
Chapter 3

Design Patterns

“A common mistake that people make when trying to design something com-

pletely foolproof is to underestimate the ingenuity of complete fools.”

— Douglas Adams

Design patterns succinctly encapsulate the knowledge of experienced programmers by

specifying proven solutions to commonly recurring software design scenarios. Patterns

are not specifically invented or designed, rather, they are discovered by observing best

practices and recurring design solutions that have proven to be useful, efficient, and

extensible in existing software.

The Gang of Four [41], or GoF as the pioneers of the field are usually referred to,

presented a catalogue identifying core design patterns which apply to Object Oriented

Programming (OOP) in general. In addition, catalogues have since been compiled for

the following:

• high level architectural patterns [19, 39];

• distributed systems and concurrency patterns [98];

• database programming patterns [86];

• language or framework specific patterns [4, 80].

Catalogues of design patterns enable software developers to draw upon documented

experience instead of reinventing the wheel. Good design is difficult to accomplish,

particularly for novice programmers, usually requiring a number of redesign iterations.

52

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 53

Pattern catalogues consist of mature and successful designs that have been frequently

found in software written by experienced programmers. In this way patterns capture the

experience of experts, providing it in a concise and easy to digest form.

An entry in a design pattern catalogue consists of four essential components. Firstly, a

short and descriptive pattern name. These names define a vocabulary for communicating

about entire designs at a higher level of abstraction. Secondly, an outline of the problem

and its context together specify when it is appropriate to apply the pattern. The most

important element of any pattern is obviously the solution to this problem. Solutions are

described in abstract terms, along with class structure diagrams, that can be applied as

a template in many different concrete situations. Sample code demonstrating the usage

of the pattern is often presented. Finally, the impact and known consequences of the

pattern are listed.

Software implementing design patterns does not only benefit from the expert experi-

ence derived from the patterns. The patterns themselves serve as documentation for that

software too. Scholars of design patterns should be able to understand the design of such

software with little more documentation than a reference to the applicable pattern and

a brief explanation of any unusual implementation details. Furthermore, programmers

unfamiliar with design patterns can simply refer to the catalogue where the design is dis-

cussed in detail. The self documenting nature of code that uses patterns is an important

reason for patterns being discussed in this work, otherwise the patterns that have been

used in the implementation, although very useful in ensuring good design, may just as

well have been considered an irrelevant implementation detail.

This chapter summarises those GoF patterns that are applicable to CILib and CiClops.

The patterns are separated, based on their purpose, into three distinct categories: cre-

ational patterns, presented in Section 3.1; structural patterns, presented in Section 3.2;

and behavioural patterns, presented in Section 3.3. The intention, describing the primary

purpose of a pattern, is quoted directly from the GoF catalogue [41] as an introduction to

each pattern. The patterns are summarised in a less rigid form than the GoF catalogue

without many examples. Chapters 6 and 7 will serve as adequate examples where the

implementations of these patterns are discussed. High level architectural and framework

specific patterns are implicitly covered, as required, when platforms such as Java 2 En-

terprise Edition (J2EE) are discussed in Chapter 5. This chapter concludes with a short

discussion in Section 3.4

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 54

3.1 Creational Patterns

The common theme amongst the creational patterns is delegating the details of object

creation in a particular system, or client, to other classes external to the client that can

vary independently. That is, there is a decoupling between the use of objects and their

creation.

Section 3.1.1 presents the Abstract Factory pattern, where the instantiation of objects

is delegated to a polymorphic interface. The Builder pattern, in Section 3.1.2, abstracts

the process of instantiating a complex set of objects into a reusable unit that can be

used to construct different representations using the same build process. Section 3.1.3

discusses a pattern for creating objects by cloning existing prototype objects. Finally,

the Singleton pattern, in Section 3.1.4, limits the instances of a given class.

3.1.1 Abstract Factory

“Provide an interface for creating families of related or dependent objects

without specifying their concrete classes” — GoF

Figure 3.1: Abstract Factory

Figure 3.1 illustrates the design of the Abstract Factory pattern. The core participant in

the pattern is the abstract factory interface which defines the contract that its client uses

to instantiate objects. The most important aspect of the pattern is that the client is never

exposed to the implementation details, including the class names, of the concrete factories

or the classes that they create. Each concrete factory is responsible for producing its own

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 55

family of concrete products with the only requirement being that the abstract interfaces

are satisfied. Thus, if the client is written to conform to the abstract interfaces then the

concrete factories, and by extension the products that they produce, may be interchanged

without requiring changes to the client.

The decoupling of a system from how its products are created provides immense

flexibility, to the extent that the entire behaviour of the system can be altered by simply

changing the factory used to create the objects that it uses. Furthermore, dependencies

between a family of products can be enforced, since a single concrete factory is responsible

for all the different products at any given time. Unfortunately, a drawback of the design

is that adding new products is difficult, since it entails a modification of the abstract

factory interface. Such an interface change translates into changes to all existing concrete

factory implementations to support the new product which, in turn, is likely to require

new product implementations to be defined as well.

3.1.2 Builder

“Separate the construction of a complex object from its representation so that

the same construction process can create different representations” — GoF

Figure 3.2: Builder

The Builder pattern, depicted in Figure 3.2, assembles complex objects in a piecemeal

fashion, building them part by part. A director class controls the construction process

while delegating the creation and assembly of parts of the product to an abstract builder

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 56

interface. Thus, a concrete builder has jurisdiction over the implementation details of the

parts as well as how they are assembled to create a larger complex product. Typically,

the functioning of the director is dictated by the traversal of some data structure or

document. The builder interface exposes the set of operations that may be utilised by a

director to construct a product according the structure it traverses.

Products produced by a given concrete builder implementation need not conform to

any given interface. Thus, it is possible for two different concrete builders to create

two very different products using the same construction process, as specified by the

director. Alternatively, different directors may use the same builder interface permitting

different structures to be rendered into the same product representation. In addition, the

director provides finer control over the construction process than the Abstract Factory

which creates each of its products in a single shot.

3.1.3 Prototype

“Specify the kinds of objects to create using a prototypical instance, and create

new objects by copying this prototype” — GoF

Figure 3.3: Prototype

The Prototype pattern creates new objects by copying, or cloning, existing objects. Im-

portantly, the client making a clone of an object need not know the type of object it

is dealing with, only the fact that the object implements the prototype interface. The

responsibility of making the copy falls on the object being cloned, as shown in Figure 3.3.

One of the key benefits of prototypes is that they enable a client to instantiate objects

that have been configured at run time. That is, objects with different run time state or

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 57

object structures that have been composed together in different ways at run time may

conceptually be considered to be instances of different classes. The Prototype allows

these different run time configurations of objects to be treated as new classes that can

be instantiated like any other class. Thus, an application can be configured with new

classes dynamically.

When used in conjunction with the Abstract Factory, the Prototype pattern can mit-

igate the need to create concrete factories for every product. Instead, a single factory

can simply be configured with different prototype instances as products.

The clone operation typically performs a deep copy which has an obvious caveat

pertaining to circular references. Prototypes containing any circular references need to

take appropriate measures to prevent infinite looping.

3.1.4 Singleton

“Ensure a class only has one instance, and provide a global point of access

to it” — GoF

Figure 3.4: Singleton

The Singleton pattern, illustrated in Figure 3.4, is characterised by three properties.

Firstly, any constructors are inaccessible so that clients can not arbitrarily create in-

stances of the class. Secondly, the only existing instance is a static field, also known as

a class scoped field, which is also not directly accessible to clients. Finally, a publicly

accessible static method provides clients with access to the single instance. The single

instance may be statically initialised or it may be initialised in a lazy fashion by the

public accessor the first time it is called.

The purpose of the Singleton is to prevent a shared object from being instantiated

by multiple clients. Limiting the number of instances not only saves memory, but more

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 58

importantly, it prevents difficult to detect programming errors from occurring, where an

object which is supposed to be shared is not being shared properly. Further, a singleton

can be used as a namespace to store global application context cleanly, without resorting

to global variables. Moreover, instead of restricting clients to a single instance, it is trivial

to extend the pattern so that the implementation maintains a limited pool of objects for

applications that require it.

3.2 Structural Patterns

Structural patterns describe methods to compose classes to form larger useful structures.

That is, they illustrate flexible methods of interaction between classes by specifying how

classes should be combined and used together.

The Adapter pattern, in Section 3.2.1, demonstrates how incompatible classes can be

made compatible and used together. Section 3.2.2, the Composite, discusses a pattern

that enables hierarchies of objects and individual objects to be treated in a uniform

fashion. The Decorator pattern, which can be used to dynamically associate additional

behaviour with objects, is discussed in Section 3.2.3. Complex systems of classes can be

simplified into a single interface using the Facade in Section 3.2.4. Finally, the Proxy

pattern provides a way to facilitate or control access to the objects which it stands in

for.

3.2.1 Adapter

“Convert the interface of a class into another interface clients expect. Adapter

lets classes work together that couldn’t otherwise because of incompatible in-

terfaces” — GoF

Figure 3.5 illustrates the most common form of the Adapter pattern, particularly in lan-

guages that only support single inheritance. The adapter class maintains a reference to

the object which it is adapting, the adaptee, while conforming to the target interface

expected by the client. Another form of adapter inherits both the target and adaptee

interfaces which may not always be possible in languages that do not support multiple

inheritance. The multiple inheritance version has the advantage of being able to triv-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 59

Figure 3.5: Adapter

ially override any operations belonging to the adaptee, if necessary, whereas the version

presented here requires an auxiliary class to override adaptee operations.

The amount of work that needs to be done by the adapter is application specific and

depends on how much the target interface differs from that of the adaptee. In some cases,

particularly when reusing legacy classes in a new framework, all that may be required

is changing the the name of an operation or converting the types of its arguments. In

more extreme cases, the interface may be totally different, requiring more work to make

the adaptee conform to the target interface expected in the context of the client.

3.2.2 Composite

“Compose objects into tree structures to represent part-whole hierarchies.

Composite lets clients treat individual objects and the compositions of objects

uniformly.” — GoF

The Composite pattern, depicted in Figure 3.6, represents hierarchical structures of ob-

jects in such a way that clients can treat the individual objects in exactly the same way

as they treat the entire composite. Operations on leaf nodes in a composite structure

behave according to the type of node that the operation is being executed on, whereas

composite nodes typically delegate the requested operation to each of their child nodes.

Hierarchies can be built recursively, since a composite node is itself a component which

in turn contains components.

The primary benefit of the Composite pattern is also its weakness. The fact that

clients should not need to differentiate between operations on leaf nodes and operations

on composite nodes means that the root component interface needs to support all of the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 60

Figure 3.6: Composite

operations supported by any of the components, thus reducing type safety. For example,

operations for maintaining the child nodes of a composite do not usually apply to leaf

nodes, so these operations usually have an empty implementation in the root interface.

Similarly, there may be operations specific to leaf nodes that do not make sense for

composite nodes, or even other types of leaf node for that matter. Thus, even though all

components must implement the same component interface by virtue of inheriting from

it, some of them may have unexpected or default behaviours when certain operations

are called.

3.2.3 Decorator

“Attach additional responsibilities to an object dynamically. Decorators pro-

vide a flexible alternative to subclassing for extending functionality.” — GoF

Structurally, the Decorator pattern, in Figure 3.7, and the Adapter presented in Sec-

tion 3.2.1 are similar. Both delegate operations prescribed by a target interface to

another class which they reference, or wrap. In the case of the Adapter, the adaptee is

an arbitrary class that must be made to conform to a target interface. The Decorator,

however, delegates operations specified by the component interface to another class con-

forming to that same interface with the purpose of adding responsibilities to the original

component, not to make the already compatible interfaces compatible with each other.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 61

Figure 3.7: Decorator

Nevertheless, throughout design pattern literature, both the Adapter and the Decorator

have been referred to by the same alternate name, namely the Wrapper pattern, probably

owing to the fact that both have a similar structure.

Concrete decorator classes add a combination of additional state and behaviour to

a target class without changing the interface that is exposed to the client. Typically,

the base decorator class is simply an identity mapping for the operations defined by the

component interface. That way, a concrete decorator need only override the operations

necessary to achieve its goal. The primary benefit of the decorator is that these ad-

ditional responsibilities can be dynamically added and removed from a component at

run time, whereas extending the responsibilities of a class through normal inheritance

is fixed at compile time and as such is less flexible. Concrete components need not

implement seldom used functionality that can be added by decorators on an as needed

basis. Unfortunately, decorators are not truly transparent, since clients cannot rely on

the equivalence of decorators and their components based on their references.

3.2.4 Facade

“Provide a unified interface to a set of interfaces in a subsystem. Facade

defines a higher-level interface that makes the subsystem easier to use”

— GoF

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 62

Figure 3.8: Facade

The Facade pattern, illustrated in Figure 3.8, decouples a complex system from its clients

by providing a high level interface to access the system in a simplified way. The extra

flexibility and extensibility that other design patterns bring to the table often has the

net result of making a system of classes more complex. For example, a client may be

able to configure a well designed system to better suit its needs by extending some of

the classes that make up that system. The Facade provides a mechanism to counteract

some of this complexity in the cases when a client does not need to alter the default

behaviour of a system.

Structurally, the Facade is also similar to the Adapter, presented in Section 3.2.1,

except that the facade typically maintains references to many objects within the system

instead of only adapting the interface for a single class. In effect, the facade adapts the

interfaces provided by an entire system and presents them as a single simplified interface

to clients.

The most important feature, with respect to making a system more maintainable, is

that the facade decouples the client from the system so that changes to the internals of

the system do not affect clients. Further, the facade interface may be polymorphic so

that the entire system implementation can be switched without the client’s knowledge

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 63

by simply changing the instance of the facade being used. The decoupling provided

by the facade can also be extended to the interface between between different layers

in a multi-layer framework. The refined interface reduces the communication between

layers and thus reduces their dependency on one another while improving performance,

particularly if the layers are implemented in different address spaces.

While the facade provides a simpler interface to the system, there is typically nothing

preventing a client from accessing system classes directly. In fact, the facade interface

may require the client to do so by accepting as arguments or returning system specific

classes. Further, the client may need to use some complex features of the system that

the facade does not provide access to. Obviously, the more that a client directly relies

on the system classes, the tighter the coupling and harder it is to modify the system

without affecting its clients.

3.2.5 Proxy

“Provide a surrogate or placeholder [sic] for another object to control access

to it.” — GoF

Figure 3.9: Proxy

According to Figure 3.9, the Proxy pattern is very similar to the Decorator, presented

in Section 3.2.3. In fact, in certain cases, a proxy can also be considered to be attaching

additional responsibilities to the object for which it stands proxy. The difference lies in

the intent of the pattern, even though they are structurally very similar. The responsi-

bilities associated with a proxy are typically more behind the scenes or house-keeping in

nature than actually adding application specific behaviour to objects.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 64

There are four primary types of proxy. The first, a remote proxy, is a local repre-

sentative that provides access to a complementary object in another address space. An

example of this is a stub object, typically automatically generated, that implements calls

to the same object on a remote machine via Remote Procedure Call (RPC). Secondly,

virtual proxies are place holders, used to create and destroy their objects on demand,

that are usually used to optimise memory or initial start up cost. Third, protection

proxies prevent unauthorised client access to methods by implementing access control

before delegating the method call to the real subject. Finally, smart references can be

used to implement reference counting, locking or copy-on-write semantics.

3.3 Behavioural Patterns

Behavioural patterns model the flow of control and algorithmic interaction between ob-

jects. They specify how responsibility should be assigned to various classes to achieve

communication between objects in the most flexible manner.

The Interpreter pattern, in Section 3.3.1, describes a method to represent a grammar

as objects and use those objects to interpret the language. Section 3.3.2 discusses the well

known Iterator pattern which specifies how objects in a collection should be traversed.

Section 3.3.3 defines the Observer pattern which implements a flexible event model. The

Strategy pattern, in Section 3.3.4, decouples a client from the algorithms it uses so that

the algorithms can be varied independently. The Template Method pattern, discussed in

Section 3.3.5, permits an algorithm to be defined in terms of abstract operations that

are provided by subclasses. Finally, operations on collections or object structures can be

encapsulated using the Visitor pattern, as discussed in Section 3.3.6.

3.3.1 Interpreter

“Given a language, define a representation for its grammar along with an in-

terpreter that uses the representation to interpret sentences in the language.”

— GoF

Figure 3.10 shows the abstract structure of the Interpreter pattern, used to interpret sen-

tences in a language defined by a given grammar. The dynamic, or run time, structure

of the abstract syntax tree reflects a sentence in the language. Terminals in the language

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 65

Figure 3.10: Interpreter

are represented by leaf nodes while non-terminals are represented by internal tree nodes.

For arithmetic expressions, a separate non-terminal class would be defined for each of

the arithmetic operators, while a single terminal expression class would suffice for rep-

resenting constants. The value of the expression is then interpreted by simply calling

the interpret method at the base of the tree, which is recursively propagated down the

tree. Each operator is responsible for providing its own interpretation. For example, the

interpret operation for an addition node would simply add the results of calling interpret

for each of its children. The context is used to store global information, such as the

current position in the sentence being interpreted.

The Interpreter pattern makes implementing and extending the grammar easy, since

classes that represent the grammar have a one-to-one correspondence with its rules.

Representing large grammars, however, requires many classes which becomes difficult to

maintain. In addition, supporting a new interpretation of the grammar requires adding

an operation to each of the expression classes which can become unwieldy if there are too

many classes. Also, the Interpreter pattern does not address the process of parsing the

language into its hierarchical representation, for which a traditional recursive descent or

table-driver parser may be used.

3.3.2 Iterator

“Provide a way to access the elements of an aggregate object sequentially

without exposing its underlying representation.” – GoF

The Iterator pattern, demonstrated in Figure 3.11, provides a method to access elements

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 66

Figure 3.11: Iterator

of an aggregate object, or container, without exposing the client to the internal repre-

sentation of the aggregate. The client obtains a reference to an iterator by calling an

operation to create an iterator, a factory method, provided by the aggregate’s interface.

This operation returns an iterator that is specific to the concrete aggregate but which

supports a well defined interface for performing the iteration. The iterator is responsible

for keeping track of where it is in the traversal of the aggregate while providing opera-

tions for controlling the traversal. Using the iterator interface, the client can move the

iterator to the start of the traversal, obtain the current element, move the iterator to the

next element and determine whether there are any more elements left in the traversal.

As long as all aggregates conform to the same interface, clients can access their elements

in a uniform way.

The most important feature of the iterator is that it provides a standard mechanism

for traversing aggregate structures. The interfaces of aggregates are kept clean, since

new kinds of traversals can be implemented by simply replacing the iterator. Further,

more than one traversal can be pending on the same aggregate because the iterator, and

not the aggregate, is responsible for recording the state of the traversal.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 67

3.3.3 Observer

“Define a one-to-many dependency between objects so that when one object

changes state, all its dependents are notified and updated automatically.”

— GoF

Figure 3.12: Observer

The Observer pattern, illustrated in Figure 3.12, models the dependency between a

subject and its observers. Any number of observers may subscribe, by means of the attach

operation, to be notified whenever the state of the subject changes. After detaching from

a subject, an observer will no longer be notified of events. Upon being notified that the

state of the subject has changed, an observer may query the state of the subject and

take any appropriate actions.

The Observer promotes a very loose coupling between a subject and its observers.

A subject knows nothing about its observers beyond that they conform to the observer

interface. The observer interface presented here is fairly primitive, in that it does not

provide any information about the change in state, other than the fact that some state

change did occur on some subject. This means that an observer may have to expend

considerable effort to determine exactly what state changed. A protocol that is more

specific about any state changes would alleviate this problem. In addition, a single

observer cannot differentiate between events from multiple subjects. Fortunately, the

observer interface can be trivially extended to include a reference to the subject that

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 68

originated the event, making many-to-many dependencies possible. Finally, observers

have no knowledge about other observers attached to the same subject. This means

they are blind to the cost of causing changes to the subject, which may cascade into

more changes by other observers.

3.3.4 Strategy

“Define a family of algorithms, encapsulate each one, and make them inter-

changeable. Strategy lets the algorithm vary independently from clients that

use it.” — GoF

Figure 3.13: Strategy

Figure 3.13 shows the structure of the Strategy pattern. At first glance, it simply looks

like a polymorphic class that implements multiple behaviours. The importance of the

pattern, however, lies in the fact that it is the strategy interface which is polymorphic

and not the context class itself. The context, which plays the role of the client, delegates

the responsibility for a part of its implementation to an external strategy instance. Sub-

classing the context directly to provide the different behaviours would result in a less

flexible design. By encapsulating the behaviour into a strategy, the context is simplified

and different behaviours can be switched dynamically at run time. Also, the context

can depend on multiple strategies, for different parts of its operation, simultaneously,

which would be impossible to support by directly subclassing the context. For example,

a client may rely on one hierarchy of strategies for one part of its implementation while

maintaining an additional reference to another hierarchy of strategies for another. Sub-

classing the context directly would require a new subclass for each combination of the

different strategies that can be independently interchanged.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 69

Another benefit of factoring the strategies into a separate hierarchy is that common

functionality amongst a family of algorithms can be shared at the root of the strategy

hierarchy without cluttering the context. Conditional statements in a client are prime

candidates for factoring into a strategy, each branch is simply implemented as an ad-

ditional concrete strategy, improving flexibility at the cost of increasing the number of

classes in the system. The algorithm interface must provide access to the context data

needed by any of the concrete strategies, which may create additional overheads for

strategies requiring less context data. One possibility is to pass the context itself to the

strategy and allow the strategy to query it directly.

3.3.5 Template Method

“Define the skeleton of an algorithm in an operation, deferring some steps

to subclasses. Template Method lets subclasses redefine certain steps of an

algorithm without changing the algorithm’s structure.” — GoF

Figure 3.14: Template Method

The Template Method pattern, depicted in Figure 3.14, specifies the invariant parts of

an algorithm in terms of primitive operations that may be overridden by subclasses.

Primitive operations are usually abstract methods, however, they may also be empty

methods or have default behaviours creating optional hooks that clients may choose to

customise through subclassing. If any of the primitive operations are abstract then the

template method is said to implement an abstract algorithm.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 70

The template method, particularly if it cannot be overridden, fixes a specific set of

operations and their ordering for subclasses, promoting code reuse. Often, a subclass

needs to perform some additional processing before or after a method in its parent class

is called. A template method with an appropriate hook facilitates this kind of behaviour

with the added benefit that the subclass cannot forget to call the original method which

it would otherwise have overridden directly. Unfortunately, this approach can only be

implemented one level deep without creating new names for the hook at each level of

inheritance. Obviously, the template method doesn’t restrict the placement of hooks to

only the beginning and end of methods, giving a subclass far more flexibility in how it

reuses the code in a parent class.

3.3.6 Visitor

“Represent an operation to be performed on the elements of an object struc-

ture. Visitor lets you define a new operation without changing the classes of

the elements on which it operates.” — GoF

Figure 3.15: Visitor

Figure 3.15 illustrates the Visitor design pattern. The object structure can be any aggre-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 71

gate but is typically a tree structure such as an Interpreter hierarchy, as in Section 3.3.1,

or a Composite, as in Section 3.2.2. A visitor encapsulates an operation which must be

performed on each element of the object structure, while the accept method is responsi-

ble for traversing the object structure and calling the appropriate method for the type

of element being visited. This calling strategy is known as double dispatch, since the

method called to perform the operation is determined by both the type of the element

in the object structure and the type of visitor.

Instead of spreading different parts of the same operation over multiple classes in a

object structure, visitors enable related parts of an operation on multiple elements to be

grouped into the same class. This clean encapsulation of an operation into a single class

makes adding new operations easier, however, adding a new element type to the object

structure requires changing all existing visitors to support it. Many of the special purpose

methods in an Interpreter or Composite structure can be replaced with a single accept

method for visitors that encapsulate those operations externally. Visitors also have the

advantage of being able to accumulate state which may be difficult to distribute over

multiple elements in an object structure. Unfortunately, because a visitor is external to

the object structure, it may be necessary to provide a wider interface on the elements

than would have otherwise been needed if the operations where supported internally

within the structure. Thus, encapsulation for the elements may be adversely reduced so

that visitors can perform their job.

3.4 Discussion

Design patterns are not an exact science. Patterns may be adapted and customised in

the context in which they are being applied. Remember, design patterns are, for the

most part, merely a way to encapsulate expert knowledge in an easy to digest form.

They should be considered as guidelines for a good design rather than strict rules, since

every situation is unique with its own set of constraints. Developers should still be free

to be creative while building upon the knowledge gained from a study of patterns.

Patterns are also inter-related with certain patterns lending themselves to useful com-

binations. A few of these combinations have been hinted at in this chapter. Section 3.1.3

suggests that the Prototype can be used in conjunction with the Abstract Factory to al-

leviate the problem of parallel class hierarchies. The Visitor pattern, as discussed in

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 3. DESIGN PATTERNS 72

Section 3.3.6, lends itself particularly well to a combination with the Interpreter or

Composite patterns. Further, the Abstract Factory and Facade are often implemented as

a Singleton when their implementations can be shared amongst multiple clients.

Finally, it should be noted that this chapter is not an exhaustive literary study of

design patterns. There are more patterns presented in the GoF catalogue as well as many

more ways that patterns are related to one another. Further, there are other catalogues

that cover even more designs patterns, some of them specific to particular application

domains. The content in this chapter is merely a terse summary of only those patterns

that have been used in the implementation backing this work. Chapters 6 and 7 will

refer back to the patterns presented in this chapter as appropriate.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

	Front
	Chapter 1
	Chapter 2
	Chapter 3 - Disign Patterns
	3.1 Creational Patterns
	3.2 Structural Patterns
	3.3 Behavioural Patterns
	3.4 Discussion

	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Bibliography

