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SUMMARY

DESIGN AND IMPLEMENTATION OF HIGH-SPEEDALGORITHMS FORPUBLIC-KEY

CRYPTOSYSTEMS

The aim of this dissertation is to improve computational efficiency of modular

exponentiation-based public-key cryptosystems. The operational speed of these public-key

cryptosystems is largely determined by the modular exponentiation operation of the form

A = ge mod m whereg is the base,e is the exponent andm is the modulus. The required

modular exponentiation is computed by a series of modular multiplications.

Optimized algorithms are required for various platforms, especially for lower-end

platforms. These require the algorithms to be efficient and consume as little resources as

possible. In these dissertation algorithms for integer multiplication, modular reduction

and modular exponentiation, was developed and implemented in software, as required for

public-key cryptography. A detailed analysis of these algorithms is given, as well as exact

measurement of the computational speed achieved by each algorithm.

This research shows that a total speed improvement of 13% can be achieved on

existing modular exponentiation based public-key cryptosystems, in particular for the

RSA cryptosystem. Three novel approaches are also presented for improving the decryption

speed efficiency of the RSA algorithm. These methods focus on the selection of the

decryption exponent by careful consideration of the difference between the two primesp

andq. The resulting reduction of the decryption exponent improves the decryption speed by

approximately 45% .

Keywords: Public-key cryptosystems, RSA, modular exponentiation, modular multipli-

cation, modular reduction, RSA decryption, Montgomery reduction, Karatsuba-Ofman

multiplication, addition chains, Chinese remainder theorem.
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OPSOMMING

DESIGN AND IMPLEMENTATION OF HIGH-SPEEDALGORITHMS FORPUBLIC-KEY

CRYPTOSYSTEMS

The doel van hierdie verhandeling is om die verwerkingseffektiwiteit van modulêre

eksponensiëringsgebaseerde publieke-sleutel kriptostelsels te verbeter. Die operasionele

spoed van sulke publieke-sleutel kriptostelsels word oorwegend bepaal deur die modulêre

eksponensiërings operasie van die vormA = ge mod m waarg die basis,e die eksponent

en m die modulus is. Die vereiste modulêre eksponensiëring word bereken deur ’n reeks

modul̂ere vermenigvuldigings.

Optimale algoritmes word vereis vir verskeie platforms, spesifiek lae-skaal platforms

met beperkte rekenkundige vermoe. Die vereiste is dat algoritmes effektief moet wees

en so min hulpbronne moontlik gebruik. In hierdie verhandeling is algoritmes vir

heelgetal vermenigvuldiging, modulêre vereenvoudiging en modulêre eksponensiasie

ontwerp en in sagteware geı̈mplementeer, soos vereis vir publieke-sleutel kriptografie.

’n Gedetaileerde analise van hierdie algoritmes word voorsien, asook presisie-metings

van die verwerkingspoed wat behaal word vir elke algoritme. Hierdie navorsing toon

dat ’n totale spoedverbetering van 13% verkry kan word teenoor huidige modulêre

eksponensiasie-gebaseerde publieke-sleutel stelsels, spesifiek die RSA kriptostelsels. Drie

nuwe benaderings om die spoedeffektiwiteit van die RSA dekriptering te verbeter, word

ook voorgestel. Hierdie metodes fokus op die selektering van die dekripsie-eksponent

na deeglike inagneming van die verskil tussen twee priemgetallep en q. Hierdie

vereenvoudiging van die dekripsie-eksponent verbeter die dekripsiespoed met ongeveer

45% .

Sleutelwoorde: Publieke-sleutel Kriptostelsels, Modulêre Eksponensiasie, Modulêre Ver-

menigvuldiging, Modul̂ere Vereenvoudiging, RSA dekripsie, Montgomery vereenvoudiging,

Karatsuba-Ofman vermenigvuldiging, sommasie-skakels, Sjinese res-teorema.
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CHAPTERONE
INTRODUCTION

”The design and evaluation of public-key cryptographic functions is a special topic on its own,

requiring advanced knowledge of combinatorial mathematics, number theory, abstract algebra,

and theoretical computer science.”

P.F. SYVERSON [1]

1.1 CRYPTOGRAPHICBACKGROUND

The need for information security has grown steadily over the years, paralleling growth

in the use and interconnectivity of computers. Users require protection of information

from unauthorized access and alteration. System experts have drawn on the discipline of

cryptography to meet the increasing needs for information security [2].

The word cryptography comes from the Greek wordsκρυπτo (hidden or secret) and

γραφη (writing), hence cryptography is the art of secret writing [3]. More formally

cryptographyis the study of mathematical techniques related to the security services of

information security.

The ITU-T X.800 [4] standard defines the security services provided by a system to

give a specific kind of protection to system resources. X.800 divides security services into

the following four categories:

• Confidentiality: This is a service to protect the content of information from all but

those authorized to have it. Secrecy and privacy are synonymous with confidentiality.

1
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• Data integrity: This pertains to the unauthorized alteration of data. To ensure data

integrity, it must be possible to detect data manipulation by unauthorized parties. Data

manipulation includes operations such as insertion, deletion or substitution.

• Authentication: This service applies to the communicating parties as well as the

information. Two parties involved in a communication should identify each other.

Information delivered over a channel should be authenticated regarding the origin,

date of origin, data content, time sent, etc. For these reasons this service is subdivided

into two major classes: entity authentication and data origin authentication.

• Non-repudiation: This service prevents an entity from denying previous commitments

or actions. When disputes arise due to an entity denying that certain actions were

taken, a means to resolve the situation is necessary. A procedure involving a trusted

third party is needed to resolve the dispute.

Cryptographic techniques are fundamental to the implementation of these security services

and may be divided into two classes: symmetric-key and public-key cryptography.

Symmetric-key cryptography requires a single secret key that is used for both encryption

and decryption. The exchange of this secret key forms part of the key management problem,

that is concerned with the secure distribution of keys to the communicating parties.

A major advance in cryptography came in 1976 with the publication by Diffie and

Hellman of the concept of public-key cryptography (PKC) [5]. The primary feature of PKC

is that it removes the need to use a single key for encryption as well as decryption. With

PKC, a pair of matched keys is used, termed ”public” and ”private” keys. The public part

of the key pair can be distributed publicly without compromising the security of the private

key, which must be kept secret by the receiver. A message encrypted with the public key

can only be decrypted with the corresponding private key. The key management problem is

greatly simplified by the use of public-key cryptosystems.

1.2 MODULAR EXPONENTIATION

Most public-key cryptosystems used today are based on the difficulty of factorizing large

integers as well as the difficulty to compute the discrete logarithm of a large integer. The

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING PAGE 2
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implementation of these public-key cryptosystems requires modular exponentiations. In

Chapter2 a detailed overview of public-key cryptosystems based on modular exponentiation

is given. These include the RSA algorithm [6], the Diffie-Hellman key exchange scheme

[5], the ElGamal algorithm [7] and the Digital Signature Standard [8]. The operational

speed of these public-key cryptosystems is largely determined by the speed of the modular

exponentiation operation, which may be stated as follows:

A = ge mod m (1.1)

where g is the base,e is the exponent andn is the modulus. The required modular

exponentiation is computed by a series of modular multiplications. This is performed in

two steps: first an integer multiplication is done followed by a reduction by modulom. The

implementation of a public key cryptosystem can be modelled as a hierarchical structure that

reflects the various mathematical operations that are required, as shown in Fig.1.1.

Exponent coding

Modular exponentiation

Multiplication Reduction

Public key cryptosystem

Figure 1.1:Graphical illustration of the PKC implementation

Fig. 1.1depicts the following:

• Modular multiplication layer: The lowest layer consists of a integer multiplication and

a modular reduction step. When combined they form a single modular multiplication.

• Themodular exponentiation layerconsists of a series of modular multiplications. The

number of modular multiplications depends on the exponent’s characteristics.

• Exponent coding layerinvolves the modification or manipulation of the exponent,

which is applicable to fixed exponent public key cryptosystems such as the RSA

algorithm.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING PAGE 3
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In this dissertation, we concentrate on the development of high-speed algorithms for

public-key cryptosystems. In this framework a complete study of the basic components

of a modular exponentiation, depicted in Fig.1.1, which forms the core of the public-key

cryptosystem is performed.

1.3 OBJECTIVES

”The computational cost of software cryptography is a function of the underlying algorithm and

the quality of implementation of the algorithm .”

P. ROGAWAY AND D. COPPERSMITH[9]

Public key cryptographic functions require operations with elements of a large finite group,

and need to be optimized for the chosen platform for high-speed implementation. For

example, the RSA cryptosystem uses modular arithmetic algorithms with large integers,

usually in the range of 1024 to 2048 bits. Arithmetic with such large integers is time

consuming for most PKC applications [10]. Other public-key cryptosystems, described in

Chapter2, also require implementation of modular arithmetic algorithms with large integers.

Software implementations of these modular arithmetic algorithms are often desired

because of their flexibility and cost effectiveness. The layers depicted in Fig.1.1 can be

implemented in software. These software implementations need to be efficiently designed

to accommodate processing of large integer arithmetic efficiently. Hence the aim of this

dissertation is to develop and implement integer-arithmetic algorithms that will enhance the

speed of the public-key cryptosystem.

1.4 RESEARCHCONTRIBUTION

The contributions made by this dissertation:

• Various integer multiplication, modular reduction and modular exponentiation

algorithms are developed and implemented in software. The dissertation provides

a detailed analysis of these algorithms, as well as exact measurement of the

computational speed achieved by each algorithm.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING PAGE 4
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• A thorough analysis of addition chains, and how each exponentiation method can be

expressed in terms of addition chains is investigated. The simulations were conducted

for various window sizes and various Hamming weight exponents.

• Three new methods for fast RSA decryption are proposed in Chapter6. These

techniques are implemented and exact simulation results are obtained. These methods

allow the reduction of the size of the decryption exponent from the industry standard

1024-bits to 412-bits, taking the necessary security considerations into account.

The publications and reports either emanated or benefited during the completion of this

dissertation are [11,12,13,14,15,16,17].

1.5 DISSERTATIONOUTLINE

This dissertation consists of seven chapters in which the high-speed integer arithmetic

aspects of public-key cryptosystems are discussed.

Chapter2 provides a review of public key cryptosystems that are based on modular

exponentiation. These include the RSA algorithm [6], the Diffie-Hellman key exchange

scheme [5], the ElGamal algorithm [7] and the Digital Signature Standard [8]. A concise

overview of the each cryptosystem’s algorithm, its security and applications is given.

Integer multiplication forms one part of the modular multiplication step. Chapter3

analyzes the different methods that implement this operation, namely the Classical [18], the

Comba [2] and the Karatsuba-Ofman [19] methods. A significant portion of the modular

exponentiation involves squarings. This chapter will adapt each of the above multiplication

methods to perform squaring. This chapter provides simulation results to compute the

computational speed of each one of the multiplication methods.

Considerable effort was invested in the design of efficient modular reduction methods.

Reducing the computational complexity of these methods is addressed in Chapter4. The

chapter provides a detailed analysis and implementation of the Classical [18], Barrett [20]

and Montgomery [21] algorithms. The chapter concludes with a comparison of the three

methods and provides exact simulation results of each of method’s performance in a modular
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exponentiation.

Chapter3 and Chapter4 provide algorithms to reduce the time required for a modular

multiplication. Chapter5 focuses on how to reduce the number of modular multiplications

required for a modular exponentiation. This chapter investigates the Binary [18], K-ary [18],

Sliding window [22] and Addition chain methods. It conducts an addition chain length

analysis of the methods with various Hamming weights of the exponent. The chapter

provides exact simulation results for each method.

Further speed enhancements can be made by modifying or manipulating the exponent

of the modular exponentiation. However, this method only works on cryptosystems

where the exponent is fixed, eg. the RSA cryptosystem. For the RSA cryptosystem the

encryption is a fast operation, since the exponent is very short. However the decryption

procedure is very slow, due to the fact that the decryption exponent is generally very large.

This fact presents a problem in many applications of the RSA algorithm. Chapter6, in

addition to analyzing the use of the Chinese Remainder Theorem method for faster RSA

decryption [23], proposes three novel methods for choosing the RSA decryption exponent.

The chapter gives a complete analysis, the security risks of such selections and exact

simulation results of each of the proposed methods.

Finally, Chapter7 summarizes the research that has been done in the dissertation, and

highlights the most outstanding results. Proposals for future research are made, based on the

results and topics discussed in this dissertation.
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CHAPTERTWO
PUBLIC-KEY CRYPTOSYSTEMS

”The 1976 publication of New Directions in Cryptography was epochal in cryptographic

history. Many regard it as the beginning of public-key cryptography, analogous to a first shot in

what has become an ongoing battle over privacy, civil liberties, and the meaning of sovereignty

in cyberspace.”

ALAN WESTROPE, 1998

The concept of public-key cryptography was introduced by Diffie and Hellman in 1976.

Their contribution to cryptography was the notion that keys could come in pairs (an

encryption key and a decryption key) and that one could not generate one key from the

other. Since 1976, numerous public-key cryptosystems have been proposed. Many of these

were very insecure. Of those still considered secure, many were impractical (the key was

too large or the ciphertext was much larger than the plaintext). Only a few algorithms were

both secure and practical [24].

The chapter will focus on the following public-key cryptosystems:

• The Diffie-Hellman key exhange (DH) [5],

• The ElGamal algorithm [7],

• The Digital Signature Standard (DSS) [8] and

• The Rivest Shamir Adleman algorithm (RSA) for both encryption and digital

signatures [6].

7
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This chapter will give a complete analysis of the above listed public-key cryptosystems. The

aim of this chapter is not to emphasize the security aspects of public-key cryptosystems, but

to give a comprehensive summary of the cryptosystems with respect to their applicability to

fast modular algorithms and their applications. For the sake of completeness, the security of

each public-key cryptosystem will be briefly discussed.

2.1 DIFFIE-HELLMAN KEY EXCHANGE

Diffie-Hellman (DH) was the first public-key algorithm invented in 1976. It provided

the first practical solution to the key management problem, allowing two parties, never

having met in advance or shared keying material, to establish a shared secret by exchanging

messages over an open channel [25].

DH is used in key distribution. However it cannot be used to encrypt and decrypt

messages in its basic form, due to its incapability to provide entity authentication. Bellovin

and Merritt [26] propose a modification to the basic DH algorithm that enables it to be used

for encryption and decryption.

2.1.1 The Algorithm

The objective of the key-exchange algorithm is that the communicating parties can securely

distribute the shared keyk amongst themselves over an open channel. The following

algorithm describes the key-exchange operation between parties A and B.

ALGORITHM: DIFFIE HELLMAN KEY EXCHANGE

1. One-time setup. An appropriate primep and generatorα is selected where(2 ≤ α ≤ p− 2)

2. Protocol messages.

A → B : αx mod p (1)

B → A : αy mod p (2)

3. Protocol actions. Perform the following steps each time a shared key is required.

3.1 A chooses a random secretx, 1 ≤ x ≤ p− 2, and sends B message (1).

3.2 B chooses a random secrety, 1 ≤ y ≤ p− 2, and sends A message (2).

3.3 B receivesαx and computes the shared key ask = (αx)y mod p.

3.4 A receivesαy and computes the shared key ask = (αy)x mod p.
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The algorithm is adapted from [25]. Parties A and B computedk independently, hence

making DH suitable for creating keys over a public domain. Outsiders cannot computek as

only p, α, αx mod p andαy mod p are publicly known. In order to recoverx, y andk, the

attacker must compute a discrete logarithm. The algorithm can be visualized in Fig.2.1.

Choose appropriate
p and α where

]2,1[ −∈ px

Computes shared key

Party A Party  B

Send
px modα

ppk xy mod)mod(α=

Choose appropriate
p and α where

]2,1[ −∈ py

Computes shared key

Send
py modα

ppk yx mod)mod(α=

Figure 2.1:Diffie Hellman key exchange between party A and B

A variant [27] of the algorithm provides mutual key authentication: Fixαx mod p and

αy mod p as long-term public keys of the respective parties, then distribute them with the use

of signed certificates, thus fixing the long-term shared key for the user pair tok = αxy mod p

[25].

2.1.2 Security of the Algorithm

DH’s security is based on the difficulty of calculating discrete logarithms in a finite field as

opposed to computing an exponentiation in the same field. It is based on exponentiation

modulo a large prime numberp. Attacks to this cryptosystem are determined by a security

parameter that relates directly to the key size.

The current safe1 key-size of the length of the modulusp in bits is 1024 bits. Another

1 Attacks based on Pollard’s methods and the General Number Field Sieve
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security factor is the size of exponent used in the exponentiation. In DH the exponents are

usually the same size as the modulusp, but they can be reduced to between 160 and 256

bits. This is safe in certain conditions shown in [28].

The basic version provides protection in the form of secrecy of the resulting key from

passive adversaries, but not from active adversaries capable of intercepting, modifying, or

injecting messages (man-in-the-middle attacks). Neither party has assurance of the source

identity of the incoming message or the identity of the party that may know the resulting

key [25].

DH can be extended to work in communitive rings, as shown in [29]. Shmuley [30]

and McCurley [31] discuss a variant of the algorithm where the modulus is a composite

number. Koblitz [32] extended this algorithm to elliptic curves. ElGamal [7] uses the basic

idea of DH to develop an encryption and digital signature algorithm.

Extensions of the DH algorithm allows key-exchange with more than two parties.

Hughes [33] proposes a variant to allow multiple parties. The advantage of this variant over

basic DH is that shared keyk can be computed before any interaction. Party A can encrypt a

message usingk prior to contacting Party B. Party A then sends it to a variety of people and

interacts with them individually to exchange the key [24].

DH key-exchange is vulnerable to man-in-the-middle attacks. In order to prevent this

problem, both parties must sign their messages before sending it to each other. This is

referred to as STS (Station-to-Station Protocol) and is comprehensively explained in [34].

This protocol assumes that Party A has a certificate with Party B’s public-key and vice versa.

These certificates are signed by a trusted authority outside the protocol. Other variants of

the DH algorithm that improve its security are shown in [35,36,37,26].

2.1.3 Applications of DH

For online communications such as web-browsing, it is possible to encrypt the

communications session with a key passed from one party to another. In the online case,

it is possible to achieve a property called forward secrecy where if either of the keys
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are compromised then the past session key remains secure [38]. DH is suited for such

applications that require active exchange.

2.2 THE ELGAMAL ALGORITHM

In 1985 ElGamal [7] proposed an alternative public-key cryptosystem. This algorithm, an

extension of the DH algorithm, depends on the difficulty of computing discrete logarithms

over finite fields. The ElGamal algorithm can be used for both encryption and digital

signatures.

2.2.1 The Algorithm

The ElGamal algorithm requires an initial key generation step. Each entity needs to create a

public key and a corresponding private key. Hence each party must do the following:

ALGORITHM: ELGAMAL KEY GENERATION

1. Generate a large random primep and a generatorα

2. Select a random integera, 1 < a < p− 2, and computeαa mod p.

3. The public key is(p, α, αa) and the private key is(a).

The encryption and decryption algorithms are similar to DH, differing in that it requires two

computed parametersγ andδ to be sent to the other party. The encryption and decryption

procedures for Party A (who encrypts a messagem) to Party B (who performs the decryption

on the ciphertext to obtainm) is as follows:

ALGORITHM: ELGAMAL PUBLIC-KEY ENCRYPTION

1. Encryption. Party A must do the following:

1.1 Obtain B’s authentic public key(p, α, αa).

1.2 Represent the message as an integerm in the range(0, 1, ..., p− 1).

1.3 Select a random integerk such that1 < k < p− 2.

1.4 Computeγ = αk mod p andδ = m · (αa)k mod p.

1.5 Send the ciphertextc = (γ, δ) to A.

2. Decryption. To recover plaintextm from c, B must do the following:

2.1 Use the private keya to computeγp−1−a mod p note thatγp−1−a = γ−a = α−ak.

2.2 Recoverm by computing(γ−a) · δ mod p.
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The algorithm is adapted from [25] and can be visualized in Fig.2.2.

Obtain B’s public-key:

Represent message m

Compute:

Send ciphertext

pm

p
ka

k

mod)(

mod

αδ
αγ
⋅=

=

),( δγ

Using B’s private key
A to compute:

pm a

aka

mod−

−−

⋅=

=

γδ
αγ

),,( ap αα

Party A Party  B

]2,1[ −∈ pk

Figure 2.2:ElGamal public-key encryption

The ElGamal signature scheme is a randomized signature mechanism. Party A signs a binary

messagem of arbitrary length. Any Party B can verify this signature by using A’s public key

(in this casey = αa mod p andh(m) is the hash function).

ALGORITHM: ELGAMAL DIGITAL SIGNATURE GENERATION AND VERIFICATION

1. Signature generation. Party A must do the following:

1.1 Select a random secret integerk, 1 < k < p− 2, with gcd(k, p− 1) = 1.

1.2 Computer = αk mod p.

1.3 Computek−1 mod (p− 1).

1.4 Computes = k−1{h(m)− ar} mod (p− 1).

1.5 As signature form is the pair(r, s).

2. Verification. To verify Party A’s signature(r, s) onm, Party B must do the following:

2.1 Obtain A’s public key(p, α, y).

2.2 Verify that1 < r < p− 1; if not, then reject the signature.

2.3 Computev1 = yrrs mod p.

2.4 Computeh(m) andv2 = αh(m) mod p.

2.5 Accept the signature if and only ifv1 = v2.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING PAGE 12
UNIVERSITY OF PRETORIA



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoosseepphh,,  GG  ((22000055))  

CHAPTER TWO PUBLIC-KEY CRYPTOSYSTEMS

The algorithm generates digital signatures with appendix on binary messages of arbitrary

length, and requires a hash functionh : {0, 1}∗ [25]. The DSA algorithm is a variant of the

ElGamal signature mechanism.

Signature generationby ElGamal is relatively fast. It requires one modular exponentiation

(αk mod p), the extended Euclidean algorithm (k−1 mod (p − 1)), and two modular

multiplications. The exponentiation and application of the extended Euclidean algorithm

can be done independently, in which case the signature generation (in instances where

precomputation is possible) requires only two modular multiplications [25]. The signature

generation algorithm can be visualized in the left-hand side of Fig.2.3.

Select k in [1,p-2]
with

Send

( ) )1mod()(ˆ

)1mod(ˆ

mod
1

−−=

−=

=
−

parmhks

pkk

pr kα

),( sr

Obtain A’s public key

Compute

pv

pryv
mh

xr

mod

mod
)(

2

1

α=

=

Party A Party  B

1)1,gcd( =−pk

Verify that
11 −≤≤ pr

),,( ypα

Verify that

21 vv =

Figure 2.3:ElGamal signature generation and verification

Signature verificationis more costly, requiring three exponentiations. Signature verification

calculations are all performed modulop, while signature generation calculations are done

modulo p and modulo(p − 1) [25]. The verification algorithm can be visualized in the

right-hand side of Fig.2.3.
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2.2.2 Security of the Algorithm

The ElGamal encryption comprises of a DH key-exchange to determine the session keyαak.

Hence the problem of recoveringm givenp, α, αa, δ andγ is similar to the the DH problem

given in Section2.1.2. For this reason, the security of the ElGamal encryption algorithm is

also based on the discrete logarithm problem [25].

A variant of ElGamal for signatures is provided in [39]. Beth [40] proposes a variant

that enables ElGamal to be used for proofs of identity. There are also variants for password

authentication [41] and for key-exchange [42]. ElGamal can also be modified to implement

encrypted key-exchange, as shown in [26].

Parameter selection is critical for the security of the ElGamal signature algorithm. Incorrect

parameter selection results in index-calculus and Pohlig-Hellman attacks. According to

the latest progress of the discrete logarithm problem provided in [25], a 512-bit modulus

provides marginal security from concerted attack. As of 1996 a modulusp of at least 768

bits is recommended. For long term security a 1024-bit or larger modulus must be used.

2.2.3 Applications of ElGamal

”In God we trust. Everybody else we verify using PGP.”

TIM NEWSOME, 1999

Pretty good privacy (PGP), the workhorse known throughout the world for encrypting and

signing e-mail and documents, uses the ElGamal procedure for its key management. DSS

uses the ElGamal algorithm as its basis for its signature scheme.

2.3 DIGITAL SIGNATURE STANDARD (DSS)

NIST, the U.S. National Institute of Standards and Technology, had proposed an algorithm

for digital signatures. The algorithm is known as Digital Signature Algorithm (DSA). As a

proposed standard it is known as the Digital Signature Standard (DSS). The DSA algorithm

is due to Kravitz [43] and was proposed as a Federal Information Processing Standard in
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August 1991 by NIST. It became the Digital Signature Standard (DSS) in May 1994, as

specified in FIPS 186 [8].

2.3.1 The Algorithm

The signature mechanism requires a hash functionh : {0, 1}∗ → Zq for an integerq,

more explicitly it requires use of the Secure Hash Algorithm (SHA-1 [44]). The following

algorithms are adapted from [25] and [24].

For the generation of DSA primesp and q in the algorithm below one must select the

primeq first and then try to find a primep such thatq divides(p − 1). Each party creates a

public key and corresponding private key. Each party must do the following:

ALGORITHM: DSA KEY GENERATION

1. Select a prime numberq such that2159 < q < 2160.

2. Chooset so that0 < t < 8, and select a prime numberp where2511+64t < p < 2512+64t,

with the property thatq divides(p− 1).

3. Select a generatorα of the unique cyclic group of orderq in Zp.

3.1 Select an elementg ∈ Z∗p and computeα = g(p−1)/q mod p.

3.2 If α = 1 then go to above step.

4. Select a random integera such that1 < a < q − 1.

5. Computey = αa mod p.

6. The public key is(p, q, α, y); and the private key is(a).

The above algorithm is an ElGamal extended digital signature scheme with appendix

deployed by Schnorr [45]. Performance is the main differences between DSA and ElGamal

algorithms. ElGamal computes all exponentiations in modulop (wherep is 512 to 1024 bit

prime), whereas DSA computes certain exponentiations in moduloq (where q is a 160-bit

prime). This makes DSA much faster than ElGamal. DSA is also slower than ElGamal in

certain aspects, in particular the extra inverse calculation required by both the signer and

verifier using DSA [3].

Party A can generate a signature on a binary messagem of arbitrary length and any

party B can verify this signature by using A’s public key. It proceeds as follows:
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ALGORITHM: DSA SIGNATURE GENERATION AND VERIFICATION

1. Signature generation. Party A must do the following:

1.1 Select a random secret integerk, 0 < k < q.

1.2 Computer = (αk mod p) mod q.

1.3 Computek−1 mod q.

1.4 Computes = k−1(h(m) + ar) mod q.

1.5 Party A’s signature form is the pair(r, s).

2. Verification. To verify Party A’s signature(r, s) onm, Party B must do the following:

2.1 Obtain A’s public key(p, q, α, y).

2.2 Verify that0 < r < q and0 < s < q; if not, then reject the signature.

2.3 Computew = s−1 mod q andh(m).

2.4 Computeu1 = w.h(m) mod q andu2 = rw mod q.

2.5 Computev = (αu1yu2 mod p) mod q.

2.6 Accept the signature if and only ifv = r.

The visualization of the algorithm is shown in Fig.2.4.
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Figure 2.4:DSA signature generation and verification
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A detailed proof of the signature verification is shown in [8]. Signature generation requires

one modular exponentiation, one modular inverse (using a 160-bit modulus), two 160-bit

modular multiplications, and one addition. The 160-bit operations are relatively small

compared to the exponentiation operation. DSA has the advantage that the exponentiation

can be precomputed [25].

Naccacheet al. [46] discusses techniques for improving the efficiency of the DSA

algorithm. They propose that the computation ofk−1 mod q in step 1.3 of the signature

algorithm be replaced by the generation of an integerb. The computation would hence

change tou = bk mod q and s = b · h(m) + ar mod q. The resulting signature then

contains(r, s, u). The verifier can then computeu−1 mod q andu−1s mod q = s̃. This type

of signature generation is beneficial in computationally constricted environments.

2.3.2 Security of the Algorithm

The security of the DSA has two distinct but related discrete logarithm problems. Firstly the

logarithm problem inZp where the powerful index-calculus methods apply, and secondly

the logarithm problem in the cyclic subgroup of orderq. A complete analysis of the security

of the DSA algorithm is shown in [24]. The size ofq is fixed at 160-bits, whilep can be any

multiple of 64 between 512 and 1024-bits inclusive. A 512-bit modulusp provides marginal

security against a concerted attack. However for long term security a modulus of 1024-bits

is recommended.

Yen [47] and McCurley [48] propose extensions to the DSA algorithm that improves

the computation speed of the verification procedure. The extension works as follows: To

sign a messagem, party A generates a random numberk less thanq. The signature is

then computed asr = (αk mod p) mod q ands = k · (h(m) + xr−1)−1 mod q. Party B

verifies the signature by computingu1 = (h(m) · s) mod q andu2 = (sr) mod q. Now if

r = ((αu1 · yu2) mod p) mod q, the signature is verified. Lim and Lee [49] proposes another

variant that allows batch verification where party B can verify signatures in batches. For

additional information of this variant, refer to [46].

Naccacheet al. [46] also proposed the idea of ”use-and-throw” coupons which eliminate
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the computation ofr = (αk mod p) mod q. Since this exponentiation is the most

computationally intensive portion of DSA signature generation, ”use-and-throw” coupons

can greatly its efficiency. Coupons require storage, and only one signature can be created

for each coupon. Since there is limited storage, only a fixed number of DSA signatures can

be created with this method [25].

2.3.3 Applications of DSS

There is one important application which will benefit from the DSA algorithm: smart card

signature generation. A smart card generally has a low performance processor. It will require

to perform a signature before the user can successfully login into a network. The time of the

signing operation is critical to the user. If DSA inverse operation is precomputed before the

signing operation is performed, the time required for signature generation will be greatly

decreased.

2.4 THE RSA ALGORITHM

The RSA cryptosystem [6], named after its inventors Rivest, Shamir, and Adleman, is the

most widely used public-key cryptosystem. It may be used to provide both encryption

and digital signatures. Of all the public-key algorithms proposed thus far, RSA is by far

the easiest to understand and implement. Its security, unlike the public-key cryptosystems

presented before, is based on the difficulty of the integer factorization (recovering the

plaintext from the public key and the ciphertext is equivalent to factoring the product of two

primes) [25].

The algorithm can be briefly described as follows: Letp and q be two distinct large

random prime integers. The modulusn is the product of these two primes (n = pq). Hence

Euler’s totient function ofn, φ(n), is computed as

φ(n) = (p− 1)(q − 1) (2.1)

Now select the encryption exponente such that

gcd(e, φ(n)) = 1 (2.2)
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The decryption exponentd can be computed using the extended Euclidean algorithm [18]

as:

d = e−1 mod (φ(n)) (2.3)

It can be proven thatd andn are also relatively prime, the proof is shown in [25]. The public

key is(e, n) and the private key is(d). The decryption exponentd and the two primesp and

q must be kept secret.

Encryption is performed on a messagem such that0 ≤ m ≤ n.

c = me mod n (2.4)

If the message is larger than the modulus, it can be broken into smaller pieces and encrypted

piece by piece. Usually one selects a small public exponent fore, e = 216 + 1 is a popular

choice [50,25,24]. c is the ciphertext produced by Eq.2.4.

The decryption is computed as follows:

m = cd mod n (2.5)

The correctness of Eq.6.3 can be proven by Euler’s theorem. A detailed explanation is

given [50]. The RSA algorithm can be used for signing and verifying. More information on

this is given in Section2.4.1.2.

2.4.1 The Algorithm

The following algorithms are a generalization of what has been described already and are

adapted from [25]. In order to implement the algorithms, each party creates an RSA public

key and a corresponding private key. Each party must do the following:

ALGORITHM: RSA KEY GENERATION

1. Generate two large random and distinct primesp andq, of the same length.

2. Computen = pq andφ(n) = (p− 1)(q − 1).

3. Select a random integere where1 < e < φ(n), such thatgcd(e; φ(n)) = 1.

4. Use the extended Euclidean algorithm to compute the decryption keyd such that1 < d < φ(n),

such thated ≡ 1(modφ(n)).

5. The party’s public key is(n, e) and the private key is(d)
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2.4.1.1 The RSA Encryption Algorithm

The RSA encryption algorithm allows party A to encrypt a messagem for B, which only B

can decrypt. This procedure, using the key generation described in Section2.4.1, is done as

follows:

ALGORITHM: RSA ENCRYPTION

1. Encryption. Party A must do the following:

1.1 Obtain party B’s public key(n, e).

1.2 Represent the message as an integerm in the interval[0, n− 1].

1.3 Compute ciphertextc = me mod n.

1.4 Send the ciphertextc to party B.

2. Decryption. To recover plaintextm from the ciphertextc, party B should do the following:

2.1 Use the decryption exponentd to recoverm = cd mod n.

The RSA algorithm requires a fixed exponentiation that is essential to its security and speed.

The exponente is fixed and arbitrary choices of the basem are allowed. Encryption can be

sped up by selectinge to be small or to have a low Hamming weight. The decryption can be

sped up by using the Chinese Remainder Theorem, as shown in [51].

The encryption exponente = 65537 is often used in practice [25, 50]. This integer has

only two 1’s in its binary representation, hence the encryption operation requires 15 modular

squarings and 1 modular multiplication2. This results in a very fast encryption operation.

2.4.1.2 The RSA Signature Algorithm

”Please, your Majesty,” said the Knave, ”I didn’t write it, and they can’t prove that I did: there

is no name signed at the end.”

LEWIS CARROLL, Alice’s Adventures in Wonderland

The messagem and ciphertextc for the RSA public-key encryption occurs inZn =

0, 1, 2, ..., n− 1 where n = pq is the product of two randomly chosen distinct prime

numbers. Digital signatures can be created by reversing the roles of encryption and

decryption. In essence Party A signs messagem by creating:

m̃ = md mod n (2.6)

2 Modular squarings and multiplications are done repeatedly in an modular exponentiation
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Obtain B’s public key
(e,n)

Represent message m 
in interval [0,n-1]

Compute ciphertext
nmc e mod=

Send c

Use B’s private key
(d,n)

Decipher c into 
message m 

ncm d mod=

Party A Party  B

Figure 2.5:RSA encryption and decryption

Party A sends(m̃, e), once Party B receives(m̃, e), it computes

m̃1 = m̃e mod n (2.7)

If m = m̃1 then the signature has been successfully verified. However a more secure

algorithm than what is discussed in the above paragraph can be implemented. The algorithm

is as follows:

ALGORITHM: RSA SIGNATURE GENERATION AND VERIFICATION

1. Signature generation. Party A must do the following:

1.1 Computẽm = R(m), an integer in the range[0;n− 1].

1.2 Computes = m̃d mod n.

1.3 A’s signature form is s.

2. Verification. To verify A’s signatures and recover the messagem, B must:

2.1 Obtain A’s authentic public key(n, e).

2.2 Computẽm = se mod n

2.3 Verify thatm̃ ∈ M̃ ; if not, reject the signature.

2.4 Recoverm = R−1(m̃).
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The RSA digital signature scheme was the first practical signature scheme based on

public-key techniques. It is a deterministic digital signature with appendix3 that can be

modified to provide message recovery [25]. m̃ is the redundancy generated by A where

R(m) is the redundancy function.R(m) maps arbitrary messages ofm from a message

spaceM̃ into theZn domain.

The redundancy function is a better alternative to breaking the messagem into blocks. The

blocks can be mixed up and counterfeiting of signatures can occur using the keys of one of

the messages to duplicate the other messages.

Signature generationis a generalization of the RSA decryption procedure. The signature

generation is shown in the left-hand side of Fig.2.6.

Create

where

Compute signature

nms d mod~=

Send

Use A’s public key

Compute

Verify

nsm e mod~ =

Party A Party  B

)(~ mRm =

[ ]1,0 −∈ nm

),,( nes

),( ne

Mm
~~∈

If accepted recover
)~(1 mRm −=

Figure 2.6:RSA signature generation and verification

Signature Verificationcan be much faster than signing if the public exponent is chosen to be

a small number, i.e.e = 65537. The verification is shown in the right-hand side of Fig.2.6.

The RSA algorithm can be sped up utilizing software and hardware implementations.

3 Digital signatures that must be checked by a sperate transmission of messagem is called digital signatures
with appendix
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Good surveys of hardware implementations are described in [52,53,54,55]. To speed up the

algorithm in software, efficient number-theoretical methods are required. Surveys of these

requirements are shown in [50,56,57].

2.4.2 Security of the Algorithm

The security of the RSA cryptosystem, as mentioned in Section2.4, depends on the problem

of factoring large numbers. The computational equivalence of computing the decryption

exponent and factoring the modulus, shown by Rivestet al. [6], was based on earlier work

done by Miller [58]. It has never been mathematically proven that in order to factor a large

integer, one must have at least one factor. It is conceivable that there might be an entirely

different way to break the RSA cryptosystem [24].

The RSA cryptosystem can be attacked using a forward search attack. If the message

space is small or predictable, an adversary can decrypt the ciphertext by simply encrypting

all possible plaintext messages. Hȧstad [59] discusses the attacks associated with choosing

small encryption exponents. Recommendations to prevent attacks on RSA choosing a

small decryption exponent are addressed by Wiener [60]. Kaliski et al. [61] provides an

overview of the major attacks on RSA encryption and signatures, and the practical methods

of counteracting these threats.

Further attacks and recommendations on the RSA algorithm are shown in [62, 63, 64, 65].

Rivest et al. [66] provides a set of recommendations to use strong primes in RSA key

generation. Shamir [67] proposed a variant of the RSA encryption operation called

”unbalanced RSA” that makes it possible to enhance security by increasing the modulus

size without any deterioration in performance.

Given the latest progress in algorithms4 for factoring integers, a 512-bit modulusn

offers only marginal security from concerted attack. For long term security, a 1024-bit or

larger modulus must be used [25].

4 The best attack known to RSA is the General Number Field Sieve (GNFS) which tries to factor the
modulus into its original primes
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2.4.3 Applications of RSA

In practice, RSA encryption is most commonly used for the transport of symmetric keys. It

is also used for the encryption of small data items.

The RSA signature operation is ideally suited to situations where signature verification is

the predominant operation performed. For example, when a trusted third party creates a

public-key certificate for party A, this requires only one signature generation. This signature

may then be verified numerously by various other parties. ISO/IEC 9796 [68] provides

criteria and examples based on the RSA signature operation. It became an international

standard in October 1991. The ANSI X9.31 standard [69] defines a method for digital

signature and verification of messages using the RSA algorithm. The standard provides

criteria for generation of public and private keys required by the algorithm. The latest

version of this standard was revised in 1998.

Certification Authority (CA) key pairs are used for signing and verifying the signatures

on certificates and Certificate Revocation Lists (CRLs). The certificate is signed once

but requires to be verified numerous times. Since the predominant method is signature

verification, the RSA algorithm is best suited for this task. In order to send a secure email,

the message needs to be signed and encrypted. The signature must then be verified by each

recipient with the correct decryption key. Since RSA can be used for encryption and digital

signatures, it provides suitable backbone for secure emails [38].

2.5 CHAPTER SUMMARY

Once a cryptosystem has set up the modulus, the private and public exponents are determined

and the public components are published, the senders as well as the recipients perform a

single operation for signing, verification, encryption, and decryption. The RSA algorithm in

this respect is one of the simplest cryptosystems [50].

The operation most required is the computation of a modular exponentiation (ge mod n).

The modular exponentiation operation is a common operation for scrambling in each

of the public key cryptosystems. However, the modular exponentiation in certain
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cryptosystems (i.e. DH, ElGamal and DSS) is based on the discrete logarithm problem.

In these cryptosystems the baseg and the modulusn are known in advance. This type of

exponentiation is referred to as fixed base exponentiation. In the modular exponentiation

of the RSA algorithm the exponente and the modulusn are known in advance but not the

base, hence RSA relies on fixed exponent exponentiation [50].

There is no ”best” public-key cryptosystem, as each cryptosystem is better suited for

certain applications than the others. Comprehensive summaries of the discussed public-key

cryptosystems are shown in [11, 38]. A comparison of practical public key cryptosystems,

based on integer factorization and discrete logarithms, is given in [70].

This chapter gives a comprehensive outline of the popular types of cryptosystems used in

industry. These cryptosystems consist of the same subsystems. The following chapters will

review these subsystems and their effects on the performance of the cryptosystem.
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CHAPTERTHREE
FAST MULTIPLICATION TECHNIQUES

”I don’t know if we have any real chance. He can multiply and all we can do is add. He

represents progress and I just drag my feet”

STEN NADOLNY , God of Impertinence

The modular multiplication operation is accomplished using two steps. It first computes

a large-integer multiplication step followed by a modular reduction step. This chapter is

concerned with the initial multiplication step, leaving the modular reduction step for the

subsequent chapter.

Multiplication Reduction

Modular multiplication

The chapter will focus on the following multiplication algorithms:

• The Classical method [18],

• The Comba method [2], and

• The Karatsuba-Ofman method [19].

In public-key cryptography, a significant portion of the modular exponentiation operation

involves squarings. This chapter will also show how to adapt each of the above multiplication

algorithms to perform squaring. The chapter concludes with a comparison of the methods,

giving exact numerical results obtained by means of simulation.

26
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3.1 THE CLASSICAL METHOD

3.1.1 Application to Multiplication

The product of two integers can be computed by means of the standard long-hand

multiplication algorithm that is taught in grade school. The algorithm requiresn2

single-precision multiplications for twon-digit inputs denoted asa andb respectively. More

specifically for am andn digit input,m× n single precision multiplications are required.

A digit is defined as aB-bit integer. A single-precision multiplication is the multiplication

of two baseB digits, whereB is the base and can be any positive integer. In computer

implementations one baseB digit is selected as2w, where w is the word-size of the

processor. Typical examples in practice includeB = 8, 16, 32 [50].

Knuth [18] refers to the Classical method as a multi-precision multiplication, as it

computesn × m single-precision multiplications. Since multi-precision multiplication

requires multi-precision integers, multiplicandsa andb are defined as:

a = an−1an−2...a1 =
n−1∑
i=1

aiB
i

b = bm−1bm−2...b1 =
m−1∑
i=1

biB
i

(3.1)

A 3 × 3 digit multi-precision multiplication, wherea = a3a2a1 andb = b3b2b1, is depicted

in Fig. 3.1.

a3 a2 a1

× b3 b2 b1

a3 · b1 a2 · b1 a1 · b1

a3 · b2 a2 · b2 a1 · b2

a3 · b3 a2 · b3 a1 · b3

t6 t5 t4 t3 t2 t1

Figure 3.1:(3× 3) digit Classical multiplication

The Classical method multiplies each digit ofb with the entire numbera to obtain partial

productstij. These partial products are then summed row-by-row to obtain the final product
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t which comprises of(n + m)-digits, wheren andm are the respective digit sizes ofa and

b. The Classical multiplication algorithm, adapted from [18,25], is given as follows:

ALGORITHM: CLASSICAL MULTIPLICATION

Input. a = (an−1an−2....a1a0)B andb = (bm−1bm−2....b1b0)B

Output. a× b = t = tn+m−1tn+m−2....t1t0 of baseB

1. Initialize: For i from 0 to (n + m− 1) do: ti → 0.

2. Zero multiply: If a = 0 or b = 0 then returnt = 0

3. Multiply and add: For i from 0 to (n− 1) do the following:

3.1 Setc → 0 (c is the carry)

3.2 Forj from 0 to(m− 1) do the following:

Compute(ul)B = ti+j + aj · bi + c, and setl → ti+j , u → c.

3.3u → ti+m.

4. Final result: Return(tn+m−1...t1t0).

The computationally intensive part of the algorithm is step 3.2. Computing the inner product,

ti+j + aj · bi + c, will require two baseB digits to hold the carry and the remainder of the

inner product.

3.1.2 Application to Squaring

The first description of a multiple-precision squaring was due to Tuckerman [71]. Squaring

is a special case of multiplication where both multiplicands are equal. Fig.3.2is an adaption

of Fig. 3.1for the special case of squaring.

a3 a2 a1

× a3 a2 a1

a3 · a1 a2 · a1 a1 · a1

a3 · a2 a2 · a2 a1 · a2

a3 · a3 a2 · a3 a1 · a3

t6 t5 t4 t3 t2 t1

Figure 3.2:(3× 3) digit Classical squaring

Squaring an integer is more efficiently performed by using a specialized squaring algorithm

than by using a multiplication algorithm. This is because in squaring there are many
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cross-product terms that need to be computed only once, whereas a multiplication algorithm

would compute them twice [2].

It is can be seen from Fig.3.2 that tij = ai × aj = tji. Hence half of the single-precision

multiplications can be avoided. Taking this characteristic into account, multi-precision

squaring can be formulated as:

t =
n−1∑
i,j=0

aiajB
i+j = 2

n−2∑
i=0

n−1∑
j=i+1

aiajB
i+j+

n−1∑
i=0

a2
i B

2i (3.2)

The squaring algorithm, based on Eq.3.2, is as follows:

ALGORITHM: CLASSICAL SQUARING

Input. a = (an−1an−2....a1a0)B

Output. a× a = t = t2n−1t2n−2....t1t0 of baseB

1. Initialize: For i from 0 to (2n− 1) do: ti → 0.

2. Multiply and add: For i from 0 to (n− 1) do the following:

2.1(ul)B = t2i + ai · ai, and setl → t2i, u → c.

2.2 Forj from (i + 1) to (n− 1) do the following:

Compute(ul)B = ti+j + 2ai · aj + c, and setl → ti+j , u → c.

2.3u → ti+n.

3. Final result: Return(t2n−1...t1t0).

The computationally intensive part of the algorithm is step 2. This step requires(n2 + n)/2

single-precision multiplications, discounting the multiplication by 2. This is significantly

lower than then2 single-precision multiplications required by a Classical multiplication.

The multiplication by 2, in step 2.2, can be computed using a simple left-shift.

3.2 THE COMBA METHOD

3.2.1 Application to Multiplication

The Classical method utilizes a double loop to compute each partial product and writes the

lowerB-digit product to the final result. Experiments in [2] identified that the loops requires

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING PAGE 29
UNIVERSITY OF PRETORIA



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoosseepphh,,  GG  ((22000055))  

CHAPTER THREE FAST MULTIPLICATION TECHNIQUES

a small portion of the execution time that can be avoided and the Classical method requires

three memory accesses to the intermediate results during each loop. These inefficiencies

were addressed Comba [2]. He described a way of reducing the number of memory accesses

and removing the looping required by the Classical method.

To fully understand the Comba method, convert Fig.3.1 to a pyramid of partial

products as shown below:

a3b1

a3b2 a2b2 a2b1

a3b3 a2b3 a1b3 a1b2 a1b1

t6 t5 t4 t3 t2 t1

Figure 3.3:Pyramid of partial products for3× 3 digit multiplication [72]

Comba unravelled both loops of the Classical method and computed the columns in Fig.

3.3 directly. Care must be taken with respect to the precision of eachti where the column

answer is kept. Looking at column that computest3 in Fig. 3.3, it is highly possible that the

entire sum of that column can exceed two baseB digits. Hence an extra digit is required to

avoid an overflow.

The Comba algorithm is an in-line program, dependent on the number of baseB

digits contained by each multiplicand. The algorithm is given as follows:

ALGORITHM: COMBA MULTIPLICATION

Input. a = (an−1an−2....a1a0)B andb = (bn−1bn−2....b1b0)B

Output. a× b = t = t2n−1t2n−2....t1t0 of baseB

1. Compute with inline coding. For i from 0 to(2n− 1) without looping:

1.1Compute the column directly:

1.1.1ti =
i+j=2n−1∑

i=0
ajbi

1.2Compute the carries and productti:

1.2.1ti+1 = ti+1 +
⌊

ti
B

⌋

1.2.2ti = ti mod B

2. Returnt = t2n−1...t1t0
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To compute step 1 sequentially2n times, three registers are needed. The first register will

store the partial product, the second register will store the carry of the partial product. If

there is an overflow in the carry register, a third register will be incremented so as not to lose

the precision of the column. After each column has been computed, the result is written to

ti. If there is an overflow in the overflow register, a fourth register can be assigned and so

forth.

Fig. 3.3 and Fig. 3.4 show that the partial products of the column are equivalent to

the column number (i.e column 3 has 3 partial products). Since the column lengths vary,

first increasing and then decreasing, the required coding can become complicated and

time-consuming for larger integers.

3.2.2 Application to Squaring

Comba squaring is computed similarly to Classical squaring, as shown in Section3.1.2. To

understand this fully, adapt Fig.3.3for squaring as shown below

a3a1

a3a2 a2a2 a2a1

a3a3 a2a3 a1a3 a1a2 a1a1

t6 t5 t4 t3 t2 t1

Figure 3.4:Pyramid of partial products for3× 3 digit squaring

Apart from the cross-product procedure, the optimization techniques that are applicable to

multiplication are essentially the same for squaring. For this reason, the discussions that

apply to Comba multiplication will also apply for Comba squaring [2].

From Fig. 3.4 it follows that tij = ai × aj = tji, which is identical to Classical

squaring. The Comba squaring algorithm can thus be formulated in accordance with Eq.

3.2:
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ALGORITHM: COMBA SQUARING

Input. a = (an−1an−2....a1a0)B

Output. a× a = t = t2n−1t2n−2....t1t0 of baseB

1. Compute with inline coding. For i from 0 to(2n− 1) without looping:

1.1Compute the column directly:

1.1.1ti = 2
n−2∑
i=0

n−1∑
j=i+1

aiaj+
n−1∑
i=0

a2
i

1.2Compute the carries and productti:

1.2.1ti+1 = ti+1 +
⌊

ti
B

⌋

1.2.2ti = ti mod B

2. Returnt = t2n−1...t1t0

The explanation for the Comba multiplication algorithm, given in Section3.2.1, also applies

to the above Comba squaring algorithm.

3.3 THE KARATSUBA-OFMAN METHOD

3.3.1 Application to Multiplication

This method was introduced by Russian mathematicians Karatsuba and Ofman [19] in 1962.

This recursive method was the first method that computed a multiplication less thanO(n2)

operations.

To explain the method, one must first decompose then-bit multiplicandsa and b into

two separate and equal parts.

a = 2n/2a1 + a0

b = 2n/2b1 + b0

(3.3)

a1 anda0 are the higher and lowern/2 bits ofa respectively, assumingn is even. Therefore

from Eq.3.3the classical form of the product is

t = a× b

= (2n/2a1 + ao)(2
n/2b1 + b0)

= 2n(a1 · b1) + 2n/2(a1 · b0 + a0 · b1) + a0 · b0 (3.4)
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Eq. 3.4computes the multiplication of twon-bit integers by fourn/2-bit multiplications and

an extra addition. This is illustrated in Fig.3.5.

a1 a0

b1 b0

a0b0

a1b0

a1b1

×

+
bat ×=

a0b1

Figure 3.5:Classical multiplication computed as a product ofn/2-bit multiplicands [72]

Karatsuba and Ofman modified Eq.3.4, using simple algebra, to formulate the following

equation

t = 2n(a1 · b1) + 2n/2((a1 + a0)(b1 + b0)− a1 · b1 − a0 · b0) + a0 · b0 (3.5)

a1 a0

b1 b0

a0b0

a0b0

(a1 + a0) (b1 + b0)

a1b1

×

+
bat ×=

a1b1

Figure 3.6:Karatsuba-Ofman multiplication computed as a product ofn/2-bit multiplicands
[72]

Although Eq. 3.5 appears more complicated than Eq.3.4, Fig. 3.6 shows thatt can be

computed using 4 additions/subtractions but only three multiplications.
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3.3.2 The Computational Complexity of the Algorithm

The computational complexity of the Classical method can be determined by using

recurrence relations. Eq.3.4 shows that multiplying twon-digit integers is accomplished

by performing fourn/2-digit multiplications and one addition. ThusC(n), the cost of

multiplying twon-digit integers, can be formulated as

C(n) = 4× C(n/2) + α · n (3.6)

whereα denotes the number of bit operations required to compute the addition and shift

operations in Eq.3.4(α is constant) [73,50]. For n = 2m and using the initial condition that

C(1) = 1, the computational complexity of the Classical method is calculated as follows

C(n) = C(2m) = 4(4C(2m−2) + α · 2m−1) + α · 2m

= 42 · C(2m−2) + α · 2m(1 + 2)

= 4m · C(1) + α · 2m(1 + 2 + ... + 2m−1)

= α̂(2m)2 = α̂ · n2 (3.7)

The above derivation is adapted from [73] and approximated by [50]. It is a simple proof to

show that the computational complexity of the Classical method isO(n2) operations. Now

in case of the Karatsuba-Ofman method, using Eq.3.5, the recurrence relation is

C(n) = 3× C(n/2) + β × n (3.8)

whereβ denotes the number of bit operations required to compute the addition and shift

operations in Eq.3.5 (β is constant) [73,50]. Again, for n = 2m with the initial condition

C(1) = 1, the computational complexity is calculated as follows

C(n) = C(2m) = 3(3T (2m−2) + β · 2m−1) + β · 2m

= 32 · C(2m−2) + β · 2m(1 + 3
2
)

= 3m · C(1) + β · 2m(1 + 3
2

+ ... + 3
2

m−1
)

= 3m + β · 2m

( 3
2

m − 1
3
2
− 1

)

= β̂ · 3m = β̂ · 2m·log2 3 = β̂ · nlog2 3 (3.9)
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The above derivation, adapted from [73], shows that the computational complexity of a

Karatsuba-Ofman multiplication takesO(n1.58) operations to multiply twon-digit numbers.

3.3.3 Recursive Properties of the Algorithm

Many researchers [73, 50, 19, 72, 74] avoid describing the recursive nature of the

Karatsuba-Ofman algorithm in great detail. Knuth [18] suggests that the recursive

algorithm can be implemented for largern-bit integers. Koç [50] explains that with current

implementations of the algorithm, it only starts to pay off oncen > 250 bits.

A break-point is described by Scott [72], however it is not well reported. Geddeset

al. [73] provide a recursive algorithm but do not comment on the break-point of the

algorithm. Welschenbach [74] explains the first recursion level and concludes that the

Karatsuba-Ofman algorithm has no real significance for his cryptographic applications.

This subsection will provide a detailed analysis and implementation of Karatsuba-Ofman

recursion.

Many complex problems are easier to solve if they are defined as simpler versions of

themselves. A recursive function, conceptually depicted in Fig.3.7, calls on itself in order

to reduce the amount of code involved and to simplify the problem. It also requires a step to

terminate the recursion process i.e. a break-point.

Figure 3.7:A recursive function

From Fig. 3.6 the Karatsuba-Ofman algorithm requires 3n/2-bit products for twon-bit

integers. Eachn/2-bit product can be decomposed further into three moren/4-bit products.

Each of thesen/4-bit products can again be decomposed inton/8-bit products and so

forth. This recursion evolves into a tree-type structure, each branch decomposing into three

additional branches. Fig.3.8 shows one branch of the tree-like recursion implemented by

the Karatsuba-Ofman algorithm.
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Figure 3.8:The Karatsuba-Ofman algorithm implemented for 6 levels of recursion

From Fig. 3.8, the recursion levels are decomposed to the processor word-size of 32-bits.

The value in the box is the resulting bit-size of the multiplicands decomposed by the

algorithm. Each of the boxes can be expanded into a similar tree. The recursion level is

depicted on the right-hand side of the above figure.

The evolving tree requires a break-point to terminate its growth. This break-point [50,72] is

denoted by the recursion level. At this level the Karatsuba-Ofman algorithm then applies

a conventional multiplication algorithm, using either the Classical or Comba methods, to

complete the multiplication.

1024

512 512 512

256 256 256 256 256 256 256 256 256

Apply Comba or Classical  Multiplication

Figure 3.9:Two level recursive Karatsuba-Ofman algorithm

Fig. 3.9 is a visualization of 1024-bit Karatsuba-Ofman multiplication using 2 levels of
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recursion, each branch terminated with a Classical or Comba multiplication. The algorithm

is initially applied recursively to the 1024-bit multiplicands decomposing them into half

its original size. After two recursion levels (where each decomposed multiplicand’s size is

256-bits), the decomposed multiplicands are multiplied using either the Classical or Comba

methods.

The Karatsuba-Ofman algorithm, adapted from [73], is given as follows

ALGORITHM: KARATSUBA-OFMAN MULTIPLICATION

Input. a = (an−1an−2....a1a0)B andb = (bn−1bn−2....b1b0)B, and break-point̃p.

Output. a× b = t = t2n−1t2n−2....t1t0 of baseB.

Function Karatsuba-Ofman(a, b, n)

1. Break point: If n = p̃

(tn−1...t1t0) = (an−1...a1a0)× (bn−1...b1b0) [use a suitable multiplication]

2. Breaka into two: Setx1 = an−1....an/2 andx0 = an/2−1....a0

3. Breakb into two: Sety1 = bn−1....bn/2 andy0 = bn/2−1....b0

4. Calculate(n/2)-bit multiplications

4.1m0 = x0y0 = Karatsuba-Ofman(x0, y0, n/2)

4.2m1 = x1y1 = Karatsuba-Ofman(x1, y1, n/2)

4.3m2 = (x1 + x0) · (y1 − y0) = Karatsuba-Ofman((x1 + x0), (y1 + y0), n/2)

5. Final result: Return(t = m1B
n + (m2 −m1 −m0)Bn/2 + m0).

The break-point̃p is the bit-size of the multiplicand at the terminating recursion level. This

algorithm, as developed for these simulations, applies the Karatsuba-Ofman recursion down

to the break-point, and then uses either the Classical or Comba multiplication.

When applying the Karatsuba-Ofman algorithm recursively on multiplicandsa and b

of n-bit length, generallyn must be even. More specificallyn’s length must be equal to an

integer factor of the processor word size i.e. ifw = 32-bits thenn ∈ (32, 64, 128, ..., 32p)

wherep is a positive integer. Weimerskirchet al. [75] provides more efficient methods of

splitting up the multiplicands to be used in a Karatsuba-Ofman method.
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3.3.4 The Optimum Break-point

The advantage of the Karatsuba-Ofman method is that only 3 multiplications are needed

instead of the 4 multiplications required by the Classical method, as shown in Fig.3.5

and Fig. 3.6. However, this reduction in multiplications leads to more additions. The key

question is to determine the break-point at which it is no longer worth applying Karatsuba

recursively and it is faster to proceed with a multiplication [72].

In order to find this optimum break-point, a simulation of random 2048-bit multiplicands

must be conducted for different recursion levels. Fig.3.10depicts the optimal break-point

for the Karatsuba-Ofman method for the criteria shown in Section3.4.

200

300

400

500

600

700

800

900

1 2 3 4 5 6
Levels of recursion

T
im

e 
pe

r 
it

er
at

io
n 

[u
s]

Karatsuba-Ofman with Classical method
Karatsuba-Ofman with Comba method

Figure 3.10:Optimum break point for a 2048-bit Karatsuba-Ofman multiplication algorithm

The optimum break-point, shown in Fig.3.10, occurs at level 3 (n = 256-bits). Similar
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simulations were conducted for128, 256, 512 and 1024 bit multiplicands. These timing

results utilizing its specific optimum break-points are depicted in Fig.3.12.

The break-point depends on the processor used, specifically on the relative speed of

the MUL and ADD instructions of the processor. The slower the former with respect to the

latter, the deeper should the recursion proceed [72]. The results obtained in recursion levels

5 and 6, in Fig.3.10, shows the time taken to compute the Karatsuba-Ofman multiplication

is larger than applying Classical multiplication (applying the Classical method is equivalent

to performing a 0 level Karatsuba-Ofman algorithm).

3.3.5 Application to Squaring

The Karatsuba-Ofman multiplication algorithm can also be used to implement a more

efficient squaring algorithm. In squaring the multiplicands are equal, hence Eq.3.5 can

be modified as follows

t = a× a = a2
1B

n − (
(a1 + a0)

2 − a2
1 − a2

0

)
Bn/2 + a2

0 (3.10)

Inspection of Eq. 3.10 shows that only threen/2-size squarings are required. As with

Karatsuba-Ofman multiplication, this algorithm can be applied recursively. The algorithm is

as follows

ALGORITHM: KARATSUBA-OFMAN SQUARING

Input. a = (an−1an−2....a1a0)B, break-point̃p

Output. a× a = t = t2n−1t2n−2....t1t0 of baseB

Function Karatsuba-Ofman(a, b, n)

1. Break point: If n = p̃

(tn−1...t1t0) = (an−1...a1a0)× (an−1...a1a0) [use a suitable squaring algorithm]

2. Breaka into two: Setx1 = an−1....an/2 andx0 = an/2−1....a0

3. Calculate(n/2)-bit multiplications

3.1m0 = x2
0 = Karatsuba-Ofman(x0, x0, n/2)

3.2m1 = x2
1 = Karatsuba-Ofman(x1, x1, n/2)

3.3m2 = (x1 + x0)2 = Karatsuba-Ofman((x1 + x0), (x1 + x0), n/2)

4. Final result: Return(t = m1B
n + (m2 −m1 −m0)Bn/2 + m0).
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The algorithm at break point, executes a Classical or Comba squaring to make the squaring

operation more efficient.

Fig. 3.11 depicts the optimal break-point for a 2048-bit Karatsuba-Ofman squaring,

under the conditions set in Section3.4for different recursion levels.
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Figure 3.11:Optimum break point for a 2048-bit Karatsuba-Ofman squaring algorithm

The optimal break-point occurs at 2 levels of recursion. Similar simulations were conducted

for 128, 256, 512 and1024 bit multiplicands. These timing results of its specific optimum

break-points are depicted in Fig.3.13. Note that a squaring is almost twice as fast as

a multiplication, thus the cutoff point is higher. Hence, the Karatsuba-Ofman squaring

algorithm requires fewer recursion levels to obtain its optimal speed.
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3.4 EXPERIMENTAL RESULTS

In this section, timing analyzes of the multiplication methods discussed in the chapter are

given. In order to obtain exact numerical results for the methods, simulations were done on

a Pentium III processor running at 550 MHz with 256 Mbyte main memory under Windows

XP Home Edition platform using a Borland C Builder 6.0 compiler. The simulations were

performed under the following conditions:

Algorithms tested:

• The multiplication algorithms that were tested were the Classical method, the Comba

Method, The Karatsuba-Ofman method combined with either the Classical or the

Comba multiplications.

• The optimal break-point of the Karatsuba-Ofman methods was determined in advance,

using the simulations shown in Section3.3.4.

Programming conditions:

• Each multiplication algorithm was implemented using standard ANSI C coding.

• The multiplicands were randomly generated, using MIRACL’s pseudo random number

generator, for bit sizes128, 256, 512, 1024 and2048 bits.

• Though a lot of effort has been done to remove the overhead generated by the compiler,

the test is still subjected to a little overhead generated by the platform and compiler.

Timing analysis parameters:

• One iteration consisted of a 1000 runs of each multiplication algorithm.

• The total time period of each test was 20 seconds.

• The iterations were incremented until the total time period had elapsed.

• The total number of runs was the product of the number of runs (1000) and the number

of iterations.

• The average time was calculated as a function of the total time divided by the total

number of runs.
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Fig. 3.12and Fig. 3.13provide the time results of the various multiplication and squaring

methods. They depict the average time it takes each method to compute a multiplication or

a squaring over different bit sizes of the multiplicands.
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Figure 3.12:Comparison of multiplication methods

0

50

100

150

200

250

0 256 512 768 1024 1280 1536 1792 2048

Size of multiplicand [bits] 

T
im

e 
pe

r 
ru

n 
[u

s]

Classical Multiplication

Comba Multiplication

Karatsuba-Ofman with Classical

Karatsuba-Ofman with Comba

Figure 3.13:Comparison of squaring methods
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From Fig. 3.12and Fig.3.13the Karatsuba-Ofman method gives the best results for larger

numbers, 512-bits and above. However for multiplicands less than 512-bits, the Comba

method provides the best results.

Mathematically the Comba method is identical to the Classical method as they both

require O(n2) operations. It improves on the Classical method by employing clever

programming optimizations. It unravels the loop to repeat the code in-line a number of times

and computes the partial products directly to reduce the number of memory writes required.

Hence difference in speed between the Comba and Classical methods is dependent on the

processor, specifically on the time the processor takes to execute a memory write and a loop

function.

For larger integers, the Comba method generates a large amount of in-line code, as it

requires additional overflow registers to keep each column’s precision, shown in Fig.3.3,

from overflowing and also requires additional control overhead to manage these registers.

This large amount of in-line coding can become impracticable for processors that have

insufficient internal memory.

In terms of n × n multiplication, the Karatsuba-Ofman algorithm, which requires

O(n1.58) bit operations, is asymptotically faster than the Classical algorithm which requires

O(n2) bit operations [73]. However, in practice the algorithm requires a number of

intermediate results that must be stored which adds unavoidable control overhead that

detracts from the algorithms efficiency for relatively small integers.

Fig. 3.13 shows that the squaring methods are essentially comparable in speed. This

is due to the fact that a squaring requires only(n2 + n)/2 operations compared to the

multiplication’sn2 operations, hence the improvements of each method is applied to fewer

operations.

Menez et al. [25] states that squaring a positive integera (i.e., computinga2) can at

best be no more than twice as fast as multiplying distinct integersa andb. To prove this, they

consider the identityab = ((a + b)2 − (a− b)2/4) which shows thata× b can be computed

with two squarings. Practically the difference between a squaring and a multiplication is
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due to the difference in the number of operations and the control overhead required by the

operations. Hence from Fig.3.12and Fig.3.13, a squaring algorithm computes a squaring

in 65% of the time that is required by a multiplication to compute the same squaring.

3.5 CHAPTER SUMMARY

”How fast can we multiply”

DONALD E. KNUTH, [18]

The above quote describes the objective for this chapter. Three methods were discussed,

implemented using simulations, and modified to perform more efficient squarings. The goal

was to determine which is the fastest integer multiplication that one could use for a modular

exponentiation.

Each of the methods, except the Classical method, is optimal under certain circumstances.

Though the Classical method is asymptotically slower than the Karatsuba-Ofman method

and the Comba method, it is simpler to implement and for small numbers, gives better

performance than the Karatsuba-Ofman methods.

The Comba method is most suitable for integers less than 256-bits. However for

multiplication of large numbers, especially 512-bits and higher, Karatsuba-Ofman with

Comba method should be used.

There exists other methods (i.e. FFT and convolutional methods) that perform the

multiplication step. Though these methods are mathematically elegant, their improvement

in speed only starts paying off for multiplicands larger than 8196 bits [18, 25, 76]. Thus,

these methods are not applicable for the size of integers of practical importance to public

key cryptosystems.
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”Your life is the sum of a remainder of an unbalanced equation inherent to the programming

of the matrix. You are the eventuality of an anomaly, which despite my sincerest efforts I have

been unable to eliminate from what is otherwise a harmony of mathematical precision. While it

remains a burden to sedulously avoid it, it is not unexpected, and thus not beyond a measure of

control.”

THE ARCHITECT, Matrix Reloaded

Multiplication Reduction

Modular multiplication

The modular reduction operation,a mod m, is conventionally accomplished by dividinga

by m to obtain the remainder. The steps of the division algorithm can be modified in order

to speed up the process. Reducing the time and memory complexities of this operation is a

challenging problem on which relies the practical feasibility of the cryptosystem’s signature

and encryption methods [77].

Three modular reduction methods are discussed in this chapter:

• The Classical method [18]. The simplest implementations of large integer modular

reduction are computed utilizing this algorithm.
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• The Barrett method [20]. The Barrett method was the first approach to perform

modular reduction that utilized precomputation to remove the time-consuming

division step.

• The Montgomery method [21]. Montgomery’s method is a ingenious technique

that performs efficient modular reduction utilizing simple shift operations which can

implemented on general processors.

The purpose of this chapter is to investigate the above mentioned methods for speeding up

modular reduction in various ways. This chapter will first describe these three algorithms

with their respective modifications developed to improve their speed. It will then present

implementation results of these algorithms to see their relative speed performance in a

modular exponentiation.

4.1 CLASSICAL REDUCTION

”And marriage and death and division, make barren our lives”

ALGERNON CHARLES SWINBURNE, Dolores

The easiest method for performing modular reduction is to compute the remainderr by

division using the modulusm as the divisor. A standard division computes the quotient and

the remainder. However the quotient is of little concern, as one only needs the remainder.

Therefore, the steps of the standard division algorithm can be simplified to enhance the speed

of the reduction.

4.1.1 Description

Classical reduction is a formalization of the sequential division algorithm. Division is the

most complex of the four basic arithmetic operations. First of all, it has two results: the

quotient and the remainder. Given the dividenda and a divisorm, the quotientq and the

remainderr are calculated using

a = q ·m + r (4.1)

If a andm are positive, then theq andr will be positive. Classical reduction successively

shifts and subtractsm from a until r, with the property0 ≤ r < m, is found. However, if
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the subtraction ofa yields a negativer, an addition ofm is required to restorer as a positive

integer [50].

The reduction method does not explicitly compute the quotient, but uses its estimate

q̃ to calculate each digit of the remainder.

4.1.2 The Algorithm

The Classical reduction algorithm computes a remainderr by dividing an-bit a by a t-bit

m, wheren ≤ t ≤ 1. The algorithm is as follows

ALGORITHM: CLASSICAL REDUCTION

Input. a = (an...a1a0)B andm = (mt...m1m0)B

Output. r = (rt...r1r0)B wherea = q̃m + r (0 ≤ r < m)

1. Copya to r: r ← a

2. While(r ≥ mBn−t) do the following:

r ← r −mBn−t

3. Fori from n down-to(t + 1) do the following:

3.1 If ri = mt then set̃q ← B − 1 elseq̃ ← (riB + ri−1)/mt

3.2 While(q̃(mtB + mt − 1) > riB
2 + ri−1B + ri−2) do: q̃ ← q̃ − 1

3.3r ← r − q̃ ·mBi−t−1

3.4 If x < 0 then setr ← r + m ·Bi−t−1 andq̃ ← q̃ − 1

4. Returnr = (rt...r1r0)B

The above algorithm, adapted from [77, 25], contains an integer division in its main

loop. An integer division requires many more machine cycles to compute than an integer

multiplication on a standard processor. Thus, the algorithm is computationally intensive.

The basis of the algorithm consists of estimating the quotient as accurately as possible and

in doing so, reduce the number of steps required to calculate the reduction. Dividing the two

most significant digits ofa by mt will result in the estimatẽq never being too small, and if

mt ≥
[

B
2

]
, q̃ is at most two in error. Using an additional digit fora andm (i.e., using the

three most significant digits ofa and the two most significant digits ofm as shown in step

3.2), q̃ can be at most one in error [77]. Furthermore, this error occurs with approximate
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probability 2
b

[18].

The initial formalization of the algorithm is due to Knuth [18]. Koblitz [32] provides

a comprehensive description for the use of this method in a modular multiplication. Two

variations of the Classical reduction method with slightly different ways of quotient

estimation are shown in [78,79].

4.1.3 Computational Improvements

One can always guarantee thatmt ≥
[

B
2

]
by replacing the integers(a,m) by (βa, βm) for

a suitable choice ofβ. The remainder isβ times the remainder ofa divided byb. Since

the baseB is a power of 2, then the choice ofβ should be a power of 2; multiplication by

β is achieved by simply left-shifting the binary representations ofa andm. Multiplying

by a suitable choice ofβ, to ensure thatmt ≥
[

B
2

]
, is callednormalization. The resulting

normalized remainder requires a simple division byβ to obtain the actual remainder [25].

Step 3.2 can be modified toqmt−2 > (riB + ri−1 − qmt−1)B + ri−2. SinceriB + ri−1

−qmt−1 < mt, this step can be reduced to two multiplications. Thus the algorithm requires

k(k + 2) multiplications andk divisions for2k-bit dividend [80].

A more involved kind of normalization is described by Walter [81]. This normalization

fixes the modulus’ most significant digit in such a way that the most significant digit of

a is used as a first estimate forq, resulting in a faster reduction. However, this increases

the length of the modulus by at least one digit and all the intermediate results of a modular

exponentiation. Hence what is saved during the modular reductions, is lost again by

additional multiplications [77].

4.2 BARRETT REDUCTION

Barrett reduction [20] was inspired by fast division algorithms that multiply the reciprocal

of the divisor to emulate division. This reduction technique is advantageous in a modular

exponentiation where many reductions are performed with the same modulus. It was the

first approach to perform reduction without explicitly using the division step in the loop.
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4.2.1 Description

Barrett introduced the idea of estimating the quotientba/mc with operations that either are

less expensive in time than a division bym, or can be done as a precalculation for a givenm

(viz., µ = B2k/m whereµ is a scaled estimate of the2k-digit modulus’ reciprocal) [77].

The estimate q̃ of a
m

is obtained by replacing the floating point divisions in

q =
⌊
(a/B2k−t)(B2k/m)/Bt

⌋
by integer divisions:

q̃ =
a

B2k−t µ

Bt
(4.2)

The number of multiplications and the resulting error is more or less independent oft. The

best choice fort, resulting in the least number of operations and the smallest maximal error,

is k + 1.

The estimateq̃ is at most two smaller than the correctq. This can be shown using

the following inequality:

a

m
≥ q̃ >

1

Bk+1

( a

Bk−1
− 1

) (
B2k

m
− 1

)
− 1

=
a

m
− a

B2k
− Bk−1

m
+

1

Bk+1
− 1

≥ q −
(

a

B2k
+

Bk−1

m
− 1

Bk+1
+ 1

)

q ≥ q̃ > q − 3 (4.3)

where the inequalityy
x
− 1 <

⌊
y
x

⌋
< y

x
was used. Therefore the remainder can be

computed by subtracting̃qm mod Bk+1 from a and then adjusting the result with at most

two subtractions ofm [80].

Naccacheet al. [82] provides mathematical correctness of the Barrett method and its

possible optimizations.

4.2.2 The Algorithm

Given the inputsa,m and the precomputationµ = [B2k/m], the method computesr =

a mod m using the following steps:
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ALGORITHM: BARRETT REDUCTION

Precomputation. µ = [b2k/m]

Input. a = (a2k−1...a1a0)B andm = (mk−1...m1m0)B

Output. r = (rk−1...r1r0)B

1. Compute the estimate quotientq̃

1.1q1 ← [a/Bk−1]

1.2q2 ← q1 × µ

1.3 q̃ ← [q2/Bk+1]

2. Compute the remainderr

2.1r1 ← a mod Bk+1 → r1

2.2r2 ← (q̃ ×m) mod Bk+1

2.3r ← r1 − r2

3. Fix the remainder

3.1 If r < 0 thenr + Bk+1 → r

3.2 Whiler ≥ m do the following:r ← r −m

4. Returnr = (rk−1...r1r0)B

The algorithm, adapted from [25], requires 2 divisions by a power of the baseB and a partial

multiplication. All divisions performed, in baseB representation, are simple right-shifts.

Step 1 finds the estimate quotientq̃ and step 2 computes the remainder. If the computed

error does not fall in the limits0 ≤ r < m, a simple addition/subtraction bym will be

implemented to ”fix” the remainder. Bosselaerset al. [77] state that for about 90% of the

values ofa < m2 and modulusm, q̃ will be correct and 10% of the cases will it be two in

error.

The precomputation ofµ is based on a technique of emulating floating point data

types with fixed precision integers. Computing1/m would generally result in a fraction.

Menezet al. [25] state that one can obtain the integer equivalent of1/m using fixed point

arithmetic. It follows on the concept that if one setsB2k equivalent to one thenB2k/m is

equivalent to1/m using basic arithmetic. Hence the integer equivalent of1/m is truncated

to k + 1 digits (B2k is chosen instead ofBk asBk/m will generate a 1-digit number).
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4.2.3 Computational Improvement

Looking at step 1 of the algorithm, the subsections of step 1 can be depicted as follows:

111……….……...................011110.............................011

a0a2k-1

µµµµk

a

µ

q0q2k+1

101.............................001

101....................................001111.............................101

ak-2

µµµµ0

q2

q1

qk

q̂

×

Figure 4.1:Computingq̃ with Barrett reduction

Since thek + 1 least significant digits ofq2 are not needed to determinẽq, only a partial

multiple-precision multiplication ofq1 × µ is necessary. The only influence of thek + 1

least significant digits have on the higher order digits is the carry from positionk + 1 to

positionk + 2. Provided the baseB is sufficiently large with respect tok, this carry can be

accurately computed by only calculating the digits at positionsk andk +1. Hence, thek− 1

least significant digits ofq2 need not be computed. Sinceµ andq1 have at mostk + 1 digits,

determiningq̃ requires at most1
2
(k2 + 5k + 2) single-precision multiplications [25].

110.............................011

q0

r0r2k

111.............................101

101............................111

qk

m

rk

q̂

mk-1 m0

110..............................001

r2

2̂r

Figure 4.2:Computing the initial remainder with Barrett reduction

Step 2.2 can also be implemented using a similar type of modification implemented by step
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1, however it only needs the bottomk+1 bits. This can be depicted in Fig.4.2. In Fig. 4.2r2

can also be computed by a partial multiple-precision multiplication which evaluates only the

least significantk + 1 digits of q3 ×m. Sinceq̃ andm arek-digit integers, this computation

can be done in at most1
2
(k2 + 3k − 2) single-precision multiplications. Therefore, the total

number of single-precision multiplications required by the algorithm is at mostk(k+4) [25].

4.3 MONTGOMERY REDUCTION

In 1985, P. L. Montgomery introduced an efficient algorithm [21] for modular multiplication

without explicitly carrying out the classical modular reduction step. This is done by

transforming the original integer into an ingenious representation in the residue class of

modulom to speed up the reduction operation [80].

4.3.1 Description

Montgomery reduction is a generalization of a much older technique due to Hensel [83].

Hensels observation is the following: Ifm is an odd positive integer less than2k (k a positive

integer) andT is some integer such that2k < T ≤ 22k,thenR0 = (T + q0 · m)/2, where

q0 = T mod 2 is an integer andR0 ≡ T2−1 mod m. More generally,Ri = (Ri−1 + qim)/2,

whereqi = Ri−1 mod 2 is an integer andRi ≡ N2−i+1 mod m. SinceT < 22k, it follows

thatRk−1 < 2m [25].

Mathematically, Montgomery reduction can be described as follows: Assuming that

the modulusm is ak-digit integer, i.e.Bk−1 ≤ m ≤ B2k, let R = Bk. The Montgomery

reduction requiresR andm to be relatively prime, that is

gcd(R, m) = gcd(Bk,m) = 1 (4.4)

In order for Eq.4.4to be satisfied, given that baseB in general processors is always a power

of 2, m has to be odd. Montgomery [21] uses an ingenious transformation which converts

the original integer into itsm-residue form, before it can be utilized.

The m-residue with respect toR of an integera < n is denoted as̃a = aR mod m.

Hence the set{a · R mod m|0 ≤ a ≤ n− 1} is a complete residue system. Thus, there is a
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one-to-one correspondence between the integers in[0, n− 1] and the integers in the set.

Montgomery exploits this property by introducing a routine which computes them-residue

product of twom-residue integers [50]. Given twom-residues,̃a and b̃, the Montgomery

product is defined as them-residue

R̃ = ã · b̃ ·R−1 mod m (4.5)

whereR−1 is the inverse ofR mod m, i.e. R−1 ·R = 1 mod m since

R̃ = ã · b̃ ·R−1 mod n

= a ·R · b ·R ·R−1 mod n

= a · b ·R mod n (4.6)

In order to describe the Montgomery reduction algorithm, an additional quantityḿ, with the

propertyR · R−1 −m · ḿ = 1 is defined. The integersR−1 andḿ can be computed using

the extended Euclidean algorithm (see [18] for more details).

The rationale behind them-residue transformation is the ability to perform a Montgomery

reduction(a × b) · R−1 mod m for 0 ≤ a × b < Rm in almost the same time as a

multi-precision multiplication [77]. This is based on the following theorem:

The Montgomery Reduction Theorem. Let m̃ = −m−1 mod R. If gcd(m,R) = 1,

then for all integersT , (T + Um)/R is an integer satisfying

T + Um

R
≡ TR−1(modm) (4.7)

whereU = Tm̃ mod R [77]. The justification, shown in [25], implies that the estimatẽT =

(T + Um)/R for TR−1 mod m is never too small and the error is at most one. This means

that a Montgomery reduction is not more expensive than two multi-precision multiplications.

4.3.2 The Algorithm

Montgomery reduction requires the mathematical steps (i.e. the modular multiplication and

modular exponentiation steps shown in Fig.1.1) to be modified to implement the reduction
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operation. This section will thus look at the following algorithms:

• Montgomery reduction. The core reduction that performsa ·R−1 mod m.

• Montgomery product. The crux procedure that computesã · b̃ ·R−1 mod m.

• Montgomery exponentiation: A Montgomery modified modular exponentiation.

Montgomery reduction: The algorithm computes the Montgomery reduction of integer

T , whereR = Bk and T < mR, and requires thatgcd(m,R) = 1. The algorithm

makes implicit use of the Montgomery theorem by computing quantities which have similar

properties toU = Tm̃ mod R andT + Um. The algorithm is as follows:

ALGORITHM: MONTGOMERY REDUCTION

Precomputation. ḿ = −m−1 mod R

Input. T = (t2k−1...t1t0)B andm = (mk−1...m1m0)B

Output. T̃ = (t̃k−1...t̃1t̃0)B

1. CopyT to T̃ . T̃ ← T

2. Perform the reduction

2.1U ← T̃ · ḿ ·m mod R

2.2 T̃ ← (T + U ·m)/R

3. Fix the remainder. If T̃ ≥ m thenT̃ ← T̃ −m

4. ReturnT̃ = (t̃k−1...t̃1t̃0)B

The most important feature of the Montgomery reduction algorithm is that the operations

involved are multiplications moduloR and divisions byR, both of which are intrinsically

fast operations on general processors sinceR is usually a power 2 [50].

It can be easily verified thatT+Um
R

is an integer (substituteU into Eq. 4.7). At step

3 a subtraction ofm is required which implies that̃T < 2m. From step 2.2̃T = T + Um,

butUm < Rm andT < Rm; henceT̃ < 2m [25].

Montgomery product: The Montgomery product algorithm can be used to compute

the product of̃a and b̃ modulon, whereã and b̃ are them-residue transforms ofa andb

respectively. The algorithm is given below:
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ALGORITHM: MONTGOMERY PRODUCT

Precomputation. ḿ = −m−1 mod R

Input. ã = (ãk−1...ã1ã0)B, b̃ = (b̃k−1...b̃1b̃0)B andm = (mk−1...m1m0)B

Output. r̃ = (r̃k−1...r̃1r̃0)B

1. Multiply ã and b̃: t̃ = ã× b̃

2. Perform the reduction.

2.1u ← t̃ · ḿ mod R

2.2 r̃ ← (r̃ + u ·m)/R

3. Fix the remainder. If r̃ ≥ m thenr̃ ← r̃ −m

4. Returnr̃ = (r̃k−1...r̃1r̃0)B

Sincer̃ is the product of twom-residues, the result is them-residue of the remainder, and

the remainder itself is obtained by applying one additional Montgomery reduction [77].

Using the Montgomery reduction algorithm shown above as an additional step, ther̃ can be

transformed intor. This is easily shown sincẽr = r ·R mod m which immediately implies

that r̃ ·R−1 mod m = r ·R ·R−1 mod m = r mod m [50].

The initial transformation to them-residue domain, the precomputation ofḿ, and the

inverse transformation from them-residue domain (using an additional reduction step) are

fundamentally required, even for a one-digit reduction. Thus, the use of the Montgomery

product algorithm will be slower than the Classical and Barrett reduction methods when a

single modular multiplication has to be performed.

Montgomery exponentiation: The Montgomery product and reduction algorithms are

more suitable when several modular multiplications with respect to the same modulus are

needed, i.e. a modular exponentiation. In the following algorithm a summary of the modular

exponentiation operation which makes use of the Montgomery product and reduction

functions is given.

For algorithmic reference, the notation that is given to the Montgomery product function

is MontProd(ã, b̃) where ã and b̃ arem-residues. The Montgomery reduction function is

MontRed(ã) whereã is in m-residue format. The modular exponentiation technique used is

the binary method (see Section5.2).
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ALGORITHM: MONTGOMERY EXPONENTIATION

Precomputation. ḿ = −m−1 mod R

Input. g = (gk−1...g1g0)B, e = (el−1...e1e0)2 andm = (mk−1...m1m0)B

Output. A = (ak−1...a1a0)B

1. Transformg into m-residues. g̃ ← g ·R mod m

2. Represent the initial value ofA as am-residue. Ã ← 1 ·R mod m

3. ExponentiationFor i from l − 1 down-to 0 do the following:

3.1Modular squaringÃ ← MontProd(x̃, x̃)

3.2Modular multiplicationif ei = 1 thenÃ ← MontProd(g̃, x̃)

4. Transform to normal form. A ← MontRed(Ã)

5. ReturnA = (ak−1...a1a0)B

The Montgomery algorithms can be modified similarly for the modular exponentiation

techniques shown in Chapter5, and is not specific to the binary method. The transformation

of g and A into their m-residues can be computed using a classical reduction, as it will

make a very small time difference (which can be neglected) when computing the modular

exponentiation. However, once the transformations have been completed, the inner-loop of

the binary exponentiation method uses the Montgomery product operations that perform

only multiplications moduloR and divisions byR [50].

When the exponentiation method finishes, them-residue ofA remains. The ordinary

residue number is obtained from them-residue by executing the MontRed function. Notice

that MontRed(Ã) is equivalent to MontProd(Ã, 1). This is easily shown to be correct since

Ã = A·R mod m that immediately implies thatA = Ã·R−1 mod m = Ã·1·R−1 mod m =

MontProd(Ã, 1) [50].

The above described Montgomery algorithms can be refined and made more efficient,

particularly when involved in multi-precision integer arithmetic. These improvements, due

to Dusśe and Kaliski [61], are described in the following section.

4.3.3 Computational Improvements

The Montgomery reduction, described the previous section, is not more expensive than two

multi-precision multiplications. The following improvements due to Dussé and Kaliski [61]
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will almost be twice as fast. Hereto it is sufficient to observe that the basic idea of

Montgomery’s Theorem is to makẽr a multiple ofR by adding multiples ofm. Instead

of computing all ofu at once, one can compute one digitui at a time, adduimBi to r̃ and

repeat. This change allows one to computeḿ0 = −m−1 mod B instead ofḿ [77]. The

resulting algorithm is as follows:

ALGORITHM: MODIFIED MONTGOMERY PRODUCT

Precomputation. ḿ0 = −m−1 mod B

Input. ã = (ak−1...a1a0)B, b̃ = (bk−1...b1b0)B andm = (mk−1...m1m0)B

Output. r̃ = (rk−1...r1r0)B

1. Multiply the multiplicands. r̃ = ã× b̃

2. Perform the reduction. For i from 0 to(k − 1) do the following:

2.1ui ← ri · ḿ0 mod B

2.2 r̃ ← r̃ + ui ·m ·Bi

3. Calculate intermediate remainder. r̃ ← r̃/Bk

4. Fix the remainder. If r̃ ≥ m thenr̃ ← r̃ −m

5. Returnr̃ = (rk−1...r1r0)B

Thus, a greatly simplified Montgomery product routine is developed by avoiding the full

computation ofḿ and by using only single-precision multiplication to multiplyui and

ḿ0 [50]. As seen from the above algorithm, the number of single-precision multiplications

is reduced from2k2 to k(k + 1).

In Section4.3.1 it was noted thatR and m had to be relatively prime, whereR = 2k

for general processors. Hence in order for one to implement the Montgomery reduction

step,m has to be odd. Koc [50] describes a method to implement the Montgomery reduction

for an even modulus by utilizing the Chinese remainder Theorem and operand scaling.

Bosselaerset al. [77] and Shand [84] discuss the generalization of Hensel’s observation

that formed the basis of the Montgomery reduction. Numerous methods of hardware

implementations of the Montgomery reduction have been proposed [85, 86, 87, 54, 88]. A

complete survey of how the Montgomery reduction can be applied to various cryptosystems

is described by Naccacheet al. [89].
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Koc et al.[90] provide an excellent reference for implementing multi-precision Montgomery

multiplication algorithms. Koc’s approach utilizes Montgomery reduction to provide

different implementations of the algorithm. The conventional algorithm, denoted by Koc

as the Separated Operand Scanning (SOS) method, multiplies the two multiplicands before

reducing the product (which is similar to the modified Montgomery product algorithm).

The cost of using the SOS method is the additional memory required to hold the2k-bit

intermediate product. In addition, Koc also describes an interleaved multiply-and-reduce

modular multiplication denoted as the Coarsely Integrated Operand Scanning (CIOS)

method, which interleaves the multiplication in the modular reduction step. This technique

eliminates the need of additional memory space, however it does not allow the possibility to

utilize Karatsuba-Ofman multiplication and squaring optimizations.

4.4 EXPERIMENTAL RESULTS

In order to obtain practical times for the discussed reduction methods to be used in a

public-key environment, i.e. a modular exponentiationge mod m, specific simulations

must be performed. In order to obtain exact numerical results for the methods, simulations

were done on a Pentium III processor running at 550 MHz with 256 Mbyte main memory

under Windows XP Home Edition platform using a Borland C Builder 6.0 compiler. The

simulations were performed under the following conditions:

Algorithms tested:

• The reduction algorithms that were tested were the Classical method, the Barrett

Method and the Montgomery method.

• The respective modifications and improvements for each method were taken into

account.

• The modular exponentiation algorithm,ge mod m, implemented was the Binary

method (for further details see Section5.2).

• The multiplication method utilized in the simulation was the Classical method.

Programming conditions:
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• Each algorithm was implemented using standard ANSI C coding. The baseB was

chosen as232, hence used basic operations on integers ofunsigned int type.

• The baseg andm were randomly generated1024 bit integers utilizing the MIRACL

pseudo random number generator.

• The simulations were conducted for randomly generated values for the exponente for

bit sizes256, 512, 1024 and2048.

• Though a lot of effort has been done to remove the overhead generated by the compiler,

the test is still subjected to a little overhead generated by the platform and compiler.

Timing analysis parameters:

• One iteration consisted of a single run of the exponentiation algorithm for each

reduction algorithm. The total time period of each test was 20 seconds.

• Each simulation was run until the total time period had elapsed and the number of

iterations exceeded 20. The average time was calculated as a function of the total time

elapsed divided by the total number of iterations.

• The timing of the precomputations were not taken into account, however argument

transformations and postcomputations were taken, as they were computed within the

modular exponentiation.

Fig. 4.3provides the time results of the three reduction methods implemented in a modular

exponentiation. It depicts the average time it takes to compute a modular exponentiation

over different bit sizes of the exponent.

The calculation ofge mod m in the simulation used the standard binary method in

which various exponent bit sizes were used. Each of the three reduction algorithms are

used in this implementation resulting in three modular exponentiation functions. The

speed differences between the reduction functions are consequently reflected in the speed

differences between the exponentiation functions, as shown in Fig.4.3.
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Figure 4.3:Comparison of the discussed reduction methods

For the various sizes of the exponente for the modular exponentiation, the Montgomery

based exponentiation is slightly faster than the Barrett based exponentiation, which in turn

is slightly faster than the Classical technique.

The above observation can be explained with reference to Table4.1. An indication

of the performance of the different reduction methods can be given by the number of

single-precision multiplications and divisions required to reduce an integer twice as long as

the modulus. This approach is justified by the fact that a multiplication and a division are

the most time consuming operations in the inner loops of all three methods with respect to

which the others are negligible [77].
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Table 4.1:Complexity of the reduction methods in reducing a2k-digit integer [77]

Method Classical Barrett Montgomery

Multiplications k(k + 2) k(k + 4) k(k + 1)

Divisions k 0 0

Precomputations Normalization B2k/m −m−1 mod B

Argument transformation None None m-residue

Postcomputations Unnormalization None Reduction

Restrictions None a < B2k a < mB2k

The number of multiplications and divisions in Table4.1 are only for the core reduction

operation (i.e. it does not include the multiplications and divisions of the precomputations,

the argument transformations and the postcomputations). The reference operation is the

multiplication of two k-digit integers which produces2k-digit a to be reduced byk-bit

modulusm [77].

Table4.1 indicates that if only the core reduction operation is considered, the Montgomery

algorithm, in terms of single-precision multiplications, is clearly faster than both the Barrett

and the Classical reduction and is almost as fast as a Classical multiplication. However, this

is restricted to modulim wheregcd(m,B) = 1 is satisfied. The Barrett reduction, although

requires more single-precision multiplications than the Classical method, does not have the

time-consuming division step. This provides its slight time advantage over the Classical

method.

The precomputations, transformations and postcomputations introduce an overhead penalty

for using Montgomery reduction. The impact of this overhead varies greatly depending

on the application; in the case of modular exponentiation the overhead is subjected across

thousands of modular multiplications, effectively eliminating it altogether from any sort of

performance analysis. Whereas in the case of fewer modular multiplications, the overhead

can effectively double the execution time of the algorithm, making the Montgomery method

infeasible. Thus, it is better to use the Classical or Barrett method for such operations.
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4.5 CHAPTER SUMMARY

In general all the methods implemented in industry thus far, are variations of the Classical,

Barrett, and Montgomery reduction methods [77, 80, 56]. A theoretical and practical

comparison has been made of three methods for the reduction of large numbers. The classical

reduction is the best choice for single modular multiplication. Modular exponentiation based

on Barrett’s reduction is superior to the others for a small number of modular multiplications.

For general modular exponentiations the exponentiation based on the Montgomery method

provides the best performance.
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CHAPTERFIVE
FAST EXPONENTIATION TECHNIQUES

”It is insufficient to protect ourselves with laws; we need to protect ourselves with mathematics”

ANONYMOUS

In previous chapters, the focus was on reducing the time required to perform a modular

multiplication utilized in a modular exponentiation. The focus of this chapter is to reduce

the number of modular multiplications in a modular exponentiation, thus also reducing the

time to perform a modular exponentiation.

Modular 
multiplication

Modular exponentiation

Modular 
multiplication

Modular 
multiplication

This chapter gives algorithmic descriptions of currently implemented methods that perform

the modular exponentiation operation i.e.ge mod m. Hence the following algorithms will

be evaluated:

• The Binary method[18].

• The K-ary method[18]. The K-ary method partitions the exponente into words of

equal length and then performs as many modular multiplications as there are nonzero

words.

• The Sliding window methods[22]. Certain partitioning strategies to reduce the number

of nonzero words, and thus reduce the number of modular multiplications. Modular
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exponentiation algorithms that use such partitioning strategies are termed sliding

window methods.

• Addition-chain heuristics[91,57,92]. Addition-chains are closely related to modular

exponentiation, since the optimal strategy to compute a modular exponentiation

corresponds to some minimum length addition-chain.

This chapter will provide a comparison of the above methods with respect to the number of

modular multiplications, the exponent’s Hamming weight and its time complexities.

5.1 THE CLASSICAL METHOD

The Classical method is the simplest method, derived straight from basic arithmetic.

The computation is simple forge : multiply the baseg by itself e times, wheree is the

exponent [16].

In terms of modular exponentiation i.e.A = ge mod m, first setA = g then compute

A = A · g mod m and keep repeatingA = A · g mod m until A = ge mod m. This

would requiree − 1 modular multiplications to compute the exponentiation. For example

computingg15 mod m would require computing all the powers ofg until 15. That is:

g → g2 → g3 → g4 → ... → g15

This method would require 14 multiplications [50]. As can be seen, this method is extremely

inefficient. In the following sections we will describe more efficient methods.

5.2 THE BINARY METHOD

The Binary method is a substantial improvement on the Classical method. It dates back to

antiquity and is also known as the square-and-multiply method [50].

5.2.1 The Algorithm

The left-to-right Binary method scans the bits of the exponent from the most significant bit

(MSB) to the least significant bit(LSB). A squaring is performed after each bit scan, and
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depending on the scanned bit value, a subsequent multiplication is performed.

Let n be the number of bits in the exponente, i.e. n = blog2 ec, and the binary

expansion ofe is given as:

e = en−1en−2...e1e0 =
i=n−1∑

i=0

ei2
i

Hence the Binary algorithm that computesge mod m can be stated as follows:

ALGORITHM: BINARY EXPONENTIATION

Input. Baseg, modulusm and exponente = (en−1en−2....e1e0)2

Output. A = ge mod m

1. Initialize A SetA ← g

2. Loop functionFor i from (n− 2) down to0 do the following:

2.1 SetA ← A2 mod m.

2.2 If ei = 1 then setA ← A · g mod m.

3. Final result: ReturnA.

The above algorithm, adapted from [25], is the left-to-right Binary method. Knuth [18]

provides a detailed description for the right-to-left version of the method. The right-to-left

method requires one extra variable to store the powers ofg, hence requires more memory.

5.2.2 Computational Efficiency

The total number of modular multiplications(T ) is a summation of three components.

Namely, precomputations before the algorithm(P ), the squarings(S) and the multiplications

(M) that occur in the algorithm loop.

For an arbitraryn-bit exponente, the Binary method requires [50]:

• Precomputations: P = 0. The Binary method requires no precomputations.

• Squarings: S = n − 1. A squaring is computed for each bit of the exponent, except

for the most significant bit.
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• Multiplications M = 1
2
(n − 1). A multiplication is performed each timeei = 1.

Hence the number of multiplications in the loop is equal toH(e) − 1, whereH(e) is

the Hamming weight of the exponente. Therefore, for an even distribution of ones,

the number of multiplication is approximately equal to1
2
(n− 1).

Thus, the total number of modular multiplicationsT is found as:

T = S + M = n− 1 +
1

2
(n− 1) =

3

2
(n− 1) (5.1)

where it is assumed thaten−1 = 1.

Table 5.1 tabulates the total number of multiplications required by the Binary method

and the Classical method for typicaln-bit values ofe.

Table 5.1: The computational efficiency of the Classical and Binary methods for an-bit
exponent

Classical Binary

n T S M T

128 2128 − 1 127 64 191

256 2256 − 1 255 128 383

512 2512 − 1 511 256 767

1024 21024 − 1 1023 512 1535

2048 22048 − 1 2047 1024 3071

From the above table one can see the practical efficiency of the Binary method over

its Classical counterpart. Cohen [93] provides a more comprehensive treatment of the

practicality of the Binary method.

5.3 THE K-ARY METHOD

e = 1234567 =

window size = 3 bits

100 101 101 011 010 000 111

The K-ary method builds on the idea of the Binary method, but instead of breaking the

exponent into single bits the K-ary methods breaks the exponent intok-bit windows, and then
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performs as many multiplications as there are nonzero windows. An illustrative example

(e = 1234567) of the formalization of thek-bit windows, wherek = 3, is shown on the

previous page.

5.3.1 The Algorithm

The K-ary method first computes the values ofgi mod m for i = 2, 3, ..., 2k − 1. The

method then partitions the binary expansion of the exponent, i.e.e = (en−1en−2...e1e0)2,

into s blocks of bit-lengthk (note thats×k = n). The actualk-bit windows are then defined

as:

fi = (eik+k−1eik+k−2...eik) =
k−1∑
j=0

eik+j2
j (5.2)

In a series of steps, the partial result is raised to the2k power and multiplied withgfi
mod m

wherefi is the current nonzero window [50]. The algorithm is shown as follows:

ALGORITHM: K-ARY EXPONENTIATION

Precomputation. Compute and storegj mod m for j = 2, 3, 4, ..., 2k − 1

Breake into fi words ofk-bit length fori = 0, 1, 2, ...s− 1

Input. Baseg, modulusm and partitioned exponente

Output. A = ge mod m

1. Initialize A SetA ← gfs−1 mod m

2. Loop functionFor i from (s− 2) down to0 do the following:

2.1 SetA ← A2k
mod m.

2.2 If fi 6= 0 then setA ← A · gfi
mod m.

3. Final result: ReturnA.

This algorithm, unlike the Binary method, contains a certain amount of precomputations

which if used effectively, will reduce the total number of operations needed by the modular

exponentiation. Knuth [18] explains the K-ary method in great detail. An analysis in also

found in Koç [50].

5.3.2 Computational Efficiency

Since the K-ary method is the generalization of the Binary method, the exponent can be

represented by more than two states. The drawback, however, is that it requires a certain

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING PAGE 67
UNIVERSITY OF PRETORIA



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoosseepphh,,  GG  ((22000055))  

CHAPTER FIVE FAST EXPONENTIATION TECHNIQUES

degree of precomputation. Thus, for an arbitraryn-bit exponente with e =
∑s−1

i=0 fi, the

K-ary method requires [50]:

• Precomputations: P = 2k − 2.

• Squarings: S = k(s − 1). This is simplified to(n
k
− 1)k = n − k, wheres is the

number of windows ine.

• Multiplications: M = (n
k
−1)(1−2−k). A multiplication is performed iffi 6= 0, since

(2k − 1) out of2k values offi are nonzero, that is the probability offi 6= 0 is 1− 2−k.

Therefore the total average number of modular multiplications is

T = 2r − 2 + k − r + (n
k
− 1)(1− 2−k) (5.3)

There exists an optimumk (denotedk∗) for a givenn-bit exponent length that will reduceT

in Eq. 5.3to be a minimum. These values can be calculated by enumeration [18].
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Figure 5.1:Enumeration graph forn = 1024 using the K-ary method

Utilizing Eq. 5.3 for 1024-bit exponent, the enumeration graph shown in Fig.5.1 is

established. From Fig.5.1, one can see ask gets larger;T decreases until a specific window

size. At that specific window size, i.e. the optimal window sizek∗, T will be at minimum.

From Fig. 5.1, the lowest number of modular multiplications(1246) is obtained atk = 5,
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hencek∗ = 5. Similar enumeration graphs were computed forn = 128, 256, 512 and2048,

and the results are tabulated below.

Table 5.2:The computational efficiency of the Binary and K-ary methods

Binary K-ary

n T k∗ P S M T

128 191 3,4 6,14 125,124 36,29 167

256 383 4 14 252 59 325

512 767 5 30 507 98 635

1024 1535 5 30 1019 197 1246

2048 3071 6 62 2042 335 2439

Table5.2 tabulates each of the components required to computeT for both the Binary and

K-ary methods (usingk∗) respectively for differentn-bit values ofe. The average number

of modular multiplications can be found by substitutingk = 1 into Eq. 5.3, which gives
3
2
(n− 1).

The use of the K-ary method over the Binary method results in an average saving of

13% to 21%, with respect to the bit-size of the exponent. Koç [50] shows an asymptotic

value of savings offered by the K-ary method over the Binary method is 33% as the

bit-lengthn tends to infinity.

5.4 SLIDING WINDOW METHODS

The sliding window methods are adaptive K-ary techniques which modify their structure

according to the exponente. These adaptive methods partition the exponent into a series

of variable zero and nonzero windows in order to decrease the total number of nonzero

windows [50]. The main aims of the sliding window methods are to reduce the number of

nonzero windows and to reduce the number of precomputations.

In step 2.2 of the K-ary method, a loop multiplication is skipped if a zero window is

encountered. Thus, the total number of modular multiplications is decreased by decreasing
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the number of nonzero windows. The sliding window methods also attempt to half the

number of precomputations required by the K-ary by partitioning the exponent in such a

way that only odd nonzero windows are created.

5.4.1 The Algorithm

A sliding window exponentiation algorithm first decomposes exponente into zero windows

(ZW) and nonzero windows (NZW)fi of lengthL(fi). The number of windowss may not

be necessarily equal ton/k, wheren is the bit-length ofe andk is the window size. In

general, it is not required that the length of the windows be equal.

The decomposition of the exponent is structured such that the LSB of each NZW

equals 1, i.e. the NZW is odd. Consequently, the number of precomputations is halved,

since only odd powers ofg needs to be precomputed [50]. The generic sliding window

method is as follows:

ALGORITHM: SLIDING WINDOW EXPONENTIATION

Precomputation. Compute and storegj mod n for j = 2, 3, 5, 7, ..., 2r − 1

Breake into fi words ofL(fi)-bit length fori = 0, 1, 2, ...s− 1

Input. Baseg, modulusm and partitioned exponente

Output. A = ge mod m

1. Initialize A SetA ← gfs−1 mod m

2. Loop functionFor i from (s− 2) down to0 do the following:

2.1 SetA ← A2L(fi) mod m.

2.2 If fi 6= 0 then setA ← A · gfi mod m.

3. Final result: ReturnA.

The above algorithm is adapted from [50]. The actual difference between the sliding window

method and the K-ary method comes in the partitioning of the exponente. Koç [22] provides

two partitioning strategies to decompose the exponent. These strategies were initially

proposed by Knuth [18] and Boset al. [91]. The methods, though very similar in structure,

differ in whether the length of a nonzero window must be constant(L(fi) = k), or can it be

variable (L(fi) ≤ k), wherer is the maximum length of the NZW, i.e.r = max(L(fi)) for

i = 0, 1, 2, ...s− 1 for all fi > 0. In the following sections, algorithmic descriptions of these

two partitioning strategies will be given.
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5.5 CONSTANT LENGTH NONZEROWINDOWS

e = 1234567 =

nonzero windows  

1001 0 1011 11010 000 0111

window size = 4 bits

The constant length nonzero window (CLNW) is a partitioning strategy that scans the bits of

the exponent from the least significant to the most significant bit [50]. During scanning, it

decomposese into either a ZW or a NZW. The technique is described below:

• Making ZW. Check the incoming single bit: if it is a 0 then stay in ZW, else go to NW.

• Making NZW: Stay in NZW until allk bits are collected, wherek is the maximum

window size, then check the incoming single bit. If it is a 0 then go to ZW, else create

a new NZW.

The CLNW technique produces zero windows of arbitrary length, and nonzero windows of

lengthk. No adjacent ZW may occur, since adjacent zero windows are concatenated, while

two NZW may be adjacent. An illustrative example (e = 1234567) of the formalization of

thek-bit CLNW windows, wherek = 4, is shown above. The CLNW state diagram is shown

in Fig. 5.2.

ZW

NZW

NZW is full & 
scanned bit is 1

collect k bits

NZW is full & 
scanned bit is 0

scanned bit is 1

scanned bit is 0

Figure 5.2:CLNW state diagram

5.5.1 The Algorithm

Given exponente of n-bits, the window sizek, an algorithm is established to create NZW

and ZWfi of lengthL(fi). The CLNW partitioning algorithm is shown as follows:
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ALGORITHM: CREATING CONSTANT LENGTH NONZEROWINDOWS

Input. Exponente of n bits, and window sizek

Output. Partitionfi of lengthL(fi) of exponente for i = 1, 2, ..., s− 1

Search the exponentFor i from 0 ton do the following

1. Create ZWIf ei = 0

1.1fi ← 0, L(fi) ← 1 and seti = i + 1.

1.2 Whileei = 0 setL(fi) ← L(fi) + 1 andi = i + 1.

2. Create NZWIf ei = 1

2.1fi ← ei + ei+1 + ... + ei+k.

2.2 SetL(fi) ← k and seti = i + k.

3. Final result: Returnfi andL(fi).

5.5.2 Computational Efficiency

In order to compute the minimum number of modular multiplications required by the CLNW

partitioning strategy, a practical enumeration of the CLNW sliding window method(ge mod

m) must be performed Table5.3 tabulates the simulation results in terms of the number of

multiplications, squarings and precomputations required by the K-ary and CLNW sliding

window methods.

Table 5.3:The computational efficiency of the K-ary and CLNW sliding window methods

K-ary CLNW sliding window

n T k∗ P S M T

128 167 4 8 125 25 157

256 325 4 8 253 50 311

512 635 5 16 509 84 609

1024 1246 6 32 1020 145 1197

2048 2439 7 64 2044 255 2363

The simulations for Table5.3 were setup such that 1000 random exponente samples were

generated for the followingn-bit sizes:128, 256, 512, 1024, 2048. The baseg and modulus

m were randomly generated2048 bit integers utilizing the MIRACL pseudo random number

generator. Counters were implemented in the precomputation, squaring and multiplication
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steps of the sliding window algorithm. In order to compute the optimal window sizek∗, the

simulations were configured to test each window sizek in the range2 ≤ k < 32 for the

1000 generated exponent values. The tests were repeated for each exponent bit-size.

Koç [22] calculates the above results by modelling the CLNW partitioning strategy as

a Markov chain. He states that for an arbitraryn-bit exponente (e =
∑s−1

i=0 fi wheres is the

number of windows), the sliding window with CLNW technique requires:

• Precomputations: P = (2k − 2)/2 = 2k−1.

• Squarings: S = k(s− 1). This is simplified to(n
k
− 1)k = n− k.

• Multiplications: M . A multiplication is performed iffi is a NZW. Koç computes the

number of nonzero windows statistically by a Markov chain process. The statistically

computed multiplications are comparable to the multiplications shown in Table5.3.

As shown in Table5.3, the number of squarings are not equivalent to Koç’s theoretical

value ofn − k. This is because the number of windows(s) is not necessarily equivalent to

n/k. From the practical analysis performed, it was found that the number of squarings is

dependent on the size of the most significant NZW in the exponent. Thus, the number of

squaringsS = n− L(fs−1), which is often less thank.

The CLNW sliding window reduces the total number of multiplications required by

the K-ary method by 3-7 % for128 ≤ k ≤ 2048. These improvements are due to the

reduction of precomputations (odd NZWs) and multiplications (fewer NZWs) required by

the CLNW sliding window algorithm.

5.6 VARIABLE LENGTH NONZEROWINDOWS

e = 1234567 =

nonzero windows  

1011 11010 0000 111100 01

k = 4 bitsq = 2 bits

The CLNW technique starts with NZW when a one is encountered. Although the incoming

k − 1 bits may be zero, the algorithm appends them into the current NZW. The variable

length nonzero window (VLNW) technique prevents such a NZW to exist [22]. In order to
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do this it requires two pivotal integer parameters: the maximum nonzero window lengthk

and the minimum number of zerosq required to switch to the ZW.

The partitioning strategy is described as follows:

• Create ZW. Check the incoming single bit: if it is a 0 then stay in ZW, else go to NZW.

• Create NZW: Check the incomingq bits: if they are all zero then go to ZW; else stay

in NZW. If not, add bits to nonzero window, and repeat process until either allk bits

are collected or untilq zeros are encountered. Ifk bits are collected then check the

incoming single bit: if the bit is zero create a new ZW; else create a new NZW.

VLNW produces nonzero windows which start with a 1 and end with a 1. Two nonzero

windows may be adjacent; however, the one in the least significant position will necessarily

havek bits. Two zero windows will not be adjacent since they are concatenated. An

illustrative example (e = 1234567) of the formalization of thek-bit VLNW windows, where

k = 4 andq = 2, is shown above. The VLNW state diagram is shown in Fig.5.3.

ZW

NZW

NZW is full & 
scanned q bits > 0 

scan q bits

NZW is full & 
scanned bit is 0 or q 

scanned zeros

scanned bit is 1

scanned bit is 0

Figure 5.3:VLNW state diagram

5.6.1 The Algorithm

Given exponente of n-bits, the window sizek and the minimum number of zerosq required

to switch to the ZW, an algorithm is established to create NZW and ZWfi of lengthL(fi).

The VLNW partitioning algorithm is shown as follows:
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ALGORITHM: CREATING VARIABLE LENGTH NONZEROWINDOWS

Input. Exponente of n bits, and window sizek and minimum number of zerosq

Output. Partitionfi of lengthL(fi) of exponente for i = 1, 2, ..., s− 1

Search the exponentFor i from 0 ton do the following

1. Create ZWIf ei = 0

1.1fi ← 0, L(fi) ← 1 and seti = i + 1.

1.2 Whileei = 0 setL(fi) ← L(fi) + 1 andi = i + 1.

2. Create NZWIf ei = 1

2.1 SetL(fi) ← 1 andfi ← 1.

2.2 Check incomingq bits:

2.2.1 If all q bits zero then go to step 1

2.2.2 Else setL(fi) = L(fi) + q and addq bits tofi

2.2.3 Repeat 2.2 ifL(fi) < k

2.3 Check iffi has any leading zeros (l is the number of leading zeros).

2.3.1 Eliminate leading zeros:L(fi) ← L(fi)− l.

2.4 Seti = i + L(fi).

3. Final result: Returnfi andL(fi).

5.6.2 Computational Efficiency

For an arbitraryn-bit exponente (e =
∑s−1

i=0 fi wheres is the number of windows), the

sliding window with VLNW technique requires:

• Precomputations: P = (2k − 2)/2 = 2k−1.

• Squarings: A squaring is performed for each bit of the exponent except for the most

significant NZW.

• Multiplications: A multiplication is performed iffi is a NZW.

The number of squarings and multiplications depend on the conditions set by Fig.5.3.

Koç [22] models these processes by a three state Markov chain. He provides a detailed

analysis of this model and states that the optimal values ofq are between 1 and 3 and the

optimal window sizek is between 4 and 6 for128 ≤ k ≤ 2048.

In order to verify statistical analysis stated in [22], a practical enumeration of the
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VLNW sliding window method(ge mod m) was performed. The simulations were setup

for the VLNW partitioning technique using the same configuration shown in Section5.5.2.

To compute the optimalk∗ and optimal q∗, the simulations were configured to test

each window sizek in the range2 ≤ k < 32 and eachq in the range1 ≤ q ≤ k − 1. The

tests were repeated for each exponent bit-size and the data collected was averaged over 1000

runs. The summarized results of the simulations are tabulated in Table5.4.

Table 5.4:The computational efficiency of the CLNW and VLNW sliding window methods

CLNW VLNW sliding window

n T k∗ q∗ P S M T

128 157 4 3 8 125 25 157

256 311 4 3 8 253 50 311

512 609 5 4 16 509 84 609

1024 1197 6 5 32 1020 145 1197

2048 2363 7 6 64 2041 258 2363

Koç stated in [22] that VLNW technique would reduce the number of NZWs, thus being

more computation efficient than the CLNW technique. From the practical enumeration

performed, the VLNW technique decomposed the exponent into larger ZWs and shorter

NZWs than the CLNW technique. However, the number of NZWs did not decrease. In fact

for simulations whereq < k − 1, more NZWs were created.

If the VLNW technique is set toq = k − 1, it decomposes the exponent identically to the

CLNW technique. Thus, the number of precomputations, squarings and multiplications

shown in Table5.4are identical to Table5.3.

The summarized results in Table5.4 show that whenq = k − 1, the total number of

modular multiplications required by the modular exponentiation is at a minimum. Thus, the

CLNW method is the better partitioning strategy to use in the sliding window method.
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5.7 ADDITION CHAINS

The optimal strategy to obtain the minimum number of modular multiplications in a modular

exponentiation corresponds to a shortest path to the exponent value. This leads to the study

of addition chains which is a research area for more than 100 years old [94].

5.7.1 Description

Consider a sequence of integersa0, a1, a2, ..., ar−1, ar wherea0 = 1 andar = e. If the

sequence is constructed in such a way that for allk there exist indicesi, j < k such that

ak = ai + aj (5.4)

then the sequence is an addition chain fore. The addition chain length is the number of

elementsr in the addition chain.

An addition chain can be represented by a directed graph, where the vertices are labelledak

for 0 ≤ k ≤ r. Arcs are drawn fromaj to ak and fromai to ak as a representation of each

stepak = ai + aj in Eq. 5.4. For example, the addition chain1, 2, 3, 6, 12, 15, 27, 39, 78, 79

corresponds to the following directed graph:

1 2 3 6 12 15 27 39 78 79

5.7.2 Addition Chain Heuristics

In terms of modular exponentiation, the addition chain method for an exponente is computed

as follows: Start withg1 mod m, and proceed to computegak mod m using the two

previously computed valuesgai mod m andgaj mod m asgak mod m = gai · gaj mod m

[50]. The number of modular multiplications required is equal to the length of the addition

chain. Thus, the task of minimizing the number of modular multiplications is equivalent to

finding the minimal addition chain length.
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The methods introduced so far, namely, the Binary method, the K-ary method and the

sliding window methods are in fact methods of generating addition chains for the given

exponent [50]. Consider for examplee = 55, the addition chains generated by the discussed

methods are shown below:

Table 5.5:Addition chain of exponentiation methods fore = 55

Method Window

Binary method k = 1 1 2 3 6 12 13 26 27 54 55

K-ary method k = 2 1 2 3 6 12 13 26 52 55

CLNW sliding window method k = 2 1 2 3 6 12 13 26 52 55

VLNW sliding window method k = 3 1 2 3 5 6 7 12 24 48 55

Heuristics are practical methods that create addition chains for a particular integer. However,

they do not guarantee the shortest addition chain length for that particular integer. The

methods shown in Table5.5are all heuristics for generating short addition chains. However,

creating minimum length addition chains for very large integers (512-bits and above) is

extremely difficult [91, 95]. Through heuristics, methods to compute an addition chain for

very large integers is feasible.

The heuristics, thus far, implemented a basic exponentiation step (square-and-multiply) and

a window decomposition step to reduce the computation of the addition chain for a large

exponente to the computation of an addition sequence by choosing an appropriate set of

integers which are much smaller thane. The computation of short addition chain lengths

can be further improved by producing a short addition chain sequence for those integers. A

proposed heuristic applying this additional steps is described in the following section.

5.7.3 The Algorithm

The addition chain algorithm consists of three steps:

• Window decomposition: This step partitions the exponente into smaller windowswi.

• Make sequence: This step creates an addition sequence for a set of integers utilizing a

specialized algorithm proposed by Bos and Coster [91].

• Addition chain method: A modified binary exponentiation step for addition chains.
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5.7.3.1 Window Decomposition

There are three different techniques to decompose the exponente into smaller windows.

These windowing techniques are the fixed window decomposition, constant length nonzero

window decomposition and variable length nonzero window decomposition.

000101001010000100100110 111100

Fixed window decomposition. The exponent is decomposed into windows of fixedk-bit

length, as shown above. For further details, refer to Section5.3.

0011010000 10010011 01111 0000001

Constant length nonzero window decomposition. The CLNW decomposition produces zero

windows of arbitrary length, and nonzero windows of lengthk. For further details, refer to

Section5.5.

0001101000000001101 1111 0001001

Variable length nonzero window decomposition. The VLNW decomposition produces zero

windows of arbitrary length, and nonzero windows of a maximum lengthk. This creates

larger ZWs and smaller NZWs. For further details, refer to Section5.6.

5.7.3.2 Make Sequence

The initial addition chain sequence, the proto-sequence, consists of 1 and 2 and the

decomposed window values in ascending order. The sequence is then increased with

insertions of intermediate values required to obtain the required window values.

Bos et al. [91] describe four algorithms to create the addition sequence: Approximation,

Division, Halving and Lucas algorithms. Good sequences can be found utilizing the

Division and Lucas algorithms. However, implementing these algorithms is much more

time consuming and complex, sometimes infeasible to implement [91].

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING PAGE 79
UNIVERSITY OF PRETORIA



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoosseepphh,,  GG  ((22000055))  

CHAPTER FIVE FAST EXPONENTIATION TECHNIQUES

A combination of the Halving and Approximation algorithms provides a faster, less complex

solution to creating the addition sequence. Thus, theMake sequencealgorithm is as follows

[57]:

ALGORITHM: CREATE ADDITION CHAIN SEQUENCE

Input. Decomposed exponent windowswi

Output. Addition chain (AC)ai with verticesvi1 andvi2

1. Create Initial set. ai consists of 1,2, and the ascending window valueswi

2. Set ElementE to largest value in initial set.

3. WhileE > 2 do the following:

3.1 SetS to the next smaller element afterE.

3.2Halving. If E − S > S then do the following:

3.2.1 IfE odd then increase the set with(E − 1).

Add verticesvi1 = 1 andvi2 = E − 1 to AC

3.2.2 IfE even then increase set with(E/2). Add verticesvi1 = vi2 = E/2 to AC

3.3Approximation. Else ifE − S ≤ S then do the following:

3.3.1 Let∃(x, y) ∈ Set. Ifx + y = E, add verticesvi1 = x andvi2 = y to AC.

3.3.2 Else increase set with(E − S). Add verticesvi1 = S vi2 = E − S to AC.

3.4Set Element to next smaller element in setE ← S

4. Return addition chainai with verticesvi andvj

Verticesvi1 andvi2 are computed in correlation with addition chain elementai, such that

during the precomputation phase of the exponentiation:gai mod m can be computed as

follows:

gai mod m = gvi1 · gvi2 mod m (5.5)

The verticesvi1 andvi2 for their respectiveai may contain values less thanai, so that Eq.5.5

holds true. The following figure depicts the use of the above algorithm for the uncompleted

addition chaina = 1, 2, 6, 42.
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STEP ADDITION CHAIN (AC) OPERATION MODIFIED AC

1 1, 2, 6, 42 Halving: Insert 21 1, 2, 6, 21, 42

2 1, 2, 6, 21, 42 Halving: Insert 20 1, 2, 6, 20, 21, 42

3 1, 2, 6, 20, 21, 42 Halving: Insert 10 1, 2, 6, 10, 20, 21, 42

4 1, 2, 6, 10, 20, 21, 42 Approx: 6 + 4 = 10, insert 4 1, 2, 4, 6, 10, 20, 21, 42

5 1, 2, 4, 6, 10, 20, 21, 42 Approx: 2 + 4 = 6, no insert 1, 2, 4, 6, 10, 20, 21, 42

6 1, 2, 4, 6, 10, 20, 21, 42 Approx: 2 + 2 = 4, no insert 1, 2, 4, 6, 10, 20, 21, 42

7 1, 2, 4, 6, 10, 20, 21, 42 Terminate algorithm

Figure 5.4:Approximation and Halving for proto-sequence{1, 2, 6, 42}

5.7.3.3 Addition Chain Exponentiation

After the exponent has been decomposed into smaller windows and the make sequence

algorithm creates the required addition chain sequence, the addition elements can be utilized

in a modular exponentiation. The algorithm for the modular exponentiation is as follows:

ALGORITHM: ADDITION CHAIN EXPONENTIATION

Window decomposition. Breake into wi words ofL(wi)-bit length fori = 0, 1, 2, ...s− 1

Make sequence. Make addition chain sequenceai with verticesvi1 andvi2 from wi.

Precomputation. Compute and storegai mod m = gvi1
· gvi2

mod m for ai = 1, 2, ..., ar

Input. Baseg, modulusm and partitioned exponente

Output. A = ge mod m

1. Initialize A SetA ← gws−1 mod m

2. Loop functionFor i from (s− 2) down to0 do the following:

2.1 SetA ← A2L(wi) mod m.

2.2 If wi 6= 0 then setA ← A · gwi mod m.

3. Final result: ReturnA.

To analyze the addition chain method, an exponentiation graph of the exponente =

192000470 is shown in Fig.5.5.
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Figure 5.5:Exponentiation graph fore = 192000470 [57]

There are two chains in Fig.5.5. The left chain is the addition sequence created to compute

the required window values tabulated at the top of the figure. The right chain is the actual

exponentiation flow that occurs. The numbers between the boxes on the right chain are the

amount of squarings that occur between each window, which is determined by the position

of the window. The number of modular multiplications required to compute exponent

e = 192000470 are 28 squarings, 5 multiplications and 8 precomputations. The total is

41 operations, whilst the Binary method would require 45 operations to compute the same

number.

In general, it is the case that using addition sequences instead of precomputed tables

allows one to use bigger window sizes, giving shorter addition chains for the original

exponent. The larger the window, the greater the amount of precomputations and thus fewer

main-loop multiplications. The following section will provide practical enumeration of the

variations of the addition chain heuristic namely the fixed window, CLNW and VLNW

decompositions.
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5.7.4 Practical Enumeration

In order to compute minimum number of modular multiplications required by the addition

chain heuristic, a practical enumeration must be performed. The enumerations were

performed under the following conditions:

Algorithms tested:

• The modular exponentiation algorithm,ge mod m, implemented was the addition

chain exponentiation method shown in Section5.7.3.3.

• Each enumeration utilized a different window decomposition technique: fixed window

decomposition, CLNW decomposition and VLNW decomposition.

• The multiplication method utilized in the enumeration was the Karatsuba-Ofman with

Comba method

• The reduction method utilized in the enumeration was the Montgomery method.

Programming conditions:

• Each algorithm was implemented using standard ANSI C coding. The baseB was

chosen as232, hence used basic operations on integers ofunsigned int type.

• The baseg andm were randomly generated2048 bit integers utilizing the MIRACL

pseudo random number generator.

• The enumerations were conducted for 1000 randomly generated samples of the

exponente.

• Counters were implemented in the precomputation, squaring and multiplication steps

of the exponentiation algorithm.

• In order to compute the optimal window sizek∗, the enumerations were configured to

test each window sizek in the range2 ≤ k < 32 for the 1000 generated exponent

values.

• The tests were repeated for each exponent bit-size:128, 256, 512, 1024 and2048.
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The results collected was averaged over 1000 iterations and the respective enumeration

graphs and summary tables are presented for each window decomposition technique.

Fixed window decomposition. The enumeration graph, shown in Fig.5.6, depicts

the average number of modular multiplications against the various window sizes. The

shaded bar is the optimal window size that provides the minimum number of modular

multiplications.
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Figure 5.6: Enumeration graph for the fixed window addition chain method for 1024-bit
exponent

Table 5.6 tabulates the results of the above enumeration in terms of the number of

multiplications, squarings and precomputations required forn-bit exponent.

Table 5.6:Computational efficiency of the fixed window addition chain method

n k∗ P S M T

128 16 41 112 7 160

256 16 59 240 15 314

512 16 92 496 31 619

1024 16 147 1008 62 1217

2048 16 230 2032 127 2389
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Constant length nonzero window decomposition. The enumeration graph, shown in Fig.

5.7, depicts the average number of modular multiplications against the various window sizes.

The shaded bar is the optimal window size that provides the minimum number of modular

multiplications.
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Figure 5.7: Enumeration graph for the constant length nonzero window addition chain
method for 1024-bit exponent

Table 5.7 tabulates the results of the above enumeration in terms of the number of

multiplications, squarings and precomputations required forn-bit exponent.

Table 5.7:Computational efficiency of the constant length nonzero window addition chain
method

n k∗ P S M T

128 4 8 125 25 157

256 5 15 253 42 310

512 5 16 509 84 609

1024 6 31 1020 145 1196

2048 7 63 2044 255 2362

Variable length nonzero window decomposition. The enumeration graph, shown in Fig.

5.8, depicts the average number of modular multiplications against the various window sizes.
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The shaded bar is the optimal window size that provides the minimum number of modular

multiplications.
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Figure 5.8: Enumeration graph for the variable length nonzero window addition chain
method for 1024-bit exponent

Table 5.8 tabulates the results of the above enumeration in terms of the number of

multiplications, squarings and precomputations required forn-bit exponent.

Table 5.8:Computational efficiency of the variable length nonzero window addition chain
method

n k∗ q∗ P S M T

128 4 3 8 124 24 156

256 5 4 15 253 41 309

512 5 4 16 509 84 609

1024 6 5 31 1020 146 1197

2048 7 6 61 2044 256 2361

5.7.5 Discussion

The addition chain methods discussed in this section determine the total number of

precomputations. In comparison to the sliding window methods for larger window sizes, the

addition chain method requires significantly fewer precomputations. However, the addition
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chain methods do not improve on the sliding window methods in terms of the total number

of modular multiplications, i.e. at its optimum window size it requires the same number of

modular multiplications as the sliding window methods.

Fig. 5.6 to Fig. 5.8 shows a distinct minimum forT . This is due to the fact that

with increasing window sizes the number of windows decrease while the size of the most

significant window increases. This results in fewer multiplications and squarings [92].

However, when increasing the window sizes further, the addition chain for creating the

window elements becomes longer, hence increasing the number of precomputations. The

addition chains created, for these larger window sizes, are not the optimum because the

make sequence algorithm employed is inefficient to identify short sequences out of larger

integers.

The sequence algorithm has the following effects:

• It depends on the structure of the exponent, more specifically on the decomposed

window values(wi), as it creates the addition chain with respect to these values. The

fewer number of different window values, the smaller the addition chain created.

• The values in the addition chain can only be twice their previous number (Halving

operation) or the sum of two previous numbers (Approximation operation) in the

sequence.

• Though the algorithm does not provide the shortest addition chain length, it provides

a practical solution to find a shortish addition chain for the exponent.

From Fig. 5.6, it is noticed that though the optimal window size(k = 16) produces a

distinct minimum of 1217 total multiplications, it requires 147 precomputations. Since

the relationship between performance and memory usage is important to the efficient

implementation of the modular exponentiation algorithm, especially in resource-constrained

environment, this high number of precomputations would require a large amount of stored

memory compared to the sliding window methods. Hence, the fixed window addition chain

method is inefficient in this regard.

Kunihiro and Yamamoto [96, 97, 98] proposed further systematic algorithms which
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create short addition chains for large Hamming weight exponents using smaller window

sizes.

Understanding the relationship between performance and memory usage is vital in

implementing the modular exponentiation in a resource constrained environment. The

addition chain methods can require a large number of precomputations, hence memory.

Certain of the precomputations are temporarily required and may be removed once it is

utilized, and some are required for the majority of the chain. Sauerbrey [92] provides

methods to reutilize memory space for storage of many precomputations.

5.8 THEORETICAL L IMITS

The computation of the shortest addition chain for a positive integere is known to be

an NP-complete problem [95]. This implies that all possible chains leading toe must be

computed in order to obtain the shortest one. Since addition chains were introduced by

Scholz [18] in 1937, its bounding properties have been established:

The upper bound on the length of the shortest addition chain fore is equal to:

L(e) ≤ log2 e + H(e)− 1 (5.6)

whereH(e) is the Hamming weight andL(e) is the length of the addition chain. This upper

bound corresponds to the number of operations required by the Binary method as long as the

H(e) is not small. Though the Classical exponentiation method has a much larger addition

chain than the Binary method, anything worse than the Binary method is simply ignored by

cryptographers.

The lower bound was established by Schönhage [99]:

L(e) ≥ log2 e + log2H(e)− 2.13 (5.7)

Theoretical analysis and the asymptotic bounds of addition chains are defined in [94, 100,

101,102,103,95].
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5.9 EXPERIMENTAL RESULTS

To obtain a practical comparison for the discussed exponentiation methods to be used in a

public-key environment, two tests must be performed:

• Hamming weight analysis

• Timing analysis

The simulations were done on a Pentium III processor running at 550 MHz with 256 Mbyte

main memory under Windows XP Home Edition platform using a Borland C Builder 6.0

compiler. The simulations were performed under the following conditions:

Algorithms tested:

• The exponentiation algorithms that were tested were the Binary method, the K-ary

method, the Sliding window method (utilizing CLNW decomposition) and the

Addition-chain method (utilizing CLNW decomposition).

• Each method is configured to utilize its optimal window-size.

• The multiplication method utilized in the simulations was the Karatsuba-Ofman with

Comba method

• The reduction method utilized in the simulations was the Montgomery method.

Programming conditions:

• Each algorithm was implemented using standard ANSI C coding. The baseB was

chosen as232, hence used basic operations on integers ofunsigned int type.

• The baseg andm were randomly generated1024 bit integers utilizing the MIRACL

pseudo random number generator.

Hamming weight analysis parameters:

• 1000 samples of the exponent was generated for specific Hamming weight

probabilities:0.05, 0.5 and0.95.

• The tests were repeated for each exponent bit-size:128, 256, 512, 1024 and2048.
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• A counter (C), representing the addition chain length of the algorithm, was

incremented each time a precomputation, squaring or multiplication step occurred in

the exponentiation algorithm.

• The respective normalized addition chain lengths of each of the exponentiation

methods were calculated using the averaged value ofC over 1000 iterations. A

normalized addition chain length is the ratio of the addition length ofe to the bit

size ofe, i.e. Ĺ(e) = C
n

.

Timing analysis parameters:

• The simulations were conducted for 1000 random exponente samples for the specified

bit size.128, 256, 512, 1024 and2048.

• One iteration consisted of a single run of the exponentiation algorithm for each

exponentiation algorithm. The total time period of each test was 20 seconds.

• Each simulation was run until the total time period had elapsed and the number of

iterations exceeded 20. The average time was calculated as a function of the total time

elapsed divided by the total number of iterations.

• The timing of the once-off precalculations were not taken into account (i.e. window

decomposition, addition-chain sequence creation, calculation ofḿ). However,

argument transformations, precomputations and postcomputations were taken in the

run-time, as they were computed within the modular exponentiation operation.

Fig. 5.9 to Fig. 5.11 plots a normalized addition chain length of each exponentiation

method against bit-length of the exponent for different Hamming weight probabilities. Fig.

5.12gives the average run-time of the various exponentiation methods utilizing the optimal

window-size over an even distribution of ones in the exponent. The graphs below have the

following parameters:

• Size of the exponent: the length of the exponent in bits.

• Normalized addition-chain length: The averaged normalized addition chain length

over 1000 iterations for the specific exponent bit-size.

• Schn̈onhage’s limit: the lower bound of the shortest possible addition chain length.

• Time: The averaged run-time for one iteration of the exponentiation method.
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Figure 5.9:Normalized addition chain lengths for 5%H(e) exponent
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Figure 5.10:Normalized addition chain lengths for 50%H(e) exponent
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Figure 5.11:Normalized addition chain lengths for 95%H(e) exponent
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Figure 5.12:Time analysis of the exponentiation methods
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5.10 DISCUSSION

It is shown in Fig.5.9that the Addition-chain and the Binary methods give favorable results

when the exponent has low Hamming weight. In Fig.5.10the Addition-chain method and

Sliding window provides the best results for an even distribution of ones in the exponent.

Fig. 5.11shows that when the Hamming weight of the exponent is large the Addition chain

method gives the shortest chain, whilst the Binary method gives the longest.

The Hamming weight of the exponent generally affects the number of multiplications

(M) and squarings(S) that occur in a modular exponentiation. The larger the Hamming

weight of the exponent the greater the number of multiplications. This is due to a smaller

probability of zero windows in large Hamming weight exponents. However, the number

of precomputations play an important role in the total number of modular multiplications

(T ). The K-ary and Sliding window methods have a fixed amount of precomputations

which is independent to the Hamming weight of the exponent. The Binary method has no

precomputations and depends entirely on the Hamming weight of the exponent.

The Addition-chain method utilizes its Make-sequence algorithm to adapt itself to the

Hamming weight of the exponent to create a low number of precomputations. In terms of

larger Hamming-weight exponents, the Make-sequence algorithm creates an addition-chain

sequence of very large window values and very small window values. This is due to

the large amount of large valued windows, that are numerically close to each other,

created by the window decomposition employed. In low Hamming weight exponents, the

Make-sequence algorithm needs only to create an addition chain sequence to a smaller value.

The methods analyzed all fall, on average, 10-20% short of Schnöhage’s lower bound.

The normalized addition chain length indicates that as the exponent size increases, the

Schn̈ohage limit tends to one. This is expected as thelog2 e term of Eq. 5.7 becomes

dominant. This is directly related to the number of squarings that occur in the modular

exponentiation. The 10-20% difference of the exponentiation methods is attributed to the

number of multiplications and precomputations. For low Hamming weight exponents, the

required number of precomputations and multiplications is reduced due to greater amount

of zeros in the exponent.
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The effect of each of the exponentiation methods on the number of modular multiplications

can be attributed to the following:

• The length of the exponent approximately determines the number of squarings that

occur.

• The length of the most significant window is the only factor that influences the number

of squarings.

• The number of nonzero windows determined the number of loop multiplications that

occur.

• The precomputations are determined by the window size and its respective value, i.e.

the length of the addition sequence required to compute the different window values.

Whilst the Binary method is generally the slowest method, in special cases this method can

provide shorter or at least comparable addition chains, especially for low Hamming weight

exponents. The two additional advantages the Binary method has over its exponentiation

counterparts is that it is most simple algorithm to implement and secondly it makes use of

the least memory resources as it requires no precomputations.

It is also interesting to note that for a chosen exponente = 65537, the Binary method would

provide the shortest addition chain. This choice for the exponent is popular for the public

exponent of the RSA encryption scheme, since the computation is relatively efficient and

large enough to make trivial attacks infeasible.

The window methods introduce an additional step whereby the exponent is decomposed

into windows of a certain bit length. It may be thought of takingk-bit windows in the binary

representation of the exponent, calculating the powers in the windows one by one, squaring

themk times to shift them over, and then multiplying by the power in the next window.

The window decomposition, however, requires a precomputation of all the possible window

values that may occur. The techniques for defining windows have a great effect on the

modular multiplication count.

The basic window method, i.e. the K-ary method, decomposes the exponent into fixedk-bit
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windows. This decomposition creates window values in the range of0 ≤ wi ≤ 2k − 1,

which would require2k − 1 precomputations.

To further reduce the number of precomputations, the window decomposition can be

performed such that only odd window values can exist, i.e. creating windows where the

LSB is one. Also by decomposing the exponent in such a way to decrease the number

of nonzero windows, the number of multiplications are also decreased. The CLNW and

VLNW window decomposition techniques decompose the exponent into zero windows of

any length and nonzero windows of a fixed of maximum bit-length. It was shown in Section

5.6.2that the CLNW decomposition was a more efficient window decomposition technique.

The K-ary method is 8% better the Binary method, whilst the Sliding window methods are

5-7% better than the K-ary method. The sliding window algorithms are easy to program,

introducing negligible overhead.

The Addition-chain method introduces an additional step which tries to reduce the

number of precomputations that occur by creating an addition chain sequence that from

the decomposed window values. This step, due to Bos and Coster [91], creates a sequence

starting from the largest window value, then finding the next smallest value by either halving

its value or finding whether two previous window values’ sum adds to the desired value.

The process is repeated until the sequence contains all the required values. However, this

sequence-building step becomes inefficient to find short sequences at larger integers, hence

for a random distribution of ones in the exponent it does not improve on the sliding-window

methods.

Moreover, since the sliding window method is effectively an ”on-the-fly” window

method, the use of the Addition chain method may not be a necessity for evenly distributed

exponents. The addition chain method provides the shortest addition chain lengths for

exponents with very low or very large Hamming weights, as the sequence-building algorithm

provides ”shortish” addition sequences for these window values.

The sequence building step is complex and time-consuming to compute. However,

this step would not effect the performance of a fixed-exponent exponentiation algorithms

where the precalculations are done before the actual modular exponentiation. Though it
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was shown that the Addition chain method was the better method to utilize for exponents

of low and large Hamming weight exponents, considering that Addition chain method are

on average 1-10% better than other methods, it seems perfectly reasonable to use the other

methods to its simplicity.

The chapter results show that the addition chain length is dependent on the method

chosen and the method is which the exponent is decomposed. Certain methods are optimal

for certain exponents, hence it is unlikely that will be single method to generate the shortest

addition chain.

5.11 CHAPTER SUMMARY

Different methods for modular exponentiation were examined, implemented and evaluated

in this chapter. These methods are compared with respect to the average number of

modular multiplications needed to accomplish exponentiation for various Hamming weight

exponents. The main factors influencing the modular multiplication count have been

stated. The Addition-chain method discussed provides the the best or comparable short

addition chain lengths for different Hamming weight exponents. However, its complex

sequence-building step is inefficient in identifying short sequences for evenly distributed

exponents. The CLNW Sliding window method provides similar performances to the

Addition chain method and should be used in these cases. Fig.5.12confirms the research

obtained in this chapter.
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CHAPTERSIX
FAST EXPONENT TECHNIQUES����
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� � � � � � �� � � � � � �� � � � � � �� � � � � � � , � � � � � � �� � � � � � �� � � � � � �� � � � � � � . 
 
An inch of time is worth an inch of gold; but it's hard to buy one inch of time with one inch of 
gold. 
 
Time is money but , more often than not, even when you have money, you may not be able to 
buy the time you need. 

A CHINESE PROVERB1

The techniques described thus far are applicable to all the public-key cryptosystems

discussed in Chapter2. Further speed enhancements can be made by modifying or

manipulating the exponent of the modular exponentiation. This, however, only works in

cryptosystems where the exponent is fixed, i.e. the RSA cryptosystem.

The RSA encryption is a very fast operation, as the encryption exponent (e) is often

chosen to be a small prime with a low Hamming weight (typicallye = 65537). However,

the decryption procedure is very slow, due to the fact the decryption exponent is generally a

very large integer. This fact remains a problem in many applications of the RSA algorithm.

Constructive work in this area of cryptography has provided some significant speed

enhancements to the decryption process, most notably the use of the Chinese Remainder

Theorem (CRT) in the decryption process by Quisquateret al. [23]. However, the

applicability of choosing a suitable decryption exponent will further enhance the speed of

the RSA decryption. This chapter will look at three novel ways of choosing the decryption

exponent (with specific prime generation techniques) that will lead to a substantial reduction

in the RSA decryption time.

1 Translated in English: ”An inch of time is worth an inch of gold, but it’s hard to buy one inch of time
with one inch of gold”
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The chapter will implement and evaluate the various improvements performed on the

exponent. It will also provide a security analysis of selecting a certain decryption exponent

and conclude with a summary of the work done.

6.1 RSA DECRYPTION

The RSA algorithm generates two distinct large primesp andq to create the modulusm i.e.

m = pq. Utilizing Euler’s totient function ofm, φ(m) = (p − 1)(q − 1), the encryption

exponente is then chosen such that

gcd(e, φ(m)) = 1 (6.1)

The decryption exponentd is computed using the extended Euclidean algorithm [18]:

d = e−1 mod (φ(m)) (6.2)

whered andm are relatively prime [25]. The decryption of the messageM is computed as

follows:

M = Cd mod m (6.3)

whereC is the ciphertext generated fromC = M e mod m. The correctness of Eq.6.3 is

shown in [50]. In order to compute the number of operations required by Eq.6.3, let the size

of p andq bek/2-bits. Sincem = pq, thenm andd arek-bit integers. Thus, the required

number of operations required by Eq.6.3 is calculated as

3k

2
(k)2 =

3k3

2

6.2 FAST DECRYPTION USINGCRT

When the modulusm is the product of two primesp and q, a significant performance

improvement can be achieved through the using the Chinese Remainder Theorem (CRT).

This method, proposed by Quisquater and Convreur [23], only works whenp and q are

factors of the modulusm. The CRT enables the computation of the modular exponentiation
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modulom to be performed using two modular exponentiations modulop andq, which is half

the size ofm:

Mp = Cd mod p

Mq = Cd mod q
(6.4)

After Eq. 6.4 is computed, the messageM is computed by the application of the Chinese

Remainder Theorem. There are two algorithms that computes the CRT: Gauss’ CRT [18]

and Garner’s CRT (GCRT) [104]. The following subsection discusses the Chinese remainder

theorem and its properties.

6.2.1 The Chinese Remainder Theorem (CRT)

If the integersp1, p2, ..., pk are pairwise relatively prime (that isgcd(pi, pj) = 1), then the

system of simultaneous congruences

x ≡ u1 mod p1

x ≡ u2 mod p2

...

x ≡ uk mod pk

(6.5)

has a unique solution modulop = p1p2...pk [25]. Using Gauss’s algorithm, the solutionu to

the simultaneous congruences in Eq.6.5may be computed as

k∑
i=1

uiciPi(modp) (6.6)

wherePi = p1p2...pi−1pi+1...pk = p
pi

andci is the multiplicative inverse ofPi modulopi, i.e.

ci = Pi
−1 mod pi. Applying Fermat’s theorem [105] to RSA decryption, the computation of

Eq. 6.4becomes

Mp = Cdp mod p

Mq = Cdq mod q
(6.7)

where
dp = d mod (p− 1)

dq = d mod (q − 1)
(6.8)
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dp anddq are half the size ofd, which reduces the time required by the decryption process.

In order to obtainM , utilizing Eq. 6.6and Eq.6.7the following is obtained

M = Mpcp
pq

p
+ Mqcq

pq

q
mod m = Mpcpq + Mqcqp mod m (6.9)

wherecp = q−1 mod p andcq = p−1 mod q. This simplified to

M = Mp · (q−1 mod p) · q + Mq · (p−1 mod q) · p (modm) (6.10)

Garner’s CRT algorithm (GCRT) [104], on the other hand, computes the final integeru by

first computing a triangular table of values:

u11

u21 u22

u31 u32 u33

...
...

...
.. .

uk1 uk2 uk3 · · · ukk

where the first column of the valuesui1 are the given values ofui. The values in the

remaining columns are computed sequentially using the values from the previous columns

using recursion

ui,j+1 = (uij − ujj)cji mod p (6.11)

wherecij is the multiplicative inverse ofpj modulopi, i.e.

cjipj = 1 mod pi (6.12)

For exampleu32 is computed asu32 = (u31− u11)c13 mod p3 wherec13p1 = 1 mod p3. The

final value ofu is computed as

u = u11 + u22p1 + u33p1p2 + ... + ukkp1p2...pk

which does not require a final modulop reduction [50].
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Applying the GCRT algorithm to the RSA decryption, first compute Eq.6.7 and Eq.

6.8. The triangular table becomes

M11

M21 M22

where

M11 = M1

M21 = M2 (6.13)

M22 = (M21 −M11)(p
−1 mod q) mod q

Therefore the RSA decryption using GCRT is computed as

M = M1 +
[
(M2 −M1) · (p−1 mod q) mod q

] · p (6.14)

The GCRT method is more advantageous than the standard CRT computation for RSA

decryption. This is due to two reasons:

• The GCRT method requires a single inverse computationp−1 mod q, which can be

precomputed and saved.

• The GCRT method does not require a final reduction byp.

6.2.2 Computational Efficiency

In order to compute the total number of operations required by the RSA decryption(M =

Cd mod m) using the CRT, the following assumptions are made:

• The size of the primesp andq is k/2-bits respectively, wherem = pq.

• The modulusm and the decryption exponentd arek-bits in length.

• dp, dq andp−1 mod q are precomputed.

To constructCd mod (pq) by GCRT, initially requires computation of Eq.6.7and Eq.6.8.

Hence, each exponentiation (i.e.M1 andM2) requires3
2
k · frack2) operations.
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The total computation ofM (including the combination ofM1 and M2 by GCRT)

will consist of onek/2-bit subtraction, twok/2-bit multiplications and onek-bit addition.

Hence, the total number of operations is

2
3k

2

(
k

2

)2

+ 2

(
k

2

)2

+
k

2
+ k =

3k3

8
+

k2 + 3k

2

The RSA decryption without CRT requires3k3

2
operations. Thus, just considering the

higher-order terms, the decryption using CRT will be approximately four times faster.

A comparison of the relative performance in Fig.6.1 shows that the respective times of

performing an RSA decryption with CRT will improve the decryption speed as theoretically

expected. Fig.6.1 was implemented utilizing the algorithmic and programming conditions

shown in Section6.7.
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Figure 6.1:Comparison of RSA decryption with and without CRT

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING PAGE 102
UNIVERSITY OF PRETORIA



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoosseepphh,,  GG  ((22000055))  

CHAPTER SIX FAST EXPONENT TECHNIQUES

6.3 FAST DECRYPTION BY CHOOSING THEDECRYPTION

EXPONENT (METHOD I)

Conventional RSA prime generation chooses the encryption exponent and then utilizes

the extended Euclidean algorithm to compute the decryption exponent. In general, the

encryption operation is very fast, since the publicly-known encryption exponent can be

chosen to be a small integer with low Hamming weight (a popular choice is216 + 1).

However, the decryption is very slow, even with the application of the Chinese Remainder

Theorem, due to the fact that the decryption exponent is very large.

In this chapter three novel techniques are introduced where instead of choosing the

encryption exponent, the decryption exponent is chosen. In this section, the first of the new

methods for choosing the decryption exponent is presented:

Let p and q be two distinct primes wherep < q. The differencer is represented

as

r = q − p (6.15)

The decryption exponent is chosen as follows

d ≡ (p2 · q) mod φ(m) (6.16)

whereφ(m) = (p − 1)(q − 1). The encryption exponente is then computed as the inverse

of the decryption exponent (using the extended Euclidean algorithm [18]):

e ≡ d−1 mod φ(m) (6.17)

Note that, in general, the size ofe will be approximately the same as the size of the modulus

m. Reformulating Eq. 6.8, the decryption exponents for the half exponentiations are

expressed as:
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dp = d mod (p− 1)

= p2 · q mod (p− 1) (q − 1) mod (p− 1)

= q mod (p− 1)

= (r + p) mod (p− 1)

= (r + p + 1− 1) mod (p− 1)

= (r + 1) mod (p− 1) (6.18)

and similarly

dq = d mod (q − 1)

= p2 · q mod (p− 1) (q − 1) mod (q − 1)

= p2 mod (q − 1)

= (q − r)2 mod (q − 1)

= (q + 1− 1− r)2 mod (q − 1)

= (1− r)2 mod (q − 1)

= (r − 1)2 mod (q − 1) (6.19)

With the above formulations, one can compute

Cd mod p = Cdp mod p

= C(r+1) mod (p−1) mod p

= C(r+1) mod p (6.20)

and similarly

Cd mod q = Cdq mod q

= C(r−1)2 mod (q−1) mod q

= C(r−1)2 mod q (6.21)

The decrypted message is finally obtained by applying the Chinese Remainder Theorem to

Eq. 6.20and Eq.6.21. Note that sincer + 1 is smaller thanp, Eq. 6.18can be expressed as

dp ≡ r + 1.
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Analyzing the Eq. 6.20 and Eq. 6.21, the speed of the decryption lies in the size of

decryption exponent, i.e.r − 1 andr + 1. By choosing the differencer between the two

primesp andq to be small, it is possible to obtain a very short exponent, which would lead

to a substantial reduction in decryption time.

Note that if the Hamming weight ofr + 1 is chosen to be low, assumingr is approximately

the same size asp and q, the modular exponentiations in Eq.6.20 and Eq. 6.21 can be

improved. Section6.6 will describe these methods whereby the difference of the primes is

chosen to either have a low Hamming weight or a small numerical difference.

6.4 FAST DECRYPTION BY CHOOSING THEDECRYPTION

EXPONENT (METHOD II)

The second method proposed is similar to the method proposed Section6.3. However, in

this case the sumr is defined as:

r = p + q (6.22)

The decryption exponent is chosen to be

d ≡ (p · q) mod φ(m) ≡ m mod φ(m) (6.23)

whereφ(m) = (p − 1)(q − 1). The encryption exponente is then computed using the

extended Euclidean algorithme ≡ d−1 mod φ(m). Utilizing Eq. 6.8 for this case, the

decryption exponents for the half exponentiations is then calculated as:

dp = d mod (p− 1)

= p · q mod (p− 1) (q − 1) mod (p− 1)

= q mod (p− 1)

= (r − p) mod (p− 1)

= (r − p− 1 + 1) mod (p− 1)

= (r − 1) mod (p− 1)

≡ r − 1 (6.24)
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and similarly

dq = d mod (q − 1)

= p · q mod (p− 1) (q − 1) mod (q − 1)

= p mod (q − 1)

= (r − q) mod (q − 1)

= (r − q − 1 + 1) mod (q − 1)

= (r − 1) mod (q − 1)

≡ r − 1 (6.25)

With the above formulations, one can compute

Cd mod p = Cdp mod p

= C(r−1) mod p (6.26)

and similarly

Cd mod q = Cdq mod q

= C(r−1) mod q (6.27)

The Chinese remainder theorem is applied to Eq.6.26and Eq.6.27to obtain the message

M . Sincer is the sum of the two primes, it would be favorable to chooser − 1 with a low

Hamming weight exponent in order to reduce the decryption time. A method to creater as a

low Hamming weight integer is described in Section6.6.

6.5 FAST DECRYPTION BY CHOOSING THEDECRYPTION

EXPONENT (METHOD III)

The third method of choosing the decryption exponent is to computed as the sum ofp

and an integer multiple ofq. In this section, the third of the new methods for choosing the

decryption exponent is presented.

Let p andq be two distinct primes wherep < q. The difference in primesr is represented as

r = q − p (6.28)
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Now choose the decryption exponent as follows

d ≡ (nq + r) mod φ(m) (6.29)

where φ(m) = (p − 1)(q − 1), where n is the odd multiple ofq. Hence, the half

exponentiations are expressed as:

dp = d mod (p− 1)

= (nq + r) mod (p− 1) (q − 1) mod (p− 1)

= n(p + r) + r mod (p− 1)

= n(p + 1− 1 + r) + r mod (p− 1)

= r(n + 1) + n mod (p− 1) (6.30)

and similarly

dq = d mod (q − 1)

= (nq + r) mod (p− 1) (q − 1) mod (q − 1)

= n(q + 1− 1) + r mod (q − 1)

= (r + n) mod (q − 1) (6.31)

With the above formulations, one can compute

Cd mod p = Cdp mod p

= C(r(n+1)+n) mod (p−1) mod p

= Cr(n+1)+n mod p (6.32)

and similarly

Cd mod q = Cdq mod q

= Cr+n mod (q−1) mod q

= Cr+n mod q (6.33)

The messageM is obtained applying the Chinese remainder theorem to Eq.6.32and Eq.

6.33. In order to satisfyd, whered ≡ nq + r, n has to be odd. This is due to the fact that

r, the difference of primesp andq, will always be even. Hence in order for the condition

gcd(e, φ(m)) to be satisfied,d andn has to be odd. The generation of the differencer is

shown in Section6.6.
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6.6 PRIME GENERATION

The prime generation techniques focuses on creation ofr from the generated primesp and

q. Three methods, derived for the proposed methods shown in Section6.3to Section6.5, are

described in the following subsections.

6.6.1 Low Hamming Weight Prime Difference

In order to creater to have a low Hamming weight, wherer is the difference between primes

p andq, the following steps are taken:

• Creater such that the MSB is always one and the LSB is zero with a bit-length

approximately the same size asp. Note thatr will always be even sincep and q

are primes.

• Randomly disperseH(r) ones through the length ofr, whereH(r) is the desired

Hamming weight ofr.

• Generate primep and add it tor to obtainq.

• If q is not a prime, the process has to repeated until a primeq is found.

The algorithm for the above method is given as follows:

ALGORITHM: PRIME GENERATION - LOW HAMMING WEIGHT PRIME DIFFERENCE

Input. Random integerp = (pk, pk−1, ..., p1, p0)2 of k-bits length

Output. Primep andq with differencer

1. Create primep.

1.1 If p is even:p ← p + 1.

1.2 Whilep is not prime:p ← p + 2.

2. Create primeq. While q is not prime do the following:

2.1 Initializer ← 0

2.2Create differencer. For i from 1 untili ≤ (k − 1) do the following:

2.2.1j = R(l).

2.2.2rj+i ← 1 whererj+i is the(i + j)th binary position inr

2.2.3i ← i + j.

2.3 Computeq ← p + r.

3. Returnp, q andr.
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The algorithm employsR(l) which is a random number generator to insert approximately

k/l binary ones intor, hence determine the Hamming weight ofr. A low Hamming weight

r is favorable since it would imply thatp and q may be Hamming weight close but not

necessarily numerically close.

The visualization of the algorithm is shown in Fig.6.2.
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Figure 6.2:Creation of a low Hamming weight prime differencer

6.6.2 Small Prime Difference

To create the small difference betweenp and q: they need to numerically close. Their

Hamming weight will be identical except that for their least significantl bits, in which they

can differ significantly.

The method first creates a primep and then utilizing a random generatorR(r) creates

r that isl bits long. Primeq is then computed by the sum ofp andr. If q is not prime, then

the process is repeated until a primeq is found.

The algorithm for the method is given as follows:
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ALGORITHM: PRIME GENERATION - SMALL PRIME DIFFERENCE

Input. Random integerp = (pk, pk−1, ..., p1, p0)2 of k-bits length

Output. Primep andq with differencer

1. Create primep.

1.1 If p is even:p ← p + 1.

1.2 Whilep is not prime:p ← p + 2.

2. Create primeq. While q is not prime do the following:

2.1Creater. r ← R(r) of l-bits length.

2.2Ensurer is even. If r0 = 1 then setr0 ← 0.

2.3Computeq. q = p + r.

3. Returnp, q andr.

The visualization of the algorithm is shown in Fig.6.3.
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Figure 6.3:Creation of a small differencer

6.6.3 Low Hamming Weight Prime Sum

Given thatp + q = r, it can be noticed that the sumr is larger thanp andq. However, since

Eq. 6.26and Eq.6.24requires(r − 1) to have a low Hamming weight, the method creates

(r − 1) such that the MSB is always one and the LSB is zero. The bit-length ofr is always

one bit larger than the size ofp and is randomly populated withH(r) ones, whereH(r) is

the desired Hamming weight ofr. The generated primep is then subtracted fromr to obtain

q. If q is not a prime, the process has to repeated until primeq is found. Hence, the following

algorithm can be formulated:
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ALGORITHM: PRIME GENERATION - LOW HAMMING WEIGHT PRIME SUM

Input. Random integerp = (pk, pk−1, ..., p1, p0)2 of k-bits length

Output. Primep andq with sumr

1. Create primep.

1.1 If p is even:p ← p + 1.

1.2 Whilep is not prime:p ← p + 2.

2. Create primeq. While q is not prime do the following:

2.1 Initializer ← 0 with rk ← 1

2.2Create(r − 1). For i from (k − 1) down-to 0 do the following:

2.2.1j = R(l).

2.2.2ri−j ← 1 whereri−j is the(i− j)th binary position inr

2.2.3i ← i− j.

2.3Set(r − 1) to be low Hamming weight. r0 ← 1.

2.4Computeq. Computeq ← r + 1− p.

3. Returnp, q andr ← r + 1.

The algorithm employsR(l) which is a random number generator to insertk/l binary ones

into r, hence determines the Hamming weight ofr. The algorithm can be visualized in Fig.

6.4.
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Figure 6.4:Creation of a low Hamming weight prime sumr
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6.7 EXPERIMENTAL RESULTS

In order to obtain practical times for the discussed decryption methods, specific simulations

must be performed. Simulations were performed on a Pentium III processor running at

550 MHz with 256 Mbyte main memory under Windows XP Home Edition platform using

a Borland C Builder 6.0 compiler. The simulations were performed under the following

conditions:

Decryption algorithms tested:

• The RSA decryption algorithm utilizing the Chinese remainder theorem, proposed by

Quisquater and Convreur [23].

• The proposed RSA decryption method choosingd = p2q mod φ(m) utilizing the low

Hamming weight prime difference shown in Section6.6.1.

• The proposed RSA decryption method choosingd = p2q mod φ(m) utilizing the

small prime difference shown in Section6.6.2.

• The proposed RSA decryption method choosingd = m mod φ(m) utilizing the low

Hamming weight prime sum shown in Section6.6.3.

• The proposed RSA decryption method choosingd = 3q + r mod φ(m) utilizing the

small prime difference shown in Section6.6.2.

Algorithm basis:

• The exponentiation algorithms utilized the Sliding window method(utilizing VLNW

decomposition).

• Each exponentiation algorithm was configured as to utilize its optimal window-size

for the respective exponent bit-length.

• The multiplication method utilized in the simulations was the Karatsuba-Ofman with

Comba method

• The reduction method utilized in the simulations was the Montgomery method.
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Programming conditions:

• Each algorithm was implemented using standard ANSI C coding. The baseB was

chosen as232, hence used basic operations on integers ofunsigned int type.

• The messageM was a randomly generated2048 bit integer which was encrypted by

the respective public exponent utilized.

• In addition, the exponent was created by the prime generation method implemented

for the test case.

• For verification that decryption process was successful, the decrypted message was

compared to the original message.

• Though a lot of effort has been done to remove the overhead generated by the compiler,

the test is still subjected to a little overhead generated by the platform and compiler.

Timing analysis parameters:

• One iteration consisted of a single run of the two decryption algorithms. The total

time period of each test was 20 seconds.

• Each simulation was run until the total time period had elapsed and the number of

iterations exceeded 20. The average time was calculated as a function of the total time

elapsed divided by the total number of iterations.

• The timing of the precomputations were not taken into account, however argument

transformations and postcomputations were taken, as they were computed within the

modular exponentiation.

Fig. 6.5 to Fig. 6.8 plots the average time against either the Hamming weight or bit-length

of r depending on the prime generation technique utilized for the simulation. The dotted

line shown in each of the figures is the average time required by a standard RSA decryption

using the CRT (with the conventional selection for the public exponente and the private

exponentd).

The RSA encryption time for the new methods had an average timing of1512.23ms.
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Figure 6.5:Time analysis of Method I shown in Section6.3applying prime generation shown
in Fig. 6.2(average RSA encryption time1512.23ms)
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Figure 6.6:Time analysis of Method I shown in Section6.3applying prime generation shown
in Fig. 6.3(average RSA encryption time1512.23ms)

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING PAGE 114
UNIVERSITY OF PRETORIA



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoosseepphh,,  GG  ((22000055))  

CHAPTER SIX FAST EXPONENT TECHNIQUES

370

380

390

400

410

420

430

440

450

460

64 128 192 256 320 384 448 512

Hamming weight of  r [bits] 

T
im

e 
pe

r 
it

er
at

io
n 

[m
s]

Proposed method RSA decryption with CRT

Figure 6.7: Time analysis of Method II shown in Section6.4 applying prime generation
shown in Fig.6.4(average RSA encryption time1512.23ms)
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Figure 6.8: Time analysis of Method III shown in Section6.5 applying prime generation
shown in Fig.6.3(average RSA encryption time1512.23ms)
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6.8 DISCUSSION

6.8.1 Performance Analysis

Fig. 6.5 shows the decryption times for the RSA method described in Section6.3 by

applying the low Hamming weight prime generation shown in Section6.6.1. Method I,

when utilizing a low Hamming weightr, provides a maximum improvement of 10% against

the RSA decryption (as the Hamming weight ofr increases, the improvement of the method

decreases).

The low Hamming weight(r − 1) is only advantageous for one of the half exponentiations,

i.e. Mp = Cr−1 mod p. The exponent in the second half exponentiation, i.e.

(r − 1)2 mod (q − 1), will not necessarily produce a low Hamming weight exponent.

Thus, the speed improvement of Method I relies on the computation ofMp.

Fig. 6.6 shows the timing results for Method I if the prime generation method created

primes with a small difference between them (shown in Section6.6.2. The times shown in

Fig. 6.6show a greater improvement than the times shown in Fig.6.5. By creating a small

difference between the primes, the decryption exponent utilized in the half exponentiations

in Fig. 6.6varied from 64-bits to 1024-bits whilst the exponent in Fig.6.5exponent was of

a constant 1024-bit length.

The timing results utilizing Method II are shown in Fig.6.7. Comparing Fig. 6.5

and Fig.6.7, it can be seen Method II is faster than Method I when a low Hamming weight

exponent is generated. Utilizing Method I, the derivation of(r − 1)2 mod (q − 1) did not

always achieve a low Hamming weight. However utilizing Method II, the derived exponent

for the half exponentiations wasr− 1, which is chosen to be a low Hamming weight integer.

Thus, a speed improvement of Method II was obtained on both half exponentiations.

Though Method II is faster than Method I when utilizing low Hamming weight exponents,

the security of this system can be easily compromised. This security risk is shown in the

Section6.8.5.

Method III chose the exponent such thatd ≡ nq + r wherebyn had to odd. For the
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most efficient generation ofr, n was chosen as 3. Thus, Fig.6.8 shows the timing results

for Method III wherebyd ≡ 3q + r. The Method III’s derived exponents, i.e.(r + 3) and

4r + 3, are approximately half the size of exponent(r − 1)2 and similar in bit-length to

r + 1 that are created by Method I. Thus, the times shown in Fig.6.8 are better than those

obtained in Fig.6.6by 25%.

One drawback of the proposed methods is that the encryption speed has decreased due to

a much larger public exponente. Although e is much larger than what is conventionally

used (i.e.e = 65537), it is assumed the encryption is done by faster processors, whereas the

decryption is done on applications with limited resources i.e. smart cards.

Choosing the decryption exponent poses certain security risks. These risks are analyzed in

the following subsections.

6.8.2 Simple Factoring Attack on the Modulus

There is a simple algorithm for factoring the modulus when the difference between the two

prime factors is small. Consider the following identity:

(
q + p

2

)2

− pq =

(
q − p

2

)2

(6.34)

The term((q + p)/2)2 can be found in a linear search through all the perfect squares,

starting from the modulusn = pq. The correct square is found when the difference between

the square and the modulus is itself a perfect square. Once the two terms(q + p)/2 and

(q − p)/2 have been found, it is easy to factor the modulus.

Suppose the differencer between the two prime factors, i.e.p + r = q is chosen to

be a 64-bit number. Then the exhaustive linear search to find the required perfect squares

has the computational complexity ofO(264).

6.8.3 Wiener’s Attack on Short Decryption Exponents

Wiener has previously considered the situation when the decryption exponent for RSA is

chosen too ”small” [60]. We give a brief review of his attack. One tries to findd, knowing
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that

de = 1 mod (lcm(p− 1)(q − 1)) (6.35)

whene andn = pq are known. Of course, neitherp or q are known. Expressing

de = 1 +
k

h
(p− 1)(q − 1) = 1 +

k

h
(n− p− q − 1) (6.36)

wherek andh are integers withgcd(k, h) = 1. Now divide dydn:

k

hd
− e

n
=

k

hd

(
1

p
+

1

q
− 1

n

)
− 1

dn
(6.37)

If r is small, thenp andq are not far from
√

n. If d is too small (of the order ofn
1
4 , k, h andd

can be recovered fromk
hd

, which is continued fraction approximation of the known number
e
n
. However, in our case, the decryption exponent will not be small, and so Wiener’s attack

will not be possible.

6.8.4 Fermat and Lehman Attacks

The small difference betweenp andq is often attacked by factoring algorithms. Namely,

the Fermat factoring technique and Lehman attacks may be applied. However, the question

remains how small may the difference between the primes be in order to guarantee security

against these attacks.

The ANSI X9.31 standard [69] defines a method for digital signature and verification

of message using reversible public key cryptosystems with message recovery, i.e. RSA. The

standard provides criteria for the generation of public and private keys required for secure

use of the algorithm.

The standard states that in order to prevent Fermat factoring and Lehman attacks, the

difference betweenp andq must be larger than2412. The mathematical details of this can be

read in [106] and its applications in [107]. Hencer should have a length of at least 412-bits.

6.8.5 Security Risk of Method II

At first glance Method II seems to provide secure decryption, however closer examination

of the decryption exponentd suggests otherwise. From Eq.6.22the decryption exponentd
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can be expressed in terms ofr as follows:

d ≡ m mod φ(m)

≡ p · q mod (p− 1)(q − 1)

≡ p · (q − 1 + 1) mod (p− 1)(q − 1)

≡ p mod (q − 1)

≡ (r − q) mod (q − 1)

≡ r − 1 (6.38)

In order to computeM = Cd mod m whereC, m andd ≡ r − 1 is known, it becomes very

easy for an intruder to computed. Since(r − 1) is chosen to have a low Hamming weight

(l), the total number of possibilities thatd may be for ak-bit number is


 k

l


 =

k!

l!(k − l)!
(6.39)

From Eq. 6.39 it is shown the number of possibilities thatd has significantly decreased

compared to the possibilities required by a conventional RSA implementation (2k). Since

d is a low Hamming weight integer, it is prone to Hamming weight attacks i.e. Baby-step

Giant-step attacks. Hence this method, though faster, is insufficient for security applications.

6.9 CHAPTER SUMMARY

The chapter gives a brief description of the conventional RSA decryption. Utilizing the

Chinese Remainder Theorem, the RSA decryption performance is dramatically increased.

This chapter describes and implements three novel ways to select the decryption exponent

to further improve the decryption speed.

Method I, implemented for low Hamming weight or small exponents, provided an

improvement on the conventional RSA decryption utilizing the CRT. Method II, although

an improvement on the speed from methods discussed in Section6.1 and Section6.2, was

insecure to be used in security applications. Method III, however, described in Section6.5

employing prime generation that created a smallr provided exceptional timing results. The
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security of the proposed methods were tested against various attacks and can implemented

in various security applications.

By carefully choosing the difference between the two primes that form the modulus,

it is possible to obtain a decryption exponentd whose size can be substantially reduced.

When applying the Chinese Remainder Theorem for the decryption algorithm, this results

in a dramatic reduction of the decryption time.
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CONCLUSION

”Everything that has a beginning has an end.”

THE ORACLE, Matrix Revolutions

The main objective of this dissertation is to improve the implementation efficiency of widely

used modular exponentiation-based public-key cryptosystems. The execution time of the

these cryptosystems are based on specific mathematical algorithms. These algorithms have

to be optimized for platforms ranging from super-computers to smart cards. It is especially

the lower-end platforms that require algorithms to be efficient and consume as little resources

as possible. Throughout this dissertation specific attention was paid to the properties of these

mathematical algorithms, specifically their performance characteristics.

7.1 ASSESSMENT OF STUDY

In order to demonstrate the improvements recommended by the dissertation on the

implementation efficiency of the public-key cryptosystems, a case study must be undertaken

whereby these improvements can be compared against an industry-standard multi-precision

integer library. MIRACL1 was chosen as the case study of this dissertation, though other

libraries such as GMP, LIP and OpenSSL have multiple precision integer arithmetic routines,

due to that fact that all its routines have been thoroughly optimized for speed and efficiency

in terms of standard portable C.

1 The MIRACL library (Multi-precision Integer and Rational Arithmetic C Library) was created by Michael
Scott and consists of well over 100 routines that cover all aspects of multi-precision arithmetic required
for public-key cryptosystems.
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Table 7.1 shows a summary of the list of algorithms utilized by an ”out-of-the-box”

built MIRACL to perform a modular exponentiation. This table also illustrates the

recommendations of the dissertation for each step introduced in Fig.1.1.

Table 7.1:Summary of algorithms used by Miracl and Proposed methods

MIRACL Proposed

Multiplication Classical [18] 3 level Karatsuba-Ofman

with Comba [19]

Reduction Montgomery [21,52] Montgomery [21,52]

Exponentiation 5-bit VLNW 5,6,7-bit CLNW

sliding window(q∗ = 2) [22] sliding window [22]

Table7.2shows a summary of the results obtained by MIRACL as well as the recommended

optimal results for512, 1024, 2048-bit modular exponentiations. The last row of Table

7.2 shows the time required by the respective methods to perform a2048-bit modular

multiplication. The last column of Table7.2 shows the percentage improvement of the

timing results obtained by the proposed method compared to MIRACL.

The results of Table7.2 were obtained on a Pentium III processor running at 550

MHz with 256 Mbyte main memory under Windows XP Home Edition platform using a

Borland C Builder 6.0 compiler. Fig.7.1 shows the speed improvement of the proposed

method compared to MIRACL.

Table 7.2:Summary of results by Miracl and Proposed methods

Exponent(e) MIRACL Proposed Improvement

Bit-size Time #mult Time #mult %

512 444.13ms 622 387.58ms 609 12.73

1024 827.20ms 1229 759.10ms 1200 8.23

2048 1729.00ms 2444 1496.85ms 2365 13.43

Mod. mult. 941.36µs - 758.93µs - 19.37
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Figure 7.1:MIRACL and Proposed methods results

In general, the execution time of public-key cryptosystems used in industry are based on the

MIRACL algorithms shown in Table7.1. Thus, depending on the processor and memory

requirements, the optimized method can provide improvements up to 13%.

From the results shown in Table7.2 it is evident that multiplication is one of the

most important factors influencing performance. Simulation results in Chapter3 showed

that the Classical multiplication algorithm was slow compared to the Karatsuba-Ofman

algorithm. The dissertation shows that by applying the Karatsuba-Ofman algorithm

recursively to an optimal recursion depth, significant performance gains up to 20% can be

achieved. From the simulation results shown in Chapter4, it has been have verified that

the Montgomery reduction algorithm provides superior performance over the Classical and

Barrett reduction algorithms.
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The speed improvements of the proposed method can be attributed to the fewer number

of modular multiplications required by the chosen exponentiation method. An invaluable

contribution of our dissertation, shown in chaprefFastExponentiationTechniques, describes

the windowing algorithms that utilize different techniques of breaking the exponent structure

into unique windows to compute shorter addition chain sequences. These improvements

are gained by utilizing two sliding-window algorithms, the CLNW and VLNW techniques,

which depends greatly on the exponent, and in particular its weight. The research of these

two sliding-window methods, backed up with mathematical and simulation results, showed

that the optimal choice of the windowing-strategy is the CLNW method.

An alternative approach was investigated to directly find the shortest addition chain

leading to a particular exponent by utilizing a heuristic by Boset al. [91] that approximates

the shortest chain to the exponent. This heuristic, when used in conjunction with a

windowing-strategy, did not produce much better approximations to the shortest addition

chain than the sliding-window exponentiation algorithms. Thus the heuristic, though

it promises significant improvements in theory, finds similar addition chains to the

sliding-window algorithms. In future significant improvements might still be made here.

The main goal of the dissertation was extended even further in Chapter6 when three

novel approaches were implemented for improving the decryption efficiency of the RSA

algorithm. The three novel methods, by carefully choosing the difference between the two

primes that form the modulus, obtains a decryption exponent whose size can be substantially

reduced. When applying the Chinese Remainder Theorem to the RSA decryption algorithm,

a dramatic reduction of the decryption time is obtained. However these improvements are

done at the expense of some increase in the encryption complexity.

Security tests have shown that Method II is not secure, and should not be used in practice.

The other two methods were tested against various known attacks, and resisted these

well. Methods I and III represent a noteworthy contribution to the field of cryptography

and provides up to a 45% improvement on the decryption speed for 1024-bit modular

exponentiation when ANSI X9-31 security considerations are taken into account.
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7.2 SUMMARY AND FURTHER RESEARCH

This research has uncovered some areas where further research is required. It would result

in a large improvement in the performance of any exponentiation-based algorithm if the

processes of multiplication and reduction can be combined into a single step. An efficient

algorithm for calculating the shortest addition chain for a given exponent still has to be

found. More work on the security of methods I and III can be carried out. These novel

methods represent a whole new family of potential improvements to RSA decryption. More

work can be done on exploring these new opportunities, and finding the optimal combination

of encryption and decryption efficiency. Design and development of suitable hardware

solutions for these mathematical algorithms evaluated in this dissertation is left as a possible

research project.

It can be said that the optimal algorithm performance for modular exponentiation-based

public-key cryptosystems has not been found yet, but our work should be in itself a

contribution to the field of cryptography and serve as a valuable platform for further

research.
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[59] J. Hȧstad, “Solving simultaneous modular exponentiations of low degree,”SIAM
Journal of Computing, vol. 17, pp. 336–341, 1988.

[60] M.J. Wiener, “Cryptanalysis of short RSA secret exponents,”IEEE Trans. Information
Theory, vol. IT-36, no. 3, pp. 553–558, 1990.

[61] B.S. Kaliski, M. Robshaw, “The secure use of RSA,”CryptoBytes, pp. 7–13, 1995.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING PAGE 129
UNIVERSITY OF PRETORIA



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoosseepphh,,  GG  ((22000055))  

REFERENCES

[62] D. Coppersmith, “Finding a small root of a univariate modular exponentiation,”
Advances in Cryptology EUROCRYPT ’96 (LNCS 1070), pp. 155–165, 1996.

[63] G.I. Davida, “Chosen signature cryptanalysis of the RSA (MIT)
public-key-cryptosystem,” Technical Report TR-CS-82-2, Department of Electrical
Engineering and Computer Science, University of Wisconsin, Milwaukee, WI, 1982.

[64] J.M. DeLaurentis, “A further weakness in the common modulus protocol for the RSA
cryptoalgorithm,”Cryptologia, vol. 8, pp. 253–259, 1984.

[65] G.J. Simmons, M.J. Norris, “Preliminary comments on the M.I.T. public-key
cryptosystem,”Cryptologia, vol. 1, pp. 406–414, 1977.

[66] R.L. Rivest, R.D. Silverman, “Are ’strong’ primes needed for RSA?.” November
1999.

[67] A. Shamir, “RSA for paranoids,”Cryptobytes, vol. 1, pp. 1–4, 1995.

[68] ISO/IEC 9796, ed.,Information Technology security techniques - Digital signature
scheme giving message recovery, (Geneva, Switzerland), International Organization
for Standardization, First ed., 1991.

[69] ANSI X9.31-1998,Digital signatures using reversible public key cryptography for the
finicial service industry (rDSA). American National Standards Institute, 1998.

[70] P.C. van Oorschot, “A comparison of practical public key cryptosystems based on
integer factorization and discrete logarithms,”Contempary Cryptology: The Science
of Information Integrity, pp. 289–322, 1992.

[71] B.Tuckerman, “The 24th Mersenne Prime,”Proceedings to National Academy of
Science, vol. 68, pp. 2319–2330, 1970.

[72] M. Scott, “Comparison of methods for modular exponentiation on 32-bit Intel 80x86
processors.” Informal draft, School of Computer Applications, Dublin City University,
June 1996.

[73] K. Geddes, S. Czapor and G. Labahn,Algorithms for Computer Algebra. Kluwer
Academic Publishers, Boston, 1992.

[74] M. Welschenbach, Cryptography in C and C++. Apress Publications,
Springer-Verlag, 2001.

[75] A. Weimerskirch and C.Paar, “Generalizations of the Karatsuba algorithm for efficient
implementations,”

[76] C.K. Koc, C.Hung, “Fast algorithm for modular reduction,”IEEE Proc.: Computers
and Digital Techniques, vol. 145(4), 1998.

[77] A. Bosselaers, R. Govaerts, J. Vandewalle, “Comparison of three modular reductions,”
Advances in Cryptology - Crypto ’93 (LNCS 773), Springer-Verlag, pp. 175–186,
1994.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING PAGE 130
UNIVERSITY OF PRETORIA



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoosseepphh,,  GG  ((22000055))  

REFERENCES

[78] H. Morita, C.H. Yang, “A modular multiplication algorithm using lookahead
determination,”IEICE Trans. Fundamentals, vol. E76-A, no. 1, 1993.

[79] N. Takagi, “A modular multiplication algorithm with triangle additions,”11th Symp.
on Computer Arithmetic, IEEE Computer Society Press, pp. 272–276, 1993.

[80] C.H. Lim, H.S. Hwang, P.J. Lee, “Fast modular reduction with precomputation,”Proc.
of Korea-Japan Joint Workshop on Information Security and Cryptology, October
1998.

[81] C.D. Walter, “Faster modular multiplication by operand scaling,”Advances in
Cryptology - CRYPTO ’91 (LNCS 576), pp. 313–323, 1992.

[82] D. Naccache, D. M’Stilti, “A new modulo computation algorithm,”Recherche
Operationelle - Operations Research (RAIRO-OR), no. 24, pp. 307–313, 1990.

[83] K. Hensel, “Theorie der algebraischen Zahlen,”Leipzig, 1908.

[84] M. Shand, J. Vuillemin, “Fast implementation of RSA cryptography,”Proceedings of
the 11th IEEE Symposium on Computer Arthimetic, pp. 252–259, 1993.

[85] J.C. Bajard, L.S. Didier, P. Komerup, “An RNS Montgomery modular multiplication
algorithm,” IEEE Transaction on Computers, vol. 47, pp. 766–776, July 1998.

[86] T. Blum, C.Paar, “Montgomery modular exponentiation on reconfigurable hardware,”
14th IEEE Symposium on Computer Arithmetic, pp. 70–77, 1999.

[87] P. Behrooz, Computer arithmetic algorithms and hardware designs. Oxford
University Press Inc., 2000.

[88] C.D. Walter, S.E. Elridge, “Hardware implementation of Montgomery modular
multiplication algorithm,”IEEE Trans. Comp., vol. 42, pp. 693–699, 1993.

[89] D. Naccache, D. M’Raihi, “Montgomery-suitable cryptosystems,”Algebraic Coding
Lecture Notes in Computer Science, vol. 781, 1994.

[90] C. Koc, T. Acar, B.S. Kaliski, “Analyzing and comparing Montgomery multiplication
algorithms,”IEEE Micro, no. 16, pp. 26–33, 1996.

[91] J. Bos, M. Coster, “Addition-chain heuristics,”Advances in Cryptology -
EUROCRYPT ’89 (LNCS 435), Springer-Verlag, pp. 400–407, 1990.

[92] J. Sauerbrey, A. Dietel, “Resource requirements for the application of addition chains
in modulo exponentiation,”Advances in Cryptology - EUROCRYPT ’94 (LNCS 513),
pp. 174–182, 1994.

[93] H. Cohen,A Course in Computational Algebraic Number Theory. Springer Verlag,
Berlin, 1993.

[94] A.G. Thurbur, “Efficient generation of minimal length addition chains,”SIAM Journal
of Computing, vol. 28, no. 4, pp. 1247–1263, 1999.

DEPARTMENT OFELECTRICAL, ELECTRONIC & COMPUTER ENGINEERING PAGE 131
UNIVERSITY OF PRETORIA



UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoosseepphh,,  GG  ((22000055))  

CHAPTER SEVEN CONCLUSION

[95] P.Downey, B. Leony and R.Sethi, “Computing sequences with addtion chains,”SIAM
Journal of Computing, vol. 3, pp. 638–696, 1981.

[96] N. Kinohiro, H. Yamamoto, “Window and extended window methods for addition
chain and addition-subtraction chain,”IEICE Trans. Fundamentals, vol. E81-A,
pp. 72–81, January 1998.

[97] N. Kinohiro, H. Yamamoto, “New methods for generating short addition chains,”
IEICE Trans. Fundamentals, vol. E83-A, pp. 60–67, January 2000.

[98] N. Kinohiro, H. Yamamoto, “Optimal addition chains classified by Hamming weight,”
IEICE Technical Report ISEC96-74, 1997.
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