
Chapter 6

Computational Intelligence Library

“Ah, well, I am a great and sublime fool. But then I am God’s fool, and all

His work must be contemplated with respect.” — Mark Twain

CILib (Computational Intelligence Library) is a software framework designed to accom-

modate scientific research in Computational Intelligence, providing implementations for

many CI algorithms, problems definitions and a simulator for conducting experiments.

In order to maximise collaboration and solicit third party peer review, CILib is pub-

lished under the GNU GPL (refer to Section 4.1.6) and is available for download from

SourceForge1. The following high level project goals were identified:

• Flexibility: Design patterns should be exploited to create a reusable framework

capable of supporting the complexity of the CI field. Whenever possible, hybrid

algorithms and new functionality should be achieved by composing various existing

classes in a pluggable fashion.

• Experimentation: The framework should facilitate scientific experimentation,

making it possible to measure any property of an algorithmic simulation. Differ-

ent simulations, in terms of various class compositions and algorithm parameters,

should be configurable at run time without making changes to the source code.

• Efficiency: It is commonly accepted that developer time is more expensive than

CPU time, however, CI algorithms can be very computationally intensive. Thus,

1http://cilib.sourceforge.net
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a scientific simulation framework may at times have to trade off clean OO design

against improved performance.

• Separability: There should be a clean separation of algorithms and problems, so

that any algorithm can be applied to any suitable problem. Further, algorithms

should be independent of any scientific simulation and measurement components,

so that algorithms can also be used in non-research applications.

• Reliability: The open source peer review process should increase the probability

of any software errors being found and corrected. A clean OO design and extensive

unit testing should be used to further reduce any chance of errors.

• Collaboration: The framework should maximise collaborative opportunities. By

sharing a common open source code base, researchers may be more aware of what

others are doing and can reuse parts of the framework developed by others without

reinventing the wheel. Good documentation should be provided to keep the barrier

to entry as low as possible.

Section 6.1 recommends some coding conventions for CILib developers. Following that,

the implementation details of CILib are covered in Section 6.2. Collaborative contribu-

tions to CILib are mentioned in Section 6.3. Finally, some limitations of the framework

are discussed in Section 6.4.

6.1 Coding Conventions

To date, no coding conventions have been enforced on contributions to CILib, however,

it is the recommendation of this work that developers adopt the Java coding conventions

published by Sun Microsystems [57], which reflect those presented in the Java Language

Specification [59]. A single coding standard is necessary despite the fact that developers

may have different stylistic preferences. Adopting a standard results in code that can be

unambiguously understood and easily read, since developers know what to expect even

though it may not be their personal preference. This is particularly important in an

open source context, where the source code itself is a primary means of communication

between developers.
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The specification outlines some guidelines pertaining to the commenting of code.

Java supports two types of comments, namely implementation comments and doc com-

ments. Implementation comments apply to the implementation details of the code itself,

while doc comments can be extracted as separate documentation independent of the

code using the Javadoc tool [33]. Doc comments should be used to describe the pur-

pose and function of interfaces, classes and methods in an implementation independent

way. Implementation comments should be kept to a minimum, the code should rather

be made as self documenting as possible, since comments can easily fall out of synchro-

nisation with the code. Good doc comments, design patterns, unit testing and careful

consideration of the naming of methods and identifiers should be sufficient documenta-

tion for any developer to understand the implementation. If the implementation is not

self documenting then there is probably something wrong with the design that needs to

be fixed. In the case of implementations of research algorithms, a proper reference to any

pertinent articles should be provided in the doc comments for the implementing class.

JUnit tests (refer to Section 5.5) should be provided whenever possible. Unfortunately,

the stochastic nature of many of the algorithms in CILib means that a researcher is not

likely to know what its acceptable behaviour should be, which is typically what is being

researched in the first place.

Further, the specification lists naming conventions. A convention of prefixing a pack-

age name with the reversed Internet domain of the package owner should be followed, to

ensure there are no conflicts in the package namespace, hence CILib packages fall in a hi-

erarchy under net.sourceforge.cilib. Interface and class names should be mixed case

with the first letter of each word capitalised. Abbreviations should be avoided. Methods

and variables follow the same convention except that the first character is lower case.

Constants should be written in upper case with underscores as word separators.

Finally, the document specifies formatting conventions. A particularly contentious

issue, particularly with C/C++ developers, is the Java convention of having opening

braces for blocks at the end of the line that defines the block. Closing braces should be

indented to align with the statement, method or class that forms the start of the block.

A level of indentation is defined to be four spaces. Further, a space should occur between

keywords and parentheses, after commas in an argument list, between binary operators,

except the class membership operator, between expressions in a for statement and after

a type cast. Blank lines should also be used liberally to group related sections of code,
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especially between blocks and methods. Lastly, parentheses should be used to group

arguments in complicated expressions to make them easier to read, instead of relying on

the reader’s knowledge of operator precedence rules.

6.2 Implementation Details

CILib’s implementation is heavily based on design patterns (refer to Chapter 3) to max-

imise its flexibility. The type system used for representing problem domains is discussed

in Section 6.2.1. CILib’s representation for problems and implementation of algorithms

are discussed next in Sections 6.2.2 and 6.2.3 respectively. Section 6.2.4 demonstrates

the framework’s facilities using particle swarms as a specific example. Stopping criteria

for iterative algorithms is handled in Section 6.2.5. Finally, scientific experimentation

is supported by measurements, in Section 6.2.6, and a simulator, which is covered in

Section 6.2.7.

6.2.1 Domains and Types

Domains define a type system based on a string representation of a data type. A par-

tial grammar for describing types consisting of combinations of bits, integers and real

values is provided in Figure 6.1. These domains are used to describe, amongst other

things, the search domains of computational intelligence problems. For example, a multi-

dimensional real valued optimisation problem, as described in Section 2.1.1, would have

a domain representation of “R^N”, where N is replaced with the actual dimension of the

problem. A genetic program which searches a tree space (refer to Section 2.3.2) might

operate on a domain characterised by a description of the valid non-terminal nodes, a

list of terminal symbols and a maximum tree depth.

Vectors of any given type are represented by composite and compound domain com-

ponents. A compound represents a repetition of a type, while a composite is used to

represent a mixture of different types. Further, compound components can represent

variable length vectors.

For example, the compound type “Z^5” represents 5 dimensional vectors of integers.

Equivalently, the composite “[Z,Z,Z,Z,Z]” represents the same 5 dimensional vector type.

Compound domains permit constructs such as “Z^3~2”, which represents an integer
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domain ::= type | compound | composite

composite ::= ’[’ domain { ’,’ domain } ’]’

compound ::= domain ’^’ int [ ’~’ int ]

type ::= ’B’ | ’Z’ [ ’(’ [ int ] ’,’ [ int ] ’)’ ] | ’R’ [ ’(’ [ real ] ’,’ [ real ] ’)’ ]

real ::= int [ ’.’ digit sequence ] [ (’e’ | ’E’) int ]

int ::= [ ’+’ | ’-’ ] digit sequence

digit sequence ::= digit { digit }
digit ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

Figure 6.1: Partial Domain Grammar

vector type of length ranging between 3 and 5 inclusive. That is, the second number

which follows the tilde symbol, corresponds to the amount of slack permitted by the type.

A composite type permits constructs such as “[R,R,R,Z,Z]”, or equivalently “[R^3,Z^2]”,

which represents a mixed vector type of 3 real values followed by 2 integers. Note that

compound and composite types can be arbitrarily nested.

Figure 6.2: Domain Composite/Interpreter

Figure 6.2 illustrates how types are mapped into a Composite (refer to Section 3.2.2)

object structure. The object structure can also be considered to be an instance of the

Interpreter pattern, in Section 3.3.1, since the class hierarchy, although it has slightly

more structure, to a certain extent mirrors the grammar. A Singleton (refer to Sec-
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tion 3.1.4) component factory is responsible for parsing domain strings and constructing

their corresponding domain description, in terms of a hierarchy of domain components.

Types are divided into three categories: the composite and compound vector types

which have already been discussed; qualitative types which represent ordinal or nominal

data [106]; and quantitative types which represent numeric data. The quantitative types

have the option of declaring bounds. In the grammar, these bounds are represented be-

tween parentheses. For example, a multi-dimensional search space bounded by [−1, 1] in

each dimension is represented by the string “R(-1,1)^N”, where N is the dimension of the

search space. Alternatively, a composite vector can be used to represent different bounds

in each dimension. Lower and upper bounds are taken to be −∞ and ∞ respectively if

they are not specified.

The string representations for integer, real value, and vector types have already been

discussed. Bits are represented by the string “B”. String types are represented by the

text component with representation “T”. Sets are represented by the prefix “S” followed

by a comma separated list of valid elements between braces. Graphs and trees might, in

future, be represented by a prefix “G” followed by a list of terminal and non-terminal

node descriptions. Any type which is not incorporated into the domain hierarchy is

allocated an unknown type with representation “?”.

The most important function of the domain hierarchy is producing random instances

of a type, which are used as initial points in search spaces for optimisation algorithms.

Care has been taken to return the most efficient concrete instance of any given domain.

For example, a single bit returns a java.lang.Byte with a value of one or zero, but a

vector of bits returns a java.util.BitSet instead of a memory inefficient array of bytes.

Vectors of integers and real values return arrays of their respective int and double

primitive types, which provide for the most efficient processing without polymorphic

object overheads. Mixed composites return an array of generic objects containing as

elements the largest possible groupings of more specific types. For example, the domain

string “[R^30,B^20]” would result in a domain hierarchy that returns instances of the

form Object[] { double[30], BitSet }, where the size() method of the bit set has

been overridden to return the logical number of bits, in this case 20, as opposed to the

actual number of bits used by the implementation. All a client of the domain hierarchy

need do is cast the result into the type it expects. Domain validators are provided in the

net.sourceforge.cilib.Domain.Validator package in order for a client to test those
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expectations before performing any casts. Clients that support multiple domains must

query the domain hierarchy to determine what instances of the domain will look like and

deal with them appropriately.

Beyond generating random instances inside a domain, a client may query: the dimen-

sion of a domain; whether a multi-dimensional domain contains mixed types; whether a

given instance falls within the domain; and in the case of quantitative types, the bounds.

The methods to get the dimension and the ith component of a vector present a flattened

view of nested compound and composite vectors, so that indexing components does not

need to take into account any effect of nesting. This means, equivalent domains, such as

“[R^10,R^20]”, “[R^20,R^10]” and “R^30”, are identical from the client’s perspective,

even though they all have different hierarchical structures.

Measurements (refer to Section 6.2.6) are another aspect that require domain infor-

mation, since they can be of any type and a common measurement interface is desired.

The serialisation methods are provided so that instances of a domain, particularly mea-

surements, can be stored and retrieved in a more space efficient fashion than the standard

Java serialisation method.

Figure 6.3: Domain Visitor Interface

Unfortunately, there are some design flaws in the domain strategy presented here.

The most important being that clients cannot treat type instances in a uniform way,

because the types described by a domain do not share a useful polymorphic interface.

That is, a client needs to explicitly know how to deal with every type of domain that

it supports. For example, an algorithm capable of dealing with both real valued and

bit vectors needs to query the domain, directly or using validators, and conditionally

execute one of two branches, one for each type, even though both branches probably
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contain similar logic. The domain Visitor (refer to Section 3.3.6) interface presented in

Figure 6.3 alleviates this problem slightly by providing a cleaner interface for clients, but

it is still clumsy and confusing, since an array of instances on which the visitor operates

needs to be passed around, and its implementation is currently not very speed efficient.

Figure 6.4: Partial Type System

The proper solution, assuming the object in-lining technology mentioned in Sec-

tion 5.2 gets incorporated into future compilers, is to implement a polymorphic type

system. The JFC already provide for numeric types using the java.lang.Number hi-

erarchy. Unfortunately, this hierarchy consists of immutable numeric types, requiring

object creation and collection overheads for even simple arithmetic operations, which

are likely to be executed in tight loops by many algorithms. Thus, work has begun on

the polymorphic type system presented in Figure 6.4.

Note that a client need only care whether it works on a vector or non-vector type,

which is fine, since, for the most part, it will be one or the other exclusively. A client

that does not care about the specific numeric type with which it works can simply utilise

whichever units are most convenient. Those clients that do need to differentiate them,

can make use of a more traditional Visitor (refer to Section 3.3.6) interface which does
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not require instances to be passed around as an additional parameter. Further, bit

vectors and other arbitrary vectors present a uniform interface, meaning clients will not

need to treat vectors of bits as a special case, while still benefiting from the storage

efficiency of a bit set.

The problem with the type system presented in Figure 6.4 is that domain informa-

tion cannot safely or efficiently be incorporated into the hierarchy. Bounds on numeric

types and constraints on vectors can be cleanly implemented using Decorators (refer to

Section 3.2.3), however, the extra level of indirection will have a severe performance

penalty for types used in tight loops. In addition, bounds information which would be

shared by a compound domain must be inefficiently stored for each individual vector

component along with an additional memory reference. Further, although it may seem

like a good idea to store the domain information implicitly in the type system, because

clients have the freedom to modify the type, the integrity of the domain information

may be compromised. For example, if the type system keeps track of the fact that it is

an instance of “R^N” simply by virtue of the fact that it is a vector of real values, then

a client which changes a component into an integer would alter the domain as a side

effect. Finally, while serialisation can be supported in the type system relatively cleanly,

deserialisation and generating random instances within a specified domain become very

clumsy, since the type instance which would contain the necessary information does not

yet exist.

Figure 6.5: Domain Builder

The limitations of the type system just described seem to indicate that a parallel do-

main hierarchy still needs to be maintained, however, another possibility that is currently

being investigated is the use of the Builder pattern (refer to Section 3.1.2) as illustrated

in Figure 6.5. Instead of storing a domain hierarchy explicitly, only the original domain
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string is stored and different concrete builders are used to realise the same functionality.

For example, a type checker can be used to determine whether a given type instance

conforms to the domain string passed to the builder.

6.2.2 Problem Classes

Figure 6.6 demonstrates how the broad problem classes defined in Section 2.1 can be rep-

resented in software. The optimisation problem interface is characterised by: a domain,

which defines the search space; and a fitness function, which evaluates the goodness of a

given solution. Route optimisation problems, such as the TSP (refer to Section 2.1.2, are

simply characterised by the graphs that define their routing networks. Both supervised

and unsupervised learning problems are characterised by their data sets. In the case of

supervised problems, patterns consist of an input part and a target part, which is encap-

sulated by the Pattern type. Both provide traversals of the data set using an Iterator

(refer to Section 3.3.2). Patterns may conform to different domains, which are accessi-

ble via the respective problem interfaces. Additionally, unsupervised problems provide

information about the number of clusters inherent in the data set, or alternatively, the

constant UNKNOWN_CLUSTERS if such information is unknown.

Figure 6.6: Problem Interfaces

These problem interfaces need to be implemented by concrete problem classes that

take into account any context specific to a given situation. Concrete problems that are

defined in terms of data sets, which can be true of any type of problem, can access

their data via the net.sourceforge.cilib.Problem.DataSet interface. The data set
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interface does not enforce any structure on data. It simply provides input stream and

byte array views of the raw data. The responsibility of interpreting the data falls upon

the concrete problem implementation. Some problems may have their data represented

as a structured XML document, while others may be constrained to operate on less

structured data defined by the context of the problem. For example, a clustering problem

defined for banking data may be constrained to the data format utilised by the bank’s

database. Each new application may require another concrete problem description, which

encapsulates the characteristics of the application domain, presenting itself in terms of

one of the general problem interfaces. The general framework will need to be extended

as new problems arise which cannot fit into the model presented in Figure 6.6.

Figure 6.7: Solution Classes

Figure 6.7 shows the solutions corresponding to the given problem interfaces. First

and foremost, solutions must exist within the context of some problem, hence there is

a method providing access to their problems. The solution to an optimisation problem

is characterised by a position and its fitness. Route optimisation solutions consist of

an ordered list of the edges of the graph that form the optimal tour. The learning

problems have solutions that are characterised by a model that fits the data. In the

case of supervised problems, the model provides a method to determine the mapping

for unseen input patterns, while an unsupervised model provides a method to determine

the cluster index for an unseen pattern and access to the clustered training data. Both

provide methods for determining the accuracy of the learned model.

Figure 6.8 illustrates some further specialisations of optimisation problems. Multi-
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Figure 6.8: Optimisation Problems

objective optimisation problems turn the hierarchy into a Composite (refer to Sec-

tion 3.2.2) so that a multi-objective problem still presents a single objective view, while

permitting access to individual objectives for algorithms that support multi-objective

optimisation. While the neural network code is currently in an incomplete state, it is

easy to imagine a problem Adapter (refer to Section 3.2.1) that enables neural network

training by means of an optimisation algorithm. In a research context, it is desirable to

test optimisation algorithms on various benchmark functions. For this reason, an exten-

sive set of benchmark functions is provided in the net.sourceforge.cilib.Functions

package. Another Adapter, the FunctionOptimisationProblem class provides the glue

between the optimisation problem interface and a benchmark function. Function op-

timisation is further specialised into minimisation and maximisation problems, which

respectively minimise and maximise a benchmark function.

Earlier versions of CILib treated fitness as a single double value, which was negated

in the case of function minimisation problems, so that larger values of fitness always in-

dicated a more optimal solution. This simplistic approach had limitations when working

with constrained optimisation problems, since constraint handling code needs access to

the unaltered function surface. The fitness hierarchy in Figure 6.9 was introduced to solve

this problem. Fitnesses now implement the comparable interface so that a fitness, when

compared, performs the necessary transformation for minimisation problems, while still

leaving the original function value accessible. Thus, fitness is always maximised, even for
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Figure 6.9: Fitness Classes

minimisation problems. The inferior fitness class always compares worse than other fit-

nesses, and is ideal for initialising the fitness of individuals in a population based search

algorithm that have not yet been evaluated. Switching to a fitness type hierarchy also

added the flexibility to handle discrete optimisation problems in a uniform way.

6.2.3 Algorithms

The Algorithm class, depicted in Figure 6.10, implements behaviour common to all

iterative CI algorithms. These responsibilities include handling stopping criteria, noti-

fication of algorithm events, presenting an interface for threads and any other common

house-keeping tasks.

Figure 6.10: Algorithm, Stopping Conditions and Events
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The run() method is an example of a Template Method (refer to Section 3.3.5), which

delegates the responsibility for executing a single iteration of the algorithm to a sub-

class that must override the abstract performIteration() method. The initialise()

method is also a Template Method, performing initialisation tasks common to all algo-

rithms before deferring to the performInitialisation() method, which is responsible

for any algorithm specific initialisation, if necessary.

Stopping conditions monitor the progress of an algorithm, providing two methods

to measure this progress. Firstly, the isCompleted() method is called for every it-

eration to determine when execution of the run() method should finish. Second, the

getPercentageCompleted() method, which is typically more expensive to calculate, is

primarily intended for updating progress indicators in a user interface, but can also be

used as a value that increases linearly (depending on the particular stopping condition

being used) over the execution duration for those algorithms that need it. Multiple

conditions are accommodated simultaneously by maintaining them in a list, so that

isFinished() returns true as soon as any one of the stopping conditions fires and

getPercentageComplete() returns the average over all the conditions.

The event interface, which is an extension of the Observer pattern (refer to Sec-

tion 3.3.3), is used to notify a list of observers, or listeners, whenever an algorithm, is

started, finished, terminates early or completes an iteration. Unlike the basic Observer,

which provides a listener with very little information about the subject, the event inter-

face provides information about the kind of event that occurred as well as the source of

the event, enabling many-to-many relationships between algorithms and listeners.

The class scope get() method returns a thread local instance of the algorithm which

is currently executing. This provides a global method for objects lower down in the

object reference graph to access the root algorithm class, so that they can navigate

from that point to any required object. This contributes to keeping many interfaces

simpler, reducing the need to pass additional objects around that are only used in rare

circumstances. Also, it enables objects to access parts of the reference graph that were

unforeseen in the design of certain interfaces. Unfortunately, there is a major problem

with this approach, which is yet to be resolved, an object lower in the hierarchy may not

know how to navigate the reference graph, since classes may be composed differently at

run time.

An interface for accepting problems is not specified by the Algorithm class, since
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only its subclasses know what kind of problems they can be applied to. Figure 6.11

illustrates how optimisation problems fit into the CILib framework, showing that any

algorithm implementing the OptimisationAlgorithm interface can be applied to an

OptimisationProblem. For example, since PSO implements OptimisationAlgorithm,

it can be applied to solve optimisation problems. Algorithm interfaces for other types of

problems, such as routing or learning, can be implemented in a similar fashion. Having

an algorithm interface for each type of problem enables an algorithm to be selective

about the problems it can be applied to. Also, an algorithm may implement any number

of these interfaces simultaneously, one for each type of problem that it can be applied

to. For example, a feed forward neural network (refer to Section 2.2.1) would accept

a SupervisedLearningProblem, while a SOFM (refer to Section 2.2.4) would accept

unsupervised learning problems in addition to supervised learning problems.

Figure 6.11: Optimisation Algorithms

Focusing again on optimisation problems, it is clear that any optimisation algorithm,

including EC algorithms such as GAs, and not only PSOs can be implemented within
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the CILib framework by simply implementing the OptimisationAlgorithm interface,

however, care should be taken to factor out any commonalities so that they can be

reused and composed in various ways.

For example, the multi-start PSO (MPSO) [113] calls for restarting a PSO multiple

times in order to find better solutions, since a PSO may prematurely converge onto

suboptimal local extrema. By realising that this behaviour is generally applicable to

all optimisation algorithms and not only PSOs, it can be factored out into a generic

multi-start optimisation algorithm. The multi-start optimisation algorithm re-initialises

a target algorithm whenever a restart condition is satisfied. For example, in the case

of a PSO it may be appropriate to restart the algorithm whenever the average distance

between particles drops below a certain threshold. This threshold would need to be

captured in a stopping condition and applied to the multi-start algorithm as a restart

criterion. Thus, any optimisation algorithm can have multi-start behaviour, provided

a suitable restart condition can be defined. Indeed, it may be sensible to make this

behaviour more general still, so that it can be applied to any algorithm as opposed to only

optimisation algorithms. Such refactoring will be performed when it becomes evident

how best to achieve it, bearing in mind that the multi-start optimisation algorithm needs

to keep track of the best optimisation solution found during all the runs.

Coevolutionary techniques (refer to Section 2.3.6) also apply more generally than

only to EC. As examples, consider the use of particle swarm optimisation instead of

EC for Blondie 24 (refer to Section 2.7) or the cooperative PSO (CPSO) [113] which

applies a technique used for cooperative coevolutionary GAs [91] to PSOs. The coopera-

tive optimisation algorithm implemented in CILib, which factors this common behaviour

into a more generic algorithm, only caters for optimisation algorithms that cooperate

by splitting the solution vector up into smaller components. This is accomplished by a

problem Adapter (refer to Section 3.2.1), which calculates the fitness of a smaller compo-

nent of the vector in the context of the other cooperating algorithms. The cooperating

algorithms, or participants, are created by the cooperative optimisation algorithm us-

ing an Abstract Factory (refer to Section 3.1.1), so that the type of the participants

can be specified externally. Any algorithm used as a participant must implement the

ParticipatingAlgorithm interface, which provides a mechanism for the cooperative

algorithm to access the individual parts of the solution worked on by each participant.

Thus, by implementing the ParticipatingAlgorithm interface, any optimisation al-
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gorithm, PSO, GA or otherwise (including combinations of different algorithms at the

same time), can participate in a coevolutionary strategy that splits up the solution vec-

tor amongst multiple cooperating algorithms. Other coevolutionary approaches, such as

sharing solutions using blackboard or having competing populations, are currently being

worked on by another contributor (refer to Section 6.3). Competing populations could

conceivably be implemented relatively transparently using a Fitness Adapter (refer to

Section 3.2.1), which evaluates fitness relative to individuals in other populations.

6.2.4 Particle Swarm Optimisers

This section explores CILib’s PSO (refer to Section 2.4.1) architecture in more detail as

a demonstration of the framework’s support for the implementation of an optimisation

algorithm. Implementations of other algorithms, optimisation or otherwise, were not

provided by the author and as such are not discussed (refer to Section 6.3 for information

about other contributions).

Figure 6.12: Overview of PSO Architecture

An overview of the PSO architecture implemented in CILib is provided in Figure 6.12.

Particle swarms differ in terms of the neighbourhood topology of the particles and veloc-

ity update equation used to govern their trajectories. These two aspects are implemented

as Strategies (refer to Section 3.3.4) which can be varied independently. Thus, any ve-

locity update can be used in combination with any neighbourhood topology and vice
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versa.

The algorithm interface for VelocityUpdate is characterised by a single method,

which is passed to the particle that it must update. The topology interface is more com-

plex, exposing Iterators (refer to Section 3.3.2) based on the standard java.util.Iterator

interface provided by the JFC. The PSO can use iterators to traverse all particles in the

topology or only those particles within the neighbourhood of another particle, for which

it must provide a pointer in the form of another iterator. Topologies in CILib are dy-

namic, particles can be added and removed at will. Removal of particles is achieved

using the remove() method which is available through the iterator interface. Recently,

Visitor (see Section 3.3.6) support was also added to topologies.

The fact that the LBest topology inherits from GBest requires some explanation,

since GBest is a special case of LBest with the neighbourhood being equivalent to the

entire swarm (refer to Section 2.4.1). To see why this is the case, consider that the

LBest topology must implement a special Iterator with the ability to handle wrap-around

in order to traverse the neighbourhood of any given particle. The GBest topology,

however, does not require this specialised behaviour, since it can use an Iterator that

simply traverses the whole array of particles for both the swarm and neighbourhood

cases. Thus, LBest is the more specific case in terms of the implementation. The Von

Neumann topology (refer to Section 2.4.1) is implemented as a two dimensional matrix,

with a special neighbourhood Iterator that traverses the immediate particles in each

compass direction.

Certain PSO algorithms require particles to store additional state or have special

behaviour, an ideal opportunity to apply the Decorator pattern (Section 3.2.3), as illus-

trated in Figure 6.13. Particles may be configured differently depending on the particular

type of PSO being used, but the PSO class is responsible for creating and initialising par-

ticles within the search space. For this reason, Particle implements the Prototype

pattern (refer to Section 3.1.3), enabling the PSO to clone additional particles as nec-

essary from a run time configured prototype. The particle positions are then initialised

using the DomainComponent provided by the optimisation problem, by overriding the

performInitialisation() hook provided by Algorithm. The inheritance depth weak-

ness of the Template Method pattern (refer to Section 3.3.5) is clearly illustrated by this

architecture. For example, both PSO and GCPSO may need to perform additional ini-

tialisation tasks, but only one can override the hook provided by the template method.
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Fortunately, in this case, the GCPSO class does not need to override it, but it is conceivable

that some algorithm eventually will need to. In future, it may become necessary to store

a list of initialisers in the base Algorithm class that must be executed in turn during

initialisation, each initialiser performing the initialisation tasks specific to its algorithm.

Figure 6.13: Particle Decorators

Figure 6.13 further illustrates the responsibilities of particles, each having to store its

position, velocity, fitness and a reference to the best particle within its neighbourhood.

In addition, each particle must be allocated a unique identifier, as a side effect of the

Decorator pattern (refer to Section 3.2.3), so that they can be compared without regard

to the dynamic nature of decorators that may be added and removed during the execution

of an algorithm.

The deviation decorator, currently only used by the NichePSO [17], is used to track

the standard deviations of the position and fitness of particles over time. This is an

expensive operation. In terms of space, requiring a number of observations of position

and fitness to be stored for each particle, and in terms of time, since these observations
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need to be updated every time a particle is moved. Thus, it makes sense to separate this

functionality into a decorator that can be dynamically applied only when needed.

Both the GCPSO [114, 113] (refer to Section 2.7) and LFPSO (LeapFrog PSO, also

refer to Section 2.7) algorithms implement a different velocity update equation for the

neighbourhood best particles, each requiring additional state to be stored for these par-

ticles. The GCDecorator and LFDecorator decorators are used to store this additional

state for their respective algorithms.

Specifically, the GCPSO velocity update performs a directed random search for the

neighbourhood best particles. The step size of this search is controlled by a value, ρ

(rho), which is dynamically updated based on the particle’s past history. Particles which

repeatedly improve their positions have their step size increased while particles that

repeatedly fail to find better positions have their step size reduced.

Figure 6.14: Velocity Updates

Figure 6.14 illustrates a number of velocity update Strategies (refer to Section 3.3.4),

including the GCVelocityUpdate class, which implements the velocity update for the

GCPSO. For non-neighbourhood best particles, it simply defers the velocity update to

a standard velocity update instance. Thus, it only performs the directed random search

for the best particle in each neighbourhood.
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The StandardVelocityUpdate class implements Equation 2.41, where the values

for w, c1r1 and c2r2 are each delegated to a velocity component Strategy (refer to Sec-

tion 3.3.4), giving a user a great deal of control over the velocity update. For instance,

a linear decreasing inertia can be accomplished by simply replacing the default con-

stant inertia component with a LinearDecreasingValue. By default, accelerations are

implemented using a ScaledRandomComponent with a ConstantValue target, but they

could be replaced with any velocity components, including a ZeroVelocityComponent

to disable their influence, which is the equivalent of a ConstantValue with a value of

zero.

The LinearDecreasingValue class is a good illustration of the usefulness of the

global Algorithm.get() method described earlier, since it needs access to a value that

scales linearly over the execution of the algorithm. A suitable value for this is available

using the getPercentageComplete() method in Algorithm, however, it does not make

sense to clutter the VelocityUpdate interface with this value, since it is not used by

most velocity updates.

The remaining velocity update Strategies (refer to Section 3.3.4) implement a number

of further PSO variants. The LinearVelocityUpdate class implements a variant suited

for linearly constrained optimisation problems [87].

A bare bones PSO [62], which discards the notion of particle velocities and simply

mutates their positions by sampling from a Gaussian distribution, is implemented by the

GaussianVelocityUpdate class.

LFPSO is implemented by the LFVelocityUpdate class by following a similar ap-

proach to the GCVelocityUpdate class. The commonalities between the two approaches

suggest that there may be merit in implementing a generic OptimiserVelocityUpdate

which implements the OptimisationProblem interface, so as to replace the motion of

neighbourhood best particles with the results of any OptimisationAlgorithm as sug-

gested in Section 2.7.

The FIPSVelocityUpdate (for the Fully Informed Particle Swarm [78]) requires ac-

cess to the entire neighbourhood of particles for the particle which is being updated.

Since this was not foreseen when the VelocityUpdate or Particle interfaces were cre-

ated, the current implementation is forced to make use of the global Algorithm.get()

method. Unfortunately, it has to perform a linear search for the particle to obtain an iter-

ator that can be used to access the neighbourhood, since particles do not know anything
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about the topology. This will be fixed in a later version of CILib, either by extending the

Particle interface to make the entire neighbourhood accessible or by making particles

aware of their position within a topology, by means of a Decorator (refer to Section 3.2.3),

so that they can be located efficiently.

Figure 6.15: Particle Visitors

Most of the control logic for a PSO is currently in a monolithic performItertion()

method. This is inflexible because that logic cannot be changed by simply composing

different classes, but only by sub-classing the PSO class. Figure 6.15 represents the

proposed next step in the evolution of the PSO code in CILib, the moving of parts of the

internal PSO logic into external Visitors (refer to Section 3.3.6) which can be composed

and reused in various ways. Of course, treating everything as visitors has the obvious

danger that an inappropriate visitor will be used when something else is expected. Time

will tell if this proposed design is a good idea or not.

The VelocityUpdateVisitor class is an Adapter (refer to Section 3.2.1) which makes

any existing VelocityUpdate conform to the visitor interface. Perhaps velocity updates

should have been implemented as visitors from the start, however, implementing ve-

locity updates as visitors does restrict the VelocityUpdate interface to only accepting

particles with no easy way to extend it. New velocity updates would not even need to

implement the VelocityUpdate interface at all, but could implement ParticleVisitor
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directly. At this time, the global Algorithm.get() method appears to be a general

enough mechanism for obtaining information not provided by the visitor interface.

The PositionUpdateVisitor class is analogous to the velocity update except that

it moves the particle by altering its position instead of changing its velocity. This will

have the side effect of cleaning up the Particle interface by removing the need for a

separate move() method. In addition, the GaussianVelocityUpdate should rather be

implemented as a position update, since it doesn’t affect a particle’s velocity at all.

The InitialisationVisitor class will be used to initialise particle positions based

on a given domain. Delegating initialisation to a visitor enables a PSO to use an alternate

means of initialisation, perhaps not even making use of the domain information, which

is currently not possible.

The Composite (refer to Section 3.2.2) visitor is intended to allow multiple visitors to

be used where only one is expected, with each visit method being called sequentially for

each particle. For example, a position update visitor could be replaced by a composite

containing both the position update and a dissipative visitor, which implements the logic

required for the DPSO [122] (refer to Section 2.7).

Ultimately, subclasses of PSO will have to do far less work, perhaps as little as chang-

ing one of the visitors. This leads to the next improvement, an Abstract Factory, say

PSOComponentFactory, with methods defined for creating particle, initialisation, veloc-

ity update and position update products. Thus, different particle swarm variants can be

realised by merely supplying a different factory to the PSO class, negating the need for

subclasses of PSO for every variant, only those that have radically different algorithms.

6.2.5 Stopping Conditions

Figure 6.16 shows some specific stopping conditions, which were discussed only generally

in Section 6.2.3. Some conditions may be applied to any algorithm, while others are

specific to certain types of algorithms.

For example, the maximum iterations condition can be applied to any algorithm,

causing the algorithm to finish execution when the configured number of iterations has

been reached. It makes use of the getIterations() method in Algorithm to determine

when to fire. The condition for fitness evaluations, as another example, only applies to

optimisation algorithms, which can be stopped when the objective function has been
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Figure 6.16: Stopping Conditions

tested a predetermined number of times. Implementations of conditions that apply to

more specific algorithms must cast the algorithm they are passed into the type they

expect it to be, throwing a ClassCastException if the user attempts to apply an un-

suitable stopping condition to an algorithm. Table 6.1 lists the legal types of algorithm

for each stopping condition.

The minimum swarm diameter condition fires when the average distance between

particles and the global best drops below a threshold. Similarly, the minimum function

optimisation error condition fires when the optimisation error, given by |f(x∗)−f(x)| for

an objective function f with global extremum x∗ and solution x, drops below a thresh-

old. Further, the OptimiserStalled condition fires when the standard deviation of an

optimisation solution over a configurable number of iterations is less than a threshold.

The single iteration condition is a special case condition, which fires after one iteration

and does not permit execution again until it is reset. Finally, the maximum restarts

condition fires whenever the number of restarts of a multi-start optimisation algorithm

exceeds a threshold.

Wherever possible, an implementation should return a linearly increasing value in

the range [0, 1] for the getPercentageComplete() method (refer to Figure 6.10). For

example, the maximum iterations condition returns the fraction ( current iteration
maximum iterations

). Con-
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Table 6.1: Legal Algorithms for Stopping Conditions

Stopping Condition Legal Algorithms

MaximumFitnessEvaluations Any optimisation algorithm

MaximumIterations Any algorithm

MaximumRestarts Only the multi-start optimisation algorithm

MinimumSwarmDiameter Any particle swarm optimiser

OptimiserStalled Any optimisation algorithm

SingleIteration Any algorithm

MinimumFunctionOptimisationError Only optimisation algorithms applied

to function optimisation problems

ditions such as those based on the swarm diameter or optimisation error cannot make

this guarantee, since they are dependent on the non-linear behaviour of the algorithm.

However, they should still ensure to return a value in the correct range, even if it is only

a binary 0 or 1 based on the output of isFinished().

6.2.6 Measurements

Any platform designed for scientific research must be able to perform proper measure-

ments during an experiment. The framework should enable a researcher to choose any

property to measure and not dictate its type.

The CILib simulator, discussed in the next section, makes use of measurements to

evaluate such properties during the execution of an algorithm. No restrictions are placed

on the type of property, measurements return a java.lang.Object, with each measure-

ment specifying its own domain, as a domain string which can be used to generate a

domain description (refer to Section 6.2.1). Thus, irrespective of the property being

measured, a measurement presents a uniform interface to a client, usually the simulator,

as shown in Figure 6.17.

New measurements can be crafted to access any property in an algorithm’s publicly

accessible object reference graph. That is, measurements access the currently execut-

ing algorithm using the global Algorithm.get() method (refer to Section 6.2.3). Like

stopping conditions, they need to cast the algorithm into the type they are expecting

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  PPeeeerr,,  EE  SS    ((22000055))  



CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 132

Figure 6.17: Measurements

and navigate to the property they are interested in. The implementation, however, may

have difficulty locating properties if objects are composed in unexpected ways, particu-

larly if they are deep in the graph. Using the global algorithm accessor enables a single

measurement instance to be shared, provided they do not store any non-sharable state,

since they do not maintain a reference to the algorithm (in future measurements may be

implemented as Singletons, refer to Section 3.1.4).

Figure 6.17 shows a number of reusable measurements, so a researcher only needs

to create new measurements if they are measuring something unusual. As was the case

for stopping conditions, some measurements are specific to certain types of algorithms.

Measurements have been defined for monitoring the solution and its fitness (for opti-

misation algorithms), number of fitness evaluations, current time, number of restarts

(for the multi-start optimisation algorithm), number of iterations, percentage complete,

swarm diameter (for particle swarms) and function optimisation error (for algorithms

optimising functions). In fact, many of these are precisely the same properties which are

monitored by stopping conditions.

Implementing stopping conditions using measurements has been considered as a

means to reduce these parallel class hierarchies. That way, only two stopping con-
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ditions would be necessary, a maximum threshold condition which fires whenever the

measured value exceeds a threshold and a complementary minimum version. For exam-

ple, the maximum iterations stopping condition could be implemented using a maximum

threshold condition and the Iterations measurement. The problem with this approach

stems from the fact that measurements can have any type, numeric or otherwise. Thus,

even for simple numeric types, which are handled very efficiently by stopping condi-

tions, a measurement needs to perform an expensive object instantiation, creating a new

java.lang.Number. Since measurements used by the simulator are typically only exe-

cuted every kth iteration for fairly large values of k, they can afford this inefficiency for

the benefit of being able to deal with any type of property. Further, the measurement

interface would require the stopping condition to perform an additional down cast before

it can use the value. If measurements are to be used in stopping conditions, then the

performance implications of the extra work performed after every iteration needs to be

considered and properly bench-marked first.

Algorithm implementations are not aware of any clients which are performing mea-

surements, since the client simply needs to declare itself as an Observer (refer to Sec-

tion 3.3.3) and can execute any measurements, by calling their getValue() method,

as it sees fit. Thus, all scientific measurement code is kept out of the implementations

of algorithms, which do not need to concern themselves with how their behaviour will

be monitored beyond providing sufficient public accessors for any interesting properties.

This ensures that algorithm implementations do not become polluted with measurement

code, which may not required in all circumstances. For example, if an algorithm is

implemented in a non-research context, as part of another application.

6.2.7 Simulator

The simulator is CILib’s mechanism for configuring and executing experiments. The

heart of the simulator is an XML object factory, which enables algorithms, problems

and measurements to be constructed, configured and composed at run time according to

a simple XML document. The XMLObjectFactory class, which accepts a DOM element

(refer to Section 5.1.3) describing its configuration, can be used over and over again

to construct objects with the same configuration. Further, it can be trivially Adapted

(refer to Section 3.2.1) to be the implementation for any Abstract Factory (refer to
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Section 3.1.1) interface, as shown in Figure 6.18.

Figure 6.18: XML Object Factory

Figure 6.19 is an example configuration for the CILib simulator, using a standard

PSO with a linear decreasing inertia component to find the minimum of the spherical

function on its default domain of “R(-100,100)^30”, given by:

f(x) =
30

∑

i=1

x2
i , with xi ∈ {R | − 100 ≤ xi ≤ 100} (6.1)

while measuring the number of iterations and function optimisation error, by default

every 100 iterations, and outputting the results to a file named “inertia.txt”. By default,

the simulator repeats the experiment 30 times, actually it runs them in parallel threads,

outputting all the results to the same file, where they can be later analysed.

The simulation engine searches the document for <simulation/> elements, each

containing the configuration for running a single algorithm on a given problem while

measuring certain properties. All objects must have a default constructor and should

provide sensible defaults for all of their properties. Any publicly accessible property can

be set by specifying a corresponding tag name in the configuration. The document’s legal

tag names are dictated by the properties available in the source code at run time, using

the Java reflection API, so it is impossible to construct a rigid schema that describes

valid simulator documents (refer to Section 5.1.2).

For example, because the PSO exposes a public velocity update property, via the

setVelocityUpdate(VelocityUpdate vu) method, it can be set using a tag correspond-

ing to that property name. A class attribute specifies the name of a class that should

be instantiated by the factory and passed to the property specified in its element. Class

names are specified relative to the net.sourceforge.cilib package, however, fully

qualified class names are also permitted.
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<simulator>

<simulation>

<algorithm class="PSO.PSO">

<addStoppingCondition class="StoppingCondition.MaximumIterations"/>

<velocityUpdate class="PSO.StandardVelocityUpdate">

<inertiaComponent class="PSO.LinearDecreasingValue">

<minimumValue>0.25</minimumValue>

<maximumValue>1.0</maximumValue>

</inertiaComponent>

</velocityUpdate>

</algorithm>

<problem class="Problem.FunctionMinimisationProblem">

<function class="Functions.Spherical"/>

</problem>

<measurements class="Simulator.MeasurementSuite">

<file>inertia.txt</file>

<addMeasurement class="Measurement.Iterations"/>

<addMeasurement class="Measurement.FunctionOptimisationError"/>

</measurements>

</simulation>

</simulator>

Figure 6.19: Simple Simulator Configuration

Strings and primitive typed properties can be set by simply enclosing their value

within the element body. Thus, in the sample, the minimum and maximum values for an

instance of LinearDecreasingValue are set to 0.25 and 1.0 respectively. Similarly, the

name of the file into which the measurement suite will output its results is specified within

a <file/> element, which corresponds to the setFile(String fileName) method in

the MeasurementSuite class.

Arbitrary methods can be called by using the method name as the tag name, the XML

object factory simply provides a short hand for properties (indicated by a method with

the prefix “set”). Thus, multiple stopping conditions and measurements can be added
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using the addStoppingCondition() method in Algorithm and the addMeasurement()

method in MeasurementSuite respectively. Methods with an arbitrary number of param-

eters are also supported by nesting each parameter as a separate element (their names do

not matter) within the method element in the order they appear in the method signature.

Figure 6.20, in turn, illustrates another slightly more complex configuration file. This

example demonstrates how portions of the document can be reused by making use of

ID references (refer to Section 5.1.1). Typically, more descriptive identifiers than “A”,

“B”, “M” and “S” would be used, they were shorted here purely for formatting rea-

sons. Note that the fact that multiple algorithms and simulations are specified within

<algorithms/> and <simulations/> elements is immaterial. The simulator merely

searches for simulation elements and follows any identity links to their targets, irrespec-

tive of where they are defined in the document. Further, the sample demonstrates two

short hand ways to set properties. Primitive and string valued properties can be spec-

ified directly as attributes in the parent element instead of nesting them as separate

elements. Alternatively, they can be specified using the value attribute of their own

property tags instead of placing the value in the body of the element. Properties in

reused portions of the document can be overridden where they are referenced. For ex-

ample, the same measurement suite configuration is used to output to two different file

names. In addition, the measurement suite has two additional properties: i) the number

of repetitions of the experiment, or samples; and ii) the resolution, which specifies how

often results are written to file. Finally, the cooperative optimisation algorithm uses

the XMLAlgorithmFactory Adapter demonstrated in Figure 6.18. An XML algorithm

factory expects its configuration to be specified in a nested <algorithm/> element and

from there on down functions in exactly the same manner as the XML object factory.

Further examples of configuration files are distributed with the CILib source code.

Additional examples which demonstrate all the features of the XML object factory are

also available for download from the CILib project page.

6.3 Collaborations

To date, CILib has relatively mature implementations of particle swarm and ant colony

frameworks. An early EC framework which is in need of some refactoring, to take into

account improvements to the core framework since it was contributed, has also been
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<simulator>

<algorithms>

<algorithm id="A" class="Algorithm.CoOperativeOptimisationAlgorithm">

<algorithmFactory class="XML.XMLAlgorithmFactory">

<algorithm idref="B"/>

</algorithmFactory>

<participants value="10"/>

</algorithm>

<algorithm id="B" class="PSO.PSO">

<topology class="PSO.VonNeumannTopology"/>

<addStoppingCondition class="StoppingCondition.MaximumIterations"/>

</algorithm>

</algorithms>

<problem id="S" class="Problem.FunctionMinimisationProblem">

<function class="Functions.Spherical" domain="R(-50,50)^100"/>

</problem>

<measurements id="M" class="Simulator.MeasurementSuite" samples="50">

<addMeasurement class="Measurement.FitnessEvaluations"/>

<addMeasurement class="Measurement.FunctionOptimisationError"/>

</measurements>

<simulations>

<simulation>

<algorithm idref="A"/>

<problem idref="S"/>

<measurements idref="M" file="data/cpso.txt"/>

</simulation>

<simulation>

<algorithm idref="B"/>

<problem idref="S"/>

<measurements idref="M" file="data/pso.txt"/>

</simulation>

</simulations>

</simulator>

Figure 6.20: More Complex Simulator Configuration
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implemented. In addition, several benchmark functions have been defined for testing

optimisation algorithms. Neural network and coevolutionary game (based on Blondie 24,

refer to Section 2.7) frameworks are currently being worked on by other students as part

of their studies. No significant contributions have been received from parties outside of

the University of Pretoria, but it has not yet been very widely advertised either. Further,

nothing has been implemented in the fuzzy systems paradigm, mainly because nobody

in the CIRG@UP is currently focusing on research in that field. The framework has

been offered as a platform for implementing assignments for postgraduate courses and

has received a fair amount of interest from those students. Table 6.2 lists the names

of significant contributors2, crediting them with the parts of CILib that they have been

primarily responsible for.

Table 6.2: CILib Contributors

Names Contributions

Barla-Szabo, D. LFPSO

Engelbrecht, A. P. Benchmark Functions, PSO Additions

Kroon, J. Nonlinear Mapping Problems [71], Domain Visitor

Naicker, C. NichePSO, Benchmark Functions, EC Framework

Pampara, G. Ant System Framework, Containers

Papaconstantis, E. Coevolutionary Games Framework

Peer, E. S. CILib Core, Benchmark Functions, PSO Framework

Van der Stockt, S. Neural Network Framework

Van Niekerk, F Cooperative Algorithms

6.4 Limitations

CILib successfully meets many of the goals identified at the start of this chapter. The

use of design patterns and the XML object factory provide for a very flexible frame-

work, where classes can be composed at will to produce any permutation permitted by

the design. Experimentation is facilitated by the simulator, which provides for making

2http://sourceforge.net/project/memberlist.php?group id=72233
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measurements of any interesting property during the execution of an algorithm. The

domain system presented in Section 6.2.1 ensures that algorithms can use efficient types

wherever possible, trading off the OO neatness of a polymorphic type system in favour of

better performance, with a view to make the design cleaner as better compilers become

available. A clean separation between algorithms, problems and measurements enables

algorithms to be separated out and used in real world applications, not only within the

research framework. In addition, the open source development model and having mul-

tiple people working on the same code base has forced improvements on the design, to

make it accommodate their needs, and contributed towards numerous bug fixes.

That said, the CILib design is by no means perfect and continuous refactoring will

be necessary as the framework grows to support more. Further, although CILib has

generated numerous collaborative opportunities internally, it has yet to prove itself to

a wider audience. A lack of documentation, which this dissertation hopes to alleviate,

has also contributed to a steep learning curve for those wishing to use the software.

Also, it has been difficult to convince some contributors of the benefits of unit testing

(refer to Section 5.5), particularly when the correct outcomes for stochastic processes

are not known a priori. Thus, there is lack of test cases for much of the implementation.

Already, test cases for certain benchmark functions have proven their worth, where an

error, which was discovered by a unit test, would have resulted in incorrect simulation

results.

The following is a non-exhaustive list of some more specific limitations that have

been identified:

• Expensive fitness evaluations: To accommodate discrete optimisation problems

in CILib, the return value of benchmark functions was altered from a primitive

double value to a java.lang.Object type. This means that every evaluation of an

objective function typically results in an new instance of java.lang.Number being

created. In addition to the extra object creation, the use of objective functions in

tight loops places a severe strain on the garbage collector, since large amounts of

memory will be consumed and need to be reclaimed. The mutable polymorphic

type system presented in Section 6.2.1 may provide an efficient solution for this

problem, since the same object used in the previous evaluation of an individual’s

position during a previous iteration can be reused by passing it as a reference to

an objective function.
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• Loose configuration file format: The configuration file format was designed

with hand crafting the document in mind. So, instead of having tags with consistent

names and attributes with values corresponding to property names, it was decided

to shorten the format by having the element name itself refer to the property name.

In retrospect, it would have been better to follow an approach that can be validated

against a static schema, which would have made writing the GUI tools discussed in

the next chapter simpler. For example, instead of implementing a custom schema

validator that needs to introspect the source code to perform its work, it would

have been possible to make use of the XMLBeans3 framework, capable of mapping

an XML document directly onto Java objects.

• Scalability: The simulator spawns a new thread of execution for each sample. The

motivation for this was that Unix tools such as GNU awk4, which can be used for

processing results, operate most conveniently on data presented in columns for each

measurement of each sample. Since text files are most naturally written in rows,

executing experiments sequentially would mean that information for subsequent

columns would not be available. By running the experiments in parallel, it was

hoped that all the information required for a given row would become available at

roughly the same time, avoiding the need to buffer a large quantity of measurement

results, which can quickly grow to hundreds of megabytes in size. Unfortunately,

because of this, the simulator can not scale to large numbers of samples. The extra

scheduling overhead and larger footprint required for keeping multiple executing

algorithms in memory at the same time can become prohibitive. The implicit

assumption that this memory overhead would be less than buffering the results also

does not always hold, particularly if one thread of execution becomes starved of

CPU time, in which case the buffering overhead is incurred anyway. The following

chapter presents a solution to this problem, by storing the results in a structured

database, as well as being able to scale experiments up to a cluster of workstations.

Alternatively, the simulator could trivially be changed to write results in rows,

requiring post processing for tools like awk, or results could be temporarily buffered

to disk so that simulations can be run sequentially.

3http://xmlbeans.apache.org/
4http://www.gnu.org/software/gawk/gawk.html

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  PPeeeerr,,  EE  SS    ((22000055))  



CHAPTER 6. CILIB - COMPUTATIONAL INTELLIGENCE LIBRARY 141

In spite of these and other limitations, CILib is already useful in its current state and

has the potential to become an important collaborative resource in the future.
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