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3.1 INTRODUCTION 

Poverty is a multi-dimensional phenomenon with several dimensions. Many dimensions 

are divided into several attributes. An example of a dimension of poverty is access to 

basic services. This dimension can comprise of the following attributes: access to water, 

toilet facilities, refuse removal, energy source for heating, lighting and cooking. Another 

dimension could be housing with the attributes: number of rooms, type of walls and 

roof, condition of dwelling, etc. 

 

This chapter discusses the distance function techniques to combine attributes or 

dimensions of poverty of households using the Euclidean distance measure and the K-

Means clustering technique. 

 

The distance function is a concept widely used in Efficiency Analysis. It has however 

only rarely been applied to the analysis of household behaviour. Lovell et al. (1994) 

were the first to make such an attempt by taking a different approach to welfare 

measurement by employing distance functions. Deutsch and Silber (2005) employed 

these techniques in multivariate poverty analysis and their approach is applied in this 

section. 

 

Considering the concept of distance functions in the literature, a distinction has been 

made between input and output distance functions. In this study the discussion is limited 

to input distance functions. 

 

The distance function technique is borrowed from the production theory literature where 

it is used to measure efficiency. Consider a measure of the “distance” between a vector 

of the goods (functioning and capability) of a household and a comparison or yardstick 

vector. The distance function approach seeks to measure the amount by which the 

household’s set of attributes must be scaled up or down so that it has the same well-
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being as the yardstick. This tool is called a distance function in economics literature or a 

gauge function in mathematics literature. 

 

In mathematical notation the distance function is defined as follows: 

 }0d,W)dx(W:d{dmin)W,x(D *

ii >=≡      (3.1) 

where  

ix  is a vector listing a number of features of the i
th

 household’s 

circumstances,  

 

W  is the chosen weighting function,  

 

*
W  is the value of the weighting function for the yardstick, and 

 

d is the distance measure which shows the minimum amount by which a 

household’s circumstances would have to be scaled up or down so that it 

would be on a par with the  yardstick.  

 

The distance measure will depend on ix , W and *
W . If the objective is a measure of 

relative welfare then it makes sense to choose the yardstick to be the household with 

either the lowest or highest well-being and to enquire about scaling back, or scaling up 

of the attributes of each household so that they have the same level of well-being as the 

yardstick?  

 

To make it operational, a measure of well-being is required, essentially an aggregator 

function of the various household characteristics that represents the household’s welfare. 

This is the analogue of the classic utility function. Deutsch and Silber (2005) use the 

translog function which is estimated by normalizing on one of the characteristics.  
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Let xij be the membership function of household i, (i = 1, 2, ..., n), and attribute j, ( j = 1, 

2,..., m). Group the membership function for m attributes, ( q1, q2,...qm), in columns and 

the membership function for n households, ( p1, p2, ..., pn), in rows to obtain a data 

matrix X. 

 

  X = 


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       (3.2) 

Define the household with zero deprivation as follows: 

 BH = )xmax,,...xmax,xmax( im
i

i2
i

i1
i

     (3.3) 

Define the household with the maximum deprivation as follows: 

 WH = )xmin,,...xmin,,xmin,( im
i

i2
i

i1
i

     (3.4) 

The following three objective weights can be defined: 

• Mean Weight Method, 

• Entropy Weight Method, and 

• Critic Method. 

3.1.1 The Mean Weight Method 

The Mean weight method assigns equal weight to each criterion. A neutral attitude is 

reflected and the objectivity of the performance evaluation process is guaranteed.  

 

The Mean weight can be defined as follows: 

 MWj = 
m

1
        j = 1, 2, ..., m      (3.5) 
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3.1.2  The Entropy Weight Method 

Entropy is a measure of uncertainty in information and reflects the relative importance 

of its corresponding criterion in terms of the amount of the information it contains and it 

indicates the inherent contrast intensity of the corresponding criteria (Shannon and 

Weaver 1947).  

 

The Entropy weight method is defined as follows: 

 

 EWj = 

∑
=

m

1k

k

j

d

d
  j = 1, 2, ..., m      (3.6) 

where  

 dj = )p(log)p(
1j

ij2ij∑
=

−  for i = 1, 2, …,m, 

 pij = 
i

ij

v

x
, and  

 vi = ∑
=

n

1j

ijx . 

 

3.1.3 The Critic Method 

The Critic method was proposed by Diakoulaki et al. (1995), with the aim of 

determining the objective weights that incorporate the contrast intensity and conflict.  

 

The Critic method is defined as follows: 

 CWj = 

∑
=

m

1k

k

j

c

c
  j = 1, 2, ..., m      (3.7) 
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where 

 cj = sj )r1(
m

1k

jk∑
=

− , 

 sj is the standard deviation of the sample proportion, and 

 rjk is the linear correlation coefficient between vectors xj and xk. 

 

The Minkowski metric weighted distances from the household with zero deprivation is 

defined as follows: 

 

 WDBH = 

λ
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,   i = 1, 2, ..., n.  (3.8) 

where 

 wj is the weighted coefficient, and 

 λ is the Minkowski factor for the norm. 

 

The Minkowski metric weighted distances from the household with maximum 

deprivation is defined as follows: 

 

WDWH = 

λ
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,   i = 1, 2, ..., n.  (3.9) 

where 

 wj is the weighted coefficient, and 

 λ is the Minkowski factor for the norm. 

 

If λ=1, then the Minkowski distance is equal to the city block distance. If λ=2, then the 

Minkowski distance is equal to the Euclidean distance.  
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If λ=∞ then the Minkowski distance is equal to the Tchebycheff distance. Figure 3.1.1 

illustrates the Minkowski distance curves with different λ. A value for λ between the city 

block distance and the Eucliden distance is taken as λ =1.5.  

 

Figure 3.1.1: Distance curves for minkowski curves with different λ 

 

 

Consider the following example in which a sample of 6 households are represented by 2 

attributes, leisure time (X) and income (Y). Figure 3.1.2 shows the scatter plot of each 

household’s attributes.  

 

Figure 3.1.2: Scatter plot for attributes income and leisure time 
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The attribute leisure time is plotted on the x-axis in hours; the attribute income is plotted 

on the y-axis in thousands of rands. 

 

Let the aggregate measure of well-being be the geometric mean, X
0.25 

Y
0.25

, then 

household 6 becomes the worst off household and the best off household is household 2.  

 

In figure 3.1.3 the aggregate measure passes through the point for household 6 and 

shows all of the combinations of the measured attributes which give exactly these levels 

of aggregate well-being. The distance measures of relative well-being are given by the 

length of the arrow which connect each of the rest of the households to the reference 

welfare value curve. 

 

Figure 3.1.3: Scatter plot for attributes: worst aggregation curve  
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In figure 3.1.4 the aggregate measure passes through the point for household 2 and 

shows all of the combinations of the measured attributes which give exactly these levels 

of aggregate well-being. The distance measures of relative well-being are given by the 

length of the arrow which connects each of the rest of the households to the reference 

welfare value curve. 

 

Figure 3.1.4: Scatter plot for attributes: aggregation curve 

 

 

In table 3.1.1 the distance measures in the low reference column are those from figure 

3.1.3, where the worst off household is the reference household. Household 6 is the 

worst off, so their circumstances need only be multiplied by 1 (that is, remain 

unchanged) for them to remain the worst off. Household 2 is the best off, their 

circumstances need to be scaled back by the most (multiplied by 0.62) to reduce them to 

the same welfare value as household 6. 
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Table 3.1.1: Distance measure for best and worst case aggregation curves 

D(xi ,W) 
Household 

Low Reference High Reference 

1 0.70 1.13 

2 0.62 1.00 

3 0.70 1.14 

4 0.91 1.47 

5 0.79 1.28 

6 1.00 1.61 

 

The distance measures in the high reference column are those from figure 3.1.4 which 

use the best off household as the reference. Household 6 is the worst off household and 

has to be scaled up by 61% in order to reach the reference level. Since the two columns 

are based on the same welfare measure they agree on the ranking of the households.  

 

This approach is very easy to implement once an aggregating function is chosen. In this 

demonstration the aggregate curve, X
0.25

Y
0.25 

, was chosen. What would have happen if 

another aggregate curve, X
0.75 

Y
0.25

, had been chosen? Household 1 would have been the 

household with the highest standard of living and household 5 is the worst off household 

as shown in figure 3.1.5. 

 

The distances and ranking of the other households will be altered. The results depend 

upon data on household circumstances and the weighting formula. The difficulty lies in 

the dependence of the answers upon the weighting formula. In standard models of 

consumer behaviour the weighting function is essentially the household’s utility function 

rearranged in terms of income as a function of leisure for a given level of welfare.  
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Figure 3.1.5: Scatter plot for attributes: New aggregation curve 

 

 

Anderson et al. (2005) avoids the need to choose aggregation functions and removes the 

dependence of the final index on the choice of aggregation functions by calculating a 

lower bound on the distance measure of relative well-being. The shared properties of the 

distance function are monotonicity and quasi-concavity. Monotonicity means that the 

measured attributes are such that it is reasonable to expect that if the household had 

more of any of them, then their well-being would not decrease. Quasi-concavity means 

that as the level of some measured attribute rises, well-being rises at a non-increasing 

rate which is closely related to inequality version. 

 

The distance measure is defined as follows:  

}0,)(:{min)( *
>=≡ dWdxWddxD ii      (3.10) 

for all monotone, quasi-concave W. 
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Figure 3.1.6: Welfare curves for attribute A and attribute B 

 

 

The basic intuition is that welfare level sets, as shown in figure 3.1.6, of any aggregator 

with these properties are convex to the origin. A simple way of calculating bounds on 

the set of all possible curves in a finite dataset is proposed.  

 

The resulting distance measures reflect the minimum amount by which one would have 

to scale each household so that they shared equal ranking with the best and worst off 

household. They represent lower bounds on these measures for any way of choosing to 

weigh the various indicators as long as the weighting formula is monotone and quasi-

concave. In figure 3.1.6 the welfare curves are convex to the origin, and the horizontal 

and vertical lines in the graph denote the median cut off points for the two attributes 

which define the intersection and union sets of poverty measurement. The intersection 

set of poverty is the square a b c d. 
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Figure 3.1.7: Euclidean distance measure of poverty 

 

 

In this study it is proposed that the origin denotes zero poverty and the distance from the 

origin to the point on the scatter plot of the household can be considered a distance 

measure for poverty for the household as shown in figure 3.1.7. In the best situation, this 

distance measure should be zero, denoting no poverty or deprivation. 

 

The distance measure can be used to compare the relative poverty between two 

households. To use this approach the values of the X-axis and Y-axis need to be 

changed. For the best case to be 0 on the X-axis, the household leisure time is subtracted 

from the max value. Similarly for the Y-axis, each household income is subtracted from 

the maximum value. 
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The household with the maximum income and maximum leisure time will be at the 

origin (0, 0). In figure 3.1.7 the distance measure from household A to the origin is 

shorter than the distance measure from household B to the origin thus implying that 

household B experiences more poverty than household A. 

 

The fuzzy membership function allows categorical variables to be assigned a value 

between zero and one, therefore it can be treated as interval variables and a distance 

measure can be calculated for any household. The distance measure is calculated using 

the Euclidean distance and is discussed in the next section. 

 

3.2 THE EUCLIDEAN DISTANCE MEASURE 

3.2.1 Methodology 

The fuzzy membership function that is applied to the attributes of poverty allows the 

Euclidean distance measure to be used to measure poverty within a single dimension 

consisting of several attributes.  

 

The Euclidean distance measure will be explained using two attributes. The same 

explanation will apply to three attributes and similarly will apply to any number of 

attributes. The two attributes used in the explanation are “access to water” and “energy 

source for cooking”. The membership function is calculated according to the method 

proposed by Cheli and Lemmi (1995). 

 

Table 3.2.1 shows the cross tabulation between the membership functions of the two 

attributes access to water and energy source for cooking, for the 905 748 households 

from the Republic of South Africa Census 2001. The value zero represents no 

deprivation in that attribute while the value one represents maximum deprivation in that 

attribute. 
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Table 3.2.1: Membership function frequencies for attributes: Water and Toilet 

Cooking Water 

0 0.06 0.49 0.92 0.97 1 

Total 

0 263 005 5 993 14 487 4 713 3 384 846 292 428 

0.43 144 435 7 692 65 937 30 478 12 680 1 701 262 923 

0.58 19 324 2 599 40 418 28 579 2 987 1 514 95 421 

0.77 24 980 2 792 39 734 38 627 3 324 1 942 111 399 

0.8 4 151 780 4 169 11 333 1 054 736 22 223 

0.83 1 045 342 2 284 12 727 227 906 17 531 

0.84 951 452 1 646 2 174 100 165 5 488 

0.85 987 218 1 388 6 039 297 284 9 213 

0.95 3 410 1 273 7 013 45 624 797 2 655 60 772 

0.96 1 323 162 2 930 2 092 145 135 6 787 

1 4 536 617 9 144 6 182 715 369 21 563 

Total 468 147 22 920 189 150 188 568 25 710 11 253 905 748 

 

From table 3.2.1 it can be seen that there are 263 005 households that experience zero 

deprivation in both attributes and 369 households have no access to water and no energy 

for cooking. In between the worst case household and the best case household there are 

64 different combinations of “access to water” and “energy source for heating”. 

 

From the information in table 3.2.1 a scatter plot diagram (bubble plot) was drawn and 

the results are shown in figure 3.2.1. The ideal position for each household is to reach 

zero deprivation for each attribute. The points shown in the scatter point represent 

individual households. The household experiencing zero poverty or deprivation in each 

of the two attributes will be plotted on the origin (0, 0). The measure of the distance 

away from the origin for each household can be viewed as the measure of deprivation 

experienced by each household. This is only a relative measure to compare one 

household to another.  

 

The Euclidean distance measure can be used to rank the households from the worst 

deprived to the least deprived. There are 66 points in figure 3.2.1 and 66 different 

distance functions can be calculated. 
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Figure 3.2.1: Bubble plot of membership function for attributes water and cooking 

 

 
The general Euclidean distance formula can be reduced to the following equation for 

measuring relative deprivation because the Euclidean distance measure is from the 

household point back to the origin.  

 

The distance measure di can be defined as follows: 

 2

i2

2

i1i uud +=         (3.10) 

where 

 u1 is the membership function for the first attribute,  

 u2 is the membership function for the second attribute. 
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3.2.2 Analysis 

In table 3.2.2 the Euclidean distance measure for each household is calculated from a 

point plotted in a 6 dimensional space back to the origin. There are 222 577 households 

that have a Euclidean distance of zero and do not experience any deprivation in the six 

attributes, access to water, toilet facilities, energy source for heaters, energy source for 

lighting, energy source for cooking, and refuse removal. The membership function 

allows each household to be plotted on one of 94 325 points on a 6 dimensional space.  

 

In table 3.2.2 the Euclidean distances measures are grouped into 19 categories. If a value 

is equal to the class limit then it is included with the upper class limit. 

 

Table 3.2.2: Euclidean distance measures  

Euclidean distance Households 

0 222 577 

0.0-0.1 15 798 

0.1-0.4 4 795 

0.4-0.5 94 627 

0.5-0.6 13 345 

0.6-0.7 6 795 

0.7-0.8 38 587 

0.8-0.9 12 702 

0.9-1.0 26 419 

1.0-1.1 25 340 

1.1-1.2 38 341 

1.2-1.3 33 547 

1.3-1.4 27 674 

1.4-1.5 39 650 

1.5-1.6 33 487 

1.6-1.7 43 876 

1.7-1.8 42 805 

1.8+ 185 382 

 

 

 

 

 
 
 



 67 

Figure 3.2.2: Bar chart of frequency: Euclidean distance measures 

 

 

Figure 3.2.2 is a bar chart of the Euclidean distance measures and it clearly demonstrates 

the multidimensional measure of poverty. On the X-axis are the categories from table 

3.2.2. There are 222 577 households that experience zero deprivation in basic services, 

while 185 382 households experience severe deprivation.  

 

There are 17 categories in between clearly showing the different shades and grades of 

deprivation. This method can be used to measure the effectiveness of a poverty 

alleviation program for a particular city or town. The ideal situation is to get all the 

households into the zero category or as close to zero as possible. This measure can be 

calculated before a poverty alleviation program starts and then measured again to 

determine the effectiveness of the poverty relief measures.  
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3.3 K-MEANS CLUSTERING 

Cluster analysis is the most widely known descriptive data mining method. Clustering is 

a very common approach used in a wide array of problems. The aim is to partition a data 

set into a set of clusters. In the poverty data analysis the matrix of n households (rows) 

and m attributes (columns) is clustered into groups that are internally homogeneous and 

heterogeneous from group to group. 

 

Clustering is a general term that embraces various approaches, such as crisp clustering, 

fuzzy clustering, and mixture model-based clustering. In this analysis, the focus is only 

on K-Means cluster analysis. Although the general course of clustering is to maximize 

within-cluster similarity and/or between-cluster dissimilarity, various proximity 

measures (Euclidean, city-block, and Mahalanobis distances) and various distance 

criteria (within-cluster: average, nearest neighbor, and centroid distances; between-

cluster: single, complete, average, and centroid linkages) exist, causing clustering results 

of the same data set to vary from one analysis to another. 

 

The purpose of cluster analysis is to place objects into groups or clusters suggested by 

the data, not defined a priori. The objects in a given cluster tend to be similar to each 

other in some sense, and objects in different clusters tend to be dissimilar. Cluster 

analysis can also be used for summarizing data rather than for finding "natural" or "real" 

clusters; this use of clustering is sometimes called dissection (Everitt 1980).  

 

Clustering analysis has the advantage of being intuitively simple and easily 

communicated. It can be used to detect similarity and/or abnormality in environmental 

conditions. It makes no assumptions about the statistical distribution of the indicators. 

However, Clustering analysis may be influenced by the covariance structure of the data 

set, especially when the Euclidean distance is used. 
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3.3.1  Methodology 

Let xij be the membership function of household i, (i = 1, 2, ..., n), for attribute j, ( j = 1, 

2,..., m). Group the membership function for m attributes q1, q2,...qm in columns and the 

membership function for n households  p1, p2, ..., pn in rows to obtain a data matrix X. 

 

  X = 





















nm2n1n

m22221

m11211

x...xx

...........

x...xx

x...xx

       (3.11) 

 

If there are two attributes, attribute X and attribute Y, with membership functions (x1, 

y1) and (x2, y2) then the bivariate Euclidean distance between the two households is 

define as follows: 

 

  dE = 
2

21

2

21 )yy()xx( −+−       (3.12) 

 

If there are three attributes, attribute A, attribute B and attribute C. Suppose there are 

two households (x1, y1, z1) and x2, y2, z2), then the Minkowski distance between the two 

households is defined as follows: 

 

  dM = m
1 m

21

m

21

m

21 zzyyxx −+−+−     (3.13) 

where 

 m can be any positive integer, (1, 2, 3,...). 

 

When m=2 the Minkowski distance is the Euclidean distance and when m=1 the 

Minkowski distance is the city block distance. 
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There are two main ways to cluster data: partitive and hierarchical approaches. K-Means 

cluster analysis is a typical partitive clustering technique in which the data set is divided 

directly into a predefined number of clusters. This method implicitly assumes spherical 

shapes of the clusters. The main techniques of the non-hierarchical K-Means method are 

explained.  

 

The basic idea of K-Means clustering is to introduce seeds, or centroids, around which 

units may be attracted, forming a cluster. The maximum number of clusters, G, can be 

determined in advance.  

 

Non-hierarchical methods are fast, but they require the number of clusters to be chosen 

in advance. To avoid these disadvantages and to exploit the potential of both the 

methods, one can adopt two possible approaches. A sample of limited size is extracted 

from the data, and a hierarchical cluster analysis is carried out to determine G, the 

optimal number of clusters. Once a value for G is determined then the G means of the 

clusters are used as seeds in a non-hierarchical analysis of the whole data set using the 

number of clusters equal to G and allocating each observation to one the clusters. 

 

Alternatively a non-hierarchical analysis can be carried out on the whole data set with a 

large value of G and then to consider a new data set, made up of the G group means, 

each endowed with two measurements, one indicating the cluster size and one the 

dispersion within the cluster. An hierarchical analysis is then carried out on this data set 

to see whether any groups can be merged. It is essential to indicate the frequency and the 

dispersion of each cluster. Otherwise the analysis will not take account of clusters 

having different numbers and variables.  

 

The clustering node of SAS Enterprise Miner implements a mixture of both approaches 

in a three-stage procedure. Initially a non-hierarchical clustering procedure is run on all 

available observations. Then an interactive procedure is run; at each step of the 

procedure, temporary clusters are formed, allocating each observation to the cluster with 
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the seed nearest to it. Each time an observation is allocated to a cluster, the seed is 

substituted with the mean of the cluster, called the centroid. The process is repeated until 

convergence is achieved, namely, until there are no substantial changes in the cluster 

seeds. At the end of the procedure, a total of G clusters is available, with corresponding 

cluster centroids.  

 

In the second stage a hierarchical clustering method is run on a sample of the data to find 

the optimal number of clusters. As the number of clusters cannot be greater than G, the 

procedure is agglomerative, starting at G and working downwards. The previous cluster 

means are used as seeds, and a non-hierarchical procedure is run to allocate the 

observations to the clusters. A peculiar aspect of this stage is that the optimal number of 

clusters is chosen with respect to a test statistic, a function of the R
2
 index known as the 

cubic clustering criterion (CCC). 

 

A Gaussian distribution for the observations to be clustered cannot always be assumed. 

To derive a statistical test, certain assumptions need to be made. Suppose that the 

significance of a number of clusters equal to G needs to be verified, then the general 

assumption is to assume that, under the null hypotheses, Ho, the observations are 

distributed uniformly over a hypercube with dimension equal to the number of variables 

each cube representing a cluster, adjacent to the others. Under the alternative hypothesis, 

H1, clusters are distributed as a mixture of multivariate Gaussian distributions, centered 

at the mean of each cluster, and with equal variances.  

 

The cubic clustering criterion is a function of the ratio between the observed R
2 

and the 

expected R
2 

under the null hypothesis. From empirical Monte Carlo studies, it turns out 

that a value of the cubic clustering criterion greater than 2 represents sufficient evidence 

against the null hypothesis and, therefore, for the validity of the chosen G clusters. 

Although it is approximate, the criterion tends to be conservative and it may have a bias 

towards a low number of clusters. 
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Once the optimal number of clusters has been chosen, the algorithm proceeds with non-

hierarchical clustering to allocate the observations into the G chosen groups, whose 

initial seeds are the centroids obtained in the previous step. In this way, a final 

configuration of the observations is obtained. 

 

The clustering algorithm repeats the following two steps until convergence: 

 

(1) Scan the data and assign each observation to the nearest seed (nearest using 

the Euclidean distance), 

 

(2) Replace each seed with the mean of the observations assigned to its cluster. 

 

The distance function is the Euclidean distance, and Ward’s method is used to 

recompute the distances as the clusters are formed. 

 

The clustering methods that are discussed in this section are: 

• Average Method,  

• Centroid Method  

• Ward Method.  

In the Average method the distance between two clusters is the average distance 

between pairs of observations, one in each cluster. The average method tends to join 

clusters with small variances and is slightly biased towards producing clusters with the 

same variance. 

 

The distance measure between the two clusters, CK and CL, is defined as follows: 

 

 DKL = ),(
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∈∈

      (3.14) 
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If   

d(x,y) =|x-y|
2
  , 

then the distance measure can be defined as follows: 

DKL =   ║ KX  - LX ║
2  

 + 
L

L

K

K

N

W

N

W
+       (3.15) 

Where 
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−= , 

 CK is th K
th

 cluster subset (1, 2,…,n), 

 NK is the number of observations in CK , and 

 KX  is the mean vector for cluster CK . 

 

The combinatorial formula is  

 

 
M
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N

DNDN
D

+
=        (3.16) 

In the Centroid cluster method the distance between two clusters is defined as the 

squared Euclidean distance between their centroids or means. The centroid method is 

more robust to outliers than most other methods but in other respects may not perform as 

well as the Ward’s method or the average method.  

 

The distance between the two clusters is defined as follows: 

 

 DKL =   ║ KX  - LX ║
2  

         (3.17) 
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If the distance measure between observations x and y is  

 d(x,y) = |x-y|
2
   

then the combinatorial formula is 

 

 
2

M
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M
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N

DNN

N

)DNDN(
D −

+
=      (3.18) 

 

In the Ward clustering method the distance between two clusters is the ANOVA sum of 

squares between the two clusters summed over all the variables. At each generation, the 

within cluster sum of squares is minimized over all partitions obtainable by merging two 

clusters from previous generation. The sums of squares are easier to interpret when they 

are divided by the total sum of squares to give proportions of variances. Wards method 

tends to join clusters with a small number of observations and it is strongly biased 

towards producing clusters with roughly the same number of observations. Ward’s 

method joins clusters to maximize the likelihood at each cluster with equal spherical 

covariance matrices and equal sampling probabilities. 

 

The distance between two clusters is defined as follows: 

 DKL = BKL = 

LK
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11

2

+

−

       (3.19) 

If   

d(x,y) = (1/2) |x-y|
2
   

then, the combinatorial formula is 
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3.3.2 Analysis 

In this section the cluster node of Enterprise Miner is applied to the 10% sample data set 

of the Republic of South Africa 2001 census. There are 905 748 households in the 

sample and 6 attributes were selected for the analysis. The analysis was conducted using 

SAS Enterprise Miner’s Cluster node The clustering technique is illustrated using the 

following six attributes to measure the dimension of poverty: access to basic services. 

• access to water,  

• toilet facility, 

• energy source for cooking,  

• energy source for heating,  

• energy source for lighting, and  

• refuse disposal.  

In this section of the analysis two calculations are performed. In the first calculation the 

number of clusters is set to automatic and the clustering algorithm determines the 

number of clusters. In the second calculation the number of clusters are set to user 

specified, thus the number of clusters need to be determined a priori.  

 

The automatic selection of the number of clusters works as a two step process. In the 

first step PROC DMVQ is run on the preliminary sample to create initial clusters, 

usually the maximum number of clusters as specified. In the second step PROC 

CLUSTER is run, using the means of the initial clusters as input. The smallest number 

of clusters that meet one of the following two criteria is selected. Firstly, the number of 

clusters must be greater than or equal to the minimum number of clusters specified in the 

selection criterion or alternatively, the cubic clustering criterion exceeds the set value.  

 

The default value setting for the cubic clustering criterion is three. 
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Figure 3.3.1: Input data set: Data tab 

 

 

In figure 3.3.1 the data set used in this calculation is shown to have 905 748 rows which 

represent the number of households and 7 columns which represent the six attributes and 

an identification variable called serial. The metadata sample is set at 2 000 and is used to 

identify categorical and interval variables. This data set is used for all the calculations in 

this chapter. 

 

Figure 3.3.2: Input data set: Variables tab 

 

 

The names of the attributes are displayed under the variables tab in figure 3.3.2. The 

model role for the attributes is set to input, that is, they will be used in the clustering 

procedure. The model role for serial number of each household is set to id and will not 
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be used in the clustering process. For the column measurement all the attributes are set 

to interval, this allows the clustering algorithm to treat the attributes as continuous 

variables. Figure 3.3.2 also displays the SAS format and informat values. 

 

Figure 3.3.3: Input data set: Interval variable tab 

 

 

In the data set the columns are the membership function for the attributes as proposed by 

Cheli and Lemmi (1995). As seen in figure 3.3.3 the membership function values for all 

attributes range from zero to one. A mean closer to zero indicates that many households 

do not suffer severe deprivation in that attribute. The standard deviation shows the 

spread of the membership values. The attributes “refuse removal” and “toilet facilities” 

have higher means and standard deviations than the other attributes, indicating that there 

are many households experiencing severe deprivation in these attributes. 

 

Figure 3.3.4: Cluster node: cluster tab 
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Before the SAS Enterprise Miner clustering node can be run, certain options need to be 

selected. The first is the number of clusters, the second is the clustering criterion and the 

third is the clustering method. Many of the other settings are taken as default. In this first 

calculation the number of clusters is set to automatic as shown in figure 3.3.4. 

 

Figure 3.3.5 shows the selection criteria tab of the seeds cluster in the cluster node. The 

clustering method must be selected. There are three different clustering methods, 

(Average, Centroid and Ward), that are available. For this calculation the Ward 

clustering method is selected. The maximum number of clusters is set to 40, the 

minimum number of clusters is set to 2 and the minimum cluster size is determined by 

the training value.  

 

Figure 3.3.5 Cluster node: Cluster tab  

 

 

Under the seeds tab the clustering criterion needs to be selected. Figure 3.3.6 shows the 

different clustering criterion that can be used in the calculation. The mean absolute 

deviation requires the number of bins to be specified. (The default number is 100). The 

Modified Ekblom-Newton criteria require the p
th

 power to be specified. The p
th

 power 

can range between one and two with the default value of 1.5 and a maximum of 20 

iterations.  
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Figure 3.3.6: Cluster node: Clustering criterion  

 

 

The least squares criteria minimize the sum of squared distances between the data points 

and the cluster means by performing several iterations. The fast option in the least 

squares criteria limits the iterations to one. The midrange criterion minimizes the 

midrange distances between the data points and the cluster means. The least squares 

(fast) method was selected as the clustering criterion.  

 

Figure 3.3.7: Cluster node: Seed replacement  

 

 

The initial sub tab of the seed tab in the cluster node as shown in figure 3.3.7 is used to 

specify how the cluster seed are initialized. If the incremental training for one pass is 
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selected then the seeds are allowed to drift as the algorithm selects initial seeds. The 

initial seeds must be complete cases, that is, no missing values in the training cases. The 

seeds are required to be separated by a Euclidean distance as specified by the minimum 

distance between seeds and are usually chosen as far apart as possible. To accomplish 

this, the seed replacement is set to full. If the seed replacement is selected as none then 

the initial seeds for the n clusters are the first n complete observations in the data set. 

While this option yields faster computation time, good clusters are not always obtained. 

 

If partial is selected then only the seeds that do not meet the minimum distance 

requirement are replaced.  In the random seed replacement the cluster seeds are 

randomly selected complete cases. 

 

In this calculation the seed replacement is selected as Full with the minimum distance 

between seeds set as zero. 

 

Figure 3.3.8: Cluster node: Computation of cluster seeds 

 

 

In the final sub tab of the Seeds tab of the cluster node the stopping criteria for 

generating cluster seeds are stipulated as shown in figure 3.3.8. The maximum number 

of clustering iterations is set as 1 and the convergence criterion is set as 0.0001. No 

minimum cluster size is specified. 
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The SAS cluster node is run for the cluster analysis with the above mentioned settings 

and the following results are obtained: 

• The partition tab of the clustering results provides a graphical representation of 

key characteristics of the clusters from the training data. 

• The variable tab lists all the input variables that are used in the clustering 

analysis. 

• If there are more than three clusters the distance tab of the clustering results 

provides a graphical representation of the size of each cluster and the relationship 

among the clusters. 

• The profiles tab displays a three dimensional bar chart of the interval input 

variables that were in the training sample data. 

• The statistics tab displays a table of clustering statistics produced by PROC 

DMVQ.  

• The cubic clustering criteria plot tab displays a graphic chart of the number of 

clusters against the training data set’s cubic clustering criterion. 

• The output tab displays the output obtained from running the SAS procedures. 

 

Figure 3.3.9 shows the partition tab of the cluster results. On the left side of figure 3.3.9 

is a three-dimensional pie chart with slice, colour and height with the following settings: 

• Slice width is set to standard deviation, which is the root-mean-square standard 

deviation (root mean square distance) between cases in the cluster. 

• Height is set to frequency. 

• Colour is set to radius, which is the distance of the furthest cluster member from 

the cluster seed. 

Each pie slice represents a cluster or segment. Each segment is labeled with a number, in 

this case from one to three. Cluster one has the highest frequency of 455 412 households 

and cluster three has the lowest frequency of 147 074 households.  
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Figure 3.3.9: Cluster Node: Cluster Tab Selection Criteria 
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A grid plot of the input means for the attributes that are used in the clustering analysis 

over all the cluster segments is displayed on the right hand side of the figure 3.3.9. The 

input means in the grid plot are normalized to fall within the range from 0 to 1. The 

normalized mean is the mean divided by the maximum value in the attributes. 

 

The input means plots on the right of figure 3.3.9 display the input means for the 

variables that were used in the clustering analysis over all of the clusters. The input 

means are normalized using the following scale transformation function: 
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=  

To explain the formula consider an example with five input variables  

Yi= Y1, Y2, .., Y5 

and three clusters  

C1, C2, and C3. 

Let the input mean for variable Yi in cluster Cj be represented by ijM .  

 

Then the normalized mean, or input mean, ijSM  is defined as follows: 
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The normalized means of the attributes as shown in figure 3.3.9 can only take on values 

between zero and one. 
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Figure 3.3.10: Cluster node results: Partition tab 

 

 

The variable tab in the cluster results browser lists all the input variables that are used in 

the clustering analysis as shown in figure 3.3.10. For each input variable an importance 

value is calculated as a value between zero and one. If an input variable has an 

importance value of zero, this simply means that the input variable was not used as a 

splitting variable when the cluster analysis ran. It does not mean that this input variable 

should be dropped.  

 

In figure 3.3.10 it can be seen that the attribute toilet has an importance value of one and 

none of the attributes have an importance of zero, that is, all the attributes were used in 

the cluster process. 

 

In figure 3.3.11 the cubic clustering criterion is plotted on the Y-axis and the number of 

clusters plotted on the X-axis. In the cluster node the minimum number of clusters was 

set at 2 and the maximum number of clusters was set at 40 with the cubic clustering 

criterion cut-off value set at 3. In this analysis the cluster node automatically selected 3 

as the number of clusters according to the cubic clustering criterion cut-off value. If 

cubic clustering criterion cut-off value is increased more clusters will be created. 
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Figure 3.3.11: Cluster node results: CCC plot  

 

 

Table 3.3.1 displays information about each cluster obtained from the statistics tab of the 

cluster results in a tabular format. The cluster number and the frequency (number of 

households) of each cluster are given in columns one and two. For each cluster the mean 

of the input attribute is also given. The last column in table 3.3.1 is the Euclidean 

distance measure calculated from the cluster means of each attribute to the centre of 

origin. The three clusters were then ranked according to the Euclidean distance.  

 

Table 3.3.1: Cluster node results: Statistics tab  

Cluster Frequency  Water Refuse Cooking Heating Lighting Toilet Distance 

1 455 412 0.17 0.03 0.10 0.12 0.09 0.03 0.25 

3 147 074 0.65 0.45 0.20 0.15 0.17 0.59 1.03 

2 303 262 0.70 0.79 0.76 0.75 0.49 0.65 1.71 
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Figure 3.3.12 Bar chart: Three clusters. 
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Figure 3.3.12 shows the frequencies of the three clusters created in the above analysis. 

Cluster 1 has 455 412 households and is labeled no deprivation with cluster 3 labelled 

some deprivation with 147 074 households. The worst off cluster is cluster 2 with 303 

362 households and labeled maximum deprivation. 

 

Figure 3.3.13: Cluster node results: Output tab 
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In figure 3.3.13 the statistics for the attributes obtained from the output tab of the cluster 

results are shown. The SAS procedure FASTCLUS is run and the pseudo F statistic is 

859. The figure also shows the R Square value for each attribute. The R Square for all 

the attributes are fairly high, with the attribute water having the lowest R Square of 0.83. 

 

The clustering algorithm created three clusters; therefore the distance tab results are in a 

table instead of a plot. Figure 3.3.14 shows the table of distances between the three 

clusters. Cluster 1 is furthest from cluster 2. If there were more than three clusters the 

Cluster Node results will produce a graphical representation for the distances between 

clusters. 

 

Figure 3.3.14: Cluster node results: Distance tab 

 

 

The three dimensional bar chart shown in figure 3.3.15 is for a random sample of 2000 

households. The membership function for the attribute “toilet facilities” is shown on the 

X-axis and the numbers of the clusters are shown on the Y-axis with the height denoting 

the frequency. The ALL cluster shows the overall total.  

 

The bar charts also show that cluster 1 consists of households that are least deprived in 

respect to the attribute “toilet facilities” while cluster 2 consists of households that are 

most deprived. 
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Figure 3.3.15: Cluster node results: Profiles tab  

 

 

In the second calculation the number of clusters in the cluster node is set to nine as 

shown in figure 3.3.16. The data sets are the same that were used in the previous section, 

that is, 905 745 households with the following six attributes:  

• Access to water,  

• Toilet facilities,  

• Energy source for heating,  

• Energy source for cooking,  

• Energy source for lighting, and  

• Refuse disposal.  
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Figure 3.3.16: Cluster node results: Partition tab for 9 clusters  

 

 

When the number of clusters is set to user specified, the selection a criterion does not 

apply and a value for the cubic clustering criterion is not calculated.  

 

The cluster node is run and the following results are obtained. Figure 3.3.17 shows the 

partition tab of the cluster results. The three dimensional pie chart on the left of figure 

3.3.17 shows 9 clusters as specified. The grid plot of the input means, shown on the right 

hand side of figure 3.3.17 shows the overall input means as well as the input means for 

cluster 7 and cluster 3.  

 

From figure 3.3.17 it can be seen that all households in cluster 7 have electricity, piped 

water, and flush toilets while the households in cluster 3 do not have electricity for 

lighting, do not have flush toilets and have no access to tap water.  

 

A comparison of the input means is made for the best cluster which is cluster 7 and the 

cluster which has the most deprived households is cluster 3, and as observed before the 

best cluster has an input means of zero or very close to zero for all the attributes. In the 

comparison it can be seen that lighting is the variable that has the greatest spread and 

shown in figure 3.3.17 lighting is the first input means and heating has the smallest 

spread and is shown last. 
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Figure 3.3.17: Cluster node results: Partition tab for 9 clusters  

 

 

Figure 3.3.18 shows the variable tab in the cluster results browser, listing all the input 

variables that are used in the clustering analysis. The attribute “refuse removal” has the 

highest value of importance. The attributes “access to water”, “toilet facilities” and 

“energy source for heating” also have very high value of importance indicating that they 

contributed to the cluster formation. 

 

Figure 3.3.18: Cluster node results: Variables tab for 9 clusters  
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Table 3.3.2: Cluster node results: Statistics tab for 9 clusters 

 Cluster  Freq Water Refuse Cooking Heating Lighting Toilet Dist 

no deprivation 7 263 553 0.01 0.06 0 0.01 0 0.01 0.06 

very little deprivation 1 148 046 0.45 0 0.11 0.07 0.02 0.01 0.47 

little deprivation 5 52 898 0.36 0.07 0.35 0.9 0.01 0.16 1.05 

below average deprivation 2 47 690 0.57 0.02 0.31 0.19 0.3 0.77 1.07 

average deprivation 6 95 697 0.65 0.83 0.23 0.18 0.03 0.6 1.25 

above average deprivation 4 36 343 0.45 0.02 0.53 0.64 0.98 0.21 1.39 

extreme deprivation 9 106 131 0.68 0.81 0.86 0.81 0.06 0.67 1.72 

very extreme deprivation 8 73 979 0.72 0.84 0.81 0.69 0.99 0.49 1.89 

maximum deprivation 3 81 411 0.78 0.83 0.74 0.76 0.99 0.93 2.07 

 

Table 3.3.2 displays information on the 9 clusters obtained from the statistics tab of the 

results browser in tabular format. The cluster number and the frequency (number of 

households) of each cluster are given in columns two and three. For each cluster the 

mean of the input attribute is also given. The last column in table 3.3.2 is the Euclidean 

distance measure calculated from the cluster centroids of each attribute to the centre of 

origin. The clusters are ranked according to the Euclidean distance. The cluster with the 

smallest Euclidean distance is categorized as the cluster with households that were the 

best off and the cluster with the largest Euclidean distance regarded as the cluster with 

households that are worst off in terms of deprivation of basic services. 

 

Households that have a cluster mean of zero for any attribute experience zero 

deprivation in that attribute. The cluster means of all the attributes in cluster 1 are very 

close to zero. In table 3.3.2 the first column describes the clusters and cluster 7 is 

described as households experiencing zero deprivation. The maximum possible 

Euclidean distance measure is the square root of six, 2.45, (that is, when the cluster 

means for all the attributes are equal to one),  

 

Cluster 3 has an Euclidean distance measure of 2.07 and all its households are described 

as experiencing maximum deprivation in basic services. Table 3.3.2 shows the 

multidimensional measure of deprivation from households experiencing no deprivation 

to households experiencing maximum deprivation. There are 263 553 households in 

cluster 7 that experience no deprivation of basic services. Cluster 3 has 81 411 
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households that experience maximum deprivation of basic services, this can be 

described as the union measure of poverty where the households experience deprivation 

in all attributes. The other seven clusters experience the union measure of poverty, i.e. 

deprivation in at least one attribute.  

 

Figure 3.3.19: Bar chart: Nine clusters 
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In figure 3.3.19 the frequencies for each category of deprivation is plotted as a bar chart.  

The first bar represents households that experience no deprivation.  The middle seven 

clusters comprise of households that experience different degrees of deprivation. 

 

If there are more than three clusters the distance tab in the clustering results browser 

provides a graphical representation of the size of each cluster and the relationship among 

the clusters as shown in figure 3.3.20 

 

The graph axis is determined from multidimensional scaling analysis, using a matrix of 

distances between cluster means as input. The asterisks represent the cluster centre and 

the circles represent the cluster radii. A cluster that has only one case is represented as 

an asterisk. The radius of each cluster depends on the most distant case in that cluster 
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and cases may not be uniformly distributed within the clusters, thus it may appear that 

clusters overlap. This is in fact not true since each case is assigned to one cluster only. 

Figure 3.3.20 clearly shows that cluster 7 comprises of households that are least 

deprived while cluster 3 comprises of households that are most deprived in terms of 

basic services. 

 

Figure 3.3.20: Cluster node results: Distance tab for 9 clusters 

 

 

The three dimensional bar chart shown in figure 3.3.21 is for a random sample of 2 000 

households. The membership function for the attribute “water” is shown on the X axis 

and the numbers of the clusters are shown on the Y axis with the height denoting the 

frequency.  
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Figure 3.3.21: Cluster node results: Profiles tab for 9 clusters 

 

 

The ALL cluster shows the overall total. The bar charts also show that cluster 7 consists 

of households that are least deprived in respect to the attribute “water” while clusters 3 

and 8 consists of households that are most deprived. 

 

Table 3.3.3: Cluster node results: Output tab for 9 clusters 

Attribute Total STD Within STD R Square RSQ/(1-RSQ) 

water 0.33 0.17 0.73 2.73 

cooking 0.39 0.21 0.71 2.41 

heating 0.38 0.16 0.83 4.97 

lighting 0.41 0.11 0.92 13.16 

toilet 0.39 0.18 0.77 3.53 

refuse 0.41 0.16 0.85 5.89 

overall 0.38 0.16 0.81 4.31 
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In table 3.3.3 the statistics for the attributes obtained from the output tab of the 9 cluster 

results are shown. The SAS procedure FASTCLUS is run and some of the statistics that 

the cluster algorithm calculated for each attribute is shown. 

 

The overall R Squared is 0.81 and the Pseudo F statistics is 488 879. The pseudo F 

statistics measures the difference between clusters. The number of clusters should be 

chosen such that the information loss is limited, that is, when the pseudo t
2
 is maximum 

plus one and the pseudo F is maximized (Luzzi et al. 2005). 

 

3.4 CONCLUSION 

This chapter shows that the Euclidean distance measure removes the need for an 

aggregation function to measure and compare individual household poverty. The 

techniques derived can be used to rank households in respect of poverty measurement. 

The clustering algorithm generates clusters to demonstrate the multidimensionality of 

poverty measurement and combined the union approach and intersection approach to 

poverty measurement. The clusters that were created have no order in ranking the 

various depths and severity of poverty and deprivation experienced by households. This 

shortcoming is solved in the next chapter. 
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