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4.1 INTRODUCTION 

Neural networks have been successfully applied by many authors in solving pattern 

recognition problems. Unsupervised classification is an important branch of pattern 

recognition, which unfortunately has received less attention as an application of neural 

networks. In the analysis of poverty there is a need to classify households into several 

classes while no knowledge is known a priori what these classes are, nor are there any 

training samples with known classification, thus the need to use unsupervised methods 

of classification exist. Among the many neural network models available the self 

organizing map is selected as the one most suitable for unsupervised applications. 

Among the architectures and algorithms suggested for artificial neural networks, the self 

organizing map has the special property of effectively creating spatially organized 

internal representations of various features of input signals and their abstractions. The 

self organizing process can also discover semantic relationships and has been 

particularly successful in various pattern recognition tasks. 

 

The network architectures and signal processes used to model nervous systems can be 

roughly divided into three categories: 

• Feed forward networks transform sets of input signals into sets of output 

signals using externally supervised adjustment of the system parameters.  

• In feedback networks the input function information defines the initial 

activity state of a feedback system and after state transitions the asymptotic 

final state is identified as the outcome of the computation. 

• When the neighbouring cells in a neural network compete in their activities 

by means of mutual lateral interactions they develop adaptively into specific 

detectives of different signals patterns. This category of learning is called 

competitive, unsupervised or self organizing. The self organizing map 

discussed in this chapter belongs to this third category. 
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In this chapter the self organizing map is presented as a new effective modelling tool for 

the visualization of high dimensional data. Non linear statistical relationships between 

high dimensional data are converted into simple geometric relationships of their image 

points on a low dimensional display, usually a two dimensional grid of nodes. As the 

self organizing map compresses information while preserving the most important 

topological and metric relationships of the primary data elements, it may also be thought 

to produce some types of abstractions. These visualizations and abstractions can be 

utilized to measure multi-dimensional poverty.  

 

This chapter applies the self organizing map algorithm to the Republic of South Africa 

Census 2001 data set, examining the data from a data mining point of view. The scope 

of this chapter is to discuss what can be learned about the levels of poverty of the 

different households. The self organizing map is used to categorise the different 

households into the many grades or shades of poverty. The main advantages of the self 

organizing map are to group similar entities together.  

 

The Poverty Map was an application of the self organizing map that shows a map of the 

world based on mostly economic indicators. 

 

Figure 4.1.1 shows the resulting map as a self organizing map coloured with values 

obtained from the self organizing map evaluation. The Poverty Map was obtained by 39 

indicators selected from the World Bank Development Indicators (World Bank 2001a). 

 

Figure 4.1.2 is the World Bank self organizing map plotted on the world map with the 

same colours that were generated in the self organizing map analysis. The light colours 

indicate low levels of poverty and the darker shades indicate higher levels of poverty. 
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Figure 4.1.1: World Bank self organizing map 

  

 

Figure 4.1.2: World Map with results from the self organizing map analysis 
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Most of the calculations described in this chapter have been performed with the data 

mining software tool, SAS Enterprise Miner, and the analytical package, SAS Enterprise 

Guide. 

 

In the SAS Enterprise Miner version 4.3 the SOM/Kohonen node belongs to the Model 

category of the SAS SEMMA (Sample, Explore, Modify, Model and Assess) data 

mining process. The SOM/Kohonen node is used to perform unsupervised learning by 

using Kohonen vector quantization, Kohonen self organizing map, or Batch self 

organizing map with Nadaraya-Watson or local-linear smoothing. Some of the 

methodology described in this thesis relies heavily on the SAS online help 

documentation. 

 

In this section the term step applies to the SAS computations that are done while reading 

a single case and updating the cluster seeds and the term iteration applies to the SAS 

computations that are done while reading the entire data set once and updating the 

cluster seeds. 

 

Section 4.2 introduces the methodology of the Kohonen vector quantization followed by 

the analysis and results from the application to the data from the Republic of South 

Africa 10% sample of Census 2001.  

 

Section 4.3 describes the methodology of the Kohonen self organizing map and the 

analysis applied to the Republic of South Africa Census 2001 data.  

 

Section 4.4 describes the methodology of the Batch self organizing map and its 

application on the Republic of South Africa Census 2001 data.                                             

 

Section 4.5 summarizes results and findings of the chapter. 
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4.2 KOHONEN VECTOR QUANTIZATION 

Vector quantization can be describes as the task of finding a suitable subset that 

represents a larger set of data vectors. Vector quantization aims at reducing the number 

of sample vectors or substituting them with representative centroids as shown in figure 

4.2.1. The vector quantization method reduces the original set of 8 samples to 5 samples. 

The resulting centroids can also be an approximation of the vectors assigned to them, for 

example, their average vector quantization is closely related to clustering. 

 

Figure 4.2.1: Vector quantization reduction 

 

 

Visualization is very important for data mining as a direct plot of a set of data can 

provide insights into its structure and underlying distribution that inspection of the 

numerical data table cannot. However, data sets cannot be visualized on a sheet of paper 

or on a monitor if their dimensionality is higher than 2. 
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4.2.1 Methodology 

Vector quantization networks are competitive networks that can be viewed as 

unsupervised density estimators or autoassociators (Kohonen 2001). Each competitive 

unit corresponds to a cluster, the centre of which is called a codebook vector or cluster 

seed. 

 

Vector quantization is a classical signal approximation method that usually forms a 

quantized approximation to the distribution of the input data vectors , n
x ℜ∈ , using a 

finite number of so called codebook vectors, n

i
m ℜ∈ , (i=1,2,…,k) (Kohonen 2001). 

Once the codebook vector is chosen, the approximation of x requires finding the 

codebook vector mc closest to x in the input space determined by the Euclidean distance: 

 ||x-m|| = mini {||x-mi||}        (4.1) 

The optimal selection of the mi minimizes the average expected square of the 

quantization error, which is defined as follows: 

 dx)x(p||mx||E 2

c∫ −=        (4.2) 

where  

the integral is taken over the complete metric x space, 

dx is the n-dimensional volume differential of the integration space, and 

p(x) is the probability density function of x. 

 

Kohonen's learning law is an online algorithm that finds the cluster seed closest to each 

training case and moves the winning seed closer to the training case. The seed is moved 

some proportion of the distance between it and the training case; the proportion is 

specified by the learning rate. 
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Let   

  s

j
C  be the seed for the j

th
 cluster on the s

th
 step,  

 
i

X  be the input vector for the i
th

 training case, and 

 s
L  be the learning rate for the s

th
 step.  

The training case 
i

X  is selected and the index n of the winning cluster is determined by 

 n = arg minj ||
s

j
C -

i
X ||        (4.3) 

The Kohonen update formula is defined as follows: 

 s

i

ss

j

s

n
LxLCC +−=

+ )1(1        (4.4) 

for all non winning clusters  

 s

j

s

n
CC =

+1          (4.5) 

In SAS Enterprise Miner, the Kohonen vector quantization is often used for offline 

learning in which case the training data is stored and Kohonen’s learning law is applied 

to each case in turn, cycling over the data set many times, that is, incremental training. 

 

4.2.2 Analysis 

In this section the Kohonen vector quantization technique is applied to the 10% sample 

data from the Republic of South Africa 2001 Census. In the sample there are 905 748 

households and four attributes were selected to measure the dimension of poverty: 

“access to basic services”. 

 

The analysis is conducted using SAS Enterprise Miner’s SOM/Kohonen node. The 

Kohonen vector quantization technique is illustrated using the following four attributes 

to create a multi-dimensional measure of poverty: 

 
 
 



 104 

• Access to water,  

• Energy source for cooking,  

• Toilet facilities, and  

• Refuse removal.  

The membership function proposed by Cheli and Lemmi (1995) is applied to the four 

attributes. Figure 4.2.1 shows that the data tab of the SAS Enterprise Miner 

SOM/Kohonen node. The SAS data set used in this analysis is called M_Cheli_New1 

and is stored in the SAS library named A.   

 

Figure 4.2.1: Input data set: Data tab 

 

 

There are 905 748 households in the data set. A sample of 2 000 households is selected 

to generate the metadata. The option is available to use the entire data set to create the 

metadata or to change the sample size from 2 000 to any number that the researcher 

wishes to use. 
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Figure 4.2.2: Input data set: Interval Variables tab. 

 

 

Figure 4.2.2 shows the interval variables tab in the input data set. This tab lists the 

variables that are in the data set and shows the descriptive statistics together with the 

percentage of missing values. In this calculation there are no missing values. The 

membership function is used in the calculation. The minimum value of the membership 

function will always be zero and the maximum value will always be 1. 

 

Figure 4.2.3: Input data set: Variables tab 

 

 

Figure 4.2.3 shows the variables tab of the input data set. In this data set there are seven 

variables. SAS Enterprise Miner automatically recognises the variable Serial as an 
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identification variable and selects the model role as “id”. The other six variables are 

given the model role of “input”. In this analysis only four attributes are used and their 

model role remains as “input” and the model role for the other two attributes is set to 

“rejected”. The measurement role for each attribute is set to “interval”. 

 

Figure 4.2.4 shows the data tab of the SOM/Kohonen node. The role of the data set is set 

to training. The properties tab gives the metadata which includes the date when the data 

set was created and modified. This tab has a table view option to view the variables in 

the data set. 

 

Figure 4.2.4: SOM/Kohonen node: Kohonen vector quantization: Data tab 

 

 

Figure 4.2.5 shows the variables tab of the SOM/Kohonen node. All the variables are 

listed and the variables that were rejected in the input data node are shown as rejected in 

the model role with the status shown as don’t use. The status column is not greyed 

allowing for the status of the variables to be changed to use. This tab also has the option 

to standardize the variables. All the membership function values for the attributes are 

between zero and one, therefore standardization is not necessary and the “none” option 

is selected.  
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Figure 4.2.5: SOM/Kohonen node: Kohonen vector quantization: Variables tab 

 

 

Figure 4.2.6 shows the general tab in the SOM/Kohonen node. For this analysis 

Kohonen vector quantization is selected as the method. In the Kohonen vector 

quantization networks, the number of clusters could be user specified or automatically 

selected. If the automatic option is chosen then the selection criteria tab must be used to 

specify the various options, for example, the minimum and maximum number of clusters 

and the clustering cubic criterion cut-off.  

 

Figure 4.2.6: SOM/Kohonen node: Kohonen vector quantization: General tab 
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Figure 4.2.7: SOM/Kohonen node: Kohonen vector quantization: Selection Criteria 

tab  

 

 

Figure 4.2.7 shows the selection criteria tab of the SOM/Kohonen node. The available 

clustering methods are Average, Centroid and Ward methods. In this calculation the 

Ward method is selected. 

 

The minimum number of clusters is specified as two and the maximum number of 

clusters is specified as forty. A cut-off value for the cubic clustering criterion (CCC) 

must be stated. If the cubic clustering criterion suggests the number of clusters below the 

minimum number of clusters then the minimum number of clusters will be created. 

Likewise if the cubic clustering criterion suggests a higher number of clusters than the 

maximum number of clusters then the maximum number of clusters will be created. In 

this analysis the cubic clustering criterion is set to 1 000. 

 

Figure 4.2.8 shows the cubic clustering criteria plot for the Kohonen vector quantization 

analysis. The cubic clustering criterion cut-off of 1 000 suggests that the number of 

clusters to be created is 8. If the cubic clustering criterion cut-off was set as 500 then the 

number of clusters created will be four. 
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Figure 4.2.8: SOM/Kohonen node: Kohonen vector quantization: CCC Plot tab  

 

 

To make a meaningful comparison with the results of later sections the option is set to 

user specified and the number of clusters is set to 9. This can be seen in figure 4.2.9. 

Note that the map option is dimmed as this is only applicable to the Kohonen and Batch 

self organizing maps. 

 

Figure 4.2.9: SOM/Kohonen node Kohonen vector quantization: User specify tab 
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The SOM/Kohonen node is run for the Kohonen vector quantization analysis and the 

following results are obtained: 

• The partition tab contains a graphical representation of the key characteristics of 

the clusters that are generated from the vector quantization method.  

• The variables tab lists all the inputs that were used in the Kohonen vector 

quantization analysis. 

• The Distance Tab provides a graphical representation of the size of each cluster 

and the relationship among clusters.  

• The Profile Tab provides a graphical representation of the categorical and 

interval variables. 

• The Statistics Tab displays information about each cluster in a tabular format. 

• The CCC Plot displays a plot of the Cubic Clustering Criterion, which is plotted 

against the number of clusters that the SOM/Kohonen node automatically 

generates. 

• The Output Tab displays the output that is generated from running the 

SAS/STAT DMVQ procedure. 

Figure 4.2.10 shows the Kohonen vector quantization partition tab of the SOM/Kohonen 

node results browser. On the left is the three dimensional pie chart and on the right is the 

plot of the input means over all the clusters. 

 

The three dimensional pie chart in figure 4.2.10 has the following settings: 

• Height is determined by the frequency. 

• Colour is set to Radius, which is the distance from the farthest cluster member to 

the cluster seed. 

• Slice is set to standard deviation, which is the root mean square standard 

deviation distance between cases in the cluster. 
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Figure 4.2.10: SOM/Kohonen node: Kohonen vector quantization: Partition tab 
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The grid plot on the right of figure 4.2.10 displays the plot of the input means for the 

four attributes that are used in the analysis over all clusters. The input means are 

normalized to fall between the values 0 to 1. The attributes are ranked according to the 

normalized input means with the attribute with the largest normalized input means first. 

In this case the attribute access to water is first with the largest normalized input mean.  

 

Figure 4.2.11: Kohonen vector quantization: Variables tab 

 

 

Figure 4.2.11 is the variables tab of the Kohonen vector quantization results. The four 

attributes used in the analysis are shown with an importance value. The importance 

value ranges between zero and one with the attribute that has the largest contribution to 

the cluster formation having an importance value close to one. In this analysis the 

attribute energy source for cooking has an importance value of 1 and the other attributes 

have fairly high importance values, suggesting that they have also contributed to the 

cluster formation. 

 

In the statistics tab the cluster segments are given together with the frequency for each 

segment and the cluster means for each attribute. The statistics for the Kohonen vector 

quantization results are shown table 4.2.1. The last column of table 4.2.1 shows the 

Euclidean distance measure for each cluster measured back to the origin and sorted in 

ascending order. The clusters in the table are ranked from the households experiencing 

the least poverty to the households experiencing maximum deprivation with respect to 

the poverty dimensions “access to basic services”.  
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Table 4.2.1: Kohonen vector quantization: Statistics tab 

Poverty Groupings VQ_Clusters Frequency  Water Refuse Cooking Toilet Distance 

no deprivation 2 252 043 0.000 0.001 0.001 0.002 0.002 

very little deprivation 1 127 488 0.473 0.002 0.002 0.011 0.473 

little deprivation 8 76 209 0.383 0.003 0.598 0.021 0.710 

below average deprivation 3 25 111 0.452 0.006 0.027 0.760 0.885 

average deprivation 7 37 236 0.345 0.824 0.021 0.098 0.899 

above average deprivation 9 51 495 0.620 0.011 0.575 0.765 1.141 

extreme deprivation 6 46 063 0.665 0.832 0.771 0.143 1.323 

very extreme deprivation 4 121 396 0.678 0.839 0.286 0.727 1.332 

maximum deprivation 5 168 707 0.748 0.852 0.926 0.810 1.673 

 

In cluster 2 there are 252 043 household that experience zero deprivation because all the 

attributes have a cluster mean of zero or very close to zero. In cluster 5 there are 168 707 

households that experience maximum deprivation in respect of basic services. Cluster 5 

satisfies the intersection definition of poverty, that is, all the households experience 

poverty in every attribute.   

 

Clusters 1, 3, 4, 6, 7, 8, 9 satisfy the union definition of poverty, that is, the households 

experience poverty in at least one attribute. For example, the households in cluster 1 

experience poverty only in the attribute “access to water” while the households in cluster 

6 experience poverty in three attributes, “access to water”, “refuse removal” and “energy 

source for cooking”. This analysis technique divides the households into 9 clusters each 

experiencing different levels of poverty. 

 

The Kohonen vector quantization results distance tab shown in figure 4.2.12 gives a 

graphical representation of the size of each cluster and the relationship among the 

clusters. The axis is determined from the multi-dimensional scaling analysis. The 

asterisks represent the cluster centres and the circles represent the cluster radii. The 

radius of each cluster is dependent on the most distant case in that cluster. 
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Cluster 2 has the smallest radii indicating that all the household attributes are close 

together. In this cluster all the households experience zero poverty and the membership 

function values are very close to zero. 

 

Figure 4.2.12: Kohonen vector quantization: Distance tab 

 
 

The radii might give the impression that the clusters overlap, but in fact each household 

is assigned to only one cluster. Figure 4.2.12 shows the clusters with households that are 

experiencing the most deprivation on the extreme left, that is, clusters 4, 5 and 6. The 

clusters plotted on the right, cluster 2 and cluster 1 comprise households that experience 

zero deprivation. 
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The normalized means of the cluster with households that experience the least 

deprivation (cluster 2) and the cluster with households that experiences the most 

deprivation (cluster 5) are compared in figure 4.2.13. 

 

Figure 4.2.13: SOM/Kohonen node: Kohonen vector quantization: Partition tab 

 

 

The plot ranks the attributes based on how spread out the input means for the selected 

clusters relative to the overall input means are. The input mean of the attribute with the 

greatest spread is “cooking” and is listed first and the input mean of the attribute with 

the smallest spread is “water” and is listed last. The input means for cluster 2 are all 

either zero or very close to zero, while the input means for cluster 5 are all equal to one. 

 

From a poverty measurement point of view on the pie chart, it is difficult to identify the 

Kohonen vector quantization cluster that has the best off households and the cluster that 
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has the most deprived households. To overcome this problem a Kohonen self organizing 

map is generated. 

 

4.3 KOHONEN SELF-ORGANIZING MAPS 

The self organizing map is a very popular artificial neural network (ANN) algorithm 

based on unsupervised learning. The self organizing map has proven to be a valuable 

tool in the visualization of high dimensional data in data mining and in the larger field of 

Knowledge Discovery in Databases (KDD). It was originally developed by Kohonen in 

1985 and is mostly used to convert the non linear statistical relationships between high 

dimensional data into simple geometric relationships of their image points on a low 

display, usually a regular two dimension grid of nodes. It has been subject to extensive 

research and has applications ranging from full text and financial data analysis, pattern 

recognition, image analysis, process monitoring and control to fault diagnosis. The self 

organizing map training algorithm is very robust; although there are some choices to be 

made regarding training length, map size and other parameters. 

 

A self organizing map is a competitive network that provides a topological mapping 

from the input space to the clusters that are intended for clustering, visualization, and 

abstraction (Kohonen 2001).   

 

The self organizing map was inspired by the way in which various human sensory 

impressions are neurologically mapped into the brain such that spatial or other relations 

among stimuli correspond to spatial relations among the neurons. In a self organizing 

map, the neurons (clusters) are organized into a two-dimensional grid. The grid exists in 

a space that is separate from the input space; any number of inputs can be used, provided 

the number of inputs (attributes) are greater than the dimensionality of the grid space.  

 

A self organizing map tries to find clusters such that any two clusters that are close to 

each other in the grid space have seeds close to each other in the input space. Their 
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learning algorithm is computationally extremely light, and consists of a low-dimensional 

grid that contains a number M of neurons. In this chapter, only the two dimensional grid 

will be considered, since grids of higher dimensions are difficult to visualize. The 

neurons are arranged in a rectangular way in figure 4.3.1, the position of the neurons in 

the grid. The distances between the neurons and the neighbourhood relations are very 

important for the learning algorithm. Each neuron has a so-called prototype vector (also 

codebook vector) associated with it, which is a vector of the same dimension as the input 

data set that approximates a subset of the training vectors. 

 

Vector projection aims at reducing the input space dimensionality to a lower number of 

dimensions in the output space, and mapping vectors in input space to this lower 

dimensional space. In this section only two dimensional output spaces for visualization 

is discussed. Figure 4.3.1 shows the principle of vector projection, reducing a data set 

with seven variables to a data set with four variables; the resulting variables are usually 

obtained by complex algorithms. 

 

Figure 4.3.1: The vector projection method of reduction 
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Vector projection leads to loss of information in almost all cases but the vector 

projection mapping occurs in a way that the distances in input space are preserved as 

well as possible, such that similar vectors in input space are mapped to positions close to 

each other in output space, and vectors that are distant in input space are mapped to 

different coordinates in output space. The algorithms emphasize the preservation of 

distances of vectors that are close to each other, while not necessarily preserving 

relatively large distances. The self organizing map is a vector projection method. 

 

4.3.1 Methodology 

The dimension of the sample vectors is the input dimension, and is much larger than two 

the dimension of the grid named output dimension. The self organizing map is a vector 

projection algorithm, since it reduces the number of dimensions in the high dimensional 

input space to two dimensions, the dimensions of the output grid. Once the codebook 

vectors are initialized, usually with random values, training begins. The training set of 

samples is presented to the self organizing map algorithm, and once all the samples have 

been selected, this process is repeated for t training steps. One complete round of 

training, when all of the samples have been selected once, is designated as an epoch. The 

number of training steps is an integer multiple of the number of epochs. For training and 

visualization purposes, the sample vectors are assigned to the most similar prototype 

vector, or best-matching unit (BMU).  

 

Kohonen (2001) describes the self organizing map as a non linear, ordered, smooth 

mapping of high dimensional input data manifolds into the elements of a regular low 

dimensional array where the mapping is implemented as follows: 

 

Assume that the set of input variables is defined as a real vector  

x = [ a1, a2,…,an ]
T
 ∈

n
ℜ       (4.6) 
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Each element in the self organizing map array is associated with a parameter real vector 

 mi = [ µ i1, µ i2,…,µ in ]
T
 ∈

n
ℜ       (4.7) 

which is named a model. 

 

A general distance measure between x and mi is denoted d(x, mi). The image of an input 

vector x on the self organizing map array is defined as the array element mc that matches 

best with x with the following index: 

 c  =  arg mint { d(x, mi) }      (4.8) 

Self organizing maps differ from the vector quantization since the mi is defined in such a 

way that the mapping is ordered and descriptive of the distribution of x. Kohonen (1995) 

also emphasizes that the models mi need not be vectoral variables, it will suffice if the 

distance measure d(x, mi) is defined over all occurring x items and a sufficiently large 

set of models mi. 

 

The self organizing map defines a mapping from the input data space onto a two 

dimensional array of nodes. The parametric model vector, mi = [ µ i1, µ i2,…,µ in ]
T
 ∈ n

ℜ , 

must be initialized before recursive processing can begin. Random numbers are selected 

for the components of the mi to demonstrate that starting from an arbitrary initial state, 

in the long run, the mi will attain two-dimensionally ordered values. This is the basic 

effect of the self organization. 

 

In the simplest case, an input vector, x = [ a1, a2,…,an ]
T
 ∈ n

ℜ  is connected to all neurons 

in parallel via variable scalar weights µ ij, which in general are different for different 

neurons. The input x is compared with all the mi and the location of the best match in 

some metric is defined as the location of the response. The exact magnitude of the 

response need not be determined, the input is simply mapped onto this location, like a 

set of decoders. 
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Let x ∈
n

ℜ  be a stochastic data vector. The self organizing map can be seen as a “non 

linear projection” of the probability density function p(x) of the high dimensional input 

data vector x onto the two dimensional display.  

 

Vector x may be compared with all the mi in any metric, in many practical applications, 

the smallest of the Euclidean distances ||x-mi|| can be made to define the best matching 

node, signified by the subscript c: 

 c = arg mini {||x-mi||}       (4.9) 

which means the same as 

 ||x-mc||=mini{||x-mi||}       (4.10) 

During learning or the process in which the non linear projections is formed, those nodes 

that are topographically close in the array up to a certain geometric distance will activate 

each other to learn something from the same input x. This will result in a local relaxation 

or smoothing effect on the weight vectors of neurons in this neighbourhood, which in 

continued learning leads to global ordering. Consider the eventual convergence limits of 

the following learning process, whereupon the initial values of the mi(0) can be arbitrary, 

 mi (t+1) = mi (t) + hci(t) [x(t) - mi (t)]     (4.11) 

where 

 t = 0, 1, 2,…is an integer, the discrete time coordinate. 

 

In the relaxation process the function hci(t) has a very central role, it acts as the so called 

neighbourhood function, a smoothing kernel defined over the lattice points.  

 

The neighbourhood function can be written as 

 hci(t) =  h(|| rc-ri||,t)       (4.12) 
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where rc ∈
2

ℜ and ri ∈
2

ℜ are the location vectors of nodes c and i respectively, in the 

array. 

 

With increasing || rc-ri||,  hci(t) → 0. The average width and form of hci define the 

stiffness of the elastic surface to be fitted to the data points. 

 

The basic principles of the self organizing map seem simple, the process behaviour, 

especially relating to the above more complex input representations has been difficult to 

describe in mathematical terms. The first approach discusses the process in its simplest 

form, but it seems that similar results are obtainable with more complex systems. The 

self organizing ability will be justified analytically using a very simple system model. 

The reasons for the self ordering phenomena are actually subtle and have been proven 

only in the simplest cases. In this discussion a basic Markov process is explained to help 

understand the nature of the process and is restricted to a one dimensional linear open 

ended array of functional units to each of which a scalar values input signal, ξ , is 

connected.    

 

Let the units be numbered 1, 2, ... , j. Each unit i has a single scalar input weight or 

reference value µ i whereby the similarity of between ξ and µ i is defined by the absolute 

value of their difference | ξ - µ i|. 

 

The best match is defined as follows: 

 | ξ - µc| = minc{| ξ - µ i|}      (4.13) 

The set of units Nc selected for the updating is defined as follows: 

 Nc = {max (1, c-1), c, min (j, c+1)}     (4.14) 
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In other words, unit i has the neighbours i-1 and i+1, except at the end points of the 

arrays, where the neighbour of unit 1 is 2, and the neighbour of unit j is j-1. Then Nc is 

simply the set of units consisting of unit c and its immediate neighbours. 

 

The neighbourhood kernel determines the influence on the neighbouring model vectors. 

The learning process gradually shifts from an initial rough learning phase with a large 

influence area and fast-changing prototype vectors to a fine-tuning phase with small 

neighbourhood radius and prototype vectors that adapt slowly to the samples. The self 

organizing map algorithm contains elements of competitive learning and cooperative 

learning. Competitive learning is covered by selection of the best-matching unit, which 

is updated to the largest extent. Cooperative learning updates the most similar model 

vector and also moves its closest neighbours in the direction of the sample, creating 

similar areas on the map. After training is completed, the self organizing map has folded 

onto the training data, where neighbouring units usually have similar values.  

 

Each prototype is also associated with a Voronoi region in input space, which is defined 

as follows: 

}kj||mx||||mx||:{xV jkk ≠∀−<−=      (4.15) 

These regions reflect the area in input space for which a prototype is a best-matching 

unit. Input space is thus divided into these non-overlapping Voronoi regions. If a unit's 

Voronoi region does not contain any sample vectors, it is named an interpolating unit, 

which occurs if neighbouring regions on the lattice contain distant prototypes in output 

space.  

 

The Kohonen self organizing map algorithm requires a kernel function 

  n)(j,Ks    
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where 

  j)(j,Ks   =  1   

 and   

n)(j,Ks     is a nonincreasing function of the distance between seeds j and n in the 

grid space.  

 

For seeds that are far apart in the grid space the kernel function is usually equal to zero, 

that is,  

 n)(j,K s   =  0     

As each training case is processed, all the seeds are updated as   

 ss

i

sss

n

1s

n L)n,j(KXL)n,j(K1(CC +−=
+      (4.15) 

with the kernel function changing during training as indicated by the superscripts. 

 

The neighbourhood of a given seed is the set of seeds for which the kernel function is 

greater than zero, that is,  

n)(j,Ks    >  0  

To avoid poor results, it is usually recommended to start with a large neighbourhood and 

to let the neighbourhood gradually shrink during training.  

If n)(j,Ks    =  0     for j  ≠ n,  

then the self organizing map update formula reduces to the formula for Kohonen vector 

quantization.  
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If the neighbourhood size (for example, the radius of the support of the kernel function) 

is zero, then the self organizing map algorithm degenerates into simple vector 

quantization.  

 

Therefore, it is important not to let the neighbourhood size shrink all the way to zero 

during training if topological mapping is required. Consequently the choice of the final 

neighbourhood size is the most important tuning parameter for self organizing map 

training.  

 

The learning rate a(t) is also decreasing monotonically with time, and should end at zero 

when training is complete. Surprisingly, the results do not vary significantly for different 

choices of any of the functions and parameters above, thus the self organizing map is a 

very robust algorithm with regard to its configuration. 

 

To achieve good topological ordering, it is advisable to specify a final neighbourhood 

size greater than one. Determining a good neighbourhood size usually requires trial and 

error.  

 

For highly nonlinear data, use a Kohonen self organizing map, which by default behaves 

as follows: 

 

• The initial seeds are randomly selected cases. 

• The initial neighbourhood size is set to half the size of the self organizing map.  

• The neighbourhood size is gradually reduced to zero during the first 1 000 

training steps. 

• Incremental training is used.  

• The learning rate is initialized to 0.9 and linearly reduced to 0.02 during the first 

1 000 training steps. 
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4.3.2 Analysis 

In this section the Kohonen self organizing map technique is applied to the 10% sample 

data from the Republic of South Africa 2001 Census. In the sample there are 905 748 

households and four attributes were selected to measure the dimension of poverty: 

access to basic to services. The analysis is conducted using SAS Enterprise miner’s 

SOM/Kohonen node. The Kohonen self organizing map technique to measure the 

dimension “access to basic services” is illustrated using the following four attributes: 

• access to water,  

• energy source for cooking,  

• toilet facilities, and  

• refuse removal.  

The membership function proposed by Cheli and Lemmi (1995) is applied to the above 

four attributes. The data set used in this calculation is the same that was used in section 

4.2.2 in the Kohonen vector quantization analysis. 

 

Figure 4.3.2: The SOM/Kohonen node: Kohonen self organizing map: General tab 
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In the SOM/Kohonen node general tab as shown in Figure 4.3.2, the Kohonen self 

organizing map is selected for the method. The number of rows and number of columns 

in the map need to be selected before the node can be run. There are no restrictions on 

the number of rows and the number of columns and the number of rows does not have to 

be the same as the number of columns. In this application the number of rows is set to 

three and the number of columns is set to three. The number of clusters is dimmed when 

the Kohonen self organizing map is selected. In this calculation the mapping is made 

onto a grid, where the number of rows and number of columns need to be determined 

before the node is run.   

 

The SOM/Kohonen node is run for the Kohonen self organizing map analysis with the 

above mentioned settings and the following results are obtained:  

• The Map Tab contains a topological mapping of all the input attributes to the 

clusters and a plot of the input means for all the attributes that are used in the 

analysis. 

• The Variables Tab lists all the input attributes that are used in the Kohonen self 

organizing map analysis. 

• The Distances Tab provides a graphical representation of the size of each cluster 

and the relationship among segments. 

• The Profiles Tab provides a graphical representation of the categorical attributes 

and interval attributes for each segment. 

• The Statistics tab displays information about each segment in a tabular format. 

• The Output tab displays the output that is generated from running the underlying 

SAS/STAT DMVQ procedure. 
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Figure 4.3.3: SOM/Kohonen node: Map tab 
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Figure 4.3.3 shows the Map tab of the SOM/Kohonen node results browser with the 

topological mapping on the left and the plot of the input means for the four attributes on 

the right. The row and column coordinates of the topological map in figure 4.3.3 

correspond to the cluster numbers, for example, the coordinates for cluster 1 are Row 1, 

Column 1, and the coordinates for cluster number 9: Row 3, Column 3. The clusters in 

the map are colour coded by the frequency counts over all the input variables. The 

colours in the map legend correspond to the frequency count in the clusters. It can be 

clearly seen that cluster 1 has the highest frequency and cluster 6 has the second highest 

frequency. 

 

The grid plot to the right of the tab displays a plot of the input means for the four 

attributes that are used in the analysis over all the clusters. The overall input means for 

each attribute are represented by the small squares in the plot. They are normalized to 

fall within a range of 0 to 1. 

 

Figure 4.3.4: SOM/Kohonen node: Variables tab 

 

 

Figure 4.3.4 lists the four input attributes that were used in the SOM/Kohonen node to 

perform the Kohonen self organizing map analysis. For each attribute, an importance 

value is computed as a value between 0 and 1 to represent the relative importance of the 

given attribute to the formation of the clusters. Attributes that have the largest 

contribution to the cluster profile have importance values closer to 1. 
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In this analysis the attribute “energy source for cooking” has the highest importance 

value of 1. The other attributes also have fairly high importance values implying that 

they have also contributed to the cluster formation. 

 

Table 4.3.1: SOM/Kohonen node: Statistics tab 

 Segment Frequency water Refuse Cooking Toilet Distance 

no deprivation 1 252043 0.000 0.001 0.001 0.002 0.002 

very little deprivation 7 127488 0.473 0.002 0.002 0.011 0.473 

little deprivation 4 76209 0.383 0.003 0.598 0.021 0.710 

below average deprivation 5 25111 0.452 0.006 0.027 0.760 0.885 

average deprivation 2 37236 0.345 0.824 0.021 0.098 0.899 

above average deprivation 8 51495 0.620 0.011 0.575 0.765 1.141 

extreme deprivation 3 46063 0.665 0.832 0.771 0.143 1.323 

very extreme deprivation 9 121396 0.678 0.839 0.286 0.727 1.332 

maximum deprivation 6 168707 0.748 0.852 0.926 0.810 1.673 

 

Table 4.3.1 displays information about each cluster obtained from the statistics tab of the 

result browser in a tabular format. The cluster numbers and frequency (number of 

households) of each cluster are given in columns two and three. For each cluster the 

mean of the input attribute is also given. The last column in table 4.3.1 is the Euclidean 

distance calculated from the cluster means of each attribute to the centre of origin. The 

clusters were then ranked where the cluster with the smallest Euclidean distance is 

categorized as the cluster with households that were the best off and the cluster with the 

largest Euclidean distance regarded as the cluster with households that are worst off in 

terms of deprivation of basic services. 

 

Households that have a cluster mean of zero for any attribute experience zero 

deprivation in that attribute. The cluster means of all the attributes in cluster 1 are 

virtually zero, thus the cluster households are described in the first column of table 4.3.1 

as experiencing zero deprivation. The maximum possible Euclidean distance measure is 

2, when the cluster means for all the attributes are equal to one. Cluster 6 has a 

Euclidean distance measure of 1.673 and all its households are described as experiencing 

maximum deprivation.  Table 4.3.1 shows the multidimensional measure of deprivation. 

Households in cluster 1 experience zero deprivation. Households in cluster 6 experience 
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maximum deprivation; this is the union measure of poverty where the households 

experience deprivation in all attributes. The remaining seven clusters experience the 

union measure of poverty, deprivation in at least one attribute. The self organizing map 

technique splits the union measure of poverty into seven grades or shades. 

 

Figure 4.3.5: SOM Node: Distance Tab 

 

 

Figure 4.3.5 shows the graphical representation of the size of each cluster and the 

relationship among the clusters. The axis in figure 4.3.5 is determined from 

multidimensional scaling analysis. The cluster centres are represented by asterisks and 

the circles represent the cluster radii. If there is only one household in a cluster then this 
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household is displayed as an asterisk. The radius of each cluster depends on the most 

distant case in that cluster. Cluster 1 has the highest frequency of households, 252 043 

households and the smallest circle. The small radius of cluster 1 suggests that the 

distance between the households within the cluster is small. The radii in figure 4.3.5 

might appear to indicate that the clusters overlap, but the analysis assigns each 

household to only one cluster. 

 

Figure 4.3.6: SOM/Kohonen node: Profile tab for cooking 

 
 

Figure 4.3.6 displays a three dimensional bar chart for the interval input attributes 

“energy source for cooking”. The three dimensional bar chart displays the interval input 

attribute, cooking, on the Y-axis, the cluster number on the X-axis and the frequency 

within each cluster on the Z-axis. The frequencies are low since a sample of the training 

data set is used to construct the bar chart.  
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It can be seen that households in cluster 1 experience zero deprivation, while households 

in cluster 6 experience the most deprivation with respect to “energy source for cooking”. 

The bars for clusters 3, 4 and 8 show that they comprise some households that 

experience total deprivation with respect to “cooking” and other households that 

experience some deprivation. There are no households in these clusters that experience 

no deprivation with respect to “cooking”.  

 

Figure 4.3.7 SOM/Kohonen node: Map tab  

 
 

Figure 4.3.7 is the Map Tab results for the Kohonen self organizing map, comparing the 

input means for cluster 1 and cluster 6 with the overall input means. In the topological 

mapping on the left of figure 4.3.7 segment 1 (row 1, column 1) and segment 6 (row 2, 

column 3) are highlighted.  

 

The input plot on the right in figure 4.3.7 shows the input means of cluster 1, cluster 6 

and the overall input means. The plot ranks the attributes based on how spread out the 

input means are for the selected clusters relative to the overall input means. The input 
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with the greatest spread, attribute “energy source for cooking”, is listed first and the 

input with the smallest spread, attribute “access to water”, is listed last. 

 

For cluster 1 the input means for all the attributes are shown as zero. The input means 

are normalized to have a range of zero to one. This means that all the households in 

cluster 1 are best off with respect to deprivation of basic services for the four attributes. 

For cluster 6 the input means for all the attributes are 1. This means that all the 

households in cluster 6 are the worst off with respect to deprivation of basic services for 

the four attributes. 

 

Figure 4.3.8: SOM/Kohonen node: Output statistics 

 
 

Figure 4.3.8 displays the output obtained after running the SAS DMVQ procedure. A 

table of the following statistics for each attribute is created: 

 

• Total standard deviation 

• Pooled standard deviation 

• R square  

• R square Ratio 

• Pseudo f statistic 

 

In this analysis the overall R Square is 0.90 with a pseudo F statistics value of 1 000 

682. 
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4.4 BATCH SELF-ORGANIZING MAPS 

As in the case of the k-means clustering, self organization can also be performed as a 

deterministic procedure. A deterministic self organizing map has been proposed by 

Kohonen (2001) as the Batch map. In this procedure each map node is mapped to a 

weighted average of the fixed data points, based on the current winner assignment. This 

important learning rule is named “Batch map”, which is based on fixed point iteration, 

and is significantly faster in terms of computation time. 

 

4.4.1 Methodology 

The Batch map principle is use to define learning as a succession of certain generalized 

conditional averages over subsets of selected strings. These averages over the strings are 

computed as generalized medians of the strings. 

Let  

S be a fundamental set of some items x(i)  

and  

d[x(i), x(j)] be some distance measure between x(i), x(j) ∈ S. 

The set median m over S shall minimize the expression 

 D = ∑
∈Six

mixd

)(

]),([        (4.16) 

The reason for naming m the median is that it is relatively easy to show that the usual 

median of real numbers is defined by equation (4.16) whenever the distance measure 

satisfied the following:  

 d[x(i), x(j)] = |x(i)- x(j)|        (4.17) 

In the case above it was assumed that m belongs to the fundamental set S, however it is 

possible to find a hypothetical item m such that D attains its absolute minimum value. In 
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contrast to the set median the term generalized median is used to denote the value of m 

that gives the absolute minimum value for D as it was shown earlier that the 

convergence limits during the learning process were 

 mi (t+1) = mi (t) + hci(t) [x(t) - mi (t)]     (4.18) 

It is now useful to understand what the convergence limits mi
*
 represent. Assume that 

the convergence to some ordered state is true, then the expected values of  

mi (t+1)  and  mi (t)  must be equal. 

In other words in the stationery state  

 E{hci(x-mi
*
)} = 0 for all values of i 

In the simplest case hci(t) was defined as follows: 
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The convergence limit mi
* 
can be defined as follows: 

 mi
*
 = 

∫
∫

Vi

Vi

xdxp

xdxxp

)()(

)()(
       (4.19) 

where 

Vi  is the set of those values in the integrands that are able to update vector mi, in 

other words the winner node c for each x ∈ Vi must belong to the neighbourhood 

set Ni of cell i. 

The iterative process in which a number of samples of x is first classified into the 

respective Vi regions and the updating of the mi
* 

is made iteratively as defined by 

equation (4.19), can be expressed in the following steps (Kohonen 2001). 
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Firstly the training samples are assumed to be available when the learning begins. The 

learning steps can be defined as follows: 

 

Step 1:  For the initial reference vectors, take the first K training samples,  

where K is the number of reference vectors. 

Step 2:  For each map unit i, collect a list of copies of all those training  

samples x whose nearest reference vector belongs to unit i.  

Step 3:  Take for each new reference vector the mean over the union of the  

lists in Ni. 

 Step 4:  Repeat step 2 and step 3 until convergence or the maximum  

  iterations. 

 

If a general neighbourhood function hji is used and jx  is the mean of the x(t) in the 

Voronoi set Vj , then it shall be weighted by the  number nj of samples Vj and the 

neighbourhood function. 

 

The following equation is obtained: 

∑

∑
=

j

jij

j

jjij

*

i

hn

xhn

m       (4.20) 

where the sum over j is taken for all units of the self organizing map, or if hji is truncated 

over the neighbourhood set Ni in which it is defined. 

 

For cases in which no weighting in the neighbourhood is used, equation (4.20) becomes 
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∑

∑

∈

∈
=

i

i

Nj

j

Nj

jj

*

i

n

xn

m       (4.21) 

The above algorithm is very effective if the initial values of the reference vectors are 

already roughly ordered, even if they might not yet approximate the distribution of the 

samples. 

 It should also be noticed that the algorithm contains no learning rate parameter; 

therefore it has no convergence problems and yields stable asymptotic values for mi 

other than the Kohonen self organizing map. 

 

Better convergence may be achieved by specifying, in addition to Kohonen training, one 

or both of the Batch training options for Nadaraya-Watson smoothing or local-linear 

smoothing. Batch training often converges but sometimes does not. Any combination of 

the Kohonen, Nadaraya-Watson, and local-linear training may be specified but always 

applied in that order. 

 

The self organizing map works by smoothing the seeds in a manner similar to kernel 

estimation methods, but the smoothing is done in neighbourhoods in the grid space 

rather than in the input space (Mulier and Cherkassky 1995). This can be seen in a Batch 

algorithm for self-organizing map which is similar to Forgy's algorithm for Batch k-

means, but incorporates an extra smoothing process:  

 

Read the data, assign each case to the nearest seed using the Euclidean distance measure, 

and at the same time track the mean and the number of cases for each cluster. 

 

Do a nonparametric regression using ),( njK
s  as a kernel function, with the grid points 

as inputs, the cluster means as target values, and the number of cases in each cluster as a 

case weight.  
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Replace each seed with the output of the nonparametric regression function evaluated at 

its grid point.  

 

4.4.2 Analysis 

In this section the Batch self organizing map technique is applied to the 10% sample 

data from the Republic of South Africa 2001 Census. In the sample there are 905 748 

households and four attributes were selected to measure the dimension of poverty: 

access to basic services.  

 

The four attributes used in the analysis are the following:  

• access to water,  

• energy source for cooking,  

• toilet facilities and  

• refuse removal. 

The analysis is conducted using SAS Enterprise miner’s SOM/Kohonen node with the 

membership function proposed by Cheli and Lemmi (1995) applied to the four 

attributes. The data set used in this calculation is the same that was used in section 4.3.2 

in the Kohonen self organizing map analysis. 

 

In the SOM/Kohonen node general tab as shown in figure 4.4.1, the method selected is 

the Batch self organizing map. The number of columns and the number of rows in the 

map need to be selected before the analysis can be run. There are no restrictions on the 

number of rows and the number of columns. The number of columns does not have to be 

the same as the number of rows. In this application the number of rows is set to three 

and the number of columns is set to three. The number of clusters is dimmed when the 

Batch self organizing map is selected. In this calculation the mapping is made onto a 

grid, where the number of rows and the number of columns need to be determined 

before the analysis is run.   
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Figure 4.4.1: The SOM/Kohonen node: General tab 

 

 

Figure 4.4.2 shows the kernel shape options neighbourhood options sub tab of the 

advanced tab in the SOM/Kohonen node . In the kernel shape the default selection is 

Epanechnikov which has a value of 1. The uniform option has a value of 0. For the bi-

weight the value is 2 and a value of 3 applies to the tri-weight. The other option allows 

the user to set a non negative value. 

 

Figure 4.4.2: The SOM/Kohonen node: Advanced tab 
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Figure 4.4.3: The SOM/Kohonen node: Advanced tab 

 
 

Figure 4.4.3 shows the kernel metric options neighbourhood options sub tab of the 

advanced tab in the SOM/Kohonen node. The default selection for the kernel metric is 

max with a value of 0. The other metrics available are city block (value is 1), Euclidean 

(value is 2) and the other (a non negative value is supplied). 

 

Figure 4.4.4: The SOM/Kohonen node: Neighbourhood size options 

 
 

Figure 4.4.4 shows the size options of the neighbourhood options sub tab of the 

advanced tab in the SOM/Kohonen node. The neighbourhood size must be greater than 

or equal to zero.  
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Using the options button the initial size can be set using the following: 

Default size = 






2

)Columns,Rows(
max,5Max .  

The final size is 0 and the number of steps to reach the final size is 1000, with the 

number of iterations to reach the final size set to 3. 

 

The SOM/Kohonen node is run for the Batch self organizing map analysis with the 

above-mentioned settings and the following results are obtained: 

• The Map Tab contains a topological mapping of all the input attributes to the 

clusters and a plot of the input means for all the attributes that were used in the 

analysis. 

• The Variables Tab lists all the input attributes that are used in the Batch self 

organizing map analysis. 

• The Statistics tab displays information about each segment in a tabular format. 

• The Distance Tab provides a graphical representation of the categorical attributes 

and interval attributes for each segment. 

• The Output Tab displays the output that is generated from running the underlying 

SAS DMVQ procedure. 

Figure 4.4.5 shows the Map tab of the Batch self organizing map results with the 

topological mapping on the left and the plot of the input means for the four attributes on 

the right. The row and column coordinates in the topological map correspond to the 

cluster numbers, for example , the coordinates for cluster number 2 are row 1, column 2, 

and the coordinates for cluster number 7 are row 3, column 1. 
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Figure 4.4.5: SOM/Kohonen node: Map tab 
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The clusters in the topological map are colour coded by the frequency counts over all the 

input attributes. The colours in the map legend correspond to the frequency count in the 

clusters. In this analysis, cluster number 1 has the highest frequency and this segment is 

the darkest coloured in the topological map. 

 

The grid plot on the right of the topological map in figure 4.4.5 displays a plot of the 

input means for the four attributes that are used in the analysis over all the clusters. The 

overall input means for each attribute are represented by the small squares in the plot. 

All the input means are normalized to fall within a range of 0 to 1. 

 

The attributes in the grid plot are arranged from the attribute with the largest input 

means on the top. In this case the attribute “access to water” has the highest normalized 

input mean and is listed first. The attribute “energy source for cooking” has the smallest 

normalized input mean and is listed last.  

 

Figure 4.4.6: SOM/Kohonen node: Variables tab 

 

 

In figure 4.4.6 the four input attributes that were used in the SOM/Kohonen node to 

perform the Batch self organizing map analysis are listed. For each attribute, an 

importance value is computed as a value between 0 and 1 to represent the relative 

importance of the given attribute to the formation of the clusters.  

 

Attributes that have the largest contribution to the cluster profile have importance values 

closer to 1. In this analysis the attribute “toilet facilities” has the highest importance 
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value of 1. The attributes “access to water” and “energy source for cooking” has 

importance values very close to 1, suggesting that they have also contributed to the 

cluster formation.  

 

Table 4.4.1: SOM/Kohonen node: Statistics tab 

 Segment Frequency  water Refuse Cooking Toilet Distance 

no deprivation 1 252 043 0.00 0.00 0.00 0.00 0.00 

very little deprivation 4 127 488 0.47 0.00 0.00 0.01 0.47 

little deprivation 7 76 209 0.38 0.00 0.60 0.02 0.71 

below average deprivation 5 24 042 0.47 0.00 0.00 0.76 0.90 

average deprivation 2 53 562 0.44 0.83 0.15 0.11 0.95 

above average deprivation 8 52 564 0.61 0.01 0.57 0.77 1.13 

extreme deprivation 3 114 838 0.66 0.84 0.28 0.72 1.32 

very extreme deprivation 6 102 569 0.65 0.83 0.92 0.50 1.49 

maximum deprivation 9 102 433 0.84 0.87 0.90 0.93 1.77 

 

Table 4.4.1 displays information about each cluster obtained from the statistics tab of the 

results browser in a tabular format. The segment number and the frequency (number of 

households) of each cluster are given in columns two and three. For each segment the 

mean of the input attribute is also given. The last column in table 4.4.1 is the Euclidean 

distance measure calculated from the segment means of each attribute to the centre of 

origin. The segments were then ranked according to the Euclidean distance. The 

segment with the smallest Euclidean distance is categorized as the segment with 

households that were the best off and the cluster with the largest Euclidean distance 

regarded as the segment with households that are worst off in terms of deprivation of 

basic services. 

 

Households that have a segment mean of zero for any attribute experience zero 

deprivation in that attribute. The segment means of all the attributes in segment 1 are 

very close to zero. In table 4.4.1 the first column describes the segments and segment 1 

is described as households experiencing zero deprivation. The maximum possible 

Euclidean distance measure is 2, (i.e. when the segment means for all the attributes are 

equal to one), segment 9 has an Euclidean distance measure of 1.771 and all its 
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households are described as experiencing maximum deprivation in basic services. Table 

4.4.1 shows the multidimensional measure of deprivation from households experiencing 

no deprivation to households experiencing maximum deprivation. There are 252 043 

households in segment 1 that experience no deprivation of basic services. Segment 9 has 

102 433 households that experience maximum deprivation of basic services, this can be 

described as the union measure of poverty where the households experience deprivation 

in all attributes. The middle seven segments experience the union measure of poverty, 

i.e. deprivation in at least one attribute. Segments in the first column of the grid 

experience less deprivation than segments in the last column. 

 

Figure 4.4.7: SOM/Kohonen node: Distance tab 
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Figure 4.4.7 shows the graphical representation of the size of each segment and the 

relationship among the segments. The axis in figure 4.4.7 is determined from multi-

dimensional scaling analysis. The segment centres are represented by asterisks and the 

circles represent the cluster radii. If there is only one household in a segment then this 

household is displayed as an asterisk. The radius of each segment is dependent on the 

most distant case in that segment. Segment 1 has the highest frequency of households, 

252 043 households and the smallest circle. This suggests that the distance between 

households in segment 1 is small. The radii in figure 4.4.7 might appear to indicate that 

the segments overlap but the self organizing map algorithm assigns each household to 

only one segment. 

 

Figure 4.4.8: SOM/Kohonen node: Map Tab 
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Figure 4.4.8 is the Map tab results for the Batch self organizing map, comparing the 

input means for segment 1 and segment 9 with the overall input means. In the 

topological mapping on the left of figure 4.4.8 segment 1 (row 1, column 1) and segment 

9 (row 3, column 3) are highlighted.  

 

The input plot on the right in figure 4.4.8 shows the input means of segment 1, segment 

9 and the overall input means. The plot ranks the attributes based on how spread out the 

input means are for the selected segments relative to the overall input means. The input 

means with the greatest spread, attribute “toilet facilities” is listed first and the input 

with the smallest spread, attribute “energy source for cooking”, is listed last. 

 

For segment 1, the input means for all the attributes are shown as zero. The input means 

are normalized to have a range of zero to one. This means that all the households in 

segment 1 are best off with respect to deprivation of basic services for the four 

attributes. 

 

For segment 9 the input means for all attributes are 1. This means that all the households 

in segment 9 are worse off with respect to deprivation of basic services for the four 

attributes. 

 

Figure 4.4.9 displays a three dimensional bar chart for the interval attribute “access to 

water”. The three dimensional bar chart displays the interval input attribute “access to 

water” on the T-axis, the segment number on the X-axis and the frequency within each 

segment on the Z-axis. The frequencies are calculated on the training data set and not on 

the entire data set. 

 

It can be seen that households in segment 1 experience zero deprivation, i.e. they all 

have flush toilets while the majority of households in segment 9 experience severe 

deprivation, that is, they have no toilet facilities. 
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Figure 4.4.9: SOM/Kohonen node: Profiles tab for water 

 
 

Segment 4 comprises of households that are in between, there are no households with 

flush toilets and no households with any toilet facilities. All the houses in this segment 

have alternative toilet facilities to flush toilets. This graphical representation clearly 

shows the multidimensional nature of poverty. There are many households that fall in 

between households that experience no deprivation and households that experience 

maximum deprivation.  

 

4.5 CONCLUSION 

In this chapter the Kohonen self organizing map node of SAS Enterprise miner was 

applied to the Republic of South Africa census sample data. For each method nine 

clusters or segments were created. Figure 4.5.1 shows the frequencies of each 

cluster/segment in a bar chart. The frequency of clusters created by the Kohonen vector 

quantization is the same as the Kohonen self organizing map. All three methods 

identified the same households as experiencing zero deprivation, very little deprivation, 

little deprivation and average deprivation. The differences emerge in the worst off 
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clusters. The Batch self organizing map identifies fewer households in the maximum 

deprivation. 

 

The final segments obtained for the Batch self organizing map are analysed further in 

this chapter.  Each of the 905 748 households are categorised according to a segment 

created in the Batch self organizing map analysis. This section shows how the results 

can be used in poverty alleviation programs and policy decisions. 

 

Figure 4.5.1 Bar chart for 9 clusters 
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In figure 4.5.2 the different shades of deprivation for the dimension “access to basic 

services” are plotted for each province. It can be seen that 62% of households in 

Western Cape experience no deprivation in basic services, while only 6% of households 

in Northern Province experience no deprivation in basic services.  
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The multidimensional measure of poverty created in this analysis can be clearly seen in 

figure 4.5.2. Poverty measurement can not be classified only as poor or not poor. For the 

provinces Mpumulanga, Eastern Cape, North West and Northern Province it can clearly 

be seen that many households experience the union definition of poverty. They 

experience deprivation in some attributes. This type of analysis allows for the 

monitoring of poverty among households. 

 

Figure 4.5.2: Bar chart for provinces 
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Table 4.5.1 shows the proportion of households within each province that experience 

deprivation. The provinces are ranked according to the highest proportion of households 

that experience no deprivation of basic services. 

 

This result is useful to measure the impact of a poverty alleviation program on a 

province or municipality. The table is calculated before the relief measures and then 

calculated again after a period of time and the proportion in each category is compared. 

This monitoring tool can measure the effectiveness of the poverty relief measure.  
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Table 4.5.1: Deprivation across the 9 provinces 

Province WC GP NC KZ FS MP EC NW NP 

no deprivation 0.62 0.42 0.31 0.26 0.19 0.15 0.14 0.14 0.06 

very little deprivation 0.04 0.04 0.07 0.07 0.07 0.08 0.05 0.10 0.05 

little deprivation 0.02 0.05 0.05 0.12 0.15 0.21 0.15 0.30 0.18 

below average deprivation 0.14 0.26 0.20 0.11 0.18 0.09 0.08 0.11 0.04 

average deprivation 0.03 0.03 0.07 0.03 0.07 0.02 0.02 0.02 0.01 

above average deprivation 0.01 0.01 0.04 0.13 0.06 0.21 0.11 0.14 0.37 

extreme deprivation 0.08 0.11 0.12 0.06 0.12 0.12 0.09 0.08 0.02 

very extreme deprivation 0.05 0.07 0.07 0.05 0.13 0.05 0.06 0.05 0.02 

maximum deprivation 0.01 0.01 0.05 0.17 0.03 0.08 0.29 0.06 0.25 

 

In figure 4.5.3 the different shades of deprivation are plotted for the four race groups in 

South Africa. One can clearly see the disparity between race groups in terms of access to 

basic services. The Indian community in South Africa is very small and mostly 

concentrated in a few cities. A large number of households in the rural areas are made up 

of the African community, many living without access to basic services.  

 

Figure 4.5.3: Bar chart for race groups 
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Figure 4.5.4: Bar chart for Africans across the 9 provinces 

Africans by Province

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GP WC NC KZ FS NW MP EC NP

Province

P
r
o

p
o

r
ti

o
n

maximum deprivation

very extreme deprivation

extreme deprivation

above average deprivation

average deprivation

below average deprivation

little deprivation

very little deprivation

no deprivation

 
 

Figure 4.5.4 shows the bar chart for the African race group across the nine provinces. 

The different shades of deprivation of basic services can clearly be seen. In the Eastern 

Cape and KwaZulu Natal a large proportion of households experience maximum 

deprivation in respect to basic services. African households in Gauteng experience a 

higher proportion of no deprivation than any other province. 

 

In figure 4.5.5 the bar chart is plotted for selected magisterial districts. Households in 

Roodepoort and Mitchell’s Plain experience no deprivation or very little deprivation, 

while households in Flagstaff experience maximum deprivation or extreme deprivation. 

The multidimensional measure of poverty can be used to monitor the effectiveness of a 

poverty relief program.  
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Figure 4.5.5: Bar chart for magisterial districts 
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Table 4.5.2 shows the proportion of households in the selected magisterial districts that 

was used to plot the bar charts in figure 4.5.5.  

 

The columns in table 4.5.2 are numbered from 1 to 9 to represent no deprivation to 

maximum deprivation respectively. 

 

Table 4.5.2: Deprivation cross magisterial districts 

 1 2 3 4 5 6 7 8 9 

Roodepoort 0.52 0.05 0.08 0.28 0.03 0.01 0.00 0.01 0.02 

Mitchell's Plain 0.49 0.03 0.01 0.29 0.13 0.04 0.00 0.00 0.01 

Boksburg 0.44 0.03 0.06 0.27 0.03 0.02 0.01 0.05 0.10 

Potchefstroom 0.28 0.13 0.11 0.26 0.06 0.02 0.02 0.04 0.08 

Vryheid 0.27 0.04 0.08 0.14 0.01 0.02 0.05 0.16 0.24 

Soweto 0.26 0.02 0.06 0.61 0.03 0.00 0.00 0.01 0.01 

Lydenburg 0.23 0.11 0.07 0.14 0.01 0.08 0.11 0.14 0.11 

Rustenburg 0.20 0.06 0.02 0.19 0.02 0.26 0.06 0.08 0.12 

Dannhauser 0.08 0.02 0.02 0.02 0.00 0.10 0.24 0.44 0.07 

Moutse 0.01 0.02 0.00 0.00 0.02 0.39 0.46 0.07 0.03 

Mahlabathini 0.12 0.01 0.02 0.06 0.01 0.11 0.15 0.24 0.29 

Mthonjaneni 0.06 0.02 0.03 0.03 0.02 0.04 0.05 0.29 0.46 

Flagstaff 0.00 0.00 0.01 0.01 0.01 0.05 0.07 0.41 0.44 
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To compare the different methods discussed in this study, all the households in the 

magisterial district of Rustenburg were selected. In the Republic of South Africa 10% 

sample of Census 2001, there were 10 574 households for Rustenburg. Table 4.5.3 

shows the 9 categories of the multi-dimensional measure of poverty for Rustenburg. The 

first column is the classification obtained using the Batch self organizing map. The 

second column is the results from the k-means cluster algorithm. The third column is the 

Kohonen vector quantization and the fourth column is the Kohonen self organizing map. 

The results from the Euclidean distance measure are shown in the last column. 

 

The first comparison will be made between the Batch self organizing map and the 

Kohonen self organizing map. In both methods 1 738 households are classified in the 

“no deprivation” category. The question then arises: do the methods select the same 

households? To answer this question a two way contingency table is calculated.  

 

Table 4.5.3: Magisterial district of Rustenburg: poverty categories 

 Batch Cluster VQ Kohonen Euclidean 

No deprivation 1 738 2 072 1 738 1 738 1 707 

Very little deprivation 1 709 1 965 1 709 1 709 1 803 

Little deprivation 958 619 958 958 1 221 

Below average deprivation 122 222 126 126 774 

Average deprivation 1 365 2 760 877 877 1 210 

Above average deprivation 232 249 228 228 585 

Extreme deprivation 2 987 641 658 658 1 485 

Very extreme deprivation 636 823 3 646 3 646 1 126 

Maximum deprivation 827 1 223 634 634 663 

Total 10 574 10 574 10 574 10 574 10 574 

 

Table 4.5.4 is the two way contingency for the 9 categories in the multi-dimensional 

measure of poverty for the Batch and Kohonen self organizing maps. In the first three 

categories both methods select exactly the same households. In the category “below 

average deprivation” 122 out of the 126 households are exactly the same. In the category 

“very extreme deprivation” the Kohonen self organizing maps method selects 3 646 

households compared to the 636 households selected by the Batch method.  
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The Kohonen method tends to bunch many households in the extreme poverty 

categories. The Nadaraya-Watson and local-linear smoothing performed by the batch 

self organizing map method classifies houses more evenly in the extreme poverty 

categories. 

 

Table 4.5.4: Cross tabulation: Kohonen and Batch self organizing maps 

Batch self organizing map Kohonen self organizing 

map 

1 2 3 4 5 6 7 8 9 

Total   

No deprivation 1 738 0 0 0 0 0 0 0 0 1 738 

Very little deprivation 0 1 709 0 0 0 0 0 0 0 1 709 

Little deprivation 0 0 958 0 0 0 0 0 0 958 

Below average deprivation 0 0 0 122 0 4 0 0 0 126 

Average deprivation 0 0 0 0 877 0 0 0 0 877 

Above average deprivation 0 0 0 0 0 228 0 0 0 228 

Extreme deprivation 0 0 0 0 446 0 0 212 0 658 

Very extreme deprivation 0 0 0 0 42 0 2 987 0 617 3 646 

Maximum deprivation 0 0 0 0 0 0 0 424 210 634 

Total 1 738 1 709 958 122 1 365 232 2 987 636 827 10 574 

 

Out of the 10 574 households in Rustenburg, 55% were classified in the same categories 

of poverty by both methods. A further 40% of the households were classified within one 

category.  

 

In the comparison between the k-means clustering and the Batch self organizing map, 

the two way contingency table was created as shown in table 4.5.5. The two methods 

select the same households in the first category of poverty. If one combines the first 

three categories of poverty, then 95% of the households are selected by both methods. 
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The difference arises in the middle categories. There are 1 365 households in the 

category “average deprivation” in the Batch method. The k-means cluster method 

categorises 675 of these households as “average deprivation”, it categorises 327 as “zero 

deprivation”, 83 as “extreme deprivation” and 194 as “very extreme deprivation”. 

 

Table 4.5.5: Cross tabulation: Batch self organizing map and k-means clustering 

Batch self organizing map k-means cluster 

1 2 3 4 5 6 7 8 9 

Total 

No deprivation 1 707 0 30 7 327 0 0 1 0 2 072 

Very little deprivation 0 1 570 393 0 2 0 0 0 0 1 965 

Little deprivation 27 133 337 17 74 31 0 0 0 619 

Below average deprivation 0 0 0 97 0 108 17 0 0 222 

Average deprivation 0 0 0 0 675 0 1913 92 80 2 760 

Above average deprivation 4 6 198 1 10 30 0 0 0 249 

Extreme deprivation 0 0 0 0 83 23 152 321 62 641 

Very extreme deprivation 0 0 0 0 194 1 391 219 18 823 

Maximum deprivation 0 0 0 0 0 39 514 3 667 1 223 

Total 1 738 1 709 958 122 1 365 232 2 987 636 827 10 574 

 

A similar comparison is obtained between the Batch self organizing map and the 

Euclidean distance measure. In the category “extreme deprivation” the Euclidean 

distance measure classifies 1 485 households. Table 4.5.6 shows how these households 

are classified by the Batch self organizing map.  
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Table 4.5.6: Comparison of poverty category extreme deprivation 

 Frequency Percentage 

No deprivation 0 0.00% 

Very little deprivation 3 0.20% 

Little deprivation 56 3.77% 

Below average deprivation 3 0.20% 

Average deprivation 223 15.02% 

Above average deprivation 82 5.52% 

Extreme deprivation 795 53.54% 

Very extreme deprivation 265 17.85% 

Maximum deprivation 58 3.91% 

Total 1 485 100.00% 

 

The Euclidean measure is a distance measure calculated from the origin to the 

household. The groupings of the categories are based on the length of the distance. All 

households on the arc created from the origin are grouped together; in this case the 

Euclidean distances between 1.3 and 1.5 are grouped in the category “extreme 

deprivation”. In spite of this spread, 53.54% of the households are correctly classified, 

while 17.85% of households are classified in the category above and 5.52% of the 

households are classified in the lower category. 
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5.1 INTRODUCTION 

 

The conclusions of this research are that poverty analysis and monitoring must be 

conducted on a multidimensional scale. Each attribute or dimension of poverty has 

grades and shades and should not be classified as poor or not poor. Poverty should 

not only be measured in monetary terms, non monetary aspects such as “access to 

basic services” are important. The multi-dimensional measure of poverty should not 

be aggregated to a single value but rather should be shown as shades or grades of 

deprivation.  

 

Poverty is a phenomenon whose study is commonly oversimplified and its 

manifestation perceived as dichotomous, consequently its analysis is conventionally 

based merely over the splitting of the population into two groups: poor and non-

poor, defined in relation to some chosen poverty line.  

 

As an alternative to the conventional methodology, this thesis recognises poverty as a 

fuzzy set to which all members of the population belong in varying degrees. This 

method succeeds in avoiding the oversimplification in capturing the various degrees 

of poverty which affect different persons determined by the different individual’s 

position in the income distribution.  

 

Multivariate analysis seems to be the most proper choice if the aim is investigating 

poverty and deprivation of a given population.  

 

The thesis attempts to assess the potential contribution of multi-dimensional analysis 

in terms of definition and measurement of poverty. Many studies have researched 

new approaches to provide poverty measures which account for multi-

dimensionality. The fuzzy approach starts by selecting welfare indicators, choosing 

the membership function, aggregating the data in an index and weighting the 

variables.  
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The research developed alternative methods for aggregating the data without the 

need for weighting the variables. Many studies have condensed the multidimensional 

measure of poverty into a single index for purposes of comparison. The self 

organizing map algorithm avoids aggregation by plotting the vector of poverty 

indicators onto a two dimensional mapping grid. 

 

This has reduced the need for the conceptual issue of how to counter multi-

dimensional poverty. Many studies raise the question of multi-dimensional poverty 

as the accumulation of deprivation in various attributes (the intersection approach) or 

the failure to access one or more of the dimensions of poverty (the union approach). 

Instead of creating a single index, several shades or quantum of poverty are created 

in this research to accommodate both the union and intersection approach to poverty.  

 

The number of segments developed provides a better view of the multi-dimensional 

aspects of poverty and deprivation and allows for an effective comparison of a 

poverty alleviation program on a group of households. The segments are created 

“before and after” for the households and a chi square test can measure the 

movement of households between segments, thus the effectiveness of the poverty 

program. 

 

Households in the first segment experience zero poverty and households in the last 

segment experience maximum poverty (the intersection approach) and all the 

segments in between experience poverty in at least one dimension (union approach 

of poverty). 

 

The distance measures provide for a ranking from the best off household to the worst 

off household in respect of selected dimensions of poverty. 

 

Chapter 1 gives a definition on poverty with the literature study on poverty 

measurement and special attention paid to poverty studies on South Africa. The five 

approaches to poverty are introduced; the fuzzy set approach, the distance function 
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approach, the information theory approach, the axiomatic derivations of 

multidimensional poverty indices and the Kohonen self organizing map.  

 

Chapter 2 discusses the fuzzy set approach. The fuzzy membership function was 

applied to the Republic of South Africa Census data. A comparison of the nine 

provinces was made in respect of the head count ratio and the multi-dimensional 

measure using fuzzy membership. 

 

Chapter 3 deals with the distance function approach. Fuzzy membership allows for 

categorical data to be analysed as continuous data, thus allowing for a ranking of 

each household according to a distance measure. The clustering technique was 

applied to created groups of households to demonstrate the union definition and the 

intersection definition of poverty. The clustering technique could not order the 

clusters in terms of deprivation 

 

Chapter 4 considers the self organizing map. In this section three techniques were 

applied to the Republic of South Africa Census sample data. The Kohonen vector 

quantization also created clusters that could not be ordered in respect of deprivation. 

The Kohonen self organizing map created segments that could be ordered. Segment 1 

comprised of the least deprived households in respect of basic services. This analysis 

could not order the segments accurately and also tended to group the worst off 

households together. The Batch self organizing map uses Nadaraya-Watson 

smoothing and local linear smoothing to create segments that are ordered. In a grid of 

3 rows and 3 columns the first segment comprises of households that are least 

deprived and the last segment comprises of households that experience maximum 

deprivation.  

 

The results from the batch self organizing map are further analysed to show how the 

multidimensional measure of poverty can effectively be used as a monitoring tool for 

poverty alleviation. 
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Finally, the methods described in this thesis will provide a viable poverty monitoring 

mechanism for developing countries. The multi-dimensional approach for measuring 

poverty is far more realistic than the traditional ones based on a single indicator of 

resources. This research will allow countries to measure and monitor poverty in a 

multi-dimensional manner by grouping together many dimensions and attributes of 

poverty. 
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