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•"In the temple of science are many mansions ... and various indeed are they that dwell 

therein and the motives that led them there. 

"Many take to science out of a joyful sense of superior intellectual power; science is 

there own special sport to which they look for vivid experience and the satisfaction of 

ambition; 

many others are to be found in the temple who have offered the products of their brains 

on this altar for purely utilitarian purposes. 

Were an angel of the Lord to come and drive all the people belonging to these two 

categories out of the temple, it would be noticeably emptier but there would still be 

some men of both present and past times left inside ... If the types we have just 

expelled were the only types there were, the temple would never have existed any more 

than one can have a wood consisting of nothing but creepers ... 

. .. and those who have found favor with the angel ... are somewhat odd, 

uncommunicative, solitary fellows, really less like each other than the hosts of the 

rejected. 

"What has brought them to the temple ... no single answer will cover ... escape from 

everyday life, with its painful crudity and hopeless dreariness, from the fetters of one's 

shifting desires. A finely tempered nature longs to escape from this noisy cramped 

surroundings into the silence of the high mountains where the eye ranges freely through 

the pure still air and fondly traces out the restful contours apparently built for eternity." 

This is an excerpt from a speech given in 1918 by a young German scientist called 

Albert Einstein. 
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SUMMARY 


The South African Territories (SAT) types of foot-and-mouth disease virus (FMDV) 

show marked genomic and antigenic variation throughout sub-Saharan Africa. This 

variation is to a large extent geographically linked and requires therefore the use of 

custom-made vaccines. Adaptation of field isolates as vaccine strains is cumbersome, 

time consuming and expensive. A possible means of circumventing the adaptation 

process is to construct recombinant or chimeric FMD viruses, followed by the 

production of conventional, inactivated vaccine utilizing these viruses. The advantage 

of such a strategy would be the ability to manipulate the antigenicity of these viruses by 

substituting the antigenic coding regions (i.e. structural proteins) of a full-length eDNA 

clone of a suitable strain. 

Towards this objective the structural-protein-coding region (P1) of a SAT 2 vaccine 

strain, ZIMl7/83/2, was determined and compared with two other known SAT 2 PI 

regions. Five hypervariable regions were identified of which four are situated in VP 1. 

The cleavage sites for proteolytic processing and especially the regions adjacent to 

these sites, differ between types A and SAT 2. The genetic heterogeneity of two 

FMDV proteinases, the Leader and 3C, of representatives of six different serotypes, 

was subsequently investigated. The results revealed these genomic regions of the SAT 

viruses originating from southern Africa to be distinct from types A, a and C. 

Interestingly, it was also seen that the Leader and 3C proteinases of the SAT types are 

less variable than their European counterparts. These results were in contrast to that 

obtained for the structural proteins, which showed the SAT 2 PI region to be at least 2­

3 times more variable than that of types A, a and C. Despite the observed differences 

in the proteinases, a three-dimensional structural model for the Lb form of the 

ZIMl7/83/2 Leader proteinase predicted the three-dimensional fold of the enzyme to be 

conserved. 

A chimeric cDNA clone between types A and SAT 2 was constructed by inserting the 

external capsid-coding region of ZIMI7/83/2 into the genetic backbone of the Al2 
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cDNA clone. The subsequent evaluation of the resulting recombinant FMD VIruS 

indicated the virus to be immunogenically identical to the wild type ZIMl7/83/2. 

However, the recombinant virus was found to be a slower antigen producer and less 

stable than the wild type SAT 2. These characteristics make the recombinant FMD 

virus constructed in this study unsuitable for conventional vaccine production. 

Alternative means, such as the use of a SAT 2 cDNA clone, should be investigated. 
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