
Chapter 2

Computational Intelligence

“If computers get too powerful, we can organize [sic] them into a committee

– that will do them in.” — Bradley’s Bromide

The formulation of a precise definition for Computational Intelligence (CI) and how it

relates to the broader Artificial Intelligence (AI) field is a challenging task. Arguably,

CI comprises of those paradigms in AI that relate to some kind of biological or naturally

occurring system. General consensus suggests that these paradigms are neural networks,

evolutionary computing, swarm intelligence and fuzzy systems [29, 31, 88, 130]. Neural

networks are based on their biological counterparts in the human nervous system. Sim-

ilarly, evolutionary computing draws heavily on the principles of Darwinian evolution

observed in nature. Swarm intelligence, in turn, is modelled on the social behaviour of

insects and the choreography of birds flocking. Finally, human reasoning using imprecise,

or fuzzy, linguistic terms is approximated by fuzzy systems.

Figure 2.1 shows these four primary branches of CI and illustrates that hybrids be-

tween the various paradigms are possible. Another, more precise, definition describes

CI as the study of adaptive mechanisms to enable or facilitate intelligent behaviour in

complex and changing environments [31]. Yet there are other AI approaches, that sat-

isfy both this definition as well as the requirement of modelling some naturally occurring

phenomenon, that do not fall neatly into one of the paradigms mentioned thus far. Could

it be argued that the definition for CI is in itself complex, changing and fuzzy? A more

pragmatic approach might be to specify the classes of problems that are of interest with-

out being too concerned about whether or not the solutions to these problems satisfy

any constraints implied by a particular definition for CI.
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Figure 2.1: Computational Intelligence Paradigms

The following section identifies and describes four primary problem classes for CI

techniques. A compendious overview of the main concepts behind each of the widely

recognised CI paradigms is presented in Sections 2.2 through 2.5. Further, paradigms

that are not generally recognised as CI, but that arguably also classify as such are men-

tioned in Section 2.6. Examples of hybrid approaches are given in Section 2.7. Finally,

a discussion, in Section 2.8, concludes with some software implementation requirements

made apparent by the contents of this chapter.

2.1 Problem Classes

Optimisation, defined in Section 2.1.1, is undoubtedly the most important class of prob-

lem in CI research, since virtually any other class of problem can be re-framed as an

optimisation problem. This transformation, particularly in a software context, may lead

to a loss of information inherent to the intrinsic form of the problem. The discussion in

Section 2.8 illustrates how these intrinsic features can be exploited in software.

Section 2.1.2 discusses the well known travelling salesman problem as a model rep-

resentative for the NP-Complete class of problems that are generally thought to be

intractable. Function learning and classification, which are characteristic of supervised

learning, are presented in Section 2.1.3. Finally, unsupervised learning is represented by

clustering in Section 2.1.4.
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2.1.1 Optimisation

The process of seeking out values for variables that either minimise or maximise some

objective function is known as optimisation [12]. Stated formally, for the case of min-

imisation:

Given : f : S→ R, find x∗ ∈ S for which f(x∗) ≤ f(x), ∀x ∈ S (2.1)

where S represents the search domain which is typically, but but not necessarily, R
n.

The minimiser, x∗, is the solution to the minimisation problem defined by the objective

function f . The dual problem does not require separate discussion, since, in general,

finding the maximiser for an objective function g : S→ R is exactly the same as finding

the minimiser for f : S→ R with f(x) = −g(x).

When the objective function is defined for a search domain of R
n, further equality and

inequality constraints may be defined to restrict the feasible region in which solutions

are considered. The constrained optimisation problem is defined formally as follows:

Given : f : R
n → R, find x∗ ∈ R

n for which f(x∗) ≤ f(x), ∀x ∈ R
n (2.2)

subject to pi(x) = 0, i ∈ {Z | 1 ≤ i ≤ r} (2.3)

qj(x) ≥ 0, j ∈ {Z | 1 ≤ j ≤ s} (2.4)

where pi(x) and qj(x) are respectively, r equality and s inequality constraint functions

on the components of the vector x ∈ R
n. Constraints of the form a ≤ xk ≤ b for

k ∈ {Z | 1 ≤ k ≤ n} can be rewritten as two instances of the single sided inequality

constraint of Equation (2.4), namely qa(x) = xk − a and qb(x) = −xk + b.

Many algorithms for performing optimisation are designed to be applied to uncon-

strained optimisation problems, so it is desirable to be able to convert a constrained

problem into the form of Equation (2.1) with S = R
n. A simple method to achieve this

is to add to the objective function a suitable penalty term encapsulating the constraints.

Thus, the function under optimisation becomes f(x) = g(x) + P (x) where P (x) is the

penalty term.

Another technique, known as Lagrange’s method [69], can be used to convert a con-

strained problem with equality constraints of the form in Equation (2.3) to an uncon-

strained problem. The Lagrange function is defined as:

L(x, λ) = f(x)−
r

∑

i=1

λipi(x) (2.5)
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CHAPTER 2. COMPUTATIONAL INTELLIGENCE 9

where f(x) and pi(x) are the same as in Equation (2.2) and (2.3) respectively and the

λi constants are known as Lagrange multipliers. At the optimal point of intersection the

constraint and the objective functions are tangent to each other and so∇f(x) = λi∇pi(x)

provided that ∇pi(x) 6= 0. Given Equation (2.5), this is true if and only if ∇L(x, λ) = 0

so solving the following yields a solution to the original constrained problem:

δL
δxk

=
δL
δλi

= 0, i ∈ {Z | 1 ≤ i ≤ r}, k ∈ {Z | 1 ≤ k ≤ n} (2.6)

which defines a system of r + n equations that can be cast into an unconstrained opti-

misation problem by minimising the SSE (Sum Squared Error) defined by:

f(x, λ) =

n
∑

k=1

( δL
δxk

)2

+

r
∑

i=1

( δL
δλi

)2

(2.7)

where the point (x, λ) can be considered as a single vector argument to a function of the

form f(x) in Equation (2.1) with S = R
r+n. Inequality constraints can be handled in a

similar fashion by introducing slack variables into a modified Lagrangian:

L(x, λ, µ) = f(x)−
r

∑

i=1

λipi(x)−
s

∑

j=1

µj(qj(x)− ej) (2.8)

where qj(x) is the same as in Equation (2.4), the µj constants are additional Lagrange

multipliers and ej is the slack variable corresponding to the jth inequality constraint.

Optimisation can be further extended into the multi-objective case where the task is

to satisfy multiple, possibly conflicting, objectives simultaneously [73]. For example, it

may be required that cost be minimised while at the same time benefit is maximised.

Some kind of trade off is required when objectives such as these clash, since optimising

one necessarily causes deterioration of another. Generally, the goal is to find represen-

tative points belonging to the, possibly infinite, pareto optimum set of minimisers given

a set of objective functions. A pareto [38], or non-dominated, point is a minimiser for

which none of the objectives can be further improved without adversely affecting another.

Each of these pareto minimisers represents a different trade off between objectives.

Multi-objective minimisation is formally stated as:

Given : F (x) = {fk(x) | fk : S→ R}, k ∈ {Z | 1 ≤ k ≤ m}
find X∗ = {x∗ ∈ S | F (x∗) 4 F (x), ∀x ∈ S} (2.9)

where F (x) 4 F (y)⇐⇒ (∀i)(fi(x) ≤ fi(y)) ∧ (∃i)(fi(x) < fi(y))
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CHAPTER 2. COMPUTATIONAL INTELLIGENCE 10

where X∗ is a representative set of non-dominated minimisers and F (x) is the set of m

objective functions. The expression F (x∗) 4 F (x) denotes that x∗, a pareto minimiser,

dominates the point x which is not an element of the pareto set. Once again, the search

domain S may be R
n and further constrained by Equations (2.3) and (2.4).

If only a single solution in the pareto set is required then multi-objective optimi-

sation can be converted into a single objective optimisation problem of the form in

Equation (2.1) by defining the objective as:

f(x) =

m
∑

k=1

wkfk(x) (2.10)

which is simply a weighted sum over the set of objective functions that comprise F (x). By

varying the weights wk and performing sequential optimisation passes multiple solutions

in the pareto set may be obtained.

2.1.2 NP-Complete Problems

The Travelling Salesman Problem (TSP) [52], a well known problem in computer science,

belongs to the NP-Complete class of problems and has been chosen for discussion as

a representative for its class. The best known deterministic algorithms able to solve

problems of this class execute in exponential-time, or worse, in proportion to the amount

of input data.

However, they all have Non-deterministic Polynomial-time (NP) solutions that, in

order to yield correct results, require guessing correctly at every decision point during

execution by means of some magical non-deterministic process. While such a magical

algorithm does not have much practical use, this property does at least guarantee the

existence of a short certificate that can be used to validate whether a given solution is

correct or not. No polynomial-time deterministic algorithms are known to exist for these

problems and as such they are considered to be intractable.

Furthermore, a subset of these problems known as NP-Complete are all polynomial-

time reducible amongst themselves, meaning that finding an effective solution to one

problem in NP-Complete implies having an effective solution to all those in NP-Complete.

Certain CI algorithms, which are by their nature non-deterministic, can be applied in an

attempt to yield approximate solutions, given large data sets, in a reasonable amount of

time.
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Figure 2.2: Example TSP Network (not to scale)

Problems in NP-Complete include knapsack packing, scheduling, graph colouring

and testing the satisfiability of propositional calculus formulae amongst many other

distinct problems. Some of these appear to be toy problems, such as the monkey puzzle

problem [52], while others have important real world applicability. However, due to

their polynomial-time inter-reducibility, all of them are actually of relatively equivalent

importance.

In particular, the TSP has real world application in route optimisation, circuit design

and the programming of industrial robots [52]. Moreover, the TSP is an ideal candidate

for discussion, because it admits an interesting ant system solution (refer to Section 2.4.2)

and, as described shortly, can also be cast into a constrained optimisation problem, as

defined in the previous section.

The TSP concerns a salesman that must travel from city to city selling his wares

before returning back to his city of origin. Each city must be visited exactly once and

the distance travelled must be minimised. The problem can be characterised by a graph

where each vertex represents a city while the edges correspond to the possible routes

between cities and their associated costs. The goal is to determine the shortest closed

tour that passes through each of the nodes in the graph for a given network. Figure 2.2

shows a possible network of cities while Figure 2.3 illustrates the optimal tour for that

network which is of length 28.
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Figure 2.3: TSP Optimal Tour (length = 28)

By imposing an arbitrary ordering from 1 to n on the cities the problem can be

redefined as determining the permutation π of visits that yield a minimal length tour.

The problem is then reduced to the following constrained optimisation problem [83]:

Given : f(x) =
∑

i,j

ci,jxi,j, i, j ∈ {Z | 1 ≤ i, j ≤ n} (2.11)

find x∗ ∈ Z
n×n for which f(x∗) ≤ f(x), ∀x ∈ Z

n×n

subject to
n

∑

k=1

xk,i − 1 = 0 and
n

∑

k=1

xi,k − 1 = 0 (2.12)

xi,j − 1 ≤ 0 and − xi,j ≤ 0 (2.13)

ui − uj + nxi,j − n + 1 ≤ 0 for j 6= 1 (2.14)

where ci,j is the cost of travelling from city i to j. In general, ci,j = cj,i is not necessarily

true, ci,j =∞ if no route from i to j exists, and ci,j = 0 whenever i = j. Equation (2.13)

restricts the xi,j to the boolean values 0 and 1 so that xi,j = 1 can be taken to mean that

city j is visited immediately after i and Equation (2.12) expresses that exactly one city

just before and exactly one city just after the ith city is visited. By defining π(ui) = i,

so that ui = j implies that i is the jth city visited, a single closed tour is guaranteed by

Equation (2.14). Together these constraints ensure that xi,j = 1 ⇐⇒ π(i) = j and

xi,j = 0 ⇐⇒ π(i) 6= j when Equation (2.11) is minimised.
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2.1.3 Supervised Learning

Supervised learning is the process of determining the intrinsic characteristics of a system

using only examples of its operation [84]. The most generic form of supervised learning

is function approximation, stated formally:

Given : P = {(x, t) | x ∈ S, t ∈ T}
find f : S→ T such that f(x) ≈ t, ∀(x, t) ∈ P (2.15)

where P is a set of example patterns that demonstrate the operation of the system

described by the function f . The pair (x, t) is known as a training pattern where x is

an input to the system under learning and t is the target output. S and T may be any

domains. The process is called supervised learning because target values are provided

for given inputs by some external “teacher” that understands the working of the system.

Care must be taken to ensure that the learning process does not over-fit the data [42].

Over-fitting may occur when the target function is afforded more degrees of freedom or

less example patterns than are necessary to describe the system under learning. Under

these circumstances the function may fit noise inherent in the data set or other very

specific features that have no causal relation to the intrinsic characteristics of the system.

Conversely, under-fitting occurs when the target function is not afforded enough degrees

of freedom to properly model the underlying data.

The goal is to find a function that has good generalisation ability. This is measured

by the ability of the learned function to correctly approximate the target output for

inputs that the learning process was not exposed to. For this reason, the example

patterns are typically partitioned into separate training and validation sets. Learning is

performed using the training set while the validation set is used to test for over-fitting

and generalisation ability. An over-fitted function will correctly model the training set

while performing poorly on the validation set. On the other hand, a function with the

ability to generalise well properly describes the intrinsic characteristics of the system

under learning.

Supervised learning manifests itself in many forms including classification, pattern

recognition and control problems. For classification problems, the function f in Equa-

tion (2.15) is a labelling function that assigns a class to an input pattern where T is

some set of classes. Pattern recognition is just a special case of classification problem.
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For example, in handwriting recognition, input patterns might correspond to bitmaps of

hand written characters and the set of classes consists of alphanumeric assignments to

those bitmaps. In control problems the function relates the sensory input of a system

under control to the required output actions.

By defining a suitable parameterisation τ that describes the composition of the func-

tion f in Equation (2.15), supervised learning can be reduced to a minimisation problem

of the form in Equation (2.1) as follows:

g(τ) =

n
∑

i=1

(ti − f(xi))
2, where τ ⇒ f (2.16)

so that g(τ) is the SSE over the n training patterns, with t ∈ R, for a function f : S→ R

implied by the parameterisation τ . Any suitable distance based metric can be used to

support targets having arbitrary domains.

There are many ways to define the parameterisation τ . Supervised learning neural

networks define very specific functions that are parameterised by weights (refer to Sec-

tion 2.2). As another example, under the assumption that x ∈ R
m and that the function

can be approximated by a polynomial of degree n in each dimension, the following is a

suitable definition:

f(x, τ) =

m
∑

i=1

n
∑

j=0

τijx
j
i (2.17)

where τ ∈ R
m×(n+1) is a matrix of coefficients that parameterise f . Thus, by optimising

g(τ) in Equation (2.16) a function that models the underlying data is constructed.

2.1.4 Unsupervised Learning

Unsupervised learning, also known as self-organisation, requires that a suitable model

be fitted to observed patterns without a priori knowledge about target outputs for those

patterns.

A common unsupervised learning problem is clustering [60] where the goal is to

partition observations into homogeneous groupings. The patterns in a given group should

be most similar to each other while simultaneously being least similar to observations in

other groups, stated formally:

Given : P = {pt | pt ∈ S}, t ∈ {Z | 1 ≤ t ≤ m}
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find Ci ⊂ P,
⋃

Ci = P, Ci ∩ Cj = ∅, i, j ∈ {Z | 1 ≤ i, j ≤ k, i 6= j} (2.18)

such that pt ∈ Ci ⇐⇒
∑

pα∈Ci

d(pt, pα) ≤
∑

pβ∈Cj

d(pt, pβ)

where d(x,y) is a suitable distance metric that measures the dissimilarity between x and

y. The k clusters, Ci, are subsets of the set of patterns, P , such that the observations in

a given cluster are related by having similar characteristics. If the clusters are pairwise

disjoint then the clustering is a true partition. Equation (2.18) only permits such parti-

tions, however, in general it is possible for a given pattern to belong to multiple clusters,

with some degree of membership (refer to Section 2.5.1), yielding a fuzzy clustering. The

domain, S, of the m input patterns in P can be anything for which a distance metric

can be constructed. If S = R
n then a suitable Minkowski metric [7] may be used:

dp(x,y) = (

n
∑

k=1

|xk − yk|p)
1
p (2.19)

for some specified value for p where d1 and d2 are the well known Manhattan and

Euclidean distances respectively.

The number of clusters inherent to a given data set is generally not known. Choosing

a value for k that is either too large or too small is analogous, respectively, to over-fitting

and under-fitting in supervised learning.

Missing attributes for patterns can be predicted based on related observations in the

same cluster. Appropriate clusters for these patterns are determined using the remaining

attributes. An over-fitted model which groups related patterns into separate clusters will

be unable to accurately predict missing attributes. Similarly, an under-fitted partitioning

that groups unrelated patterns into the same cluster will also have poor prediction ability.

Hierarchical clustering, depicted in Figure 2.4, provides a selection of clusterings

where each level in the hierarchy roughly corresponds to a different choice for the value

of k. Agglomerative clustering is a bottom up approach where each observation is initially

assigned to its own cluster. The closest two clusters are then repeatedly merged until all

the observations fall into the same cluster at the root of the tree.

Various strategies exist for determining the merging criteria for clusters. Complete

linkage clustering utilises the maximum distance between observations in each cluster.

If the minimum distance is used instead then the strategy is known as single linkage

clustering. An average linkage clustering results when the mean distance between ob-
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Figure 2.4: Hierarchical Clustering

servations of each cluster is used as a criterion. The average linkage distance between

cluster A and cluster B is defined as:

D(A,B) =
1

card(A)card(B)

∑

x∈A

∑

y∈B

d(x, y) (2.20)

where card(X) is the cardinality of cluster X. Metrics based on intra cluster variance

or change in variance (Ward’s criterion) are also possible [5].

The clustering problem can be represented by a constrained optimisation problem for

a given value of k by determining the optimal assignment vector that maps observations

to cluster indexes. One such strategy minimises the distance between observations and

the centroids of their clusters, stated formally:

Given : f(x) =

m
∑

t=1

d(pt, cxt
), i ∈ {Z | 1 ≤ i ≤ m}

find x∗ ∈ Z
m for which f(x∗) ≤ f(x), ∀x ∈ Z

m (2.21)

subject to −xi + 1 ≤ 0 and xi − k ≤ 0

where cj is the centroid of cluster Cj and x ∈ {Zn | 1 ≤ xi ≤ k} is the assignment vector

such that xt = j ⇐⇒ pt ∈ Cj.
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Clusters defined by a single centroid vector permit only round cluster boundaries.

Arbitrarily shaped boundaries can be constructed using a technique known as mixture

modelling where each cluster is defined by a weighted density model of different distri-

butions [14].

2.2 Neural Networks

The human brain and nervous system are comprised of billions of nerve cells known as

neurons. Each biological neuron is a single cell with receptors called dendrites and an

effector called an axon. Neurons are arranged into networks so that the axon of any given

neuron can stimulate dendrites of other neurons. When a neuron receives sufficient input

stimulus via its dendrites, it fires a signal along its axon which in turn further stimulates

the dendrites of other neurons. The arrangement of these relatively simple cells into

complex networks generally enables intelligent behaviour in people.

In a similar fashion, the fundamental building block of neural networks in CI is

the artificial neuron. By combining these neurons into more complex structures both

supervised and unsupervised learning problems can be solved. The canonical feed for-

ward neural network, used for supervised learning, is presented in Section 2.2.1. Other

supervised network architectures are mentioned in Section 2.2.2. Unsupervised neu-

ral networks such as the learning vector quantiser and self organising feature maps are

discussed in Sections 2.2.3 and 2.2.4 respectively.

2.2.1 Feed Forward Neural Networks

Feed forward neural networks can be used to represent nonlinear multivariate relation-

ships [31, 88]. Figure 2.5 illustrates a fully connected three layer network. The layers

consist of neurons which compute a function of their inputs and pass the result to the

neurons in the following layer. In this manner, the input signal is fed forward from left

to right through the network.

The output of a given neuron is characterised by a nonlinear activation function, a

weighted combination of the incoming signals, and a threshold value. The threshold can

be replaced by augmenting the weight vector to include the input from a constant bias

unit. By varying the weight values of the links, the overall function which the network
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Figure 2.5: Three Layer Feed Forward Neural Network

realises is altered.

The activation signal, ok for the kth output neuron, for a network with I input, J

hidden and K output neurons is given by:

ok = fok
(

J+1
∑

j=1

wkjyj) (2.22)

= fok

(

J+1
∑

j=1

wkjfyj
(

I+1
∑

i=1

vjizi)
)

(2.23)

where vji and wkj are weights connecting neurons in their respective layers, yj is the

activation signal of the jth hidden neuron, and zi is the ith input signal. The activation

functions fyj
and fok

are typically the sigmoid:

f(x) =
1

1 + e−x
(2.24)

which forces outputs into the range (0, 1). Thus, a feed forward network having I inputs,

K outputs and sigmoid activation functions realises a nonlinear mapping of the form
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R
I → (0, 1)K which is parameterised by the weights vji and wkj. Alternative activation

functions are mentioned in Section 2.2.2.

Training involves finding values for the weights so that the network best approximates

the function for a given supervised learning problem (refer to Equation (2.15)). Since

the network can only realise values in the range (0, 1), target values must be scaled

appropriately. In addition, inputs should also be scaled to fall within the active region of

the activation functions which, in the case of sigmoid activations, is roughly [−
√

3,
√

3].

Classification problems are encoded by dedicating a separate output to each label, so

that each output represents the posterior probability that an observation belongs to the

class associated with that output.

Algorithm 1 Neural Network Back-propagation Training

1: Initialise vji, wkj ∼ U(−1, 1)

2: t← 0

3: repeat

4: for all training patterns do

5: wkj ← wkj + ∆wkj(t) + α∆wkj(t− 1) (refer to Equation (2.25))

6: vji ← vji + ∆vji(t) + α∆vji(t− 1) (refer to Equation (2.26))

7: end for

8: t← t + 1

9: until stopping condition

Pseudocode for back-propagation learning using gradient descent is presented as Al-

gorithm 1 [116]. Weights are uniformly initialised to small random values and are it-

eratively updated for each pattern until some stopping criterion is met. The change in

output layer weights, derived from the derivative of the SSE over the network, is given

by:

∆wkj = η(tk − ok)(1− ok)okyj (2.25)

and the change in hidden layer weights is propagated back using:

∆vkj = zi

K
∑

k=1

(1− yj)wkj∆wkj (2.26)

where tk is the target for the kth output neuron and η is the learning rate. A momentum

term which preserves the velocity of weight updates is specified by α.
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Instead of simple gradient descent, scaled conjugate gradient techniques [10] or indeed

almost any optimisation process could be used to determine appropriate weight values.

2.2.2 Different Network Architectures

There are many ways in which supervised neural network architectures can be cus-

tomised. Although the number of input and output neurons is defined by the problem,

the number of hidden neurons can be varied. At the individual neuron level, different

activation functions and methods by which input signals are combined can be utilised.

Finally, the network topology can be altered implicitly through dynamic growing, prun-

ing and regularisation; or explicitly at design time as is the case for recurrent and time

delay neural networks [31].

Varying the number of hidden neurons affects the complexity of mappings that can

be realised by a given neural network. A network with more weights and neurons has

more expressive power than one having fewer degrees of freedom. Increasing the number

of hidden neurons, however, may lead to over-fitting, since the network would be able to

fit inherent noise more easily. Training time is also increased, since more weight updates

are required.

In order to fit arbitrary data without over-fitting, the simplest network possible

is desired. Regularisation [46, 118] involves driving network weights to zero, in effect

removing links to alter the topology, by adding a penalty term to the network error

surface that penalises network complexity. Other approaches involve growing or pruning

the network by adding or removing neurons respectively when certain triggering criteria

are met [31].

Product unit networks [27] utilise higher order combinations of inputs and as such

can realise more complex functions with fewer neurons than ordinary summation unit

networks. The drawback of a product unit network is that many local minima exist in

the error surface causing gradient descent based training algorithms to become trapped

at suboptimal solutions more easily. Functional link networks [43] make higher order

functions of the inputs available to the hidden layer in an attempt to realise more complex

functions with standard summation units.

Sigmoid activation functions are the most common, however, other functions may

be used instead. The type of problems for which supervised networks are used typically
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exhibit nonlinear behaviour. Linear activation functions may be better suited for linearly

related data, but will perform poorly for nonlinear relationships. Step functions model

binary characteristics in data while ramp functions can realise a mixture between binary

and linear relationships. The hyperbolic tangent has a range of (−1, 1), making it suitable

for use in hidden layers, since its output nominally falls within the active input region

of typical activation functions. The training process should, however, cause weights to

be chosen such that inputs lie in the active region irrespective of the output from the

previous layer. Although any conceivable activation function may be used, including

Gaussians, there is by definition of supervised learning no a priori knowledge about the

relationship between inputs and targets. As long as their is no good reason to favour

one activation function over another, the relative simplicity of the sigmoid makes it most

suitable. A combination of sigmoids in the hidden layer and linear output units has also

proven to be a good choice [14].

Various network topologies that attempt to model temporal characteristics in data

are also possible [54]. Recurrent neural networks attempt to model these temporal

characteristics by storing the signal from the hidden or output layers and feeding it back

as additional inputs for subsequent training patterns. In a similar fashion, time delay

networks maintain the inputs from previous passes as additional inputs to the network.

2.2.3 Learning Vector Quantiser

The Learning Vector Quantiser (LVQ), shown in Figure 2.6, is a two layer unsupervised

learning neural network [66]. The input layer has direct connections to the output

neurons and there are no bias units. Unlike supervised networks, the weights in an LVQ

network have a special meaning. The kth output neuron, ok, represents a cluster with

an I-dimensional centroid comprising the incoming weights, vki.

Algorithm 2 outlines the training procedure for an LVQ network. As is the case

for supervised networks, the weights are initialised to small uniform random values and

training patterns are repeatedly presented to the network causing changes to the weight

values.

The weights of the nearest output neurons to a given pattern are updated according

to the following equation:

∆vki(t) = η(t)[zi − vki(t− 1)] (2.27)
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Figure 2.6: Two Layer Learning Vector Quantiser

where η(t) is a decaying learning rate so that η(t) → 0 as t → ∞. The closest output

neuron is determined using the Euclidean distance between the training pattern, z ∈ R
I

and the weight vector, vk, that corresponds to ok. The set κk(t) consists of output neuron

indices considered to be in the neighbourhood of ok at time t. The neighbourhood, like

the learning rate, is also reduced over time so that κj(t)→ {j} as t→∞. In addition to

the absolute winner j, in terms of closest output neuron, the weights of all the neurons

in κj(t) are typically also updated. A conscience factor can be incorporated into the

distance metric in line 5 to penalise output neurons that overly dominate during training

[31]. The result is that cluster centroids, represented by the weights of their respective

output neurons, are moved towards the most appropriate input patterns.

2.2.4 Self Organising Feature Maps

Conceptually, a Self-Organising Feature Map (SOFM) [66] functions similarly to an LVQ.

In fact, the training algorithm is virtually identical. The most notable difference is that

the output layer is a two-dimensional map as shown in Figure 2.7. One of the key benefits

of SOFMs over LVQ is that the topology of the input space is preserved in the map.

That is, if two patterns are closely related in the input space then they usually map to

output neurons that are close to each other in terms of coordinate indices in the map.

Thus, SOFMs project an I-dimensional input space onto a two-dimensional map space

making them a useful data visualisation tool [31].
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Algorithm 2 Learning Vector Quantiser Training

1: Initialise vki ∼ U(−1, 1)

2: t← 0

3: repeat

4: for all training patterns do

5: Find j for which d2(z,vj) is minimised (refer to Equation (2.19))

6: for all k ∈ κj(t) do

7: vki ← vki + ∆vki(t) (refer to Equation (2.27))

8: end for

9: end for

10: t← t + 1

11: until stopping condition

Although SOFM weights may also be initialised to small uniformly distributed ran-

dom values, there is a better method of performing initialisation that may improve the

quality of the mapping [107]. The weights corresponding to the four corners of the map

are initialised to the respective four most extreme patterns in the training set. The

remaining weights, vkj, are interpolated as follows:

v1j =
v1J − v11

J − 1
(j − 1) + v11 (2.28)

vKj =
vKJ − vK1

K − 1
(j − 1) + vK1 (2.29)

vk1 =
vK1 − v11

K − 1
(k − 1) + v11 (2.30)

vkJ =
vKJ − v1J

J − 1
(k − 1) + v1J (2.31)

vkj =
vkJ − vk1

J − 1
(j − 1) + vk1 (2.32)

for a JxK map with j ∈ {Z | 2 ≤ j ≤ J − 1} and k ∈ {Z | 2 ≤ k ≤ K − 1}.
The standard SOFM training algorithm is identical to LVQ except that the weight

update for each neuron is now given by:

vkj(t + 1) = vkj(t) + η(t)Φcxy,cjk
(t)[z− vkj] (2.33)

where η(t) is once again a decaying learning rate. The coordinates cxy and cjk are the

locations of the winning and current neurons respectively on the map. Again, the winning
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Figure 2.7: 5x5 Self Organising Feature Map

neuron is the one having the closest weight vector, in terms of Euclidean distance, to the

current training pattern z ∈ R
I . Unlike LVQ, every neuron is typically updated for each

training pattern instead of only updating those neurons in an explicit neighbourhood set.

The neighbourhood function, Φcxy ,ckj
(t), determines the extent which a training pattern

has influence over the weights surrounding the winning neuron. Thus, neurons further

away from the winning neuron, in map coordinate space, are affected less by a given

training pattern. The following Gaussian neighbourhood function is typically used:

Φcxy,cjk
(t) = e

−
||cxy−cjk||22

2σ2(t) (2.34)

where σ(t) gives the width of the kernel and σ(t)→ 1 as t→∞.

A typical SOFM has more output neurons than there are clusters inherent in the

training data. Thus, a single output neuron will not, in general, correspond to a single

cluster centroid. A unified distance matrix (U-matrix) can be constructed to deter-

mine the actual cluster boundaries [31]. The U-matrix is constructed by calculating the

distances between each neuron’s weight vector and its immediate neighbours in map co-

ordinate space. Large values in the U-matrix are indicative of cluster boundaries while

small values indicate groups of neurons belonging to the same cluster. If the map has

a high enough resolution then the U-matrix can be plotted as a two-dimensional image

that is useful for data visualisation. Figure 2.8 is an example of such a plot with clus-
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Figure 2.8: Example U-matrix plot

ter boundaries illustrated by white contours that correspond to large U-matrix values.

These high resolution maps allow for arbitrary shaped cluster boundaries.

2.3 Evolutionary Computing

All living organisms, ranging from the single celled Amoeba to complex multi-cellular

human beings, have a genetic blueprint that describes their physical and behavioural

characteristics. This genetic blueprint is made up of DNA (Deoxyribonucleic Acid) ar-

ranged into chains of nucleotides called chromosomes. The precise arrangement of the

different nucleotides, or genes, defines the characteristics of an organism. The infor-

mation encapsulated by the DNA is known as the genotype of an organism, while the

phenotype is the physical expression of that information. The relationship between

genotype and phenotype is typically complex, owing to the influence of pleiotropy and

polygeny [77].

Small changes in the genetic material of a population are realised through random

mutations and recombination during reproduction between individuals. These changes

to the genotype of individuals affect their phenotype and consequently their ability to

survive in a given environment. Darwinian theory states that the evolution of a species

is guided by competition and natural selection [82]. That is, useful changes in genetic

material are preserved from generation to generation, since individuals with better char-
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acteristics are the most likely to survive and reproduce.

Algorithm 3 General Evolutionary Computing Framework
1: t← 0

2: P (t)← initialise(µ)

3: F (t)← evaluate(P (t), µ)

4: repeat

5: P ′(t)← recombine(P (t), Θr)

6: P ′′(t)← mutate(P ′(t), Θm)

7: F (t)← evaluate(P ′′(t), λ)

8: P (t + 1)← select(P ′′(t), F (t), µ, Θs)

9: t← t + 1

10: until stopping condition

Evolutionary Computing (EC) is strongly based on the principles of natural evolution.

A general framework for evolutionary optimisation that encompasses these principles is

given in Algorithm 3 [109]. A population of µ individuals is initialised within the search

space of an optimisation problem so that P (t) = {xi(t) ∈ S | 1 ≤ i ≤ µ}. The search

space S may be the genotype or phenotype depending on the particular evolutionary

approach being utilised. The fitness function f , which is the function being optimised,

is used to evaluate the goodness individuals so that F (t) = {f(xi(t)) ∈ R | 1 ≤ i ≤ µ}.
Obviously, the fitness function will also need to incorporate the necessary phenotype

mapping if the genotype space is being searched.

Searching involves performing recombination of individuals to form offspring, ran-

dom mutations and selection of the following generation until a solution emerges in the

population. The parameters Θr, Θm and Θs are the probabilities of applying the recom-

bination, mutation and selection operators respectively. Recombination involves mixing

the characteristics of two or more parents to form offspring in the hope that the best

qualities of the parents are preserved. Mutations, in turn, introduce variation into the

population thereby widening the search. In general, the recombination and mutation

operators may be identity transforms so that it is possible for individuals to survive into

the following generation unperturbed. Finally, the λ new or modified individuals are

re-evaluated before the selection operator is used to pare the population back down to a

size of µ. The selection operator provides evolutionary pressure so that the most fit in-
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dividuals survive into the next generation. While selection is largely based on the fitness

of individuals, it is probabilistic to prevent premature convergence of the population.

Genetic algorithms, which generally search the genotype space, are summarised in

the next section. Section 2.3.2 covers a specialisation of genetic algorithms where the

genotype is a space of executable program trees. Evolutionary programming, discussed

in Section 2.3.3, concentrates on searching the phenotype space. Evolutionary strategies,

which dynamically evolve strategy parameters, are discussed in Section 2.3.4. Finally,

cultural and co-evolutionary extensions are considered in Sections 2.3.5 and 2.3.6 respec-

tively.

2.3.1 Genetic Algorithms

Genetic Algorithms (GAs) [47] fit neatly into the general EC framework already pre-

sented in Algorithm 3. Thus, the only remaining requirement, to fully describe a GA,

is the definition of a specific genotype representation along with suitable recombination,

mutation and selection operators.

Traditional GAs [56] represent individuals as binary bit strings. Numeric phenotypes

are usually encoded using Gray’s code in the genotype to reduce pleiotropic variation in

the phenotype. That is, the genotypic Hamming distance is minimised for small differ-

ences in phenotypic values. A real (R) valued genotype, having an identical phenotype,

is also possible, provided that recombination and mutation are suitably defined for real

values. In fact, any representation, for which suitable operators can be defined, may be

used. For example, genetic programming, presented in the following section, is a special

type of GA having a tree based representation.

Reproduction, or the mixing of genetic material, between multiple individuals is

known as crossover in the context of GAs. Figure 2.9 illustrates three types of crossover

that can be defined for binary coded individuals. Each of them is defined in terms

of a binary mask and is able to produce two offspring from a pairing of two parents.

The mask determines the parent from which the offspring inherit their genetic material.

In the case of uniform crossover, a random mask is generated that results in offspring

composed of random components of the two parent’s genetic material. For one-point

crossover, a random offset in the mask is chosen, so that all components up to that offset

are inherited from the one parent and the rest from the other. Similarly, for two-point
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Figure 2.9: Crossover Operators

crossover, there are two offsets chosen so that only the components between the two

positions are inherited from the one parent. For real valued genes, arithmetic crossover

may be defined for two individuals xa and xb as follows:

xa(t + 1) = ρxa(t) + (1− ρ)xb(t) (2.35)

xb(t + 1) = ρxb(t) + (1− ρ)xa(t) (2.36)

where ρ ∼ U(0, 1) is a uniform random variate.

Mutation is typically performed with a fairly low probability, since existing good

solutions may be disturbed if the mutation rate is too high. A suitable mutation operator

for binary coded individuals inverts bits subject to a given probability, while real valued

mutation can be achieved by adding Gaussian noise.

An elitism operator is usually implemented to select a few good individuals, the elite,

to survive into the following generation. This can be achieved trivially, by adding the

new and modified individuals, obtained through recombination and mutation, to the

existing population and subjecting the entire pool to selection.

Various selection strategies exist, including tournament, proportional, and rank-based

selection [31]. Tournament selection involves repeatedly selecting k individuals randomly

from the population and then selecting the individual with the best fitness out of that

group. A proportional strategy selects individuals in proportion to their fitness by sam-

pling the following distribution:

P (xi(t)) =
f(xi(t))

∑µ
n=1 f(xn(t))

(2.37)
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so that P (xi(t)) is the probability of selecting the ith individual from the population at

time t. Finally, rank-based selection techniques sample the rank ordered distribution of

individuals instead of considering absolute fitness values.

2.3.2 Genetic Programming

Any algebraic expression can be trivially represented in tree form. Non-terminal tree

nodes represent mathematical operators so that their children correspond with the

parameters of the operator in question. Variables and constants, in turn, are repre-

sented as terminal nodes in the tree. Figure 2.10 is an example tree for the expression

sin(p
q
)(log(r) − es+1.5). In a similar fashion, a parse tree, for arbitrary computer pro-

grammes in any language, can be constructed.

1.5

log

−

*

r +

/

s

exp

sin

p q

Figure 2.10: Genetic Program Tree Representation

Genetic programmes are nothing more than GAs, with the genotype being parse trees

for executable programmes in a given language [67]. Consequently, the phenotype is the

behaviour of those programmes at execution time. The fitness function is a measure of

how well a programme performs a specified task. Selection is also analogous to GAs, so

all that remains is to define suitable crossover and mutation operators for tree structures.

Crossover is trivial, a random node in each parent tree is selected. These two nodes,

along with their descendents, are swapped, forming two possible offspring. That is, the

selected subtree of one parent is replaced with the selected subtree of the other.
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Several mutation operators, which should be used together, can be defined [31]:

• Function node mutation: A randomly selected non-terminal node has its oper-

ator replaced with another operator that has the same cardinality.

• Terminal node mutation: A randomly selected terminal node is replaced with

another valid terminal node.

• Swap mutation: A non-terminal node, having more than one child, is selected

and order of its children are altered.

• Grow mutation: A randomly selected node is replaced with a randomly generated

subtree that has a predetermined maximum depth.

• Gaussian mutation: A terminal node which represents a constant is randomly

selected and mutated by adding Gaussian noise.

• Trunc mutation: A randomly selected non-terminal node is replaced with a valid

terminal node.

2.3.3 Evolutionary Programming

Evolutionary Programming (EP) [36, 37] can be classified in the EC framework in Al-

gorithm 3 by leaving out the fifth step, or equivalently, defining recombination as an

identity transform. That is, EP relies solely on mutation and does not make use of

any recombination. In addition, EP does not explicitly distinguish between genotype

and phenotype. Rather, mutations are defined based on the problem domain, implicitly

making EP a phenotypic optimisation process.

EP was originally developed to evolve finite-state machines by defining the following

mutations: change an output symbol; change a state transition; add a state; delete

a state; or change the initial state. Real valued domains can make use of Gaussian

mutation, as is the case for real valued genotypes in GAs. In any event, the mutation

operator used will be problem specific, since EP performs a search of the phenotype.

Mutation should be biased towards making small changes but should allow for large

mutations, particularly early on in the search, to enable the optimisation process to

avoid local extrema.
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2.3.4 Evolutionary Strategies

The general EC framework defined in Algorithm 3 has many parameters that may affect

its performance in various ways. In the context of Evolutionary Strategies (ES) [93, 94],

these are known as strategy parameters. The primary principle of ES is to concurrently

evolve these strategy parameters alongside the solution to the problem under optimisa-

tion. In this way, ES are able to more optimally adapt their strategy to the problem at

hand.

Like other EC paradigms, implementations of ES also define their own representation

as well as recombination, mutation and selection operators. Canonical ES specify mu-

tation and crossover operators defined for vectors of real values, inherently making ES

a phenotypic search process. Thus, the standard representation for ES is a real valued

solution vector augmented by one or more strategy parameters so that:

x(t) ∈ {(Rn, Rs)} (2.38)

for an individual x(t) of solution dimension n with s strategy parameters. It is possible,

however, to apply similar strategy parameters to genotypic search algorithms to enhance

their performance. In general, any parameter that influences the evolutionary process can

be appended to an individual’s representation. Individuals that are performing poorly

may have their strategy parameters adjusted more dramatically under the assumption

that their poor performance is due to a bad choice of strategy.

Specifically, mutation is enhanced by associating additional parameters with each

individual. The simplest of these schemes associates a standard deviation, σ(t), with

each member of the population so that the mutation operator perturbs the solution

vector as follows:

x(t + 1) = x(t) + σ(t + 1)ξ (2.39)

where ξ ∈ R
n with each ξi ∼ N(0, 1) a normally distributed random variate, while the

standard deviation for each successive generation is updated according to:

σ(t + 1) = σ(t)eρ
√

n

(2.40)

where ρ ∼ N(0, 1). More elaborate schemes that include a standard deviation along with

a matrix of rotation angles have also been devised [31].
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Crossover can be applied to both the solution vector and the strategy parameters.

ES define different crossover operators to standard GAs. Local crossover resembles uni-

form crossover in that an offspring is created by selecting random components from two

parents. Global crossover, however, selects random components from the entire popula-

tion to generate a single offspring. In addition to simply selecting random components,

arithmetic crossover or simple averaging can be performed between multiple parents.

Two primary selection strategies have been defined for ES. The first, known as (µ+λ),

selects successive generations from the combination of the previous generation and all

the offspring. The second, known as (µ, λ), selects the following generation from the

set of offspring only. The former implicitly implements a form of elitism operator while

the latter does not allow for individuals to survive through successive generations and

requires that 1 ≤ µ < λ <∞.

2.3.5 Cultural Evolution

Cultural evolution [96] is based on the premise that cultural properties in a population

evolve at a faster rate than genetic properties. The search process is biased by a cultural

belief space that focuses the search in areas that the population believes contains good

solutions. This belief space, which stores the best behavioural traits of the population

over time, is used to enhance and accelerate the search process.

Accept

Recombination SelectionMutation

Influence

Belief space

EC based population space

Figure 2.11: Cultural Algorithm
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Cultural algorithms deviate from the model given in Algorithm 3 by maintaining

two separate search spaces. The first, the population space, is an instance of one of the

already mentioned EC algorithms, perhaps a GA or an EP algorithm. Secondly, the

belief space serves as a repository of knowledge gained by the main population during

the entire search process. Figure 2.11 illustrates the relationship between these two

spaces. An acceptance function specifies how this knowledge is communicated from the

main population and incorporated into the belief space. An influence function, in turn,

determines how the search process of the main population is influenced by the knowledge

in the belief space.

The choice of functions that govern acceptance of knowledge into the belief space and

the influence of that knowledge on the population are problem specific. In the case of R
n

domains, the belief space may be defined by the intervals in which the solution is believed

to exist in each dimension. Thus, the acceptance function is defined as the bounding

hyper-rectangle created by a given percentage of the best performing individuals in

the population. Influence of the population is achieved through a modified mutation

operator. Individuals lying further outside the range defined by the belief space are

subjected to larger mutation step sizes while those within the range are mutated by a

smaller amount. In this way, individuals are encouraged to search the belief space more

thoroughly. Constrained optimisation can also be supported by forcing the conformance

of belief space to those constraints.

2.3.6 Coevolution

Coevolution is an extension of EC into multiple competing or cooperating populations

which work together to solve a given problem. The fitness of a given individual becomes

a subjective measure relative to the other populations being co-evolved.

For cooperating populations, the solution vector may be split into smaller dimensions

with each subpopulation solving only the part of the vector for which it is responsible

[117]. In this case, fitness must be measured within the context of the other populations

since the objective function requires a full length solution vector to be calculated. Al-

ternatively, the search space itself may be partitioned into intervals, or a global “black

board” may be used for sharing partial solutions between populations.

In the case of competing populations, a key benefit is that an absolute fitness measure
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is not a requirement. The fitness of an individual in one population is measured relative

to the performance of individuals in competing populations by playing the individuals

against one another [55].

Various sampling strategies for selecting the individuals from other populations that

take part in the relative fitness evaluation exist [31]:

• All versus all: The fitness for a given individual is calculated relative to all the

individuals in other populations.

• Random: Fitness is calculated relative to a random group of individuals selected

from the other populations.

• Tournament: The best individual within a random subgroup of the other popu-

lations is selected and fitness is calculated relative to this individual..

• All versus best: Fitness is calculated relative to the best performing individual

in other populations.

2.4 Swarm Intelligence

Swarm Intelligence models the naturally observed phenomenon of a population, or swarm,

of relatively unsophisticated organisms, through their social interactions, to be able to

realise globally intelligent behavioural patterns. An example of this phenomenon is the

ability of ants to find the most optimal routes to food sources. The individual ants them-

selves are very simple creatures lacking the ability to think or reason, yet as a colony,

they appear able to perform the complex task of determining the optimal routes to food.

Like the EC paradigm discussed in Section 2.3, swarm intelligence approaches are

also population based, however, that is where the similarity ends. EC is primarily

concerned with evolutionary operators, such as mutation and recombination, to bring

about variation in a population, and selection, as a means to focus the search into areas

that promise the best results. Swarm intelligence, on the other hand, concentrates on

modelling the social interactions between individuals in a population, which usually have

a specific task to perform, and typically does not exhibit any kind of selection pressure

that governs the survivability of particular individuals.
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Particle swarm optimisation, discussed in the following section, exchanges experien-

tial knowledge about the search surface between particles as a means of social interac-

tion. Section 2.4.2 overviews ant systems where interaction between individuals occurs

indirectly by means of modifications to the environment in which they function. By mod-

elling these social interactions useful algorithms have been devised for solving numerous

problems including function and route optimisation as well as unsupervised clustering.

2.4.1 Particle Swarm Optimisation

Particle swarm optimisation [63, 28] was originally inspired by the flocking behaviour of

birds. In terms of this bird flocking analogy, a particle swarm optimiser consists of a

number of particles, or birds, that fly around a search space, or the sky, in search of the

best location. Each of these particles corresponds to a simple agent that moves through

a multi-dimensional search space sampling an objective function at various positions.

The motion of a given particle is dictated by its velocity which is continuously updated

in order to pull it towards its own best position and the best positions experienced by

the rest of the swarm. This behaviour ultimately results in an optimiser that converges

to good solutions of an objective function of the form f : R
n → R.

The velocity update for each dimension, given by the subscript j ∈ {Z | 1 ≤ j ≤ n},
of the ith particle with position xi(t) ∈ R

n and velocity vi(t) ∈ R
n at time t is given by

the following equation [63, 28, 100]:

vi,j(t + 1) = wvi,j(t) + c1r1,j(yi,j(t)− xi,j(t)) + c2r2,j(ŷi,j(t)− xi,j(t)) (2.41)

where w ∈ {R | 0 ≤ w < 1} is an inertia weight that preserves some of the previous veloc-

ity; c1 and c2 ∈ {R | 0 ≤ c1, c2 ≤ 2} are acceleration coefficients; and r1,j, r2,j ∼ U(0, 1)

are drawn from two independent uniform random distributions. The vector yi(t) ∈ R
n

is the best position found by the individual particle, while ŷi(t) ∈ R
n represents the

best position found by other particles in the swarm. Various neighbourhood strategies

determine which particles participate in the social network of a given particle, so that

ŷi(t) represents the best solution found by the particles in the neighbourhood of the ith

particle.

The second term in Equation (2.41) is known as the cognitive component, since it

takes into account a particle’s own experience of the search terrain. Setting c2 ← 0
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results in a cognition only optimiser having no social interaction between the particles.

Conversely, setting c1 ← 0 leaves only the social component, the third term in the

equation. The acceleration coefficients can be chosen (or varied over time) to prioritise

the influence of a particle’s own cognition or its social interaction with the rest of the

swarm. Whenever:
c1 + c2

2
− 1 < w (2.42)

holds, particles will exhibit convergent trajectories, otherwise they will not stabilise

[113]. Alternatively, a Vmax strategy can be used to reduce the likelihood of divergence

by enforcing an upper bound on particle velocities.

b) LBesta) GBest c) Von Neumann

Figure 2.12: Typical Neighbourhood Topologies

The influence of various neighbourhood topologies on the PSO has been been studied

extensively [29, 101, 61, 64, 108, 90]. Figure 2.12 illustrates the best known neighbour-

hood topologies. The GBest, or global best, topology includes every particle of the swarm

within the social network of every other particle. LBest, or local best, only considers

a particle’s immediate neighbours, in terms of particle index, to be socially connected.

Finally, the Von Neumann architecture, taking the form of a grid with wrap-around, con-

siders the particles above, below, to the left and to the right to be within a given particle’s

neighbourhood. The more densely connected the neighbourhood, the quicker information

about good solutions is communicated amongst particles in the swarm. Neighbourhood

topologies such as LBest and Von Neumann result in superior solutions at the cost of

slower convergence, since diversity within the swarm is maintained longer.

Algorithm 4 outlines the Particle Swarm Optimiser (PSO). Initialisation is performed

by randomly placing the particles within the search space. All velocities are initialised
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Algorithm 4 Particle Swarm Optimiser

1: for all particles i do

2: Initialise xi,j(0) ∼ U(xmin,j , xmax,j)

3: yi(0)← xi(0)

4: ŷi(0)← xi(0)

5: vi(0)← 0

6: end for

7: t← 0

8: repeat

9: for all particles i do

10: if f(xi(t)) > f(yi(t)) then

11: yi(t)← xi(t)

12: if f(xi(t)) > f(ŷi(t)) then

13: ŷi(t)← xi(t)

14: end if

15: end if

16: Update vi(t + 1) according to Equation (2.41)

17: xi(t + 1) = xi(t) + vi(t + 1)

18: end for

19: t← t + 1

20: until stopping condition

to zero and the personal best positions of the particles are their initial positions. Steps

10 through 15 maintain the personal best positions, yi(t), as well as the neighbourhood

best position, ŷi(t), where the fitness function is given by f . Thus, the particle positions

are moved, in step 17, towards their own best positions and the best positions found by

the swarm according to Equation (2.41). Upon termination, the best solution found to

the optimisation problem is given by the position of the particle with the best fitness.

2.4.2 Ant Systems

Artificial ant systems model the social interaction and seemingly intelligent behaviour of

naturally occurring colonies of ants. These social interactions are due to a phenomenon
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known as stigmergy, characterised by a lack of centralised control and indirect commu-

nication by means of modifications to the environment. The emergent behaviour of the

colony is observed in their ability to, amongst others, locate optimal food resources and

perform nest brooming, including cemetery maintenance [31].

This section describes an optimisation algorithm, applicable to the TSP discussed

in Section 2.1.2, followed by an algorithm for performing unsupervised clustering. The

former models the way ants optimise paths to food sources, and the latter is based on

their cemetery maintenance behaviour.

Ant Colony Optimisation

Foraging in ant colonies is governed by pheromone deposits along paths to food. In

general, pheromones are invisible chemicals secreted by organisms which, when detected

by the senses, cause an instinctual reaction in another organism. In particular, foraging

ants tend to follow paths with higher concentrations of pheromone deposits.

Pheromones are deposited along a given path by the ants that traversed that path

at an earlier time. The pheromone following nature of ants combined with the fact

that pheromone deposits evaporate over time, results in the shortest paths containing

the highest pheromone concentrations. This is because an ant that discovers a shorter

path will return sooner, depositing more pheromones, on the way to a food source and

again on the way back, as well as more recent pheromones than an ant on a longer path.

As more and more ants start to follow the shorter path, due to a higher pheromone

concentration, a positive feedback loop is created until virtually all the ants follow the

shortest path. Thus, social interaction and coordination for foraging occurs indirectly

through pheromone deposits which modify the environment.

Algorithm 5 models the foraging behaviour of ants to solve the TSP (refer to Sec-

tion 2.1.2) [26]. Each edge of a TSP graph is associated with a pheromone intensity

between city i and j at time t denoted by τij(t). The probability, Φij,k(t), for ant k at

city i to choose j as the next city to visit is given by:

Φij,k(t) =
τij(t)

αηβ
ij

∑

c∈Ci,k
τic(t)αηβ

ic

(2.43)

where Ci,k is the set of city indices that ant k still needs to visit from city i and ηij is the

economy of travelling from city i to j. The parameters, α and β, control the respective
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Algorithm 5 Ant Colony Optimiser for TSP

1: Initialise τij(0) ∼ U(0, max)

2: Place all ants k ∈ {Z | 1 ≤ k ≤ m} at origin city

3: Let T + be the shortest tour, and L+ its length

4: t← 0

5: repeat

6: for all ants k do

7: Build tour Tk(t) by choosing successive cities with probability Φij,k(t)

(refer to Equation (2.43))

8: Compute length of route, Lk(t)

9: if Lk(t) < L+ then

10: T+ ← Tk(t)

11: L+ ← Lk(t)

12: end if

13: end for

14: Update pheromone deposits using Equation (2.44)

15: t← t + 1

16: until stopping condition

importance of pheromone intensities, τij(t), and local cost information, ηij = 1/dij, where

dij is a suitable Minkowski distance metric.

The algorithm randomly initialises the pheromone intensities, places a number, m,

of ants at the originating city and then proceeds to iteratively build tours, Tk, for each

ant k according to Equation (2.43) while continuously maintaining pheromone updates

according to:

τij(t + 1) = (1− ρ)τij(t) + ∆τij(t) (2.44)

where ρ is known as a forgetting factor which causes pheromone depletion over time.

The net change in pheromone intensity, ∆τij(t), at time t between city i and j is given

by:

∆τij(t) =

m
∑

k=1

∆τij,k(t) (2.45)

which is the sum of the deltas over all ants where the contribution of each ant is, in turn,
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given by:

∆τij,k(t) =

{

Q/Lk(t) if (i, j) ∈ Tk(t)

0 if (i, j) /∈ Tk(t)
(2.46)

where Q is of the same order of magnitude as the optimal route length and Lk(t) is the

length of the tour just taken by ant k. The contribution of an ant to the pheromone

intensity between cities i and j is zero if the ant did not traverse that edge during its

tour. When the algorithm terminates, the optimal tour found is given by T + and its

length by L+.

Ant Colony Clustering

Several species of ants have been observed to cluster corpses into cemeteries in order to

tidy their nests. While not much is known about this behaviour, it has provided the

inspiration for an algorithmic solution to the unsupervised clustering problem [15].

Algorithm 6 outlines an approach for clustering using a colony of artificial ants. The

fundamental idea is to allow ants to roam a grid containing data vectors, picking up

those vectors which are dissimilar from their surrounding vectors and dropping them in

areas having more similar vectors.

The local density function, f(zi, r), which is a measure of the average similarity of

the vector zi to the vectors in a neighbourhood around the location r is given by:

f(zi, r) =
1

s2

∑

zj∈Nsxs(r)

[1− d(zi, zj)

α
] (2.47)

where Nsxs(r) is the set of vectors in a square neighbourhood of width s around r and

d(zi, zj) is the dissimilarity, a Minkowski metric, between two vectors zi and zj with α

controlling the scale of the dissimilarity measure.

An unladen ant at location r which is occupied by a vector zi picks up that vector

with probability:

pp(zi, r) =
( k1

k1 + f(zi, r)

)2

(2.48)

where k1 is a constant which can be used to tune the sensitivity of the resultant probabil-

ity to f(zi, r). Equation (2.48) has the property that vectors which are highly similar to

those in their neighbourhood have a low probability of being picked up. Conversely, lower

values of f(zi, r) result in a high probability of zi being picked up, since pp(zi, r)→ 1 as

f(zi, r)→ 0.
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Algorithm 6 Ant Colony Clustering

1: Place each data vector zi randomly on grid

2: Place all ants k ∈ {Z | 1 ≤ k ≤ m} randomly on grid

3: repeat

4: for all ants k do

5: Let r be the location of ant k

6: if unladen(k) and occupied(r, zi) then

7: Compute f(zi, r) and pp(zi, r) (refer to Equations (2.47) and (2.48))

8: if U(0, 1) ≤ pp(zi, r) then

9: Pick up data vector zi

10: end if

11: else if laden(k, zi) and empty(r) then

12: Compute f(zi, r) and pd(zi, r) (refer to Equations (2.47) and (2.49))

13: if U(0, 1) ≤ pd(zi, r) then

14: Drop data vector zi

15: end if

16: end if

17: Move ant k to randomly selected neighbouring site not occupied by another ant

18: end for

19: until stopping condition

Alternatively, a laden ant carrying a vector zi at an unoccupied location r drops its

vector with probability:

pd(zi, r) =

{

f(zi, r) if f(zi, r) < k2

1 otherwise
(2.49)

where k2 is a constant that biases towards dropping vectors as k2 is made smaller, since

pd(zi, r)→ 1 as k2 → 0.

An obvious consequence of Algorithm 6 is that the grid must be large enough to

accommodate all the data patterns as well as sufficient ants. Strategies that mitigate

over-fitting, such as having ants moving at different speeds, can also be implemented

[31].
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2.5 Fuzzy Systems

Traditional expert systems [45], which typically use first-order predicate calculus to rep-

resent rules, rely on boolean logic where an element either belongs to a set or it does not.

That is, the law of the excluded middle applies and set membership is precise. Fuzzy

inferencing systems, on the other hand, are based on the properties of fuzzy sets [125]

where membership is no longer precise. Instead, an element belongs to a given set with

an associated degree of membership.

The ability to model the fuzzy, or imprecise, membership of an element to a set

enables inferencing based on linguistic terms. Production rules governing a fuzzy con-

troller can be described using words or simple sentences in natural language as opposed

to formal predicate calculus statements. This enables a domain expert, who typically

would not have an advanced knowledge of first-order predicate logic, to describe the rules

that govern a given system using domain specific linguistic terms which may be better

understood.

Section 2.5.1 overviews the theory of fuzzy sets and linguistic variables. Fuzzy con-

trollers, discussed in Section 2.5.2, build on this theory to provide a powerful inferencing

engine that can be used to solve control problems based on domain knowledge provided

by an expert.

2.5.1 Fuzzy Sets

Fuzzy sets [125] are characterised by a membership function of the form:

µA : X → [0, 1] (2.50)

where µA(x), ∀x ∈ X, indicates the degree, or certainty, that x belongs to the fuzzy set

A, and X is known as the universe of discourse. Traditional boolean set membership

can be modelled by a membership function, µA(x), which strictly takes on the values 0

or 1.

Table 2.1 defines fuzzy set theoretic operators that are analogues for their traditional

set counterparts. Two fuzzy sets are equivalent if and only if their membership functions

are identical. A fuzzy set is a superset of another set if and only if it contains all the

elements of the other set to at least the same degree of membership. The complement of

a set contains the same elements as the original set, but with complimentary degrees of
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Table 2.1: Fuzzy Set Theoretic Operators

Operator Definition

Equality A = B ⇐⇒ µA(x) = µB(x), ∀x ∈ X

Containment A ⊂ B ⇐⇒ µA(x) ≤ µB(x), ∀x ∈ X

Complement µA(x) = 1− µA(x), ∀x ∈ X

Intersection µA∩B = min{µA(x), µB(x)}, ∀x ∈ X, or µA∩B = µA(x)µB(x), ∀x ∈ X

Union µA∪B(x) = max{µA(x), µB(x)}, ∀x ∈ X, or

µA∪B(x) = µA(x) + µB(x)− µA(x)µB(x), ∀x ∈ X

membership, so that an element having a high degree of membership has a proportionally

low degree of membership to the complement. The intersection operator may be defined

as the minimum of the degrees of membership of elements to each set, or it may be defined

as the product of the membership functions. The product version is the stronger of the

two operators, resulting in lower degrees of membership for the intersection. Similarly,

the union may be defined in terms of the maximum degree of membership, or it may be

defined algebraically. In the limit, a series of unions cumulatively tends to 1 and a series

of intersections tends to 0, irrespective of the degrees of memberships to the individual

sets.

Linguistic variables and their associated hedges [126, 127, 128] express words and

sentences, in natural language, in terms of fuzzy set memberships. Consider as an

example, the concept of a person’s age as a linguistic variable. The linguistic variable

age might take on values such as young, middle aged and old. Each of these values

defines a fuzzy set, associated with a membership function that models its semantics.

Figure 2.13 illustrates three possible membership functions, defined using Gaussians, for

the values young, middle aged and old respectively. Further, hedges such as very, fairly,

somewhat and slightly may be used to modify a membership function.

Numerous hedges may be defined, with the primary types of hedges given by the

following equations:

Concentrate : µA′(x) = µA(x)p (2.51)

Dilate : µA′(x) = µA(x)1/p (2.52)
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Figure 2.13: Membership Functions for Age Linguistic Variable

Intensify : µA′(x) =

{

2p−1µA(x)p if µA(x) ≤ 0.5

1− 2p−1(1− µA(x))p otherwise
(2.53)

Blur : µA′(x) =

{

√

µA(x)/2 if µA(x) ≤ 0.5

1−
√

(1− µA(x))/2 otherwise
(2.54)

where p > 1 may be tuned to control the intensity of the hedges in Equations (2.51)

through (2.53). Concentration hedges, corresponding to linguistic terms such as very,

greatly and decidedly, create modified membership functions where boundaries are shifted

in favour of higher membership values. Dilation hedges have the opposite effect and

correspond to terms such as somewhat, sort of and fairly. Terms such as indeed and,

for higher values of p, extremely, correspond to intensification hedges which emphasise

contrast. Finally, blurring hedges, corresponding to terms such as seldom and more or

less, perform the opposite of intensification by introducing vagueness.
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2.5.2 Fuzzy Controllers

Figure 2.14 outlines a simple architecture for a fuzzy controller [75] consisting of three

primary components. First, the condition interface, which is responsible for converting

outputs from the system into a fuzzy form, hence the term fuzzifier, utilised by the fuzzy

inferencing engine. Next, the engine performs inferencing, based on linguistic rules, to

determine an appropriate control action. Finally, the action interface is responsible for

interpreting the output of the inferencing process and converting it back into system

specific actions through a process known as defuzzification. Thus, a feedback loop is re-

alised where the controller constantly monitors the system while effecting control actions

on the system according to its rule base.

Condition Interface

(fuzzifier)

Input Output
System

Action Interface

(defuzzifier)

Fuzzy Inferencing

Engine

Figure 2.14: Fuzzy Controller Architecture

As a somewhat contrived example, consider a fuzzy system used to control a hy-

pothetical cigarette dispensing machine. Rather than blindly supplying smokers with

their selection, this particular machine is designed to wean them off their addiction by

carefully limiting their supply of cigarettes. Further, assume that a domain expert, such

as a lung specialist, has provided a number of linguistic rules. For example, “If the user

is very old and a regular smoker then dispense as many cigarettes as requested.” The

reasoning behind such rule might be that a heavy smoker who has managed to survive to

a ripe old age is likely to die of natural causes long before contracting lung cancer. Other

rules might curtail the number of cigarettes dispensed to younger smokers depending on

their average intake, or limit the provision to zero for casual smokers.

The dispensing machine provides the controller with two inputs requiring fuzzifica-

tion, the actual age of the user and the average number of cigarettes consumed on a daily

basis. Fuzzification entails identifying the fuzzy sets used by the inferencing engine and
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calculating the degrees of membership to each of these sets given the inputs. Continuing

with the example rule, according to Figure 2.13, the membership function for the set

corresponding to the linguistic term very old is given by:

µ[very old](x) = µold(x)2

=







(

e−(x−100)2/1000
)2

if x ≤ 100

1 otherwise
(2.55)

where x is the actual age of the user and the concentration hedge for the term very is

assumed to be implemented with p = 2. A membership function for µ[regular smoker] can

be defined in a similar fashion.

After fuzzifying the inputs, the next step is to perform inferencing using the fuzzy

rule base. Typically, the rule base is made up of a list of rules of the form:

if antecedent −→ consequent (2.56)

where the antecedent consists of one or more fuzzy sets combined using the operators

in Table 2.1 to form a logical expression. In the case of a Mamdani [75] controller, the

consequent consists of a single target fuzzy set. The value of the antecedent, also known

as the firing strength of the rule, determines the degree of membership to the target set

in the consequent. A Takagi-Sugeno [110] controller, on the other hand, permits higher

order consequents.

The antecedent for the example sentence presented earlier may be calculated as either:

µ[very old](x) ∩ µ[regular smoker](y) = min{µ[very old](x), µ[regular smoker](y)} (2.57)

or, the product:

µ[very old](x) ∩ µ[regular smoker](y) = µ[very old](x)µ[regular smoker](y) (2.58)

depending on the choice of intersection operator, where x and y are the age and av-

erage daily cigarette consumption respectively. The firing strengths for the remaining

antecedents in the rule base are calculated in a similar fashion.

The defuzzification processes is performed for each output linguistic variable to deter-

mine a single non-fuzzy, or crisp, value to feed back to the system. In the example rule,

the linguistic variable associated with the cigarette limit has a consequent of unlimited,
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however, this must still be combined in a sensible way with the consequents of any other

rules pertaining to the same linguistic variable.

Various defuzzification strategies may be employed, the height of the centroid under

the composite area defined by the chosen strategy is used as the crisp action result:

• max-min strategy: Only the membership function of the consequent associated

with the rule having the highest firing strength is used.

• averaging strategy: All membership functions pertaining to the linguistic vari-

able in question are clipped at the average firing strength of the combined rules.

• root-sum-square strategy: All membership functions pertaining to the linguis-

tic variable in question are scaled to the firing strengths of their respective rules.

• clipped centre of gravity: All membership functions pertaining to the linguistic

variable in question are clipped at the firing strengths of their respective rules.

Thus, all the consequents corresponding to a given linguistic variable are combined,

based on the chosen defuzzification strategy, into a single crisp value. At the one extreme,

the max-min strategy only takes into account the most dominant rule, while the averaging

strategy dilutes the result, giving no preference to rules with higher firing strength.

Further, it is possible to bias the rules, by scaling their firing strengths, based on the

confidence placed on a given rule by a human expert.

2.6 Other Paradigms

One specific example of a relatively new CI paradigm is the Artificial Immune System

(AIS) [24], which is a computational pattern recognition technique, based on how white

blood cells in the human immune system detect pathogens that do not belong to the

body. Instead of building an explicit model of the available training data, an AIS builds

an implicit classifier that models everything else but the training data, making it suited

to detecting anomalous behaviour in systems. Thus, an AIS is well suited for applications

in anti-virus software, intrusion detection systems and fraud detection in the financial

sector.
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Further, fields such as Artificial Life (ALife), robotics (especially multi-agent systems)

and bioinformatics are application areas for CI techniques. Alternatively, it can be argued

that those fields are a breeding ground for tomorrow’s CI ideas.

For example, evolutionary computing techniques have been successfully employed

in bioinformatics to decipher genetic sequences [35]. Hand in hand with that comes a

deeper understanding of the biological evolutionary process and improved evolutionary

algorithms.

As another example, consider RoboCup1, a project with a very ambitious goal. The

challenge is to produce a team of autonomous humanoid robots that will be able to beat

the human world championship team in soccer by the year 2050. This is obviously an

immense undertaking that will require drawing on many disciplines. The mechanical

engineering aspects are only one of the challenges standing in the way of meeting this

goal. Controlling the robots is quite another. Swarm robotics [6, 99], an extension of

swarm intelligence into robotics, is a new paradigm in CI that may hold some of the

answers. In the mean time, simulated RoboCup challenges, which are held annually, will

have to suffice.

2.7 Hybrid Approaches

Attempting to produce an exhaustive list of all the possible hybrid approaches here is

certainly an exercise in futility. There are, simply stated, so many ways in which different

CI techniques can be combined that any attempt to survey them would probably require

an entire dissertation dedicated to that task alone. Indeed, hybrid approaches need

not even limit themselves to combining techniques drawn from the CI discipline alone,

making the possibilities virtually endless. Instead, the purpose of this section is to

emphasise the existence of hybrids, by means of a few examples, and to highlight the

importance of a flexible software framework which enables composing various techniques

together in new and interesting ways.

As a first example, consider the PSO, discussed in Section 2.4.1. One hybridised

approach, dubbed the Dissipative PSO (DPSO) [122], builds on concepts borrowed from

thermodynamics. The designers of the DPSO noted that the self organising nature of

the PSO, where particles follow an irreversible process towards higher fitness, ultimately

1http://www.robocup.org
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lacks the capability for sustainable development. By introducing negative entropy into

the algorithm and operating as a dissipative structure, the DPSO is able to maintain

swarm diversity and improve the quality of solutions found by the search. Now, while

it could be argued that the DPSO is not a true hybrid but rather a relatively simple

extension of the PSO, the relevant issue is that a software implementation should, as far

as possible, reuse an existing implementation of the PSO and simply compose it with

something that implements the dissipative capability.

Another method to hybridise the PSO is to update the positions of the best perform-

ing particles using a different optimisation process. Consider the velocity update in Equa-

tion (2.41), the best particles in their respective neighbourhoods will have x = y = ŷ,

resulting in zero cognitive and social components. Eventually, the velocity components

will also degrade to zero, since 0 ≤ w < 1, and these particles will stop moving. Further,

it is possible for the rest of the particles to collapse onto these positions too, resulting in

stagnation of the entire swarm. The Guaranteed Convergence PSO (GCPSO) [114, 113]

replaces the velocity update for the neighbourhood best particles with a modified uni-

modal optimiser [103], in effect creating a hybrid of the two. Properties of the GCPSO

include rapid convergence and a guarantee to at least converge onto a locally optimum

solution. Once again, a software implementation should make provision for this kind of

hybrid, perhaps by having a pluggable optimisation process for the neighbourhood best,

or indeed any particle. This kind of flexibility would enable the optimisation process

for any particle to be replaced by say, gradient descent, LeapFrog [102], an evolutionary

algorithm, or perhaps even another PSO to create a hierarchical PSO-PSO hybrid. Fur-

ther, it may be desirable to simultaneously compose GCPSO and DPSO into yet another

hybrid.

As hinted in Sections 2.1.3 and 2.2.1, neural networks present another opportunity

for hybridisation. By representing network weights as a single vector and the SSE over

the training set as an objective function, neural network training can be re-framed as

an optimisation problem. This opens the door for many hybrids, including using GAs,

EP, ES, cultural evolution or PSOs to train neural networks. Again, a software imple-

mentation should enable neural network training using any optimisation algorithm in a

flexible fashion.

One specific hybrid example, which spans multiple paradigms, is Blondie 24 [34].

Blondie 24 is an advanced game playing framework with the ability to understand and
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develop strategies for a game given only its rules as prior knowledge. The framework

draws on three paradigms: game theory, neural networks and evolutionary computing.

The approach involves evaluating a traditional game tree [85] using a neural network as

an evaluation function. In order to find the optimal network for the task, Blondie 24

employs a competitive coevolutionary approach to evaluate network against network.

Over time, neural networks evolve that are better able to evaluate the game state and

as a result become stronger players. This approach has been taken one step further

[79, 40] by extending the coevolutionary approach to particle swarms, producing a four

way game tree, neural network, coevolution, PSO hybrid. Designing software flexible

enough to support such hybrids is a challenging task.

Other hybrid approaches include fuzzy neural networks [88, 129], a breeding PSO

that leverages evolutionary crossover [74] and evolutionary processes for learning rules

for fuzzy controllers [22].

2.8 Software Requirements

Section 2.7 illustrated the importance of a flexible software framework. It should be pos-

sible to reuse and compose various algorithms in different ways with a minimum amount

of recoding. Ideally, any permutation should be made possible by merely changing the

configuration of the system at runtime.

Section 2.1 demonstrated that most problem classes can be re-framed as optimisation

problems. For this reason, any optimisation algorithm should be able to operate on any

problem which can be cast as an optimisation problem, as defined in Section 2.1.1.

It is tempting to make the next step and simply treat all problems as optimisation

problems, that way the interface between algorithms and problems is reduced to a single

set of interactions. To see why this is a poor idea, consider what the interface for an

optimisation problem might look like. Optimisation algorithms, such as the PSO or a

GA, require only two pieces of information from the problem. Firstly, they need to know

the domain of the problem. Secondly, and most importantly, they need to know the

fitness of a potential solution to the problem. Any more information would not be used

by such optimisation algorithms. Indeed, many optimisation problems, such as function

minimisation, simply cannot provide any more information either. Thus, an optimisation

problem must be characterised by an interface that supplies the domain of the problem
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and the fitness of a given solution within that domain.

From an implementation perspective, contrast the functioning of a generic optimisa-

tion algorithm, which only needs to query the fitness of potential solutions to a problem,

with a feed forward neural network. The neural network needs access to a set of training

patterns with their associated inputs and targets. Thus, the neural network requires more

information from the problem domain than a generic optimisation algorithm, which is

satisfied with only having access to an objective function. Therefore, the software should

have different interfaces for problems that make different information available to algo-

rithms according to their context. The various algorithms, in turn, should be able to be

applied to whatever types of problems they support, also by means of configuration at

runtime. Further, any problem that can be represented as another type of problem, via

some transformation such as those discussed in Section 2.1, should expose an interface to

do so. For example, a TSP should expose an optimisation problem interface in addition

to its more natural interface, which would expose a graph topology necessary for an

algorithm such as ACO.

Stopping conditions are another important element of algorithms that should be

handled in a pluggable way. All algorithms presented in this chapter loop until some

stopping condition is met. Those stopping criteria exist independently of the partic-

ular algorithm. Any algorithm can have as a stopping criterion a maximum number

of iterations. Optimisation algorithms may have as a stopping criterion a maximum

number of evaluations of the objective function. Particle swarms may have a stopping

criterion based on a minimum swarm diameter. Once again, stopping criteria should be

configurable at runtime for any algorithm.

Finally, since the software will be used for scientific research it is important to be

able to measure certain properties during the execution of any algorithm. Some of these

properties may be dependent on the specific problem or algorithm being used, how-

ever, they should still be implemented in a reusable fashion externally to the algorithm.

Measurements should not clutter the implementation of algorithms and should not even

be present if they are not used, for example, if the software is deployed in a specific

non-research application that has no need for measurements.

Creating a flexible software design is a challenging task. The next chapter presents

patterns which are invaluable aids for creating such designs.
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