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Simulating tick distributions over sub-Saharan Africa: the use of

observed and simulated climate surfaces
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ABSTRACT

Aim

A broad suit of climate datasets is becoming available for use in predictive species
modelling. We compare the efficacy of using interpolated climate surfaces (CRES and
CRU) or high-resolution model derived climate data (DARLAM) for predictive species

modelling, using tick distributions from sub-Saharan Africa.

Location
The analysis is restricted to sub-Saharan Afiica. The study area was sub-divided into

3000 grids cells with a resolution of 60 x 60 km.

Methods

Species distributions were predicted using an established multivariate climate envelope
modelling approach and three very different climate datasets. The recorded variance in
predicted species distributions across the climate datasets was quantified by employing
omni directional variograms. To further compare the interpolated tick distributions that
flowed from using three climate data sets, we calculated true positive (TP) predictions,
false negative (FN) predictions as well as the proportional ovedaps between observed and
modelled tick distributions. In addition, the effect of tick dataset size on the performance
of the climate datasets was evaluated by performing random draws of known tick

distitbution records without replacement.

Results

The predicted distributions were consistently wider ranging than the known records when
using any of the three climate datasets. However, the proportional overlap between
predicted and known distributions varied as follows: for Rhipicephalus appendiculaius
Neumann (Acari: Ixodidae), these were 60%, 60% and 70%; for Rhipicephalus longus
Neumann (Acari: Ixodidae) 60%, 57% and 75%; for Rhipicephalus zambeziensis Walker,
Norval & Corwin (Acari: Ixodidae) 57%, 51%, and 62%, and for Rhipicephalus capensis
Koch (Acari: Ixodidae) 70%, 60%, and 60% using the CRES, CRU and DARLAM
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climate datasets respectively. All datasets were sensitive to data size but DARLAM
performed better when using smaller species datasets. At a 20% data sub-sample level,
DARLAM was able to capture more than 50% of the known records and captured more

than 60% of known records at higher sub-sample levels.

Main conclusions

The use of data derived from high-resolution nested climate models (e.e. DARLAM)
provided equal or even better species distribution-modelling performance. As the model
is dynamic and process based, the output data are available at the modelled resolution,
and are not hamstrung by the sampling intensity of observed climate datasets (~ 1 sample
/30 000 km”® for Africa). In addition, when exploring the biodiversity consequences of
climate change, these modelled outputs form a more useful basis for comparison with

modelled future climate scenarios.
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INTRODUCTION

Predictive species modelling is rapidly becoming a routine analytical procedure (for
review see Guisan & Zimmermann 2000), and with rapid advances in climate data
interpolation and modelling techniques, it is now possible to predict the distributions of
an array of insects, pests and pathogens using their major climate drivers (Messenger,
1959; Sutherst & Maywald, 1985; Meats, 1989; Perry et al., 1990; Randolph & Rogers,
1997; Sutherst et al., 1995; Coakley et al., 1999; Cumming, 2000a; Rogers & Randolph,
2000; Randolph, 2001, 2002; Erasmus ef al., 2000, 2002; Harvell ez al., 2002). Many of
these approaches are static and probabilistic in nature but remain the primary approach
available for studying the possible consequences of changing environments on species

distnbutions.

The principal sources of climate data used for predictive distribution modelling are
climate surfaces, generated by interpolating observed climate data that was sampled at
varying intensities from across a region. Consequently, any differences between these
climate surfaces can usually be attributed to the spatial and temporal evenness of the
observed data used for interpolation. Most modem interpolation techniques are pattern
based and statistically incorporate horizontal as well as vertical (altitudinal) adjustments

(see Hutchinson, 1989, 1991; Hutchinson & Gessler, 1994).

General circulation models (GCMs) have now become the primary method of simulating
climates. These are coupled ocean-atmosphere models that provide 3-dimensional
simulations of the atmosphere. To date, general circulation models (GCMs) have
produced climate data at a horizontal resolution that is too coarse for use in predictive
species modelling (> 100 km x 100 km grid point resolution), especially for species that
are habitat specialists or that are influenced by fine scale environmental gradients.
Computational requirements usually prevent GCMs from being run at mesoscale grid
resolutions (10 - 100 km). A potential alternative source of high-resolution climate data
for use in predictive species modelling is nested limited-area models. Nested climate

modelling involves the nesting of a high-resolution limited area model within a GCM
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over the area of interest (for review see McGregor, 1997). The GCM supplies the limited
area model with initial and boundary conditions. With a grid resolution of 10-100 km, the
limited area model is able to simulate some of the meso-scale properties of the
circulation. This technique provides a viable alternative to the use of
observed/interpolated climate surfaces for fine scale climatic data. The resolution attained
by this dynamic modelling process is essentially limited by the computing power

available to the modellers.

The present study used one species distribution modelling procedure (Erasmus ez al.,
2000) and three climate datasets (2 interpolated and 1 modeled) to evaluate the relative
performance of the climate datasets in simulating the present distributions of ticks in sub-
Saharan Africa. We employed distribution data from 4 tick species from the genus
Rhipicephalus. These tick species are taxonomically well known, are poorly sampled and
their environmental dependencies not adequately documented (Tukahirwa, 1976; Rechav,
1981; Short & Norval, 1981; Norval er al., 1982; Horak et al., 1983, 1995; Perry et al.,
1990; Rogers & Randolph, 1993; Cumming, 1998, 1999a, Walker er al., 2000). As
principal vectors of numerous cattle diseases these tick species are also of significant

economic importance to the continent.

MATERIALS AND METHODS

CRES climate data

The first climate dataset used forms part of a topographic and climate database for Africa
developed by the Center for Resource and Environmental Studies (CRES)(Hutchinson et
al., 1996) at the Australian National University. These data contain grid box values of
elevation (Hutchinson, 1989), monthly mean climate ofrainfall as well as daily values for
maximum and minimum temperatures at a spatial resolution of 0.05 x 0.05 degrees.
Climate grid box values were calculated by fitting topographically dependent climate
surfaces to point climate data using procedures described in Hutchinson (1991) and

Hutchinson & Gessler (1994), thereafter the surfaces were interrogated using elevations
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from the topographic data (McMahon ez al., 1995). Climate data at a sufficient spatial
density to support reliable spatial interpolation were compiled. In addition to data already
obtained by CRES, monthly climate data were acquired from many other research
agencies. Data were collected over all available years to maximize spatial coverage,
subject to the condition that rainfall averages were calculated from records of at Ieast five
years. The data set comprises data collected between 1920 and 1980 from approximately
1 500 temperature and 6 000 rainfall stations. The error of grid values depends mainly on
the accuracy of the underlying climate surfaces. The standard errors of the temperatures
are about 0.5 °C, while standard errors for rainfall range between 5% and 15 %
(depending on data density and the spatial variability of observed mean monthly rainfall
values). The mean monthly rainfall values as well as maximum temperatures for January
and July are depicted in Figure 1. The climate surfaces are relatively smooth due to their
dependency on low-resolution point observations. These data were re-sampled to the
finest common resolution between climate data sets, which is the 60km x 60km
DARLAM grid cells. This resulted in data for 3000 grid cells which was within the
limitations imposed by the available hardware and software. The mean values of CRES
data cells contained within each 60km x 60km grid cells was used as the new re-sampled
CRES data value for that particular grid cell. Although some variation was lost in this
procedure, between-cell variation before re-sampling was small due to interpolation
between remote data points, and therefore the predictive ability of this data was not
affected. After re-sampling, 92% of the grid cells had standard deviations smaller than
5% of the mean value for that particular grid cell. The variograms of re-sampled data in
Fig 2 confirms this fact, with neighbouring cells remaining highly autocorrelated at small

distances (~60km). We regard this small change in variation as reasonable for our

purposes.

CRU climate data

The 1961 - 1990 climate dataset from the Climate Research Unit (CRU) was used as a
second dataset (New ef al., 1999). The database consists of mean monthly climate fields

with a 0.5° x 0.5° grid resolution across the global terrestrial areas, excluding Antarctica.
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The mean climate surfaces were constructed from a 30-year (1961-1990) station
observation field. The station data were interpolated as a function of latitude, longitude
and elevation using thin-plate splines. The accuracy of the interpolations are assessed
using cross-validation and by comparison with other climate surfaces (New ef al., 1999).
Considerable spatial and temporal variance of climate surface variables over southern
Affica can be observed in the CRU data (Engelbrecht e al, 2002). Despite this, the
climate surfaces remain smooth due to their dependence on low-resolution point data.
The mean monthly rainfall values as well as maximum and minimum temperatures are

depicted in Figure 1. These data were also re-sampled to 60km x 60km grid cells in the

same manner as the CRES data.

DARI.AM climate data

The Commonwealth Scientific and Industrial Research Organisation (CSIRO) in
Melbourne, Australia, developed the high-resolution limited-area model DARLAM
(Division of Atmospheric Research limited-area model) for use in both short-term
mesoscale atmospheric studies and longer-term climate simulation experiments (Walsh &
McGregor, 1995). The model is a two-time-level, semi-implicit, hydrostatic primitive
equations model. It uses an Arakawa staggered C-grid (Mesinger & Arakawa, 1976) and
semi-Lagrangian horizontal advection (McGregor, 1993) with bi-cubic spatial
interpolation, and has 18 horizontal sigma (o) levels in the vertical (Phillips, 1957).
DARLAM employs a wide range of physical parameterization schemes to represent
atmospheric processes such as cumulus convection that exist at sub-grid scale. A one-
way nesting technique (Davies, 1976) is used with lateral boundary conditions supplied
by the CSIRO-9 Mk 2 GCM with R21 spectral resolution.

In the present study nine separate 30-day simulations were performed for both January
(representing mid-summer conditions) and July (representing mid-winter conditions).
The simulations were performed at a horizontal grid resolution of 60 km x 60 km using a
domain of 100 x 100 grid points that covers sub-Saharan Africa. The monthly average of

the nine simulations constitutes the model climatology for the month. The climatologies
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of rainfall and minimum and maximum temperature obtained in this manner are shown in
Figure 1. Engelbrecht er al. (2002) illustrated that DARLAM is capable of simulating the
regional characteristics of atmospheric variables like near-surface temperature, low-level
wind patterns and rainfall over sub-Saharan Africa with considerable detail. The model

does, however, tend to overestimate rainfall totals over regions with a steep topography.

The DARLAM simulations were performed at the Laboratory for Research in
Atmospheric Modelling (LRAM) at the University of Pretoria on a Pentium III
workstation with two 550 MHz processors. It took approximately 11-minutes (CPU time)

to simulate a model day at the specified model resolutions.

Predictive species modelling

We used a single predictive species modelling approach, originally developed by Jeffiee
& Jeffree (1994, 1996), for predicting species distribution pattems in the present study as
a standardised base for evaluating the relative performance of the different climate data
sets. This model was recently modified to accept multivariate inputs to yield probability
of occurrence maps for species (Erasmus er al., 2000). The original model was adapted to
incorporate a variety of climatic predictor variables. Not only does this improve the
original model, but it also allows the production of a probability surface of suitability for
each species (Erasmus er al., 2000), rather than merely a presence-absence distribution
model. The multivariate predictive distribution modelling procedure developed by
Erasmus et al. (2000) was employed throughout the current study. In short, this
multivariate modelling approach uses the values of selected climate variables for each
cell where a species had been recorded. These are plotted on an n-dimensional scatter
plot (for the n-climate variables), and mean climate values subtracted to center values
around the origin of the multidimensional scatter plot. An nxn covariance matrix is
calculated and this matrix is used as an input to calculate eigen values and eigen vectors
for the covariance matrix. These eigen vectors form the orthogonal principle axes of an n-

dimensional hyperspace with the origin representing the theoretical core of the species’
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fundamental niche, as defined by the predictor climate variables (also see Robertson ez

al., 2001).

The climate variable values of all grid cells are then transformed into this eigen vector
space. These transformed climate variables are subsequently divided by the eigen values
and in the resulting n-dimensional hyperspace, the distance of any particular unsampled
grid cell from the origin represents a measure of the suitability of that locality for the
specific species (Robertson er al., 2001). According to Austin & Meyers (1996), the
fundamental niche of an organism follows a broad Gaussian distribution. Such a
Gaussian distribution is best approximated by a normal distribution but given that the
distance from the origin of the hyperspace is calculated by the sum of the squared eigen
vector axis scores, and that a squared normmal distribution is equal to a chi-square
distribution, the probability of any grid cell to be suitable for the selected species, can be
read off a chi square probability table at the appropriate degrees of freedom (m, the
number of climatic variables) (Robertson er al., 2001). The input data comprises 3000
grid cells covering sub-Saharan Africa populated with climate variables. Grid cells, in
which particular tick species were recorded, are referred to as known records following
Erasmus er al. (2002). Thus, on a scatter plot of climate variables (multivariate climate
space), the values of climate variables from localities where species have been recorded
are used to construct a confidence region where there is a high probability that the
records reflect the core range of the species. Points falling within this confidence region
are then mapped back to geographic space to represent an interpolated distribution (ID),
represented as a probability of climate suitability (see Erasmus ef al., 2000 for a detailed
model description). Differences in model performance when employing a suit of different

climate datasets were evaluated by comparing the interpolated species distributions.

Tick data

Point localities of recorded tick observations were obtained from Cumming (1999b).
These data were compiled from various tick collections (see Cumming (1999b) for a

detailed list of sources). Combining data sets from different sources invariably
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compounds identification and distribution errors and for this reason data congruence with
Walker er al. (2000) were used to assess data quality. This later reference provides well-
illustrated distributions of Rhipicephalus species. Synonyms provided in this reference
also solve the common problem of referring to one species using two different names.
The tick species selected for this study belong to the phylum Arthropoda, Class
Arachnida and Family Ixodidae. Four species (R. appendiculatus, R. capensis, R. longus
and R. zambeziensis) were selected from the 74 Rhipicephalus species found in Africa
because their life history parameters and host preferences are relatively well known
(Walker er al., 2000). Tick point localities were assigned to particular 60km x 60km grid
cells by means of a spatial intersect. A conservative estimate of the accuracy of these
point localities is 0.2 degrees (Cumming, pers.comm.) and therefore this approximation is

considered reasonable.

Climate variables

In the present study the climate variables employed were mean maximum temperature of
January and July, mean minimum of January and July, and mean rainfall of January and

July.

Comparison of interpolated species distributions across climate datasets.

Interpolated tick distributions emanating from the three climate data sets were compared
by first calculating the true positive predictions (TP), that is the number of grid cells
where the probability of climate suitability was equal or greater than 50% and where a
tick had previously been recorded. The number of false negative (FN) predictions were
also recorded, that is when the probability of climate suitability was less than 50% but
where a tick had previously been recorded. The comparison among climate data sets was
conducted using the proportional overlap method (Prendergast er al, 1993; Lombard,
1995; Reyers et al., 2000). Proportional overlap was calculated as TP / TP + FN where
TP is the number of true positive predictions and-FN + TP represents the number of

negative plus the number of positive predictions, or, the maximum number of
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overlapping grid cells between observed and modeled tick distributions. This method was
the most appropriate vehicle of comparison as absence data for tick distributions were not
available. Although ROC analyses has been shown to be robust to the assumption of
absence data in unsampled cells (Cumming, 2000a), the low prevalence of presence data
(varying between 0.027 and 0.179) in this study means that ~2500 absence records would
be added if this assumption was made. We are not confident that such a large change in
the number of records can still yield robust model outputs. Therefore, in this case, the

absence of absence data precludes the use of ROC analyses (Erasmus er al., 2002).

Modelling random sub samples of known records

To evaluate the role played by tick dataset size on the performance of the climate
datasets, we performed single random draws of varying percentages of the known tick
distribution records without replacement (20%. 40%, 60%, 80%. 100% of known
records). By varying the input dataset size and summing the proportional overlaps
between predicted occurrences and known records across tick species, we were able to
evaluate climate data performance for different levels of species data availability. A
Kruskal-Wallis rank test between the proportional overlap values of the three climate data
sets at every level of dataset reduction was performed (20%, 40%, 60%, 80& and 100%).

RESULTS

Comparing climate data sets

The observed variance in the CRES temperature data only becomes distance invariant
after approximately 22 degrees, which is almost 3 times greater than that found for the
DARLAM and CRU datasets (Fig. 2a). When the variogram is interpreted at the distance
of reliability (Kaluzny er al., 1998), which is half the maximum distance over the field of
data for an experimental variogram, CRES data are still influenced by more remote data
points, whereas the autocorrelation of CRU and DARLAM data have become distance

invariant. This means that any particular value in the CRES data is more strongly
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influenced by data up tol5 degrees away than either the CRU or DARLAM datasets
where the sphere of influence is much more localized (~ 7 degrees). The relatively small
number of observations used as inputs to create the CRES climate surface, forced
interpolations over larger distances than for CRU, where more observational data were
available for creating the climate surface. The slope of the curve for DARLAM
temperature data appears to be steeper than the other curves over short distances (Fig.
2a). This illustrates how DARLAM, a process model, is very sensitive to topography and
topographical features which are usually expressed over short distances, i.e. ~2 degrees.

DARLAM’s precipitation variogram (Fig. 2b) also displays a non-monotonic behaviour.

Interpolated tick distributions

The multivariate climate envelope model used in the present study provides probability
of climate suitability values ranging from 0 - 1 across all grid cells. It was therefore
necessary to select an appropriate probability level to use for comparison between the
different species. In this study a 50% probability level of occurrence was used. This
means that a tick was assumed present where the model predicted a probability of
occurrence of = 50% and the reverse. This follows a frequently employed convention in
the field of predictive species modelling (Beard et al., 1999; Brito et al., 1999; Erasmus
et al., 2002; van Staden e al., in press; also see Walker er al., 1990 for even lower
thresholds). When the proportion of the correctly predicted cases (true positives) were
evaluated, it was found that in R. appendiculatus, a well-studied tick species, a true
positive coverage of 70% (using DARLAM data) was obtained at a probability of
occurrence level of > 50%. This percentage of known records captured in the
interpolated distribution is considered good, bearing in mind that the observed known
records are not only determined by climate but also by the presence of suitable host
species and other species specific micro-ecological or habitat selection factors which are

not incorporated in this model.

The interpolated distribution for R. appendiculatus (Fig 3), when using any of the three

datasets, was both visually and statistically broader than the extent of the known records,
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but the true positive predictions corresponded satisfactory with the known records (60%.
60% and 70% overlap using the CRES, CRU and DARLAM datasets respectively)
(Table la, Fig. 4). There was a noteworthy positive congruence between the interpolated
distributions and the known records in most areas of East. Central and Southem Afica:

Uganda, Tanzania, Zambia, Zimbabwe and South Afiica.

Unlike R. appendiculatus that is well studied and therefore presents a more
comprehensive recorded distribution, the other tick species are poorly sampled and the
actual distributions are still contested in the literature. While Walker e al. (2000)
maintain that R. capensis is strictly South African; Cumming (1999b) reported it mainly
in South Africa with some scattered records in Rwanda. DRC, Angola and Zambia (Fig.
3). The proportional overlap correlation between interpolated distribution and known
records for R. capensis were 70%, 60%, and 60% for the CRES, CRU and DARLAM
climate datasets respectively (Table 1b Fig.4). The highest overlap occurs in South
Africa and Namibia with more than 90% of all true positive records found in RSA for
the three climate data sets. This resultant interpolated distribution compares favorably
with the Walker et al. (2000) distribution pattern and improves the suggested Cumming
(1999b) distribution by eliminating a few scattered records in the north of South Africa
and Namibia. The interpolated distributions of the other 2 tick species (Fig. 3) were also
broader than the known records, with a 60%, 57% and 75% proportional overlap using
CRES, CRU and DARLAM data for R. longus (Table lc, Fig. 4) and 57%, 51%., and
62% for R. zambeziensis (Table 1d, Fig 4) respectively. One of the interesting and
consistent results that emerged from these analyses is the ability of DARLAM to

produce a higher proportion of true predictions across all species examined (Figs. 4 & 95).

Modelling random sub samples of known records

All three examined climate datasets seemed to be sensitive to the tick dataset size in
terms of their ability to comectly predict tick distributions. However, DARLAM
consistently performed better with higher degree of overlap between the interpolated

distributions and known records (Figs. 5 & 6). Even with a 20% sub-sample of known
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records across the tick species, DARLAM was able to capture more than 50% of the
known records and was consistently above 60% at higher levels of sub-sampling.
However, none of these differences in proportional overlap reached statistical
significance (P < 0.05) suggesting that DARLAM performs at least as well as any of the

observed datasets.
DISCUSSION

Comparing spatial datasets

When interpreting the output of climate envelope based predictive species distribution
models, it is necessary to take cognizance of differences in climate data that can be used
as inputs. The datasets used in the present study represent 3 different types of climate
data, namely: (i) observed data with variable coverage in space and time together with
elevation influenced smoothing (CRES), (ii) better coverage and 30-year averaged
observed data with elevation influenced smoothing (CRU), and (iii) purely process
derived modeled climate data (DARLAM). Although some differences among the
climate datasets are obvious, even to visual inspection (see Figures 1), a more
quantitative measure of the difference in underlying climate parameters was obtained by
comparing omnidirectional variograms (Kaluzny et al., 1998; Rossi ez al., 1992; Nielsen
- & Wendroth, 2001) for these data sets. In a variogram the variance of the property being
measured, i.e. rainfall or temperature, is statistically expressed as a function of the
distance between observations within a given spatial domain, i.e. sub-Saharan Africa
(Nielsen & Wendroth, 2001). The difference between pairs of observations separated by a
specific distance is plotted and the slope, position and shape of this graph gives an
indication of the scale at which the underlying processes might operate. These
variograms can therefore be interpreted as a measure of the degree of difference between
the various datasets. For example, the emergence of non-monotonic behaviour in the
DARLAM dataset (Fig. 2b) is indicaﬁve of spatial variation at scales other than the
sampling units (Nielsen & Wendroth, 2001). Given the fact that precipitation is the result

of complex atmospheric interactions at different scales. such a non-monotonic variogram
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can be expected from a process-based model such as DARLAM. In the analyses
conducted here, the CRES dataset varied over larger spatial scales than eitherthe CRU or
DARIAM datasets. Thus, the three data sets used in this study do not only appear
different to a casual visual inspection (Fig. 1), but are also different with respect to the
spatial dependencies of database characteristics which influence adjacent climate values

(Fig. 2).

Model evaluation

Usually the validity of a predictive species distribution model is assessed by its ability to

predict both negative and positive cases (Fielding & Bell, 1997). However, the

opportunistic manner in which the tick distribution data were colleted precludes igorous
model evaluation. This is as true absence data are not available for these species, mainly
because some areas were simply poorly sampled (Fig. 3). This same climate envelope
model was however previously subjected to rigorous evaluation using presence-absence
data resulting from a coordinated and systematic survey effort. Erasmus et al. (2002)
used the distribution records of 34 bird species and tested model performance using
receiver operator characteristic analyses (Fielding & Bell, 1997). The model performed
significantly better than a random model with no discriminatory ability. The model also
accurately predicted the complete known distributions for 24 of the 34 bird species, using
a 20% sub-sample of the known records (Erasmus es al, 2002). In sum, the model
performed satisfactorily and is therefore considered adequate for the purposes of the

present study.

Predicting tick distributions

At the outset it is important to acknowledge that, although we use a climate envelope
approach in this study, we are not suggesting that this is an adequate basis for predicting
the fine scale distributions of tick species across the African continent. Tick distributions
and abundances are likely to be impacted by factors other than climate, such as host

abundance, host resistance to ticks, acaricide use and grazing management (see
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Cumming, 1998, 1999a, 2002). Most of these changes interact with temperature and
rainfall regimes and in the absence of experimental data. It is impossible to separate the
effects of these interrelated factors. This, compounded by the fact that the broad scale
ecology of only a few tick species have been studied in detail (Cumming, 2002), means
that employing climate variables as the main limiting factors for tick distributions
remains the best option available. Minimum temperature, maximum temperature and
rainfall have similar predictive abilities to one another; when considered together; their
predictive ability increases substantially (Cumming, 2002). This is probably a
consequence of their being correlated with one another. The intimate relationship
between climate and tick distributions has also been reported elsewhere (Rechav, 198 ]
Minshull & Norval, 1982; Walker, 1974; Walker ez al., 2000). Taken in the context of
current knowledge, we agree with Cumming (1999a) that the direct effects of climate
typically determine the distributions of African ticks, but that biotic variables such as
vegetation type and host distributions, may be important in creating heterogeneity in tick
distributions at finer scales (Minshull & Norval, 1982) and play a subordinate role in

limiting the species ranges ofticks at broad spatial scales (Cumming, 2002).

Against this background we proceeded to employ distribution data from a number of tick
species that are considered sound taxa and that are widely collected. This was to evaluate
the use of three different climate datasets for carrying out predictive species distribution
modelling. These datasets varied in terms of the manner in which they were generated.
Two datasets (CRES and CRU) represented the traditionally used datasets (see Guisan &
Zimmermann, 2000; Robertson er al, 2001; Erasmus et al., 2002) for this type of
predictive modelling activity. These are based on observed climate data and were
subsequently interpolated to generate climate surfaces for the continent (Hutchinson,
1991; Hutchinson & Gessler, 1994; McMahon et al., 1995; Hutchinson et al., 1996; New
et al., 1999). The third dataset was derived from a nested limited-area model, is entirely
based on a simulation of climate processes and does not use any observed meteorological
data to generate climate surfaces (DARLAM - Engelbrecht ez a/., 2002). In all instances
explored here, cross species and degrees of data sub-sampling, the DARLAM dataset

was equal to or marginally outperformed the interpolated climate surfaces in predicting
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the distributions of species. This suggests that process-based modeled datasets, such as
DARLAM, should in the future be considered viable or even preferred datasets for
modelling the predicted distributions of species, especially when considering their ability

to capture climate at fine scales relative to range sizes of species.

A further advantage of employing process-based modeled climate surfaces for predicting
species distributions is that this provides improved compatibility when using these
predictions as a hasis for exploring the consequences of climate change for future species
distributions. This improved compatibility flows from the fact that future climate
surfaces can easily be generated from nested limited-area models such as DARLAM.
Thus, we can easily model the future using similar process-based models as used here in
DARLAM but, in contrast, we cannot observe the future in order to generate climate
datasets for direct comparison with the observed data derived climate datasets (CRES

and CRU).

In conclusion, the recent availability of high-resolution nested limited-area models
(DARLAM — Engelbrecht er al., 2002) now means that there are alternative climate
surfaces available for modelling species distributions at broad scales. The results
obtained here suggest that the use of data derived from a nested limited-area or process
model for predicting species distributions, offer a viable and even a preferred alternative
to using interpolated climate surfaces derived from observed climate data. This is
especially true when the spatial and temporal coverage of observed datasets are poor,
resulting in climate data surfaces that are strongly spatially autocomrelated over large

distances.
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Table 1: The number of true and false predictions generated for four different tick
species by a predictive species distribution model (Erasmus ef a/. 2002) using different
climate datasets (CRES, CRU, DARLAM) and complete species datasets. KR = known
records, TP = true positive predictions, FN = False negative predictions.

(a) Rhipicephalus appendiculatus

CRES CRU DARLAM
KR 538 538 538
TP 315 320 372
FN 223 217 166
Proportional
overlap 60% 60% 70%
(TP/TP + FN)
(b) R. capensis
KR 189 189 189
TP 128 119 108
FN 60 70 81
Proportional
overlap 60% 60% 57%
(c) R. longus
KR 129 129 129
TP 78 74 97
FN 51 55 32
Proportional |
Overlap 60% 56% 75%
(d) R. zambeziensis 0 .
KR 82 82 82
TP 47 42 5
FN 35 40 31
Proportional
Overlap 60% 50% 65%
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FIGURE LEGENDS

FIGURE 1. Maximum temperature (deg C) and rainfall (0.lmm/day) for January and July
as represented by three climate datasets (CRES, CRU and DARLAM) (a)
Mean maximum temperature for January, (b) mean maximum temperature for

July, (¢) mean rainfall for January and (d) mean rainfall for July

FIGURE 2a. Variogram of January maximum temperature across sub Saharan Africa for
the CRES, CRU and DARLAM data sets. Distance is measured in
geographical degrees. Spatial dependence (gamma) is calculated following

Nielsen & Wendroth (2001).

FIGURE 2b. Variogram of January rainfall across sub Saharan Afiica for the CRES,
CRU and DARLAM data sets. Distance is measured in geographical

degrees. Spatial dependence (gamma) is calculated following Nielsen &

Wendroth (2001).

FIGURE 3. Recorded known records (KR) and interpolated distributions (ID) of ticks
obtained using species predictive modelling based on each of the three climate
datasets (CRES, CRU and DARLAM) (a) R. appendiculatus, (b) R. capensis,
(c) R. longus, (d) R. zambeziensis.

FIGURE 4. Known records (KR) and true predictions (TP) for all tick species generated
for each climate dataset (a) R. appendiculatus, (b) R. capensis, (c) R. longus,

(d) R. zambeziensis.

FIGURE 3. Degree of proportional overlap between known records and predicted
presence of all tick species for each climate dataset. These proportional

overlap values were calculated at different levels of random sub-sampling of
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known records (a) R. appendiculatus, (b) R. capensis, (c) R. longus, (d) R.

zambeziensis

FIGURE 6. Mean value of proportional overlap (mean + s.d) across all tick species at
different levels of random sub-sampling of known records . This analysis is

repeated for each climate dataset.
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Figure 5
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Figure 6
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