license may require derived works to

carry a different name or version number from the original software.

C.5 No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

C.6 No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a specific field

of endeavor. For example, it may not restrict the program from being used in a business,

or from being used for genetic research.

C.7 Distribution of License

The rights attached to the program must apply to all to whom the program is redis-

tributed without the need for execution of an additional license by those parties.

C.8 License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program’s being part of

a particular software distribution. If the program is extracted from that distribution

and used or distributed within the terms of the program’s license, all parties to whom

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX C. THE OPEN SOURCE DEFINITION 174

the program is redistributed should have the same rights as those that are granted in

conjunction with the original software distribution.

C.9 License Must Not Restrict Other Software

The license must not place restrictions on other software that is distributed along with

the licensed software. For example, the license must not insist that all other programs

distributed on the same medium must be open-source software.

C.10 License Must Be Technology-Neutral

No provision of the license may be predicated on any individual technology or style of

interface.

Copyright c© 2004 by the Open Source Initiative.

Reproduced under the Open Software License 2.1 or Academic Free License 2.1.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

Appendix D

GPL Approval Letter

175

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

Appendix E

Popular Open Source Licenses

E.1 Academic Free License (AFL)

Version 2.1

This Academic Free License (the “License”) applies to any original work of authorship (the

“riginal Work”) whose owner (the “Licensor”) has placed the following notice immediately

following the copyright notice for the Original Work:

Licensed under the Academic Free License version 2.1

1. Grant of Copyright License. Licensor hereby grants You a world-wide, royalty-free, non-

exclusive, perpetual, sublicenseable license to do the following:

• to reproduce the Original Work in copies;

• to prepare derivative works (“Derivative Works”) based upon the Original Work;

• to distribute copies of the Original Work and Derivative Works to the public;

• to perform the Original Work publicly; and

• to display the Original Work publicly.

2. Grant of Patent License. Licensor hereby grants You a world-wide, royalty-free, non-

exclusive, perpetual, sublicenseable license, under patent claims owned or controlled by

the Licensor that are embodied in the Original Work as furnished by the Licensor, to

make, use, sell and offer for sale the Original Work and Derivative Works.

176

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 177

3. Grant of Source Code License. The term “Source Code” means the preferred form of the

Original Work for making modifications to it and all available documentation describing

how to modify the Original Work. Licensor hereby agrees to provide a machine-readable

copy of the Source Code of the Original Work along with each copy of the Original

Work that Licensor distributes. Licensor reserves the right to satisfy this obligation

by placing a machine-readable copy of the Source Code in an information repository

reasonably calculated to permit inexpensive and convenient access by You for as long

as Licensor continues to distribute the Original Work, and by publishing the address of

that information repository in a notice immediately following the copyright notice that

applies to the Original Work.

4. Exclusions From License Grant. Neither the names of Licensor, nor the names of any

contributors to the Original Work, nor any of their trademarks or service marks, may be

used to endorse or promote products derived from this Original Work without express

prior written permission of the Licensor. Nothing in this License shall be deemed to

grant any rights to trademarks, copyrights, patents, trade secrets or any other intellectual

property of Licensor except as expressly stated herein. No patent license is granted to

make, use, sell or offer to sell embodiments of any patent claims other than the licensed

claims defined in Section 2. No right is granted to the trademarks of Licensor even if such

marks are included in the Original Work. Nothing in this License shall be interpreted

to prohibit Licensor from licensing under different terms from this License any Original

Work that Licensor otherwise would have a right to license.

5. This section intentionally omitted.

6. Attribution Rights. You must retain, in the Source Code of any Derivative Works that

You create, all copyright, patent or trademark notices from the Source Code of the

Original Work, as well as any notices of licensing and any descriptive text identified

therein as an “Attribution Notice.” You must cause the Source Code for any Derivative

Works that You create to carry a prominent Attribution Notice reasonably calculated to

inform recipients that You have modified the Original Work.

7. Warranty of Provenance and Disclaimer of Warranty. Licensor warrants that the copy-

right in and to the Original Work and the patent rights granted herein by Licensor are

owned by the Licensor or are sublicensed to You under the terms of this License with

the permission of the contributor(s) of those copyrights and patent rights. Except as

expressly stated in the immediately proceeding sentence, the Original Work is provided

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 178

under this License on an “AS IS” BASIS and WITHOUT WARRANTY, either express

or implied, including, without limitation, the warranties of NON-INFRINGEMENT,

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

RISK AS TO THE QUALITY OF THE ORIGINAL WORK IS WITH YOU. This DIS-

CLAIMER OF WARRANTY constitutes an essential part of this License. No license to

Original Work is granted hereunder except under this disclaimer.

8. Limitation of Liability. Under no circumstances and under no legal theory, whether

in tort (including negligence), contract, or otherwise, shall the Licensor be liable to

any person for any direct, indirect, special, incidental, or consequential damages of any

character arising as a result of this License or the use of the Original Work including,

without limitation, damages for loss of goodwill, work stoppage, computer failure or

malfunction, or any and all other commercial damages or losses. This limitation of

liability shall not apply to liability for death or personal injury resulting from Licensor’s

negligence to the extent applicable law prohibits such limitation. Some jurisdictions

do not allow the exclusion or limitation of incidental or consequential damages, so this

exclusion and limitation may not apply to You.

9. Acceptance and Termination. If You distribute copies of the Original Work or a Deriva-

tive Work, You must make a reasonable effort under the circumstances to obtain the

express assent of recipients to the terms of this License. Nothing else but this License (or

another written agreement between Licensor and You) grants You permission to create

Derivative Works based upon the Original Work or to exercise any of the rights granted

in Section 1 herein, and any attempt to do so except under the terms of this License (or

another written agreement between Licensor and You) is expressly prohibited by U.S.

copyright law, the equivalent laws of other countries, and by international treaty. There-

fore, by exercising any of the rights granted to You in Section 1 herein, You indicate

Your acceptance of this License and all of its terms and conditions.

10. Termination for Patent Action. This License shall terminate automatically and You may

no longer exercise any of the rights granted to You by this License as of the date You

commence an action, including a cross-claim or counterclaim, against Licensor or any

licensee alleging that the Original Work infringes a patent. This termination provision

shall not apply for an action alleging patent infringement by combinations of the Original

Work with other software or hardware.

11. Jurisdiction, Venue and Governing Law. Any action or suit relating to this License may

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 179

be brought only in the courts of a jurisdiction wherein the Licensor resides or in which

Licensor conducts its primary business, and under the laws of that jurisdiction excluding

its conflict-of-law provisions. The application of the United Nations Convention on Con-

tracts for the International Sale of Goods is expressly excluded. Any use of the Original

Work outside the scope of this License or after its termination shall be subject to the

requirements and penalties of the U.S. Copyright Act, 17 U.S.C. ?? 101 et seq., the

equivalent laws of other countries, and international treaty. This section shall survive

the termination of this License.

12. Attorneys Fees. In any action to enforce the terms of this License or seeking damages

relating thereto, the prevailing party shall be entitled to recover its costs and expenses,

including, without limitation, reasonable attorneys’ fees and costs incurred in connection

with such action, including any appeal of such action. This section shall survive the

termination of this License.

13. Miscellaneous. This License represents the complete agreement concerning the subject

matter hereof. If any provision of this License is held to be unenforceable, such provision

shall be reformed only to the extent necessary to make it enforceable.

14. Definition of “You” in This License. “You” throughout this License, whether in upper or

lower case, means an individual or a legal entity exercising rights under, and complying

with all of the terms of, this License. For legal entities, “You” includes any entity that

controls, is controlled by, or is under common control with you. For purposes of this

definition, “control” means (i) the power, direct or indirect, to cause the direction or

management of such entity, whether by contract or otherwise, or (ii) ownership of fifty

percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such

entity.

15. Right to Use. You may use the Original Work in all ways not otherwise restricted or

conditioned by this License or by law, and Licensor promises not to interfere with or be

responsible for such uses by You.

This license is Copyright c© 2003-2004 Lawrence E. Rosen. All rights reserved. Permission is

hereby granted to copy and distribute this license without modification. This license may not

be modified without the express written permission of its copyright owner.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 180

E.2 Apache Software License (ASL)

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as

defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner

that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control,

are controlled by, or are under common control with that entity. For the purposes of

this definition, “control” means (i) the power, direct or indirect, to cause the direction or

management of such entity, whether by contract or otherwise, or (ii) ownership of fifty

percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such

entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions

granted by this License.

“Source” form shall mean the preferred form for making modifications, including but not

limited to software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or trans-

lation of a Source form, including but not limited to compiled object code, generated

documentation, and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made

available under the License, as indicated by a copyright notice that is included in or

attached to the work (an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is

based on (or derived from) the Work and for which the editorial revisions, annotations,

elaborations, or other modifications represent, as a whole, an original work of authorship.

For the purposes of this License, Derivative Works shall not include works that remain

separable from, or merely link (or bind by name) to the interfaces of, the Work and

Derivative Works thereof.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 181

“Contribution” shall mean any work of authorship, including the original version of the

Work and any modifications or additions to that Work or Derivative Works thereof, that

is intentionally submitted to Licensor for inclusion in the Work by the copyright owner

or by an individual or Legal Entity authorized to submit on behalf of the copyright

owner. For the purposes of this definition, “submitted” means any form of electronic,

verbal, or written communication sent to the Licensor or its representatives, including

but not limited to communication on electronic mailing lists, source code control systems,

and issue tracking systems that are managed by, or on behalf of, the Licensor for the

purpose of discussing and improving the Work, but excluding communication that is

conspicuously marked or otherwise designated in writing by the copyright owner as “Not

a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom

a Contribution has been received by Licensor and subsequently incorporated within the

Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each

Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,

royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of,

publicly display, publicly perform, sublicense, and distribute the Work and such Deriva-

tive Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Con-

tributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-

free, irrevocable (except as stated in this section) patent license to make, have made, use,

offer to sell, sell, import, and otherwise transfer the Work, where such license applies only

to those patent claims licensable by such Contributor that are necessarily infringed by

their Contribution(s) alone or by combination of their Contribution(s) with the Work to

which such Contribution(s) was submitted. If You institute patent litigation against any

entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or

a Contribution incorporated within the Work constitutes direct or contributory patent

infringement, then any patent licenses granted to You under this License for that Work

shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative

Works thereof in any medium, with or without modifications, and in Source or Object

form, provided that You meet the following conditions:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 182

(a) You must give any other recipients of the Work or Derivative Works a copy of this

License; and

(b) You must cause any modified files to carry prominent notices stating that You

changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute,

all copyright, patent, trademark, and attribution notices from the Source form of

the Work, excluding those notices that do not pertain to any part of the Derivative

Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any

Derivative Works that You distribute must include a readable copy of the attribu-

tion notices contained within such NOTICE file, excluding those notices that do

not pertain to any part of the Derivative Works, in at least one of the following

places: within a NOTICE text file distributed as part of the Derivative Works;

within the Source form or documentation, if provided along with the Derivative

Works; or, within a display generated by the Derivative Works, if and wherever

such third-party notices normally appear. The contents of the NOTICE file are for

informational purposes only and do not modify the License. You may add Your

own attribution notices within Derivative Works that You distribute, alongside or

as an addendum to the NOTICE text from the Work, provided that such additional

attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide

additional or different license terms and conditions for use, reproduction, or distribution

of Your modifications, or for any such Derivative Works as a whole, provided Your use,

reproduction, and distribution of the Work otherwise complies with the conditions stated

in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution

intentionally submitted for inclusion in the Work by You to the Licensor shall be under

the terms and conditions of this License, without any additional terms or conditions.

Notwithstanding the above, nothing herein shall supersede or modify the terms of any

separate license agreement you may have executed with Licensor regarding such Contri-

butions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks,

service marks, or product names of the Licensor, except as required for reasonable and

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 183

customary use in describing the origin of the Work and reproducing the content of the

NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Li-

censor provides the Work (and each Contributor provides its Contributions) on an “AS

IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either ex-

press or implied, including, without limitation, any warranties or conditions of TITLE,

NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR

PURPOSE. You are solely responsible for determining the appropriateness of using or re-

distributing the Work and assume any risks associated with Your exercise of permissions

under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including

negligence), contract, or otherwise, unless required by applicable law (such as deliberate

and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You

for damages, including any direct, indirect, special, incidental, or consequential damages

of any character arising as a result of this License or out of the use or inability to use

the Work (including but not limited to damages for loss of goodwill, work stoppage,

computer failure or malfunction, or any and all other commercial damages or losses),

even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative

Works thereof, You may choose to offer, and charge a fee for, acceptance of support, war-

ranty, indemnity, or other liability obligations and/or rights consistent with this License.

However, in accepting such obligations, You may act only on Your own behalf and on

Your sole responsibility, not on behalf of any other Contributor, and only if You agree to

indemnify, defend, and hold each Contributor harmless for any liability incurred by, or

claims asserted against, such Contributor by reason of your accepting any such warranty

or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the

fields enclosed by brackets “[]” replaced with your own identifying information. (Don’t include

the brackets!) The text should be enclosed in the appropriate comment syntax for the file

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 184

format. We also recommend that a file or class name and description of purpose be included

on the same “printed page” as the copyright notice for easier identification within third-party

archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the ‘‘License’’);

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an ‘‘AS IS’’ BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and

limitations under the License.

E.3 Artistic License (AL)

Version 2.0beta4, October 2000

Copyright (C) 2000, Larry Wall.

Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

Preamble

This copyright license states the terms under which a given free software Package may be

copied, modified and/or redistributed, while the Originator(s) maintain some artistic control

over the future development of that Package (at least as much artistic control as can be given

under copyright law while still making the Package open source and free software).

This license is bound by copyright law, and thus it legally applies only to works which the

copyright holder has permitted copying, distribution or modification under the terms of the

Artistic License, Version 2.0.

You are reminded that You are always permitted to make arrangements wholly outside of a

given copyright license directly with the copyright holder(s) of a given Package. If the terms of

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 185

this license impede your ability to make full use of the Package, You are encouraged to contact

the copyright holder(s) and seek a different licensing arrangement.

Definitions

“Package” refers to the collection of files distributed by the Originator(s), and derivatives of

that collection of files created through textual modification.

“Standard Version” refers to the Package if it has not been modified, or has been modified only

in ways suggested by the Originator(s).

“Modified Version” refers to the Package, if it has been changed by You via textual modification

of the source code, and such changes were not suggested by the Originator(s).

“Originator” refers to the author(s) and/or copyright holder(s) of the Standard Version of the

Package.

“You” and “Your” refers to any person who would like to copy, distribute, or modify the

Package.

“Distribution Fee” is any fee that You charge for providing a copy of this Package to another

party. It does not refer to licensing fees.

“Freely Available” means that:

(a) no fee is charged for the right to use the item (though a Distribution Fee may be charged).

(b) recipients of the item may redistribute it under the same conditions they received it.

(c) If the item is a binary, object code, bytecode, the complete corresponding machine-readable

source code is included with the item.

Permission for Use and Modification Without Redistribution

1. You are permitted to use the Standard Version and create and use Modified Versions

for any purpose without restriction, provided that you do not redistribute the Modified

Version to others outside of your company or organization.

Permissions for Redistribution of the Standard Version

2. You may make available verbatim copies of the source code of the Standard Version

of this Package in any medium without restriction, either gratis or for a Distribution

Fee, provided that you duplicate all of the original copyright notices and associated

disclaimers. At Your discretion, such verbatim copies may or may not include compiled

bytecode, object code or binary versions of the corresponding source code in the same

medium.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 186

3. You may apply any bug fixes, portability changes, and other modifications made available

from any of the Originator(s). The resulting modified Package will still be considered

the Standard Version, and may be copied, modified and redistributed under the terms

of the original license of the Standard Version as if it were the Standard Version.

Permissions for Redistribution of Modified Versions of the Package as Source

4. You may modify your copy of the source code of this Package in any way and distribute

that Modified Version (either gratis or for a Distribution Fee, and with or without a

corresponding binary, bytecode or object code version of the Modified Version) provided

that You clearly indicate what changes You made to the Package, and provided that You

do at least ONE of the following:

(a) make the Modified Version available to the Originator(s) of the Standard Version,

under the exact license of the Standard Version, so that the Originator(s) may

include your modifications into the Standard Version (at their discretion).

(b) modify any installation scripts and procedures so that installation of the Modified

Version will never conflict with an installation of the Standard Version, include for

each program installed by the Modified Version clear documentation describing how

it differs from the Standard Version, and rename your Modified Version so that the

name is substantially different from the Standard Version.

(c) permit and encourage anyone who receives a copy of the Modified Version permis-

sion to make your modifications Freely Available in some specific way.

If Your Modified Version is in turn derived from a Modified Version made by a third

party, then You are still required to ensure that Your Modified Version complies with

the requirements of this license.

Permissions for Redistribution of Non-Source Versions of Package

5. You may distribute binary, object code, bytecode or other non-source versions of the

Standard Version of the Package, provided that you include complete instructions on

where to get the source code of the Standard Version. Such instructions must be valid at

the time of Your distribution. If these instructions, at any time while You are carrying

our such distribution, become invalid, you must provide new instructions on demand or

cease further distribution. If You cease distribution within thirty days after You become

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 187

aware that the instructions are invalid, then You do not forfeit any of Your rights under

this license.

6. You may distribute binary, object code, bytecode or other non-source versions of a Mod-

ified Version provided that You do at least ONE of the following:

(a) include a copy of the corresponding source code for the Modified Version under the

terms indicated in (4).

(b) ensure that the installation of Your non-source Modified Version does not conflict

in any way with an installation of the Standard Version, include for each program

installed by the Modified Version clear documentation describing how it differs

from the Standard Version, and rename your Modified Version so that the name is

substantially different from the Standard Version.

(c) ensure that the Modified Version includes notification of the changes made from

the Standard Version, and offer to provide machine-readable source code (under

a license that permits making that source code Freely Available) of the Modified

Version via mail order.

Permissions for Inclusion of the Package in Aggregate Works

7. You may aggregate this Package (either the Standard Version or Modified Version) with

other packages and distribute the resulting aggregation provided that You do not charge

a licensing fee for the Package. Distribution Fees are permitted, and licensing fees for

other packages in the aggregation are permitted. Your permission to distribute Standard

or Modified Versions of the Package is still subject to the other terms set forth in other

sections of this license.

8. In addition to the permissions given elsewhere by this license, You are also permitted

to link Modified and Standard Versions of this Package with other works and distribute

the result without restriction, provided You have produced binary program(s) that do

not overtly expose the interfaces of the Package. This includes permission to embed the

Package in a larger work of your own without exposing a direct interface to the Package.

This also includes permission to build stand-alone binary or bytecode versions of your

scripts that require the Package, but do not otherwise give the casual user direct access

to the Package itself.

Items That are Never Considered Part of a Modified Version Package

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 188

9. Works (including, but not limited to, subroutines and scripts) that you have linked or

aggregated with the Package that merely extend or make use of the Package, but are

not intended to cause the Package to operate differently from the Standard Version, do

not, by themselves, cause the Package to be a Modified Version. In addition, such works

are not considered parts of the Package itself, and are not bound by the terms of the

Package’s license.

Acceptance of License and Disclaimer of Warranty

10. You are not required to accept this License, since you have not signed it. However,

nothing else grants you permission to copy, modify or distribute the Standard or Modified

Versions of the Package. These actions are prohibited by copyright law if you do not

accept this License. Therefore, by copying, modifying or distributing Standard and

Modified Versions of the Package, you indicate your acceptance of the license of the

Package.

11. Disclaimer of Warranty:

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-

TRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-

ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-

ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

EVENT UNLESS REQUIRED BY LAW OR AGREED TO IN WRITING WILL ANY

COPYRIGHT HOLDER OR CONTRIBUTOR BE LIABLE FOR ANY DIRECT, IN-

DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-

AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, PROFITS; OR BUSINESS INTER-

RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

E.4 BSD License

Copyright (c) <YEAR>, <OWNER>. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 189

• Redistributions of source code must retain the above copyright notice, this list of condi-

tions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

• Neither the name of the <ORGANIZATION> nor the names of its contributors may be

used to endorse or promote products derived from this software without specific prior

written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-

TORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-

NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDI-

RECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-

CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-

EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-

ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF

THE POSSIBILITY OF SUCH DAMAGE.

E.5 Common Public License (CPL)

Version 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS COM-

MON PUBLIC LICENSE (“AGREEMENT”). ANY USE, REPRODUCTION OR DISTRI-

BUTION OF THE PROGRAM CONSTITUTES RECIPIENT’S ACCEPTANCE OF THIS

AGREEMENT.

1. DEFINITIONS

“Contribution” means:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 190

(a) in the case of the initial Contributor, the initial code and documentation distributed

under this Agreement, and

(b) in the case of each subsequent Contributor:

i. changes to the Program, and

ii. additions to the Program;

where such changes and/or additions to the Program originate from and are distributed

by that particular Contributor. A Contribution ’originates’ from a Contributor if it was

added to the Program by such Contributor itself or anyone acting on such Contributor’s

behalf. Contributions do not include additions to the Program which: (i) are separate

modules of software distributed in conjunction with the Program under their own license

agreement, and (ii) are not derivative works of the Program.

“Contributor” means any person or entity that distributes the Program.

“Licensed Patents” mean patent claims licensable by a Contributor which are necessarily

infringed by the use or sale of its Contribution alone or when combined with the Program.

“Program” means the Contributions distributed in accordance with this Agreement.

“Recipient” means anyone who receives the Program under this Agreement, including

all Contributors.

2. GRANT OF RIGHTS

(a) Subject to the terms of this Agreement, each Contributor hereby grants Recipient

a non-exclusive, worldwide, royalty-free copyright license to reproduce, prepare

derivative works of, publicly display, publicly perform, distribute and sublicense

the Contribution of such Contributor, if any, and such derivative works, in source

code and object code form.

(b) Subject to the terms of this Agreement, each Contributor hereby grants Recipient

a non-exclusive, worldwide, royalty-free patent license under Licensed Patents to

make, use, sell, offer to sell, import and otherwise transfer the Contribution of such

Contributor, if any, in source code and object code form. This patent license shall

apply to the combination of the Contribution and the Program if, at the time the

Contribution is added by the Contributor, such addition of the Contribution causes

such combination to be covered by the Licensed Patents. The patent license shall

not apply to any other combinations which include the Contribution. No hardware

per se is licensed hereunder.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 191

(c) Recipient understands that although each Contributor grants the licenses to its

Contributions set forth herein, no assurances are provided by any Contributor that

the Program does not infringe the patent or other intellectual property rights of

any other entity. Each Contributor disclaims any liability to Recipient for claims

brought by any other entity based on infringement of intellectual property rights or

otherwise. As a condition to exercising the rights and licenses granted hereunder,

each Recipient hereby assumes sole responsibility to secure any other intellectual

property rights needed, if any. For example, if a third party patent license is

required to allow Recipient to distribute the Program, it is Recipient’s responsibility

to acquire that license before distributing the Program.

(d) Each Contributor represents that to its knowledge it has sufficient copyright rights

in its Contribution, if any, to grant the copyright license set forth in this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form under its own

license agreement, provided that:

(a) it complies with the terms and conditions of this Agreement; and

(b) its license agreement:

i. effectively disclaims on behalf of all Contributors all warranties and condi-

tions, express and implied, including warranties or conditions of title and non-

infringement, and implied warranties or conditions of merchantability and fit-

ness for a particular purpose;

ii. effectively excludes on behalf of all Contributors all liability for damages, in-

cluding direct, indirect, special, incidental and consequential damages, such as

lost profits;

iii. states that any provisions which differ from this Agreement are offered by that

Contributor alone and not by any other party; and

iv. states that source code for the Program is available from such Contributor,

and informs licensees how to obtain it in a reasonable manner on or through a

medium customarily used for software exchange.

When the Program is made available in source code form:

(a) it must be made available under this Agreement; and

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 192

(b) a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Pro-

gram.

Each Contributor must identify itself as the originator of its Contribution, if any, in a

manner that reasonably allows subsequent Recipients to identify the originator of the

Contribution.

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with respect to

end users, business partners and the like. While this license is intended to facilitate

the commercial use of the Program, the Contributor who includes the Program in a

commercial product offering should do so in a manner which does not create potential

liability for other Contributors. Therefore, if a Contributor includes the Program in

a commercial product offering, such Contributor (“Commercial Contributor”) hereby

agrees to defend and indemnify every other Contributor (“Indemnified Contributor”)

against any losses, damages and costs (collectively “Losses”) arising from claims, lawsuits

and other legal actions brought by a third party against the Indemnified Contributor to

the extent caused by the acts or omissions of such Commercial Contributor in connection

with its distribution of the Program in a commercial product offering. The obligations

in this section do not apply to any claims or Losses relating to any actual or alleged

intellectual property infringement. In order to qualify, an Indemnified Contributor must:

a) promptly notify the Commercial Contributor in writing of such claim, and b) allow

the Commercial Contributor to control, and cooperate with the Commercial Contributor

in, the defense and any related settlement negotiations. The Indemnified Contributor

may participate in any such claim at its own expense.

For example, a Contributor might include the Program in a commercial product offer-

ing, Product X. That Contributor is then a Commercial Contributor. If that Commercial

Contributor then makes performance claims, or offers warranties related to Product X,

those performance claims and warranties are such Commercial Contributor’s responsibil-

ity alone. Under this section, the Commercial Contributor would have to defend claims

against the other Contributors related to those performance claims and warranties, and

if a court requires any other Contributor to pay any damages as a result, the Commercial

Contributor must pay those damages.

5. NO WARRANTY

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 193

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS

PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS

OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITA-

TION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recip-

ient is solely responsible for determining the appropriateness of using and distributing

the Program and assumes all risks associated with its exercise of rights under this Agree-

ment, including but not limited to the risks and costs of program errors, compliance with

applicable laws, damage to or loss of data, programs or equipment, and unavailability or

interruption of operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIP-

IENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DI-

RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PRO-

GRAM OR THE EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under applicable law, it shall

not affect the validity or enforceability of the remainder of the terms of this Agreement,

and without further action by the parties hereto, such provision shall be reformed to the

minimum extent necessary to make such provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect to a patent

applicable to software (including a cross-claim or counterclaim in a lawsuit), then any

patent licenses granted by that Contributor to such Recipient under this Agreement shall

terminate as of the date such litigation is filed. In addition, if Recipient institutes patent

litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging

that the Program itself (excluding combinations of the Program with other software or

hardware) infringes such Recipient’s patent(s), then such Recipient’s rights granted under

Section 2(b) shall terminate as of the date such litigation is filed.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 194

All Recipient’s rights under this Agreement shall terminate if it fails to comply with any

of the material terms or conditions of this Agreement and does not cure such failure in a

reasonable period of time after becoming aware of such noncompliance. If all Recipient’s

rights under this Agreement terminate, Recipient agrees to cease use and distribution of

the Program as soon as reasonably practicable. However, Recipient’s obligations under

this Agreement and any licenses granted by Recipient relating to the Program shall

continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to

avoid inconsistency the Agreement is copyrighted and may only be modified in the follow-

ing manner. The Agreement Steward reserves the right to publish new versions (including

revisions) of this Agreement from time to time. No one other than the Agreement Stew-

ard has the right to modify this Agreement. IBM is the initial Agreement Steward. IBM

may assign the responsibility to serve as the Agreement Steward to a suitable separate

entity. Each new version of the Agreement will be given a distinguishing version num-

ber. The Program (including Contributions) may always be distributed subject to the

version of the Agreement under which it was received. In addition, after a new version of

the Agreement is published, Contributor may elect to distribute the Program (including

its Contributions) under the new version. Except as expressly stated in Sections 2(a)

and 2(b) above, Recipient receives no rights or licenses to the intellectual property of

any Contributor under this Agreement, whether expressly, by implication, estoppel or

otherwise. All rights in the Program not expressly granted under this Agreement are

reserved.

This Agreement is governed by the laws of the State of New York and the intellectual

property laws of the United States of America. No party to this Agreement will bring

a legal action under this Agreement more than one year after the cause of action arose.

Each party waives its rights to a jury trial in any resulting litigation.

E.6 GNU General Public License (GPL)

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 195

PREAMBLE

The licenses for most software are designed to take away your freedom to share and change it.

By contrast, the GNU General Public License is intended to guarantee your freedom to share

and change free software – to make sure the software is free for all its users. This General

Public License applies to most of the Free Software Foundation’s software and to any other

program whose authors commit to using it. (Some other Free Software Foundation software

is covered by the GNU Library General Public License instead.) You can apply it to your

programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public

Licenses are designed to make sure that you have the freedom to distribute copies of free

software (and charge for this service if you wish), that you receive source code or can get it if

you want it, that you can change the software or use pieces of it in new free programs; and

that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these

rights or to ask you to surrender the rights. These restrictions translate to certain responsibil-

ities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you

must give the recipients all the rights that you have. You must make sure that they, too, receive

or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this

license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-

stands that there is no warranty for this free software. If the software is modified by someone

else and passed on, we want its recipients to know that what they have is not the original, so

that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid

the danger that redistributors of a free program will individually obtain patent licenses, in

effect making the program proprietary. To prevent this, we have made it clear that any patent

must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by

the copyright holder saying it may be distributed under the terms of this General Public

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 196

License. The “Program”, below, refers to any such program or work, and a “work based

on the Program” means either the Program or any derivative work under copyright law:

that is to say, a work containing the Program or a portion of it, either verbatim or

with modifications and/or translated into another language. (Hereinafter, translation is

included without limitation in the term “modification”.) Each licensee is addressed as

“you”.

Activities other than copying, distribution and modification are not covered by this

License; they are outside its scope. The act of running the Program is not restricted,

and the output from the Program is covered only if its contents constitute a work based

on the Program (independent of having been made by running the Program). Whether

that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive

it, in any medium, provided that you conspicuously and appropriately publish on each

copy an appropriate copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty; and give any other

recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your

option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a

work based on the Program, and copy and distribute such modifications or work under

the terms of Section 1 above, provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you

changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a

whole at no charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you

must cause it, when started running for such interactive use in the most ordinary

way, to print or display an announcement including an appropriate copyright notice

and a notice that there is no warranty (or else, saying that you provide a warranty)

and that users may redistribute the program under these conditions, and telling

the user how to view a copy of this License. (Exception: if the Program itself is

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 197

interactive but does not normally print such an announcement, your work based on

the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that

work are not derived from the Program, and can be reasonably considered independent

and separate works in themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you distribute the same

sections as part of a whole which is a work based on the Program, the distribution of the

whole must be on the terms of this License, whose permissions for other licensees extend

to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work writ-

ten entirely by you; rather, the intent is to exercise the right to control the distribution

of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Pro-

gram (or with a work based on the Program) on a volume of a storage or distribution

medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in

object code or executable form under the terms of Sections 1 and 2 above provided that

you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a medium cus-

tomarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third

party, for a charge no more than your cost of physically performing source distri-

bution, a complete machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium customarily

used for software interchange; or,

(c) Accompany it with the information you received as to the offer to distribute cor-

responding source code. (This alternative is allowed only for noncommercial dis-

tribution and only if you received the program in object code or executable form

with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications

to it. For an executable work, complete source code means all the source code for all

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 198

modules it contains, plus any associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, as a special exception,

the source code distributed need not include anything that is normally distributed (in

either source or binary form) with the major components (compiler, kernel, and so on)

of the operating system on which the executable runs, unless that component itself

accompanies the executable.

If distribution of executable or object code is made by offering access to copy from

a designated place, then offering equivalent access to copy the source code from the

same place counts as distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-

vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute

the Program is void, and will automatically terminate your rights under this License.

However, parties who have received copies, or rights, from you under this License will

not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However,

nothing else grants you permission to modify or distribute the Program or its derivative

works. These actions are prohibited by law if you do not accept this License. Therefore,

by modifying or distributing the Program (or any work based on the Program), you

indicate your acceptance of this License to do so, and all its terms and conditions for

copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the re-

cipient automatically receives a license from the original licensor to copy, distribute or

modify the Program subject to these terms and conditions. You may not impose any

further restrictions on the recipients’ exercise of the rights granted herein. You are not

responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any

other reason (not limited to patent issues), conditions are imposed on you (whether by

court order, agreement or otherwise) that contradict the conditions of this License, they

do not excuse you from the conditions of this License. If you cannot distribute so as

to satisfy simultaneously your obligations under this License and any other pertinent

obligations, then as a consequence you may not distribute the Program at all. For

example, if a patent license would not permit royalty-free redistribution of the Program

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 199

by all those who receive copies directly or indirectly through you, then the only way you

could satisfy both it and this License would be to refrain entirely from distribution of

the Program.

If any portion of this section is held invalid or unenforceable under any particular cir-

cumstance, the balance of the section is intended to apply and the section as a whole is

intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property

right claims or to contest validity of any such claims; this section has the sole purpose of

protecting the integrity of the free software distribution system, which is implemented

by public license practices. Many people have made generous contributions to the wide

range of software distributed through that system in reliance on consistent application

of that system; it is up to the author/donor to decide if he or she is willing to distribute

software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence

of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either

by patents or by copyrighted interfaces, the original copyright holder who places the

Program under this License may add an explicit geographical distribution limitation

excluding those countries, so that distribution is permitted only in or among countries

not thus excluded. In such case, this License incorporates the limitation as if written in

the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General

Public License from time to time. Such new versions will be similar in spirit to the

present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version

number of this License which applies to it and “any later version”, you have the option of

following the terms and conditions either of that version or of any later version published

by the Free Software Foundation. If the Program does not specify a version number of

this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-

bution conditions are different, write to the author to ask for permission. For software

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-

dation; we sometimes make exceptions for this. Our decision will be guided by the two

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 200

goals of preserving the free status of all derivatives of our free software and of promoting

the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-

CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-

RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS

IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-

CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH

YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST

OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO

MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE,

BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR

INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS

OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED

BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE

WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,

the best way to achieve this is to make it free software which everyone can redistribute and

change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the

start of each source file to most effectively convey the exclusion of warranty; and each file

should have at least the “copyright” line and a pointer to where the full notice is found.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 201

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail. If the program is

interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the

General Public License. Of course, the commands you use may be called something other than

‘show w’ and ‘show c’; they could even be mouse-clicks or menu items–whatever suits your

program.

You should also get your employer (if you work as a programmer) or your school, if any, to

sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 202

This General Public License does not permit incorporating your program into proprietary

programs. If your program is a subroutine library, you may consider it more useful to permit

linking proprietary applications with the library. If this is what you want to do, use the GNU

Library General Public License instead of this License.

E.7 GNU Lesser General Public License (LGPL)

Version 2.1, February 1999

Copyright c© 1991, 1999 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts as the successor of the GNU

Library Public License, version 2, hence the version number 2.1.]

PREAMBLE

The licenses for most software are designed to take away your freedom to share and change

it. By contrast, the GNU General Public Licenses are intended to guarantee your freedom to

share and change free software–to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated soft-

ware packages–typically libraries–of the Free Software Foundation and other authors who decide

to use it. You can use it too, but we suggest you first think carefully about whether this license

or the ordinary General Public License is the better strategy to use in any particular case,

based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General

Public Licenses are designed to make sure that you have the freedom to distribute copies of

free software (and charge for this service if you wish); that you receive source code or can get

it if you want it; that you can change the software and use pieces of it in new free programs;

and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you

these rights or to ask you to surrender these rights. These restrictions translate to certain

responsibilities for you if you distribute copies of the library or if you modify it.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 203

For example, if you distribute copies of the library, whether gratis or for a fee, you must

give the recipients all the rights that we gave you. You must make sure that they, too, receive

or can get the source code. If you link other code with the library, you must provide complete

object files to the recipients, so that they can relink them with the library after making changes

to the library and recompiling it. And you must show them these terms so they know their

rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we

offer you this license, which gives you legal permission to copy, distribute and/or modify the

library.

To protect each distributor, we want to make it very clear that there is no warranty for the

free library. Also, if the library is modified by someone else and passed on, the recipients should

know that what they have is not the original version, so that the original author’s reputation

will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We

wish to make sure that a company cannot effectively restrict the users of a free program by

obtaining a restrictive license from a patent holder. Therefore, we insist that any patent license

obtained for a version of the library must be consistent with the full freedom of use specified

in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General

Public License. This license, the GNU Lesser General Public License, applies to certain des-

ignated libraries, and is quite different from the ordinary General Public License. We use this

license for certain libraries in order to permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library,

the combination of the two is legally speaking a combined work, a derivative of the original

library. The ordinary General Public License therefore permits such linking only if the entire

combination fits its criteria of freedom. The Lesser General Public License permits more lax

criteria for linking other code with the library.

We call this license the “Lesser” General Public License because it does Less to protect the

user’s freedom than the ordinary General Public License. It also provides other free software

developers Less of an advantage over competing non-free programs. These disadvantages are

the reason we use the ordinary General Public License for many libraries. However, the Lesser

license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible

use of a certain library, so that it becomes a de-facto standard. To achieve this, non-free

programs must be allowed to use the library. A more frequent case is that a free library does

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 204

the same job as widely used non-free libraries. In this case, there is little to gain by limiting

the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater

number of people to use a large body of free software. For example, permission to use the GNU

C Library in non-free programs enables many more people to use the whole GNU operating

system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does

ensure that the user of a program that is linked with the Library has the freedom and the

wherewithal to run that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay

close attention to the difference between a “work based on the library” and a “work that uses

the library”. The former contains code derived from the library, whereas the latter must be

combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR

COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which con-

tains a notice placed by the copyright holder or other authorized party saying it may

be distributed under the terms of this Lesser General Public License (also called “this

License”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be

conveniently linked with application programs (which use some of those functions and

data) to form executables.

The “Library”, below, refers to any such software library or work which has been dis-

tributed under these terms. A “work based on the Library” means either the Library or

any derivative work under copyright law: that is to say, a work containing the Library

or a portion of it, either verbatim or with modifications and/or translated straightfor-

wardly into another language. (Hereinafter, translation is included without limitation in

the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications

to it. For a library, complete source code means all the source code for all modules it

contains, plus any associated interface definition files, plus the scripts used to control

compilation and installation of the library.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 205

Activities other than copying, distribution and modification are not covered by this

License; they are outside its scope. The act of running a program using the Library is

not restricted, and output from such a program is covered only if its contents constitute

a work based on the Library (independent of the use of the Library in a tool for writing

it). Whether that is true depends on what the Library does and what the program that

uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as

you receive it, in any medium, provided that you conspicuously and appropriately publish

on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all

the notices that refer to this License and to the absence of any warranty; and distribute

a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your

option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming

a work based on the Library, and copy and distribute such modifications or work under

the terms of Section 1 above, provided that you also meet all of these conditions:

(a) The modified work must itself be a software library.

(b) You must cause the files modified to carry prominent notices stating that you

changed the files and the date of any change.

(c) You must cause the whole of the work to be licensed at no charge to all third parties

under the terms of this License.

(d) If a facility in the modified Library refers to a function or a table of data to be

supplied by an application program that uses the facility, other than as an argument

passed when the facility is invoked, then you must make a good faith effort to ensure

that, in the event an application does not supply such function or table, the facility

still operates, and performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that

is entirely well-defined independent of the application. Therefore, Subsection 2d

requires that any application-supplied function or table used by this function must

be optional: if the application does not supply it, the square root function must

still compute square roots.)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 206

These requirements apply to the modified work as a whole. If identifiable sections of that

work are not derived from the Library, and can be reasonably considered independent

and separate works in themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you distribute the same

sections as part of a whole which is a work based on the Library, the distribution of the

whole must be on the terms of this License, whose permissions for other licensees extend

to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work writ-

ten entirely by you; rather, the intent is to exercise the right to control the distribution

of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library

(or with a work based on the Library) on a volume of a storage or distribution medium

does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of

this License to a given copy of the Library. To do this, you must alter all the notices that

refer to this License, so that they refer to the ordinary GNU General Public License,

version 2, instead of to this License. (If a newer version than version 2 of the ordinary

GNU General Public License has appeared, then you can specify that version instead if

you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary

GNU General Public License applies to all subsequent copies and derivative works made

from that copy.

This option is useful when you wish to copy part of the code of the Library into a program

that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section

2) in object code or executable form under the terms of Sections 1 and 2 above provided

that you accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,

then offering equivalent access to copy the source code from the same place satisfies the

requirement to distribute the source code, even though third parties are not compelled

to copy the source along with the object code.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 207

5. A program that contains no derivative of any portion of the Library, but is designed to

work with the Library by being compiled or linked with it, is called a “work that uses the

Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore

falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable

that is a derivative of the Library (because it contains portions of the Library), rather

than a “work that uses the library”. The executable is therefore covered by this License.

Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of

the Library, the object code for the work may be a derivative work of the Library even

though the source code is not. Whether this is true is especially significant if the work

can be linked without the Library, or if the work is itself a library. The threshold for

this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors,

and small macros and small inline functions (ten lines or less in length), then the use

of the object file is unrestricted, regardless of whether it is legally a derivative work.

(Executables containing this object code plus portions of the Library will still fall under

Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code

for the work under the terms of Section 6. Any executables containing that work also

fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work that uses

the Library” with the Library to produce a work containing portions of the Library,

and distribute that work under terms of your choice, provided that the terms permit

modification of the work for the customer’s own use and reverse engineering for debugging

such modifications.

You must give prominent notice with each copy of the work that the Library is used in it

and that the Library and its use are covered by this License. You must supply a copy of

this License. If the work during execution displays copyright notices, you must include

the copyright notice for the Library among them, as well as a reference directing the user

to the copy of this License. Also, you must do one of these things:

(a) Accompany the work with the complete corresponding machine-readable source

code for the Library including whatever changes were used in the work (which

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 208

must be distributed under Sections 1 and 2 above); and, if the work is an executable

linked with the Library, with the complete machine-readable “work that uses the

Library”, as object code and/or source code, so that the user can modify the Library

and then relink to produce a modified executable containing the modified Library.

(It is understood that the user who changes the contents of definitions files in the

Library will not necessarily be able to recompile the application to use the modified

definitions.)

(b) Use a suitable shared library mechanism for linking with the Library. A suitable

mechanism is one that (1) uses at run time a copy of the library already present

on the user’s computer system, rather than copying library functions into the exe-

cutable, and (2) will operate properly with a modified version of the library, if the

user installs one, as long as the modified version is interface-compatible with the

version that the work was made with.

(c) Accompany the work with a written offer, valid for at least three years, to give the

same user the materials specified in Subsection 6a, above, for a charge no more

than the cost of performing this distribution.

(d) If distribution of the work is made by offering access to copy from a designated

place, offer equivalent access to copy the above specified materials from the same

place.

(e) Verify that the user has already received a copy of these materials or that you have

already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include

any data and utility programs needed for reproducing the executable from it. However,

as a special exception, the materials to be distributed need not include anything that

is normally distributed (in either source or binary form) with the major components

(compiler, kernel, and so on) of the operating system on which the executable runs,

unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other propri-

etary libraries that do not normally accompany the operating system. Such a contradic-

tion means you cannot use both them and the Library together in an executable that

you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a

single library together with other library facilities not covered by this License, and dis-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 209

tribute such a combined library, provided that the separate distribution of the work based

on the Library and of the other library facilities is otherwise permitted, and provided

that you do these two things:

(a) Accompany the combined library with a copy of the same work based on the Library,

uncombined with any other library facilities. This must be distributed under the

terms of the Sections above.

(b) Give prominent notice with the combined library of the fact that part of it is a work

based on the Library, and explaining where to find the accompanying uncombined

form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as

expressly provided under this License. Any attempt otherwise to copy, modify, sublicense,

link with, or distribute the Library is void, and will automatically terminate your rights

under this License. However, parties who have received copies, or rights, from you under

this License will not have their licenses terminated so long as such parties remain in full

compliance.

9. You are not required to accept this License, since you have not signed it. However,

nothing else grants you permission to modify or distribute the Library or its derivative

works. These actions are prohibited by law if you do not accept this License. Therefore,

by modifying or distributing the Library (or any work based on the Library), you indicate

your acceptance of this License to do so, and all its terms and conditions for copying,

distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient

automatically receives a license from the original licensor to copy, distribute, link with

or modify the Library subject to these terms and conditions. You may not impose any

further restrictions on the recipients’ exercise of the rights granted herein. You are not

responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any

other reason (not limited to patent issues), conditions are imposed on you (whether

by court order, agreement or otherwise) that contradict the conditions of this License,

they do not excuse you from the conditions of this License. If you cannot distribute so

as to satisfy simultaneously your obligations under this License and any other pertinent

obligations, then as a consequence you may not distribute the Library at all. For example,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 210

if a patent license would not permit royalty-free redistribution of the Library by all those

who receive copies directly or indirectly through you, then the only way you could satisfy

both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular cir-

cumstance, the balance of the section is intended to apply, and the section as a whole is

intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property

right claims or to contest validity of any such claims; this section has the sole purpose

of protecting the integrity of the free software distribution system which is implemented

by public license practices. Many people have made generous contributions to the wide

range of software distributed through that system in reliance on consistent application

of that system; it is up to the author/donor to decide if he or she is willing to distribute

software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence

of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by

patents or by copyrighted interfaces, the original copyright holder who places the Library

under this License may add an explicit geographical distribution limitation excluding

those countries, so that distribution is permitted only in or among countries not thus

excluded. In such case, this License incorporates the limitation as if written in the body

of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser

General Public License from time to time. Such new versions will be similar in spirit to

the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version

number of this License which applies to it and “any later version”, you have the option of

following the terms and conditions either of that version or of any later version published

by the Free Software Foundation. If the Library does not specify a license version number,

you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution

conditions are incompatible with these, write to the author to ask for permission. For

software which is copyrighted by the Free Software Foundation, write to the Free Software

Foundation; we sometimes make exceptions for this. Our decision will be guided by the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 211

two goals of preserving the free status of all derivatives of our free software and of

promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WAR-

RANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE

LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT

HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITH-

OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUD-

ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-

ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO

THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD

THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECES-

SARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO

MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE,

BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR

INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS

OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED

BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE

WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public,

we recommend making it free software that everyone can redistribute and change. You can

do so by permitting redistribution under these terms (or, alternatively, under the terms of the

ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them

to the start of each source file to most effectively convey the exclusion of warranty; and each

file should have at least the “copyright” line and a pointer to where the full notice is found.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 212

<one line to give the library’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to

sign a “copyright disclaimer” for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the

library ‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

E.8 MIT License

Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the “Software”), to deal in the Software without restric-

tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 213

sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or sub-

stantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-

PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-

MENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE

FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION

WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

E.9 Mozilla Public License (MPL)

Version 1.1

1. Definitions.

1.0.1. “Commercial Use” means distribution or otherwise making the Covered Code

available to a third party.

1.1. “Contributor” means each entity that creates or contributes to the creation of

Modifications.

1.2. “Contributor Version” means the combination of the Original Code, prior Modifica-

tions used by a Contributor, and the Modifications made by that particular Contributor.

1.3. “Covered Code” means the Original Code or Modifications or the combination of

the Original Code and Modifications, in each case including portions thereof.

1.4. “Electronic Distribution Mechanism” means a mechanism generally accepted in the

software development community for the electronic transfer of data.

1.5. “Executable” means Covered Code in any form other than Source Code.

1.6. “Initial Developer” means the individual or entity identified as the Initial Developer

in the Source Code notice required by Exhibit A.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 214

1.7. “Larger Work” means a work which combines Covered Code or portions thereof

with code not governed by the terms of this License.

1.8. “License” means this document.

1.8.1. “Licensable” means having the right to grant, to the maximum extent possible,

whether at the time of the initial grant or subsequently acquired, any and all of the rights

conveyed herein.

1.9. “Modifications” means any addition to or deletion from the substance or structure of

either the Original Code or any previous Modifications. When Covered Code is released

as a series of files, a Modification is:

A. Any addition to or deletion from the contents of a file containing Original Code or

previous Modifications.

B. Any new file that contains any part of the Original Code or previous Modifications.

1.10. “Original Code” means Source Code of computer software code which is described

in the Source Code notice required by Exhibit A as Original Code, and which, at the time

of its release under this License is not already Covered Code governed by this License.

1.10.1. “Patent Claims” means any patent claim(s), now owned or hereafter acquired,

including without limitation, method, process, and apparatus claims, in any patent Li-

censable by grantor.

1.11. “Source Code” means the preferred form of the Covered Code for making modifica-

tions to it, including all modules it contains, plus any associated interface definition files,

scripts used to control compilation and installation of an Executable, or source code dif-

ferential comparisons against either the Original Code or another well known, available

Covered Code of the Contributor’s choice. The Source Code can be in a compressed or

archival form, provided the appropriate decompression or de-archiving software is widely

available for no charge.

1.12. “You” (or “Your”) means an individual or a legal entity exercising rights under,

and complying with all of the terms of, this License or a future version of this License

issued under Section 6.1. For legal entities, “You” includes any entity which controls,

is controlled by, or is under common control with You. For purposes of this definition,

“control” means (a) the power, direct or indirect, to cause the direction or management

of such entity, whether by contract or otherwise, or (b) ownership of more than fifty

percent (50%) of the outstanding shares or beneficial ownership of such entity.

2. Source Code License.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 215

2.1. The Initial Developer Grant. The Initial Developer hereby grants You a world-wide,

royalty-free, non-exclusive license, subject to third party intellectual property claims:

(a) under intellectual property rights (other than patent or trademark) Licensable

by Initial Developer to use, reproduce, modify, display, perform, sublicense and

distribute the Original Code (or portions thereof) with or without Modifications,

and/or as part of a Larger Work; and

(b) under Patents Claims infringed by the making, using or selling of Original Code,

to make, have made, use, practice, sell, and offer for sale, and/or otherwise dispose

of the Original Code (or portions thereof).

(c) the licenses granted in this Section 2.1(a) and (b) are effective on the date Initial

Developer first distributes Original Code under the terms of this License.

(d) Notwithstanding Section 2.1(b) above, no patent license is granted: 1) for code

that You delete from the Original Code; 2) separate from the Original Code; or

3) for infringements caused by: i) the modification of the Original Code or ii) the

combination of the Original Code with other software or devices.

2.2. Contributor Grant.

Subject to third party intellectual property claims, each Contributor hereby grants You

a world-wide, royalty-free, non-exclusive license

(a) under intellectual property rights (other than patent or trademark) Licensable by

Contributor, to use, reproduce, modify, display, perform, sublicense and distribute

the Modifications created by such Contributor (or portions thereof) either on an

unmodified basis, with other Modifications, as Covered Code and/or as part of a

Larger Work; and

(b) under Patent Claims infringed by the making, using, or selling of Modifications

made by that Contributor either alone and/or in combination with its Contrib-

utor Version (or portions of such combination), to make, use, sell, offer for sale,

have made, and/or otherwise dispose of: 1) Modifications made by that Contrib-

utor (or portions thereof); and 2) the combination of Modifications made by that

Contributor with its Contributor Version (or portions of such combination).

(c) the licenses granted in Sections 2.2(a) and 2.2(b) are effective on the date Contrib-

utor first makes Commercial Use of the Covered Code.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 216

(d) Notwithstanding Section 2.2(b) above, no patent license is granted: 1) for any code

that Contributor has deleted from the Contributor Version; 2) separate from the

Contributor Version; 3) for infringements caused by: i) third party modifications

of Contributor Version or ii) the combination of Modifications made by that Con-

tributor with other software (except as part of the Contributor Version) or other

devices; or 4) under Patent Claims infringed by Covered Code in the absence of

Modifications made by that Contributor.

3. Distribution Obligations.

3.1. Application of License.

The Modifications which You create or to which You contribute are governed by the

terms of this License, including without limitation Section 2.2. The Source Code version

of Covered Code may be distributed only under the terms of this License or a future

version of this License released under Section 6.1, and You must include a copy of this

License with every copy of the Source Code You distribute. You may not offer or impose

any terms on any Source Code version that alters or restricts the applicable version of

this License or the recipients’ rights hereunder. However, You may include an additional

document offering the additional rights described in Section 3.5.

3.2. Availability of Source Code.

Any Modification which You create or to which You contribute must be made available

in Source Code form under the terms of this License either on the same media as an

Executable version or via an accepted Electronic Distribution Mechanism to anyone to

whom you made an Executable version available; and if made available via Electronic

Distribution Mechanism, must remain available for at least twelve (12) months after

the date it initially became available, or at least six (6) months after a subsequent

version of that particular Modification has been made available to such recipients. You

are responsible for ensuring that the Source Code version remains available even if the

Electronic Distribution Mechanism is maintained by a third party.

3.3. Description of Modifications.

You must cause all Covered Code to which You contribute to contain a file documenting

the changes You made to create that Covered Code and the date of any change. You must

include a prominent statement that the Modification is derived, directly or indirectly,

from Original Code provided by the Initial Developer and including the name of the

Initial Developer in (a) the Source Code, and (b) in any notice in an Executable version

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 217

or related documentation in which You describe the origin or ownership of the Covered

Code.

3.4. Intellectual Property Matters

(a) Third Party Claims.

If Contributor has knowledge that a license under a third party’s intellectual prop-

erty rights is required to exercise the rights granted by such Contributor under

Sections 2.1 or 2.2, Contributor must include a text file with the Source Code

distribution titled “LEGAL” which describes the claim and the party making the

claim in sufficient detail that a recipient will know whom to contact. If Contributor

obtains such knowledge after the Modification is made available as described in

Section 3.2, Contributor shall promptly modify the LEGAL file in all copies Con-

tributor makes available thereafter and shall take other steps (such as notifying

appropriate mailing lists or newsgroups) reasonably calculated to inform those who

received the Covered Code that new knowledge has been obtained.

(b) Contributor APIs.

If Contributor’s Modifications include an application programming interface and

Contributor has knowledge of patent licenses which are reasonably necessary to

implement that API, Contributor must also include this information in the LEGAL

file.

(c) Representations.

Contributor represents that, except as disclosed pursuant to Section 3.4(a) above,

Contributor believes that Contributor’s Modifications are Contributor’s original

creation(s) and/or Contributor has sufficient rights to grant the rights conveyed by

this License.

3.5. Required Notices.

You must duplicate the notice in Exhibit A in each file of the Source Code. If it is not

possible to put such notice in a particular Source Code file due to its structure, then

You must include such notice in a location (such as a relevant directory) where a user

would be likely to look for such a notice. If You created one or more Modification(s)

You may add your name as a Contributor to the notice described in Exhibit A. You

must also duplicate this License in any documentation for the Source Code where You

describe recipients’ rights or ownership rights relating to Covered Code. You may choose

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 218

to offer, and to charge a fee for, warranty, support, indemnity or liability obligations to

one or more recipients of Covered Code. However, You may do so only on Your own

behalf, and not on behalf of the Initial Developer or any Contributor. You must make

it absolutely clear than any such warranty, support, indemnity or liability obligation is

offered by You alone, and You hereby agree to indemnify the Initial Developer and every

Contributor for any liability incurred by the Initial Developer or such Contributor as a

result of warranty, support, indemnity or liability terms You offer.

3.6. Distribution of Executable Versions.

You may distribute Covered Code in Executable form only if the requirements of Section

3.1-3.5 have been met for that Covered Code, and if You include a notice stating that

the Source Code version of the Covered Code is available under the terms of this License,

including a description of how and where You have fulfilled the obligations of Section

3.2. The notice must be conspicuously included in any notice in an Executable version,

related documentation or collateral in which You describe recipients’ rights relating to the

Covered Code. You may distribute the Executable version of Covered Code or ownership

rights under a license of Your choice, which may contain terms different from this License,

provided that You are in compliance with the terms of this License and that the license

for the Executable version does not attempt to limit or alter the recipient’s rights in

the Source Code version from the rights set forth in this License. If You distribute

the Executable version under a different license You must make it absolutely clear that

any terms which differ from this License are offered by You alone, not by the Initial

Developer or any Contributor. You hereby agree to indemnify the Initial Developer and

every Contributor for any liability incurred by the Initial Developer or such Contributor

as a result of any such terms You offer.

3.7. Larger Works.

You may create a Larger Work by combining Covered Code with other code not governed

by the terms of this License and distribute the Larger Work as a single product. In such

a case, You must make sure the requirements of this License are fulfilled for the Covered

Code.

4. Inability to Comply Due to Statute or Regulation.

If it is impossible for You to comply with any of the terms of this License with respect

to some or all of the Covered Code due to statute, judicial order, or regulation then You

must: (a) comply with the terms of this License to the maximum extent possible; and (b)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 219

describe the limitations and the code they affect. Such description must be included in

the LEGAL file described in Section 3.4 and must be included with all distributions of the

Source Code. Except to the extent prohibited by statute or regulation, such description

must be sufficiently detailed for a recipient of ordinary skill to be able to understand it.

5. Application of this License.

This License applies to code to which the Initial Developer has attached the notice in

Exhibit A and to related Covered Code.

6. Versions of the License.

6.1. New Versions.

Netscape Communications Corporation (”Netscape”) may publish revised and/or new

versions of the License from time to time. Each version will be given a distinguishing

version number.

6.2. Effect of New Versions.

Once Covered Code has been published under a particular version of the License, You

may always continue to use it under the terms of that version. You may also choose to use

such Covered Code under the terms of any subsequent version of the License published

by Netscape. No one other than Netscape has the right to modify the terms applicable

to Covered Code created under this License.

6.3. Derivative Works.

If You create or use a modified version of this License (which you may only do in order to

apply it to code which is not already Covered Code governed by this License), You must

(a) rename Your license so that the phrases “Mozilla”, “MOZILLAPL”, “MOZPL”,

“Netscape”, “MPL”, “NPL” or any confusingly similar phrase do not appear in your

license (except to note that your license differs from this License) and (b) otherwise

make it clear that Your version of the license contains terms which differ from the Mozilla

Public License and Netscape Public License. (Filling in the name of the Initial Developer,

Original Code or Contributor in the notice described in Exhibit A shall not of themselves

be deemed to be modifications of this License.)

7. DISCLAIMER OF WARRANTY.

COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN “AS IS” BASIS,

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, IN-

CLUDING, WITHOUT LIMITATION, WARRANTIES THAT THE COVERED CODE

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 220

IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE

OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PER-

FORMANCE OF THE COVERED CODE IS WITH YOU. SHOULD ANY COVERED

CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT THE INITIAL DEVEL-

OPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NEC-

ESSARY SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WAR-

RANTY CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO USE OF

ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS

DISCLAIMER.

8. TERMINATION.

8.1. This License and the rights granted hereunder will terminate automatically if You

fail to comply with terms herein and fail to cure such breach within 30 days of becoming

aware of the breach. All sublicenses to the Covered Code which are properly granted

shall survive any termination of this License. Provisions which, by their nature, must

remain in effect beyond the termination of this License shall survive.

8.2. If You initiate litigation by asserting a patent infringement claim (excluding decla-

tory judgment actions) against Initial Developer or a Contributor (the Initial Developer

or Contributor against whom You file such action is referred to as “Participant”) alleging

that:

(a) such Participant’s Contributor Version directly or indirectly infringes any patent,

then any and all rights granted by such Participant to You under Sections 2.1

and/or 2.2 of this License shall, upon 60 days notice from Participant terminate

prospectively, unless if within 60 days after receipt of notice You either: (i) agree

in writing to pay Participant a mutually agreeable reasonable royalty for Your past

and future use of Modifications made by such Participant, or (ii) withdraw Your

litigation claim with respect to the Contributor Version against such Participant.

If within 60 days of notice, a reasonable royalty and payment arrangement are

not mutually agreed upon in writing by the parties or the litigation claim is not

withdrawn, the rights granted by Participant to You under Sections 2.1 and/or

2.2 automatically terminate at the expiration of the 60 day notice period specified

above.

(b) any software, hardware, or device, other than such Participant’s Contributor Ver-

sion, directly or indirectly infringes any patent, then any rights granted to You by

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 221

such Participant under Sections 2.1(b) and 2.2(b) are revoked effective as of the

date You first made, used, sold, distributed, or had made, Modifications made by

that Participant.

8.3. If You assert a patent infringement claim against Participant alleging that such Par-

ticipant’s Contributor Version directly or indirectly infringes any patent where such claim

is resolved (such as by license or settlement) prior to the initiation of patent infringement

litigation, then the reasonable value of the licenses granted by such Participant under

Sections 2.1 or 2.2 shall be taken into account in determining the amount or value of any

payment or license.

8.4. In the event of termination under Sections 8.1 or 8.2 above, all end user license

agreements (excluding distributors and resellers) which have been validly granted by

You or any distributor hereunder prior to termination shall survive termination.

9. LIMITATION OF LIABILITY.

UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER

TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE, SHALL YOU,

THE INITIAL DEVELOPER, ANY OTHER CONTRIBUTOR, OR ANY DISTRIBU-

TOR OF COVERED CODE, OR ANY SUPPLIER OF ANY OF SUCH PARTIES,

BE LIABLE TO ANY PERSON FOR ANY INDIRECT, SPECIAL, INCIDENTAL,

OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER INCLUDING, WITH-

OUT LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE,

COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER COM-

MERCIAL DAMAGES OR LOSSES, EVEN IF SUCH PARTY SHALL HAVE BEEN

INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION OF

LIABILITY SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL

INJURY RESULTING FROM SUCH PARTY’S NEGLIGENCE TO THE EXTENT

APPLICABLE LAW PROHIBITS SUCH LIMITATION. SOME JURISDICTIONS DO

NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSE-

QUENTIAL DAMAGES, SO THIS EXCLUSION AND LIMITATION MAY NOT AP-

PLY TO YOU.

10. U.S. GOVERNMENT END USERS.

The Covered Code is a ”commercial item,” as that term is defined in 48 C.F.R. 2.101

(Oct. 1995), consisting of ”commercial computer software” and ”commercial computer

software documentation,” as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 222

Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June

1995), all U.S. Government End Users acquire Covered Code with only those rights set

forth herein.

11. MISCELLANEOUS.

This License represents the complete agreement concerning subject matter hereof. If any

provision of this License is held to be unenforceable, such provision shall be reformed

only to the extent necessary to make it enforceable. This License shall be governed by

California law provisions (except to the extent applicable law, if any, provides otherwise),

excluding its conflict-of-law provisions. With respect to disputes in which at least one

party is a citizen of, or an entity chartered or registered to do business in the United States

of America, any litigation relating to this License shall be subject to the jurisdiction of

the Federal Courts of the Northern District of California, with venue lying in Santa

Clara County, California, with the losing party responsible for costs, including without

limitation, court costs and reasonable attorneys’ fees and expenses. The application

of the United Nations Convention on Contracts for the International Sale of Goods is

expressly excluded. Any law or regulation which provides that the language of a contract

shall be construed against the drafter shall not apply to this License.

12. . RESPONSIBILITY FOR CLAIMS.

As between Initial Developer and the Contributors, each party is responsible for claims

and damages arising, directly or indirectly, out of its utilization of rights under this

License and You agree to work with Initial Developer and Contributors to distribute

such responsibility on an equitable basis. Nothing herein is intended or shall be deemed

to constitute any admission of liability.

13. MULTIPLE-LICENSED CODE.

Initial Developer may designate portions of the Covered Code as Multiple-Licensed.

Multiple-Licensed means that the Initial Developer permits you to utilize portions of the

Covered Code under Your choice of the NPL or the alternative licenses, if any, specified

by the Initial Developer in the file described in Exhibit A.

EXHIBIT A - Mozilla Public License.

‘‘The contents of this file are subject to the Mozilla Public

License Version 1.1 (the ‘‘License’’); you may not use this file

except in compliance with the License. You may obtain a copy of

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 223

the License at

http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an ‘‘AS

IS’’ basis, WITHOUT WARRANTY OF

ANY KIND, either express or implied. See the License for the

specificlanguage governing rights and limitations under the License.

The Original Code is ______________________________________.

The Initial Developer of the Original Code is

________________________. Portions created by

______________________ are Copyright (C) ______

_______________________. All Rights

Reserved.

Contributor(s): ______________________________________.

Alternatively, the contents of this file may be used under the

terms of the _____ license (the [___] License), in which case

the provisions of [______] License are applicable instead of

those above. If you wish to allow use of your version of this

file only under the terms of the [____] License and not to allow

others to use your version of this file under the MPL, indicate

your decision by deleting the provisions above and replace

them with the notice and other provisions required by the [___]

License. If you do not delete the provisions above, a recipient

may use your version of this file under either the MPL or the

[___] License.’’

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 224

[NOTE: The text of this Exhibit A may differ slightly from the text of the notices in the Source

Code files of the Original Code. You should use the text of this Exhibit A rather than the text

found in the Original Code Source Code for Your Modifications.]

E.10 Open Software License (OSL)

Version 2.1

This Open Software License (the “License”) applies to any original work of authorship (the

“Original Work”) whose owner (the “Licensor”) has placed the following notice immediately

following the copyright notice for the Original Work:

Licensed under the Open Software License version 2.1

1. Grant of Copyright License. Licensor hereby grants You a world-wide, royalty-free, non-

exclusive, perpetual, sublicenseable license to do the following:

• to reproduce the Original Work in copies;

• to prepare derivative works (“Derivative Works”) based upon the Original Work;

• to distribute copies of the Original Work and Derivative Works to the public, with

the proviso that copies of Original Work or Derivative Works that You distribute

shall be licensed under the Open Software License;

• to perform the Original Work publicly; and

• to display the Original Work publicly.

2. Grant of Patent License. Licensor hereby grants You a world-wide, royalty-free, non-

exclusive, perpetual, sublicenseable license, under patent claims owned or controlled by

the Licensor that are embodied in the Original Work as furnished by the Licensor, to

make, use, sell and offer for sale the Original Work and Derivative Works.

3. Grant of Source Code License. The term “Source Code” means the preferred form of the

Original Work for making modifications to it and all available documentation describing

how to modify the Original Work. Licensor hereby agrees to provide a machine-readable

copy of the Source Code of the Original Work along with each copy of the Original

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 225

Work that Licensor distributes. Licensor reserves the right to satisfy this obligation

by placing a machine-readable copy of the Source Code in an information repository

reasonably calculated to permit inexpensive and convenient access by You for as long

as Licensor continues to distribute the Original Work, and by publishing the address of

that information repository in a notice immediately following the copyright notice that

applies to the Original Work.

4. Exclusions From License Grant. Neither the names of Licensor, nor the names of any

contributors to the Original Work, nor any of their trademarks or service marks, may be

used to endorse or promote products derived from this Original Work without express

prior written permission of the Licensor. Nothing in this License shall be deemed to

grant any rights to trademarks, copyrights, patents, trade secrets or any other intellectual

property of Licensor except as expressly stated herein. No patent license is granted to

make, use, sell or offer to sell embodiments of any patent claims other than the licensed

claims defined in Section 2. No right is granted to the trademarks of Licensor even if such

marks are included in the Original Work. Nothing in this License shall be interpreted

to prohibit Licensor from licensing under different terms from this License any Original

Work that Licensor otherwise would have a right to license.

5. External Deployment. The term “External Deployment” means the use or distribution

of the Original Work or Derivative Works in any way such that the Original Work or

Derivative Works may be used by anyone other than You, whether the Original Work

or Derivative Works are distributed to those persons or made available as an application

intended for use over a computer network. As an express condition for the grants of

license hereunder, You agree that any External Deployment by You of a Derivative

Work shall be deemed a distribution and shall be licensed to all under the terms of this

License, as prescribed in section 1(c) herein.

6. Attribution Rights. You must retain, in the Source Code of any Derivative Works that

You create, all copyright, patent or trademark notices from the Source Code of the

Original Work, as well as any notices of licensing and any descriptive text identified

therein as an “Attribution Notice.” You must cause the Source Code for any Derivative

Works that You create to carry a prominent Attribution Notice reasonably calculated to

inform recipients that You have modified the Original Work.

7. Warranty of Provenance and Disclaimer of Warranty. Licensor warrants that the copy-

right in and to the Original Work and the patent rights granted herein by Licensor are

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 226

owned by the Licensor or are sublicensed to You under the terms of this License with

the permission of the contributor(s) of those copyrights and patent rights. Except as

expressly stated in the immediately proceeding sentence, the Original Work is provided

under this License on an “AS IS” BASIS and WITHOUT WARRANTY, either express

or implied, including, without limitation, the warranties of NON-INFRINGEMENT,

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

RISK AS TO THE QUALITY OF THE ORIGINAL WORK IS WITH YOU. This DIS-

CLAIMER OF WARRANTY constitutes an essential part of this License. No license to

Original Work is granted hereunder except under this disclaimer.

8. Limitation of Liability. Under no circumstances and under no legal theory, whether

in tort (including negligence), contract, or otherwise, shall the Licensor be liable to

any person for any direct, indirect, special, incidental, or consequential damages of any

character arising as a result of this License or the use of the Original Work including,

without limitation, damages for loss of goodwill, work stoppage, computer failure or

malfunction, or any and all other commercial damages or losses. This limitation of

liability shall not apply to liability for death or personal injury resulting from Licensor’s

negligence to the extent applicable law prohibits such limitation. Some jurisdictions

do not allow the exclusion or limitation of incidental or consequential damages, so this

exclusion and limitation may not apply to You.

9. Acceptance and Termination. If You distribute copies of the Original Work or a Deriva-

tive Work, You must make a reasonable effort under the circumstances to obtain the

express assent of recipients to the terms of this License. Nothing else but this License (or

another written agreement between Licensor and You) grants You permission to create

Derivative Works based upon the Original Work or to exercise any of the rights granted

in Section 1 herein, and any attempt to do so except under the terms of this License (or

another written agreement between Licensor and You) is expressly prohibited by U.S.

copyright law, the equivalent laws of other countries, and by international treaty. There-

fore, by exercising any of the rights granted to You in Section 1 herein, You indicate

Your acceptance of this License and all of its terms and conditions. This License shall

terminate immediately and you may no longer exercise any of the rights granted to You

by this License upon Your failure to honor the proviso in Section 1(c) herein.

10. Termination for Patent Action. This License shall terminate automatically and You may

no longer exercise any of the rights granted to You by this License as of the date You

commence an action, including a cross-claim or counterclaim, against Licensor or any

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 227

licensee alleging that the Original Work infringes a patent. This termination provision

shall not apply for an action alleging patent infringement by combinations of the Original

Work with other software or hardware.

11. Jurisdiction, Venue and Governing Law. Any action or suit relating to this License may

be brought only in the courts of a jurisdiction wherein the Licensor resides or in which

Licensor conducts its primary business, and under the laws of that jurisdiction excluding

its conflict-of-law provisions. The application of the United Nations Convention on Con-

tracts for the International Sale of Goods is expressly excluded. Any use of the Original

Work outside the scope of this License or after its termination shall be subject to the

requirements and penalties of the U.S. Copyright Act, 17 U.S.C. ?? 101 et seq., the

equivalent laws of other countries, and international treaty. This section shall survive

the termination of this License.

12. Attorneys Fees. In any action to enforce the terms of this License or seeking damages

relating thereto, the prevailing party shall be entitled to recover its costs and expenses,

including, without limitation, reasonable attorneys’ fees and costs incurred in connection

with such action, including any appeal of such action. This section shall survive the

termination of this License.

13. Miscellaneous. This License represents the complete agreement concerning the subject

matter hereof. If any provision of this License is held to be unenforceable, such provision

shall be reformed only to the extent necessary to make it enforceable.

14. Definition of “You” in This License. “You” throughout this License, whether in upper or

lower case, means an individual or a legal entity exercising rights under, and complying

with all of the terms of, this License. For legal entities, “You” includes any entity that

controls, is controlled by, or is under common control with you. For purposes of this

definition, “control” means (i) the power, direct or indirect, to cause the direction or

management of such entity, whether by contract or otherwise, or (ii) ownership of fifty

percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such

entity.

15. Right to Use. You may use the Original Work in all ways not otherwise restricted or

conditioned by this License or by law, and Licensor promises not to interfere with or be

responsible for such uses by You.

This license is Copyright c© 2003-2004 Lawrence E. Rosen. All rights reserved. Permission is

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

APPENDIX E. POPULAR OPEN SOURCE LICENSES 228

hereby granted to copy and distribute this license without modification. This license may not

be modified without the express written permission of its copyright owner.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

